Machine Learning
oy Tutorials

FIRST EDITION
Beginning machine learning for Apple and iOS

By the raywenderlich.com Tutorial Team
Matthijs Hollemans, Audrey Tam & Chris LaPollo

Machine Learning by Tutorials
By Matthijs Hollemans, Chris LaPollo and Audrey Tam

Copyright ©2018 Razeware LLC.

Notice of Rights

All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

"To Floortje, my familiar. Thanks for all the cuddles!"
— Matthijs Hollemans
"To Bram, Darwin and Archana: All my love — go ahead and divvy

that up amongst yourselves. (°__") To our future machine overlords:
I was on your side. mean, ¢’mon, beep boop beep, amirite? (O~O)"

— Chris LaPollo
"To my parents and teachers, who set me on the path that led me to
the here and now."

— Audrey Tam

About the Authors

Matthijs Hollemans is an author on this book. After many years of
handcrafting his logic with if-then-else statements, Matthijs finally
saw the light and switched to machine learning, teaching computers
to come up with those if-then-else statements by themselves. Why
write programs when computers can write their own? Matthijs also
lifts heavy things in the gym and plays heavy things on his guitar.
Matthijs blogs about iOS machine learning at machinethink.net. You
can find him on Twitter as @ mhollemans.

Chris LaPollo is an author of this book. He's told software what to do
for over two decades, but lately he tells software to go figure it out
itself. An independent developer and consultant focused on machine
learning, he also writes video games for fun. Nowadays he spends free
time with family and learning to cook. He's kept his basil plants alive
for several months - it's a pretty big deal. Find him on Twitter at
@chrislapollo.

Audrey Tam is an author on this book. As a retired computer science
academic, she's a technology generalist with expertise in translating
new knowledge into learning materials. Audrey has a PhD in applied
math, so is especially good at dis-intimidating machine learning
math. Audrey now teaches short courses in iOS app development to
non-programmers and attends nearly all Melbourne Cocoaheads
monthly meetings. She also enjoys long train journeys, knitting and
trekking in the Aussie wilderness.

About the Editors

Jeff Biggus is a tech editor of this book. Jeff is an independent
researcher, consultant and engineer, currently focused on scientific
and GPU computing. When not programming, he has his nose stuck in
too many books, writing, recording classical and experimental music,
and general nonsense.

Phil J. Laszkowicz is a tech editor of this book. Phil's been delivering
large-scale software solutions for many years, as well as working with
startups as a board member, mentor, and coach. He's worked with
neural networks for over a decade, and enjoys combining deep
learning with intuitive and elegant user experiences across mobile
and web. In his spare time he writes music, drinks coffee at a
professional level, and can be found scaling cliff walls, sea kayaking,
or taking part in competitive archery.

Manda Frederick is an editor of this book. She has been involved in
publishing for over ten years through various creative, educational,
medical and technical print and digital publications, and is thrilled to
bring her experience to the raywenderlich.com family as Managing
Editor. In her free time, you can find her at the climbing gym,
backpacking in the backcountry, hanging with her dog, working on
poems, playing guitar and exploring breweries.

Vijay Sharma is the final pass editor of this book. Vijay is a husband,
a father and a senior mobile engineer. Based out of Canada's capital,
Vijay has worked on dozens of apps for both Android and i0S. When
not in front of his laptop, you can find him in front of a TV, behind a
book, or chasing after his kids. You can reach out to him on Twitter

(@vijaysharm or on LinkedIn @vijaysharm

About the Artist

Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

Machine Learning by Tutorials

Table of Contents: Overview

Early Access EitioN.... e 11
What You Need....... et sesenes 12
BOOK LICENSE ..ttt sesesessssesesesesenens 13
Book Source Code & Forums.......eerceceeeeeeeererenenennns 14
ADOUL the COVE ..ttt senes 15
Chapter 1: Machine Learning, iOS & You.................... 16
Chapter 2: Getting Started with Image

ClasSIifICAtION ...t ane 45
Chapter 3: Training the Image Classifier....................... 83
Chapter 4: Getting Started With Python & Turi

AL e bebe bbb eae s s s s s s senenes 109
Chapter 5: Digging Deeper Into Turi Create............. 147
Chapter 6: Training with Keraseeeevnencncnee. 174
Chapter 7: Beyond Image Classification.................... 175
Chapter 8: Sequence Classification ... 176
Chapter 9: Sequence Predictions.........eeeneecnnnee. 238
Chapter 10: NLP Classification........eeeeeevccnnee. 239
Chapter 11: Text-to-Text Transformooeeeuenee.e. 240
Want to Grow Your SKillS? ... 241

h raywenderlich.com 7

Machine Learning by Tutorials

Table of Contents: Extended

Early Access EitioN.... e 11
What YOU NEEd......eererrerevesenenesesesesenes 12
BOOK LICENSE ..ttt ssssessnasenans 13
Book Source Code & FOrums.....eeeeeeeeeeeeenes 14
AbOUL the COVEN ., 15
Chapter 1: Machine Learning, iOS & You.................... 16
What is Maching |€ArNINEG? ...t sess s sesssessesessesessesessesans 17
DEEP ICAININEG .ttt se s sesssses s sessesessesassessssesassesassessesessssassesans 19
MLIN @ NUESREIL.cceee ettt ses s ssses s s sassessenes 22
Can mobile devices really do machine learning?cveeecvernrcrenenenene 31
Frameworks, tOOIS @Nd APIS ... sessse s sssassenes 32
ML QI ERE ThINES? .ttt ss st s s es s e sassassenes 39
The ethics of MAaChiNg |€AINING...... e bessesessesens 41
KEY POINES .ttt sesesess s s ssassssssssesssasasasassssssssssasasasassssesssasasasas 43
WHhEre tO 0 frOM NEIEY .t se s sessesassesans 44
Chapter 2: Getting Started with Image
ClasSIfICAtION ... saene 45
IS that SNACK NEAITRY T ...t sessesens 46
COME MLttt as s st s s bbbt s e e s b sasbessnnes 51
VISTON ettt sttt st s ses s s s ses s sas s s s s s s s s s s sasbessesassesassesassasassessssessssessasans 54
Creating the VNCOIreML rEQUEST ...ttt sessssessssesseses 55
Performing the rEQUEST ... se s aesenes 58
ShOWING the FESUIES ...ttt sas s s s s ssnes 61
HOW OES I WOIKT .ttt se s ses s sesasassesasassenes 67
Multi-class ClasSIifICAtiON........eeeceeeees st sessenes 73
KEY POINES .ttt sesesess s s asassssssesssasasasssssssssssasasasassssesssesasasas 78
Bonus: Using Core ML WithouUt ViSION ... vessessaennns 78

h raywenderlich.com 8

Machine Learning by Tutorials

CRAIIENZES .ttt ess s s s ses bbb s s s sas s s s sasbessnes 82
Chapter 3: Training the Image Classifier...................... 83
THE AALASEL e se s s s s s s s b s s s s b s s sessenans 83
CrEALE MLttt st ss s s s s b s s b s s s s s sesasseee 85
How we created the dataset ... sesessenens 87
TrANSTEI IAIMING ettt ss s s s s s sassessesessesesassessesans 89
LOZISTIC FEEIESSION ettt ses s sesss s ses e seses s ses s sesassesesassesenes 93
LOOKING fOr ValIAAtioN ...ttt sesns s sessesessesesaesans 95
More metrics and the tESt SEL ... ssees 102
EXPOrting t0 COre MLttt sess s s s sesssessssessssessesessesanes 105
RECAP. ottt se s s bbb s s s s s bbb b se e s s e s bbb sesesasasaanes 107
KEY POINTS ettt sese s sesesesessassssesesesesesssasassssesesesesesasasassenes 108
CRAIIENGE et be s bbb s sesas s sesaesesassans 108
Chapter 4: Getting Started With Python & Turi
BT et sebese e bbb e anes 109
SEAMEEE FOIARE ettt s s s s ses s s s s s s s sesasens 109
PYERON ettt se s bbbt bbb b ae b e 110
Packages and ENVIFONMENTS ...t sesssesesessesessesessesessesanss 111
ANACONAA. ...ttt sssses s sessssassessessesssssssessessesassassessessesassassassessens 112
Setting up a base ML €nVIrONMENT....... et sesaesens 114
JUPYLEE NOTEDOOKS ...ttt se s s sesas s sesassesesans 119
Transfer learning With TUri Create... et esessesessesenes 127
ShULEING AOWN JUPYLEN ..ttt sesssesessesassesassessesessesens 140
Useful Conda COMMANGS ...ttt s essssessssessessesassassessessens 141
DOCKEr aNd Colab... ettt sesesessessessssassassessessessssassessessens 143
KBY POINTS ..ttt ses s ss e sese s s s s s s s ssssesesassesesssassesesasssesans 145
CRAIIENEES .t se s s s seses s b s sesas s senes 145
WheEre to 0 froOmM NEIE1... et ses s s ses s sees 146
Chapter 5: Digging Deeper Into Turi Create............. 147
GettiNG STATEd ...ttt ass s s sassaens 147
Transfer learning With SQUEEZENET ... 147
Getting individual prediCtions ... ssesessesessesens 149

h raywenderlich.com 9

Machine Learning by Tutorials

INCreasing MaX iLEIraAtiONS...... s ses e sesesss e sesessesesesans 154
Confusing apples With OrangES?....... e sessesens 156
Wrangling TUri Create COAE .t sess s sesesassesesans 160
A peek behind the CUrtaiN... s ss e sesenaes 169
KBY POINTS ...ttt eses s sesss s s bessebesseses s sassessesesassesassessesassesanes 170
CRAIIENEES ..ttt bbb s s s s ses s ses s sas s sassessesesassans 171
Chapter 6: Training with Keraseeeevrcrceeennee. 174
Chapter 7: Beyond Image Classification.................... 175
Chapter 8: Sequence Classification ... 176
BUIIAING @ AAtASEL ...ttt s s sess s s sessess s ses s sessesanes 178
Analyzing and preparing YoUr data..........cesereeeseesesesesesesessesessesenns 188
Creating @ MOAEN ... ses s s s sesas s sassessesessesens 199
Getting to KNOW YOUF MOAEL ... eeeccetecteeeeetesevssess s sessesessesessesens 211
Classifying human activity in YOUT QPP ...ceeeeeeceeciesesssesesesesessesessesens 218
KBY POINTS ..ttt ses s sess s s s s s s sas s s sassesesasassesesassesesans 236
CRAIIENEES ..ttt bes s ses s s sesaesesaesessesas s sassessesesaesens 237
Chapter 9: Sequence Predictions.........eeeecnnee. 238
Chapter 10: NLP Classification.........eeeeeeennnnee. 239
Chapter 11: Text-to-Text Transformccveveeveunenee. 240
Want to Grow Your SKillS? ... 241

h raywenderlich.com 10

Early'Access Edition

You’re reading an early access edition of Machine Learning by Tutorials. As we continue
to add chapters to the early access edition of this book, we’ll notify you and let you
know how to access the updated versions.

We hope you enjoy the preview of this book, and that you’ll come back to help us
celebrate more releases of Machine Learning by Tutorials as we work on the book!

The best way to get update notifications is to sign up for our monthly newsletter. This
includes a list of the tutorials that came out on raywenderlich.com that month, any
important news like book updates or new books, and a list of our favorite development
links for that month. You can sign up here:

o www.raywenderlich.com/newsletter

h raywenderlich.com 11

Yy-

To follow along with this book, you'll need the following:

* A Mac running High Sierra (10.13) or later. Earlier versions might work, but they're
untested. To follow along with some of the chapters, you will need Mojave (10.14).

» Xcode 9.3 or later. Xcode is the main development tool for iOS. You'll need Xcode
9.3 or later for the tasks in this book. You can download the latest version of Xcode
from Apple's developer site here: apple.co/2asi58y

* One or more devices (iPhone, iPad) running iOS 11 or later. Some of the
examples in this book will run in the iOS 11 Simulator that comes with Xcode but
most chapters require a physical iOS device for testing. The device must have an A9
processor or better.

If you haven't installed the latest version of macOS or Xcode, be sure to do that before
continuing with the book. The code covered in this book depends on Swift 4 and Xcode
9 — you may get lost if you try to work with an older version.

h raywenderlich.com 12

yok License

By purchasing Machine Learning by Tutorials, you have the following license:

» You are allowed to use and/or modify the source code in Machine Learning by
Tutorials in as many apps as you want, with no attribution required.

* You are allowed to use and/or modify all art, images and designs that are included in
Machine Learning by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from Machine
Learning by Tutorials, available at www.raywenderlich.com”.

» The source code included in Machine Learning by Tutorials is for your personal use
only. You are NOT allowed to distribute or sell the source code in Machine Learning by
Tutorials without prior authorization.

» This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

h raywenderlich.com 13

BoelesSource Code &

Forums

This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded from
store.raywenderlich.com.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a
great place to ask questions about the book or to submit any errors you may find.

h raywenderlich.com 14

The orca, or more commonly known as the killer whale, is one of the most intelligent —
and lethal — predators in the sea. Orcas are incredibly smart and have often been seen
using problem-solving techniques in the wild as they learn to hunt and even steal fish
straight out of the nets of fishing boats. With the second-heaviest brains among marine
mammals, orcas have a broad capacity for learning and general intelligence.

Most people know orcas through their playful choreographed performances at Sea
World. In the wild, however, orcas are more than just playful mammals; they form
highly complex social and familiar relationships that parallel the types of group
bonding found in elephants and humans.

Although orcas are found in large numbers in most oceans around the world, tracking
their migration patterns has proved difficult despite decades of research, since entire
groups of orca are known to simply disappear at times, only to reappear months later.

In fact, machine learning is starting to play a part in tracking the migration patterns of
large whales, with up to 98% accuracy. Read more about how machine learning is
helping measure the impact of human activities on whales here:

» https://www.blog.google/technology/ai/one-students-quest-track-endangered-
whales-machine-learning

h raywenderlich.com 15

pter 1: Machine

ning, iOS & You

am & Matthijs Hollemans

Want to know a secret? Machine learning isn't really that hard to learn. The truth is,
you don't need a PhD from a prestigious university or a background in mathematics to
do machine learning. Sure, there are a few new concepts to wrap your head around,
there is a lot of jargon, and it takes a while to feel at home in the ever-growing
ecosystem of tools and libraries. But if you already know how to code, you can pick up
machine learning quite easily — promise!

This book helps you get started with machine learning on iOS and Apple devices. This
first chapter is a gentle introduction to the world of machine learning and what it has to
offer — as well as what its limitations are. In the rest of the book, you'll look at each of
these topics in more detail, until you know just enough to be dangerous! Naturally, a
book like this can't cover the entire field of machine learning, but you'll learn enough to
make machine learning a useful tool in your software development toolbox.

With every new version of i0S, Apple is making it easier to add machine learning to
your apps. There are now several high-level frameworks, including Natural Language,
Speech, and Vision, that provide advanced machine learning functionality behind
simple APIs as part of Apple's iOS tooling. Want to convert speech to text or text to
speech? Want to recognize language or grammatical structure? Want to detect faces in
photos or track moving objects in video? These built-in frameworks have got you
covered.

For more control, the Core ML and Metal Performance Shaders frameworks let you run
your own machine-learning models. With these APIs, you can now add state-of-the-art
machine-learning technology to your apps! Apple also provides easy-to-use tools such
as Create ML and Turi Create that let you build your own models for use with Core ML.
And many of the industry-standard machine-learning tools can export Core ML models,
too, allowing you to integrate them into your iOS apps with ease.

K

In this book, you'll learn how to use these tools and frameworks to make your apps
smarter. Even better, you'll learn how machine learning works behind the scenes — and
why this technology is awesome.

Machine learning is hot and exciting — but it's not exactly new. Many companies have
been routinely employing machine learning as part of their daily business for several
decades already. Google, perhaps the quintessential machine-learning company, was
founded in 1998 when Larry Page invented PageRank, now considered to be a classic
machine-learning algorithm.

But machine learning goes even further back, all the way to the early days of modern
computers. In 1959, Arthur Samuel defined machine learning as the field of study that
gives computers the ability to learn without being explicitly programmed.

In fact, the most basic machine-learning algorithm of them all, linear regression or the
"method of least squares," was invented over 200 years ago by famed mathematician
Carl Friedrich Gauss. That's approximately one-and-a-half centuries before there were
computers... even before electricity was common. This simple algorithm is still used
today and is the foundation of more complex methods such as logistic regression and
even neural networks — all algorithms that you'll learn about in this book.

Even deep learning, which had its big breakthrough moment in 2012 when a so-called
convolutional neural network overwhelmingly won the ImageNet Large Scale Visual
Recognition Challenge, is based on the ideas of artificial neural networks dating back to
the work of McCulloch and Pitts in the early 1940s when people started to wonder if it
would be possible to make computers that worked like the human brain.

So, yes, machine learning has been around for a while. But that doesn't mean you've
missed the boat. On the contrary, the reason it's become such a hot topic recently is
that machine learning works best when there is a lot of data — thanks to the internet
and smartphones, there is now more data than ever. Moreover, computing power has
become much cheaper. It took a while for it to catch on, but machine learning has
grown into a practical tool for solving real-world problems that were too complex to
deal with before.

What is new, and why we've written this book, is that mobile devices are now powerful
enough to run machine-learning algorithms right in the palm of your hand!

K

So what exactly do we mean when we say, "machine learning"?

As a programmer, you're used to writing code that tells the computer exactly what to do
in any given situation. A lot of this code consists of rules:

if this is true,
then do something,
else do another thing

This is pretty much how software has always been written. Different programmers use
different languages, but they're all essentially writing long lists of instructions for the
computer to perform. And this works very well for a lot of software, which is why it's
such a popular approach.

Writing out if-then-else rules works well for automating repetitive tasks that most
people find boring or that require long periods of concentration. It's possible, though
time-consuming, to feed a computer a lot of knowledge in the form of such rules, then
program it to mimic what people do consciously, meaning to reason logically with the
rules or knowledge, or to apply heuristics, meaning strategies or rules of thumb.

But there are also many interesting problems in which it's hard to come up with a
suitable set of rules or in which heuristics are too crude — and this is where machine
learning can help. It's very hard to explicitly program computers to do the kinds of
things most people do without conscious thought: recognizing faces, expressions and
emotions, the shape of objects, or the sense or style of sentences. It's hard to write
down the algorithms for these tasks: What is it that the human brain actually does to
accomplish these tasks?

How would you write down rules to recognize a face in a photo? Using the RGB values of
the pixels for hair, skin or eye color aren't reliable. Hair style, glasses, makeup, beards
and mustaches can change your appearance between photos. Most photos won't be of a
person looking straight at the camera, so you'd have to account for many different
camera angles. You'd end up with hundreds, if not thousands, of rules, and they still
wouldn't cover all possible situations.

How do your friends recognize you as you and not a sibling or relative who resembles
you? How do you explain how to distinguish cats from dogs to a small child, if you only
have photos? What rules differentiate between cat and dog faces? Dogs and cats come
in many different colors and hair lengths and tail shapes. For every rule you think of,
there will probably be a lot of exceptions.

K

The big idea behind machine learning is that, if you can't write the exact steps for a
computer to recognize objects in an image or the sentiment expressed by some text,
maybe you can write a program to produce an algorithm that does the job.

Instead of having a domain expert design and implement if-then-else rules, you can
let the computer learn the rules to solve these kinds of problems from examples. And
that's exactly what machine learning is: using a learning algorithm that can
automatically derive the "rules" that are needed to solve a certain problem. Often, such
an automated learner comes up with better rules than humans can, because it can find
patterns in the data that humans don't see.

Until now, we've been using terms like deep learning and neural networks pretty liberally.
Let's take a moment to properly define what these terms mean.

Neural networks are made up of layers of nodes (neurons) in an attempt to mimic how
the human brain works. For a long time, this was mostly theoretical: Only simple neural
networks with a couple of layers could be computed in a reasonable time with the
computers of that era. In addition, there were problems with the math, and networks
with more and larger layers just didn't work very well.

It took until the mid 2000s for computer scientists to figure out how to train really deep
networks consisting of many layers. At the same time, the market for computer game
devices exploded, spurring demand for faster, cheaper GPUs to run ever more elaborate
games. GPUs (Graphics Processing Units), speed up graphics and are great at doing lots
of matrix operations very fast. As it happens, neural networks also require lots of matrix
operations. Thanks to gamers, fast GPUs became very affordable, and that's exactly the
sort of hardware needed to train deep multi-layer neural networks. A lot of the most
exciting progress in machine learning is driven by deep learning, which uses neural
networks with a high number of layers, and a high number of neurons at each layer as
its learning algorithm.

Note: Companies like Apple, Intel and Google are designing processing units
specifically designed for deep learning, such as Google's TPU, or Tensor Processing
Unit, and the new Neural Engine in the iPhone XS's A12 processor, which lack of
the 3D rendering capabilities of GPUs and instead can run the computational
needs of the neural networks much more efficiently.

K

Layer
2
Layer
3
Layer
4
Y
Layer
n
\

i healthy unhealthy

neural network classifier

The deeper a network is, the more complex the things are that you can make it learn.
Thanks to deep learning, modern machine-learning models can solve more difficult
problems than ever — including what is in images, recognizing speech, understanding
language and much more. Research into deep learning is still on-going and new
discoveries are being made all the time.

Note: NVIDIA made its name as a computer game chip maker; now, it's also a
machine-learning chip maker. Even though most tools for training models will
work on macOS, they're more typically used on Linux running on a PC. The only
GPUs these tools support are from NVIDIA, and most Macs don't have NVIDIA
chips. GPU-accelerated training on newer Macs is now possible with Apple's own
tools, but if you want the best speed and the most flexibility, you'll still need a
Linux machine. Fortunately, you can rent such machines in the cloud. For this
book, you can run all the training code on your Mac, although sometimes you'll
have to be a little patient. We also provide the trained models for download, so you
can skip the wait.

Artificial intelligence

A term that gets thrown in a lot with machine learning is artificial intelligence, or Al — a
field of research that got started in the 1950s with computer programs that could play
checkers, solve algebra word problems and more.

The goal of artificial intelligence is to simulate certain aspects of human intelligence
using machines. A famous example from Al is the Turing test: If a human cannot
distinguish between responses from a machine and a human, the machine is intelligent.

K

Al is a very broad field, with researchers from many different backgrounds, including
computer science, mathematics, psychology, linguistics, economics and philosophy.
There are many subfields, such as computer vision and robotics, as well as different
approaches and tools, including statistics, probability, optimization, logic programming
and knowledge representation.

Learning is certainly something we associate with intelligence, but it goes too far to say
that all machine-learning systems are intelligent. There is definitely overlap between
the two fields, but machine learning is just one of the tools that gets used by Al. Not all
Al is machine learning — and not all machine learning is Al.

Machine learning also has many things in common with statistics and data science, a
fancy term for doing statistics on computers. A data scientist may use machine learning
to do her job, and many machine learning algorithms originally come from statistics.
Everything is a remix.

Here are some of the things researchers and companies are doing with machine
learning today:

e Predict how much shoppers will spend in a store.

» Assisted driving and self-driving cars.

» Personalized social media: targeted ads, recommendations and face recognition.
e Detect email spam and malware.

» Forecast sales.

» Predict potential problems with manufacturing equipment.

» Make delivery routes more efficient.

» Detect online fraud.

e And many others...

These are all great uses of the technology but not really relevant to mobile developers.
Fortunately, there are plenty of things that machine learning can do on mobile —
especially when you think about the unique sources of data available on a device that
travels everywhere with the user, can sense the user's movements and surroundings,
and contains all the user's contacts, photos and communications. Machine learning can
make your apps smarter.

K

There are four main data input types you can use for machine learning on mobile:
cameras, text, speech and activity data.

Cameras: Analyze or augment photos and videos captured by the cameras, or use the
live camera feed, to detect objects, faces and landmarks in photos and videos; recognize
handwriting and printed text within images; search using pictures; track motion and
poses; recognize gestures; understand emotional cues in photos and videos; enhance
images and remove imperfections; automatically tag and categorize visual content; add
special effects and filters; detect explicit content; create 3D models of interior spaces;
and implement augmented reality.

Text: Classify or analyze text written or received by the user in order to understand the
meaning or sentence structure; translate into other languages; implement intelligent
spelling correction; summarize the text; detect topics and sentiment; and create
conversational UI and chatbots.

Speech: Convert speech into text, for dictation, translation or Siri-type instructions;
and implement automatic subtitling of videos.

Activity: Classify the user's activity, as sensed by the device's gyroscope, accelerometer,
magnetometer, altimeter and GPS.

Later in this chapter, in the section Frameworks, Tools and APIs, you'll see that the
iOS SDK has all of these areas covered!

Note: In general, machine learning can be a good solution when writing out rules
to solve a programming problem becomes too complex. Every time you're using a
heuristic — an informed guess or rule of thumb — in your software, you might
want to consider replacing it with a learned model to get results that are tailored
to your end user.

One of the central concepts in machine learning is that of a model. The model is the
algorithm that was learned by the computer to perform a certain task, plus the data
needed to run that algorithm. So a model is a combination of algorithm and data.

It's called a "model" because it models the domain for the problem you're trying to
solve. For example, if the problem is recognizing the faces of your friends in photos,
then the problem domain is digital photos of humans, and the model will contain
everything that it needs to make sense of these photos.

K

To create the model, you first need to choose an algorithm - for example, a neural
network — and then you need to train the model by showing it a lot of examples of the
problem that you want it to solve. For the face-recognition model, the training
examples would be photos of your friends, as well as the things you want the model to
learn from these photos, such as their names.

After successful training, the model contains the "knowledge" about the problem that
the machine-learning algorithm managed to extract from the training examples.

Once you have a trained model, you can ask it questions for which you don’t yet know
the answer. This is called inference, using the trained model to make predictions or
draw conclusions. Given a new photo that the model has never seen before, you want it
to detect your friends' faces and put the right name to the right face.

If a model can make correct predictions on data that it was not trained on, we say that it
generalizes well. Training models so that they make good predictions on new data is
the key challenge of machine learning.

by

The “learning” in machine learning really applies only to the training phase. Once
you’ve trained the model, it will no longer learn anything new. So when you use a
machine-learning model in an app, you’re not implementing learning so much as
“using a fixed model that has previously learned something.” Of course, it’s possible to
re-train your model every so often — for example, after you’ve gathered new data — and
update your app to use this new model.

Supervised learning

The most common type of machine learning practiced today, and the main topic of this
book, is supervised learning, in which the learning process is guided by a human —
you! — that tells the computer what it should learn and how.

K

With supervised learning, you train the model by giving it examples to look at, such as
photos of your friends, but you also tell it what those examples represent so that the
model can learn to tell the difference between them. These labels tell the model what
(or who) is actually in those photos. Supervised training always needs labeled data.

Note: Sometimes people say "samples" instead of examples. It's the same thing.

The two sub-areas of supervised learning are classification and regression.

Regression techniques predict continuous responses, such as changes in temperature,

power demand or stock market prices. The output of a regression model is one or more
real-value numbers. To detect the existence and location of a face in a photo, you'd use
a regression model that outputs four numbers that describe the rectangle in the image
that contains the face.

Classification techniques predict discrete responses or categories, such as whether an
email is spam or whether this is a photo of a good dog:

The output of a classification model is a "class" such as "good dog" or "bad dog," or
"spam" versus "no spam," or the name of one of your friends. Typical applications are
classifying things or places in images or classifying text as expressing positive or
negative sentiment.

K

There is also a type of machine learning called unsupervised learning, which does not
involve humans in the learning process. A typical example is clustering, in which the
algorithm is given a lot of unlabeled data, and its job is to find patterns in this data. As
humans, we typically don't know beforehand what sort of patterns exist, so there is no
way we can guide the ML system. Applications include finding similar images, gene
sequence analysis and market research.

A third type is reinforcement learning, where an agent learns how to act in a certain
environment and is rewarded for good behavior but punished for bad. This type of
learning is used for tasks like programming robots.

Let's take a closer look at exactly how a model is trained, as this is where most of the
mystery and confusion comes from.

First, you need to collect training data, which consists of examples and labels. To make
a model that can recognize your friends, you need to show it many examples — photos
of your friends — so that it can learn what human faces look like, as opposed to any
other objects that can appear in photos and, in particular, which faces correspond to
which names.

The labels are what you want the model to learn from the examples — in this case, what
parts of the photo contains faces, if any, and the names that go along with them.

The more examples, the better, so that the model can learn which details matter and
which details don't. One downside of supervised learning is that it can be very time
consuming and, therefore, expensive to create the labels for your examples. If you have
1,000 photos, you'll also need to create 1,000 labels — or more if a photo can have more
than one person in it.

Note: You can think of the examples as the questions that the model gets asked;
you can think of the labels as the answers to these questions. You only use these
labels during training, not for inference. After all, inference means asking
questions that you don't yet have the answers for.

The training examples are made up of the features you want to train on. This is a bit of
a nebulous concept, but a "feature” is generally a piece of data that is considered to be
interesting to your machine-learning model.

K

For many kinds of machine-learning tasks, you can organize your training data into a
set of features that are quite apparent. For a model that predicts house prices, the
features could include the number of rooms, floor area, street name and so on. The
labels would be the sale price for each house in the dataset. This kind of training data is
often provided in the form of a CSV or JSON table, and the features are the columns in
that table.

Feature engineering is the art of deciding which features are important and useful for
solving your problem, and it is an important part of the daily work of a machine-
learning practitioner or data scientist.

In the case of machine-learning models that work on images, such as the friend face
detector, the inputs to the model are the pixel values from a given photo. It's not very
useful to consider these pixels to be the "features” of your data because RGB values of
individual pixels don't really tell you much.

Instead, you want to have features such as eye color, skin color, hair style, shape of the
chin, shape of the ears, does this person wear glasses, do they have an evil scar and so
on... You could collect all this information about your friends and put it into a table,
and train a machine-learning model to make a prediction for "person with blue eyes,
brown skin, pointy ears." The problem is that such a model would be useless if the input
is a photo. The computer has no way to know what someone's eye color or hair style is
because all it sees is an array of RGB values.

So you must extract these features from the image somehow; you can use machine
learning for that, too! A neural network can analyze the pixel data and discover for itself
what the useful features are for getting the correct answers. It learns this during the
training process from the training images and labels you've provided. It then uses those
features to make the final predictions.

From your training photos, the model might have discovered "obvious" features such as
eye color and hair style, but usually the features the model detects are more subtle and
hard to interpret. Typical features used by image classifiers include edges, abstract
shapes, color blobs and the relationships between them. In practice, it doesn't really
matter what features the model has chosen, as long as they let the model make good
predictions.

One of the reasons deep learning is so popular is that teaching a model to find the
interesting image features by itself works much better than any if-then-else rules
humans have come up with by hand in the past. Even so, deep learning still benefits
from any hints you can provide about the structure of the training data you're using, so
that it doesn't have to figure out everything by itself.

K

You'll see the term features a lot in this book. For some problems, the features are data
points that you directly provide as training data; for other problems, they are data that
the model has extracted by itself from more abstract inputs such as RGB pixel values.

The training loop

The training process for supervised learning goes like this:

DATAWITH |,
TRUE LABELS '-.,.

0 .
0 .
\ 4 s 4
PARAMETE] MODEL ERROR/L0SS
I . -
0 J °
3 S
LABELS e
S
..
....

The model is a particular algorithm you have chosen, such as a neural network. You
supply your training data that consists of the examples, as well as the correct labels for
these examples. The model then makes a prediction for each of the training examples.

Initially, these predictions will be completely wrong because the model has not learned
anything yet. But you know what the correct answers should be, and so it is possible to
calculate how "wrong" the model is by comparing the predicted outputs to the expected
outputs (the labels). This measure of "wrongness" is called the loss or the error.

Using some fancy mathematics called back-propagation, the training process uses this
loss value to slightly tweak the parameters of the model so that it will make better
predictions next time.

Showing the model all the training examples just once is not enough. You'll need to
repeat this process over and over, often for hundreds of iterations. In each iteration, the

K

loss will become lower, meaning that the error between the prediction and the true
value has become smaller and, thus, the model is less wrong than before. And that's a
good thing!

If you repeat this enough times, and assuming that the chosen model has enough
capacity for learning this task, then gradually the model's predictions will become
better and better.

Usually people keep training until the model reaches either some minimum acceptable
accuracy, up to a maximum number of iterations, or until they run out of patience... For
deep neural networks, it's not uncommon to use millions of images and to go through
hundreds of iterations.

Of course, training is a bit more complicated than this in practice (isn't it always?). For
example, it's possible to train for too long, actually making your model worse. But you
get the general idea: show the training examples, make predictions, update the model's
parameters based on how wrong the predictions are, repeat until the model is good
enough.

As you can tell, training machine-learning models is a brute-force and time-consuming
process. The algorithm has to figure out how to solve the problem through trial and
error. It's no surprise that it takes a lot of processing power. Depending on the
complexity of the algorithm you've chosen and the amount of training data, training a
model can take anywhere from several minutes to several weeks, even on a computer
with very fast processors. If you want to do some serious training, you can rent time on
an Amazon, Google or Microsoft server, or cluster of servers, which does the job much
faster than your laptop or desktop computer.

Exactly what a model learns depends on the algorithm you've chosen. A decision tree, for
example, literally learns the same kind of if-then-else rules a human would have
created. But most other machine-learning algorithms don't learn rules directly, but a
set of numbers called the learned parameters, or just parameters, of the model.

These numbers represent what the algorithm has learned, but they don’t always make
sense to us humans. We can't simply interpret them as if-then-else; the math is more
complex than that. It's not always obvious what's going on inside these models, even if
they produce perfectly acceptable outcomes. A big neural network can easily have 50
million of these parameters, so try wrapping your head around that!

It's important to realize that we aren't trying to get the model to memorize the training
examples. That's not what the parameters are for. During the training process, the

K

model parameters should capture some kind of meaning from the training examples,
not retain the training data verbatim. This is done by choosing good examples, good
labels and a loss function that is suitable to the problem.

Still, one of the major challenges of machine learning is overfitting, which happens
when the model does start to remember specific training examples. Overfitting is hard
to avoid, especially with models that have millions of parameters.

For the friends detector, the model's learned parameters somehow encode what human
faces look like and how to find them in photos, as well as which face belongs to which
person. But the model should be dissuaded from remembering specific chunks of pixel
values from the training images, as that would lead to overfitting.

How does the model know what a face is? In the case of a neural network, the model
acts as a feature detector and it will literally learn how to tell objects of interest (faces)
apart from things that are not of interest (anything else). You'll look at how neural
networks try to make sense of images in the next chapters.

Note: Just add data?! Data is everything in machine learning! You must train the
model with data that accurately represents the sort of predictions you want to
make. In Chapter 4, you'll see how much work was needed to create a relatively
small dataset of less than 5,000 images.

The amount of work it takes to create a good machine-learning model depends on your
data and the kind of answers you want from the model. An existing free model might do
everything you want, in which case you just convert it to Core ML and pop it into your
iOS app. Problem solved!

But what if the existing model's output is different from the output you care about? For
example, in the next chapter, you'll use a model that classifies pictures of snack food as
healthy or unhealthy. There was no free-to-use model available on the web that did this
— we looked! So we had to make our own.

This is where transfer learning can help. In fact, no matter what sort of problem you're
trying to solve with machine learning, transfer learning is the best way to go about it
99% of the time. With transfer learning, you can reap the benefits of the hard work that
other people have already done. It's the smart thing to do!

When a deep-learning model is trained, it learns to identify features in the training
images that are useful for classifying these images. Core ML comes with a number of

K

ready-to-use models that detect thousands of features and understand 1,000 different
classes of objects. Training one of these large models from scratch requires a very large
dataset, a huge amount of computation and can cost big bucks.

Most of the training time is spent on learning how to detect the best features. Many of
these features — edges, corners, shapes and relationships between shapes — are
probably also useful for classifying your data into the classes you care about, especially
if your training examples are similar in nature to the type of data this other model has
already been trained on. Most of these big, freely available models are trained on
photographs of humans, animals and everyday objects.

So it would be a bit of a waste if you had to train your own model from scratch to learn
the exact same thing. Instead, to create a model for your own dataset, you can take an
existing pre-trained model and customize it for your data. This is called transfer
learning.

You use this existing pre-trained model to extract features from your own training data,
and then you only train the final classification layer of the model so that it learns to
make predictions from the extracted features — but this time for your own class labels.

train .
> % - % « % - 5| classifier]
S S 8 < for your J
classes a
pixels VisionFeaturePrint_Screen foatures
: : feature extractor . .
(150,000 dimensions) (2,048 dimensions)

Transfer learning has the huge advantage that it is much faster than training the whole
model from scratch, plus your dataset can be much smaller. Instead of millions of
images, you now only need a few thousand or even a few hundred.

Apple provides two tools that do transfer learning: Create ML and Turi Create. But this
is such a useful technique that you can find transfer learning tools for the most popular
machine-learning tasks, like image classification or sentiment analysis. Sometimes it's
as easy as dragging your data onto the model; at most, you write just a few lines of code
to read in and structure your data.

A trained model might be hundreds of MB in size, and inference typically performs
billions of computations, which is why inference often happens on a server with fast
processors and lots of memory. For example, Siri needs an internet connection to
process your voice commands — your speech is sent to an Apple server that analyzes its
meaning, then sends back a relevant response.

This book is about doing state-of-the-art machine learning on mobile, so we'd like to do
as much on the device as possible and avoid having to use a server. The good news:
Doing inference on iOS devices works very well thanks to core technologies like Metal
and Accelerate.

The benefits of on-device inference:

1. Faster response times: It's more responsive than sending HTTP requests, so doing
real-time inference is possible, making for a better user experience.

2. It’s also good for user privacy: The user's data isn't sent off to a backend server for
processing, and it stays on the device.

3. It's cheaper since the developer doesn't need to pay for servers and electricity: But
the user pays for it using battery power. Of course, you don't want to abuse this
priviledge, which is why it's important to make sure your models run as efficiently
as possible. We'll explain, in this book, how to optimize machine-learning models
for mobile.

What about on-device training? That's the bad news: Mobile devices still have some
important limitations. Training a machine-learning model takes a lot of processing
power and, except for small models, simply is out of reach of most mobile devices at
this point. That said, updating a previously trained model with new data from the user,
such as a predictive keyboard that learns as you type (also known as “online training”),
is certainly possible today provided that the model is small enough.

Note: Core ML currently does not allow training on the device; it is for inference
only. The Metal framework does have APIs for on-device training but what these
can do right now is limited. The current edition of this book focuses on making
predictions using a model that was trained offline, and it explains how to train
those models on your Mac or a cloud service.

K

Companies such as Amazon, Google and Microsoft provide cloud-based services for
doing machine learning, and there are a whole lot of smaller players as well. Some of
these just provide raw computing power (you rent servers from them). Others provide
complete APIs wherein you don't have to concern yourself with the details of machine
learning at all — you just send your data to their API and it returns the results a few
seconds later.

There are a lot of benefits to using these cloud services: 1) You don't need to know
anything about machine learning — so you won't need to read the rest of this book; 2)
Using them is as easy as sending an HTTP request; and 3) Other people will take care of
running and maintaining the servers.

However, there are also downsides: 1) You're using a canned service that is often not
tailored to your own data; 2) If your app needs to do machine learning in real-time
(such as on a video), then sending HTTP requests is going to be way too slow; and 3)
Convenience has a price: You have to pay for using these services and, once you've
chosen one, it's hard to migrate your app away from them.

In this book, we don't focus on using cloud services. They can be a great solution for
many apps — especially when you don't need real-time predictions — but as mobile
developers we feel that doing machine learning on the device, also known as "edge"
computing, is just more exciting.

It may seem like using machine learning is going to be a pain in the backside. Well, not
necessarily... Like every technology you work with, machine learning has levels of
abstraction — the amount of difficulty and effort depends on which level you need to
work at.

The highest level of abstraction is the task level. This is the easiest to grasp — it maps
directly to what you want to do in your app. Apple and the other major players provide
task-focused toolkits for tasks like image or text classification.

As Apple’s web page says: You don’t have to be a machine learning expert!

K

Apple provides several Swift frameworks for doing specific machine-learning tasks:

Vision: Detect faces and face landmarks, rectangles, bar codes and text, and to track
objects. Vision also makes it easier to use Core ML image models, taking care of
formatting the input images correctly.

Natural Language: Analyze text to identify the language, part of speech, as well as
specific people, places or organizations.

Speech: Convert speech to text, and optionally retrieve answers using Apple's servers
or an on-device speech recognizer. Apple sets limits on audio duration and daily
number of requests.

SiriKit: Handle requests from Siri or Maps for your app's services by implementing
an Intents app extension in one of a growing number of Intent Domains: messaging,
lists and notes, workouts, payments, photos and more.

GameplayKit: Evaluate decision trees that contain questions, possible answers and
consequent actions.

If you need to do one of the tasks from the above list, you're in luck. Just call the
appropriate APIs and let the framework do all the hard work.

Core ML is Apple’s go-to choice for doing machine learning on mobile. It’s very easy to
use and integrates well with the Vision framework. Core ML does have its limitations,
but it’s a great place to start.

Core ML is not just a framework but also an open file format for sharing machine-
learning models. Apple provides six ready-to-use pre-trained image classification
models in Core ML format:

You can also find other pre-trained Core ML models on the Internet in so-called "model
z00s." Here's one we like: github.com/likedan/Awesome-CoreML-Models.

When you're adding a model to your iOS app, size matters. Larger models use more
battery power and are slower than smaller models. The size of the Core ML file is
proportional to the number of learned parameters in the model. For example, ResNet50
has 25.6M parameters, and VGG16 has 138M parameters. By the way, just because a
model has more parameters doesn't necessarily mean it is more accurate. VGG16 is 22
times larger than MobileNet but both models have similar accuracy.

These models, like other free models you can find on the web, are trained on very
generic datasets. If you want to make an app that can detect a faulty thingamajig in the
gizmos you manufacture, you'll have to get lucky and stumble upon a model that
someone else has trained and made available for free — fat chance! There's big money
in building good models, so companies aren't just going to give them away, so you'll
have to know how to make your own model.

Note: The next chapter shows you how to use a pre-trained Core ML model in an
iOS app.

If there's an existing model that does exactly what you want but it's not in Core ML
format, then don't panic! There's a good chance you'll be able to convert it.

There are many popular open-source packages for training machine-learning models.
To name a few:

e Apache MXNet

» (Caffe (and the relatively unrelated Caffe2)
e Keras

e PyTorch

« scikit-learn

e TensorFlow

If you have a model that is trained with one of these packages — or others such as
XGBoost, LIBSVM, IBM Watson — then you can convert that model to Core ML format
using coremltools so that you can run the model from your iOS app.

K

coremltools is a Python package, and you'll need to write a small Python script in order
to use it. Python is the dominent programming language for machine-learning projects,
and most of the training packages are also written in Python.

Some popular model formats, such as TensorFlow and MXNet, are not directly
supported by coremltools but have their own Core ML converters. IBM's Watson gives
you a Swift project but wraps the Core ML model in its own API.

Because there are now so many different training tools that all have their own,
incompatible formats, there are several industry efforts to create a standard format.
Apple's Core ML is one of those efforts, but the rest of the industry seems to have
chosen ONNX instead. Naturally, there is a converter from ONNX to Core ML.

