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CHAPTER 1

Introduction

There is considerable interest in the ARM Cortex platform today because ARM

devices are found everywhere. Units containing ARM devices range from the small
microcontroller embedded systems to cellphones and larger servers running Linux.
Soon, ARM will also be present in higher numbers in the datacenter. These are all good
reasons to become familiar with ARM technology.

With the technology ranging from microcontrollers to full servers, the question
naturally arises: “Why study embedded device programming? Why not focus on end-
user systems running Linux, like the Raspberry Pi?”

The simple answer is that embedded systems perform well in scenarios that are
awkward for larger systems. They are frequently used to interface with the physical
world. They go between the physical world and a desktop system, for example. The
humble keyboard uses a dedicated MCU (microcontroller unit) to scan key switches of
the keyboard and report key-press events to the desktop system. This not only reduces
the amount of wiring necessary but also frees the main CPU from expending its high-
performance computing on the simple task of noticing key-press events.

Other applications include embedded systems throughout a factory floor to monitor
temperature, security, and fire detection. It makes little sense to use a complete desktop
system for this type of purpose. Stand-alone embedded systems save money and boot
instantly. Finally, the MCU'’s small size makes it the only choice in flying drones where
weight is a critical factor.

The development of embedded systems traditionally required the resources of two
disciplines:

o Hardware engineer
o Software developer

Frequently, one person is assigned the task of designing the end product. Hardware
engineers specialize in the design of the electronic circuits involved, but eventually the

© Warren Gay 2018
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product requires software. This can be a challenge because software people generally
lack the electronics know-how while the engineers often lack the software expertise.
Because of reduced budgets and delivery times, the electronics engineer often becomes
the software engineer as well.

There is no disadvantage to one person’s performing both design aspects as long
as the necessary skills are present. Whether you're an electronics engineer, software
developer, hobbyist, or maker, there is nothing like real, down-to-earth practice to get
you going. That is what this book is all about.

STM32F103C8T6

The device chosen for this book is the STMicroelectronics STM32F103C8T6. This part
number is a mouthful, so let’s break it down:

o STM32 (STMicroelectronics platform)
e F1 (device family)
e 03 (subdivision of the device family)

e (C8T6 (physical manifestation affecting amount of SRAM, flash
memory, and so on)

As the platform name implies, these devices are based upon a 32-bit path and are
considerably more powerful than 8-bit devices as a result.

The F103 is one branch (F1 + 03) of the STM32 platform. This subdivision decides
the CPU and peripheral capabilities of the device.

Finally, the C8T6 suffix further defines the capabilities of the device, like the memory
capacity and clock speeds.

The STM32F103C8T6 device was chosen for this book because of the following
factors:

e verylow cost (as low as $2 US on eBay)
o availability (eBay, Amazon, AliExpress, etc.)
o advanced capability

e form factor
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The STM32F103C8T6 is likely to remain the lowest-cost way for students and
hobbyists alike to explore the ARM Cortex-M3 platform for quite some time. The
device is readily available and is extremely capable. Finally, the form factor of the small
PCB allows header strips to be soldered to the edges and plugged into a breadboard.
Breadboards are the most convenient way to perform a wide array of experiments.

The MCU on a blue PCB (Figure 1-1) is affectionately known as the “Blue Pill,
inspired by the movie The Matrix. There are some older PCBs that were red in color and
were referred to as the “Red Pill” There are still others, which are black and are known
as the “Black Pill” In this book, I'll be assuming you have the Blue Pill model. Apart from
some USB deficiencies, there should be little other difference between it and the other
models.

Figure 1-1. The STM32F103C8T6 PCB (printed circuit board) with the header
strips soldered in, often referred to as the “blue pill”

Low cost has another advantage—it allows you to own several devices for projects
involving CAN communications, for example. This book explores CAN communication
using three devices connected by a common bus. Low cost means not being left out on a
student budget.
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The peripheral support of the STM32F103 is simply amazing when you consider its
price. Peripherals included consist of:

e 4 x16-bit GPIO Ports (most are 5-volt tolerant)

e 3 xUSART (Universal Synchronous/Asynchronous Receiver/
Transmitter)

e 2xI2C controllers

e 2xSPI controllers

e 2xADC (Analog Digital Converter)

e 2xDMA (Direct Memory Address controllers)
e 4 xtimers

e watch dog timers

e 1xUSB controller

¢ 1xCAN controller

e 1xCRC generator

e 20K static RAM

o 64K (or 128K) FLASH memory

e ARM Cortex M3 CPU, max 72 MHz clock

There are some restrictions, however. For example, the USB and CAN controllers
cannot operate at the same time. Other peripherals may conflict over the I/O pins used.
Most pin conflicts are managed through the AFIO (Alternate Function Input Output)
configuration, allowing different pins to be used for a peripheral’s function.

In the peripheral configuration, several separate clocks can be individually enabled
to tailor power usage. The advanced capability of this MCU makes it suitable for study.
What you learn about the STM32F103 family can be leveraged later in more advanced
offerings like the STM32F407.

The flash memory is officially listed at 64K bytes, but you may find that it supports
128K. This is covered in Chapter 2 and permits good-sized applications to be flashed to
the device.
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FreeRTOS

Unlike the popular AVR family of chips (now owned by Microchip), the STM32F103 family
has enough SRAM (static RAM) to comfortably run FreeRTOS (freertos.org). Having
access to a RTOS (real-time operating system) provides several advantages, including

e preemptive multitasking;

e queues;

e mutexes and semaphores; and
o software timers.

Of particular advantage is the multitasking capability. This eases the burden of software
design considerably. Many advanced Arduino projects are burdened by the use of state
machines with an event loop model. Each time through the loop, the software must poll
whether an event has occurred and determine if it is time for some action. This requires
management of state variables, which quickly becomes complex and leads to programming
errors. Conversely, preemptive multitasking provides separate control tasks that clearly
implement their independent functions. This is a proven form of software abstraction.

FreeRTOS provides preemptive multitasking, which automatically shares the CPU
time among configured tasks. Independent tasks, however, do add some responsibility
for safely interacting between them. This is why FreeRTOS also provides message
queues, semaphores, mutexes, and more to manage that safely. We’ll explore RTOS
capabilities throughout this book.

libopencm3

Developing code for MCU applications can be demanding. One portion of this challenge
is developing with the “bare metal” of the platform. This includes all of the specialized
peripheral registers and their addresses. Additionally, many peripherals require a certain
“dance” to make them ready for use.

This is where libopencma3 fits in (from 1ibopencm3.org). Not only does it define the
memory addresses for the peripheral register addresses, but it also defines macros for
special constants that are needed. Finally, the library includes tested C functions for
interacting with the hardware peripheral resources. Using libopencm3 spares us from
having to do all of this from scratch.
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No Arduino

There is no Arduino code presented in this book. Arduino serves its purpose well,
allowing students to wade into the MCU world without prior knowledge. This book,
however, is targeted to go beyond the Arduino environment using a professional mode of
development independent of Arduino tools.

Without Arduino, there is no “digital port 10.” Instead, you work directly with an
MCU port and optionally a pin. For example, the Blue Pill device used in this book
has the built-in LED on port C, as pin 13. Operating directly with ports permits I/O
operations with all 16 pins at one time when the application needs it.

No IDE

There was a conscious decision to choose for this book a development environment
that was neutral to your desktop development platform of choice. There are a number
of Windows-based IDE environments available, with varying licenses. But IDEs change,
licenses change, and their associated libraries change with time. The advantage of

the given IDE is often discarded when the IDE and the operating system it runs upon
change.

Using a purely open sourced approach has the advantage that you are shielded from
all this version churn and burn. You can mothball all of your code and your support
tools, knowing that they can all be restored to operation ten years from now, if required.
Restoring licensed software, on the other hand, leaves you vulnerable to expired licenses
or online sites that have gone dark.