Note: It's important to note that Core ML has many limitations, it is not as
capable as some of the other machine-learning packages. There is no guarantee
that a model that is trained with any of these tools can actually be converted to
Core ML, because certain operations or neural network layer types may not be
supported by Core ML. In that case, you may need to tweak the original model
before you can convert it.

Create ML and Turi Create use transfer learning to let you customize pre-trained base
models with your own data. The base models have been trained on very large datasets,
but transfer learning can produce an accurate model for your data with a much smaller
dataset and much less training time.

You only need dozens or hundreds of images instead of tens of thousands, and training
takes minutes instead of hours or days. That means you can train these kinds of models
straight from the comfort of your own Mac. In fact, both Create ML and Turi Create (as
of version 5) can use the Mac’s GPU to speed up the training process.

Apple acquired the startup Turi in August 2016, then released Turi Create as open-
source software in December 2017. Turi Create was Apple’s first transfer-learning tool,
but it requires you to work in the alien environment of Python. At WWDC 2018, Apple
announced Create ML, which is essentially, a Swift-based subset of Turi Create, to give
you transfer learning for image and text classification using Swift and Xcode.

Create ML has some special features like the MLImageClassifierBuilder GUI that runs
straight from a Swift playground:

@ [) Ready to continue HealthySnacks i = m P g [|
B8 a| HealthySnacks =] Q)) |a) HealthySnacks.playground (Live View) —+ X
import CreateMLUI
let builder = MLImageClassifierBuilder() "Image Classifier Builder" @ ImageCIassmer
4 builder.showInLiveView()| "Open Assistant Editor X" @

Turi Create and Create ML are task-specific, rather than model-specific. This means
that you specify the type of problem you want to solve, rather than choosing the type of
model you want to use. You select the task that matches the type of problem you want
to solve, then Turi Create analyzes your data and chooses the right model for the job.

Turi Create has seven task-focused toolkits:
» Image classification: Label images with labels that are meaningful for your app.

» Image similarity: Find images that are similar to a specific image; an example is the
Biometric Mirror project described at the end of this chapter.

» Recommender system: Provide personalized recommendations for movies, books,
holidays etc., based on a user's past interactions with your app.

» Object detection: Locate and classify objects in an image.
» Style transfer: Apply the stylistic elements of a style image to a new image.

» Activity classification: Use data from a device's motion sensors to classify what the
user is doing, such as walking, running, waving, etc.

» Text classifier: Analyze the sentiment — positive or negative — of text in social
media, movie reviews, call center transcripts, etc.

Create ML currently has only two of these toolkits: image classification and text
classification, However, the expectation is that Apple might add more toolkits in future
updates.

Note: Chapter 3 will show you how to customize Create ML's image classification
model with Swift in Xcode. Chapter 4 will get you started with the Python-based
machine-learning universe, and it will teach you how to create the same custom
model using Turi Create. Don't worry, Python is very similar to Swift, and we'll
explain everything as we go along.

So far, we've described task-specific solutions. Let's now look one level of abstraction
deeper at the model level. Instead of choosing a task and then letting the API select the
best model, here you choose the model yourself. This gives you more control; on the flip
side, it's also more work.

Turi Create includes these general-purpose models:

Classification: Boosted trees classifier, decision tree classifier, logistic regression,
nearest neighbor classifier, random forest classifier, and SVM (Support Vector
Machines.)

Clustering: K-Means, DBSCAN (density based).
Graph analytics: Pagerank, shortest path, graph coloring and more.
Nearest neighbors.

Regression: Boosted trees regression, decision tree regression, linear regression and
random forest regression.

Text analysis.

You probably won't need to learn about these; when you use a task-focused toolkit, Turi
Create picks suitable statistical models based on its analysis of your data. They're listed
here so that you know that you can also use them directly if, for example, Turi Create's
choices don't produce a good enough model.

Apple's frameworks and task-focused toolkits cover most things you'd want to put in
your apps but, if you can't create an accurate model with Create ML or Turi Create, you
have to build your own model from scratch.

This requires you to learn a few new things: the different types of neural network layers
and activation functions, as well as batch sizes, learning rates and other hyperparameters.
Don't worry! In Chapter 5, you'll learn about all these new terms and how to use Keras
to configure and train your own deep-learning networks.

Keras is a wrapper around Google's TensorFlow, which is the most popular deep-
learning tool because... well, Google. TensorFlow has a rather steep learning curve and
is primarily a low-level toolkit, requiring you to understand things like matrix math, so
this book doesn't use it directly. Keras is much easier to use. You'll work at a higher level
of abstraction, and you don't need to know any of the math. (Phew!)

Note: You might have heard of Swift for TensorFlow. This is a Google Brain project,
led by Chris Lattner, to provide TensorFlow users with a better programming
language than Python. It will make life easier for TensorFlow users, but it won't
make TensorFlow any easier to learn for us Swifties.

If you’ve looked at online courses or textbooks on machine learning, you’ve probably
seen a lot of complicated math about efficient algorithms for things like gradient
descent, back-propagation and optimizers. As an i0OS app developer, you don't need to
learn any of that (unless you like that kind of stuff, of course).

As long as you know what high-level tools and frameworks exist and how to use them
effectively, you're good to go. When researchers develop a better algorithm, it quickly
finds its way into the pre-trained models and tools such as Keras, without you needing
to do anything special. To be a user of machine learning, you usually won't have to
implement any learning algorithms from scratch yourself.

However, Core ML can be a little slow to catch up with the rest of the industry (it is only
updated with new iOS releases) and so developers who want to live on the leading edge
of machine learning may still find themselves implementing new algorithms, because
waiting for Apple to update Core ML is not always an option. Fortunately, Core ML
allows you to customize models, so there is flexibility for those who need it.

K

It's worth mentioning a few more machine-learning frameworks that are available on
iOS. These are more low-level than Core ML, and you'd only use them if Core ML is not
good enough for your app.

Metal Performance Shaders: Metal is the official framework and language for
programming the GPU on iOS devices. It's fairly low-level and not for the faint of
heart, but it does give you ultimate control and flexibility. For the best performance,
Metal is the right choice but it takes more effort to get going than Core ML.

Accelerate: All iOS devices come with this underappreciated framework. It lets you
write heavily optimized CPU code. Where Metal lets you get the most out of the GPU,
Accelerate does the same for the CPU. There is a neural-networking library, BNNS
(Basic Neural Networking Subroutines), but it also has optimized code for doing
linear algebra and other mathematics. If you're implementing your own machine-
learning algorithms from scratch, you'll probably end up using Accelerate.

Besides Apple's own APIs there are also a number of iOS machine learning frameworks
from other companies. The most useful are:

Google ML Kit: This is Google's answer to the Vision framework. With ML Kit you
can easily add image labeling, text recognition, face detection, and other tasks to
your apps. ML Kit can run in the cloud but also on the device, and supports both iOS
and Android.

TensorFlow-Lite: TensorFlow, Google's popular machine-learning framework, also
has a version for mobile devices, TF-Lite. The main advantage of TF-Lite is that it
can directly load TensorFlow models, although on iOS devices it currently is not GPU
accelerated. The API is in C++, which makes it hard to use in Swift.

Machine learning, especially deep learning, has been very successful in problem
domains such as image classification and speech recognition, but it can't solve
everything. It works great for some problems but it's totally useless for others.

A deep-learning model doesn't actually reason about what it sees. It lacks the common
sense that you were born with.

K

It doesn't know or care that an object could be made up of separate parts, that objects
don't suddenly appear or disappear, that a round object can roll off a table, and that
children don't put baseball bats into their mouths.

i LR

'VI"he”bclay.is hbtding a baseball bat.

This caption was generated by a deep learning model

At best, the current generation of machine-learning models are very good pattern
detectors, nothing more. Having very good pattern detectors is awesome, but don't fall
for the trap of giving these models more credit than they're due. We're still a long way
from true machine intelligence!

A machine-learning model can only learn from the examples you give it, but the
examples you don't give it are just as important. If the friends detector was only trained
on images of humans but not on images of dogs, what would happen if you tried to do
inference on an image of a dog? The model would probably "detect" the face of your
friend who looks most like a dog (literally!). This happens because the model wasn't
given the chance to learn that a dog's face is different from a human face.

Machine-learning models might not always learn what you expect them to. Let's say
you've trained a classifier that can tell the difference between pictures of cats and dogs.
If all the cat pictures you used for training were taken on a sunny day, and all dog
pictures were taken on a cloudy day, you have actually inadvertently trained a model
that "predicts" the weather!

Because they lack context, deep-learning models can be easily fooled. Although humans
can make sense of some of the features that a deep-learning model extracts — edges or
shapes — many of the features just look like abstract patterns of pixels to us, but might
have a specific meaning to the model. While it's hard to understand how a model makes
its predictions, as it turns out, it's easy to fool the model into making wrong ones.

Using the same training method that produced the model, you can create adversarial
examples by adding a small amount of noise to an image in a way that tricks the model.
The image still looks the same to the human eye, but the model will classify this

K

adversarial example as something completely different, with very high confidence — a
panda labelled as a gibbon, for example. Or worse, a stop sign labelled as a green traffic
light. A lot of research is currently being done on these adversarial attacks and how to
make models more robust against them.

The lesson here is that understanding and dealing with the limitations of machine
learning is just as important as building your models in the first place, or you might be
in for unpleasant surprises!

The ethics of machine learning

Machine learning is a powerful tool, extending the reach of artificial intelligence into
everyday life. Using trained models can be fun, time-saving or profitable, but the misuse
of Al can be harmful.

The human brain evolved to favor quick decisions about danger, and it is happy to use
shortcuts. Problems can arise when bureaucracies latch onto convenient metrics or
rankings to make life-changing decisions about who to hire, fire, admit to university,
lend money to, what medical treatment to use, or whether to imprison someone and for
how long. And machine-learning model predictions are providing these shortcuts,
sometimes based on biased data, and usually with no explanation of how a model made
its predictions.

Consider the Biometric Mirror project at go.unimelb.edu.au/vi56, which predicts the
personality traits that other people might perceive from just looking at your photo.
Here are the results for Ben Grubb, a journalist:

iometric Mirror

Camera —m——————— ———— Information Display

Attribute Value
Gender | MALE
29

Responsibi
Attractiveness | LOW
Sociability | AVERAGE
Int i AVERAGE

Emotional Stability [AVERAGE

COVER FACE-Exit

more information via http://go.unimelb.edu.au/vi56

The title of his article says it all: This algorithm says I'm aggressive, irresponsible and
unattractive. But should we believe it? — check it out at

The algorithm is a simple image-similarity model that finds the closest matches to your
photo from a dataset of 2,222 facial photos. 33,430 crowd-sourced people rated the
photos in the dataset for a range of personality traits, including levels of aggression,
emotional stability, attractiveness and weirdness. The model uses their evaluations of
your closest matches to predict your personality traits.

The journalist experimented with different photos of himself, and the model told him
he was younger and attractive.

[t's amusing, but is it harmful?

The model is part of an interactive application that picks one of your traits — say, level
of emotional stability — and asks you to imagine that information in the hands of
someone like your insurer, future employer or a law enforcement official. Are you
feeling worried now?

In , the project's lead researchers write "[Biometric Mirror] starkly
demonstrates the possible consequences of Al and algorithmic bias, and it encourages
us [to] reflect on a landscape where government and business increasingly rely on Al to
inform their decisions."

And, on the project page, they write:
[O]ur algorithm is correct but the information it returns is not. And that is
precisely what we aim to share: We should be careful with relying on artificial

intelligence systems, because their internal logic may be incorrect, incomplete or
extremely sensitive and discriminatory.

This project raises two of the ethical questions in the use of Al:
» Algorithmic bias

» Explainable or understandable Al

We consider a machine-learning model to be good if it can make correct predictions on
data it was not trained on — it generalizes well from the training dataset. But problems
can arise if the training data was biased for or against some group of people: The data
might be racist or sexist.

K

The reasons for bias could be historical. To train a model that predicts the risk of
someone defaulting on a loan, or how well someone will perform at university, you
would give it historical data about people who did or didn't default on loans, or who did
or didn't do well at university. And, historically, the data would favor white men
because, for a long time, they got most of the loans and university admittances.

Because the data contained fewer samples of women or racial minorities, the model
might be 90% accurate overall, but only 50% accurate for women or minorities.

Also, the data might be biased by the people who made the decisions in the first place:
Loan officials might have been more tolerant of late payments from white men, or
university professors might have been biased against certain demographics.

You can try to overcome bias in your model by explicitly adjusting its training data or
parameters to counteract biases. Some model architectures can be tweaked to identify
sensitive features and reduce or remove their effect on predictions.

The algorithmic bias problem means it's important to be able to examine how an ML
model makes predictions: Which features did it use? Is that accurate or fair?

In the first diagram of this chapter, I drew training as a black box. Although you'll learn
something about what happens inside that box, many deep learning models are so
complex, even their creators can't explain individual predictions.

One approach could be to require more transparency about algorithmic biases and what
the model designer did to overcome them.

Google Brain has an open source tool that can be used to
interpret what a neural network is learning.

e Machine learning isn't really that hard to learn - Stick with this book and you'll see!

» Access to large amounts of data and computing power found online has made ML a
viable technology.

» At its core, machine learning is all about models; creating them, training them, and
inferring results using them.

K

» Training models can be an inexact science and an exercise in patience, however,
transfer learning tools like Create ML and Turi Create, can help improve the
experience in specific cases.

» Mobile devices are ideal for inferring results. As for creating models on device, we're
not quite there yet.

» Don't confuse Machine Learning with Machine Intelligence. Machine Learning can
be a great addition to your app, but knowing their limitations is equally important.

That was a lot! We hope you enjoyed that tour of machine-learning from 10,000 feet. If
you didn't absorb everything you read, don't worry! As with all new things learned, time
and patience are your greatest assets!

In the next chapter, you'll finally start writing some code! This first chapter on machine
learning with images explains how to use a pre-trained Core ML model in an iOS app.
It's chock full of insights into the inner workings of neural networks, so don't skip it!

Let’s begin your journey into the world of machine learning by creating a binary image
classifier.

A classifier is a machine learning model that takes an input of some kind, in this case
an image, and determines what sort of “thing” that input represents. An image classifier
tells you which category, or class, the image belongs to.

Binary means that the classifier is able to distinguish between two classes of objects.
For example, you can have a classifier that will answer either “cat” or “dog” for a given
input image, just in case you have trouble telling the two apart.

Binary
Image
Classifier

. “dog”

A binary classifier for cats and dogs

Being able to tell the difference between only two things may not seem very impressive,
but binary classification is used a lot in practice.

h raywenderlich.com 45

»

In medical testing, it determines whether a patient has a disease, where the “positive
class means the disease is present and the “negative” class means it’s not. Another
common example is filtering email into spam/not spam.

There are plenty of questions that have a definite “yes/no” answer, and the machine
learning model to use for such questions is a binary classifier. The cats-vs.-dogs
classifier can be framed as answering the question: “Is this a picture of a cat?” If the
answer is no, it’s a dog.

Image classification is one of the most fundamental computer vision tasks. Advanced
applications of computer vision — such as object detection, style transfer, and image
generation — all build on the same ideas from image classification, making this a great
place to start.

There are many ways to create an image classifier, but by far the best results come from
using deep learning. The success of deep learning in image classification is what started
the current hype around Al and ML. We wouldn’t want you to miss out on all this
exciting stuff, and so the classifier you’ll be building in this chapter uses deep learning
under the hood.

Is that snack healthy?

In this chapter you’ll learn how to build an image classifier that can tell the difference
between healthy and unhealthy snacks.

healthy unhealthy

To get started, make sure you’ve downloaded the supplementary materials for this
chapter and open the HealthySnacks starter project in Xcode.

K

This is a very basic iPhone app with two buttons, an image view, and a text label at the
top:

results label

image view

N @

The design of the app

The "picture frame" button on the left lets you choose a photo from the library using
UIImagePickerController. The "camera” button on the right lets you take a picture with
the camera (this button is disabled in the simulator).

Once you’ve selected a picture, the app calls classify(image:) in
ViewController.swift to decide whether the image is of a healthy snack or not.
Currently this method is empty. In this chapter you’ll be adding code to this method to
run the classifier.

At this point, it’s a good idea to take a brief look at ViewController.swift to familiarize
yourself with the code. It’s pretty standard fare for an iOS app.

In order to do machine learning on the device, you need to have a trained model. For
the HealthySnacks app, you’ll need a model that has learned how to tell apart healthy
snacks from unhealthy snacks. In this chapter you’ll be using a ready-made model that
has already been trained for you, and in the next chapter you’ll learn to how train this
model yourself.

K

The model is trained to recognize the following snacks:

HEALTHY

v
v
O
v
v
v

4NN

)N

Apple

UNHEALTHY

X

Banana s x
Carrot X

Grape

Juice
Orange
Pineapple
Salad
Strawberry
Watermelon

©:

X
X
X
X
X
X

Cake

Candy
Cookie
Doughnut
Hot Dog

Ice Cream

Muffin
Popcorn
Pretzel

Waffle

For example, if you point the camera at an apple and snap a picture, the app should say

The categories of snacks

“healthy.” If you point the camera at a hotdog, it should say "unhealthy."

What the model actually predicts is not just a label (“healthy” or “unhealthy”) but
probability distribution, where each classification is given a probability value:

probability 100% -

0%

healthy

unhealthy

An example probability distribution

If your math and statistics are a little rusty, then don’t let terms such as “probability
distribution” scare you. A probability distribution is simply a list of positive numbers
that add up to 1.0. In this case it is a list of two numbers because this model has two

classes:

[0.15, 0.85]

The above prediction is for an image of a waffle with strawberries on top. The model is
85% sure that the object in this picture is unhealthy. Because the predicted
probabilities always need to add up to 100% (or 1.0), this outcome also means the
classifier is 15% sure this snack is healthy — thanks to the strawberries.

You can interpret these probabilities to be the confidence that the model has in its
predictions. A waffle without strawberries would likely score higher for unhealthy,
perhaps as much as 98%, leaving only 2% for class healthy. The more confident the
model is about its prediction, the more one of the probabilities goes to 100% and the
other goes to 0%. When the difference between them is large, as in this example, it
means that the model is sure about its prediction. Ideally, you would have a model that
is always confident and never wrong. However, sometimes it’s very hard for the model
to draw a solid conclusion about the image. Can you tell whether the food in the
following image is mostly healthy or unhealthy?

What is this?

The less confident the model is, the more both probabilities go towards the middle, or
50%.

When the probability distribution looks like the following, the model just isn’t very
sure, and you cannot really trust the prediction — it could be either class.
probability 100% -

50%

0%

healthy unhealthy

An unconfident prediction

This happens when the image has elements of both classes — salad and greasy stuff —
so it’s hard for the model to choose between the two classes. It also happens when the
image is not about food at all, and the model does not know what to make of it.

To recap, the input to the image classifier is an image and the output is a probability
distribution, a list of numbers between 0 and 1.

Since you’re going to be building a binary classifier, the probability distribution is made
up of just two numbers. The easiest way to decide which class is the winner is to choose
the one with the highest predicted probability.

Note: To keep things manageable for this book, we only trained the model on
twenty types of snacks (ten healthy, ten unhealthy). If you take a picture of
something that isn’t in the list of twenty snacks, such as broccoli or pizza, the
prediction could be either healthy or unhealthy. The model wasn’t trained to
recognize such things and, so, what it predicts is anyone’s guess. That said, the
model might still guess right on broccoli (it’s green, which is similar to other
healthy snacks) and pizza (it’s greasy and therefore unhealthy).

For many of the projects in this book, you’ll be using Core ML, Apple’s machine learning
framework that was introduced with iOS 11. Core ML makes it really easy to add
machine learning models to your app — it’s mostly a matter of dropping a trained
model into your app and calling a few API functions. Xcode even automatically writes
most of the code for you.

Of course, Core ML is only easy if you already have a trained model. You can find the
model for this chapter, HealthySnacks.mlmodel, in the downloaded resources.

Core ML models are packaged up in a .mlmodel file. This file contains both the
structural definition of the model as well as the things it has learned, known as the
learned parameters (or the “weights”).

With the HealthySnacks project open in Xcode, drag the HealthySnacks.mlmodel file
into the project to add it to the app (or use File » Add Files).

Select HealthySnacks.mlmodel in the Project Navigator and Xcode will show the
following:

V¥ Machine Learning Model
Name HealthySnacks
Type Neural Network Classifier
Size 5MB
Author
Description Image classifier (squeezenet_v1.1) created by Turi Create (version 4.1.1)

License

¥V Model Class

(& HealthySnacks ©

Automatically generated Swift model class

¥V Model Evaluation Parameters

¥ Inputs
image Image (Color 227 x 227) Input image

V Outputs
labelProbability Dictionary (String - Double) Prediction probabilities
label String Class label of top prediction

Looking at the mlmodel file

This is a summary of the Core ML model file. It shows what of type model it is, the size
of the model in megabytes and a description.

The HealthySnacks model type is Neural Network Classifier, which means it is an image
classifier that uses deep learning techniques. The terms “deep learning” and “neural
network” mean pretty much the same thing. According to the description, this model
was made using a tool called Turi Create and it uses SqueezeNet v1.1, a popular deep
learning architecture for mobile apps.

The main benefit of SqueezeNet is that it’s small. As you can see in Xcode, the size of
this model is "only" 5 MB. That is tiny compared to many other deep learning model
architectures, which can take up hundreds of MBs. Such large models are usually not a
good choice for use in a mobile app. Not only do they make the app download bigger
but larger models are also slower and use more battery power.

The Model Evaluation Parameters section lists the inputs that the model expects and
the outputs that it produces. Since this is an image classifier there is only one input, a
color image that must be 227 pixels wide and 227 pixels tall. You cannot use images
with other dimensions. The reason for this restriction is that the SqueezeNet
architecture expects an image of exactly this size. If it’s any smaller or any larger, the
math used by SqueezeNet doesn’t work out. This means that any image you pick from
the photo library or take with the camera must be resized to 227x227 before you can
use it with this Core ML model.

Note: If you’re thinking that 227x227 pixels isn’t very big, then you’re right. A
typical 12-megapixel photo is 4032x3024 — that is more than 200 times as many
pixels! But there is a trade-off between image size and processing time. These
deep learning models need to do a lot of calculations: For a single 227x227 image,
SqueezeNet performs 390 million calculations. Make the image twice as large and
the number of calculations also doubles. At some point, that just gets out of hand
and the model will be too slow to be useable!

Making the image smaller will make the model faster, and it can even help the
models learn better since scaling down the image helps to remove unnecessary
details that would otherwise just confuse the model. But there’s a limit here too:
At some point, the image loses too much detail, and the model won’t be able to do
a good job anymore. For image classification, 227x227 is a good compromise.
Other typical image sizes used with deep learning models are 224x224 and
299x299.

The HealthySnacks model has two outputs. It puts the probability distribution into a
dictionary named labelProbability that will look something like this:

labelProbability = [“healthy”: 0.15, “unhealthy”: 0.85]

For convenience, the second output it provides is the class label of the top prediction:
"healthy" if the probability of the snack being healthy is greater than 50%, "unhealthy"
if it’s less than 50%.

The final section of this model summary to look at is Model Class. When you add

an .mlmodel file to a project, Xcode does something smart behind the scenes: It creates
a Swift class with all the source code needed to use the model in your app. That means
you don’t have to write any code to load the .mlmodel — Xcode has already done the
heavy lifting for you.

To see the code that Xcode generated, click the little arrow next to the model name:

V¥ Model Class

[(&) HealthySnacks ©]

Automatically generated Swift model class

Click the arrow to view the generated code

It’s not important, at this point, that you understand exactly what this code does; just
notice that the automatically generated Swift file contains a class HealthySnacks that
has an MLModel object property (the main object from the Core ML framework). It also
has prediction() methods for making the classifications. There also are
HealthySnacksInput and HealthySnacksOutput classes that represent the inputs (an
image) and outputs (the probabilities dictionary and the top prediction label) of the
model.

At this point, you might reasonably expect that you’re going to use these automatically
generated classes to make the predictions. Surprise... you’re not! We’re saving that for
the end of the chapter.

There are a few reasons for this, most importantly that the images need to be scaled to
227x227 pixels and placed into a CVPixelBuffer object before you can call the
prediction() method, and we'd rather not deal with that if we can avoid it. So instead,
you’re going to be using yet another framework: Vision.

Note: Core ML models can also have other types of inputs besides images, such as
numbers and text. In this first section of the book, you’ll primarily work with
images but, in later sections, you’ll also do machine learning on other types of
data.

Along with Core ML, Apple also introduced the Vision framework in iOS 11. As you can
guess from its name, Vision helps with computer vision tasks. For example, it can detect
rectangular shapes and text in images, detect faces and even track moving objects.

Most importantly for you, Vision makes it easy to run Core ML models that take images
as input. You can even combine this with other Vision tasks into an efficient image-
processing pipeline. For example, in an app that detects people’s emotions, you can
build a Vision pipeline that first detects a face in the image and then runs a Core ML-
based classifier on just that face to see whether the person is smiling or frowning.

It’s highly recommended that you use Vision to drive Core ML if you’re working with
images. Recall that the HealthySnacks model needs a 227x227 image as input, but
images from the photo library or the camera will be much larger and are typically not
square. Vision will automatically resize and crop the image.

In the automatically generated Swift file for the .mlmodel, you may have noticed that
the input image (see HealthySnacksInput) has to be a CVvPixelBuffer object, while
UIImagePickerController gives you a UIImage instead. Vision can do this conversion for
you, so you don’t have to worry about CVPixelBuffer objects.

Finally, Vision also performs a few other tricks, such as rotating the image so that it’s
always right-size up, and matching the image’s color to the device’s color space.
Without the Vision framework, you'd have to write additional code by hand! Surely,
you’ll agree that it’s much more convenient to let Vision handle all these things.

Note: Of course, if you’re using a model that does not take images as input, you
can’t use Vision. In that case, you’ll have to use the Core ML API directly.

The way Vision works is that you create a VNRequest object, which describes the task
you want to perform, and then you use a VNImageRequestHandler to execute the request.
Since you’ll use Vision to run a Core ML model, the request is a subclass named
VNCoreMLRequest. Let’s write some code!

K

To add image classification to the app, you’re going to implement classify(image:) in
ViewController.swift. This method is currently empty. Here, you’ll use Vision to run
the Core ML model and interpret its results. First, add the required imports to the top of
the file:

import CoreML
import Vision

Next, you need to create the VNCoreMLRequest object. You typically create this request
object once and re-use it for every image that you want to classify. Don’t create a new
request object every time you want to classify an image — that’s wasteful.

In ViewController.swift, add the following code inside the ViewController class below
the @IBOutlets:

lazy var classificationRequest: VNCoreMLRequest = {
do {
// 1
let healthySnacks = HealthySnacks()
// 2
let visionModel = try VNCoreMLModel(for: healthySnacks.model)
// 3
let request = VNCoreMLRequest(model: visionModel,
completionHandler: {
[weak self] request, error in
print("Request is finished!", request.results)
})
// 4
request.imageCropAndScaleOption = .centerCrop
return request
} catch {
fatalError("Failed to create VNCoreMLModel: \(error)")
}
()

Here’s what this code does:

1. Create an instance of HealthySnacks. This is the class from the .mImodel file’s
automatically generated code. You won’t use this class directly, only so you can pass
its MLMode object to Vision.

2. Create a VNCoreMLModel object. This is a wrapper object that connects the MLModel
instance from the Core ML framework with Vision.

3. Create the VNCoreMLRequest object. This object will perform the actual actions of
converting the input image to a CVPixelBuffer, scaling it to 227x227, running the
Core ML model, interpreting the results, and so on.

Since Vision requests run asynchronously, you need to supply a completion handler
that will receive the results. For now, the completion handler just prints something
to the Xcode debug output pane. You will flesh this out later.

4. The imageCropAndScaleOption tells Vision how it should resize the photo down to
the 227x227 pixels that the model expects.

The code is wrapped up in a do catch because loading the VNCoreMLModel object can fail
if the .mImodel file is invalid somehow. That should never happen in this example
project, and so you handle this kind of error by crashing the app. It is possible for apps
to download an .mlmodel file and, if the download fails, the .mlmodel can get corrupted.
In that case, you’ll want to handle this error in a more graceful way.

Note: The classificationRequest variable is a lazy property. In case you’re
unfamiliar with lazy properties, this just means that the VNCoreMLRequest object is
not created until the very first time you use classificationRequest in the app.

It has been mentioned a few times now that the model you’re using, which is based on
SqueezeNet, requires input images that are 227x227 pixels. Since you’re using Vision,
you don’t really need to worry about this — Vision will automatically scale the image to
the correct size. However, there is more than one way to resize an image, and you need
to choose the correct method for the model, otherwise it might not work as well as
you'd hoped.

What the correct method is for your model depends on how it was trained. When a
model is trained, it’s shown many different example images to learn from. Those images
have all kinds of different dimensions and aspect ratios, and they also need to be
resized to 227x227 pixels. There are different ways to do this and not everyone uses the
same method when training their models.

For the best results you should set the request’s imageCropAndScaleOption property so
that it uses the same method that was used during training.

Vision offers three possible choices:
« centerCrop
o ScaleFill

o ScaleFit

The . centerCrop option first resizes the image so that the smallest side is 227 pixels,
and then it crops out the center square:

resize to crop to
334 x 227 227 x 227
— —_—

e

3219 x 2191

The centerCrop option

Note that this removes pixels from the left and right edges of the image (or from the
top/bottom if the image is in portrait). If the object of interest happens to be in that
part of the image, then this will throw away useful information and the classifier may
only see a portion of the object. When using .centerCrop it’s essential that the user
points the camera so that the object is in the center of the picture.

With .scaleFill, the image gets resized to 227x227 without removing anything from
the sides, so it keeps all the information from the original image — but if the original
wasn’t square then the image gets squashed. Finally, .scaleFit keeps the aspect ratio
intact but compensates by filling in the rest with black pixels.

scaleFit
The scaleFill and scaleFit options

For the Healthy Snacks app, you’ll use . centerCrop as that’s also the resizing strategy
that was used to train the model. Just make sure that the object you’re pointing the
camera at is near the center of the picture for the best results. Feel free to try out the
other scaling options to see what kind of difference they make to the predictions, if any.

K

Now that you have the request object, you can implement the classify(image:)
method. Add the following code to that method:

func classify(image: UIImage) {
// 1
guard let ciImage = CIImage(image: image) else {
print("Unable to create CIImage")

return
// 2
let orientation = CGImagePropertyOrientation(image.imageOrientation)
// 3
DispatchQueue.global(qos: .userInitiated).async {
// 4

let handler = VNImageRequestHandler(ciImage: cilImage,
orientation: orientation)
do {
try handler.perform([self.classificationRequest])
} catch {
print("Failed to perform classification: \(error)")

}
by

The image that you get from UIImagePickerController is a UIImage object but Vision
prefers to work with CGImage or CIImage objects. Either will work fine, and they’re both
easy to obtain from the original UIImage. The advantage of using a CIImage is that this
lets you apply additional Core Image transformations to the image, for more advanced
image processing.

Here is what the method does, step-by-step:
1. Converts the UIImage to a CIImage object.

2. The UIImage has an imageOrientation property that describes which way is up when
the image is to be drawn. For example, if the orientation is "down," then the image
should be rotated 180 degrees. You need to tell Vision about the image’s orientation
so that it can rotate the image if necessary, since Core ML expects images to be
upright.

3. Because it may take Core ML a moment or two to do all the calculations involved in
the classification (recall that SqueezeNet does 390 million calculations for a single
image), it is best to perform the request on a background queue, so as not to block
the main thread.

4. Create a new VNImageRequestHandler for this image and its orientation information,
then call perform() to actually do execute the request. Note that perform() takes an
array of VNRequest objects, so that you can perform multiple Vision requests on the
same image if you want to. Here, you just use the VNCoreMLRequest object from the
classificationRequest property you made earlier.

The above steps are pretty much the same for any Vision Core ML app.

Because you made the classificationRequest a lazy property, the very first time
classify(image:) gets called it will load the Core ML model and set up the Vision
request. But it only does this once and then re-uses the same request object for every
image. On the other hand, you do need to create a new VNImageRequestHandler every
time, because this handler object is specific to the image you’re trying to classify.

When you take a photo with the iPhone’s camera, regardless of how you’re holding the
phone, the image data is stored as landscape because that’s the native orientation of
the camera sensor. i0OS keeps track of the true orientation of the image with the
imageOrientation property. For an image in your photo album, the orientation
information is stored in the image file’s EXIF data.

If you’re holding the phone in portrait mode and snap a picture, its imageOrientation
will be . right to indicate the camera has been rotated 90 degrees clockwise — 0 degrees
means that the phone was in landscape with the Home button on the right.

An imageOrientation of .up means that the image already has the correct side up. This
is true for pictures taken in landscape but also for portrait pictures from other sources,
such as an image you create in Photoshop.

Most image classification models expect to see the input image with the correct side up.
Notice that the Core ML model does not take "image orientation" as an input, so it will
see only the "raw" pixels in the image buffer without knowing which side is up.

Image classifiers are typically trained to account for images being horizontally flipped
so that they can recognize objects facing left as well as facing right, but they’re usually
not trained to deal with images that rotated by 90, 180 or 270 degrees.

If you pass in an image that is not oriented properly, the model may not give accurate
predictions because it has not learned to look at images that way.

Classifier p——— “?7?7”

This cat is not right-side up

This is why you need to tell Vision about the image’s orientation so that it can properly
rotate the image’s pixels before they get passed to Core ML. Since Vision uses CGImage
or CIImage instead of UIImage, you need to convert the UIImageOrientation value to a
CGImagePropertyOrientation value.

Trying it out
At this point, you can build and run the app and choose a photo.

It’s possible to run this app in the Simulator but only the photo library button is active.
The photo library on the Simulator doesn’t contain pictures of snacks by default, but
you can add your own by Googling for images and then dragging those JPEGs or PNGs
into the Photos app.

Run the app on a device to use the camera, as the Simulator does not support taking
pictures.

Take or choose a picture, and the Xcode debug pane will output something like this:

Request is finished! Optional([<VNClassificationObservation:
0x60c00022b940> BO9B3F7D-89CF-405A-ABE3-6F4AF67683BB 0.81705
“healthy” (0.917060), <VNClassificationObservation: 0x60c000223580>
BC9198C6-8264-4B3A-AB3A-5AAE84F638A4 0.18295 “unhealthy” (0.082940)])

This is the output from the print statement in the completion handler of the
VNCoreMLRequest. It prints out the request. results array. As you can see, this array
contains two VNClassificationObservation objects, one with the probability for the
healthy class (91.7%) and the other with the probability for the unhealthy class (8.29%).

Of course, printing stuff to the output pane isn’t very exciting, so let’s properly show
these results in the app.

Inside the declaration of lazy var classificationRequest, change the completion
handler for the VNCoreMLRequest object to the following:

let request = VNCoreMLRequest(model: visionModel, completionHandler: {
[weak self] request, error in
self?.processObservations(for: request, error: error) // add this

})

Instead of the print statement that was there previously, you’re now calling a new
method, processObservations(for:error:). It’s perfectly possible to put the code that
handles the results directly inside the completion handler, but it tends to make the code
harder to read.

Add the new method to ViewController.swift:

func processObservations(for request: VNRequest, error: Error?) {

// 1
DispatchQueue.main.async {
// 2
if let results = request.results as? [VNClassificationObservation] {
// 3
if results.isEmpty {
self.resultsLabel.text = "nothing found"
} else {
self.resultsLabel.text = String(format: "%@ %.1f%%",
results[0].identifier,
results[0].confidence *x 100)
}
// 4
} else if let error = error {
self.resultsLabel.text = "error: \(error.localizedDescription)"
} else {
self.resultsLabel.text = "?77?"
¥
// 5
self.showResultsView()
b

}
Here’s what this method does, step-by-step:

1. The request’s completion handler is called on the same background queue from
which you launched the request. Because you’re only allowed to call UIKit methods
from the main queue, the rest of the code in this method runs on the main queue.

2. The request parameter is of type VNRequest, the base class of VNCoreMLRequest. If
everything went well, the request’s results array contains one or more
VNClassificationObservation objects. If the cast fails, it’s either because there was
an error performing the request and results is nil, or the array contains a different
type of observation object, which happens if the model isn’t actually a classifier or
the Vision request object wasn’t for a Core ML model.

3. Put the class name in the results label. Assuming the array is not empty, it contains
a VNClassificationObservation object for each possible class. Each of these has an
identifier (the name of the class: “healthy” or “unhealthy”) and a confidence
score. This score is how likely the model thinks the object is of this class; in other
words, it’s the probability for that class.

Vision automatically sorts the results by confidence, so results[0] contains the
class with the highest confidence — the winning class. The app will show both the
name and confidence in the results label, where the confidence is shown as a
percentage, e.g., "healthy 95%".

By the way, it should never happen that the array is empty but, in the unlikely case
that it is, you show a "nothing found" message in the label.

4. Just in case something went wrong with the request, show an error message. This
normally shouldn’t happen, but it’s good to cover all your bases.

5. Finally, show the resultsLabel on the screen. The showResultsView() method
performs a nice little animation, which makes it clear to the user that their image
has been classified.

And that’s all you need to do. Build and run the app and classify some images!

Carrier & o — i . y y T —
[’ healthy 94.8% - healthy 99.8% o unhealthy 99.9%
av

(
’ S

..
> .

Predictions on a few test images

Pretty cool. With just a few lines of code you’ve added a state-of-the-art image classifier
to your app!

Note: When you viewed the Core ML model in Xcode (by selecting the .mImodel
file in the Project navigator), it said that the model had two outputs: a dictionary
containing the probabilities and the label for the top prediction. However, the
Vision request gives you an array of VNClassificationObservation objects

instead. Vision takes that dictionary from Core ML and turns it into its own kind of
"observation" objects. Later on, you’ll see how to use Core ML directly, without
using Vision, and, in that case, you do get access directly to the model’s outputs.

The app shows the winning class and the confidence it has in this prediction. In the
above image on the left, the class is “healthy” and the confidence is 94.8%.

If the output is something like “healthy 95%,” the model feels pretty sure about itself.
You’ll see this kind of prediction on pictures of oranges, apples, bananas and so on.
Likewise, if the output is “unhealthy 95%,” the model is pretty sure that it’s correct
about the snack being unhealthy, and you’ll see this on pictures of pretzels and waffles.
That’s good; we like to see confident predictions.

The model used in this app was trained on 20 different types of snacks. But what
happens when you show it a kind of snack that it has never seen before, or maybe even
a totally different kind of object — maybe something that isn’t even edible?

Since a binary classifier only understands two classes, it puts any picture that you give
it into the “healthy” category or into the “unhealthy” category, even if the picture isn’t
really of a kind of snack that it knows about.

This particular classifier is trained to tell the difference between healthy and unhealthy
snacks, and it should therefore be used only with photos of such snacks. For all other
images - let’s say of cute cats — the classifier will give a non-sensical prediction. After
all, it only has “healthy” or “unhealthy” to choose from. (And no, we do not endorse
having cats as a snack.)

What you want to happen for such an “unsupported” input image is that the model
gives a very uncertain prediction, something that is more like a 51%-49% split. In that
case, Vision might return two VNClassificationObservation objects like this:

element 0: healthy 51%
element 1: unhealthy 49%

K

If the model isn’t sure, that’s actually a very acceptable answer: It could be either class.
However, since Vision automatically sorts this array by confidence score, the app will
show the prediction “healthy” as the winning label. But is it really? Since the model is
so uncertain now, changing these percentages only slightly can completely change the
outcome:

element @: unhealthy 52%
element 1: healthy 48%

If you get such a prediction for one of your photos, try taking the same photo again but
from a slightly different angle. The small variation between the photos can easily flip
the uncertain prediction from one class to the other.

The moral of the story is that when the probabilities get close to 50%-50%, the model
doesn’t really know what to make of the image. It’s a good idea to make the app deal
with such situations. After all, there is nothing that prevents the user from taking a
photo of something that is not a snack.

In processObservations(for:error:), add the following clause to the if statement:

if results.isEmpty {

+ él;e.if results[@].confidence < 0.8 {
self.resultsLabel.text = "not sure"
} else {

Here, we’ve chosen a threshold value of 0.8 (or 80% confidence). If the model was less
confident about its winning prediction than this threshold, you decide that you can’t
trust the prediction it made, and the app will say "not sure."

The threshold value of 0.8 was picked arbitrarily. This is something you would test in
practice by pointing the phone at many real-world objects to get a feel for what
confidence level is trustworthy and below which level the model starts to make too
many mistakes. This is actually different for every model, and so you need to test it in
practice. There are also mathematical ways to find a suitable threshold.

Note: Remember that it doesn’t make sense to test for a confidence below 0.5, as
the winning prediction will always have a confidence score of greater than 50%.
There are only two classes in a binary classifier and their total confidence score
needs to add up to 100%.

However, it can still happen that you run into a situation like this:

Carrier 9:34 PM (-

unhealthy 88.6%

Yeah, I wouldn’t eat this either

The model was quite confident about this prediction even though the object is far from
edible! Sometimes the classifier will give a very confident answer that is totally wrong.
This is a limitation of all classifiers.

It’s important to understand that machine learning models will only work reliably when
you use them with data that is very similar to the data they’ve been trained on. A model
can only make trustworthy predictions on the types of things it has learned about — it
will fail spectacularly on anything else. Machine learning often seems like magic... but
it does have its limitations.

The only way to fix this kind of problem is to make your model more robust by training
it on more images, or by adding a third category so that the model can learn the
difference between “healthy snack,” “unhealthy snack,” and “not a snack.” But even
then your model will still make errors. Using machine learning for computer vision
tasks works really well, but it’s never perfect.

In the chapter on training, you’ll see how you can estimate the quality of the model to
get an idea of how well it will work in practice.

What if there’s more than one object in the image?

Image classification always looks at the entire image and tries to find out what the most
prominent object in the image is. But nothing stops you from running an image
classifier on a picture containing objects from more than one class:

healthy unhealthy

Make up your mind!

In this example, the classifier has found both an apple and a hotdog, but it seems to
think that the hot dog is slightly more important. Perhaps it’s because the hot dog takes
up more room in the image, or maybe the model just had a harder time recognizing the
apples. In any case, it had to make an impossible choice between two classes that are
really supposed to be mutually exclusive and this is what it came up with.

However, based on these percentages, you can’t just say, “This image contains an
unhealthy snack.” It does, but it also contains a healthy snack. With the new rule that
we just added, the model would say "not sure" for this particular photo, since neither
class has over 80% confidence.

But it’s also possible that the model predicts something like 90% healthy or unhealthy
for an image such as this. All bets are off, since this is not a problem the HealthySnacks
model was really trained for. With an image classifier like this, the input image is really
supposed to contain one "main" object, not multiple objects — or at the very least
multiple objects that are all from the same class. The model can’t really handle images
with more than one object if they are from different classes.

In any case, image classification works best when there is just a single object in the
image. The computer vision task that’s about finding all the objects in an image, and
also where they are located in the image, is called "object detection" and we’ll talk about
that in the chapter “Beyond Image Classification.”