This book develops projects based upon the following open sourced tools and

libraries:
e gce/g++ (GNU compiler collection: open sourced)
o make (GNU binutils: open sourced)
e libopencm3 (library: open sourced)
o FreeRTOS (library: open source and free for commercial use)

With this foundation, the projects in this book should remain usable long after you
purchase this book. Further, it permits Linux, FreeBSD, and MacOS users—in addition
to those using the Windows platform—to use this book. If you do use Windows, you may
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want to download and install the Cygwin environment (www.cygwin.com) because a
Linux-like environment is assumed for the demo project builds.

All of the projects presented make use of the GNU (GNU is not Unix) make utility,
which provides several build functions with minimum effort. If the provided builds in
this book present errors, then make sure to use the GNU make command, especially on
FreeBSD. Some systems install GNU make as gmake.

Development Framework

While it is possible to make gcc, libopencm3, and FreeRTOS work together on your own,
it does require a fair amount of organization and effort. How much is your time worth?
Rather than do this tedious work, a development framework is available for free from
github.comfor download. This framework integrates libopencm3 with FreeRTOS for
you. Also provided are the make files needed to build the whole project tree at once or
each project individually. Finally, there are some open source library routines included
that can shorten the development time of your new applications. This framework is
included as a github.com download or with the book’s own source code download.

Assumptions About You

This book is targeted to an audience wanting to go beyond the Arduino experience.
This applies to hobbyists, makers, and engineers alike. The software developed in this
book uses the C programming language, so fluency there will be helpful. Likewise, some
basic digital electronics knowledge is assumed as it pertains to the peripheral interfaces
provided by the platform. Additional light theory may be found in areas like the CAN
bus, for example.

The STM32 platform can be a challenge to configure and to get operating correctly.
Much of this challenge is the result of the extreme configurability of the peripheral
devices. Each portion depends upon a clock, which must be enabled and divisor
configured. Some devices are further affected by upstream clock configurations. Finally,
each peripheral itself must be enabled and configured for use. You won’t have to be an
expert, because these ducks-in-a-row procedures will be laid out and explained in the
chapters ahead.
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Hobbyists and makers need not find the book difficult. Even when challenged,
they should be able to build and run each of the project experiments. As knowledge
and confidence builds, each reader can grow into the topics covered. As part of this
exploration, all readers are encouraged to modify the projects presented and run further
experiments. The framework provided will also allow you to create new ready-to-go
projects with a minimum of effort.

What You Need

Let’s briefly cover some items that you might want to acquire. Certainly, number one on
the list is the Blue Pill device (see Figure 1-1). I recommend that you purchase units that
include the header strips to be soldered onto the PCB so that you can easily use the unit
on a breadboard (or presoldered, if you prefer).

These units are Buy-it-Now priced on eBay at around $2.13 US, with free shipping
from various sellers. To find these deals, simply use the part number STM32F103C8T6
for your search. Chapters 18-19 use three of these units communicating with each other
over a CAN bus. If you'd like to perform those experiments, be sure to obtain at least
three units. Otherwise, the demo projects only involve one unit at a time. A spare is
always recommended in case of an unhappy accident.

ST-Link V2 Programming Unit

The next essential piece of hardware is a programming adapter. Fortunately, these are
also very economically priced. These can be found on eBay for about $2.17 US, with free
shipping. Simply search for “ST-Link.” Be sure to get the “V2” programmer since there is
no point in using the inferior older unit.

Most auctions will include four detachable wires to connect the unit to your STM32
device. Try to buy a unit that includes these unless you already have a cable. Figure 1-2
illustrates the USB programmer, usable from Windows, Raspberry Pi, Linux, MacOS, and
FreeBSD.
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Figure 1-2. ST-Link V2 programmer and cable

The STM32F103C8T6 device can be programmed in multiple ways, but this book will
only use the ST-Link V2 USB programmer. This will simplify things for you when doing
project development and allows remote debugging.

A USB extension cable is useful with this unit. If you don’t have one, you might
consider getting one.

Breadboard

This almost goes without saying, but a breadboard is necessary to prototype
experiments. The breadboard is a solderless way to quickly wire up experiments, try
them, and then pull out the wires for the next experiment.

Many of the projects in this book are small, requiring space for one Blue Pill device
and perhaps some LEDs or a chip or two. However, other experiments, like the one in
Chapters 18-19, use three units communicating with each other over a CAN bus.
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I recommend that you obtain a breadboard that will fit four units (this leaves a little extra
hookup space). Alternatively, you could simply buy four small breadboards, though this
is less convenient.

Figure 1-3 illustrates the breadboard that I am using in this book. It is not only large
enough, but also has power rails at the top and bottom of each strip. The power rails are
recommended, since this eases the wiring.

Figure 1-3. A breadboard with supply rails

DuPont (Jumper) Wires

You might not give much thought to the wiring of a breadboard, but you will find that
DuPont wires can make a huge difference. Yes, you can cut and strip your own AWG22
(or AWG24) gauge wires, but this is inconvenient and time consuming. It is far more
convenient to have a small box of wires ready to go. Figure 1-4 illustrates a small random
collection of DuPont wires.

10
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Figure 1-4. A random collection of DuPont wires

Male-to-male DuPont wires can be purchased in assorted sets on eBay for about
the Buy-it-Now price of $2.00 US with free shipping. They might have auction titles like
“65Pcs Male to Male Solderless Flexible Breadboard DuPont Jumper Cable Wires.” I
recommend that you get the assorted sets so that you get different colors and lengths.
A search like “DuPont wires male -female” should yield good results. The “-female”
keyword will eliminate any ads that feature female connectors.

0.1 uF Bypass Capacitors

You might find that you can get by without bypass caps (capacitors), but they are
recommended (shown in Figure 1-5 as yellow blobs on the power rails). These can be
purchased in quantity from various sources, including eBay.

11
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Figure 1-5. Breadboard with STM32F103C8T6 and 0.1 uF bypass capacitors
installed on the rails

Try to buy quality capacitors like Metalized Polyester Film units if possible. The
voltage rating can be as low as 16 volts. A few of these should be plugged into your supply
rails on the breadboard, between the positive and negative rails, to filter out any voltage
transients and noise.

USB TTL Serial Adapter

This device is essential for some of the projects in this book. Figure 1-6 illustrates the
unit that I used. This serial adapter is used to communicate data to your desktop/laptop.
Without a display, this allows you to communicate through a virtual serial link (via USB)
to a terminal program.

12
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There are several types of these available on eBay and elsewhere, but be careful to get
a unit with hardware flow control signals. The cheapest units will lack these additional
signals (look for RTS and CTS). Without hardware flow control signals, you will not be
able to communicate at high speeds, such as 115200 baud, without losing data.

If you're running Windows, also be careful of buying FTDI (FTDI Chip) fakes. There
were reports of FTDI software drivers bricking the fake devices at one time. Your choice
doesn’t have to include FTDI, but if the device claims FTDI compatibility, be aware and
check your driver support.

You'll notice in Figure 1-6 that I have a tag tied to the end of the cable. That tag
reminds me which colored wire is which so that I can hook it up correctly. You might

want to do something similar.

S L € FAD
2.5 —CT=
B = ey — :’;’;5’
- Grecn —
\ ;57_?!&//?::1"3 N é)(_d,
N 5. e //ow —ETS

Figure 1-6. A USB-to-TTL serial (5V) adapter cable

These are normally 5-volt devices and are hence TTL compatible. Note, however,
that one of the features of the STM32F103 family of devices is that many of the GPIO pins
are 5-volt tolerant, even though the MCU operates from a +3.3-volt supply. This permits
the use of these TTL adapters without causing harm. More will be said about this later.
Other units can be purchased that operate at the 3.3-volt level or that can switch between
5and 3.3 volts.

13



CHAPTER 1 INTRODUCTION

Power Supply

Most of the projects presented will run just fine off of the USB or TTL adapter power
output. But if your project draws more than the usual amount of current, then you may
need a power adapter. Figure 1-7 illustrates a good adapter to fit the breadboard power
rails. It can be purchased from eBay for about $1.00 US with free shipping. Mine was
advertised as “MB102 Solderless Breadboard Power Supply Module, 3.3V 5V for Arduino
PCB Board.” If your breadboard lacks power rails, you may need to shop for a different
type of breadboard.