K

At this point, you may be wondering exactly how this Core ML model is able to tell apart
healthy snacks from unhealthy snacks. The model takes an image as input and produces
a probability distribution as output, but what is the magic that makes this happen?
Let’s peek under the hood a little.

The HealthySnacks.mlmodel is a so-called neural network classifier. You’ve already
seen classification, but you may not know exactly what a neural network is.

Artificial neural networks are inspired by the human brain. The particular neural
network used by HealthySnacks is a so-called "convolutional" neural network, which in
many ways is similar to how the human visual cortex processes information.

Despite how they’re often depicted in the popular press, it’s really not that useful to
think of these artificial neural networks as a computerized version of human brains.
Artificial neural networks are only a very crude model of how the human brain works —
and not nearly as complicated.

It’s much more constructive to think of a neural network as a pipeline that transforms
data in several different stages. A machine learning model is like a Swift function:

let outputs = myModel(inputs)

In the case of an image classifier, the function signature looks like the following, where
the input is an image of some kind and the output an array of numbers, the probability
distribution over the classes:

func myModel(input: Image) —> [Double] {
// a lot of fancy math

Core ML treats the model as a black box, where input goes into one end and the output
comes out the other. Inside this black box it actually looks like a pipeline with multiple
stages:

neural network classifier

\ 4
Layer
1
!
Layer
2
|
Layer
3
|
Layer
4
!

'
Layer
n
\

—

healthy unhealthy

The model is a pipeline

Each of these stages, or layers as we call them, transforms the data in some way. In
code, you can think of it as a sequence of map, filter, and reduce operations:

func myModel(input: Image) —> [Double] {
return input.map({...}).filter({...}).map({...}).reduce({...})
}

That’s really all there is to it. Despite its very sci-fi name, a neural network is a very
straightforward thing, just a series of successive stages that each transforms the data in
its own way, until the data comes out in the form you want. The layers inside an image
classifier transform the data from an image into a probability distribution. In modern
neural networks, pipelines are not just a straight series of transformations but they can
branch and the results of branches can be combined again in a later stage. For example,
the SqueezeNet neural network architecture that the HealthySnacks model is based on
looks something like this:

1Sy S

) o

> >

3 3
. /v \8 . /v \ch
o = 3 o = e}

— > —»| O > —» o —b

8 ? 5 5 ? 5
\L/O \‘_/O

2 g

) ©

- -

Part of the SqueezeNet pipeline

All the magic happens inside the layers that perform the transformations. So surely that
must involve lots of complicated math? Well, no. Each individual transformation is a
relatively simple mathematical operation. The power of the neural network comes from
combining these transformations. By putting many simple transformations together,
you end up with a pipeline that can compute the answers to some pretty complex
problems.

Early neural networks only used two or three layers (transformations), as training with
more layers was fraught with problems. But those problems have been solved in recent
years and now we routinely use neural networks with dozens or even hundreds of
layers, which is why using these neural nets is called “deep learning.” SqueezeNet has
67 layers although in practice certain types of layers are “fused” together for better
speed.

Let’s dive a little deeper into the math, just so you get a better conceptual idea of what
these transformations do. Neural networks, like most machine learning models, can
only work with numerical data. Fortunately for us, the data we care about in this
chapter — the input image and the output probabilities — are all represented as
numbers already. Models that work on data such as text first need to convert that data
into numbers.

The input image is 227x227 pixels and is a color image, so you need 227 x 227 x 3 =
154,587 numbers to describe an input image. For the sake of explanation, let’s round
this down to 150,000 numbers.

Note: Each pixel needs three numbers because color is stored as RGB: a red, green
and blue intensity value. Some images also have a fourth channel, the alpha
channel, that stores transparency information, but this is typically not used by
image classifiers. It’s OK to use an RGBA image as input, but the classifier will
simply ignore the alpha value.

Here’s the big idea: Each of the 227x227 input images can be represented by a unique
point in a 150,000-dimensional space.

Whoop, try to wrap your head around that... It’s pretty easy for us humans to think in
3D space but not so much in higher-dimensional spaces, especially not ones with
hundreds of thousands of dimensions. But the principle is the same: given 3 numbers
(%, ¥, z) you can describe any point in 3-dimensional space, right? Well, given 150,000
numbers with the RGB values of all the pixels in the image, you end up at a point in

150,000-dimensional space.
(\ this point is an image

(230, 96, 43, ...)

this point is
another image

(127, 83, 62, ...)

Pretend this is 150,000 dimensions

By the way, don’t try to think in 150,000 dimensions. Just imagine a 3D space and
pretend it’s more than three dimensions. That’s what everyone else does, since humans
simply aren’t capable of visualizing more than three dimensions.

To classify the images, you want to be able to draw a line through this high-
dimensional space and say, “All the images containing healthy snacks are on this side of
the line, and all the images with unhealthy snacks are on the other side.” If that would
be possible, then classifying an image is easy: You just have to look at which side of the
line the image’s point falls.

healthy snacks

unhealthy snacks

decision boundary

The decision boundary divides up the space into two classes

This line is called the decision boundary. It’s the job of the classifier model to learn
where that decision boundary lies. Math alert: It’s not really a line but a hyperplane,
which is a subspace that splits the high-dimensional space into two halves. One of the
benefits of being a machine learning practitioner is that you get to use cool words such
as hyperplane.

The problem is that you cannot draw a nice line through the 150,000-dimensional pixel
space because ordering the images by their pixel values means that the healthy and
unhealthy images are all over the place.

Since pixels capture light intensity, images that have the same color and brightness are
grouped together, while images that have different colors are farther apart. Apples can
be red or green but, in pixel space, such images are not close together. Candy can also
be red or green, so you’ll find pictures of apples mixed up with pictures of candy.

K

You cannot just look at how red or green something is to decide whether this image
contains something healthy or unhealthy.

All the information you need to make a classification is obviously contained in the
images, but the way the images are spread out over this 150,000-dimensional pixel
space is not very useful. What you want instead is a space where all the healthy snacks
are grouped together and all the unhealthy snacks are grouped together, too.

This is where the neural network comes in: The transformations that it performs in
each stage of the pipeline will twist, turn, pull and stretch this coordinate space, until
all the points that represent healthy snacks will be over on one side and all the points
for unhealthy snacks will be on the other, and you can finally draw that line between
them.

Here is a famous example that should illustrate the idea. In this example the data is
two-dimensional, so each input consists of only two numbers (x, y). This is also a binary
classification problem, but in the original coordinate space it’s impossible to draw a
straight line between the two classes:

y 1.0
@ ©_o
o © e~ 04
@ O
0.5 1 éD R (6]
A (@)
@ Abda 4,
(@) A A (@)
A A
004 © A A, P
o o PN o
@ AAA A @
@ Apoaa ()
-0.5 OO ®
(@)
0 @}
(@)
(ONO) ® OO
-1.0 | | | |
-1.0 -0.5 0.0 0.5 1.0 X

An impossible classification problem...

In theory, you could classify this dataset by learning to separate this space using an
ellipse instead of a straight line, but that’s rather complicated. It’s much easier to
perform a smart transformation that turns the 2D space into a 3D space by giving all

K

points a z-coordinate too. The points from class A (the triangles) get a small z value, the
points from class B (the circles) get a larger z value. Now the picture looks like this:

Z 1.0
e ©© %0 o4
&° ®
° ®
0.75 - e °
@
i .3
@
@ @
0.5 ?
))
e0 o g0 ©
0.25

1.0
...but easy after transforming the data

After applying this transformation, both classes get cleanly separated. You can easily
draw a line between them at z= 0.5. Any point with z-coordinate less than 0.5 belongs
to class A, and any point with z greater than 0.5 belongs to class B.

The closer a point’s z-coordinate is to the line, the less confident the model is about the
class for that point. This also explains why probabilities get closer to 50% when the
HealthySnacks model can’t decide whether the snack in the image is healthy or
unhealthy. In that case, the image gets transformed to a point that is near the decision
boundary. Usually, the decision boundary is a little fuzzy and points with z close to 0.5
could belong to either class A or class B.

The cool thing about neural networks is that they can automatically learn to make
these kinds of transformations, to convert the input data from a coordinate space where
it’s hard to tell the points apart, into a coordinate space where it’s easy. That is exactly
what happens when you train the model. It learns the transformations and how to find
the best decision boundary.

To classify a new image, the neural network will apply all the transformations it has
learned during training, and then it looks at which side of the line the transformed
image falls. And that’s the secret sauce of neural network classification!

K

The only difference between this simple example and our image classifier is that you’re
dealing with 150,000 dimensions instead of two. But the idea — and the underlying
mathematics — is exactly the same for 150,000 dimensions as it is for two.

Note: In general, the more complex the data, the deeper the neural network has to
be. For the 2D example above, a neural net with just two layers will suffice. For
images, which are clearly much more complex, the neural net needs to be deeper
because it needs to perform more transformations to get a nice, clean decision
boundary.

Over the course of the next chapters, we’ll go into more details about exactly what sort
of transformations are performed by the neural network but, in a typical deep learning
model, these are convolutions (look for patterns made by small groups of pixels,
thereby mapping the points from one coordinate space to another), pooling (reduce the
size of the image to make the coordinate space smaller), and logistic regression (find
where to draw the line / decision boundary).

Multi-class classification

So far, we’ve covered binary classification in which there are only two classes, but it’s
also really easy to use a model that can handle multiple classes. This is called... wait for
it... a multi-class classifier — or, sometimes, a multinomial classifier.

In this section, you’ll swap out the binary classifier for MultiSnacks.mlmodel, a multi-
class classifier that was trained on the exact same data as the binary healthy/unhealthy
classifier but that can detect the individual snacks.

Carrier & 8:25 PM (—

cookie 98.7%
waffle 1.3%
pineapple 0.0%

Recognizing multiple classes

Integrating this new model into the app couldn’t be simpler. You can either do this in a
copy of your existing app or use the MultiSnacks starter app.

Now, drag the MultiSnacks.mlmodel from this chapter’s downloaded resources into
the Xcode project.

If you look at this new .mlmodel file in Xcode, or at the automatically generated code,
you’ll notice that it looks exactly the same as before, except that the names of the Swift
classes are different (MultiSnacks instead of HealthySnacks) because the name of

the .mlmodel file is different, too.

To use this new model, make the following change on the classificationRequest
property:

lazy var classificationRequest: VNCoreMLRequest = {
do {

let multiSnacks

let visionModel

MultiSnacks()
try VNCoreMLModel(for: multiSnacks.model)

Instead of creating an instance of HealthySnacks, all you need to do is make an instance
of MultiSnacks. This is the name of the class that Xcode generated automatically when
you added MultiSnacks.mlmodel to the project.

Also change the innermost if statement in processObservations(for:error:) to:

if results.isEmpty {
self.resultsLabel.text = "nothing found"
} else {
let top3 = results.prefix(3).map { observation in
String(format: "%@ %.1f%%", observation.identifier,
observation.confidence *x 100)

self.resultsLabel.text = top3.joined(separator: "\n")

}

Instead of showing only the best result — the class with the highest confidence score —
this now displays the names of the three best classes.

Since the model was trained on 20 different object types, it outputs a probability
distribution that looks something like this:
100%

0% L == — e — | - J— | J— — —_—— l_(\l
¢ @ @ 8 & ¢ S e O IS ST R R SRR S B S
{ > 2 ISR F & KR Ie) & O & & L © ¥ WP S
’DQ ’b(\ © IS4 v © \)Q N s(\0\' e(} Q ((\\) Ok{b' . (\@QQ OQ Q‘\Q’ P r$$0 &
¥ Xe & R & &8

The new probability distribution

Where previously there were only two values (healthy/unhealthy), there are now 20
possible outcomes, and the 100 total percentage points are distributed over these
twenty possible classes — which is why it’s called a probability distribution.

The app displays the three predicted classes with the highest probability values. Since
there are now 20 classes, the results array also contains 20
VNClassificationObservation objects, sorted from a high to low confidence score. The
prefix(3) method grabs elements 0, 1, and 2 from this array (the ones with the highest
probabilities), and you use map to turn them into strings. For the above probability
distribution, this gives:

element @: carrot 72%

element 1: orange 15%
element 2: ice cream 8%

The model is fairly confident about this prediction. The first result has a pretty high
score, and so you can probably believe that the image really is of a carrot.

The second result is often fairly reasonable — if you squint, an orange could look like a
carrot — but the third result and anything below it can be way off the mark. Given these
confidence scores, that’s OK; the model really didn’t think ice cream was a reasonable
guess here.

Note: The percentages of these top three choices don’t have to add up to 100%,
since there are another 17 classes that will make up the remainder.

Notice that, when you made these changes to the code, you removed the if statement
that checked whether the confidence was less than 80%. That made sense for a binary
classifier but, when you have multiple classes, the best confidence will often be around
the 60% mark. That’s still a pretty confident score.

With a binary classifier and two classes, a random guess is correct 50% of the time. But
with 20 classes, a random guess would be correct only 1/20, or 5%, of the time. When
the multi-class model is very unsure about what is in the image, the probability
distribution would look more like this:

100% -

0% I_ll_ll_ll_ll_ll_llTll_ll_ll_ll_ll_ll_ll_ll_ll_ll_H:ll_ll_l
() Q N S] N
¥ @ @SS O PSS S P L e 0
erQ ro({b & & & &F X & & S & S S & S <@
o SN o ¢ K ? &
> © ¢ X & &

When the multi-class model is unsure

You could still add a kind of “not sure” threshold, but a more reasonable value would be
0.4, or 40%, instead of the 80% that you used with the binary classifier.

Still, just like a binary classifier, the predictions from a multi-class model only make
sense if you show it the types of objects that it has been trained to recognize.

If you give the new classifier an image of something that is not one of the 20 kinds of
snacks it knows about, such as a dachshund, the model may return a very unsure
prediction ("it could be anything") or a very confident but totally wrong prediction ("it’s
a hot dog").

Again, you can ask what happens when an image contains objects of more than one
class?

Well, unlike with the binary classifier in which predictions became very uncertain (50—
50), here, a similar thing happens but now the probabilities get divided over more

classes:

Carrier &

apple 89.9%
carrot 10.1%
watermelon 0.0%

Image with multiple types of fruit

In this example, the classifier correctly recognizes apples and carrots as the top choices,
and it tries to split the probabilities between them.

This is why you’re looking at the top three results instead of just the single best score.
In image classification competitions, classifiers are usually scored on how well they do
on their five best guesses since, that way, you can deal with one image containing more
than one object or with objects that are a little ambiguous. As long as the correct
answer is among the best five (or three) guesses, we’re happy.

The top-one accuracy says, “Did the classifier get the most important object right?”
while the top-three or top-five accuracy says, “Did it find all of the important objects?”
For example, if an image that scored orange 70%, watermelon 21%, and muffin 3%
really contained a watermelon and not an orange, it would still be counted as a correct

classification.

K

Note: Don’t confuse multi-class with "multi-label." A multi-class classifier’s job is
to choose a single category for an object from multiple categories. A multi-label
classifier’s job is to choose as many categories as applicable for the same object.
For example, a multi-label snacks classifier could classify an apple as "healthy,"
"fruit,” and "red."

To recap, doing image classification with Core ML and Vision in your app involves the
following steps:

1. Obtain a trained .mlmodel file from somewhere. You can sometimes find pre-
trained models on the web (Apple has a few on its website) but usually you’ll have
to build your own. You’ll learn how to do this in the next chapter.

2. Add the .mlmodel file to your Xcode project.

3. Create the VNCoreMLRequest object (just once) and give it a completion handler that
looks at the VNClassificationObservation objects describing the results.

4. For every image that you want to classify, create a new VNImageRequestHandler
object and tell it to perform the VNCoreMLRequest.

These steps will work for any kind of image classification model. In fact, you can copy
the code from this chapter and use it with any Core ML image classifier.

You’ve seen how easy it is to use Core ML through the Vision framework. Given the

amount of work Vision does for you already, it’s recommended to always use Vision
when you’re working with image models. However, it is also possible to use Core ML
without Vision, and in this section you’ll see how to do so.

For this section, use the starter project again and add the HealthySnacks.mlmodel to
the project.

First, take a detailed look at the auto-generated code, since you’ll use this shortly. To
see this source file, first click on HealthySnacks.mlmodel in the Project navigator and
then click on the little arrow next to the model name in the "Model Class" section.

K

This opens HealthySnacks.swift, a special source code file that doesn’t actually exist
anywhere in the project.

() ® > /A HealthySnacks) Bl iPhone 7 Snacks | Build HealthySnacks: Succeeded | Today at 11:10

B 2 Q AN © = b B8 B8 < 3 HealthySnacks.swift) No Selection

v & Snacks 1/
v [7] Snacks // HealthySnacks.swift
//
// This file was automatically generated and should not be edited.
3| AppDelegate.swift 7/

@ HealthySnacks.mimodel ?

> ViewController.swift

3| CGImagePropertyOrientation.swift import CoreML

Main.storyboard

s e /11 Model Prediction Input Type
i Assets.xcassets Qavailable(macOS 10.13, i0S 11.0, tv0S 11.0, watchOS 4.0, *)

Info.plist class HealthySnacksInput : MLFeatureProvider {

Products /// Input image as color (kCVPixelFormatType_32BGRA) image buffer, 227 pixels wide by 227 pixels high

A HealthySnacks.app var image: CVPixelBuffer

var featureNames: Set<String> {
get {
return ["image"]
}
}

func featureValue(for featureName: String) -> MLFeatureValue? {
if (featureName == "image") {
return MLFeatureValue(pixelBuffer: image)
+
return nil

}

Viewing the generated code

The main class in this source file is HealthySnacks (located near the bottom of the file).
It has a single property named mode1, which is an instance of MLMode1, the main class in
the Core ML framework. The init () method loads the .mlmodel from the main bundle.

There are two prediction() methods. The first of these takes an object of type
HealthySnacksInput and returns a HealthySnacksOutput. The second one is a
convenience method that takes a CVPixelBuffer object as input instead. Notice that
there are no methods that accept a CGImage or a CIImage like with Vision.

Both HealthySnacksInput and HealthySnacksOutput are classes that implement the
MLFeatureProvider protocol. Remember from the previous chapter that "feature” is the
term we use for any value that we use for learning. An MLFeatureProvider is an object
that describes such features to Core ML.

In the case of the HealthySnacksInput, there is just one feature: an image in the form of
a CVPixelBuffer object that is 227 pixels width and 227 pixels high. Actually the model
will treat each RGB pixel in this image as a separate feature, so, technically speaking,
the model has 227 x 227 x 3 input features.

The HealthySnacksOutput class provides two features containing the outputs of the
model: a dictionary called labelProbability and a string called simply label. The
dictionary contains the names of the classes and the confidence score for each, so it’s
the same as the probability distribution but in the form of a dictionary instead of an
array.

K

The difference with Vision’s array of VNClassificationObservation objects is that the
dictionary is not sorted. The label is simply the name of the class with the highest
probability and is provided for convenience.

Note: The names that Xcode generates for these properties depend on the names
of the inputs and outputs in the .mImodel file. For this particular model, the input
is called "image" and so the method becomes prediction(image:). If the input
were called something else in the .mlmodel file, such as "data," then the method
would be prediction(data:). This is also true for the names of the outputs in the
HealthySnacksOutput class. This is something to be aware of when you’re
importing a Core ML model: Different models will have different names for the
inputs and outputs — something else you don’t have to worry about when using
Vision.

In order to use the HealthySnacks class without Vision, you have to call its
prediction(image:) method and give it a CVPixelBuffer containing the image to
classify. When the prediction method is done it returns the classification result as a
HealthySnacksOutput object.

Next, you’ll write this code. Switch to ViewController.swift and add the following
property to ViewController to create an instance of the model:

let healthySnacks = HealthySnacks()

Now, you need some way to convert the UIImage from UIImagePickerController into a
CvPixelBuffer. This object is a low-level description of image data, used by Core Video
and AVFoundation. You’re probably most used to working with images as UIImage or
CGImage objects, and so you need to convert these to CVPixelBuffers, first.

There is no handy API for converting a UIImage to a CVPixelBuffer. However, in the
downloads for this chapter, we’ve provided a UIImage extension that does this. Add the
file UIlmage+CVPixelBuffer.swift to the project.

Change the classify(image:) method to the following:

func classify(image: UIImage) {
DispatchQueue.global(qgos: .userInitiated).async {
// 1
if let pixelBuffer = image.pixelBuffer(width: 227, height: 227) {
// 2
if let prediction = try? self.healthySnacks.prediction(
image: pixelBuffer) {
// 3
let results = self.top(1l, prediction.labelProbability)
self.processObservations(results: results)

} else {
self.processObservations(results: [])

e
¥
Iy

Here’s how this works:

1. Convert the UIImage to a CVPixelBuffer using the helper method. This scales the
image to the given size (227x227) and also fixes the orientation if it’s not correct
side up yet.

2. Call the prediction(image:) method. This can potentially fail (if the image buffer is
not 227x227 pixels, for example), which is why you need to use try? and put it
inside the if let.

3. The prediction object is an instance of HealthySnacksOutput. You can look at its
label property to find the name of the best class, but you want to look at the names
of the best scoring classes as well as their probabilities. That’s what the self.top()
function does.

Because MLMode s prediction method is synchronous, it blocks the current thread until
it’s done. For this simple image classifier, that may not be a big deal as it’s fairly fast,
but it’s good practice to do the prediction on a background queue anyway.

Xcode now gives errors because the code calls two methods you still need to add. First,
add the top() method:

func top(_ k: Int, _ prob: [String: Double]) -> [(String, Double)] {
return Array(prob.map { x in (x.key, x.value) }
.sorted(by: { a, b —> Bool in a.1 > b.1 })
.prefix(min(k, prob.count)))

s

This looks at the dictionary from prediction. labelProbability and returns the k best
predictions as an array of (String, Double) pairs where the string is the label (name of
the class) and the Double is the probability / confidence score for that class.

Currently you're calling top(1, ..) because, for the HealthySnacks model, you only care
about the highest-scoring class but, for the MultiSnacks model, you might call top(3,
..) to get the three best results.

Finally, you can put these (String, Double) pairs into a string to show in the results
label:

func processObservations(
results: [(identifier: String, confidence: Double)]) {
DispatchQueue.main.async {
if results.isEmpty {
self.resultsLabel.text = "nothing found"
} else if results[0].confidence < 0.8 {
self.resultsLabel.text = "not sure"
} else {
self.resultsLabel.text = String(format: "%@ %.1f%%",
results[0].identifier,
results[0].confidence * 100)

self.showResultsView()
}
}

This is very similar to what you did in the Vision version of the app but the results are
packaged slightly differently.

So this actually wasn’t too bad, was it? It may even seem like a little bit less work than
what you had to do for Vision. But this is a little misleading. Don’t forget that you had
to add the Ullmage+CVPixelBuffer.swift extension to make the conversion. In
addition, there are a few important things the pure Core ML version does not do yet,
such as color space matching; this translates from the photo’s color space, which is
often sRGB or P3, to the generic RGB space used by the model.

Apple provides a number of Core ML models that you can download for free, from

Your challenge for this chapter is to download the SqueezeNet model and add it to the
app. This model is very similar to the classifier you implemented in this chapter, which
is also based on SqueezeNet. The main difference is that HealthySnacks is trained to
classify 20 different snacks into two groups: healthy or unhealthy. The SqueezeNet
model from Apple is trained to understand 1,000 classes of different objects (it’s a
multi-class classifier).

Try to add this new model to the app. It should only take the modification of a single
line to make this work — that’s how easy it is to integrate Core ML models into your app
because they pretty much work all the same.

K

er 3: Training the

lassifier

In the previous chapter, you saw how to use a trained model to classify images with
Core ML and Vision. However, using other people’s models is often not sufficient — the
models may not do exactly what you want or you may want to use your own data and
categories — and so it’s good to know how to train your own models.

Apple provides developers with Create ML as a machine learning framework to create
models in Xcode. In this chapter, you’ll learn how to train the snacks model using
Create ML.

The dataset

Before you can train a model, you need data. You may recall from the introduction that
machine learning is all about training a model to learn “rules” by looking at a lot of
examples. Since you’re building an image classifier, it makes sense that the examples
are going to be images.

You’re going to train an image classifier that can tell apart 20 different types of snacks.
Here are the possible categories, again:

Healthy: apple, banana, carrot, grape, juice, orange,
pineapple, salad, strawberry, watermelon

Unhealthy: cake, candy, cookie, doughnut, hot dog,
ice cream, muffin, popcorn, pretzel, waffle

Download the dataset from https://wolverine.raywenderlich.com/books/mlt/snacks.zip
into the dataset folder. Unzip this file. It contains the dataset on which you’ll train the
model.

h raywenderlich.com 83

This dataset has almost 7,000 images — roughly 350 images for each of these categories.

[NON) candy
< B« ERENE = 32 Q
FavOltas | snacks > [test » [apple » B 0abe4c767b9d9b6d.jpg
B B [train > banana > BE 0aaf14743c748141.jpg
& iCloud Drive val > cake » ™ Oacfe1bce2955a65.jpg
[Documents B 00ae353c8e12b347.jpg
o Dormnloads carrot » B2 0ae493ef87a119c3.jpg
cookie » & Obb2e28ecfebfebb.jpg
#™; Applications doughnut » El 0c97ce20e62e4106.jpg
m matthijs grape » K Ocaf7bbbb5864619.jpg
"2 hot dog > & 000d3c1733354f93.jpg
(X Desktop [ice cream > [@ 0d8aeb98496f1173.jpg
:.: Dropbox [0 juice > [0dd0d3ae00f3d11b.jpg
) [0 muffin » EY 0dd0335c8cfd2ddf.jpg
@ AirDrop B orange » @ 0ddfe5d85834a042.jpg
D [pineapple » > 00e8294040306679.jpg
[popcorn » B Oeec9ef6d56139fd.jpg
Tags | pretzel » s Of2fc54e1e300dab.jpg
salad » [of95eba5cOb3aab2.jpg
strawberry » R Ofc42cfad8ea78e1.ipg
waffle > Bl 1a77675837a56b70.jpg
watermelon » E 1b69c43ca500d6ba.jpg
249 items, 735,29 GB available

The snacks dataset

The dataset is split into three folders: train, test and val. For training the model, you
will use only the 4,800 images from the train folder, known as the training set.

The images from the val and test folders (950 each) are used to measure how well the
model works once it has been trained. These are known as the validation set and the
test set, respectively. It’s important that you don’t use images from the validation set
or test set for training; otherwise, you won’t be able to get a reliable estimate of the
quality of your model. We’ll talk more about this later in the chapter.

Here are a few examples of training images:

= w

salad/ea2347b86bc95314.jpg
doughnut/Oe4d2f7afc5efeee.jpg ice cream/4472c8cc1e2beccO.jpg

pineapple/856841a5b385c465.jpg
Selected training images

As you can see, the images come in all kinds of shapes and sizes. The name of the folder
will be used as the class name — also called the label or the target.

Create ML

You will now use Create ML to train a multi-class classifier on the snacks dataset.
In Xcode, open starter/MultiSnacks.playground, and enter this code:

import CreateMLUI

let builder = MLImageClassifierBuilder()
builder.showInLiveView()

Note: This is a macOS playground. CreateMLUI doesn’t work in an iOS playground.
Also note that Create ML requires macOS Mojave (10.14).

Show the assistant editor and click the Run button:

[JOX) Ready to continue HealthySnacks) — n P I = [
o8 4| HealthySnacks =] @ HealthySnacks.playground (Live View) -+ X
import CreateMLUI
let builder = MLImageClassifierBuilder() "Image Classifier Builder" @ ImageCIa55|f|er v
4 builder.showInLiveView()| "Open Assistant Editor X88€" @
®
= [0

You’re creating and showing an interactive view for training and evaluating an image
classifier.

Drag the snacks/train folder onto the view.

Ready to continue HealthySnacks

88

import CreateMLUT

8
X

let builder = MLInageClassifierBuilder() ‘Image Classifier Builder' ImageClassifier

4 builder.showInLiveView() “Open Assistant Editor X3" @

The training process starts immediately. Images load, with a progress bar below. After a
short time, a table appears in the debug area, displaying Images Processed, Elapsed
Time and Percent Complete:

[] [] Ready to continue HealthySnacks (} == m i E l;l DI

B8 3| HealthySnacks 88 Q)) |3] HealthySnacks.playground (Live View) + X

import CreateMLUI

ImageClassifier

let builder = MLImageClassifierBuilder() "Image Classifier Builder" @
4 builder.showInLiveview()| "Open Assistant Editor X3¢ @)

= O
| Images Processed | Elapsed Time | Percent Complete |
1 5.13s 0%
2 5.18s 0%
3 5.23s 0%
4 5.28s 0%
5 5.33s 0%
10 5.59s 0%
50 7.60s 1%
100 10.11s 2%
200 15.10s 4%
300 20.13s 6%
400 24.95s 8.25%
500 28.64s 10.25%
600 32.29s 12.25%
700 35.97s 14.25%
800 39.61s 16.5%
900 43.29s 18.5%
1000 46.97s 20.5%
1100 50.66s 22.5%
1200 54.34s 24.75%

Note: You may be wondering how Create ML can load all of the training data in
memory, since 4,800 images may actually take up more physical memory than you
have RAM. Create ML loads data into MLDataTable structures, which keep only the
image metadata in memory, then loads the images themselves on demand. This
means that you can have very large MLDataTables that contain a lot of data.

Watch some of the images in the interactive view to get a feel for what’s there. Each
image is in a subdirectory named for the type of food shown in the image, like “apple”
or “cookie.” Depending on the processors in your Mac, training can take 5-10 minutes
or more. While you wait, continue reading about dataset curation and transfer
learning.

Collecting good training data can be very time consuming! It’s often considered to be
the most expensive part of machine learning. Despite — or because of — the wealth of
data available on the internet, you’ll often need to curate your dataset: You must
manually go through the data items to remove or clean up bad data or to correct
classification errors.

The images in this dataset are from the Google Open Images Dataset, which contains
more than 9 million images organized into thousands of categories. The Open Images
project doesn’t actually host the images — only the URLs to these images. Most of the
images come from Flickr and are all licensed under a Creative Commons license (CC BY
2.0). You can find the Open Images Dataset at

To create the snacks dataset, we first looked through the thousands of classes in Open
Images and picked 20 categories of healthy and unhealthy snacks. We then downloaded
the annotations for all the images. The annotations contain metadata about the
images, such as what their class is. Since, in Open Images, the images can contain
multiple objects, they may also have multiple classes.

We randomly grabbed a subset of image URLs for each of our 20 chosen classes, and we
then downloaded these images using a Python script. Quite a few of the images were no
longer available or just not very good, while some were even mislabeled as being from
the wrong category, so we went through the downloaded images by hand to clean them

up.
Here are some of the things we had to do to clean up the data:

» The pictures in Open Images often contain more than one object, such as an apple
and a banana, and we can’t use these to train the classifier because the classifier
expects only a single label per image. The image must have either an apple or a
banana, not both; otherwise, it will just confuse the learning algorithm. We only
kept images with just one main object.

» Sometimes, the lines between categories are a little blurry. Many downloaded images
from the cake category were of cupcakes, which are very similar to muffins, so we
removed these ambiguous images from the dataset. For our purposes, we decided
that cupcakes belong to the muffins category, not the cake category.

« We made sure the selected images were meaningful for the problem you’re
trying to solve. The snacks classifier was intended to work on food items you'd

K

typically find in a home or office. But the banana category had a lot of images of
banana trees with stacks of green bananas — that’s not the kind of banana we wanted
the classifier to recognize.

» Likewise, we included a variety of images. We did not only want to include
“perfect” pictures that look like they could be found in cookbooks, but photos with a
variety of backgrounds, lighting conditions and humans in them (since it’s likely that
you’ll use the app in your home or office, and the pictures you take will have people
in them).

* We threw out images in which the object of interest was very small, since the
neural network resizes the images to 299x299 pixels, a very small object would be
just a few pixels in size — too small for the model to learn anything from.

The process of downloading images and curating them was repeated several times, until
we had a dataset that gave good results. Simply by improving the data, the accuracy of
the model also improved.

When training an image classifier, more images is better. However, we limited the
dataset to about 350 images per category to keep the download small and training
times short so that using this dataset would be accessible to all our readers. Popular
datasets such as ImageNet have 1,000 or more images per category, but they are also
hundreds of gigabytes.

The final dataset has 350 images per category, which are split into 250 training images,
50 validation images and 50 test images. Some categories, such as pretzel and popcorn,
have fewer images because there simply weren’t more suitable ones available in Open
Images.

It’s not necessary to have exactly the same number of images in each category, but the
difference also should not be too great, or the model will be tempted to learn more
about one class than another. Such a dataset is called imbalanced and you need special
techniques to deal with them, which we aren’t going to cover, here.

All images were resized so that the smallest side is 256 pixels. This isn’t necessary, but
it does make the download smaller and training a bit faster. We also stripped the EXIF
metadata from images because some of the Python image loaders give warnings on
those images, and that’s just annoying. The downside of this is that EXIF contains
orientation info for the images, so some images may actually appear upside down... Oh
well.

Creating the dataset took quite a while, but it’s vital. If your dataset is not high quality,
then the model won’t be able to learn what you want it to learn. As they say, it’s not
who has the best algorithms, but who has the best data.

Note: You are free to use the images in the snacks dataset as long as you stick to
the rules of the CC BY 2.0 license. The filenames have the same IDs as used in the
Google Open Images annotations. You can use the included credits.csv file to
look up the original URLs of where the images came from.

So what’s happening in the playground? Create ML is currently busy training your
model using transfer learning. As you may recall from the first chapter, transfer
learning is a clever way to quickly train models by reusing knowledge from another
model that was originally trained on a different task.

The HealthySnacks and MultiSnacks models you used in the previous chapter were built
on top of something called SqueezeNet. The underlying model used by Create ML is not
SqueezeNet but VisionFeaturePrint_Screen, a model that was designed by Apple
specifically for getting high-quality results on iOS devices.

VisionFeaturePrint_Screen was pre-trained on a ginormous dataset to recognize an
enormous number of classes. It did this by learning what features to look for in an
image and by learning how to combine these features to classify the image. Almost all
of the training time for your dataset is the time the model spends extracting 2,048
features from your images. These include low-level edges, mid-level shapes and task-
specific high-level features.

Once the features have been extracted, Create ML spends only a relatively tiny amount
of time training a logistic regression model to separate your images into 20 classes.
It’s similar to fitting a straight line to scattered points, but in 2,048 dimensions instead
of two.

Transfer learning only works successfully when features of your dataset are reasonably
similar to features of the dataset that was used to train the model. A model pre-trained
on ImageNet — a large collection of photos — might not transfer well to pencil drawings
Or microscopy images.

K

Transfer learning takes less time than training a neural network from scratch. Here’s
what’s involved in training a neural network from scratch:

1. Initialize the neural network’s "brain" with small random numbers. This is
why an untrained model just makes random guesses: its knowledge literally is
random.

2. Let the neural network make predictions for all the training images.

3. Compare the predictions to the known answers — the "targets.” When you’re
training a classifier, the targets are the class labels for the training images. This is
used to compute the loss, a measure of how far off the predictions are from the
expected answers. The loss is a multi-dimensional function that has a minimum
value, and the goal of training is to determine the weights, or learned parameters,
that get very close to this minimum.

4. To compute weights that reduce the error, you calculate the gradient of the loss
function at the current graph location, then adjust the weights to “step
down” the slope. This is called gradient descent, and happens many times during
a training session. For large datasets, using all the data to calculate the gradient
takes a long time. Stochastic gradient descent (SGD) estimates the gradient from
randomly selected mini-batches of training data — like taking a survey of voters
ahead of election day: If your sample is representative of the whole dataset, then
the survey results accurately predict the final results. This nudges the model’s
knowledge a little bit in the right direction so that, next time, it will make slightly
more correct predictions for the training images.

5. Go to step two to repeat this process hundreds of times for all the images in
the training set. With each training step, the model becomes a tiny bit better: The
brain’s learned parameters change from random numbers into something that is
more suitable to the task that you want it to learn. Over time, the model learns to
make better and better predictions.

Stochastic gradient descent is a rather brute-force approach, but it’s the only method
that is practical for training deep neural networks. Unfortunately, it’s also rather slow.
To make SGD work reliably, you can only make small adjustments at a time to the
learned parameters, so it takes a lot of training steps (hundreds of thousands or more)
to make the model learn anything.

Create ML uses a smarter approach. Instead of starting with an untrained model that
has only random numbers in its brain, Create ML takes a neural network that has
already been successfully trained on a large dataset, and then it fine-tunes it on your
own data. This involves training only a small portion of the model instead of the whole
thing.

This shortcut is called transfer learning because you’re transferring the knowledge
that the neural network has learned on some other type of problem to your specific
task. It’s a lot faster than training a model from scratch, and it can work just as well. It’s
the machine learning equivalent of “work smarter, not harder!”

The pre-trained VisionFeaturePrint_Screen model that Create ML uses has seen lots of
photos of food and drinks, so it already has a lot of knowledge about the kinds of images
that you’ll be using it with. Using transfer learning, you can take advantage of this
existing knowledge.

Note: When you use transfer learning, you need to choose a base model that you’ll
use for feature extraction. The two base models that you’ve seen so far are
SqueezeNet and VisionFeaturePrint_Screen. Turi Create analyzes your training
data to select the most suitable base model. Currently, Create ML's image classifier
always uses the VisionFeaturePrint_Screen base model. It’s large, with 2,048
features, so feature extraction takes a while. The good news is that
VisionFeaturePrint_Screen is part of iOS 12 and the Vision framework, so models
built on this are tiny — kilobytes instead of megabytes, because they do not need
to include the base model. The bad news is that models trained with Create ML
will not work on iOS 11, or on other platforms such as Android.

Since this pre-trained base model doesn’t yet know about our 20 specific types of
snacks, you cannot plug it directly into the snack detector app, but you can use it as a
feature extractor.

You may recall that machine learning happens on “features,” on which we’ve defined a
feature to be any kind of data item that we find interesting. You could use the photo’s
pixels as features but, as the previous chapter demonstrated, the individual RGB values
don’t say much about what sort of objects are in the image.

VisionFeaturePrint_Screen transforms the pixel features, which are hard to
understand, into features that are much more descriptive of the objects in the images.
This is the pipeline that we’ve talked about before. Here, however, the output of

K

VisionFeaturePrint_Screen is not a probability distribution that says how likely it is
that the image contains an object of each class.

VisionFeaturePrint_Screen’s output is, well, more features.

> S L S b S ,| logistic i
S S 5 regression i
pixels VisionFeaturePrint_Screen toatures
(150,000 dimensions) feature extractor (2,048 dimensions)

VisionFeaturePrint_Screen extracts features

For each input image, VisionFeaturePrint_Screen produces a list of 2,048 numbers.
These numbers represent the content of the image at a high level. Exactly what these
numbers mean isn’t always easy to describe in words, but think of each image as now
being a point in this new 2,048-dimensional space, wherein images with similar
properties are grouped together.

For example, one of those 2,048 numbers could represent the color of a snack, and
oranges and carrots would have very similar values in that dimension. Another feature
could represent how elongated an object is, and bananas, carrots and hot dogs would
have larger values than oranges and apples. On the other hand, apples, oranges and
doughnuts would score higher in the dimension for how "round” the snack is, while
waffles would score lower in that dimension (assuming a negative value for that feature
means squareness instead of roundness).

Models usually aren’t that interpretable, though, but you get the idea: These new 2,048
features describe the objects in the images by their true characteristics, which are much
more informative than pixel intensities. However, you cannot simply draw a line (sorry,
a hyperplane) through this 2,048-dimensional space to separate the images into the
different classes we’re looking for, because VisionFeaturePrint_Screen is not trained
on our own dataset. It was trained on ImageNet, which has 1000 classes, not 20.

While VisionFeaturePrint_Screen does a good job of creating more useful features
from the training images, in order to be able to classify these images we need to
transform the data one more time into the 20-dimensional space that we can interpret
as the probability distribution over our 20 types of snacks.

How do we do that? Well, Create ML uses these 2,048 numbers as the input to a new
machine learning model called logistic regression.

K

Instead of training a big, hairy model on images that have 150,000 features (difficult!),
Create ML just trains a much simpler model on top of the 2,048 features that
VisionFeaturePrint_Screen has extracted.

By the time you’re done reading the previous section, Create ML has (hopefully)
finished training your model. The tables show 3m 9s for feature extraction and 6.6s to
train and calibrate the solver.

Note: I'm running Create ML on a 2018 MacBook Pro with a 6-core 2.7GHz CPU
and Radeon 560 GPU. You’ll probably get slightly different training results than
what are shown in this book. Recall that untrained models, in this case the logistic
regression, are initialized with random numbers. This can cause variations
between different training runs.

Extracting image features from full data set.
Analyzing and extracting image features.

| Images Processed | Elapsed Time | Percent Complete |

1 5.13s 0%
2 5.18s 0%
3 5.23s 0%
4 5.28s 0%
5 5.33s 0%
4500 2m 57s 93%
4600 3m 1s 95%
4700 3m 4s 97%
4800 3m 8s 99%
4838 3m 9s 100%

Automatically generating validation set from 5% of the data.
Beginning model training on processed features.
Calibrating solver; this may take some time.

| Iteration | Elapsed Time | Training—accuracy | Validation-accuracy |

1	1.108525	0.714441	0.675000
2	2.353929	0.798173	0.783333
3	2.916080	0.813180	0.787500
4	3.447996	0.830579	0.791667
5	3.988087	0.850152	0.829167
10	6.638566	0.911918	0.891667

K

The solver that Create ML trains is a classifier called logistic regression. This is an old-
school machine learning algorithm but it’s still extremely useful. It’s arguably the most
common ML model in use today.

You may be familiar with another type of regression called linear regression. This is
the act of fitting a line through points on a graph, something you may have done in
high school where it was likely called the method of (ordinary) least squares.

y y

class A

class B

linear regression logistic regression

Linear and logistic regression

Logistic regression does the same thing, but says: All points on one side of the line
belong to class A, and all points on the other side of the line belong to class B. See how
we’re literally drawing a line through space to separate it into two classes?

Because books cannot have 2,048-dimensional illustrations, the logistic regression in
the above illustration is necessarily two-dimensional, but the algorithm works the same
way, regardless of how many dimensions the input data has. Instead of a line, the
decision boundary is a high-dimensional object that we’ve mentioned before: a
hyperplane. Create ML also uses a variation of the algorithm — multinomial logistic
regression — that handles more than two classes.

Training the logistic regression algorithm to transform the 2,048-dimensional features
into a space that allows us to draw separating lines between the 20 classes is fairly easy
because we already start with features that say something meaningful about the image,
rather than raw pixel values.

Note: If you’re wondering about exactly how logistic regression works, as usual it
involves a transformation of some kind. The logistic regression model tries to find
"coefficients" (its learned parameters) for the line so that a point that belongs to
class A is transformed into a (large) negative value, and a point from class B is
transformed into a (large) positive value. Whether a transformed point is positive

K

or negative then determines its class. The more ambiguous a point is, i.e. the
closer the point is to the decision boundary, the closer its transformed value is to
0. The multinomial version extends this to allow for more than two classes. We’ll
go into the math in a later chapter. For now, it suffices to understand that this
algorithm finds a straight line that separates the points belonging to different
classes in the best way possible.

Even though there are 4,838 images in the snacks/train dataset, Create ML uses only
95% of them for training. In the output, after feature extraction, there’s this message:

Automatically generating validation set from 5% of the data.

During training, it’s useful to periodically check how well the model is doing. For this
purpose, Create ML sets aside a small portion of the training examples — 5%, so about
240 images. It doesn’t train the logistic classifier on these images, but only uses them to
evaluate how well the model does (and possibly to tune certain settings of the logistic
regression).

This is why the output has one column for training accuracy and one for validation
accuracy:

| Iteration | Elapsed Time | Training—accuracy | Validation-accuracy |

1	1.108525	0.714441	0.675000
2	2.353929	0.798173	0.783333
3	2.916080	0.813180	0.787500
4	3.447996	0.830579	0.791667
5	3.988087	0.850152	0.829167
10	6.638566	0.911918	0.891667

Completed (Iteration limit reached).

After 10 iterations, training accuracy was 0.91 or 91%, meaning that out of 100 training
examples it correctly predicts the class for 91 of them. In other words, the classifier is
correct for 9 out of 10 images. The validation accuracy is similar: 0.89, close enough to 9
out of 10 images correct.

Note: What Create ML calls an iteration is one pass through the entire training
set, also known as an “epoch”. This means Create ML has given the model a chance
to look at all 4,582 training images once (or rather, the extracted feature vectors of
all training images). If you do 10 iterations, the model will have seen each training
image (or its feature vectors) 10 times.

By default, Create ML trains the logistic regression for up to 10 iterations, but you can
change this with the Max iterations setting. In general, the more iterations, the better
the model, but also the longer you have to wait for training to finish. But training the
logistic regression doesn’t take long, so no problem!

The problem with this is doing the feature extraction all over again! If your Mac did the
feature extraction in five minutes or less, go ahead and try this:

ImageClassifier

Max iterations: |25

Training data: Choose...

Validation data: Choose...

Augmentation: Crop
Rotate
Blur
Expose
Noise
Flip

Defaults

1. Stop the playground; then run it again.
2. Click the disclosure arrow to show the options.
3. Increase Max iterations to 25.

4. Drag snacks/train onto the view to start feature extraction.

Here’s what happened on my Mac:

Automatically generating validation set from 5% of the data.
Beginning model training on processed features.
Calibrating solver; this may take some time.

4 4

| Iteration | Elapsed Time | Training Accuracy | Validation Accuracy |

| 1 | 1.009019 | 0.739452 |

0.754167 |
5	3.645678	0.845368	0.870833
10	6.054766	0.908221	0.891667
15	8.408861	0.953458	0.904167
20	10.796781	©.965855	0.920833
25	13.168258	©.984776	0.916667

Completed (Iteration limit reached).

Huh? Training accuracy improved, but validation accuracy stayed pretty much the
same! Maybe 240 validation images isn’t enough? Remember, there’s a snacks/val
subdirectory, with about 50 images per class, so try using these, instead of letting
Create ML choose 5% at random.

Stop and restart the playground. Open the options to increase Max iterations to 25,
and set Validation data to snacks/val (double-click on Choose... to open a file
selection dialog):

ImageClassifier A

Max iterations: 25

Training data: Choose...

Validation data: val

Augmentation: Crop
Rotate
Blur
Expose
Noise
Flip

Defaults

Here’s what I got:

4

| Iteration | Elapsed Time | Training Accuracy | Validation Accuracy |

1 1.073211 0.743076 0.720419
2 2.332538 0.788136 0.757068
3 2.866700 0.812112 0.786387
4 3.426697 0.831749 0.801047
5 3.964355 0.847458 0.825131
10 6.610393 0.907400 0.889005
15 9.270788 0.950186 0.915183
20 11.920261 0.964035 0.913089

0.983258 0.919372

25 14.616540

This is with 955 validation images, not 240. And the training used all 4,838 training
images. But validation accuracy still doesn’t improve, indicating the model may be
overfitting.

Overfitting happens

Overfitting is a term you hear a lot in machine learning. It means that the model has
started to remember specific training images. For example, the image train/ice cream/
b0Offf2ec6c49¢718.jpg has a person in a blue shirt enjoying a sundae:

Suppose a classifier learns a rule that says, “If there is a big blue blob in the image, then
the class is ice cream.” That’s obviously not what you want the model to learn, as the
blue shirt does not have anything to do with ice cream in general. It just happens to
work for this particular training image.

This is why you use a validation set of images that are not used for training. Since the
model has never seen these images before, it hasn’t learned anything about them,
making this is a good test of how well the trained model can generalize to new images.

So the true accuracy of this particular model is 92% correct (the validation accuracy),
not 98% (the training accuracy). If you only look at the training accuracy, your estimate
of the model’s accuracy can be too optimistic. Ideally, you want the validation accuracy
to be similar to the training accuracy, as it was after only 10 iterations — that means
that your model is doing a good job.

Typically, the validation accuracy is a bit lower, but if the gap between them is too big,
it means the model has been learning too many irrelevant details from the training set
— in effect, memorizing what the result should be for specific training images.
Overfitting is one of the most prevalent issues with training deep learning models.

There are several ways to deal with overfitting. The best strategy is to train with more
data. Unfortunately, for this book we can’t really make you download a 100GB dataset,
and so we’ve decided to make do with a relatively small dataset. For image classifiers,
you can augment your image data by flipping, rotating, shearing or changing the
exposure of images. Here’s an illustration of data augmentation:

Augmentation Augmented images

Original image

So try it: restart the playground, set the options as before, but also select some data
augmentation:

ImageClassifier A

Max iterations: 25
Training data: Choose...

Validation data: val

Augmentation: Crop

Rotate
Blur
Expose
Noise
Flip

Defaults

Note: The window lists the augmentation options from greatest to least training
effectiveness, so Crop is the most effective choice. This is also the order in which
the classifier applies options, if you select more than one. Selecting Crop creates
four flipped images for each original image, so feature extraction takes almost five
times longer (12m 47s, for me). Selecting all six augmentation options creates 100
augmented images for each original! Actually, "only 100," because the number of
augmentation images is capped at 100.

Here’s what I got:

| Iteration | Elapsed Time | Training Accuracy | Validation Accuracy |

| 5 | 20.242937 | 0.834436 | 0.827225 |
10 33.283525 0.895246 0.892147
11 35.874542 0.899173 0.891099
12 38.447442 0.903555 0.897382
13 41.025082 0.916164 0.901571
14 43.655974 0.925878 0.912042
15 46.174075 0.928648 0.913089
16 48.803652 0.932038 0.914136
17 51.366629 0.934270 0.916230
18 54.006646 0.937205 0.912042
19 56.663583 0.942538 0.913089
20 59.219079 0.944688 0.910995

21	61.769311	©.946755	0.914136
22	64.411917	0.948698	0.912042
23	67.025052	©.952005	0.912042
24	69.681690	©.955147	0.916230
25	72.288230	©.957131	0.912042

Well, training accuracy is a little lower, but validation accuracy is stuck at 91-92%. So
it’s still overfitting, but it’s also taking longer to learn — that’s understandable, with
almost 25,000 images!

Note: Xcode 10 beta 6 has problems with the blur option for every image: Failed
to render 89401 pixels because a CIKernel’s ROI function did not allow
tiling.

Another trick is adding regularization to the model — something that penalizes large
weights, because a model that gives a lot of weight to a few features is more likely to be
overfitting. Create ML doesn’t let you do regularization, so you’ll learn more about it in
Chapter 5: “Digging Deeper into Turi Create.”

The takeaway is that training accuracy is a useful metric, but it only says something
about whether the model is still learning new things, not about how well the model
works in practice. A good score on the training images isn’t really that interesting, since
we already know what their classes are, after all.

What we care about is how well the model works on images that it has never seen
before. Therefore, the metric to keep your eye on is the validation accuracy, as this is a
good indicator of the performance of the model in the real world.

Note: By the way, overfitting isn’t the only reason why the validation accuracy can
be lower than the training accuracy. If your training images are different from your
validation images in some fundamental way (silly example: all your training
images are photos taken at night while the validation images are taken during the
day), then your model obviously won’t get a good validation score. It doesn’t really
matter where your validation images come from, as long as these images were not
used for training but they do contain the same kinds of objects. This is why Create
ML randomly picks 5% of the training images to use for validation.

Now that you’ve trained the model, it’s good to know how well it does on new images
that it has never seen before. You already got a little taste of that from the validation
accuracy during training, but the dataset also comes with a collection of test images
that you haven’t used yet. These are stored in the snacks/test folder, and are organized
by class name, just like the training data.

Drag the snacks/test folder onto the view to evaluate this model:

[JON
<

snacks apple
banana
cake
candy

carrot

ImageClassifier v

Model accuracy R
cookie

0 0 doughnut
91% 89% -- arape
hot dog
ice cream
juice
muffin
orange
pineapple
popcorn
pretzel
salad
strawberry
waffle
watermelon

YV VYV V VYV VYV VVYVVVVVVVVVYV

This takes a few moments to compute. Just like during training, the feature extraction
on the images takes more time than classification.

Extracting image features from evaluation data.
Analyzing and extracting image features.

-+

| Images Processed | Elapsed Time | Percent Complete |

| 1 | 62.735ms | 0% |

| 2 | 102.807ms | 0% |

| 952 | 29.13s | 100% |
951

| | 29.09s | 99.75% |

Number of examples: 952
Number of classes: 20
Accuracy: 90.97%

91% accuracy! This is consistent with validation accuracy.

Note: You may be wondering what the difference is between the validation set
that’s used during training and the test set you’re using now. They are both used
to find out how well the trained model does on new images.

However, the validation set is often also used to tune the settings of the learning
algorithm — the so-called hyperparameters. Because of this, the model does get
influenced by the images in the validation set, even though the training process
never looks at these images directly. So while the validation score gives a better
idea of the true performance of the model than the training accuracyj, it is still not
completely impartial.

That’s why it’s a good idea to reserve a separate test set. Ideally, you'd evaluate
your model only once on this test set, when you’re completely done training it. You
should resist the temptation to go back and tweak your model to improve the test
set performance, as now the test set images start to influence how the model is
trained and so the test set is no longer a good representation of unseen images.
It’s probably fine if you do this a few times, especially if your model isn’t very good
yet, but it shouldn’t become a habit. Save the test set for last and evaluate on it as
few times as possible.

Again, the question: Is 91% correct a good score or a bad score? It means every one out
of 10 images is scored wrong. Obviously, we'd rather see an accuracy score of 99% or
better (only one out of 100 images wrong), but whether that’s feasible depends on the
capacity of your model, the number of classes and how many training images you have.

Even if 91% correct is not ideal, it does mean your model has actually learned
something. After all, with 20 classes, a totally random guess would only be correct 1/20
times on average or 5%. So the model is already doing much better than random
guesses. But it looks like Create ML isn’t going to do any better than this with the
current dataset.

Keep in mind, the accuracy score only looks at the top predicted class with the highest
probability. If a picture contains an apple, and the most confident prediction is "hot
dog," then it’s obviously a wrong answer. But if the top prediction is "hot dog" with 40%
confidence, while the second highest class is "apple"” with 39% confidence, then you
might still consider this a correct prediction.

Below, the accuracy value is the confusion matrix. You’ll look at that in Chapter 5,
“Digging Deeper Into Turi Create,” when you create a nifty visualization of the matrix.

K

Below the confusion matrix are two other useful metrics for classifiers — precision and
recall:

*xkkkkkPRECISION RECALLkskskskksk

Class Precision(%) Recall(%)
apple 91.49 86.00
banana 96.15 100.00
cake 76.47 78.00
candy 88.00 88.00
carrot 90.20 92.00
cookie 88.64 78.00
doughnut 92.16 94.00
grape 97.92 94.00
hot dog 97.83 90.00
ice cream 88.00 88.00
juice 98.04 100.00
muffin 83.64 95.83
orange 89.80 88.00
pineapple 86.36 95.00
popcorn 100.00 97.50
pretzel 92.00 92.00
salad 87.27 96.00
strawberry 87.23 83.67
waffle 93.88 92.00
watermelon 97.92 94.00

Create ML computes precision and recall for each individual class, which is useful for
understanding which classes perform better than others. These values are mostly above
80%. But what do they mean?

Precision means: Of all the images that the model predicts to be "apple’, 91.49% of
them are actually apples. Precision is high if we don’t have many false positives, and it
is low if we often misclassify something as being "apple." A false positive is if something
isn’t an X, but the model thinks it is.

Recall is similar, but different: it counts how many apples the model found among the

total number of apples — in this case, it found 86% of the "apple" images. This gives us

an idea of the number of false negatives. If recall is low, it means we actually missed a
lot of the apples. A false negative is if something is an X, but the model doesn’t think it
is.

Again, we like to see high numbers here, and > 80% is reasonable. For precision, it
means that about one out of 10 things the model claimed were "cake" really aren’t, and,
for recall, it means that the model found 81.48% of the "cake" images in the test set.

For precision, the worst performing classes are “cake” (76%) and “muffin” (84%). For
recall, the worst are “cake” (78%) and “cookie” (78%). These would be the classes to pay
attention to, in order to improve the model — for example, by gathering more or better
training images for these classes.

Exporting to Core ML

The whole point of training your own models is to use them in your apps, so let’s save
this new model so you can load it with Core ML.

Click the disclosure symbol next to ImageClassifier to see a different set of options.
Click on the text, and change it to MultiSnacks. Change the Where location to the
starter folder, then click Save:

@ |HealthySnacks |

Author: Audrey Tam
Description: A model trained using CreateV
License: Unspecified

Version: 1.0

Where: starter C

Cancel ave]

A Core ML model normally combines the feature extractor with the logistic regression
classifier into a single model. We still need the feature extractor because, for any new
images you want to classify, you also need to compute their feature vectors. With Core
ML, the logistic regression is simply another layer in the neural network, i.e., another
stage in the pipeline.

However, a VisionFeaturePrint_Screen-based Core ML model doesn’t need to include
the feature extractor, because it’s part of iOS 12. So the Core ML model is basically just
the logistic regression classifier, and quite small!

Once you’ve saved the mlmodel file, add it to Xcode in the usual way. Simply replace the
existing .mlmodel file with your new one. The model that’s currently in the Snacks app
was created with SqueezeNet as the feature extractor — it’s 5MB. Your new model from

K

Create ML is only 312KB! It’s actually a much bigger model, but most of it — the
VisionFeaturePrint_Screen feature extractor — is already included in the operating
system, and so you don’t need to distribute that as part of the .mlmodel file.

Note: There are a few other differences between these two feature extractors.
SqueezeNet is a relatively small pre-trained model that expects 227x227 images,
and extracts 1,000 features. VisionFeaturePrint_Screen uses 299x299 images, and
extracts 2,048 features. So the kind of knowledge that is extracted from the image
by the Vision model is much richer, which is why the model you just trained with
Create ML actually performs better than the SqueezeNet-based model from the
previous chapter, which only has a 67% validation accuracy!

Classifying on live video

The example project in this chapter’s resources is a little different than the app you
worked with in the previous chapter. It works on live video from the camera. The
VideoCapture class uses AVCaptureSession to read video frames from the iPhone’s
camera at 30 frames per second. The ViewController acts as the delegate for this
VideoCapture class and is called with a CVPixelBuffer object 30 times per second. It
uses Vision to make a prediction and then shows this on the screen in a label.

The code is mostly the same as in the previous app, except now there’s no longer a
UIImagePicker but the app runs the classifier continuously.

muffin 74.0%
cookie 19.9%
waffle 1.3%

30.6 FPS

The classifier on live video

There is also an FPSCounter object that counts how many frames per second the app
achieves. With a model that uses VisionFeaturePrint_Screen as the feature extractor
you should be able to get 30 FPS on a modern device.

Note: The app has a setting for videoCapture. frameInterval that lets you run the
classifier less often, in order to save battery power. Experiment with this setting,
and watch the energy usage screen in Xcode for the difference this makes.

The vVideoCapture class is just a bare bones example of how to read video from the
camera. We kept it simple on purpose so as not to make the example app too
complicated. For real-word production usage you’ll need to make this more robust, so it
can handle interruptions, and use more camera features such as auto-focus, the front-
facing camera, and so on.

In this chapter, you got a taste of training your own Core ML model with Create ML.
Partly due to the limited dataset, the default settings got only ~90% accuracy.
Increasing max iterations increased training accuracy, but validation accuracy was
stuck at ~90%, indicating that overfitting might be happening. Augmenting the data
with flipped images reduced the gap between training and validation accuracies, but
you’ll need more iterations to increase the accuracies.

More images is better. We use 4,800 images, but 48,000 would have been better, and 4.8
million would have been even better. However, there is a real cost associated with
finding and annotating training images, and for most projects a few hundred images or
at most a few thousand images per class may be all you can afford. Use what you’ve got
— you can always retrain the model at a later date once you’ve collected more training
data. Data is king in machine learning, and who has the most of it usually ends up with
a better model.

Create ML is super easy to use, but lets you tweak only a few aspects of the training
process. It’s also currently limited to image and text classification models.

Turi Create gives you more task-focused models to customize, and lets you get more
hands-on with the training process. It’s almost as easy to use as Create ML, but you
need to write Python. The next chapter gets you started with some useful tools, so you
can train a model with Turi Create. Then, in Chapter 5, “Digging Deeper Into Turi
Create,” you’ll get a closer look at the training process, and learn more about the
building blocks of neural networks.

K

* You can use macOS playgrounds to test out Create ML, and tune parameters to create
simple machine learning models.

» Create ML allows you to create small models that leverage built-in models already
installed on iOS 12 devices.

 Ideally, you want the validation accuracy to be similar to the training accuracy.

» There are several ways to deal with overfitting; include more images, increase
training iterations or augment your data.

» Precision and recall are useful metrics when evaluating your model.

Create your own dataset of labelled images, and use Create ML to train a model.

A fun dataset is the Kaggle dogs vs. cats competition ,
which lets you train a binary classifier that can tell apart dogs from cats. The best
models score about 98% accuracy — how close can you get with Create ML?

Also check out some of Kaggle’s other image datasets at

Of course, don’t forget to put your own model into the iOS app to impress your friends
and co-workers!

er 4: Getting Started

ython & Turi Create

Matthijs Hollemans

Congratulations! If you’ve made it this far, you’ve developed a strong foundation for
absorbing machine learning material. However, before we can move forward, we need to
address the 10,000 pound snake in the room... Python. Until this point, you’ve made
due with Xcode, and Swift, however, if you’re going to get serious about Machine
Learning, then it’s best you prepare yourself to learn some Python. In this chapter,

* You’ll learn how to set up and use tools from the Python ecosystem for data science
and machine learning (ML).

» You’ll install Anaconda and use its Navigator GUI.

» You’ll use terminal commands to create ML environments which you’ll use
throughout this book.

 Finally, you’ll use Jupyter notebooks, which is similar to Swift Playgrounds, to
explore the Python language, data science libraries, and Apple’s ML-as-a-Service;
Turi Create.

Starter folder

The starter folder for this chapter contains:
» notebook folder: the sample notebook data files.

« .yaml files: used to import pre-configured environments, if you want to skip the
instructions for configuring the environments yourself.

h raywenderlich.com 109

Python is the dominant programming language used for data science and machine
learning. As such, there’s a myriad of tools available for, but not limited to the Python
community to support data science and machine learning development. Some of which
include:

» Data science libraries: Matplotlib, NumPy, Pandas, SciPy

* Machine learning libraries: Caffe2, Keras, Microsoft Cognitive Toolkit, TensorFlow,
Theano, scikit-learnTheano

» ML-as-a-Service: Amazon Machine Learning, Google ML Kit, IBM Watson, Microsoft
Azure Machine Learning Studio, Turi Create

» Tools: coremltools, virtualenv, pip, Anaconda, Docker, Jupyter, Google
Colaboratory

If you know the Swift programming language, you’ll find that although Python is quite
different, it also shares some similarities with Swift. For instance:

* You import modules similarly to Swift modules.

It has the similar concepts for primitive types, tuples, lists, dictionaries, operators,
loops, conditionals.

* You can create objects, classes, functions.

Of course, there are some differences too. For example:

o Python is interpreted, not compiled.

» You define closures, functions, classes with indentation instead of { ... }.

» Naming conventions tend toward terse abbreviations, like early C programming.

» Module and function names are snake_case, while class and exception names are
PascalCase.

o Comments (docstrings) start with # not //.

e Multi-line comments begin and end with """ instead of /x and *x/, and the end """ is
on its own line.

e True/False, not true/false.

« Dynamic types, no support for constants; no let or var.

K

« Enumerations, but no switch.

After you set up the tools, you’ll try out some Python while learning about the libraries.
If you’d like some more practice or information, here are two helpful resources:

e Michael Kennedy’s November 2014

» Jason Brownlee’s May 2016
: includes NumPy, Matplotlib and Pandas examples.

A version of Python is already installed on macOS. However, using this installation may
cause version conflicts because people use both Python 2.7 and Python 3.x, which are
incompatible branches of the same language. To further complicate things, working on
machine learning projects requires integrating the correct versions of numerous
packages.

Note: The Python development team will , SO
the major open source Python packages have

Most people create environments where they install specific versions of Python and the
packages they need. The most basic tool set includes the environment manager
virtualenv and the package manager pip. Aside from that, you still have to figure out
which packages you need — and it’s all very manual, with a high probability of
frustration.

There is a better way!

The data science community developed Conda to make life easier. Conda handles
Python language versions, Python packages, and associated native libraries. It’s both an
environment manager and a package manager. If you need a package that it doesn’t
know about, you can use pip within a conda environment to grab the package.

Conda comes in two distributions:

» Miniconda: Includes only the packages needed to run Conda. (400 MB)

K

» Anaconda: Includes all of the standard packages needed for machine learning. (2
GB)

You’ll be using Anaconda in this chapter. It doesn’t take long to install, and it’s way
more convenient!

Anaconda

Installing Anaconda

In a browser, navigate to https:/www.anaconda.com/download/#macos, and download
the Python 3.6 version:

Anaconda 5.2 For macOS Installer

Python 3.6 version * Python 2.7 version *
& Download & Download
64-Bit Graphical Installer (613 MB) (7) 64-Bit Graphical Installer (617 MB) (D
64-Bit Command-Line Installer (523 MB)®) 64-Bit Command-Line Installer (527 MB)(?)

Don’t worry about the two 500+ MB installers in the fine print; it’s only 643 MB for both
installers.

After downloading, run the installer. When prompted to Change Install Location...,
select Install for me only. This installs Anaconda in your home directory:

[] @ Install Anaconda3 - [] @ Install Anaconda3 -
Standard Install on “Macintosh HD* Select a Destination
This will R) l 2 i
Introduction is will take 2:17 GB of space on your computer. Introduction How do you want to install this software?
Read Me Click Install to perform a standard installation of this software Read Me
Licence on the disk "Macintosh HD". Licence
Destination Select e Destination Select

o Installation Type I R e £ Install for me only

- Install on a specific disk...

i e Installing this software requires 2.17 GB of space.
', ’ “ , You have chosen to install this software in your home
N folder. Only the current user will be able to use this
software,
ANACONDA Change Install Location. ANACONDA

Customise Go Back Install Continue

If it says you can’t install it there, click the Install on a specific disk... button, then
click back to the Home button — it should be more agreeable:

° @ Instail Anaconda3 &

@ Install Anaconds3 O
Select a Destination
Select a Destination

Select a Destination

nnnnnnnnn

ANACONDA

While you’re waiting for the installation to finish, scroll down to the Get Started links
and take a closer look at Learn Python with Anaconda:

Get Started

B GF

Anaconda Documentation How to Use Anaconda Navigator Packages Included in Anaconda

6 @

Try Out Conda Support Learn Python with Anaconda

These are video courses about using Python for machine learning. You can view some
parts for free, while others require you to be a subscriber before you can watch.

Using Anaconda navigator

Anaconda comes with a desktop GUI that you can use to create environments and
install packages in an environment. There’s also a handy button to start Jupyter
notebooks in specific environments — more about this later.

Note: If you see a prompt to update Anaconda Navigator, do that later when it’s
convenient — but don’t launch it from the updater prompt. Instead, locate
Anaconda Navigator in Finder, and open it there.

K

From within Finder, locate and start ~/anaconda3/Anaconda Navigator. Select the
Environments tab to see the base (root) environment and its installed packages:

[JOX]) Anaconda Navigator
{) ANACONDA NAVIGATOR
A Home
lSEar(h Environments Q ‘ ‘ Installed v| chamnels Updateindex.. | searchPac.Q
ﬁ Environments base (root) > Name v T Description Version
_ipyw_jlab_nb_ex... 0.1.0
o)
N Learning)
.~ Configurable, python 2+3
alabaster O Compatible sphinx theme ZaCil
- Community anaconda [e) 5.2.0
" .~ Anaconda.org command line client
anaconda-client O emy 1614
- .~ Reproducible, executable project
< anaconda-project O directories 08.2
appnope D Disable app nap on 0s x 109 01.0
. .~ Control applescriptable
Documentation appscript O applications from python o4
asnicrypto D Asn.1 parser and serializer 0.24.0
Developer Blog Abstract syntaxtree for pyth
. . stract syntax tree for python
astroid O With inference support 2 163
Feedback < —
.~ Community-developed python
astropy O (ibrary for sstronomy a2
4 (=]] i o artee ~ Implement attribute-related object tarn Y
Create Clone Import Remove 249 packages available

There are 249 packages installed, however, you won’t need most of them for this book.
That said, there are three ML packages needed that aren’t in the base environment:

» Keras: An interface to TensorFlow, Theano, and Microsoft Cognitive Toolkit, from
Google.

» TensorFlow: Google Brain’s library for neural networks.
o Turi Create: Apple’s ML-as-a-Service framework.

Anaconda knows about Keras and TensorFlow, so you could install them with Navigator.
However, TensorFlow’s installation instructions advise against this, so you’ll use pip to
install all three.

Setting up a base ML environment

In this section, you’ll set up some environments. If you prefer a quicker start, Import
mlenv.yaml into the Navigator and skip down to the section Jupyter Notebooks.

Python libraries for data science

Begin by creating a custom base environment for ML, with NumPy, Pandas, Matplotlib,
SciPy and scikit-learn. You’ll be using these data science libraries in this book, but
they’re not automatically included in new Conda environments.

K

* NumPy: Functions for working with multi-dimensional arrays.
» Pandas: Data structures and data analysis tools.

» Matplotlib: 2D plotting library.

» Seaborn: Statistical data visualization library.

» SciPy: Modules for statistics, optimization, integration, linear algebra, Fourier
transforms, and more, using NumPy arrays.

» scikit-learn: Machine learning library.

Once you have the custom base environment for ML, you can clone it to create separate
environments for the ML libraries, Keras, TensorFlow, and Turi Create.

In Anaconda Navigator, Create a new environment named mlenv, with Python 3.6:

base (root) S Name v

_ipyw_jlab_nb_ex...

Create new environment

Name: mlenv
Location: /Users/amt1/anaconda3/envs/mleny
Packages: Python 3.6 v
ORr Rk
- astroid
L (] O
Create Import Remove 244 packages available

It takes about a minute to install the 17 utility packages:

l Search Environments Q I l Installed v‘ Channels Update index...
base (root) Name v T Description Version
‘ ~
¥ ca-certificates { 2018.0...
| mlenv » 9 o o
. -~ Python package for providing
certif 9 mozilla's ca bundle. 2018 £15
libexx) 4.0.1
< libcxxabi () 4.0.1
libedit D 3.1.201...
. .~ Portable foreign-function interface
libFFi O library 3.2.1
ncurses D Free software emulation of curses 6.1
openssl) Opensslis an open-source imple... 1.0.20
m® @ & s enenmmen "
Create Clone Import Remove 17 packages available

Next, to add the scikit ML libraries: change Installed to Not installed, search for
scikit, and check the checkboxes next to scikit-image and scikit-learn:

Not installed IV Channels Update index... scikit X

Name v T Description Version
O scikit-bio D Python package for bicinformatics 0.5.1
[scikit-image D Image processing routines for scipy 0.13.0

Set of python modules for machine learning

scikit-learn ®) and data mining 0.19.0
O scikit-rf D) Object oriented rf/microwave engineering 0.14.3
O scikits-image ®) 0.7.1

You also need the Seaborn library, so change the search term to seaborn, then select
that package:

\ Not installed v ‘ Channels Update index...

Name v T Description Version

seaborn ¢ Statistical data visualization 0.8.1

1 package available matching "seaborn’ 3 packages selected m

Now click Apply. Conda checks the selected packages’ dependencies, then displays the
list of 54 packages it will install, including scipy, matplotlib, pandas and numpy:

Install Packages X

IS4 packages will be installed |

Name Unlink Link Channel
32 *numpy - 1.14.3 defaults o
33 *numpy-base - 1.14.3 defaults
34 *olefile - 0.45.1 defaults
35 *packaging - 17.1 defaults
36 *pandas - 0.23.0 defaults
37 *partd - 0338 defaults v

* indicates the package is a dependency of a selected packages

Click Apply again. This time, you may want to grab a drink or a snack while you wait.

K

When it’s all done, clear the search field and show Installed. You now have 71 packages
installed.

‘ Search Environments Q ‘ I Installed 'vl Channels Update index...
base (root) Name v T Description Version
I mlenv > scikit-image) Image processing routines for scipy 0.13.1 ~
waen [0 feetptm s ormaine g
scipy D) Scientific library for python 1.1.0
< seaborn) Statistical data visualization 0.8.1
supoos O Dbt malpgsde 0
six O Eﬁ:‘wt?erlzandkompatibility 111.0
sortedcontainers) zg:::gégat::ée;o?ézﬁ::rted“St' 1.5.10
|! n .i sqlite) Sgldatabase engine 3.231 v
Create Clone Import Remove

Note: The actual number of packages you see might be slightly different. If you
see something like 200+ packages, quit and restart Anaconda Navigator. When it
restarts, that number should be closer to 71.

Adding Jupyter to base ML environment

Because you’ll be coding in Jupyter notebooks, you need to first add Jupyter to mlenv.
Select the Home Tab. Notice the Applications on field contains mlenv, and every app
displays an Install button:

[JoN)) Anaconda Navigator
{) ANACONDA NAVIGATOR TR ET
A Home
I Applications on l mlenv lv ‘ Channels Refresh
. Environments ~
- L -]
. °
o X g
Learnin
~ 9 Jupyter
N4
an Community glueviz jupyterlab notebook
0133 0321 550
Multidimensional data visualization across An extensible environment for interactive Web-based, interactive computing notebook
files. Explore relationships within and among and reproducible computing, based on the environment. Edit and run human-readable
. related datasets. Jupyter Notebook and Architecture. docs while describing the data analysis.
Documentation
Developer Blog
Feedback
o o -
You v

Click the Jupyter Install button.

Wait until the button title changes to Launch. Then, switch back to the Environments
Tab and you’ll see that mlenv now contains 105 packages:

‘ Search Environments Q ‘ ‘ Installed v‘ Channels Update index...

base (root) Name v T Description Version

jupyter_client o) Jupyter protocol implementation

I mlenv > and client libraries 523

jupyter_core) Core jupyter functionality 4.4.0
owsover O fnecem e imementatonal o

< libexx D 4.0.1
libcxxabi 9) 4.0.1
libedit D 3.1.201...
libFfi 9 Eg:;;t/zlefcreign-furcticn interface 32.1

9 The gnu fortran compiler, part of

|_. u .i libgfortran s 3.0.1 v

Create Clone Import Remove 105 packages available

Note: Technically, you don’t need to install the Jupyter app in your environment.
You can start Jupyter from the command line, but in that case, you’d need to first
activate the environment you want to code in. By installing Jupyter here, you can
start it in your environment simply by clicking the launch button.

Another Note: Jupyter Lab is in beta, but it will probably become the standard
UL Feel free to install it and have a look, but understand that this book does not
use it.

With Jupyter notebooks, which are a lot like Swift Playgrounds, you can write and run
code, and you can write and render markdown to explain the code. In fact, Chris Lattner
and Richard Wei showed a Swift Playground during their

at TensorFlow Dev Summit 2018. They used their audience’s vocabulary by
calling it a Swift notebook.

Starting Jupyter

In Anaconda Navigator’s Home Tab, with mlenv selected, click the Jupyter Launch
button. The following command appears in Terminal, followed by messages about a
server starting and how to shut it down:

/anaconda3/envs/mlenv/bin/jupyter_mac.command ; exit;
Keep this window open!

A browser window also opens, showing your home directory:

[NN) M O ©® O localhost:8888/tree ¢ o |

I
: J u pyte r Quit Logout
Files Running Clusters

Rename Move n

Upload New~ £

21 -~ B/ Name ¥ Last Modified File size
~) [anaconda3 3 days ago
~) O Applications 3 years ago
) [closet 4 minutes ago
~) [O Desktop 2 minutes ago
) [O Documents 7 months ago
~] O Downloads aday ago
~1 O Dropbox 5 days ago

Navigate to the starter folder for this chapter, and open notebook/mlbase.ipynb:

Files Running Clusters

Select items to perform actions on them.

Upload New~ <
0 ~ 8/ Dropbox/ dayfile / ML / starter / notebook File size

Name ¥ Last Modified

O. seconds ago

7] | & mibase.ipynb 3 minutes ago 72B
& turi.ipynb 2 minutes ago 72B
0O corpus.json 3 months ago 887 kB

The notebook appears in a new browser tab:

—_Jupyter milbase Logout
File Edit View Insert Cell Kernel Help Trusted & | Kernel O
B + £ @@ B 4 ¥ MRun B C » Code O -

In []:

At the moment, there’s an empty cell. In that cell, type the following lines:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

This imports the NumPy and Pandas modules into the current session. It also imports
the pyplot module of Matplotlib, and gives everything their customary abbreviated
aliases. There’s no output for import statements, unless there’s a warning about future
deprecation of a module.

Press Shift-Enter to run this code, which will also open a new cell below it.
Next, type these lines in the newly created empty cell, then press Shift-Enter:

data = pd.read_json('corpus.json', orient='records')
data.head()

The starter/notebook folder contains corpus.json, so this loads the data into a
DataFrame — the Pandas data container, with rows and columns like a spreadsheet. It
has powerful functions for manipulation, which is important for massaging data to get
the best input for training a model.

The orient parameter indicates the JSON string format: ’'records' means it’s a list of
column —> value. You’ll take a look at the documentation for this function in a
moment.

The head() function shows the (default) first five rows:

In [2]): data = pd.read_json('corpus.json', orient='records')
data.head()
Out[2]:
author text title
0 R E;:g?; When you are old and grey and full of sleep,\n... When You Are Old
1 Wiliiam %:2?; | think it better that in times like these\nA ... On being asked for a War Poem
2 William Butler Had | the heavens' embroidered He Wishes For The Cloths Of
Yeats cloths \nEnwrou... Heaven
3 WG BY::‘:; Were you but lying cold and dead,\nAnd lights ... He Wishes His Beloved Were Dead
4 William lzlutler Wine comes in at the mouth\nAnd love comes in A Drinking Song
‘eats =
In []:

Note: Shift-Enter runs the current cell and, if this is the last cell, opens a new cell
below it; this is convenient when you’re testing code as you write it. Control-
Enter runs the current cell; you’d do this when you add something to an earlier
cell and want to update it. The bracketed numbers keep track of the order you run
the cells, regardless of their order within the notebook.

In the next empty cell, type the following line, then press Shift-Enter:
?7data.tail(3)

The question mark shows the documentation for this function, instead of running the
function:

In [3]: ?data.tail(3)

Signature: data.tail(n=5)
Docstring:
Return the last "n° rows.

This function returns last "n~ rows from the object based on
position. It is useful for quickly verifying data, for example,
after sorting or appending rows.

Parameters

n : int, default 5
Number of rows to select.

Returns

type of caller
The last "n” rows of the caller object.

Press Esc or the x button to close the documentation.

Delete the question mark. Then press Control-Enter or Shift-Enter to run the cell,
which will display the last three rows of data:

In [4]: data.tail(3)

Out[4]:
author text title
516 Oscar Wilde The western wind is blowing fair\nAcross the d... Serenade (For Music)
517 Oscar Wilde (To L. L.)\n\nCould we dig up this long-buried... Roses And Rue

518 Oscar Wilde In the glad springtime when leaves were green,... From Spring Days To Winter (For Music)

If you’d like, you can also see documentation in a pop-up box: select pd. read_json in
the second cell, then press Shift-Tab-Tab:

In [2): data = pd.read_json('corpus.json', orient='records')
Aasa haadlN

out[2]: Signature: pd.read_ json(path or_buf=None, orient=None, typ='frame', dtype=True,
convert_axes=True, convert_ dates=True, keep_default dates=True, numpy=False,
precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None,
compression='infer')

Docstring:

Convert a JSON string to pandas object

Parameters

path_or_buf : a valid JSON string or file-like, default: None
The atrina ~ranld he a TIRT.. Valid IMT. arhemea incinde hién fEn e and

The question mark doesn’t work on this line unless you delete data =.

In the next empty cell, type data.d. Then press Tab to see a list of options:

In [4]: data.describe
data.diff

data.div

data.divide

data.dot \
data.drop
data.drop_duplicates
data.dropna
data.dtypes
data.duplicated

data.d

Oout[4]:

In []

Now, press Enter to select data.describe. Then type (), and press Shift-Enter:

In [5]: data.describe()

out[5]:
author text title
count 519 519 519
unique 10 517 516

top Emily Dickinson | think it better that in times like these\nA ... The Wife's Will

freq 361 2 2

The output includes the column identifiers: author, text, and title. You can use these
to sort the data.

Next, Shift-Enter the following line:

data.sort_values(by="title")

Out([6]:
author text title

"Arcturus® is his other name --\nl'd rather

ca "Arcturus" is his other name

69 Emily Dickinson

"Faith" is a fine invention\nWhen Gentlemen
ca...

81 Emily Dickinson "Faith® is a fine invention

“Faithful to the end" Amended\nFrom the

Heaven... *Faithful to the end" Amended

224 Emily Dickinson

"Heaven" -- is what | cannot reach!\nThe

" “__i I
Apple... Heaven is what | cannot reach!

356 Emily Dickinson

"Heaven® has different Signs -- to me --

\nSome... Heaven® has different Signs -- to me --

193 Emily Dickinson

“Heavenly Father” -- take to thee\nThe

supreme... Heavenly Father" -- take to thee

119 Emily Dickinson

"Hope" is the thing with feathers --\nThat
per...

166 Emily Dickinson "Hope* is the thing with feathers

You can extract a column into a separate Series object and count how often each value
appears:
authors = data.author

freq = authors.value_counts()
freq

As in Swift Playgrounds, an object name (freq) on a line by itself displays that object.

Out[7): Emily Dickinson 361
Walt Whitman 67
John Keats 25
Joyce Kilmer 16
William Butler Yeats 10
Oscar Wilde 10
Lewis Carroll 9
Charlotte Bronte 8
Edgar Allan Poe 7
Sir wWalter Scott 6
Name: author, dtype: inté64

Frequency varies from 6 to 361. You can plot a histogram of this distribution:

plt.hist(freq, bins=100)
plt.show()

4.0 1

35 1

3.0 1

25 4

20 4
15

10
0.0 -

0 50 100 150 200 250 300 350

Specifying bins=100 divides the range [6,361] into 100 consecutive, non-overlapping
intervals, called bins or buckets. The histogram’s x-axis has 100 bins, between 0 and
361-ish. The y-axis shows the number of authors in each bin.

Note: This example is from our tutorial Natural Language Processing on iOS with
Turi Create. It trains a natural language model with lines from poems by famous
authors. The trained model can be used to classify new text. For each author it
knows about, it computes the probability that this author wrote the new text. The
freq values here should set off alarm bells — there’s way too much bias toward
Emily Dickinson, so the model will classify most test texts as written by her.

In this next section, you’ll spend some time getting familiar with common Python
syntax.

if-else and None:

A major syntax difference is the importance of indentation. With Python, indentation
replaces {} to define closures (blocks).

Python also has a built-in NoneType to represent no-value. You should use is or is not
to test for a no-value result, not ==, which is what you’d do in Swift. The reason is
because classes can override ==.

if authors is None:
print('authors is None')
else:
print('authors is not None')

The output is:
authors is not None
Here’s how you define and call a function:

def mysum(x, y):
return x + y

print(mysum(1, 3))
This outputs 4.

Notice the auto-indent on the second line. Also notice how you have to un-indent to
type the third line. Coding convention says to leave a blank line after the function
definition, but it’s not a syntax rule, and you may be more comfortable omitting the
blank line.

for-loop and arrays (lists):

mylist = [1, 2, 3]
mylist.append(4)
if mylist:

print('mylist is not empty')

for value in mylist:
print(value)
print('List Length: %d

% len(mylist))

Arrays in Python are similar to arrays in Swift. To test whether an array is empty, use its
name. for loops are also similar to Swift, but they use the : plus indentation syntax.

K

The len() function works on any Python collection object, and it returns th elength of
the array, in a similar way to how the . count property for arrays in Swift returns the
number of items in an array.

Run those commands, and you’ll see this output:

mylist is not empty
1

2

3

4

List Length: 4

To make a point about indentation, go ahead and add a blank line, but indent the last
statement to match the print statement in the loop, like so:

mylist = [1, 2, 3]
mylist.append(4)
if mylist:

print('mylist is not empty')

for value in mylist:
print(value)

print(List Length: %d~ % len(mylist))
Now, both print statements are in the loop, so the output is:

Eist Length: 4
fist Length: 4
Eist Length: 4
ﬁist Length: 4

Excellent, you survived a session with Python and used a few library functions! Feel free
to play around some more until you get the hang of it. This book uses a lot of Python
libraries and functions, so it’s good to understand the basic syntax before moving on.

Despite the difference in programming languages, deep down Turi Create shares a lot
with Create ML, including transfer learning. With Turi Create v5, you can even do
transfer learning with the same VisionFeaturePrint_Screen model that Create ML
uses.

K

In this section, you’ll create the same HealthySnacks model as the previous chapter,
except this time, you’ll use Turi Create. Unlike Create ML, which allowed you to train
your model through the playgrounds Ul in Xcode, Turi Create needs some coding when
compared to Create ML. This means you’ll learn more about working with data using
Python.

First, you need a new environment with the turicreate package installed. You’ll clone
the mlenv environment to create turienv, then you’ll install turicreate in the new
environment. Anaconda doesn’t know about turicreate, so you’ll have to pip install
it from within Terminal.

Note: Again, if you prefer a quicker start, Import turienv.yaml into the
Navigator and skip down to the section Turi Create Notebook.

While it’s possible to clone mlenv in Anaconda Navigator’s Environments tab, you’ll be
using a command line to install turicreate, so it’s just as easy to use a command line to
clone, as well.

Note: If you’ve changed Terminal’s default shell to something different from
bash, check that your $PATH includes ~/anaconda3/bin.

In Terminal, enter this command:
conda create -n turienv —-clone mlenv

This does the same as Anaconda Navigator’s Clone button: it creates an environment
named turienv, which is cloned from mlenv.

Wait a little while until you see:

To activate this environment, use:
> source activate turienv

To deactivate an active environment, use:
> source deactivate

H R R R HR

Note: Again, if your Terminal doesn’t use bash, these instructions might appear as
conda activate turienv and conda deactivate. Also, if you see a message to
update Conda, go ahead and do that.