Figure 1-7. A small breadboard power supply and 7.5 VDC adapter

The MB102 is convenient because it can be jumpered to supply 3.3 or 5 volts.
Additionally, it includes a power on/off button.

The other consideration is the wall adapter to supply the input power (this is not
included). While the MB102 accepts up to 12 volts of input, I found that most 9 VDC
wall adapters had an open circuit voltage near 13 volts or more. I feel that those are risky
because if the cheap MB102 fails for any reason, the over-voltage might leak through and
damage your MCU unit(s) as well.

Foraging through my junk box of “wall warts,” I eventually found an old Ericsson
phone charger rated at 7.5 VDC at 600 mA. It measured an unloaded voltage of 7.940
volts. This is much closer to the 5 and 3.3 volt outputs that the MB102 will regulate to. If
you have to purchase a power adapter, I recommend a similar unit.

14
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Small Stuff

There are some small items that you may already have. Otherwise, you will need to get
some LEDs and resistors for project use. Figure 1-8 shows a random set of LEDs and a
SIP-9 resistor.

Figure 1-8. A random collection of 5 mm LEDs and one SIP-9 resistor at the bottom

Usually an LED is targeted for about 10 mA of current for normal brightness. Smaller
LEDs only require maybe 2 to 5 mA. With a supply voltage near 3.3 volts, you'll want a
resistor of about 220 Q to limit the current (220 ohms limits the current to a maximum of
approximately 7 mA). So, get a few 220 Q resistors (1/8th watt will be sufficient).

Another part you may want to consider stocking is the SIP-9 resistor. Figure 1-9
illustrates the internal schematic for this part. If, for example, you want to drive eight
LEDs, you would need eight current-limiting resistors. Individual resistors work but
require extra wiring and take up breadboard space. The SIP-9 resistor, on the other hand,
has one connection common to the eight resistors. The other eight connections are the
other end of the internal resistors. Using this type of package, you can reduce the parts
count and wiring required.

15
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1 2 3 4 5 6 7 8 9

Figure 1-9. The internal schematic view of a SIP-9 resistor

Summary

This chapter has introduced the main actors that will appear in this book. It also
itemized most of the things that you might need to acquire. The next chapter will guide
you through the necessary steps of software installation. Once that is out of the way, the
real fun can begin.

16
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Software Setup

Before you can get underway with project-related work, you need some software
installed. There are a number of “moving parts” involved. Despite this, the process
should proceed smoothly. Once accomplished, it need not be revisited.

Directory Conventions Used

Throughout this book, I'll need to refer to different subdirectories of the supplied software.
It is assumed that the top level of your installed software is named “~/stm32f103c8t6.”

So, when I refer to a pathname “~/stm321103c8t6/1ibopencm3/README.md,” I'll assume
that starts from your home (~) directory (wherever that is). I'll often use this pathname
convention for clarity, even though your current directory may be the correct one for the
file being referenced.

Operating Software

I'm also going to assume you have a POSIX (Linux/Unix) environment from which

to run commands. The Linux or Raspberry Pi environments using the bash shell are
perhaps the most natural. Other good environments include FreeBSD and MacOS. From
FreeBSD, I'll assume that you are using the bash shell.

If you're using Windows and you haven’t installed it yet, you’ll want to install Cygwin
(https://www.cygwin.com). Some might use MSYS instead. After installing the base
Cygwin system, make sure that you also install make and git. This will give you a Linux-
like command-line environment from which to build software.

17
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Mac users will need to install git at a minimum. You'll also need GNU make,
especially if you use FreeBSD (Free Berkeley Software Distribution). Sometimes GNU
make is installed as gmake instead on a BSD (Berkely Software Distribution) system. If
you're using Mac Homebrew (https://brew.sh), you can install these as follows:

$ brew install make
$ brew install git

If you're a Mac Ports (https://www.macports.org) user, you'll need to use that
framework to install make and git.

Book Software

The directory structure for building with libopencm3 and FreeRTOS is available from
github.com. Choose a suitable place from which to create a subdirectory. This book will
assume home directory:

$ cd ™
Use the git command to download and create a subdirectory as follows:
$ git clone https://github.com/ve3wwg/stm32f103c8t6.git

The preceding command will create directory ~/stm32f103c8t6. However, feel free
to rename it to something easier to type, like ~/stm32.

libopencm3

Next, we must download the libopencm3 software into the correct place. First, change to
the subdirectory, and then issue the git clone command for libopencma3:

$ cd ~/stm32f103f8t6
$ git clone https://github.com/libopencm3/1libopencm3.git

This will populate the directory ~/stm32103c8t6/1ibopencm3 with files and
subdirectories.
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FreeRTOS

The next important piece of software is FreeRTOS. Unfortunately, it must be downloaded
and unpacked as a zip file.

1. Gotohttp://www.freertos.org.
2. Locate “Download Source” at the left.

3. Click the link “2. Click to download the latest official release from
SourceForge.”

Depending on your browser and operating system, a zip file should be downloaded
automatically. It will have a version number in the file name. At the time of writing, the
downloaded file name is FreeRTOSv10.0.1.zip. Change to the ~/stm32f103c8t6/rtos
subdirectory before unpacking the zip file. On my Mac, the download directory is
~/Downloads. Substitute in the unzip command as required for your system:

$ cd ~/stm32f103c8t6/rtos
$ unzip ~/Downloads/FreeRTOSv10.0.1.zip

Once that completes, there should be several files and subdirectories under
~/stm32f103c8t62/rtos/FreeRTOSv10.0.1.

~/stm32f103c8t6/rtos/Project.mk

Because the version number of FreeRTOS is included in the subdirectory name, there is
a potential change left. Edit the file Project.mk with your favorite editor (or nano) and
locate the following line near the top of the file:

FREERTOS ?= FreeRTOSv10.0.1

If your version of FreeRTOS is newer than this, like FreeRTOSv11.0.0, then edit it to
match your version and resave the file:

FREERTOS ?= FreeRTOSv11.0.0

This will allow the Project.mk make file to work correctly later when you want to
create a new RTOS project.
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ARM Cross Compiler

If you don’t yet have an ARM cross compiler installed, it will need to be installed. If
you're running Linux or Raspberry Pi, you may be able to just use the apt-get command
to install it. Despite that, I recommend that you download and install the toolchain as
outlined next instead because some cross-compiler tools are not well organized and are
sometimes incomplete.

If you're running Mac or Windows (Cygwin), then definitely use the following
procedure. This procedure is also recommended for Linux and Raspberry Pi if you have
had problems with the installed packages:

1. Go to the site https://developer.arm.com.

2. Click on the link “Linux/Open Source.”

3. Scroll down and click on “ARM GNU Embedded Toolchain.”
4. Scroll down and click on the big button labeled “Downloads.”

5. Scroll down until you find the platform download required.
Windows 32-bit, Linux 64-bit, Mac OS X 64-bit, etc. Click on the
appropriate choice for your platform to download.

6. Create a system directory /opt (if you do not already have one):

$ sudo -i
# mkdir /opt

7. Change to the /opt directory (as root):
# cd /opt

8. From this point, you'll unpack your compiler download (Mac
example). Be sure to be specific about your home directory:

# tar xjf ~myuserid/Downloads/gcc-arm-none-eabi-6-2017-q2-
update-mac.tar.bz2

Use tar option “j” if the ending of the file is .bz2. Otherwise,

use “z” when the ending is .gz. If you don’t have the GNU tar
command installed on the Mac, then you can install it using
macports (www.macports.org) or Homebrew (https://brew.sh/).
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9. Once the tar file has been extracted, it may produce a large
directory name like gcc-arm-none-eabi-6-2017-q2-update. Now
is a good time to shorten that:

# mv gcc-arm-none-eabi-6-2017-g2-update gcc-arm

This will rename the directory /opt/gcc-arm-none-eabi-6-2017-
g2-update to a more manageable name /opt/gcc-arm.