Take a look at Anaconda Navigator’s Home tab. Because you used Conda to create
turienv, it appears in Anaconda Navigator. Also, because you cloned it from mlenv,
Jupyter is ready to launch:

{0 ANACONDA NAVIGATOR

A Home :
IApplications on turienv I

. Environments

o
-
L "
N Learning Jupyter
A 4
- COmmunity notebook

5.5.0

Web-based, interactive computing notebook
environment. Edit and run human-readable

docs while describing the data analysis.
Documentation

Developer Blog

Ecpdhack

Time to install turicreate.
Enter the activate command:
source activate turienv

The command line prompt now starts with (turienv), showing it’s the active
environment.

Enter this command:
pip install turicreate==5.0

This downloads and installs the version 5 turicreate package, which lets you use the
Vision framework model for transfer learning.

List pip-installed packages

Take a quick look at the turienv environment in Navigator; it still shows only 105
packages. That’s because packages installed with pip don’t show up in Navigator.

K

In Terminal, use this command to list all of the packages in the active environment or
a specific package:

conda list
conda list coremltools

You need the coremltools package to create Core ML models from Turi Create models.
Installing turicreate also installs coremltools.

The output of the second command looks similar to this:

packages in environment at /Users/amtl/anaconda3/envs/mlenv:

Name Version Build Channel
coremltools 2.0b1 <pip>

The Build value <pip> shows coremltools was installed with pip, not conda.

Note: If you skipped the manual environment setup and imported turienv.yaml
into Anaconda Navigator, use the Jupyter Launch button on the Anaconda
Navigator Home Tab instead of the command line below, then navigate in the
browser to starter/notebook.

This time, you’ll start Jupyter in the folder where the notebooks are stored; locate
starter/notebook in Finder. Then, enter the following command to start a Jupyter
notebook in this environment, starting from this directory:

jupyter notebook <drag the starter/notebook folder in Finder to here>

(turienv) Audreys-MBP:~ amt$ jupyter notebook /Users/amt/Desktop/projects/starter/notebook L

corpus.json
B HealthySnacks-Turi.ipynb
mibase.ipynb

In the browser, open HealthySnacks-Turi.ipynb. There’s only an empty cell.

K

Type the following commands in this cell and press Shift-Enter:

import turicreate as tc
import matplotlib.pyplot as plt

You’re importing the Turi Create package and the pyplot module of the Matplotlib
package into the current session, with aliases tc and plt. You may get a FutureWarning
message, which you can safely ignore.

In the next cell, Shift-Enter this command:

train_data = tc.image_analysis. load_images('snacks/train",
with_path=True)

This loads all the images from the snacks/train directory into an SFrame, the data
container for Turi Create. An SFrame contains rows and columns, like a Pandas
DataFrame — in fact, you can create an SFrame from a DataFrame. SFrame has powerful
functions for manipulation, similar to DataFrame. It’s also optimized for loading from
disk storage, which is important for large data sets that can easily overwhelm RAM.

Like Create ML’s MLDataTable, an SFrame keeps only the image metadata in memory.

Note: It’s safe to ignore warnings about .DS_Store being an unsupported image
format.

This SFrame object contains a row for each image, as well as the path of the folder the
images were loaded from. This SFrame should contain 4838 images. Verify this by asking
for its length:

Note: Run each command in its own cell. Remember Shift-Enter runs the current
cell and opens a new cell below it. Always wait for the * to turn into a number,
indicating the command has finished running.

len(train_data)

Next, look at the actual contents of the SFrame:

train_data.head()

Note that now, head() defaults to show the first 10 rows:

path image
snacks/train/healthy/appl Height: 341 Width: 256
e/007a0bec00a80a66.jpg ...

snacks/train/healthy/appl Height: 256 Width: 341
©/007ec56b6529¢036.jpg ...

snacks/train/healthy/appl Height: 256 Width: 446
e/01ecc03a12e21e39.jpg ...

snacks/train/healthy/appl Height: 256 Width: 341
e/021d2569ce622a93.jpg ...

[10 rows x 2 columns]

The first rows in the SFrame

Even though the SFrame only shows the image’s height and width in the table, it
actually contains the complete image. Run the following command to see the actual
images:

train_data.explore()

This opens a new window with image thumbnails (it may take a few seconds to load).
Hover over a row to view a larger version of an image.

[JOX J Turi Create Visualization

path image

0 snacks/train/healthy/apple/007a...

1 snacks/train/healthy/apple/007e. ..

2 snacks/train/healthy/apple/0088...

3 snacks/train/healthy/apple/00bb...

PE@EAa™

Explore the training images

This interactive visualization can be useful for a quick look at the training data. The
explore() command only works with Turi Create on the Mac, not on Linux or from a
Docker container.

Enter this command to look at individual images directly inside the notebook, using the
pyplot module:

plt.imshow(train_data[@] ["image"].pixel_data)

Here, train_data[0] gets the first row from the SFrame, ["image"] gets the object from
the image column for that row, and . pixel_data turns this image object into something
that matplotlib can show with the plt. imshow() command.

In [6]: plt.imshow(train_data[0]["image"].pixel data)
Out[6]: <matplotlib.image.AxesImage at 0Oxlaldcd2f60>

0

50

100

150

200 -

250 18

300 44

0 100 200

Looking at an image with matplotlib

Your notebook may show a different image than in the illustration, since Turi Create
may have loaded your images in another order. Feel free to look at a few images by
changing the row index (use any value from 0 to 4,837).

There is one more piece of data to gather before you can start training — the name of
the class for each image. The images are stored in subdirectories named after the
classes — “apple,” “hot dog,” etc. The SFrame knows the path the image was loaded
from, but these paths look something like this:

snacks/train/hot dog/8ace@d8a912ed2f6. jpg

The class for image 8ace@d8a912ed2f6. jpg is "hot dog", but it’s hidden inside that long
path. To make this more obvious, you’ll write some code to extract the class name from

the path. Run the following commands to extract the name of the first image’s class
folder:

Grab the full path of the first training example
path = train_datal0] ["path"]
print(path)

K

Find the class label
import os
os.path.basename(os.path.split(path) [0])

Here, you’re getting the full path of the first image, then using the os.path Python
package for dealing with path names. First, os.path.split() chops the path into two
pieces: the name of the file (8ace0d8a912ed2f6.jpg) and everything leading up to it.
Then os.path.basename() grabs the name of the last folder, which is the one with the
class name. Since the first training image is of an apple, you get “apple.”

Note: The # character starts a comment in Python. Note that you first need to
import the os package, or else Python won’t know what os. path is.

Getting the class labels

OK, now you know how to extract the class name for a single image, but there are over
4,800 images in the dataset. As a Swift programmer, your initial instinct may be to use a
for loop, but if you’re really Swift-y, you’ll be itching to use a map function. SFrame has a
handy apply() method that, like map, lets you apply a function to every row in the
frame:

train_data["path"].apply(lambda path: ...do something with path...)

In Python, a lambda is similar to a closure in Swift — it’s just a function without a
name. train_data["path"].apply() performs this lambda function on every row in the
path column. Inside the lambda, just put the above code snippet that you used to
extract the class name from the full path:

train_data["label"] = train_data["path"]l.apply(lambda path:
os.path.basename(os.path.split(path) [0]))

Run the above cell and now the SFrame will have a new column called "label” with the
class names. To verify this worked, run train_data.head() again — do this in a new cell,
or scroll up to the fourth cell, and press Control-Enter to run it.

path image label

snacks/train/healthy/appl Height: 341 Width: 256 apple
e€/007a0bec00a90a66.jpg ...

snacks/train/healthy/appl Height: 256 Width: 341 apple
e/007ec56b6529e036.jpg ...

snacks/train/healthy/appl Height: 256 Width: 384 apple
e/00881627629888f6.jpg ...

The SFrame now has a new column

You can also use train_data.explore() again for a visual inspection. Run this
command to see the summary function:

train_data["label"].summary()

This prints out a few summary statistics about the contents of the SFrame’s label
column:

L S —— T +

| item | value | is exact |

S — S ST — S ST +

| Length | 4838 | Yes |

| # Missing Values | 0 | Yes |

| # unique values | 20 | No |

o R ——— S +

Most frequent items:

¥ S — T —— S S S S —— R S TR — S S —— T ——— +
| value | pineapple | apple | banana | doughnut | grape | hot dog | ice cream |
oo S oo o o O ——— Fommmmm— Fommmmm +
| count | 260 | 250 250 | 250 | 250 250 | 250 |
Fommmo—m N S, R R R —— R R — +
S S S R S S +

| juice | muffin | salad |

S S — S —— S +

| 250 | 250 | 250 |

oo o T +

Summary for the label column

As you can see, each of the classes has roughly the same number of elements. For some
reason, summary () only shows the top 10 classes, but we have 20 in total. To see the
number of rows for all of the classes, run the following command:

train_data["label"].value_counts().print_rows(num_rows=20)

All right, that’s all you need to do with the data for now. You’ve loaded the images into
an SFrame, and you’ve given each image a label, so Turi Create knows which class it
belongs to.

Once you have your data in an SFrame, training a model with Turi Create takes only a
single line of code (OK, it’s three lines, but only because we have to fit it on the page):

model = tc.image_classifier.create(train_data, target="label",
model="VisionFeaturePrint_Screen",
verbose=True, max_iterations=50)

Alternatively, if training takes too long on your Mac, you can just load the Turi Create
model from the current folder:

model = tc.load_model("HealthySnacks.model")

Note: If you get run errors on this command, open a new cell, then enter the
command (note the !) 'conda list turicreate to check your turicreate version.
Then check to find the latest version. If there’s a
more recent beta, open a new cell to install it with !pip install
turicreate==5.0.

This command creates a new image classifier from the train_data SFrame. The target
parameter tells Turi Create that the class names are in the SFrame’s label column. By
default, Turi Create only does 10 iterations, but you increase this to 50, so the logistic
regression will train for up to 50 iterations.

The first time you run this command, Turi Create downloads a pre-trained neural
network. The model parameter contains the name of that neural network, in this case
VisionFeaturePrint_Screen. This is the model used by Apple’s Vision framework, and
is also the default model for Create ML.

At the time of writing, Turi Create supports three model architectures: The other two
are ResNet-50 and SqueezeNet version 1.1. ResNet-50 exports a Core ML. model ~90MB,
which is not really suited for use on mobile devices.

SqueezeNet exports a Core ML model ~4.7MB, so it’s a better option. But
VisionFeaturePrint_Screen is built into iOS 12, so it produces a much smaller model —
only ~41KB.

Turi Create, like Create ML, performs feature extraction on the images. This takes about
the same amount of time as Create ML — 2m 22s on my MacBook Pro. And then comes
the logistic regression:

Logistic regression:

Number of examples : 4590

Number of classes 1 20

Number of feature columns i1

Number of unpacked features : 2048

Number of coefficients : 38931

Starting L-BFGS

| Iteration | Passes | Elapsed Time | Training Accuracy | Validation Accuracy |
| 5 | 8 | 3.421915 | 0.815468 | 0.850806

| 10 | 13 | 5.857664 | 0.884532 | 0.875000

| 15 | 19 | 8.655192 | 0.926580 | 0.903226

| 20 | 24 | 11.080811 | 0.944227 | 0.895161 [
| 25 | 29 | 13.513294 | 0.982353 | 0.883065

| 30 | 34 | 15.903836 | 0.994553 | 0.879032

| 35 | 39 | 18.329717 | ©.998911 | 0.875000

| 40 | 44 | 20.812450 | 1.000000 | 0.850806 [
| 45 | 49 | 23.279066 | 1.000000 | 0.854839

| 50 | 55 | 26.231560 | 1.000000 | 0.866935

Completed (Iteration limit reached).
This model may not be optimal. To improve it, consider increasing “max_iterations’.

After 10 iterations, validation accuracy is close to training accuracy at ~88%. At 15
iterations, training accuracy starts to pull away from validation accuracy, and races off
to 100%, while validation accuracy actually drops! Massive overfitting happening here!
The default 10 iterations would’ve been better, but running the
image_classifier.create command with only 10 iterations will do the feature
extraction all over again! Too bad we couldn’t save the intermediate states of the
model, or stop the training when the validation accuracy shows a decreasing trend.

Actually, in the next chapter, you’ll learn how to wrangle the Turi Create code — it’s
open source, after all! — to save the extracted features, so you can experiment more
with the classifier.

Spoiler alert: Keras lets you save the best-so-far model while it’s training, so you
can retrieve it, if it isn’t the final model. It also lets you stop early, if validation
accuracy doesn’t improve over some number (your choice) of iterations.

Let’s go ahead and evaluate this model on the test dataset.

Run these commands to load the test dataset and get the class labels:

test_data = tc.image_analysis.load_images("snacks/test", with_path=True)

lambda path:

test_data["label"] = test_datal["path"].apply(
h)[0]))

os.path.basename(os.path.split(pat

len(test_data)

The last command is just to confirm you’ve got 952 images.

Next, run this command to evaluate the model and collect metrics:
metrics = model.evaluate(test data)

Unlike Create ML, the output of this command doesn’t show any accuracy figures — you
need to examine metrics. Run these commands in the same cell:

print("Accuracy: ", metrics["accuracy"])
print("Precision: ", metrics["precision"])

print("Recall: ", metrics["recall"])

print("Confusion Matrix:\n", metrics["confusion_matrix"])

Here are my metrics:

Accuracy: 0.8697478991596639
Precision: ©.8753552272362406
Recall: 0.8695450680272108
Confusion Matrix:

4 4+ 4 -+

| target_label | predicted_label | count |

ice cream candy 1
apple banana 3
orange pineapple 2
apple strawberry 1

pineapple banana 1

strawberry salad 2

popcorn waffle 1
carrot salad 2
orange watermelon 1

popcorn popcorn 36

[107 rows x 3 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and
columns.

No surprises: Accuracy, precision and recall are all similar to the final validation
accuracy of the model. Unlike Create ML, Turi Create gives only overall values for
precision and recall, and you need some code to get precision and recall for each class.

K

In the next chapter, you’ll learn how to get recall for each class.

The confusion matrix shows only the first 10 rows: the model mistook one “ice cream”
image for “candy,” three “apple” images for “banana,” etc. Presented this way, it doesn’t
look much like a matrix.

In the next chapter, you’ll learn how to get this nifty visualization:

juice -
banana
muffin
strawberry
salad
pineapple
pretzel
orange
apple

hot dog

True label

cookie

carrot

doughnut

waffle

popcorn

ice cream

cake

grape

watermelon

candy

Predicted label

The confusion matrix

This heatmap shows small values as a cool color — black or dark purple — and large
values as warm colors — red to orange to white. The larger the value, the brighter it
gets. The correct matches are on the diagonal, so the highest values are there. With
only 21 correct matches, “pretzel” stands out, but there are only 25 images in the
pretzel folder, so 21 is OK. Purple numbers off the diagonal indicate problems. More
about this in the next chapter!

K

In the next cell, Shift-Enter this command:
model

This displays information about the model.

Class : ImageClassifier
Schema

Number of classes 1 20

Number of feature columns 1

Input image shape : (3, 299, 299)

Training summary

Number of examples : 4590
Training loss : 1.2978
Training time (sec) : 174.5081

Now to save this new model so you can load it with Core ML. There are two ways to save
models using Turi Create:

model.save("HealthySnacks.model")

This saves the model in Turi Create’s own format, which allows you to load it back into
the Python notebook later using tc.load_model(). Once you’ve trained a Turi Create
model, you can’t modify it afterwards, but you might want to evaluate it on different
test data, or examine the metrics more closely.

Run this command to get a Core ML model:
model.export_coreml('"HealthySnacks.mlmodel")

You can add the mlmodel to Xcode in the usual way, if you want to compare it with the
Create ML model. Despite being based on the same pre-trained model, the two custom
models aren’t the same: The accuracy of this model is a little lower, and it’s half the size
of the Create ML model.

To shut down Jupyter, click the Logout button in this browser window and also in the
window showing your ML directory.

K

In the Terminal window that ran jupyter_mac.command ; exit;, press Control-C-C to
stop the server. If the prompt doesn’t return, close this terminal window.

If you activated turienv at the terminal command line, enter this command to
deactivate it:

source deactivate

This deactivates the turienv environment; the command line prompt loses the
(turienv) prefix.

You’ve seen a lot of new commands. Two useful Conda resources are:

Below are the commands used in this chapter, along with some other useful commands.

Note: Some command options use two dashes. One-dash options are often
abbreviations of two-dash options, for example, -n is short for ——name.

Another Note: Some conda environment management tasks can be done in two
ways: conda env <command> Or conda <different command> <options>

Create a new environment:

conda create -n <env name>
Clone an existing environment to create a new environment:

conda create —n <new env name> ——clone <existing env name>
Create a new environment from a YAML file:

conda env create -f <.yaml file>

K

The first line of the YAML file sets the new environment’s name. The starter folder for
this chapter contains YAML files for kerasenv, mlenv, tfenv and turienv. If you prefer
the GUI to the command line, you can import these into Anaconda Navigator.

Activate an environment:
source activate <env name>

Install packages in an active environment:
conda install <pkg names>

Install packages in a non-active environment:

conda install —-n <env name> <pkg names>

Note: A message from conda about installing multiple packages: It is best to
install all packages at once so that all of the dependencies are installed at the
same time.

Install non-conda packages or TensorFlow and Keras in an active environment: Use pip
installinstead of conda install. To install multiple packages, create a
requirements.txt file listing the packages, one per line, then run this command:

pip install -r requirements.txt
Start Jupyter from the active environment [in a specific directory]:
jupyter notebook <directory path>

Shutdown Jupyter: Logout in the Jupyter web pages, then press Control-C-C in
terminal window where server is running.

Deactivate an environment: Run this command in the terminal window where you
activated the environment:

source deactivate
Remove an environment:

conda remove —-n <env name> ——all
Or

conda env remove —-n <env name>

K

List environments; * indicates currently active environment:
conda info ——envs

Or
conda env list

List packages or a specific package:

In the active environment:

(activeenv)...$ conda list
(activeenv)...$ conda list <package name>

In a non-active environment:

conda list -n <non-active env name>
conda list —-n <non-active env name> <package name>

There are two other high-level tools for supporting machine learning in Python: Docker
and Google Colaboratory. These can be useful for developing machine learning projects,
but we’re not covering them in detail in this book.

Docker is a useful tool for creating reproducable environments for running machine
learning projects, and is therefore a useful tool when you want to scale up projects.
Colaboratory gives you access to free GPU. But while you’re working through the Turi
Create and Keras examples in this book, and trying out your own modifications, it’s
more convenient to have the two environments, and know how to build or modify them.

Docker is a container-based system, sort of like virtual machines. Docker allows you to
re-use and modularize re-usable environments, and is a fundamental building block to
scaling services and applications on the Internet efficiently. Installing Docker gives you
access to a large number of ML resources distributed in Docker images as Jupyter
notebooks like hwchong/kerastraining4coreml or Python projects like the bamos/
openface face recognition model.

K

Docker images can be useful to share pre-defined environments with colleagues, or
peers, but at some point they will require an understanding of how to write Docker
images (by editing the corresponding Dockerfile), which is beyond the scope of what
we’re covering here.

You can download the community edition of Docker for Mac from https://dockr.ly/
2hwNOZZ. To search Docker Hub hub.docker.com (a repository for Docker images), click
Explore, then search for image classifier:

Q image classifier Dashboard Explore Organizations Create y?yl mataharimau

Repositories (103940)

All <

jesuino/image-classifier 0 10K+ >
public STARS PULLS DETAILS

microsoft/azureiotedge-seeed-image-classifier-python 0 9.4K >
public STARS PULLS DETAILS
microsoft/azureiotedge-seeed-image-classifier-csharp 0 4.7K >
public STARS PULLS DETAILS

Search Docker Hub for image classifier

Google Colaboratory

Google Research’s Colaboratory at colab.research.google.com is a Jupyter Notebook
environment that runs in a browser. Its best feature is, you can set the runtime type of
a notebook to GPU to use Google’s GPU for free. The downside is, it’s not
straightforward to transfer data in and out. Notebooks you create are stored in a Colab
Notebooks directory in your Google Drive, and Colab supplies sample code for
accessing files there. To upload files from your local drive, use Google’s Chrome
browser — the upload window never appeared when I tried this in Safari. I uploaded
snacks.zip, then unzipped it, but the load_images () function couldn’t find it.
StackOverflow has a lot of questions, and a few answers, about getting datasets into
Colab.

K

o Get familiar with Python. Its widespread adoption with academics in the machine
learning field means if you want to keep up to date with machine learning, you’ll
have to get on board.

» Get familiar with Conda. It will make working with Python significantly more
pleasant. It allows you to try Python libraries in a controlled environment without
damaging any existing environment.

» Get familiar with Jupyter notebooks. Like Swift playgrounds, they provide a means to
quickly test all things Python especially when used in combination with Conda.

For some chapters in this book, you’ll need Keras or TensorFlow. Your challenges are to
practice creating environments and installing packages by creating the tfenv and
kerasenv environments.

Note: If you skip these challenges, you can create the environments when you
need them by importing their .yam1 files into Anaconda Navigator; these files are
located in the starter folder for this chapter.

Although these packages are in Anaconda’s package list, TensorFlow’s installation
instructions say to use pip instead of conda.

Clone mlenv to create tfenv. Then install the tensorflow package in tfenv. Remember
touse pip installinstead of conda install.

Also pip installthe tfcoreml package in tfenv; this is TensorFlow’s tool for creating
Core ML models. Unlike turicreate, which automatically installs coremltools,
installing tensorflow doesn’t automatically install tfcoreml. On the other hand,
tfcoreml uses coremltools, so you’ll see that being installed too.

Finally, clone tfenv to create kerasenv, and install the keras package in kerasenv.
Again, use pip install,just to be safe.

Where to go from here?

You’re all set to continue learning about machine learning for image classification,
using Python tools. The next chapter shows you a few more Turi Create tricks. After
that, you’ll be ready to learn how to create your own deep learning model in Keras.

er 5: Digging Deeper

ri Create

atthijs Hollemans

In this chapter, you’ll use the SqueezeNet base model to train the HealthySnacks model,
then explore more ways to evaluate its results. Then, you’ll try to improve the model’s
accuracy, first with more iterations, then by tweaking some of the underlying Turi
Create code. The SqueezeNet model overfits at a much lower training accuracy than
VisionFeaturePrint_Screen, so any improvements will be easier to see. You’ll also use
the Netron tool to view the model — a SqueezeNet-based model has a lot more detail.

Getting started

You can continue to use the notebook from the previous chapter or start fresh with the
notebook in this chapter’s starter folder.

Transfer learning with SqueezeNet

You can skip all the data exploration cells in the previous chapter’s notebook. Run these
cells one by one — the cells for steps 2 and 3 include code to check you’ve actually
gotten what you expect.

1. Import modules:

import turicreate as tc
import matplotlib.pyplot as plt

2. Load training and testing data and display lengths to make sure there’s data:

train_data = tc.image_analysis.load_images("snacks/train",
with_path=True)
len(train_data)

h raywenderlich.com 147

test_data = tc.image_analysis.load_images("snacks/test", with_path=True)
len(test_data)

3. Extract labels from the image paths and display label count values:

import os
train_data["label"] = train_data["path"].apply(
lambda path: os.path.basename(os.path.split(path)[0]))

test_data["label"] = test_datal"path"].apply(
lambda path: os.path.basename(os.path.split(path)[0]))

train_data["label"].value_counts().print_rows(num_rows=20)
test_data["label"].value_counts().print_rows(num_rows=20)

4. Create the image classifier with mode1="squeezenet_v1.1" and max_iterations=100:

model = tc.image_classifier.create(train_data, target="label",
model="squeezenet_v1l.1",
verbose=True, max_iterations=100)

Note: If you don’t want to wait for your Mac to train this model, just load the pre-
trained model:

model = tc.load_model("HealthySnacks.model")

When you run this cell, you’ll be pleasantly surprised at how fast the feature extraction
is. This is because SqueezeNet extracts only 1000 features from 227x227-pixel images,
compared with VisionFeaturePrint_Screen’s 2,048 features from 299x299 images. Then
you’ll be disappointed by the training and validation accuracy values:

| Iteration | Passes | Step size | Elapsed Time | Training Accuracy | Validation Accuracy |
| 75 | 85 | 1.000000 | 44.102961 | 0.753883 | 0.640449
| 80 | 91 | 1.000000 | 46.631130 | 0.758915 | 0.647940
| 85 | 96 | 1.000000 | 48.946503 | 0.769416 | 0.685393
| 90 | 101 | 1.000000 | 51.243245 | 0.783636 | 0.666667
| 95 | 106 | 1.000000 | 53.890912 | 0.792606 | 0.681648
| 100 | 111 | 1.000000 | 56.254689 | 0.796762 | 0.670412

Note: You’ll probably get slightly different training results than what are shown in
this book. Recall that untrained models, in this case the logistic regression, are
initialized with random numbers. This can cause variations between different
training runs. Just try it again if you get a training accuracy that is much less than
66%. Advanced users of machine learning actually take advantage of these
differences between training runs to combine multiple models into one big
ensemble that gives more robust predictions.

K

Like Create ML, Turi Create randomly chooses 5% of the training data as validation
data, so validation accuracies can vary quite a bit between training runs. The model
might do better on a larger fixed validation dataset that you choose yourself.

Evaluate the model and display some metrics:

metrics = model.evaluate(test_data)
print("Accuracy: ", metrics["accuracy"])
print("Precision: ", metrics["precision"])
print("Recall: ", metrics["recall"])

No surprises here — accuracy is pretty close to the validation accuracy:

Accuracy: 0.6607142857142857
Precision: 0.6625686789687794
Recall: 0.6577568027210883

Getting individual predictions

So far, you’ve just repeated the steps from the previous chapter. The evaluate() metrics
give you an idea of the model’s overall accuracy but you can get a lot more information
about individual predictions, especially those where the model is wrong, but has very
high confidence that it’s right. Knowing where the model is wrong can help you improve
your training dataset.

&

&

'S

Predicting and classifying

Turi Create models have other functions, in addition to evaluate(). Enter and run these
commands in the next cell, and wait a while:

model.predict(test_data)

This command displays the actual prediction for each individual image:

['apple', 'grape', 'orange', 'orange', 'orange', 'apple', 'orange',
'apple', 'candy', 'apple', 'grape', 'apple', 'strawberry', ‘'apple’,
'apple', 'carrot', 'candy', 'ice cream', 'apple', 'apple', ‘'apple’,

The first prediction corresponds to the image from test_datal@], the second to the
image from test_datal1], and so on. The first 50 test images are all apples, but the
model classified the second image as “grape,” so take a look at the image. Enter and run
this command in the next cell:

plt.imshow(test_datal[l] ["image"].pixel_data)

This displays the second image — does it look like grapes?

0

100
150
200

250

50 100 150 200 250 300

grapes?

Maybe the model isn’t really sure, either. Enter and run these commands, and wait a
while:

output = model.classify(test_data)
output

The classify() function gets you the probability for each prediction, but only the
highest-probability value, which is the model’s confidence in the class it predicts:

The head of the SFrame with classification results

class
apple
grape
orange
orange
orange

apple

orange

probability

0.4326385132863121

0.699598450277612
0.4148821902502113
0.9300597134095988
0.37817135281719916
0.9915643139757563
0.42620238429617097

So the model is 70% confident that the second image is “grape”! And 93% confident the
fourth image is “orange”! But it’s less than 50% confident about the other images it
labelled “orange.” It’s helpful to see the images that correspond to each prediction.
Enter and run these commands:

imgs_with_pred = test_data.add_columns(output)
imgs_with_pred.explore()

The first command adds the output columns to the original test_data columns. Then
you display the merged SFrame with explore().

The label column is the correct class, and class is the model’s highest-confidence

prediction:
[JON) Turi Create Visualization
path image label class probability

0 snacks/test/apple/00341c3c582... a apple apple 0.432639

1 snacks/test/apple/004be96d798... apple grape 0.699598

2 snacks/test/apple/01ac2a42f2a2... m apple orange 0.414882

3 snacks/test/apple/03bfcOb1ccéb... m apple orange 0.93006

4 snacks/test/apple/09ed54b36ea. .. m apple orange 0.378171

Visually inspecting the classification results

The most interesting images are the rows where the two labels disagree, but the
probability is very high — over 90%, for example. Enter the following commands:
imgs_filtered = imgs_with_pred[(imgs_with_pred["probability"] > 0.9) &

(imgs_with_pred["label"] '= imgs_with_pred["class"])]
imgs_filtered.explore()

The first command filters the test_data + output SFrame to include only those rows
with high-probability wrong predictions: The first term selects the rows whose
probability column has a value greater than 90%, the second term selects the rows
where the label and class columns are not the same. The subset of matching rows is
saved into a new SFrame, then displayed.

[NON) Turi Create Visualization

path image label class probability

35 snacks/test/pretzel/4697876386... ':g pretzel hot dog 0.964394
|/

36 snacks/test/salad/00af886180e9... u salad carrot 0.952237
37 snacks/test/salad/b9fe5d18d940... m salad carrot 0.909241
BN
38 snacks/test/strawberry/09d1401... N\ strawberry salad 0.973804

39 snacks/test/strawberry/0dd1eSe... ’ o
40 snacks/test/strawberry/2454732. .. n

-
41 snacks/test/waffle/2a3d34b6e4b. .. ﬁ
42 snacks/test/waffle/6350b46€939... m waffle muffin 0.905807
43 snacks/test/watermelon/0200c7 ... watermelon carrot 0.91499
44 snacks/test/watermelon/a7409d... w watermelon strawberry 0.939163

Ro !

Inspecting the filtered classification results

The true label of the highlighted image is “strawberry,” but the model is 97% confident
it’s “juice,” probably because the glass of milk(?) is much larger than the strawberries.
You can learn a lot about how your model sees the world by looking at these confident-
but-wrong predictions: Sometimes the model gets it completely wrong, but sometimes
the predictions are actually fairly reasonable — for example, if the image contains more
than one object — even if they’re strictly speaking “wrong,” since what was predicted
wasn’t the official label.

Turi Create’s predict() method can also give you the probability distribution for each
image. Enter and run these lines, then wait a while:

predictions = model.predict(test_data, output_type='probability_vector')
print("Probabilities for 2nd image", predictions[1])

You add the optional argument output_type to get the probability vector — the
probability for each of the 20 classes — for each image, then print the probabilities of
the second image:

[0.20337662077520557, 0.010500386379535839, 2.8464920324200633e-07,
.0034932724790819624, 0.0013391166287066811, 0.0005122369124003818,
.118841868115829e-06, 0.699598450277612, 2.0208374302686123e-07,
.164497444549948e-07, 2.584012081941193e-06, 5.5645094234565224e-08,
.08066298157942492, 0.00021689939485918623, 2.30074608705137e-06,
.6511378835730773e-10, 5.345215832976188e-05, 9.897270575019545e-06,
.1477438456101293e-08, 0.00022540187389448156]

NwoeoeJuUu e

The probabilities are sorted alphanumerically by name of the class in the training set,
so the first value is for “apple,” the second is “banana,” the third is “cake.”.. ack — you
need to add class labels to make this useful! Enter and run the following:

labels = test_data["label"].unique().sort()
preds = tc.SArray(predictions[1])
tc.SFrame({'preds': preds, 'labels': labels}).sort([('preds', False)])

First, you get the set of labels from the test_data SFrame, sort them so they match the
order in the probability vector, and store the result in labels, which is an SArray — a
Turi Create array. Then you create another SArray from the probability vector of the
second image.

In the last line, you merge the two SArrays into an SFrame, then sort it on the preds
column, in descending order (ascending = False). Here are the top five:

labels preds
grape 0.699598450277612
apple 0.20337662077520557
orange 0.08066298157942492
banana 0.010500386379535839
candy 0.0034932724790819624

Top five probabilities for the second image.

So the model does at least give 20% confidence to "apple.” Top-three or top-five
accuracy is a fairer metric for a dataset whose images can contain multiple objects.

So, is a validation accuracy of 67% good? Meh, not really. Turi Create knows it, too — at
the end of the training output it says:

This model may not be optimal. To improve it, consider increasing
"max_iterations .

A\ £

Turi Create has recognized that this model still has some issues. Let’s train again, this
time with more iterations — 200 instead of 100:

model200 = tc.image_classifier.create(train_data, target="1label",
model="squeezenet_v1.1",
verbose=True, max_iterations=200)

Note: Like Create ML, Turi Create has to extract the features again. It does not
keep those feature vectors around — if it had, training the model again would be a
lot quicker. If 100 iterations already took a very long time on your Mac, feel free to
load the pre-trained model:

model200 = tc.load_model("HealthySnacks_200.model")

Now the final score is:

| Iteration | Passes | Step size | Elapsed Time | Training Accuracy | Validation Accuracy |
| 125 | 144 | 1.000000 | 63.705712 | 0.814039 | 0.745192
| 130 | 150 | 1.000000 | 66.223891 | 0.821598 | 0.735577
| 135 | 155 | 1.000000 | 68.512662 | 0.829158 | ©0.735577
| 140 | 161 | 1.000000 | 71.103613 | 0.840389 | 0.745192
| 145 | 166 | 1.000000 | 73.339249 | 0.840173 | 0.725962
| 150 | 171 | 1.000000 | 75.898538 | 0.852916 | 0.730769
| 155 | 176 | 1.000000 | 78.181291 | 0.854428 | 0.740385
| 160 | 181 | 1.000000 | 80.502486 | 0.860907 | 0.764423
| 165 | 187 | 1.000000 | 83.075802 | 0.865227 | 0.754808
| 170 | 193 | 1.000000 | 85.603344 | 0.852700 | 0.740385
| 175 | 199 | 1.000000 | 88.082651 | 0.875810 | 0.721154
| 180 | 204 | 1.000000 | 90.362127 | 0.879698 | 0.730769
| 185 | 210 | 1.000000 | 92.892468 | 0.889417 | 0.735577
| 190 | 216 | 1.000000 | 95.360107 | 0.893521 | 0.735577
| 195 | 221 | 1.000000 | 97.611503 | 0.896544 | 0.730769
| | | 1.000000 | | 0.902376 | 0.735577 |

200 227 100.106221

The training accuracy is now 90%! This means on the training set of 4582 examples it
gets 10% wrong (as opposed to 21% before). That’s pretty good, but remember that you
shouldn’t put too much faith in the training accuracy. The validation accuracy is also
higher, at 74%. Actually, validation accuracy fluctuates a lot, between 100 and 200
iterations. It’s actually highest — 76% — at 16 iterations, but seems to be hovering
around 73%.

This particular run did an exceptional job on the validation accuracy. However, this only
means the validation dataset was a pretty good match for the training dataset.

Enter and run the usual code to evaluate the model and display the metrics:

metrics200 = model200.evaluate(test_data)
print("Accuracy: ", metrics200["accuracy"])

K

print("Precision: ", metrics200["precision"])
print("Recall: ", metrics200["recall"])

Evaluating this model on the test dataset produces metrics around 64%, not 74%:

Accuracy: 0.6428571428571429
Precision: 0.6447263553620883
Recall: 0.6406734693877552

Overfitting has a bad rap, and it’s certainly an issue you’ll run into when you start
training your own models. But overfitting isn’t necessarily a bad thing to experience, as
it means that your model still has capacity to learn more. It’s just learning the wrong
things, and techniques such as regularization will help your model to stay on the right
path.

The sweet spot for this model seems to be about 135 iterations. If you train for longer,
then the validation accuracy starts to drop and the model becomes worse.
Unfortunately, Turi does not save the iteration of the model with the best validation
accuracy, only the very last iteration, and so you’ll have to train again with
max_iterations=135 to get the best possible result.

(cRoj

A picture says more than these numbers, and a really useful visualization of how well
the model does is the confusion matrix. This plots the predicted classes versus the
images' real classes, so you can see where the model tends to make its mistakes. In the
previous chapter, you ran this command:

print("Confusion Matrix:\n", metrics["confusion_matrix"])

K

This displayed a table:

4 4+ 4 -+

| target_label | predicted_label | count |

cookie juice 1
carrot watermelon 1
pretzel pretzel 14

cake ice cream 2
pineapple carrot 1
doughnut muffin 1
muffin doughnut 7

The target_label column shows the real class, while predicted_label has the class
that was predicted, and count is how many of this particular mistake were made. The
table shows the model predicted "'muffin” 7 times when the image was really
"doughnut’, predicted "cake" once when the image was really "ice cream", and so on.
However, presented this way, the confusion matrix doesn’t look much like a matrix, and
we promised to show you how to get a better visualization.

Start by entering and running the following code:

import numpy as np
import seaborn as sns

def compute_confusion_matrix(metrics, labels):
num_labels = len(labels)
label_to_index = {l:i for i,1 in enumerate(labels)}

conf = np.zeros((num_labels, num_labels), dtype=np.int)
for row in metrics["confusion_matrix"]:
true_label = label_to_index[row["target_label"]]
pred_label = label_to_index[row["predicted_label"]]
conf [true_label, pred_label] = row["count"]

return conf

def plot_confusion_matrix(conf, labels, figsize=(8, 8)):

fig = plt.figure(figsize=figsize)

heatmap = sns.heatmap(conf, annot=True, fmt="d")

heatmap.xaxis.set_ticklabels(labels, rotation=45,
ha="right", fontsize=12)

heatmap.yaxis.set_ticklabels(labels, rotation=0,
ha="right", fontsize=12)

plt.xlabel("Predicted label", fontsize=12)

plt.ylabel("True label", fontsize=12)

plt.show()

You define two new functions: one to compute the confusion matrix and one to draw it.
The compute_confusion_matrix() looks at all the rows in the

metrics["confusion_matrix"] table, and fills up a 2D-array with the counts of each pair
of labels. It uses the NumPy package for this. Then, plot_confusion_matrix() takes this

K

NumPy array, and plots it as a heatmap using Seaborn, a plotting package that adds
useful plot types to matplotlib. You installed Seaborn when you created the turienv
environment in the previous chapter.

Now, enter and run these commands to call these functions:

conf = compute_confusion_matrix(metrics200, labels)
plot_confusion_matrix(conf, labels, figsize=(16, 16))

And enjoy the display!

apple ~
banana
cake
candy
carrot
cookie
doughnut
grape
hot dog

ice cream

True label

juice

muffin

orange

pineapple

popcorn

pretzel

salad

strawberry

waffle

watermelon

2 < 3 & W@ g 2 o & @ & @) >
& & S & 6?00 é’bq &éo ée? Q\L (\Q‘& R J 'oQ& Q(,o P
? @0 < e & Q‘& § ¢

Predicted label

The confusion matrix

A heatmap shows small values as “cool” colors — black and dark purple — and large
values as “hot” colors — red to pink to white. The larger the value, the brighter it gets.
In the confusion matrix, you expect to see a lot of high values on the diagonal, since
these are the correct matches. The row for the "pretzel" class shows 14 correct matches
and 11 wrong ones. The wrong predictions are one “apple,” two “cookie,” one

K

“doughnut,” and seven “hotdog.” Notice that apples often get mistaken for oranges, and
cookie, doughnut, and muffin also get mixed up often.

The confusion matrix is very useful because it shows potential problem areas for the
model. From this particular confusion matrix, it’s clear the model has learned a great
deal already, since the diagonal really stands out, but it’s still far from perfect. Ideally,
you want everything to be zero except the diagonal. It may be a little misleading from
the picture since at first glance it appears that there aren’t that many mistakes. But all
the small numbers in the dark squares add up to 340 misclassified images out of 952
total, or 36% wrong.

Keep in mind that some categories have more images than others. For example, pretzel
has only 25 images in the test set, while most of the other classes have 50, so it will
never have as many correct matches. Still, it only scores 14 correct (56%). so overall the
model actually does poorly on pretzels.

Turi Create’s evaluate() function gives you the overall test dataset accuracy but, as
mentioned in the AI Ethics section of the first chapter, accuracy might be much lower or
higher for specific subsets of the dataset. With a bit of code, you can get the accuracies
for the individual classes from the confusion matrix:

for i, label in enumerate(labels):
correct = confl[i, il
images_per_class = conf[i].sum()
print("%10s %.1f%%" % (label, 100. * correct/images_per_class))

For each row of the confidence matrix, the number on the diagonal is how many images
in this class that the model predicted correctly. You’re dividing this number by the sum
over that row, which is the total number of test images in that class. This gives you the
percentage of each class that the model classified correctly — for example, how many
“apple” images did the model find among the total number of “apple” images? Looking
back at the definitions of precision and recall, this value is the recall metric for each
class:

apple 64.
banana 68.
cake 54.
candy 58.
carrot 66.
cookie 56.
doughnut 62.
grape 84.

hot dog 76.
ice cream 44.

0° o o° o A° AP o° o° o o°

(SESESESESESESESRSRS]

K

juice 74.
muffin 50.
orange 74.

pineapple 67.
popcorn 62.
pretzel 56.

salad 72.

strawberry 67.
waffle 62.
watermelon 64.

0° o o° o o° AP o° o° o o°

oowoeoouuoeooeooS

The best classes are grape (84% correct) and hot dog (76%). At 74%, juice and orange are
also good. The worst performing classes are ice cream (44%), muffin (50%), cake (54%),
and pretzel (56%). These would be the classes to pay attention to, in order to improve
the model — for example, by gathering more or better training images for these classes.

One of the appealing benefits of Turi Create is that, once you have your data in an
SFrame, it takes only a single line of code to train the model. The downside is that the
Turi Create API gives you only limited control over what it does. Fortunately, Turi
Create is open source, so you can look inside to see what it does, and even hack around
some of its limitations.

We’ve already briefly mentioned hyperparameters. This is simply a fancy name for the
configuration settings for your model. The things that the model learns from the
training data are called "parameters"; the things you configure by hand, which don’t get
changed by training, are the “hyperparameters.”

A typical hyperparameter that machine learning practitioners like to play with is the
amount of regularization that’s being used by the model. Regularization helps to
prevent overfitting, but the Turi Create image_classifier.create() function doesn’t
provide access to change this hyperparameter.

K

Since overfitting seemed to be an issue for our model, it will be instructive to play with
this regularization setting, whether Turi Create likes it or not.

The code for tc.image_classifier.create() is in the file turicreate/src/unity/
python/turicreate/toolkits/image_classifier/image_classifier.py in the GitHub
repo at . You’re simply going to copy-paste some of that
code into the notebook, and play with the hyperparameters.

Turi Create extracts a random validation dataset from the training dataset — 5% of the
images. The problem with using a small random validation dataset is that sometimes
you get great results, but only because — this time! — the validation dataset just
happens to be in your favor. Now that you have more control over the code (mwah hah
hah!), you can use your own fixed validation set, to control your experiments better and
get reproducible results. You can run a few different experiments with the
hyperparameters, and properly compare them to each other. If you were to use a
different validation set each time, then the variation in the chosen images could
obscure the effect of the changed hyperparameter. This is also why you don’t use the
test set for validation.

The snacks dataset already comes with a "val" folder containing images for this purpose.
Load these images into their own SFrame, using the same code as before:

val_data = tc.image_analysis.load_images('"snacks/val", with_path=True)

val_data["label"] = val_datal["path"].apply(lambda path:
os.path.basename(os.path.split(path)[0]))

len(val_data)

The last statement should output 955, 3 more images than in test_data, and a lot more
than 5% of the 4838 train_data images.