10. Now, exit root and return to your developer session. In that
session, add the compiler’s bin directory to your PATH:

$ export PATH="/opt/gcc-arm/bin:$PATH"
11. At this point, you should be able to test your cross compiler:

$ arm-none-eabi-gcc --version

arm-none-eabi-gcc (GNU Tools for ARM Embedded Processors
6-2017-g2-update) 6.3.1 20170620 (release) [ARM/embedded-
6-branch revision 249437]

Copyright (C) 2016 Free Software Foundation, Inc.

This is free software; see the source for copying
conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

If the compiler doesn’t start and instead gives you a message like this:

$ arm-none-eabi-gcc --version
-bash: arm-none-eabi-gcc: command not found

then your PATH variable is either not set up properly or not exported, or the installed
tools are using a different prefix. Perform the following if necessary (the output has been
abbreviated slightly here):

$ 1s -1 /opt/gcc-arm/bin

total 75128

-TWXY-XY-X@ 1 root wheel 1016776 21 Jun 16:11 arm-none-eabi-addr2line
-IWXT-XTr-X@ 2 root wheel 1055248 21 Jun 16:11 arm-none-eabi-ar
-TWXT-XT-X@ 2 root wheel 1749280 21 Jun 16:11 arm-none-eabi-as
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-TWXT-Xr-X@ 2 root wheel 1206868 21 Jun 19:08 arm-none-eabi-c++
-TWXY-XY-X@ 1 root wheel 1016324 21 Jun 16:11 arm-none-eabi-c++filt
-TwXr-Xr-x@ 1 root wheel 1206788 21 Jun 19:08 arm-none-eabi-cpp
-TWXTr-Xr-X@ 1 root wheel 42648 21 Jun 16:11 arm-none-eabi-elfedit
-TwWXr-XT-X@ 2 root wheel 1206868 21 Jun 19:08 arm-none-eabi-g++
-TwXT-Xr-x@ 2 root wheel 1202596 21 Jun 19:08 arm-none-eabi-gcc

-TWXY-XY-X@ 2 root wheel 1035160 21 Jun 16:11 arm-none-eabi-nm
-TWXT-Xr-Xx@ 2 root wheel 1241716 21 Jun 16:11 arm-none-eabi-objcopy

If you obtained your cross compiler from a different source than the one indicated,
you might not have the prefix names. If you see the file name gcc instead of arm-none-
eabi-gcc, you'll need to invoke it as simply gcc. But be careful in this case, because your
cross compiler may get confused with your platform compiler. The prefix arm-none-
eabi- prevents this. When you go to use your cross platform gcc, check that the correct
compiler is being used with the type command:

$ type gcc
arm-none-eabi-gcc is hashed (/opt/gcc-arm/bin/gcc)

If your bash shell is locating gcc from a different directory than the one you installed,
then your PATH is not set correctly.

If you must change the toolchain prefix, then the top-level ~/stm32f103c8t6/
Makefile.incl should be edited:

$ cd ~/stm32f103c8t6
$ nano Makefile.incl

Modify the following line to suit and resave it:
PREFIX ?= arm-none-eabi

In a normal situation where the cross-platform prefix is used, you should also be able
to make this confirmation:

$ type arm-none-eabi-gcc
arm-none-eabi-gcc is hashed (/opt/gcc-arm/bin/arm-none-eabi-gcc)
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This confirms that the compiler is being run from the installed /opt/gcc-arm directory.

Note The PATH variable will need modification for each new terminal session
to use the cross-compiler toolchain. For convenience, you may want to create a
script, modify your ~/ .bashxc file, or create a shell alias command to do this.

Build the Software

At this point, you've installed the book software, libopencm3, FreeRTOS, and the ARM
cross-compiler toolchain. With the PATH variable set (as just seen), you should now be
able to change to your stm321103c8t6 directory and type make (some users might need
to use gmake instead):

$ cd ~/stm32f103c8t6
$ make

This will build ~/stm32103c8t6/1ibopencm3 first, followed by all other
subdirectories.