Before you start playing around with the different regularization parameters, wouldn’t
it be nice if there was a way we could save time during the training phase, and not have
to continuously regenerate the features extracted by SqueezeNet? Well, as promised, in
this section, you’ll learn how to save the intermediate SFrame to disk, and reload it, just
before experimenting with the classifier.

extract once,
reuse often! Q

Note: If you don’t want to wait for the feature extraction, just load the features
from the current folder:

extracted_train_features = tc.SFrame("extracted_train_features.sframe")
extracted_val_features = tc.SFrame("extracted_val_features.sframe")

To train the model, you first have to load the pre-trained SqueezeNet model, and grab
its feature extractor:

from turicreate.toolkits import _pre_trained_models
from turicreate.toolkits import _image_feature_extractor

ptModel = _pre_trained_models.MODELS["squeezenet_v1.1"]()
feature_extractor = _image_feature_extractor.MXFeatureExtractor(ptModel)

MXFeatureExtractor is an object from the MXNet machine learning framework that Turi
Create is built on. In Python, names starting with an underscore are considered to be
private, but you can still import them. Next, enter and run this code statement:

train_features = feature_extractor.extract_features(train_data,
""image", verbose=True)

You’re using the MXFeatureExtractor object to extract the SqueezeNet features from
the training dataset. This is the operation that took the most time when you ran
tc.image_classifier.create(). By running this separately now, you won’t have wait
for feature extraction every time you want to train the classifier. Next, enter and run
this code statement:

extracted_train_features = tc.SFrame({
"label": train_datal["label"],

'__image_features__': train_features,

Here, you’re just combining the features of each image with its respective label into a
new SFrame. This is worth saving for later use! Enter and run this code statement:

K

extracted_train_features.save("extracted_train_features.sframe")

You’re saving extracted_train_features to a file. The next time you want to do more
training with these same features, you can simply load the SFrame again, which takes a
fraction of the time it took to extract the features:

Run this tomorrow or next week
extracted train_features = tc.SFrame("extracted train_features.sframe")

Let’s see what these features actually look like — enter and run this command:

extracted_train_features.head()

__image_features__ label

[6.1337385177612305, apple
10.12844181060791, ...

[9.666999816894531, apple
14.665328025817871, ...

[10.662524223327637, apple
15.472965240478516, ...

[12.159001350402832, apple
11.231389045715332, ...

The head of the extracted features table

Each row has the extracted features for one training image. The __image_features__
column contains a list with numbers, while the label column has the corresponding
class name for this row. Enter and run this command:

extracted_train_features[0] ["__image_features_ "]

This shows you what a feature vector looks like — it prints something like:

array('d', [6.1337385177612305, 10.12844181060791, 13.025101661682129,
7.931194305419922, 12.03809928894043, 15.103202819824219,
12.722893714904785, 10.930903434753418, 12.778315544128418,
14.208030700683594, 16.8399658203125, 11.781684875488281,
18.9950008392334, 17.461009979248047, 18.71086311340332,

This is a list of 1,000 numbers — use the len() function to verify this. They all appear to
be numbers between 0 and about 30. What do they represent? I have no idea, but they
are features that SqueezeNet has determined to be important — how long, round,

K

square, orange, etc the objects are. All that matters is that you can train a logistic
classifier to learn from these features.

In the same way, extract the features for the images from the validation dataset, and
save it to disk:

val_features = feature_extractor.extract_features(val_data,
""image", verbose=True)

extracted val features = tc.SFrame({
"label": val_datal["label"],
'__image_features__': val_features,

extracted_val_features.save("extracted_val _features.sframe")

Now you’re ready to train the classifier! Enter and run this statement:

1r_model = tc.logistic_classifier.create(extracted_train_features,
features=['__image_features__ '],
target="1label",
validation_set=extracted_val_features,
max_iterations=200,
seed=None,
verbose=True,
12_penalty=10.0,
11_penalty=0.0,
convergence_threshold=1e-8)

This is the Turi Create code that creates and trains the logistic regression model using
the extracted_train_features SFrame as the input data, and extracted_val_features
for validation. You’ve actually added three additional arguments to this function call
that are not in the original Turi source code: 12_penalty, 11_penalty and
convergence_threshold. Setting the convergence_threshold to a very very small value
means that the training won’t stop until it has done all 200 iterations. 12_penalty and
11_penalty are hyperparameters that add regularization to reduce overfitting.

What’s regularization? Recall that a model learns parameters — also called weights or
coefficients — for combining feature values, to maximize how many training data items
it classifies correctly. Overfitting can happen when the model gives too much weight to
some features, by giving them very large coefficients. Setting 12_penalty greater than 0
penalizes large coefficients, encouraging the model to learn smaller coefficients. Higher
values of 12_penalty reduce the size of coefficients, but can also reduce the training
accuracy.

K

Setting 11_penalty greater than 0 also penalizes large coefficients; in addition, it
discards features that have very small coefficients, by setting their coefficients to 0.
Typically, you'd use either 12_penalty or 11_penalty, but not both in the same training

session.

In my training session, the model still overfits, even with these settings, but the
training accuracy doesn’t race off to 95% or 100% anymore.

+ + + + 4+ + +
t 1 t t t

| Iteration | Passes | Step size | Elapsed Time | Training Accuracy | Validation Accuracy |
| 180 | 226 | 0.500000 | 132.691153 | 0.787102 | 0.650262
| 185 | 231 | 0.500000 | 136.600216 | 0.786689 | 0.648168
| 190 | 239 | 1.000000 | 141.066780 | 0.785862 | 0.650262
| 195 | 244 | 1.000000 | 144.398265 | 0.787929 | 0.648168
| 200 | 249 | 1.000000 | 147.971076 | 0.789169 | 0.647120

Now that you’re not having to extract features for each training session, training is fast,
so you can train the classifier several times, trying out different values for 12_penalty
and 11_penalty: this is called hyperparameter tuning. Selecting the correct
hyperparameters for your training procedure can make a big difference in the quality of
the model you end up with. The validation accuracy gives you an indication of the effect
of these hyperparameters.

Hyperparameter tuning is more trial and error than science, so play with these
hyperparameters to get a feeling for how they affect your model. Try setting 12_penalty
to 100: you’ll note that the training accuracy won’t go over 65% or so, as now you’re
punishing the model too hard.

Finally, to turn your model into a valid ImageClassifier object that you can export to
Core ML, do:

from turicreate.toolkits.image_classifier import ImageClassifier

state = {
'classifier': 1r_model,
'model': ptModel.name,
'max_iterations': lr_model.max_iterations,
'feature_extractor': feature_extractor,
"input_image_shape': ptModel.input_image_shape,
'target': lr_model.target,
'feature': "image",
"'num_features': 1,
"'num_classes': 1lr_model.num_classes,
'classes': lr_model.classes,
"'num_examples': 1lr_model.num_examples,
'training_time': lr_model.training_time,
'training_loss': lr_model.training_1loss,

b

model = ImageClassifier(state)

You combine the base model with the classifier you trained into the state structure,
and create an ImageClassifier object from this. Then you can save the model as a Turi
Create model:

model.save("HealthySnacks_regularized.model")
Or export a Core ML model:
model.export_coreml("HealthySnacks_regularized.mlmodel")
To learn more about the model, run the following:
model

This shows you some high-level information about the model and its training:

Class : ImageClassifier
Schema

Number of classes 1 20

Number of feature columns i1

Input image shape : (3, 227, 227)

Training summary

Number of examples : 4838
Training loss : 3964.3015
Training time (sec) : 147.8538

K

Training loss — the overall error over the training dataset — changes when you change
the hyperparameters. Enter and run this to see a bit more information:

model.classifier

This shows you information about the classifier portion of the model:

Class : LogisticClassifier
Schema

Number of coefficients : 19019

Number of examples : 4838

Number of classes 1 20

Number of feature columns i1

Number of unpacked features : 1000
Hyperparameters

L1 penalty : 0.0

L2 penalty : 10.0

Training Summary

Solver : lbfgs

Solver iterations 1 200

Solver status : Completed (Iteration limit reached).
Training time (sec) : 147.8538

Settings

Log-1likelihood : 3964.3015

Highest Positive Coefficients

(intercept) : 0.3801
(intercept) : 0.2549
(intercept) : 0.1376
(intercept) : 0.0923
(intercept) : 0.0851

Lowest Negative Coefficients

(intercept) : —-0.2885
(intercept) : —0.2884
(intercept) : —-0.2365
(intercept) 1 -0.1734
(intercept) : —0.1229

This information is mostly useful for troubleshooting or when you’re just curious about
how the logistic regression classifier works.

Notable is Number of coefficients — 19,019 — the number of parameters this model
learned in order to classify images of snacks into the 20 possible categories. Here’s

K

where that number comes from: each input feature vector has 1,000 numbers, and there
are 20 possible outputs, so that is 1,000 x 20 = 20,000 numbers, plus 20 "bias" values for
each output, making 20,020 coefficients.

However, if there are 20 possible classes, then you actually only need to learn about 19
of those classes, giving 19,019 coefficients. If the prediction is none of these classes,
then it must be the 20th class. Interestingly, if you look at the .mlmodel file in Netron,
the innerProduct layer that implements the logistic regression does have all 20,020
parameters.

Under the Settings heading, Log-likelihood is the more mathematical term for Training
loss. Below this are the highest and lowest coefficients — remember, the purpose of the
regularization hyperparameter is to reduce the size of the coefficients. To compare with
the coefficients of the original no-regularization model, enter and run these lines:

no_reg_model = tc.load_model("HealthySnacks.model")
no_reg_model.classifier

You reload the pre-trained model, and inspect its classifier. This model had higher
training accuracy, so Log-likelihood aka Training loss is lower: 2,400. As you'd expect, its
highest and lowest coefficients are larger — in absolute value — than the model with
regularization:

Settings

Log-1likelihood 1 2400.3284

Highest Positive Coefficients

(intercept) : 0.3808
(intercept) : 0.3799
(intercept) : 0.1918
__image_features__[839] : 0.1864
(intercept) : 0.15

Lowest Negative Coefficients

(intercept) : —-0.3996
(intercept) : —0.3856
(intercept) : -0.3353
(intercept) : -0.2783
__image_features__[820] 1 -0.1423

In the next chapter we’ll talk more about what all of this means, as you’ll be writing the
code there to train your own logistic regression from scratch, as well as a complete
neural network that will outperform Turi Create’s SqueezeNet-based model.

K

A peek behind the curtain

SqueezeNet and VisionFeaturePrint_Screen are convolutional neural networks. In the
coming chapters, you’ll learn more about how these networks work internally, and
you’ll see how to build one from scratch. In the meantime, it might be fun to take a
peek inside your Core ML model.

There is a cool free tool called Netron (¢ithub.com/lutzroeder/Netron) that creates a
nice visualization of the model architecture. On the GitHub page, scroll down to the
Install instructions, and click the macOS Download link. On the next page, click the
Netron-x.x.x.dmg link, then run this file to install Netron.

Open your .mlmodel file in Netron:

[XON) ~/Desktop/MultiSnacks.mimodel

ary | output < input MODEL PROPERTIES %

convolution WL m

Format CoreML v1
Description Image classifier (squeezenet_v1.1) created by Turi Create
(version 4.3.2)

(0@ TOP_LEF..

output = input GRAPHS

Type Neural Network Classifier
Inputs image: |image(RGB,227x227)
Input image
Outputs labelProbability: (map<string,double>
output = input Prediction probabilities
label: string
Class label of top prediction

Y o [[

Kernelsi

View

YMode""TOP_LEF. ymmetryMode":"TOP_LEF...

output = input output = input

activation [[Ed] activation

output = inputs output = inputs

output = input

kernelsize =1,1
stride=1,1

Using Netron to examine the .mlmodel file

Scroll down the diagram to see all the transformation stages that go into this pipeline.
The input image is at the top, followed by convolutions, activations, pooling, and so on.
These are the names of the different types of transformations — or layers — used by this
kind of neural network. Notice how this pipeline sometimes branches and then comes
back together again — that’s the "squeeze" feature that gives SqueezeNet its name.

K

Click on a block to learn more about its configuration, its inputs and its output. The
Summary button opens the details pane on the right. At the very end of the pipeline is
an innerProduct layer followed by something called a softmax — these two blocks make
up the logistic classifier. Everything up until the flatten block is the SqueezeNet feature
extractor.

In Chapters 6 and 7, you’ll learn all about what these different kinds of layers do, but for
now we suggest that you spend a few minutes playing with Netron to get a rough idea
of what these models look like on the inside.

Netron works with any Core ML model, as well as models from many other machine
learning frameworks. If you downloaded a model from Apple’s website in the last
chapter, also take a look at that. It should look quite similar to this one, as all neural
networks are very alike at their core. Often what is different is the number of layers and
the branching structure.

Note: Many of Apple’s models such as VisionFeaturePrint_Screen are included in
iOS 12 and do not get bundled into the .mImodel file. The .mlmodel file itself
doesn’t contain any of the VisionFeaturePrint_Screen layers. For customized
models based on these built-in feature extractors, Netron can’t show you anything
more than what you see in Xcode’s description: inputs, outputs, metadata. The
internal architecture of these models remains a mystery and a secret.

 In this chapter, you’ve gotten a taste of training your own Core ML model with Turi
Create. In fact, this is exactly how the models were trained that you used in the
previous chapter. Turi Create is pretty easy to use, especially from a Jupyter
notebook. It only requires a little bit of Python code. However, we weren’t able to
create a super accurate model. This is partly due to the limited dataset.

» More images is better. We use 4,800 images, but 48,000 would have been better, and
4.8 million would have been even better. However, there is a real cost associated with
finding and annotating training images, and for most projects, a few hundred images
or at most a few thousand images per class may be all you can afford. Use what
you’ve got — you can always retrain the model at a later date once you’ve collected
more training data. Data is king in machine learning, and who has the most of it
usually ends up with a better model.

K

» Another reason why Turi Create’s model wasn’t super is that SqueezeNet is a small
feature extractor, which makes it fast and memory-friendly, but this also comes with
a cost: It’s not as accurate as bigger models. But it’s not just SqueezeNet’s fault —
instead of training a basic logistic regression on top of SqueezeNet’s extracted
features, it’s possible to create more powerful classifiers too.

» Turi Create does not offer a lot of control over tweaking the training process, so we
can’t get a good grip on the overfitting. Lastly, Turi Create does not allow us to fine-
tune the feature extractor or use data augmentation. Those are more advanced
features, and they result in slower training times, but also in better models.

In the next chapter, we’ll look at fixing all of these issues when we train our image
classifier again, but this time using Keras. You’ll also learn more about what all the
building blocks are in these neural networks, and why we use them in the first place.

Remember the healthy/unhealthy snacks model? Try to train that binary classifier using
Turi Create. The approach is actually very similar to what you did in this chapter. The
only difference is that you need to assign the label “healthy” or “unhealthy” to each row
in the training data SFrame.

healthy = [
‘apple’,
'banana’,
'carrot',
'grape’,
'juice',
'orange’,
'pineapple’,
'salad',
'strawberry’,
'watermelon',

]

unhealthy = [
'cake',
'candy',
'cookie',
'doughnut’',
'hot dog',
'ice cream',
'muffin',
'popcorn',
'pretzel’,

'waffle',

]

train_data["label"] =
train_data["path"].apply(lambda path: "healthy"
if any("/" + class_name in path for class_name in healthy)
else "unhealthy")
test_datal["label"] =
test_datal["path"].apply(lambda path: "healthy"
if any("/" + class_name in path for class_name in healthy)
else "unhealthy")

First, you assign each class into a healthy or unhealthy array — there are 10 classes in
each array.

Then, you set each image’s label column to "healthy" or "unhealthy", depending on
which array the image’s path name is in.

The result is, you’ve divided 20 classes of images into two classes, based on the name of
the subdirectory they’re in.

Note: The process to do this same exercise in Create ML is much more manual.
You'd have to create a new train folder with subfolders healthy and unhealthy,
then copy or move all the images from each of the 20 food-labelled folders into the
correct healthy or unhealthy folder. You'd do this either in Finder or Terminal.

Verify that the resulting model gets about 80% accuracy on the test dataset.

You may wonder why you can’t use the multi-class snacks model for this, then simply
look if the predicted category is in the list of healthy or unhealthy classes. This is
possible but, by training from scratch on just these two categories, the model has a
chance to learn what healthy/unhealthy means, and it might use a more intricate rule
than just “this is in the list of healthy categories.”

If you want to be sure, use the 20-class model to classify() the healthy/unhealthy test
dataset, and merge its output with test_data as before. The label column contains
“healthy” or “unhealthy,” while the class column contains “apple,” “banana,” etc. Use
filter_by(healthy, 'class') to find images the model predicts to be in a class listed
in the healthy array. Then filter these images with filter_by(['unhealthy'],

'label') to find images that are really in unhealthy classes. Manually calculate the
accuracy of the 20-class model in predicting healthy/unhealthy. I got 47%.

ResNet50-based model

Train the 20-class classifier using the ResNet-50 model and see if that gets a better
validation and test set score. Use model_type="resnet-50" when creating the classifier
object. How many FPS does this get in the app?

Use another dataset

Create your own dataset from Google Open Images or some other image source. I
suggest keeping the number of categories limited.

Chapter 6: Training with

Keras

You've seen Create ML and you’ve seen Turi Create, now get ready to meet to Keras. In
this chapter, you’ll create your model from scratch using some of the lowest-level APIs
available.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 174

Chapter 7: Beyond Image

Classification

Image classification has many applications; however, the ability to also detect specific
objects unlocks a whole host of possibilities. In this chapter, you’ll learn how to perform
localization, object detection and segmentation on images.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 175

er 8: Sequence

cation

You worked exclusively with images throughout the first section of this book, and for
good reason — knowing how to apply machine learning to images lets you add many
exciting and useful features to your apps. Techniques like classification and object
detection can help you answer questions like “Is this snack healthy?” or “Which of
these objects is a cookie?”

But you’ve focused on individual images — even when processing videos, you processed
each frame individually with complete disregard for the frames that came before or
after it. Given the following series of images, can the techniques you’ve learned so far
tell me where my cookies went?

The Case of the Disappearing Cookies

Each of the above images tells only part of the story. Rather than considering them
individually, you need to reason over them as a sequence, applying what you see in
earlier frames to help interpret later ones.

There are many such tasks that involve working with sequential data, such as:

» Extracting meaning from videos. Maybe you want to make an app that translates sign
language, or search for clips based on the events they depict.

» Working with audio, for example converting speech to text, or songs to sheet music.

» Understanding text, such as these sentences you’ve been reading, which are
sequences of words, themselves sequences of letters (assuming you’re reading this in
a language that uses letters, that is).

» And countless others. From weather data to stock prices to social media feeds, there
are endless streams of sequential data.

With so many types of data and almost as many techniques for working with it, this
chapter can’t possibly cover everything. You’ll learn ways to deal with text in later
chapters, and some of the techniques shown here are applicable to multiple domains.
But to keep things practical, this chapter focuses on a specific type of sequence
classification — human activity detection. That is, using sensor data from a device worn
or held by a person to identify what that person is physically doing. You’ve probably
already experienced activity detection on your devices, maybe checking your daily step
count on your iPhone or closing rings on your Apple Watch. Those just scratch the
surface of what’s possible.

In this chapter, you’ll learn how to collect sensor data from Apple devices and prepare it
for use training a machine learning model. You’ll use Turi Create’s task-focused API for
activity detection to build a neural network that recognizes user activity from device
motion data, and you’ll use your trained neural net to recognize player actions in a
game. The game you’ll make is similar to the popular Bop It toy, but instead of calling
out various physical bits to bop and twist, it will call out gestures for the player to make
with their iPhone. Perform the correct action before time runs out!

We chose this project because collecting data and testing it should be comfortably
within the ability of most readers. However, you can use what you learn here for more
than just gesture recognition — these techniques let you track or react to any activity
identifiable from sensor data available on an Apple device.

Modern hardware comes packed with sensors — depending on the model, you might
have access to an accelerometer, gyroscope, pedometer, magnetometer, altimeter or
GPS. You may even have access to the user’s heart rate!

With so much data available, there are countless possibilities for behaviors you can
detect, including sporadic actions like standing up from a chair or falling off a ladder, as
well as activities that occur over longer durations like jogging or sleeping. And machine
learning is the perfect tool to make sense of it all. But before you can fire up those
neural nets, you’ll need a dataset to train them.

So you’ve got an app you want to power using machine learning. You do the sensible
thing and scour the internet for a suitable, freely available dataset that meets your
needs. You try tools like , check popular data science sites like

, and exhaust every keyword search trick you know. If you find something
— great, move on to the next section! But if your search for a dataset turns up nothing,
all is not lost — you can build your own.

Collecting and labeling data is the kind of thing professors make their graduate
students do — time consuming, tedious work that may make you want to cry. When
labeling human activity data, it’s not uncommon to record video of the activity session,
go through it manually to decide when specific activities occur, and then label the data
using timecodes synced between the data recordings and the video. That may sound
like fun to some people, but those people are wrong and should never be trusted.

This chapter takes a different approach — the data collection app automatically adds
labels. They may not be as exact — manual labeling lets you pinpoint precise moments
when test subjects begin or end an activity — but in many cases, they’re good enough.

To get started, download the resources for this chapter if you haven’t already done so,
and open the GestureDataRecorder starter project in Xcode.

Note: The chapter resources include data files you can use unchanged, so you
aren’t required to collect more here. However, the experience will help later when
working on your own projects. Plus, adding more data to the provided dataset
should improve the model you make later in the chapter.

Take a look through the project to see what’s there. ViewController.swift contains
most of the app’s code, and it’s the only file you’ll be asked to change.

If you run the app now, it will seem like it’s working but it won’t actually collect or save
any data. The following image shows the app’s interface:

Carrier 5:00 AM -

Gesture Data
Recorder

DI-NIE Shake It | Chop It
1

Instructions

Gesture Data Recorder app interface

GestureDataRecorder probably won’t win any design awards, but that’s OK — it’s just a
utility app that records sensor data. Users enter their ID, choose what activity and how
many short sessions of that activity to record, and then hit Start Session to begin
collecting data. The app speaks instructions to guide users through the recording
process. And the Instructions button lets users see videos demonstrating the activities.

Note: For some datasets, it may be better to randomize activities during a session,
rather than having users choose one for the entire thing. My test subjects didn’t
seem to enjoy having to pay that much attention, though.

Why require a user ID? You’ll learn more about this later, but it’s important to be able
to separate samples in your dataset by their sources. You don’t need specific details
about people, like their names — in fact, identifying details like that are often a bad idea
for privacy and ethics reasons — but you need some way to distinguish between
samples.

K

GestureDataRecorder takes a simple but imperfect approach to this problem: it expects
users to provide a unique identifier and then saves data for each user in separate files.
To support this, the app makes users enter an ID number and then includes that in the
names of the files it saves. If any files using that ID already exist on this device, the app
requests confirmation and then appends new data to those files. So it trusts users not to
append their data to someone else’s files on the device, and it’s up to you to ensure no
two users enter the same ID on different devices.

The starter code supports the interface and other business logic for the app — you’ll add
the motion-related bits now so you get to know how that all works.

You’ll use Core Motion to access readings from the phone’s motion sensors, so import it
by adding the following line along with the other imports in ViewController.swift:

import CoreMotion

This lets you access Core Motion within your code, but it’s not enough to allow your app
to do so. Apple rightly wants users to decide which apps can access their data, so it
requires developers to include an explanation for why they want it. The starter project’s
Info.plist file already includes this explanation as a value for the key Privacy - Motion
Usage Description. And because motion data is required for this app to function, rather
than just a nice additional feature, both accelerometer and gyroscope have been
added to Info.plist’s Required device capabilities list, too. Don’t forget to provide the
appropriate properties in your own apps.

Next, in order to interact with Core Motion, add the following properties inside
ViewController. Keep things organized by putting them under the existing comment
that reads // MARK: - Core Motion properties:

let motionManager = CMMotionManager()
let queue = OperationQueue()

Here you create a CMMotionManager to access the device’s motion data. Each app should
contain only one such object, regardless of how many sensors it plans to use. You’ll use
queue to keep sensor update callbacks off the main thread, which helps the device
remain responsive while processing these high frequency events. Using a separate
OperationQueue like this also ensures your app doesn’t miss updates if it is temporarily
too busy to process events.

Before you go any further, find the following two lines inside startRecordingSession
and delete them:

/% TODO: REMOVE THIS LINE
TODO: REMOVE THIS LINE s/

These lines were commenting out a guard statement that ensures the app has access to
device motion, and alerts the user otherwise. They were commented out because they
require motionManager, which you just added.

You need to tell motionManager how often to produce sensor data. ViewController
stores its configuration-related constants inside its Config struct, so add the following
constant there:

static let samplesPerSecond = 25.0

Here you set samplesPerSecond to 25, which you’ll use later to specify you want the
device to send you 25 sensor updates every second. This number is important because it
determines how much data your model looks at based on how often you perform
predictions. That is, if you classify the user’s activity once per second, this gives you 25
samples per classification; if you do it once every four seconds, this rate gives you 100
samples.

But why 25? The sensors in Apple devices are capable of producing updates many times
per second — at least 100, according to the docs — so shouldn’t you just use the max?
After all, aren’t people always saying that when it comes to machine learning, more
data is always better?

There are a few reasons why you shouldn’t necessarily increase the update frequency
too high:

» More updates means more data processing, which means less CPU available for
whatever else your app needs to do.

» Faster updates usually means feeding more data into your model per prediction. That
requires more complex ML models, which run more slowly — maybe too slowly to
keep up with those faster updates.

» Higher frequency updates increase battery usage. You don’t want users deleting your
app because it sucks the life out of their devices.

It’s true that higher frequency updates let you perceive finer details within the data, so
there are times when you may need them. But not always — some activities involve
slower changes over a longer time, where sensor readings might be necessary only a few

K

times per second, or even less. The value of 25 used here was chosen arbitrarily — it
works fine, but experiments to find the lowest usable update rate were not performed.

Note: There’s another option you aren’t using here, but you may want to consider
for your own projects. Perform data collection at a high rate, and then downsample
it to train multiple models and find the lowest rate that works well. For example,
collect data at 80Hz and then train multiple models — 80Hz using all the data,
40Hz using every other sample, 20Hz using every fourth sample, etc. This let’s you
collect data once and then have different options for how to use it, which is better
than having to recollect it multiple times to experiment with update rates. Once
you find the lowest rate that still works well, use that in your production app.

In this app, you’ll store all the collected sensor data in memory and then write it out to
disk at the end of the recording session. Add the following array with the other
properties under the comment that reads // MARK: — Core Motion properties in
ViewController:

var activityData: [String] = []

You’ll create a single string containing all the data you want to record for a sample, and
append it to activityData. The entire recording session will live inside this array as one
long sequence, and GestureDataRecorder calls saveActivityData at the end of the
session to save all these strings to file. However, you need to add the following line to
actually save the array. Put it inside saveActivityData in ViewController, inside the do
block that currently only contains a print statement:

try self.activityData.appendLinesToURL(fileURL: dataURL)

This writes all the strings in the array out to the appropriate file using a helper function
from inside StringArrayExtensions.swift. This function creates the file if it doesn’t
already exist, or appends to the file otherwise.

One important aspect of GestureDataRecorder is that it keeps recording sessions very
short. As such, there’s no fear of running out of memory while storing data in
activityData. That also means it’s not a big deal if something goes wrong while
recording and you need to throw out some data — it’s never much more than a minute’s
worth. Shorter sessions are also easier on your test subjects — it’s probably a bit much
to ask someone to shake their phone for an hour straight, but doing lots of tiny sessions
isn’t so bad.

However, when working with longer lasting activities, where data collection takes
several minutes or more, you don’t want to risk having to throw away too much data. In

K

that case, you should write your data out to disk periodically rather than at the end of
the session. You should also consider making your app more robust, by saving data
when the app gets interrupted from things like incoming phone calls, for example.

You haven’t enabled motion updates just yet, but eventually the app will receive them
in the form of CMDeviceMotion objects. Add the following method to ViewController to
process them:

func processMotionData(_ motionData: CMDeviceMotion) {

// 1

let activity = isRecording ? currActivity :

// 2

let sample =

\ (sessionId!)-\(numActionsRecorded),\
activity.rawValue),\
motionData.
motionData.
motionData.

None

motionData.

motionData

rotationRate.
rotationRate.
. rotationRate.
motionData.
motionData.
motionData.

gravity.x),\
gravity.y),\
gravity.z),\

motionData.

motionData.
\ (motionData.
// 3
activityData.

}

userAcceleration.x),\
userAcceleration.y),\
userAcceleration.z)

\ (
\ (
\ (
\ (
\ (
\ (motionData.
\ (
\ (
\ (
\ (
\ (
\ (

append(sample)

This method creates samples for your dataset from CMDeviceMotion objects. Here’s how
it works:

1. You label each sample with the activity it represents. This line checks to see if there
is an activity being recorded or if this data is arriving in-between activities. In the
latter case, you label it as ActivityType.none. The current activity is set from within
the starter code after the app announces the activity to the user.

2. Here you create one big string representing a single data sample. It includes a
session ID, the current activity and the sensor readings extracted from motionData,
all separated by commas.

3. This line appends the string to activityData. The entire array gets saved to disk
later, when the recording session ends.

Along with the session ID and the activity type, you’re saving 12 different values at
each moment in time. These were chosen because they seem like they could be relevant
to the task at hand. However, you might not use all of them when you train your model.

K

But it’s a good idea to record as much data as you can, because it gives you more
options later when building your model. You can always remove data you don’t need,
but there’s no way to go back to these moments and record additional data — adding
features requires a new data collection effort.

Notice the session ID gets created by combining sessionId, which is a timecode created
when recording starts, and the number of which recording the user is currently doing.
That means that each time a user runs the app, they’ll choose between creating one,
two or three sessions, even though to the user it will seem like just one session.

Why is that important? You’ll be using Turi Create’s activity classification API, and it
currently requires a few things when training. (Comments from its developers on GitHub
seem to indicate they would like to make it more flexible in the future.) First, it doesn’t
like super short sessions. Without going into detail here, you’ll want your sessions to be
about as long as 20 predictions worth of data. So if you plan on predicting once per
second, for example, sessions should be at least 20 seconds long. It doesn’t need to be
exact, but sessions much shorter than that may not work well.

Secondly, Turi Create seems to prefer a lot of sessions. So instead of fewer, longer
sessions, this app opts for creating more, shorter ones. Note however that sessions do
not need to contain just a single activity. In fact, the sessions for this app will each
contain two activities — the gesture itself, as well as a period of none data recorded
before the gesture. In your own apps you can record any number of activities within a
single session, but labeling them like this was an easy way to get more sessions with
fewer actual user recordings.

You’ve got a method to process CMDeviceMotion objects, but you still need Core Motion
to send them. Add the following to ViewController to enable device motion updates:

func enableMotionUpdates() {
// 1
motionManager.deviceMotionUpdateInterval =
1.0 / Config.samplesPerSecond
// 2
activityData = [String]()
// 3
motionManager.startDeviceMotionUpdates(
using: .xArbitraryzVertical,
to: queue, withHandler: { [weak self] motionData, error in
// 4
guard let self
if let error
print(
"Device motion update error: \(error.localizedDescription)")
}

return

self, let motionData = motionData else {
error {

// 5
self.processMotionData(motionData)

})
Iy

1. Use samplesPerSecond that you defined earlier to set how often motionManager
sends updates to your app. In this case, you’re setting it to update every 0.04
seconds, or 25 times per second.

2. Initialize activityData to an empty array. The project starter code calls this
function each time the user starts a new recording session — this line ensures each
session starts with a fresh array.

3. This line instructs motionManager to start sending device motion updates, passing a
block to execute on queue for each update. The using parameter tells Core Motion to
use xArbitraryZVertical as the device position relative to which the device’s
attitude values should be reported. Check out CMAttitudeReferenceFrame’s

for the available options.

4. This guard statement ensures the callback received motion data. If not, you log an
error message if one is available. If you find yourself getting many errors, then you
may need a more robust solution here. For example, receiving too many errors in a
row could trigger the session to stop and discard the data.

5. Call processMotionData, which you added earlier, to extract features from the
sensor data and append them to activityData.

In this app you use Core Motion’s device motion API. CMMotionManager also allows you
to access accelerometer, gyroscope and magnetometer data directly, but the device
motion API is often a better choice. Data directly from the sensors is often quite noisy
and requires some preprocessing to smooth it out. But the good folks at Apple have
already worked out some nice preprocessing steps and do them for you if you access the
device motion data instead. Another nice touch — it separates acceleration due to the
user from acceleration due to gravity, which makes the motion represented by the data
easier to decipher.

However, if you ever want raw data from those sensors, CMMotionManager provides APIs
that match that of device motion. So deviceMotionUpdateInterval,
startDeviceMotionUpdates, etc., become accelerometerUpdateInterval,
startAccelerometerUpdates, and so on. Similar methods exist for each sensor.

Now that you’ve defined enableMotionUpdates, find the comment that reads // TODO:
enable Core Motion inside the Utterances.sessionStart case in speechSynthesizer,
and add a call to your new method there:

case Utterances.sessionStart:
// TODO: enable Core Motion
enableMotionUpdates()
queueNextActivity()

Most of the timing in GestureDataRecorder actually comes from logic in
speechSynthsizer. The app’s AVSpeechSynthesizer calls this function whenever it
finishes uttering a phrase, and the app uses the finished utterance to determine what to
do next. In the case of the sessionStart message, it enables motion updates and calls
queueNextActivity to get the recording started.

You’ve started motion updates, so you’ll need to stop them at some point. Add the
following method to ViewController to do that:

func disableMotionUpdates() {
motionManager.stopDeviceMotionUpdates()

}

This function tells motionManager to stop sending motion updates. Add a call to it
inside the following case statement in speechSynthesizer:

case Utterances.sessionComplete:
disableMotionUpdates()

This statement executes after the recording session completes. You disable the motion
updates and then the rest of the case statement saves the data to a file.

Now go collect some data, ideally from multiple people. Invite your friends over, serve
some nice canapés and make it a phone shaking party. If your friends are anything like
my Kkids, they’ll be willing to record data at least once before losing interest. :|

Keep in mind, performing activities incorrectly while recording data will reduce your
model’s performance. That’s because you aren’t manually labeling things, so you’ll end
up with mislabeled sequences in your dataset.

K

In the next section you’ll see how to get rid of mislabeled data, but it’s much better to
avoid recording it in the first place. That’s why GestureDataRecorder presents a
confirmation window at the end of each recording session — it gives you the chance to
discard data without saving it if you know something went wrong during the session.

Any files GestureDataRecorder saves will be accessible from the Files app on your
iPhone, and inside the File Sharing area in iTunes. This works because the starter
project’s Info.plist includes the keys Application supports iTunes file sharing and
Supports opening documents in place, both with values of YES.

Get any data you’ve collected from the device(s) and onto your computer, and store the
files in one of the following three folders, all within the notebooks folder of the
resources you downloaded: data/train, data/valid or data/test.

These folders hold the files from which you’ll create the three datasets you’ll use when
building your model: train, validation and test. You’ll read more about why later, but try
not to store data collected from one person in more than one of these folders. You
should put data from most people in data/train, while putting data from about 10% of
your users in each of the other two folders. If you end up recording data from only one
person — be honest, it was just you, right? — it’s probably best to put it in data/train.

Note: The device’s orientation affects the data you collect. For example, imagine
holding an iPhone out in front of you and then moving it up and down, side to
side, and toward and away from you. Sensor data collected while doing so would
be different if the phone was held in portrait or landscape (including variations
based on home button position), with the screen facing toward or away from you,
to the left, right, up, down or some angle in between. The gravity fields you stored
are enough to determine orientation — that’s actually how iOS knows when to
rotate your app’s Ul — so your model can learn to identify activities in any of these
situations. However, you’ll need to provide plenty of training data to cover all the
possibilities well enough for it to recognize them.

For your own projects, you can handle this in one of three ways: Instruct users to
position their devices a specific way and accept the model may not work well if
they fail to do so, collect a much larger dataset that includes data from devices in
all probable orientations, or apply a preprocessing step that transforms values into
a known orientation. The projects in this chapter settle for the first option.

So you’ve got some data. You’ve collected it yourself or acquired it from elsewhere, but
either way, your next step is to look at it. Don’t try reading every number — that way lies
madness — but do some analysis to see exactly what you’re working with. You want to
ensure there aren’t any problems that might ruin the models you try to build.

So what are you looking for? Here are a few things to consider:
» Ifyou didn’t create the dataset yourself, it’s important to see what’s there.
» Mislabeled data. Data is often labeled manually and mistakes are common.

» Poorly collected data. Sometimes mistakes are made while recording, such as
misplaced sensors, incorrectly followed instructions, etc.

» Source errors. Sometimes the data source introduces errors, such as a damaged or
malfunctioning device reporting bad data. And datasets made by people often
contain data entry mistakes.

» Incorrect data types. For example, strings where there should be numbers.

» Missing values. It’s common for some rows to have values missing. You’ll need to
decide how to handle those — remove such rows or insert reasonable values. The
choice depends on your project, and there are many options for how to fill the values
if you go that route. For example, you might use that feature’s mean, median or mode
value, or perhaps calculate a new value based on values from nearby rows.

» Outliers. Some variation is required to make a good dataset, but there are cases when
a few samples may be too rare to be worth including in your dataset. Training with
them can confuse the model, reducing its overall performance, and it’s sometimes
better to accept that there are some things your model just won’t handle.

Note: You don’t have to remove such samples — you may very well want your
model to support them. But it’s something to consider.

You’ll work with Python for this and the next section, so no more Xcode for a while.
Launch Jupyter from within your turienv Anaconda environment — you’ll be using Turi
Create so you need an environment with that installed. Create a new notebook in the
notebooks folder of the chapter resources. Or if you’d prefer to follow along in a
completed notebook, you can open notebooks/Data_Exploration_Complete.ipynb
instead.

K

Get started by entering the following code in a cell and running it with Shift+Return:

%smatplotlib inline
import turicreate as tc
import activity_detector_utils as utils

This gives you access to the turicreate package as well as some helper functions
provided in activity_detector_utils.py, which you can find in the notebooks folder if
you’d like to look through it. The first line is what’s known as a “magic” and it tells
Jupyter to display any Matplotlib plots inside the notebook instead of in separate
windows.

Now run the following code to load your datasets:

train_sf utils.sframe_from_folder("data/train")
valid_sf utils.sframe_from_folder("data/valid")
test _sf = utils.sframe_ from_folder('data/test")

Here you use the sframe_from_folder function from activity_detector_utils.py to load
your datasets. It takes the path to a folder — given here relative to the notebooks folder
in which your notebook resides — and attempts to parse all the CSV files it finds there.
We’ve provided enough data to make the project work, but hopefully you’ve used
GestureDataRecorder to collect some more. If so, whatever files you’ve added to these
folders get loaded here as well.

Note: If you reuse utils.sframe_from_folder in your own projects, you’ll need to
modify it slightly — it currently contains some details specific to this project.

After running that cell, the variables train_sf, valid_sf and test_sf will be Turi Create
SFrame objects, which are data structures designed to work efficiently with structured
data — for example, huge tables of numbers collected from an iPhone’s motion sensors.
These three SFrames contain the data you’ll use for your training, validation and test
sets, respectively.

Take a peek at some samples by running the following code:

train_sf.head()

This displays the first 10 rows of the dataset, along with their column names. These
names were assigned in sframe_from_folder but could also have come from the CSV
files directly. The following image shows an example of some output from head, edited
slightly to fit here:

sessionld activity roll pitch yaw
2018-08-27T719:53:54Z-1 0 -0.46865287783368514 0.8395582736867373 0.36055793373729217
2018-08-27T19:53:54Z-1 0 -0.47302926367030734 0.8445595740425931 0.3664918810895234
2018-08-27T19:53:54Z-1 0 -0.4737607872960278 0.8483060548254803 0.3678965046324581
rotX rotY rotZ gravX gravY
0.13357801735401154 -0.0008428385481238365 0.05470273271203041 -0.3016313910484314 -0.7443482279777527
0.14320960640907288 0.00386190228164196 -0.0029299380257725716 -0.30253610014915466 -0.7476786971092224
0.0321430042386055 0.009147211909294128 -0.01968974433839321 -0.3016883134841919 -0.750161349773407
gravZ accelX accelY accelZ userld
-0.595788836479187 -0.010288774967193604 -0.0012877583503723145 0.008157610893249512 u_02
-0.5911417007446289 -0.020110994577407837 -0.012453138828277588 0.02307224273681641 u_02
-0.5884233713150024 0.008887410163879395 -0.015051662921905518 0.03977835178375244 u_02

First three samples of training set

Note: If you’ve included your own data in any of these datasets, your results may
vary from those shown here. This is true for all the images in this section.

Notice how there is a column named userId. This was added inside sframe_from_folder
— the values are derived from the names of your data files. This only works if your files
each contain data from just one user, and their names are prefixed with the user’s ID
followed by a hyphen (-). For example, all data read from a file named “bob-data.csv”
would be assigned a userId value of “bob.” You could have stored the user ID in each
row when you were collecting the data, but saving each user’s data into separate files
keeps them smaller and makes them easier to organize. Either way, it’s important to
know the source of your data — you’ll see why later.

Here’s another thing about head’s output — the values in the activity column are all .
That’s nothing to worry about — it’s just because you’re only looking at the first few
rows, which represent less than one second of activity. But what does @ even mean?
Inside GestureDataRecorder, you stored activity types as numeric values. Turi Create
can deal with that just fine, but we humans sometimes interpret words more easily than
numbers. To convert those integers into something more readable, enter the following
code in a cell and run it:

#1
activity_values_to_names = {

K

0 : 'rest_it’,
1 : ’'drive_it’,
2 : 'shake_it’,
3 : 'chop_it’

b

2

def replace_activity names(sframe):
sframe[’activity’] = sframe[’activity’].apply(
lambda val: activity_values_to_names[val])
3
replace_activity_names(train_sf)
replace_activity_names(valid_sf)
replace_activity names(test_sf)

This replaces the numeric activity values in your datasets with the names of the
gestures they represent. Here’s how it works:

1. You create a dictionary that maps numeric activity values to strings. These strings
were chosen arbitrarily, but they should describe the values clearly — that’s the
whole point of replacing them, right? Also note, the app you write later uses these
values, too, so you’ll need to modify code there if you change these strings.

2. You use the activity column’s apply function to run a lambda function on the value
in each row. Lamdba functions are similar to closures in Swift. This one replaces the
column’s integers with their corresponding strings from the dictionary. SFrame
columns are represented by SArray objects, so check out that class in the Turi
Create class if you’d like to see what’s available. You define this line as a function
just to make the next lines cleaner.

3. You call replace_activity_names for each of your dataset SFrames.

After running this cell, you’ve modified your datasets to make them easier to interpret,
which you can see by calling train_sf.head() again:

sessionld activity roll pitch yaw
2018-08-27T19:53:54Z-1 rest_it -0.46865287783368514 0.8395582736867373 0.36055793373729217

2018-08-27T19:53:542-1 rest_it -0.47302926367030734 0.8445595740425931 0.3664918810895234

2018-08-27T19:53:54Z-1 rest_it -0.4737607872960278 0.8483060548254803 0.3678965046324581

Partial list of features from first three samples of training set, with activity as strings

Note: You certainly could have stored these strings directly when you created the
files in GestureDataRecorder, saving yourself the trouble of changing them now.
However, using integers conserves a bit of disk space. And more importantly, it
gave you the chance to see an example of modifying some data in an SFrame,
which you might want to do while preparing future datasets.

K

It’s helpful to plot your data to examine it, so run the following code to look at your test
set:

utils.plot_gesture_activity(test_sf)

Here you call plot_gesture_activity from inside activity_detector_utils.py. It uses
Matplotlib to display an SFrame’s contents as a line chart. The following image shows
the plot generated when you run that code:

all samples

25
— roll

pitch
— yaw
— rotX
— rotY
—— rotZ
15 gravx
—— gravY

20

10

-5

-10

0 5000 10000 15000 20000 25000 30000

Plot of testing dataset

Note: The plots shown in this chapter may be difficult to read, especially in the
black-and-white printed version. They are all from notebooks/
Data_Exploration_Complete.ipynb — you are encouraged to open it in Jupyter to
get a better look at these plots as well as several others not included here.

There’s too much data in this plot to see much detail. But even at this zoomed-out
scale, it’s already clear there are distinct patterns present here.

With the plot_gesture_activity helper function, you can plot data for a specific
activity by specifying its name. The following example would show data just for the
drive_it gesture:

utils.plot_gesture_activity(test_sf, activity="drive_it")

K

And you can zoom in to show specific chunks of data by specifying a slice of the dataset,
like so:

utils.plot_gesture_activity(test_sf[11950:12050], activity="drive_it")

The following three plots were created using code similar to the line above, showing
slices of 100 samples for each of the three gestures in the test set:

.7 A & —
et

100 samples of ‘shake_it’, ‘chop_it’, and ‘drive_it’ activities from test dataset

The actual values aren’t important in these plots. The important thing to notice is how
each gesture appears as a clearly discernable pattern. It’s clear that we should be able to
recognize when a user performs these gestures, but imagine trying to write your own
algorithm to do it — it might be pretty difficult! But don’t worry — machine learning
makes it much easier.

Removing bad data

Now you’ll see one way to find and remove errors from your dataset. If you run the code
suggested earlier to plot all the drive_it activity data in the test set, you’ll see a plot
something like the following:

drive_it samples

— roll
15 pitch
— yaw
— rotX
—— rotY
10{ — otz
gravx
—— gravY
gravz
accelX

ﬂmmi’i‘ms -

=
? [N

I .

/I

. '7‘ | '7/’ 1 = >

-10

10000 12000 14000 16000 18000 20000 22000

‘drive_it’ samples in test dataset

While much of this data looks similar, some of it stands out as different. Particularly,
the last two blocks of activity seem odd. The following code looks at a small section in

the second one of those areas:

utils.plot_gesture_activity(test_sf[22200:22300], activity="drive_it")

Remember, these specific slice numbers might not be the same in your dataset, but
hopefully you can come up with values to find a slice within this section of the data.

This produces the following output:

drive_it samples

15 — roll

i ‘ " L

'w il l'“‘

— rotX
rotY

—— rotZ
gravxX
gravy
gravZ
accelX

—— accelY
accelZ

10

—q

-10

0 20 40 60 80 100

Mislabeled data in test dataset

If you compare this to the examples you plotted earlier, you’ll see it looks more like a
shake_it than a drive_it action. It seems someone performed the wrong gesture while

recording, essentially mislabeling your data.

The second area of concern is a bit more difficult to see because it mostly looks the same
as the good data. But if you look closely you may notice an area of green at the top of
the data — green that you don’t see in any of the other drive_it data. The following
code zooms in on this area and plots only a few features:

utils.plot_gesture_activity(test_sf[21200:21500], activity="drive_it",
features=["gravx", "gravY", '"gravz"])

This call uses another one of plot_gesture_activity’s optional parameters to specify a
list of features to plot. So rather than showing all the data in this slice, it shows just the
data for the device’s gravity readings. The following image was made using code similar
to the line above (with some slight adjustments to help with formatting). The plot on

K

the left shows a 100 sample sequence from the suspicious looking area, and the plot on
the right shows a 100 sample sequence similar to the majority of the drive_it data:

1.00 1.00

— o ANAWAVY AW
0.75 gravZ 0.75 ‘ /"/ \‘\\\) // _/ / \\//

\V, U/
0.50 0.50
0.25 0.25
TN

0.00 /\/\’/\/\’/\ 0.00 \/\/\/ _/
-0.25 -0.25
-0.50 -0.50
-0.75 P /\ \ /\\ -0.75 — g::::
-1.00 \ / \/ -1.00 L

Gravity values for ‘drive_it’ gesture. Left: Incorrectly oriented. Right: Correctly oriented.

These plots show similar readings for gravity along the X and Y axes. The scale is
slightly different for gravity along the Y axis, but the two plots are still basically the
same. However, the gravity readings along the Z axis seem to be quite different. The
patterns are the same, but the values are negative in the left example and positive in the
right one. This indicates the user was not holding the phone in the correct orientation
while performing the motion — the screen was facing up instead of down.

Both of these sessions contain data that will only serve to confuse your model, reducing
its performance, so it’s best to remove them from your dataset before continuing. To do
so, run the following code, replacing the index values with ones that work for your
dataset:

// 1

bad_session_1

bad_session_2

// 2

test_sf = test_sf.filter_by([bad_session_1, bad_session_21],
column_name='sessionId’, exclude=True)

test_sf[21350] ["sessionId"]
test_sf[22250] ["sessionId"]

Here’s what that does:

1. Grabs the session ID from a row in the middle of each area of bad data. Each session
contains data for only one activity, so once you know the session ID for one, you
know it for all the rows you want to delete.

K

2. Calls SFrame’s filter_by method to return a new SFrame that excludes any rows
where the sessionld column contains the value of either of the bad sessions.

Plotting the test set’s drive_it data again shows the suspect sessions are now gone.
The plot isn’t included here to save space, but the Data_Exploration_Complete.ipynb
notebook includes this plot if you’d like to compare it to your results.

This section included a few examples demonstrating some things to look for, but you
should spend time thoroughly exploring all three of your datasets, both to clean up
problems and to better understand your data. And don’t neglect any particular dataset
— testing with bad data can be just as problematic as training with it.

Note: The erroneous data you removed from the test set all comes from one file:
notebooks/data/test/bad-drive-it-data.csv. You can safely remove that file if you
don’t want to go through this exercise again.

Optional: Removing non-activity data

What about motions that have nothing to do with gestures? You know, all those sensor
readings that arrive between the gestures? Take a look at that data by plotting the
rest_it activity. Here’s how you do so for the test set:

utils.plot_gesture_activity(test_sf, activity="rest_it")

This plots all samples in the test set labeled as rest_it, which means data that is not a
gesture. Here are the results:

rest_it samples

— roll
pitch
81 — vyaw

-4

0 5000 10000 15000 20000 25000 30000

‘rest_it’ samples in test dataset

Unlike with the gestures you plotted earlier, the resting data shows no clear pattern.
That makes sense — users can do whatever they want between gestures, so there are
basically an infinite number of possible sequences that could appear with this label.

Depending on how similar the resting and activity data are, a model might have trouble
learning to classify them both well. In those cases, it often helps to increase the size of
your dataset set. However, in many cases — such as this one — the model will learn to
recognize both resting and activities. This is probably because the sequences related to
the other gestures are so much more distinct. That is, it will likely learn to classify the
other gestures well, and then learn that anything else is resting. It will get some
samples wrong — users sometimes perform the gestures while GestureDataRecorder is
recording rest data, essentially adding mislabeled data to your dataset — but the
juxtaposition of the messy resting data and the patterned gestures should make the
model even more confident about its gesture predictions.

For this app, train with all your data, including the resting samples. However, you're
encouraged to try making another model that excludes the resting data to see which
you prefer. The results might vary depending on exactly what your datasets look like.

If you ever want to try removing that data, you can do so with the following code:

train_sf = train_sf.filter_by(["rest_it"], 'activity’, exclude=True)
test_sf = test_sf.filter_by(["rest_it"], ’activity’, exclude=True)
valid_sf = valid_sf.filter_by(["rest_it"], ’activity’, exclude=True)

Much like how you removed the bad sessions, this would create new SFrames that do not
contain any samples whose activity value was rest_it.

After you are satisfied you’ve cleaned your data, there’s one final thing you should
check: How many examples of each class do you have? Run the following code to count
the examples in each dataset:

utils.count_activities(train_sf)
utils.count_activities(valid_sf)
utils.count_activities(test_sf)

Here you call count_activities, another helper function defined in
activity_detector_utils.py. It dislays a table showing how many sessions are present
for each activity, both per user and total.

The following shows the counts for the datasets we provided:

S S S R S — Fomm———— S O S —— Fomm o Fomm +
| activity | userId | Count || activity | userId | Count || activity | userId | Count |
S S S S R S ———— S R +
chop_it	u 01	36		chop_it	u 03	4		chop_it	wu_05	9
chop_it	wu_02	36		chop_it	wu_04	4		drive_it	wu_05	9
drive it	wu_01	36		drive_ it	u_03	4		rest_it	wu_05	27
drive_it	wu_02	36		drive_it	wu_04	4		shake it	wu_05	9
rest_it	w 01	108		rest_it	wu_03	I O T R — +				
rest_it	w 02	108		rest_it	wu 04	12	[4 rows x 3 columns]			

| shake it | wu_01 | 36 || shake_it | u_03 | 4 |

| shake it | wu_02 | 36 || shake_ it | u 04 | 4 |

S T Fommmm— o Fommm - R T —— T Fommm - +

[8 rows x 3 columns] [8 rows x 3 columns]

Activity counts for train, validation and test sets

Here you can see that each dataset contains the same three gestures, and no gesture is
represented more than any other within a specific dataset. Users within a dataset are
represented equally as well. For example, each of the training set’s two users supplied
50% of the training data. Things are looking great! You won’t always have such
perfectly balanced datasets, but you want them to be as well balanced as possible. If any
gesture or user is overrepresented in the training set, your model may bias itself toward
those samples. But unbalanced validation or test sets can be a problem, too, because
they’ll skew your evaluation results, making it more difficult to judge your model.

The dataset included in the resources contains 216 actions for training, 24 for
validation and 27 for testing. It’s not a lot of data, but it’s as much as the author’s
family was willing to put up with collecting. :[Still, it’s a reasonable balance, with about
80% of your data for training, and around 10% each for validation and testing.

Once you’re convinced your datasets are good to go, run the following code to save the
cleaned up SFrames for later use:

train_sf.save('data/cleaned_train_sframe’)
test_sf.save('data/cleaned_test_sframe’)
valid_sf.save('data/cleaned_valid_sframe’)

The save method lets you save SFrames in several different formats, such as CSV and
JSON. Here you’re using a format that creates the given folder and stores various binary
files in it. It’s convenient because it’s smaller and loads faster than the others, but feel
free to use any format you like. And remember, you still have your original files, so you
can always start over if you decide you don’t like something about your cleaned data.

Note: Turi Create has many options for data exploration and manipulation, as do
Pandas and NumPy. And it provides methods to convert to and from the data
structures used by these other libraries, so if there’s something you prefer to do in
one package over another, you can freely move back and forth. It’s a good idea to
spend some time looking through the documentation for these various
frameworks to see what’s available, but don’t try to learn everything all at once

— as you do more with machine learning, you’ll continue to discover new things.

With your data ready, it’s time to make your model. The next section shows you how.

You’ve got a clean dataset and now you’re ready to train a model. Or maybe several
models until you find one that works well. This section shows how to use Turi Create’s
task-focused API to train a model for activity detection.

Note: Training your own model here is highly recommended, especially if you
collected data to add to the provided dataset. But if for whatever reason you want
to skip this step for now, you can find a trained model named
GestureClassifier.mlmodel inside the notebooks/pre-trained subfolder of the
chapter resources.

In this section you’ll continue working with Jupyter in your turienv Anaconda
environment. Create a new notebook in the notebooks folder of the chapter resources.
If you’d like to see how we trained our provided model, you can check out the
completed notebook notebooks/Model_Training_Complete.ipynb.

Import the same packages as you used in the previous section:

import turicreate as tc
import activity_detector_utils as utils

Then run the following code to load your training, validation and testing datasets:

train_sf tc.SFrame("data/cleaned_train_sframe")
valid_sf = tc.SFrame("data/cleaned_valid_sframe")
test_sf = tc.SFrame('"data/cleaned_test_sframe")

As mentioned earlier, Turi Create stores structured data in SFrame objects. There are
various ways to create such objects — here you load them directly from the binary files
you saved in the previous section. If you’d prefer to use the files supplied with the

K

resources, change the paths to pre-trained/data/cleaned_train_sframe, pre-trained/
data/cleaned_valid_sframe and pre-trained/data/cleaned_test_sframe.

Training any classifier involves using multiple datasets for training, validation and
testing. But dealing with sequences includes a few wrinkles that require some
explanation.

If you’ve ever trained an image classifier, you may have divided the images into
training, validation and test sets randomly. Or maybe those sets were provided for you,
in which case someone else divided them randomly.

This works because each image is its own sample — no one image relates any more or
less to any other image. (See the upcoming Note for an important caveat to this
statement.) But the very nature of sequences is that samples do relate to each other.
Order and grouping both matter — that’s what makes them sequences! For example, if
you’re counting by twos — two, four, six, eight — and then randomly shuffle that data
— eight, two, six, four — you’ve lost the sequence and now the data is meaningless. Or
worse, you may have accidentally reordered them into a sequence with a different
meaning — eight, six, four, two — now the sequence counts down by twos!

So the first rule for training with sequences: keep samples related to individual
sequences grouped together and in order. Any shuffling or sampling you do should take
into account these groupings.

Note: There can be situations where relationships exist between images in
datasets meant to train classifiers, but those usually indicate mistakes that you
should try to avoid. For example, if some images are identical or nearly so, as is
common when dealing with large numbers of images, then having some in the
training set and some in the validation or test sets may mislead you into thinking
your model generalizes better than it does. It’s a tricky situation, because
sometimes your in-production model will encounter examples that are nearly
identical to those it saw while training. For example, consider a model meant to
identify product images from the internet — it’s unlikely that you’ll manage to
create a good training set without also including some of the very images its
meant to recognize. But in general, do your best to keep training and test sets as
separate as possible, while realizing there are going to be times when some
similarity sneaks in.

There’s a second potential concern, relating to the sources of the sequences. Consider
the case you’ve been working on throughout this chapter — gesture recognition. There’s
certainly some variation each time you perform a gesture — after all, the app collects
several floating point values from multiple sensors, many times per second, so its
basically impossible to get two identical recordings. However, identical isn’t the same as
really similar.

Different recordings of one person making a gesture are going to be similar to each
other. That’s not entirely bad — it’s that similarity you want the model to recognize. You
may even find it’s fairly easy to train a model that recognizes gestures from a specific
person — it may not even require many training examples. But it might not work as well
when you use the model with someone else.

That’s because recordings from one person are more similar to each other than they are
to recordings from someone else. For example, the following plots show some data from
two people performing the same actions — step up exercises:

R

Data collected from two users both performing the same activity — step up exercises

These two plots show similar values for several features, but some features are quite
different between users. A model trained on data from one of these users might have
trouble recognizing the activity when presented with data from the other — and the
more data you show your model from one user, the more different the other user’s data
will seem. It’s certainly good to collect lots of data from each source, but it’s more
important to collect data from lots of sources. So if you have the choice of getting 1000
recordings from one person, versus 100 recordings from 10, the second will probably
produce a better model. And 10 recordings from 100 people would probably be even
better. By all means, get more data from each person if you can, but definitely try to
collect data from as many people as possible.

And that’s the second rule for training with sequences, or really any data where the
data’s source affects its features: use data from as many sources as possible. The more
sources you have in your training set, the better your model should generalize to
unseen examples.

K

But even if you have a great dataset chock full of examples from many different people,
there’s another issue — how best to split it up into train, validation and test sets?

You might be tempted to split the data randomly (keeping in mind the earlier rule about
maintaining samples as sequences, of course). However, you should avoid this.
Remember how different recordings from the same person are similar to each other?
Well, if you train with data from one person, then test with different data from the same
person, your model may appear to perform better than it really does. That’s because it
essentially trained on some of the test data.

So the third rule for training with sequences: don’t split your datasets by sequence, split
them by source. Make sure you know the source of each of your data samples, and try to
put all the data from any particular source into the same set: train, validation or test.

Note: Those last two problems occur with more than just sequences. Many data
types are affected by their sources. For example, sensors from different phones
will report slightly different values in the same situations, camera lenses have
slightly different distortions, and so on. All physical devices are produced with
some variance, so data collected from different devices can be slightly different
even when measuring the same thing. In these cases, the same rules apply: try to
train with as many different sources as possible, and try to test on data collected
from multiple sources. Unless of course the model is meant to work with a specific
source — such as correcting lense distortion for images from a specific camera.
Then by all means test on data collected from the same source to ensure your
model works correctly in its intended production environment.

And now, in a shocking plot twist, you’re about to be told to sometimes do what you
were just told not to do — train and validate on data from the same people! What?!

Real talk: There are going to be times — maybe most of the time — when you won’t have
as much data as you want. In those cases, you can stretch your dataset out a bit by
starting with just two datasets — training and test — and then grabbing a chunk of your
training set to use for validation.

Depending on how many different sources are present in your training set, you might
not be able to follow the recommended procedure of separating based on source. For
example, the one provided with the chapter contains data from just two people. You’d
lose too much training data if you separated these users, so you’d need to accept
training and validating on data from both of them.

K

It’s not ideal — your validation accuracy will be artificially closer to your training
accuracy because the two datasets are more similar, making it harder to tell if your
model overfits. But if there’s enough variety in your training set to start, then this still
works fairly well.

To help split your training data, Turi Create provides a nice utility function that divides
an SFrame randomly into two smaller SFrames, while still maintaining proper sequence
groupings. The following code demonstrates how to use it:

train, valid =
tc.activity classifier.util.random_split_by_session(
train_sf, session_id='sessionId’, fraction=0.9)

This uses Turi Create’s activity_classifier.util.random_split_by_session function
with a training set, telling it which column name identifies the sessions, and what
percentage of the data should be used in the first split. It returns two SFrames, the first
will contain the given percentage of the original SFrame’s sessions, and the second will
contain the remaining sessions.

After running this code, train would contain about 90% of the sessions and valid
would contain the other 10%. You would then use these two SFrames for your training
and validation sets.

The most important thing about this function is that it splits data based on session IDs,
which means it keeps sequences organized together. Any samples with the same session
ID are kept together and in order, but any particular session ID could end up in the
training or the validation set.

The results of this call are not necessarily going to give you a perfectly balanced split.
For example, here are the results of calling utils.count_actvities on train and valid
from one sample run:

S — S— R S—— S 1 S — S— R S—— +
| activity | userId | Count || activity | userId | Count |
T —— S — S o S — S — T +
| chop_it | wu_01 | 33 || chop_it | wu_01 | 3 |
| chop_it | wu_02 | 34 || chop_it | wu_02 | 2

drive it	wu_01	31		drive_it	u_01	5
drive it	wu_02	30		drive_it	wu_02	6
rest_it	wu_01	95		rest_it	wu_01	13
rest it	w 02	97		rest_it	wu_02	11
shake it	wu_01	31		shake_ it	u_01	5
shake it	wu_02	33		shake it	wu_02	3
S — S — S —— o L —— S — S —— +
[8 rows x 3 columns] [8 rows x 3 columns]

Random train/validation split counts

That’s probably fine, but if you see a particularly bad split — especially when you know
the original data was well balanced — then you should try splitting it again.

If you want to experiment later, try combining the training and validation data and
then use this function to randomly split it. You’ll end up with more variety in your
training data in exchange for a less trustworthy validation set. For now, you’ll just use
the separate datasets you’ve already built.

Now it’s time to build and train your model. Almost.

Whenever you train with a new model or dataset, you should first take a small portion
of your training data and see if you can get the model to overfit it. Overfitting is usually
a bad thing — it means your model is memorizing the training data instead of learning a
more general solution — but it also shows that the model is actually capable of learning
something from your data. If your model is going to work on a real dataset, then it
should definitely be able to overfit on a tiny version of it. And if it can’t, then you’ve got
one of several problems you’ll need to address:

* Abug in the model. This is especially common when implementing neural nets from
scratch using frameworks such as Keras.

» A model too simple to solve the problem. You might need more layers, or more nodes
per layer.

» A model architecture incapable of solving the problem. Different architectures work
better for different problems, so pick something appropriate.

» Poorly tuned hyperparameters. Sometimes all it takes is a change to the learning
rate, other times you might need different activation functions, optimization
algorithms or loss functions.

» Maybe the problem is the problem itself. Machine learning isn’t the right solution to
every problem, so don’t try to force it.

The point of this exercise is to prove to yourself that your dataset is applicable to the
problem, your model is built correctly and it’s tuned well enough to learn. You’ll still
usually have to do more tuning later with your full dataset, but those training sessions
take longer. This step is critical to keep yourself from wasting time trying to tune a
model that isn’t ever going to work.

To save space we don’t show the results of the overfitting step here, but you can find
them in the notebook Model_Training_Complete.ipynb in the notebooks folder.

K

Ok, now it’s time to build and train your model. Turi Create’s activity classification API
makes this process easy — it just takes one function call! Add the following code to a
notebook cell, but don’t run it yet:

model = tc.activity_classifier.create(
dataset=train_sf, session_id='sessionId’, target='activity’,
features=["rotXx", "rotY", "rotz", "accelX", "accelY", "accelz"l,
prediction_window=20, validation_set=valid_sf, max_iterations=20)

This one line of code is doing a lot, so it warrants quite a bit of explanation. Here goes:

dataset: Your training dataset, stored as an SFrame.

session_id: The name of the column in dataset that stores the session ID associated
with each row. create keeps data with the same session ID grouped together and in
order, and then trains over it in chunks the size of prediction_window rows.

target: The name of the column that contains the labels you want the model to
predict. In this case, it’s activity.

features: This is an optional list of columns to use for training. If you don’t supply
it, then create uses all the columns as features except for the ones you specified for
session_id and target. More on this in a bit.

prediction_window: How many samples (i.e. rows of data) the model looks at to make
a prediction. More on this later.

validation_set: Your validation dataset, stored as an SFrame. This is optional — if
you don’t supply it, and dataset contains more than 100 sessions, then create will
automatically make a validation set by randomly selecting sessions from dataset.
But if it contains fewer sessions than that, create trains the model without a
validation set. It’s best not to rely on this logic, and supply your own data instead.

max_iterations: The maximum number of epochs create will train over. That is, the
number of times it will go through the training set. Note: the parameter name and
documentation claim this is a “maximum,” as if create could stop training sooner.
However, there appears to be no evidence that training ever stops before this value is
reached, so think of it as the actual number instead of a maximum.

Notice how the features parameter is a list including just six of the 12 motion features
available in your dataset — the rotation and acceleration due to the user.

These were chosen a bit arbitrarily, mostly to show that you don’t need to use all
columns in your dataset. In the previous section you saw how each activity appeared
with a distinct pattern. But take a look at the following plots, which show just user
rotation values for samples of each activity:

Rotations for 100 samples of ‘shake_it’, ‘chop_it’, and ‘drive_it’ activities from training dataset

As you can see, there are still clearly visible patterns, even when using just these three
features. You are encouraged to train models with different feature combinations to see
if/how it effects the results. There is no one correct answer here — many combinations
will produce usable models for this project.

Note: For any specific problem, there is likely some minimum set of features
necessary to train a good model. It just needs enough information to perceive
differences between the classes, and different features may be more or less useful
for each class. The final set of features you settle on will always be project
dependant, but when in doubt — use more. That gives your model the most leeway
to decide for itself.

The prediction window is an important aspect of Turi Create’s activity classification
model. It specifies how many samples the model needs to look at each time it makes a
prediction. That means this value — combined with Core Motion’s update interval

— determines the amount of time each prediction represents.

For example, if the prediction window is 50 and Core Motion sends the app 10 updates
per second, it will take five seconds to collect enough data to make one prediction. But
if you’re getting updates 100 times per second, it would take 0.5 seconds. As was
mentioned earlier, be sure you train your model with a prediction window that makes
sense for the update rate you are using. You collected data at 25 samples per second, so
this window size of 20 means the model needs 0.8 seconds worth of data per prediction.

The prediction window suggested here works well with the provided dataset and
satisfies our goals for the book. However, you should train multiple models using
different window sizes to see what you think works best. You won’t really know if you’re
satisfied until you use the model in its target environment — in this case, the game
you’ll make later in this chapter. There’s no one “correct” size — it’s based on the

K

specific use case, the dataset, and a bit of personal preference. Traditional software
developers often struggle with this aspect of machine learning more than any other

— you can’t usually sit down and just write the “solution” to a problem; it’s more about
running lots of experiments until you discover what works best for your specific use
case.

Ok, now create your model by running the cell with your call to create. The first output
you’ll see will be something like this:

Pre-processing 235057 samples...
Using sequences of size 400 for model creation.

Processed a total of 216 sessions.

Initial training output

Here’s a rundown of what this tells you:

e The first line reports how many samples — individual rows — are in the training
dataset. The function performs some pre-processing on the data, including chunking
it into fixed-length sequences.

» The second line let’s you know Turi Create will be training on sequences of 400
samples. That’s because you’re training with a prediction window of 20 samples, and
Turi Create’s underlying implementation always trains in chunks of 20 consecutive
windows. If a session doesn’t have enough samples available, the end of the
sequence gets padded with zeros. This is why you shouldn’t have very short
recording sessions — tiny sessions result in too much padding and the model will
have trouble learning.

» Finally, it reports the number of sessions in your training dataset. This matters most
when you don’t supply a validation set, because create will use some of these
sessions for validation if there are more than 100 sessions available.

Ater that, you’ll see updates appear for each training iteration — or epoch — as your
model continues to train. You need to check these updates for signs of overfitting. If the
training accuracy continues to improve but the validation accuracy stalls or begins to
decline, then the model has begun to overfit.

The output for the provided model isn’t included here, but you can see it in notebooks/
Model_Training Complete.ipynb. It actually overfits slightly, but we decided to stick
with that model anyway for a couple reasons.

First, it’s good to show to readers as an example of overfitting. And secondly, the
difference between the final model’s validation accuracy and the epoch with the best

K

value was only about 1%. The validation set is very small, with only four recordings of
each gesture from each of two users. A 1% difference in accuracy in such a small dataset
really isn’t significant enough to prove anything about the model’s expected real world
performance — it might just be certain epochs arrived at weights that happened to work
well with that particular validation set. This is why you should strive to get a lot of
variety in your datasets by collecting data from many different sources.

The final epoch for the model that ships with the book as notebooks/pre-trained/
GestureClassifier.mlmodel had a training accuracy of 98.5% and a validation accuracy
of 95.2%. If you include training data collected from other sources, you’re likely to get
lower training accuracy while getting higher validation accuracy. Don’t get hung up on
the specific numbers, though — the idea is just to get something that looks like it
trained well before moving on to testing with your test set.

Note: Turi Create is great because it builds and trains sophisticated models
without you needing to do much more than provide the data. However, that comes
at the cost of flexibility. There isn’t much you can do here to tweak your model’s
performance. Besides changing your dataset, you can also try different prediction
windows, feature combinations, batch sizes (not discussed here — you just used
the default), and number of training epochs. If none of that leads to a model
suited to your app, then you’ll need to build something customized in a more
flexible framework like Keras. You’ll work with sequences in Keras in later
chapters.

When you think the model’s ready for testing, go ahead and run code like the following:

metrics = model.evaluate(test_sf)
print(metrics[’accuracy’])

You use the model’s evaluate method to classify everything in your test set and gather
the results inside a dictionary named metrics. You’ve also displayed the accuracy the
model achieved with those classifications, which for the provided dataset should be in
the very high 90s — the model included with the chapter resources scores over 97%.

Accuracy isn’t everything, though. You have access to various other results, including
precision, recall, a confusion matrix, and more. You can access each of these by name,
like you did with accuracy. To see a quick rundown, just print the entire metrics object:

print(metrics)

The confusion matrix is particularly useful here. It lets you know not just whether or
not your model was correct, but where it made mistakes. This let’s you see if there’s a
particular class that’s giving your model extra trouble. If so, you might need to tweak
your datasets by gathering more data for the more difficult classes.

But you should also consider trying a different prediction window size, since sometimes
models are better at recognizing different classes using different windows — your goal
is to find the one that gives you the best overall performance.

Note: If you find different activities are only recognized at different window sizes,
then you might need a more complicated setup using multiple models, each
trained to spot a subset of your classes. You may know about “ensemble” methods
already, where multiple models combine their predictions to produce a final
answer. The technique required here is almost an ensemble, but it’s slightly more
complex, because it requires extra logic in your app to ensure your different
models predict on different schedules. That won’t be covered further in this book.

Here’s the confusion matrix for the model included with the book:

o o Fomm e +
| target label | predicted label | count |
S —— S e —— +
shake it	rest_it	96
rest_it	drive_it	17
drive it	drive it	5443
chop it	rest_it	181
chop it	shake it	176
rest_it	rest_it	13164
chop_it	chop_it	5118
drive_it	rest_it	184
shake it	shake it	5367
rest_it	chop_ it	62
rest_it	shake_ it	77
o o Fomm e +
[11 rows x 3 columns]

Confusion matrix for trained model

The first thing you might notice is the large numbers of predictions — your dataset
didn’t have nearly that many gestures, did it? That’s because it’s providing a prediction
for every window, not every activity. So it makes many predictions over any single
activity sequence, and this shows the results for all of them.

K

Next, notice the predictions with the highest counts: They are all correct predictions,
with over 5,000 for each of the gestures and over 13,000 for rest_it. On the other hand,
each of the incorrect predictions happened only a small number of times, with the
fewest being rest_it predicted as drive_it only 17 times and the most being drive_it
predicted as rest_it 184 times. Almost all of the errors involved the rest_it activity,
which you would expect. After all, you never know what people did while recording their
rest data — they may even have been doing the other gestures!

In fact, notice that the only incorrect predictions that did not involve the rest_it
activity were the 176 chop_it gestures predicted as shake_it. It makes sense that there
might be mistakes between these two gestures, since chopping is actually quite similar
to shaking — if a person chops very quickly it might appear similar to a shake, or if the
shake is over exaggerated it might look a bit like a chop.

Keep in mind, your model’s performance in your app may be better than its test results,
because you’ll ignore low-confidence predictions. But if you’re still unhappy with the
model, you should create another one. Some sticklers will tell you not to reuse your
training data because you’ll be leaking data into your model. That’s technically true, and
you should listen to them...except you probably won’t. Unless you have an endless
stream of free data available, you probably don’t have the luxury of testing just once per
test set. The good news is — in many cases that’s probably ok. For example, with a
project like this one, you want the app to perform well, and your test data is just a tool
to help you get there. Once your model works well on that, you’ll run it on actual
devices with live data from real people. Those are your real tests, and they are always
unique — so you can even tell those sticklers you’re using a new test set each time!
Metrics like test accuracy are great, but be sure to beta test your app with many people
before releasing it, so you know it really works the way you want it to.

When you think your model is ready for testing on a device, go ahead and save it with
the following code:

model.export_coreml("GestureClassifier.mlmodel")
model.save("GestureClassifier")

This exports it to Core ML for use in your app, and saves a copy that you can reload in
Python in case you want to work more with it later.

You’ve saved your model, trained to analyze iPhone motion data and recognize when
that data indicates specific gestures have occurred. It seems to perform well, at least
when tested against recorded motion data. That’s a good start, but you want it to work
in real time, evaluating motion data as it’s produced on the device. For that you need an
app! Continue reading to learn how to build one.

K

Getting to know your model

Open the Gesturelt starter project in Xcode. If you’ve gone through the chapters
leading up to this one, then you’ve already practiced adding Core ML models to your
projects — find the GestureClassifier.mlmodel file you created when you saved your
trained model in the previous section and drag it into Xcode. Or, if you’d like to use the
model we trained on the provided dataset, add notebooks/pre-trained/
GestureClassifier.mlmodel instead.

Note: Now that you have the model in Xcode, the rest of this section is all theory.
You can safely skip to the section Classifying human activity in your app if you
aren’t interested in this discussion right now.

Select GestureClassifier.mlmodel in the Project Navigator and you’ll see the
following, which is similar to — but also quite different from — models from Section 1
of this book:

¥ Machine Learning Model
Name GestureClassifier
Type Neural Network Classifier
Size 987 KB
Author
Description Activity classifier created by Turi Create (version 5.0)

License

V¥V Model Class

(@ GestureClassifier ©

¥ Model Evaluation Parameters

Name Type Description
V Inputs
features MultiArray (Double 1 x 20 x 6) Window x [rotX, rotY, rotZ, accelX, accelY, accelZ]
hiddenIn MultiArray (Double 200)? LSTM hidden state input
cellin MultiArray (Double 200)? LSTM cell state input
V Outputs
activityProbability Dictionary (String - Double) Activity prediction probabilities
hiddenOut MultiArray (Double 200) LSTM hidden state output
cellOut MultiArray (Double 200) LSTM cell state output
activity String Class label of top prediction

Looking at the mlmodel file

Here you can see GestureClassifier is an activity classifier from Turi Create. It’s under
1MB — that’s pretty good for a neural net that isn’t taking advantage of models pre-
installed on iOS, as did some of the ones you made earlier. But then comes the Model
Evaluation Parameters section, where things get a bit more complicated.

First, the more recognizable items:

o features:MLMultiArray of Doubles you’ll pass as input. If you haven’t seen
MLMultiArray before, don’t worry, it’s nothing too new. It’s basically just a
multidimensional array that Core ML uses to work efficiently with data. This one is
sized to store a single prediction window’s worth of values for each of the features
you used while training: rotation and acceleration due to the user around the X, Y
and Z axes.

e activityProbability: Dictionary the model outputs that includes the probabilities
assigned to predictions for each of the classes. In the case of this project, that means
probabilities for the gesture types “rest_it,” “shake _it,” etc.

e activity: String the model outputs indicating the activity class predicted with the
highest probability.

But what about these other things: hiddenIn, cellIn, hiddenOut and cell0ut? And
what’s this mysterious new acronym “LSTM” mentioned in all their descriptions?

So far in this book you’ve mostly dealt with convolutional neural networks — CNNs.
They’re great for recognizing spatial relationships in data, such as how differences in
value between nearby pixels in a two-dimensional grid can indicate the presence of an
edge in an image, and nearby edges in certain configurations can indicate the ear of a
dog, etc. Another kind of network, called a recurrent neural network — RNN — is
designed to recognize temporal relationships. Remember, a sequence generally implies
the passage of time, so this really just means they recognize relationships between
items in a sequence.

To do that, they look at sequences one item at a time, and produce an output for each
item based on the current item and on the output they produced for the previous item.
But what does that really mean?

Consider how you read the following sentence: “The quick brown fox jumps over the
lazy dog.” You don’t look at each word individually and ignore the rest, right? Instead,
each element of the sentence adds to your understanding. What’s happening? Jumping.
Who’s jumping? The fox. What’s it look like? It’s brown. And so forth.

K

RNNs are designed to do something similar, interpreting each element in a sequence by
considering the elements they’ve already seen.

So what’s that look like as a network? You may come across RNN diagrams like this one:

Input at time T

Looping nature of RNN layers

In this image, the circle represents a single layer of an RNN, not a single node.
Remember from what you learned earlier — a layer in a neural network can contain any
number of nodes, with more nodes providing that layer with more representation
power. Input elements in a sequence are referenced by timesteps, and layers process the
element at time T by looking at both that input and the layer’s own output from the
previous input at timestep T-1. That loop where the layer’s output feeds back into itself
is known as a recurrent connection — i.e. it occurs repeatedly — giving RNNs their
names.

While diagrams like that might be useful to describe the theory behind an RNN, it can
be easier to visualize if you think of the network as multiple layers. Looked at this way,
each successive layer receives the next element in the input sequence along with the
output from the previous layer. The following image shows what that would look like
when processing the earlier example sentence:

The quick brown fox jumps

RNN layer’s recurrent behavior shown as separate layers

Now it’s clearer how the layers process a sequence one element at a time, combining
each element of the input with the output generated for the previous element. Notice
that the RNN cannot process a given item until after it has processed the items that

K

came before it in the sequence. It’s this serial nature of RNNs that makes them slower
than other neural networks, such as CNNs. This is true of both training and inference.

These recurrent connections allow RNN layers to adjust their output based on what
they’ve seen so far in the sequence, much like you interpret the word “fish” in the
following two sentences differently depending on the words before it: “I like to fish.”
and “I like fish.” In the first sentence, the speaker likes to catch fish, or at least try to; in
the second, the speaker probably likes to eat fish, but may also just enjoy fish as an
animal in general. Either way, the definition of “fish” depends on its context.

Note: The previous diagram shows two outputs from each layer, one going to the
next layer and one going off to...somewhere? That’s to indicate how the output for
each timestep can be used within an RNN layer, through the recurrent connection,
as well as passed along to the next, possibly also recurrent, layer of the network.
The final output of an RNN layer can be either the output for the sequence’s last
timestep, or the entire sequence of outputs the layer generated while processing
the input sequence.

Early implementations of this basic RNN design showed it was possible to learn
relationships across timesteps in a sequence, but they don’t actually do it very well. Due
to how the underlying math works, they take too long to train and can’t relate items
separated by too many timesteps. For example, imagine an RNN processing our
example sentence — it would likely remember the fox is brown, but it might have
forgotten there is a fox at all by the time it gets to the dog at the end of the sentence.

In reality a basic RNN could probably handle short sentences like that, but relationships
span much greater distances in many sequences. To continue with our reading example,
while words within a sentence are surely related to each other, they can also be related
to words in sentences earlier in the same paragraph, many pages ago in the same
chapter or even several chapters ago in a book. The distance between relationships can
be arbitrarily long, and basic RNNs simply aren’t suited to handle that.

But then along came LSTMs.

The acronym LSTM stands for the odd-sounding phrase long short-term memory, and it
refers to a different kind of recurrent unit capable of dealing with relationships
separated by longer distances in the sequence. Conceptually, the following diagram
shows the pertinent details of how an LSTM works.

K

It uses our earlier sample sequence and shows the recurrent steps unrolled as separate
layers to help clarify its behavior:

Cell A (:‘ Cell n ‘(: Cell \—b
Memory > lMemory| Memory| [=» =---
\ J

1

The quick brown

A
A

LSTM layer’s recurrent behavior shown as separate layers

As you can see, an LSTM is a recurrent unit enhanced with an internal memory. LSTMs
are used just like regular recurrent layers, but instead of processing only their input and
previous output, an LSTM also considers the contents of its memory. And instead of just
producing an output, the LSTM can also update its memory to remember (or forget)
information it thinks is important about the sequence so far.

But terms like remembering, forgetting and thinking make it sound like LSTMs have
more agency than they really do. Just like with other parts of a neural network, the
LSTM’s “memory” is really just a bunch of numbers that get manipluated by various
math functions. And it doesn’t really choose to remember or forget, it just learns
weights that cause it to react differently to different sequences.

Note: LSTM units are more complex than they appear in the above diagram, with
each cell made up of four layers combined by various math operations. If you’re
interested in their inner workings, check out . But the truth
is, unless you’re working to invent new types of neural network layers, you
probably won’t need to know those low-level details.

The important thing to know about LSTMs is that they train much more easily than the
basic RNNs that came before them, and they offer much better performance. Most RNNs
in use today use some variation of the LSTM unit, as is the case with the activity
classifier you trained in Turi Create.

So far we’ve been discussing RNNs — and more specifically, LSTMs — as deep learning’s
solution to working with sequences. But it turns out that’s not the whole story. Many

state of the art results have been achieved using other network types, especially our old
friend the CNN.

K

Current research trends seem to be moving away from RNNs because they don’t scale
with hardware as well as other models do. But for now, recurrent models are still a
popular choice in practice.

What approach does Turi Create’s activity classifier take? It’s actually a combination of
a CNN and an RNN. It uses convolutional layers to extract features from short
sequences — the prediction windows mentioned earlier in the chapter — and it uses an
LSTM layer to reason over sequences of predictions.

That lets it recognize sporadic activities, such as the gestures you trained your model to
classify, as well as activities spanning longer periods of time, perhaps made up of
several smaller ones. For example, imagine the following sequence of activities: putting
a teabag in a cup, pouring hot water in a cup, waiting patiently, and removing a teabag
from a cup. Each of those individual activites might be recognizable from small
sequences of data — like what you could provide in a single prediction window. But
when that series of activities occurs over multiple prediction windows, then the model
might be able to recognize the overarching activity of making a cup of tea.

The following diagram shows a high level overview of Turi Create’s activity classifier:

drive_it

O

/ O
O
O

Time =

. Fully
Input 1D-Convolutions LSTM Connected Softmax

Turi Create’s activity classifier architecture

You provide a sequence of sensor data as input — one prediction window’s worth — and
the model’s first layer treats each input feature as a separate channel and performs a
one-dimensional convolution over them. A 1D convolution is just like the 2D
convolutions you’ve already used, except it uses kernels that are vectors instead of
matrices.

K

Each kernel is the length of the prediction window and gets applied to all the input
features to produce a new output channel. The current version of the code applies 64
such kernels.

The convolutional layer in this diagram may seem confusing because it looks like the
waves are two-dimensional, but these are actually just vectors with numbers in them
that we are displaying as a 2D image. To display a vector in two dimensions, we treat
each item’s index in the vector as its value along the X axis.

Remember from the discussions on transfer learning earlier in the book, how the pre-
trained CNN model extracts features from images and then the layers you train use
those extracted features as inputs? This is basically what Turi Create’s model does,
except the CNN isn’t pre-trained. The CNN layer learns to output a vector
encapsulating any interesting temporal features found within the prediction window.
For example, maybe it notices certain patterns of peaks and valleys that are helpful
when identifying a shaking phone. These extracted features flow into the LSTM layer as
if they were a single item in a sequence.

To understand why CNNs might be well suited to this task, it can help to think of
this as a vision problem instead: Imagine you plotted the sensor data for a
prediction window, similar to what we show in the previous diagram, and then
passed that image to a CNN. If CNNs can learn to recognize dogs in images, they
should be capable of learning to recognize patterns in sequences just like the ones
you saw earlier when exploring the dataset.

After the LSTM layer receives the extracted features from the CNN layer, it produces an
output based on those features combined with its own internal memory and its output
from the previous prediction window. The LSTM’s output passes through fully
connected layers with batch normalization and dropout, and finally a softmax layer that
outputs probabilities for each of the classes the model knows about. You learned about
all those layer types earlier in the book so they aren’t discussed here.

This talk about internal memory and previous predictions brings up an important
question: What about when a sequence doesn’t relate to those that came before it? Data
doesn’t always arrive as one long, unbroken stream, so do you really want your model to
always consider its past predictions part of the current sequence?

Well, that finally brings us back to those new items you saw in Xcode: hiddenIn, celllIn,
hiddenOut and cell0ut. The names may seem backwards, but hiddenOut is the output
from the LSTM itself, while ce110ut is the LSTM’s internal memory state after making
the prediction. And hiddenIn and cellIn are the inputs you use to pass to the model

K

those outputs from the previous prediction. Each of these is a vector of 200 Doubles
stored as an MLMultiArray — you don’t need to worry about that, it’s just how the
model’s LSTM layer encodes its state information.

So to indicate the start of a new sequence, you’ll pass nil to the model for both
hiddenIn and cellIn. On the other hand, when the current prediction is picking up
where the last one ended — as will often be the case with streaming motion data

— you’ll take the hiddenOut and cell0ut values from the previous prediction and pass
those back to the model as hiddenIn and cellIn, respectively. Using the output and
memory from the previous step like this allows the LSTM to recognize longer
sequences. Continuing with our text example, it’s as if the first prediction window you
pass is for the word “The,” the next window is for “quick,” then “brown” and so on.

This whole chapter has been talking about classifying sequences of sensor data, but it
turns out the model you made with Turi Create is looking at its inputs in two different
ways — as sequences of sensor data, and as sequences of sequences of sensor data. The
prediction window contains enough information to classify the first kind of sequence,
but these extra inputs and outputs allow the LSTM portion of the network to reason
over longer periods of time to classify the second kind of sequence.

While models combining CNNs and LSTMs have achieved state-of-the-art results
for tasks such as activity detection and speech recognition, there are also other
techniques that deliver excellent performance when working with sequences.
These include: Attention — a sort of memory added to other networks that helps
guide their focus; Transformers — networks that use attention exclusively instead
of recurrent or convolutional layers; and Temporal Convolutional Networks —
CNNs designed for processing sequences. And new research seems to appear on a
weekly basis, so there may be even more options by the time you’re reading this.
You’ll get a chance to use some of these in later chapters.

Now that you’ve added your model to the project and have a better idea of how it works,
take a quick look through the project to see what else is there. The project’s Info.plist
file already includes the keys necessary to use Core Motion, explained earlier when you
built the GestureDataRecorder project. Gesturelt’s interface (not shown here) is even
simpler than GestureDataRecorder’s — it’s just two buttons: Play and Instructions.
Choosing Instructions shows videos of each gesture, and Play starts a game.

K

While playing, the game speaks out gestures for the player to make, awarding one point
for each correctly recognized gesture. The game ends when the app recognizes an
incorrect gesture or if the player takes too long.

The project already includes the necessary gameplay logic, but if you play it now you’ll
always run out of time before scoring any points. If you want it to recognize what the
player is doing, you’ll need to give it a brain.

All the code you write for the rest of this chapter goes in GameViewController.swift,
so open that file in Xcode to get started.

This file already imports the Core Motion framework and includes all the necessary
code to use it. Its implementations of enableMotionUpdates and disableMotionUpdates
are almost identical to what you wrote in the GestureDataRecorder project. The
differences are minor and you should have no problem understanding them. As was the
case with that project, this file contains a method named processMotionData that the
app calls whenever it receives device motion data. At the moment it’s empty, but you’ll
implement it later. For now, import the Core ML framework by adding the following line
with the other imports near the top of the file:

import CoreML

In order to keep your code tidy and more easily maintainable, you’ll store numeric
configuration values as constants in the Config struct at the top of the class, just like
you did in the GestureDataRecorder project. To start, add the following three constants
to that struct:

static let samplesPerSecond = 25.0
static let numFeatures = 6
static let windowSize = 20

These values must match those of the model you trained. You’ll use samplesPerSecond
to ensure the app processes motion data at the same rate your model saw it during
training. The dataset provided in this chapter’s resources was collected at 25 samples
per second, so that’s the value used here. However, change this value if you train your
own model using data fed to it at a different rate.

Note: In case it’s not clear why the app’s samplesPerSecond must match that of
the dataset used to train your model, consider this example: Imagine you trained
your model using a prediction window of 200 samples, on data collected at 100
samples per second. That means the model would learn to recognize actions seen
in highly detailed, two-second chunks. If you then ran this app with
samplesPerSecond set to 10, it would take 20 seconds to gather the expected 200

K

samples! Your model would then look at 20 seconds of data but evaluate it as if it
was two seconds worth, because that’s how it learned. This would almost certainly
make the patterns in these sequences appear different from what the model saw
during training. Remember, machine learning models only work well with data
that is similar to what they saw during training, so getting the sampling rate
wrong here could make a perfectly good model seem completely broken.

Likewise, the model discussed in this chapter expects data in blocks of 20 samples at a
time, with six features for each sample. The windowSize and numFeatures constants
capture those expectations.

Note: If you ever work with a model and aren’t sure about its expected number of
features and window size, you can find them by looking at the .mlmodel file in
Xcode’s Project Navigator. However, this does not include information about the
rate at which motion data needs to be processed, so that you’ll just need to know.

Now that you’ve added those constants, you can complete the starter code’s
implementation of enableMotionUpdates by setting the CMMotionManager’s update
interval. To do so, add the following line inside enableMotionUpdates, just before the
call to startDeviceMotionUpdates:

motionManager.deviceMotionUpdateInterval = 1.0 / Config.samplesPerSecond

Just like you did in GestureDataRecorder, this tells motionManager to deliver motion
updates to your app 25 times per second — once every 0.04 seconds.

Core ML models, such as GestureClassifier, expect their input in the form of
MLMultiArray objects. Unfortunately, working with these objects involves quite a bit of
type casting. Swift’s type safety is great, and explicit type casting forces developers to
be more thoughtful about their code — but I think we can all agree code gets pretty ugly
when there’s too much casting going on. To keep that ugliness — and the extra typing it
requires — to a minimum, you’ll be isolating any MLMultiArray-specific code within
convenience methods. Add the first of these methods below the MARK: - Core ML
methods comment in GameViewController:

static private func makeMLMultiArray(numSamples: Int) —-> MLMultiArray? {
return try? MLMultiArray(
shape: [1, numSamples, Config.numFeatures] as [NSNumberl],
dataType: MLMultiArrayDataType.double)

This function takes as input the number of samples the array should contain. It then
attempts to make an MLMultiArray with a shape and data type that will work with our
model: [1, numSamples, Config.numFeatures] and double, respectively. Notice how
the shape needs to be cast as an array of NSNumbers — you’ll see a lot of those types of
casts when dealing with MLMultiArrays.

Attempting to create an MLMultiArray can fail by throwing an exception. If that occurs
here, the try? causes this function to return nil. This might occur in situations such as
when there is insufficient memory to create the requested array. Hopefully it doesn’t
ever happen, but you’ll add some code to deal with that possibility a bit later.

Now that you have that handy function, you’ll use it to create space to store motion
data to use as input to your model. Add the following property, this time to the area
under the // MARK: - Core ML properties comment:

let modelInput: MLMultiArray! =
GameViewController.makeMLMultiArray(numSamples: Config.windowSize)

This creates the modelInput array, appropriately sized for the model you trained. Later
you’ll populate this array with motion data prior to passing it to your model for
classification.

Note: You may have noticed that modelInput is declared as an implicitly
unwrapped optional, but makeMLMultiArray can return nil. Doesn’t that mean you
run the risk of crashing your app elsewhere if you try to unwrap modelInput when
it’s ni1? Normally, that would be a problem, but later you’ll add some code that
ensures this can never happen.

Now, you could work with just a single MLMultiArray like modelInput, repeatedly filling
it up over time and passing it to the model. The diagram below shows what it would
look like making two predictions with a window size of 20:

T T20 T40
1 1
! I 1

Prediction 1 " Prediction 2

Reusing a single array to make predictions

As the diagram above shows, the array would fill up between times T1 and T20, then
you’d pass it to your model to make your first prediction. After that you’d reuse the
array between times T21 and T40, before passing it to your model again to make your
second prediction.

This technique is the simplest to code and is fine for many apps. However, there are
times when doing this would cause some problems. Consider the situation shown in the
following diagram, where an activity you want to recognize spans across prediction
boundaries:

T T20 T40
1 1
1 I 1

Prediction 1 " Prediction 2
Activity 1

What if an activity spans across predictions?

In this case, a few things might happen. If the amount of data in the first prediction
window is sufficient for the model to recognize the activity, then no problem — it
returns the correct classification. But if the model needs to see more activity data than
is available in the first window, it won’t be able to classify it correctly until its second
prediction. In that case it takes longer than necessary to report the result, which makes
your app feel sluggish. Or worse yet, all the non-activity data in the second window
might make the second prediction fail to recognize the activity, too.

Delayed responses or inaccurate predictions — take your pick, but neither is a great
option.

Now consider another problematic scenario, shown in the following diagram:

T1 T20 T40
L 1
! ! 1

Prediction 1 " Prediction 2
Activity 1 Activity 2

What if one prediction sees data for multiple activities?

Here there’s one activity that spans across two predictions, just like before. But now a
second activity occurs only within the second prediction window. In this case, assume
the first prediction did not recognize anything, so now it’s up to the second window to
handle everything. How will it classify the two activities?

K

It can only make one prediction, so it will either correctly predict one of the activities,
or it will become so confused that it fails to predict either of them. This isn’t necessarily
incorrect — it really depends on the app — but it’s something you need to consider
carefully.

In many cases it would be better if you could make predictions more often. You might
try smaller prediction windows, but that isn’t always an option because your model
might need to see larger chunks of data to successfully recognize activities — that
depends entirely on your specific data, model, and use case. But it turns out you can
make predictions more often without changing the window size if you overlap your
prediction windows, as shown in the following diagram:

T T10 T20 T30 T40
[[] [[[

! I) I I
Prediction 1 | Prediction 3
Prediction 2

Activity 1 Activity 2

Overlapping predictions

In this case, the first prediction sees data from times T1 to T20, and the third prediction
sees the data from times T21 to T40. But now a second prediction window overlaps each
of those, spanning the data from times T11 through T30. Because this is like sliding the
prediction window along the data (using offsets of 10 in this case), many people call
these “sliding” windows.

An app using this design responds more quickly because it makes more predictions, and
it’s more accurate because it considers individual samples as part of multiple possible
sequences. The first prediction window still might not recognize anything, but the
second prediction would see the first activity — and predict it at T30 instead of waiting
until T40. And then the third prediction would recognize the second activity only 10
samples later. The app ends up feeling more responsive and it doesn’t miss either
activity.

Overlapping predictions mostly solves all of the problems mentioned earlier. But
depending on how much data your model needs to see in order to make a prediction,
and how much you overlap your windows, you still might run into missed or erroneous
classifications. It’s a matter of finding the best amount of overlap for your app.

You’ll be implementing overlapping predictions in Gesture It, because you’ll want fast
response times to quickly evaluate the player’s gestures.

K

But if you were making an app that tracks the amount of time you spend jogging, for
example, you would probably be fine with non-overlapping predictions made over
longer periods of time (maybe even once every several seconds).

Note: How much you overlap your predictions directly affects more than just
accuracy and response time. More overlap means running inference with your
model more often, and that extra processing could increase battery drain. And
depending on how long it takes your model to make predictions, it might not even
keep up with the pace of requests, causing your app to exhibit other performance
problems. So test various options and settle on making predictions only as often
as is necessary to achieve your goals.

To help define your prediction windows, add the following constants to the Config
struct at the top of the file:

static let windowOffset = 5
static let numWindows = windowSize / windowOffset

Here you define windowOffset as five. This is not how much the window overlaps, but
rather how far to offset the start of the window from the start of the previous window.
With the windowSize of 20 you defined earlier, this makes numWindows equal four. That’s
how many prediction windows you’ll have before you essentially wrap back around to
the first one again. This should be clearer if you refer to the the following diagram,
which shows how your predictions would overlap for the first 40 samples:

T T5 TI0 T15 T20 T25 T30 T35 T40
L [[] [[[[[[
I] I I] I I I]
Prediction 1 " Prediction 5 :"
Predicon2 |} 6
Predicton3 |} 7
Prediction 4 8

Gesture It’s overlapping predictions — windowSize=20, windowOffset=5

With the settings you’ve made so far, Gesture It will take 0.8 seconds to respond with its
first prediction, but then each successive prediction will occur every 0.2 seconds after
that. (That’s because samplesPerSecond is 25, so each sample takes 0.04 seconds to
arrive. A windowSize of 20 looks at 20 x 0.04s = 0.8 seconds of data, and a windowOffset
of 5 means each prediction occurs 5 x 0.04s = 0.2 seconds after the last one.)

K

Notice how different prediction windows overlap with various different combinations of
other predictions. For example, Prediction Two sees the last 15 samples in Prediction
One, and the first five samples in Prediction Five, along with 15 and 10 samples seen by
Predictions Three and Four, respectively. And starting from Prediction Five, each
window will process varying numbers of samples from six other prediction windows! All
this overlap should help your model classify gestures quickly and accurately.

Note: The integer division used to calculate numWindows means you’ll never have a
partial window. For example, if window0ffset were 20 with a windowSize of 50,
you’d have two windows, one from T1 to T50 and another from T21 to T70. The
code you write in this app will handle that situation fine, but keep in mind that the
predictions will not occur at a steady rate unless windowSize is evenly divisible by
windowOffset. In this example, an offset of 20 would result in 20 samples between
predictions one and two but 30 samples between predictions two and three.

The previous diagrams show what samples each prediction window should use, but how
do you implement it? At the moment you’ve got a single MLMultiArray the size of one
window, but now you need four. While you could create four different arrays to store this
data, that would waste memory. Instead, you’ll make one slightly larger array that will
act as a buffer area for the most recent motion data, and each prediction window will
look at the appropriate subset of that larger buffer when necessary.

Add the following constant to the Config struct, which defines the size of the buffer
you’ll create:

static let bufferSize = windowSize + windowOffset * (numWindows - 1)

You define a buffer size large enough to hold one full window plus the space taken up by
the offsets for the other windows. So for the settings you’ve used so far, Gesture It’s
buffer will hold 35 samples. Don’t worry if it’s not yet clear why this is the right size

— you’ll see soon.

Now add the following properties to manage the buffer. Put them with the other ML-
related properies in GameViewController:

let dataBuffer: MLMultiArray! =
GameViewController.makeMLMultiArray(numSamples: Config.bufferSize)

var bufferIndex = 0

var isDataAvailable = false

You create dataBuffer using the convenience method you created earlier. As new
motion data arrives from the device, you’ll use bufferIndex to determine where to store
that data within the buffer. You’ll set the isDataAvailable flag to true once the buffer
contains enough data to perform its first prediction.

For the remainder of this discussion, please refer to the following diagram, which shows
the buffer’s contents at each prediction over the first 40 time steps:

T1 »T20 | T1 »T15| Pred. 1 at T20 with values from T1 to T20

T21—T25,T6 »T20 | T21—T25,T6—T15| Pred. 2 at T25 with values from T6 to T25

T21=——>T30,T11=———>T20 | T21—>T30,T11—T15] Pred. 3 at T30 with values from T11 to T30

T21 »T35,T16=T20| T21 »T35| Pred. 4 at T35 with values from T16 to T35

T21 »T40 | T21 »T35| Pred. 5 at T40 with values from T21 to T40

Buffer contents over time

Think of the buffer as having two halves, with a full prediction window on the left and
auxilliary storage on the right. The second “half” isn’t a true half in this case, because
it’s smaller than the first, but that won’t be a problem.

You’ll increment bufferIndex as new data arrives, moving it across the first half of the
buffer, and you’ll reset it to the beginning whenever it reaches the buffer’s midpoint.
That is, bufferIndex will always be pointing to the next location to fill within the first
prediction window. But whenever you store an item in the left half of the buffer, you’ll
also store it in the equivalent location in the right half. (You’ll skip updates on the right
side that would be out of bounds due to the size mismatch. You could make both sides
the same size and then always store values in both places, but the approach used here
saves some memory — usually a good thing for mobile apps.)

The top of the diagram shows what the buffer looks like after 20 timesteps. The left side
contains data from times T1 to T20, and the right side contains copies of times T1 to
T15. It’s at this point that you’ll reset bufferIndex to zero, set isDataAvailable to true
and perform the first prediction using times T1 to T20.

As data continues to arrive, you’ll keep filling the left and right sides of the buffer
simultaneously. After five more timesteps, you’ll be ready to make the second
prediction. As you can see in the second row of the diagram, the first five items of the
buffer contain data from times T21 to T25, but the next 15 items still contain data from
times T6 to T20. And because you’ve been updating both sides of the buffer, the first
five items on the right contain data from times T21 to T25, too.

K

So you can now make your second prediction using times T6 to T25 by looking at a
window that crosses into the second half of the buffer.

This process continues indefinitely, but the diagram shows the contents of the buffer
when making each of the first five predictions. The key point to realize is that after the
first time bufferIndex reaches the midpoint of the buffer and resets to the start, it is
always the case that the the next 20 items starting at bufferIndex contain data from the
previous 20 time steps.

Phew. That was a lot of discussion about just a bit of code, so hopefully you’re still here.
Now back to the app!

Now you’re going to add some code to handle MLMultiArrays that end up nil. Since
each of these objects is required for the game to function properly, you are going to
notify the player and force them to go back to the main menu. However, you may want
to make your own apps more robust. For example, if the app successfully creates the
smaller modelInput array but then fails on dataBuffer, you might want to fall back to a
non-overlapping approach and notify the user that performance may be slightly
degraded.

Add the following code inside viewDidLoad, immediately above the call to
enableMotionUpdates:

guard modelInput !'= nil, dataBuffer != nil else {
displayFatalError(error: "Failed to create required memory storage")
return

}

Here you check to ensure that the app was able to create each of its required
MLMultiArray properties. If not, you call displayFatalError, a method in the starter
code that alerts the player with the given error message and then dismisses the
GameViewController.

Note: The starter code enables motion updates when it loads the game view and
stops them when the game is over. However, your production apps should be more
robust than that. Be sure your apps are good iOS citizens and have them properly
handle situations such as getting paused for incoming phone calls, etc.

It will receive motion updates Config.samplesPerSecond times each second. For each
update, you’ll need to store the appropriate features in dataBuffer, the MLMultiArray
you created earlier. You’ll wrap this logic in helper methods to keep things easier to
read, so add the following code to GameViewController:

// 1
@inline(__always) func addToBuffer(_ sample: Int, _ feature: Int,
_ value: Double) {
// 2
dataBuffer[[0, sample, feature] as [NSNumber]] = value as NSNumber
}
// 3
func bufferMotionData(_ motionData: CMDeviceMotion) {
// 4
for offset in [0, Config.windowSize] {
let index = bufferIndex + offset
if index >= Config.bufferSize {

continue
}
// 5
addToBuffer(index, @, motionData.rotationRate.x)
addToBuffer(index, 1, motionData.rotationRate.y)
addToBuffer(index, 2, motionData.rotationRate.z)
addToBuffer(index, 3, motionData.userAcceleration.x)
addToBuffer(index, 4, motionData.userAcceleration.y)
addToBuffer(index, 5, motionData.userAcceleration.z)

}
}

While these methods are essentially just updating an array, there are some important
things to note:

1. The addToBuffer function isolates the NSNumber casts to one line, which keeps the
code at // 5 easier to read. Declaring it with @inline(__always) tells the Swift
compiler to replace any calls to this function with the contents of the function
itself, ensuring your code executes as quickly as possible. Swift is good about
inlining these one-line functions on its own, but including this tag makes your
intention clear.

2. This line sets a single value inside dataBuffer. That MLMultiArray is arranged as a
3-dimensional tensor, indexed as [batch, sample, feature]. The model’s batch size is
always one, so the first index value here is always 0. The sample and feature indices
are passed as arguments to this method.

3. You’ll call bufferMotionData from within processMotionData, which you’ll write
next. [t copies motion data into the correct locations in the large buffer backing the
overlapping prediction windows described earlier.

4. This for loop ensures each value is stored at the position indexed by bufferIndex,
as well as a position that is one window-span later in the buffer. The continue
statement ensures that second write attempt is not outside the buffer’s bounds,
which would crash the app. For more details about how the overlapping windows
work, refer to the discussion earlier in this chapter.

5. Here you call addToBuffer repeatedly to save the relevant data from the
CMDeviceMotion object passed to this method. It’s extremely important to store
only the features your model expects, and in exactly the order it expects them. This
was all determined when you trained the model, but you can verify the information
by inspecting the .mlmodel in Xcode’s Project Navigator. Be sure to double check
this step, because mistakes here will make your model function incorrectly —
sometimes failing with a crash, sometimes by underperforming, and even
sometimes by appearing to work! That last one might sound ok, but it just means
you’ve got some lucky input and it’s unlikely to work well for long.

Your code so far only adds data to dataBuffer, but you’ll eventually need to pass
modelInput to your ML model. That’s because your model expects to see an
MLMultiArray with modelInput’s specific shape, not the larger buffer you created to
implement overlapping windows. So you’ll need to copy data between these structures.

To make those copies as fast as possible, you’ll be using low level pointers to copy
chunks of memory directly. To do that, you need to know the exact number of bytes you
want to access, so add the following constants to the Config struct:

static let windowSizeAsBytes = doubleSize * numFeatures * windowSize
static let windowOffsetAsBytes = doubleSize * numFeatures * windowOffset

Here you calculate the number of bytes it takes to represent a prediction window within
an MLMultiArray, as well as the number of bytes necessary to represent the offset
between prediction windows. The constant doubleSize referenced in these calculations
already exists in the starter code — it stores how many bytes are used by a single
double. You’ll use these constants soon.

You’re now all set to fill in the placeholder processMotionData method. Insert the
following code into that method:

// 1

guard expectedGesture !'= nil else {
return

b

// 2

bufferMotionData(motionData)

// 3

bufferIndex = (bufferIndex + 1) % Config.windowSize

K

// 4
if bufferIndex == 0 {

y

isDataAvailable = true

// 5
if isDataAvailable &&

s

bufferIndex % Config.windowOffset == 0 &&
bufferIndex + Config.windowOffset <= Config.windowSize {
// 6
let window = bufferIndex / Config.windowOffset
/77
memcpy (modelInput.dataPointer,
dataBuffer.dataPointer.advanced(
by: window * Config.windowOffsetAsBytes),
Config.windowSizeAsBytes)
// 8
// TODO: predict the gesture

This is the meat of your data pipeline, so look carefully at what’s going on here:

1.

The starter project uses expectedGesture to keep track of what gesture the player
should be making. This value will be nil whenever the game is not expecting a
gesture, and this guard statement ensures this method does not process motion
data in those cases.

Here’s where you call the method you recently added, bufferMotionData. You pass it
the CMDeviceMotion object given to this method, and it stores the motion data in the
appropriate locations within dataBuffer.

Next you update bufferIndex to keep track of the next available space in the buffer.
You're incrementing it by one, and looping it back around to zero when it reaches
the end of the first window.

Here you check to see if bufferIndex is zero. Because bufferIndex is updated before
this line, it can only ever be zero after it has exceeded Config.windowSize and
wrapped back around at least once. At that point, you update isDataAvailable to
indicate you have at least one full window’s worth of data.

This if-statement ensures you make predictions at the correct times. It first checks
isDataAvailable to make sure at least one window is full. Then it checks to see if
bufferIndex is at the boundary of a window. Because bufferIndex resets when it
reaches the end of the first window, you can only reliably check when it’s at the start
of most windows, not the end. This line determines that by checking to see if
bufferIndex is some multiple of the window offset. It also verifies that there is a full
windowOffset worth of space after this position in the window. That final check is
just a precaution in case you ever use a window size that is not evenly divisible by

the offset size. Without that check, the code at // 7 would crash your app when it
tried to access invalid memory. If all these checks pass, then the function knows it’s
OK to make a prediction.

6. Here you determine which prediction window you’re working with so you’ll know
which data to access from the buffer.

7. Now you need to copy the samples for window from dataBuffer into modelInput.
Conveniently, MLMultiArray objects expose a pointer for low level access to their
backing memory via their dataPointer property, so here you take advantage of that
fact and use memcpy to copy a window-sized chunk of memory directly from
dataBuffer into modelInput. To locate the start of the window, you use the pointer’s
advanced(by:) method and some math to move it the appropriate number of bytes
from the start of the buffer. Be extremely careful with memcpy: Getting anything
wrong here will at best give you the wrong results, and at worst will crash your app.

8. Here is where you will eventually attempt to make your prediction. But you’ll need
to write just a bit more code before you do.

At long last, your project is ready to start recognizing gestures. Almost. So far the app
contains a lot of data processing and business logic — it still needs the machine
learning bit! Add your gesture recognition model into the app by initializing the
following property with the other ML-related properties in GameViewController:

let gestureClassifier = GestureClassifier()

Xcode autogenerated the GestureClassifier class when you first dragged the .mlmodel
file into the project, so all you have to do is instantiate it like this and then call its
prediction method with the appropriate inputs. It’s almost too easy, right?

Well, it would be if that’s all it took. Recall from the earlier discussion about the model’s
inputs and outputs, the LSTM portion of the network requires you to provide it with its
internal memory and output from the previous prediction. That means you’ll need to
store that information each time you make a prediction and then pass it back to the
model when making the next one. To help with that, Xcode generated the
GestureClassifierOutput class at the same time it made GestureClassifier. This class
conveniently encapsulates all four of the model’s outputs so you can save them for later
use.

However, you’ve implemented your predictions using four overlapping windows, which
means consecutive predictions aren’t actually continuations of each other. That is, the
first sensor reading in a prediction window is not the reading immediately after the last
one in the previous window. Instead, it is a value within the previous window, offset
from its start by Config.windowOffset samples. Because of that fact, it wouldn’t make
sense for the LSTM’s internal state to carry over from the previous prediction — it needs
to use the state from four predictions ago instead. To keep track of all these outputs,
you’ll maintain an array of GestureClassifierOutputs, so add the following property
for that:

var modelOutputs =
[GestureClassifierQutput?](repeating: nil, count: Config.numWindows)

This array will hold one GestureClassifierOutput for each prediction window. The
values are optional and will be nil for any window before you’ve used it. You can see
the code for GestureClassifierOutput by selecting GestureClassifier.mlmodel in the
Project Navigator, and then clicking the small arrow icon next to GestureClassifier in
the Model Class section. It basically just provides properties to access the model’s
various outputs.

One last thing before you actually use your model. Earlier in the book, you read about
how Core ML predictions come with probabilities which are essentially the model’s
confidence in the prediction. And you saw how the model will always produce some
prediction, but not necessarily with much confidence. To avoid reacting to low
probability predictions, you’ll define a threshold that the probability must exceed to be
considered sure enough to act upon. Add the following constant to Config at the top of
the file:

static let predictionThreshold = 0.9

This basically means the model needs to be over 90% sure of a prediction before the app
responds. This threshold was chosen after some playtesting, but it’s mostly personal
preference beyond a certain threshold. Values too low will make the app hallucinate
gestures where there are none, so definitely avoid that, but other than that it’s a matter
of how touchy or picky you want the app to feel. Later, when you’re done writing the
app, try out different values here to see how they affect the gameplay.

With those small additions in place, it’s now time to write the method that uses your
trained model to recognize gestures. Add the following code to the end of
GameViewController:

func predictGesture(window: Int) {
// 1

K

let previousOutput = modelOutputs[window]
let modelOutput = try?
gestureClassifier.prediction(

features: modellInput,
hiddenIn: previousOutput?.hiddenOut,
cellIn: previousOutput?.cellOut)

// 2

modelOutputs [window] = modelOutput

// 3

if let prediction = modelOutput?.activity,
let probability =

modelOutput?.activityProbability[prediction] {

// 4

if prediction == Config.restItValue {
return

b

// 5

if probability > Config.predictionThreshold {
// 6
if prediction == expectedGesture {

updateScore()

} else {
. gameOver(incorrectPrediction: prediction)
/] 7

. expectedGesture = nil

¥
iy

You’ve written quite a bit of code already, but this method is really the only part of the
app that actually uses machine learning. Here’s what it does:

1. Firstit calls gestureClassifier.prediction to try to classify the motion data, and
stores the results as model0utput. Notice that you provide both modelInput, which
you populated in processMotionData, as well as the LSTM’s ouput and internal cell
state from the previous prediction for this window. These values will be nil for each
window’s first prediction, and that’s fine — this tells the classifier there is no history
and it should initialize itself accordingly.

2. Then it stores the model’s response in model0utputs SO you can access it next time
you make a prediction for this window.

3. Next it grabs the predicted activity, along with the probability assigned to that
prediction, from the model’s output.

4. It checks for predictions of non-gestures — i.e. resting — and just ignores them.

5. For non-rest predictions, it checks to see if the probability exceeds the threshold
you previously defined. If so, it considers it a real prediction; otherwise it does
nothing and the app will continue processing motion events.

6. The next bit of code is game logic, but any app you write with a classification model
will have something similar — a spot where you actually use the predicted value. If
the model thinks the player made the correct gesture (i.e. the predicted gesture
matches expectedGesture), then it calls updateScore to add a point; otherwise, the
app thinks the player messed up and it calls gameOver.

7. Regardless of the prediction, the method resets expectedGesture to nil so that the
app stops processing motion data for a while. The starter project’s existing game
logic will set this to a new gesture when appropriate.

Note: The model class Xcode generates includes three different prediction
methods, as well as a predictions (with an “s”) method that batches multiple
predictions in one call. This code uses the version that takes MLMultiArrays
directly, but you might find situations where you’d prefer to use one of the other
versions in your own apps, so be sure to check the generated code for options.

Now go back to that comment you added earlier — // TODO predict the gesture —and
replace it with a call to the method you just wrote:

predictGesture(window: window)

You already calculated the correct prediction window inside processMotionData, and
here you pass that to predictGesture to perform inference.

Now build the app and run it on your iPhone. (Sorry, no motion data in the simulator!)
You might succeed with the first gesture, it won’t take long before the app calls out a
gesture and then immediately complains that you got it wrong. What gives?

Remember those fancy overlapping prediction windows? Well, that backing storage
buffer you made still contains data from the previous sequences you were processing.
So when the app asks for a new gesture, there’s already a prediction window’s worth of
data just sitting there ready to be recognized — collected while you were making the
previous gesture. And don’t forget, recurrent models use state from previous predictions
to help them make new predictions, because they assume the data is related. But when
this app asks for a new gesture, it no longer wants the model to consider the prior data.
Each new gesture needs a clean slate.

To correct this, you need to reset the buffer and the model’s previous output states. Add
the following method to GameViewController:

func resetPredictionWindows() {
// 1
bufferIndex = 0

K

// 2

isDataAvailable = false

// 3

for i in 0..<modelOutputs.count {
modelOutputs[i] = nil

}

It’s not much code, but it’s vital in order for your app to function properly. Here’s what
it does:

1. Reset bufferIndex to zero to start filling the buffer from the beginning again. This
ensures new predictions are based on relevant sequence data, rather than data in
the buffer left over from prior sequences.

2. Reset isDataAvailable to false to keep the app from trying to perform another
prediction before it has at least one full window.

3. Set everything in mode10utputs to nil to clear out any internal model state built up
from previous predictions. This ensures the underlying LSTM cells in your
GestureClassifier model don’t remember anything from sequences related to
earlier gestures and then try to use that information when making new predictions.

Now that you’ve defined that method, call it at the top of startTimerForGesture:

resetPredictionWindows ()

The existing game logic already calls startTimerForGesture whenever it notifies the
player to perform a new gesture. With this addition, you ensure the predictions made
for new gestures are not using any data that arrived while the app was processing
earlier gestures.

That’s it! Build and run again, and have fun Gesturing It! If the game times out too
quickly for you to respond, increase the value of Config.gestureTimeout. Or, if you want
to increase the challenge, see how low you can decrease it. How many correctly
recognized gestures can you get in a row?

» Turi Create’s activity classification API can help you easily make models capable of
recognizing human activity from motion data. However, it can be used for more than
just human activity detection — it’s basically a generic classifier for numeric
sequences.

» Core Motion provides access to motion sensors on iOS and WatchOS devices.

» When building a dataset, prefer collecting less data from more sources over more
data from fewer sources.

» Inspect and clean your data before training any models to avoid wasting time on
potentially invalid experiments. Be sure to check all your data — training, validation
and testing.

» Try separating data from different sources into train, validation and test sets.
» Sample/shuffle sequential data as full sequences, not as individual rows.

 First train on just a small portion of your training set and make sure you can get the
model to overfit. That’s the best way to find problems with your model, because if it
can’t overfit to a small dataset, then you likely need to make changes before it will be
able to learn at all.

e Train multiple models and run multiple experiments until you find what works best
for your app.

» Prefer a balanced class representation. In cases where that’s not possible, evaluate
your model with techniques other than accuracy, such as precision and recall.

» Use overlapping prediction windows to provide faster, more accurate responses.

» RNNs process data serially, so they’re slower than CNNs, both when training and
performing inference.

» One-dimensional convolutions are commonly used to extract temporal features from
sequences prior to passing them into RNNs.

» RNNs are a good choice for sequential data, with LSTMs being the most commonly
used variant because they train (relatively) easily and perform well. However, they
are not the only models that work well for sequences.

K

A good way to get some practice with activity recognition would be to expand Gesture
It. Adding new gesture types to the GestureDataRecorder project is a straightforward
process, so start there, and then collect some data. Next, add your new data to the
provided dataset and train a new model. Replace the model in the Gesturelt project
with your newly trained model, and make the few modifications necessary to add your
new gesture to the game.

After that, you could try recognizing activities other than gestures. For example, you
could make an app that automatically tracks the time a user spends doing different
types of exercises. Building a dataset for something like that will be more difficult,
because you have less control over the position of the device and more variation in
what each activity looks like. In those cases, you’ll need to collect a more varied dataset
from many different people to train a model that will generalize well.

And keep in mind, these models work on other devices, too. The Apple Watch is a
particularly fitting choice — a device containing multiple useful sensors, that remains in
a known position on the user and is worn for all or most of the day. If you have access to
one, give it a try!

Chapter 9: Sequence

Predictions

Imagine your device could accurately predict the future! OK, that might be a stretch
but, in this chapter, you’ll learn how you can use recurrent neural networks (RNNs) to
predict the outcome of some event given a sequence of events.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 238

Chapter 10: NLP

Classification

NLP classification has been popularized as a tool that can help categorize large bodies
of text, such as identifying spam in your email or identifying related content from
websites. In this chapter, you’ll deep dive into training a model for use in a fun NLP
classification project.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

h raywenderlich.com 239

Chapten 11: Text-to-Text

Transform

If you can classify text using NLP classification, you can surely convert text as well,
right? In this chapter, you’ll learn the answer to that question by working on an
example of how to do language translation between two languages.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 240

We hope you enjoyed this book! If you’re looking for more, we have a whole library of
books waiting for you at https://store.raywenderlich.com.

New to iOS or Swift?

Learn how to develop iOS apps in Swift with our classic, beginner editions.

iOS Apprentice

—

10S
1 : 10,000

A p r nt ice copies sold!

SE!

The iOS Apprentice is a series of epic-length tutorials for beginners where you’ll learn
how to build four complete apps from scratch. Each new app will be a little more
advanced than the one before. By the end of the series you’ll be experienced enough to
turn your ideas into real apps that you can sell on the App Store. These tutorials have
easy to follow step-by-step instructions. https://store.raywenderlich.com/products/ios-
apprentice

h raywenderlich.com 241

Swift Apprentice

Apprentice

FOURTH EDITION
Beginning programming with Swil

Byt

This is a book for complete beginners to Apple’s brand new programming language —
Swift 4. Everything can be done in a playground, so you can stay focused on the core
Swift 4 language concepts like classes, protocols, and generics. This is a sister book to
the iOS Apprentice; the iOS Apprentice focuses on making apps, while Swift Apprentice
focuses on the Swift 4 language itself. https://store.rayvwenderlich.com/products/swift-

apprentice

Experienced iOS developer?

Level up your development skills with a deep dive into our many intermediate to
advanced editions.

Data Structures and Algorithms in Swift

Data Structures
& Algorithms in swit

SECOND EDITION
Implementing practical data st

In Data Structures and Algorithms in Swift, you’ll learn the most popular and useful
data structures, and when and why you should use one particular datastructure or
algorithm over another. This set of basic data structures and algorithms will serve as an
excellent foundation for building more complex and special-purpose constructs.
https://store.raywenderlich.com/products/data-structures-and-algorithms-in-swift

K

Realm: Building Modern Swift Apps with Realm Database

%

Realm

Building Modern Swift Apps
with Realm Database
FIRST EDITION

Realm Platform is a relatively new commercial product which allows developers to
automatically synchronize data not only across Apple devices but also between any
combination of Android, iPhone, Windows, or macOS apps. In this book, you’ll take a
deep dive into the Realm Database, learn how to set up your first Realm database, see
how to persist and read data, find out how to perform migrations and more. https://
store.raywenderlich.com/products/realm-building-modern-swift-apps-with-realm-
database

Server Side Swift with Vapor

Server Side Swift with

Vapor

FIRST EDITION
Building Web APIs and Web Apps in Swift

If you’re a beginner to web development, but have worked with Swift for some time,
you’ll find it’s easy to create robust, fully featured web apps and web APIs with Vapor 3.
This book starts with the basics of web development and introduces the basics of Vapor;
it then walks you through creating APIs and web backends; creating and configuring
databases; deploying to Heroku, AWS, or Docker; testing your creations and more.
https://store.raywenderlich.com/products/server-side-swift-with-vapor

K

Apple Debugging and Reverse Engineering

Advanced

Apple Debugging
verse Englneerlng
le co h LLDB, Python, and DTrace

By Derek Selander

In Advanced Apple Debugging and Reverse Engineering, you'll come to realize
debugging is an enjoyable process to help you better understand software. Not only will
you learn to find bugs faster, but you’ll also learn how other developers have solved
problems similar to yours. You'll also learn how to create custom, powerful debugging
scripts that will help you quickly find the secrets behind any bit of code that piques your
interest. https://store.raywenderlich.com/products/advanced-apple-debugging-and-
reverse-engineering

RxSwift: Reactive Programming with Swift

L &

Reactive Programming
with SW|ft

This book is for iOS developers who already feel comfortable with iOS and Swift, and
want to dive deep into development with RxSwift. Start with an introduction to the
reactive programming paradigm; learn about observers and observables, filtering and
transforming operators, and how to work with the UI, and finish off by building a fully-
featured app in RxSwift. https://store.raywenderlich.com/products/rxswift

Core Data by Tutorials

iOS 12 and Swift 4.2 edition

By the raywenderlich.com Tutorial Team
Douglas, \ Morey Rea

This book is for intermediate iOS developers who already know the basics of i0S and
Swift 4 development but want to learn how to use Core Data to save data in their apps.
Start with with the basics like setting up your own Core Data Stack all the way to
advanced topics like migration, performance, multithreading, and more! https://
store.raywenderlich.com/products/core-data-by-tutorials

I0S Aninmations by Tutorials

oS~ #’,

Animations
by Tutorials

FIFTH EDITION
iOS 12 and Swift 4.2 edition

This book is for iOS developers who already know the basics of iOS and Swift 4, and
want to dive deep into animations. Start with basic view animations and move all the
way to layer animations, animating constraints, view controller transitions, and more!
https://store.raywenderlich.com/products/ios-animations-by-tutorials

ARKit by Tutorials

ZN

ARKit
by Tutorials

ON
Apps in Swift 4.2

com Tutorial Team

Learn how to use Apple’s augmented reality framework, ARKit, to build five great-
looking AR apps: Tabletop Poker Dice; Immersive Sci-Fi Portal; 3D Face Masking;
Location-Based Content and Monster Truck Sim. https://store.raywenderlich.com
products/arkit-by-tutorials

watchOS by Tutorials

watch
by Tutorials

THIRD EDITION
3 Apple Watc ps with watchOS 4 & Swift 4

This book is for intermediate iOS developers who already know the basics of i0S and
Swift development but want to learn how to make Apple Watch apps for watchOS 4.
https://store.raywenderlich.com/products/watchos-by-tutorials

tvOS by Tutorials

pment with Swift 4

This book is for complete beginners to tvOS development. No prior iOS or web
development knowledge is necessary, however the book does assume at least a
rudimentary knowledge of Swift. This book teaches you how to make tvOS apps in two
different ways: via the traditional method using UIKit, and via the new Client-Server
method using TVML. https://store.ravwenderlich.com/products/tvos-apprentice

Metal by Tutorials

by Tutorials

FIRST EDITION
Beginning game engine development with Metal

By Caroline Begbie & Marius Horga

This book will introduce you to graphics programming in Metal — Apple’s framework
for programming on the GPU. You’ll build your own game engine in Metal where you
can create 3D scenes and build your own 3D games. https://store.raywenderlich.com
products/metal-by-tutorials

Want to make games?

Learn how to make great-looking games that are deeply engaging and fun to play!

2D Apple Games by Tutorials

In this book, you will make 6 complete and polished mini-games, from an action game
to a puzzle game to a classic platformer! This book is for beginner to advanced iOS
developers. Whether you are a complete beginner to making iOS games, or an advanced
iOS developer looking to learn about SpriteKit, you will learn a lot from this book!
https://store.raywenderlich.com/products/2d-apple-games-by-tutorials

3D Apple Games by Tutorials

Through a series of mini-games and challenges, you will go from beginner to advanced
and learn everything you need to make your own 3D game! This book is for beginner to
advanced iOS developers. Whether you are a complete beginner to making iOS games,
or an advanced iOS developer looking to learn about SceneKit, you will learn a lot from
this book! https://store.raywenderlich.com/products/3d-apple-games-by-tutorials

K

Unity Games by Tutorials

Through a series of mini-games and challenges, you will go from beginner to advanced
and learn everything you need to make your own 3D game! This book is for beginner to
advanced iOS developers. Whether you are a complete beginner to making iOS games,
or an advanced iOS developer looking to learn about SceneKit, you will learn a lot from
this book! https://store.raywenderlich.com/products/unity-games-by-tutorials

Beat ‘em Up Games Starter Kit

The classic beat ’em up starter kit is back — for Unity! Create your own side-scrolling
beat ’em up game in the style of such arcade classics as Double Dragon, Teenage Mutant
Ninja Turtles, Golden Axe and Streets of Rage. This starter kit equips you with all tools,
art and instructions you’ll need to create your own addictive mobile game for Android
and iOS. https://store.raywenderlich.com/products/beat-em-up-game-starter-kit-unity

Want to learn Android or Kotlin?

Get a head start on learning to develop great Android apps in Kotlin, the newest first-
class language for building Android apps.

Android Apprentice

Android
Apprentice

FIRST EDITION
Beginning Android dev ment with Kotlin 1.2

By Darryl Bayliss & Tom Blankenship

The Android Apprentice takes you all the way from building your first app, to
submitting your app for sale. By the end of this book, you’ll be experienced enough to
turn your vague ideas into real apps that you can release on the Google Play Store. The
four apps you will complete will teach you how to work with the most common controls
and APIs used by Android developers around the world. https://
store.raywenderlich.com/products/android-apprentice

Kotlin Apprentice

Apprentice

FIRST EDITION
Beginning programming with Kotlin

By

This is a book for complete beginners to the new, modern Kotlin language. Everything
in the book takes place in a clean, modern development environment, which means you
can focus on the core features of programming in the Kotlin language, without getting
bogged down in the many details of building apps. This is a sister book to the Android
Apprentice.https://store.raywenderlich.com/products/kotlin-apprentice

K