There is always the possibility that a new version of libopencm3 might create build
problems. These are difficult to anticipate, but here are some possibilities and solutions:

1. Something in libopencm3 is flagged as an error by the cross
compiler, where previously it was acceptable. You can:

a. Correct or work around the problem in the libopencm3
sources.

b. Try a later (or prior) version of the cross-compiler toolchain.
Newer toolchains will often correct the issue. For reference,
the toolchain used for this book was “GNU Tools for ARM
Embedded Processors 6-2017-q2-update) 6.3.1 20170620.”

c. Install an older version of libopencm3. All projects tested in
this book used the library with the latest git commit dated
October 12, 2017.

2. Something in the book’s software is busted. Check the git
repository for updates. As issues become known, fixes will be
applied and released there. Also check the top-level README . md file.
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ST-Link Tool

There is one final piece of software that may need installation. If you’ve not already
installed it using your system’s package manager, you'll need to install it now. Even if you
have it installed already, it may be outdated. Let’s test it to see:

$ st-flash
Look for the following line in the help display:

./st-flash [--debug] [--reset] [--serial <serial>] [--format <format>] \
[--flash=<fsize>] {read|write} <path> <addr> <size>

If you don’t see the option --flash=<fsize> mentioned, then you may want to
download the latest from github and build it from source code. This is only necessary if
you want to use more than 64K of flash memory. None of the demos in this book go over
that limit.

People have reported that many of the STM32F103C8T6 units support 128K of flash
memory, even though the device reports that it only has 64K. The following command
probes a unit that I own, from eBay, for example:

$ st-info --probe
Found 1 stlink programmers

serial: 493f6f06483f53564554133f
openocd: "\x49\x3f\x6F\x06\x48\x3f\x53\x56\x45\x54\x13\x3f"

flash: 65536 (pagesize: 1024)

sram: 20480
chipid: 0x0410
descr: F1 Medium-density device

The information reported indicates that the device only supports 65536 bytes (64K)
of flash. Yet, I know that I can flash up to 128K and use it (all of mine support 128K).
It has been suggested that both the F103C8 devices and the F103B8 devices use the
same silicon die. I'll cover using the ST-Link V2 programmer on your device in the next
chapter.

If you don’t have these utilities installed, do so now using apt-get, brew, yum, or
whatever your package manager is. Failing a package install, you can download the latest
source code from github here:
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$ git clone https://github.com/texane/stlink.git
$ cd ./stlink

$ make

$ cd build/Release
$ sudo make install

If you run into trouble with this, see the following online resources:

The README .md file at https://github.com/texane/stlink
https://github.com/texane/stlink/blob/master/doc/compiling.md
Make sure that you have libusb installed.

Some Linux distributions may require you to also perform sudo
ldconfig after the install.

Summary

With the software installs out of the way, we can finally approach the hardware and do

something with it. In the next chapter, we’ll look at your power options and then apply

the ST-Link V2 programmer to probe your device.
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CHAPTER 3

Power Up and Blink

The unit that you purchased has likely already been preprogrammed to blink when it is
powered up (perhaps you've checked this already). This makes it easy to test that it is a
working unit. There are a few other important details regarding power, reset, and LEDs

that need to be discussed in this chapter. Finally, the use of the ST-Link V2 programmer

and a device probe will be covered.

Power

The STM32F103C8T6 PCB, otherwise known as the “Blue Pill” board, has a number
of connections, including a few for power. It is not necessary to use all of the power
connections at once. In fact, it is best to use only one set of connections. To clarify this
point, let’s begin with an examination of your power options. Figure 3-1 illustrates the
connections around the edges of the PCB, including power.

© Warren Gay 2018
W. Gay, Beginning STM32, https://doi.org/10.1007/978-1-4842-3624-6_3
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Figure 3-1. Power and GPIO connections to the STM32F103C8T6 “Blue Pill”
PCB. Power can be supplied to a +5V, +3.3V, or USB port, with the matching
voltage. Pins marked as “5V” (with no plus sign) are 5-volt tolerant inputs. Pins
marked with a plus sign are for power input.

The four pins at the top end of the board (darker blue) are used for programming the
device. Notice that the programming connection labeled DIO is also capable of being
a GPIO PA13. Likewise, DCLK is capable of being a GPIO PA14. You'll discover how
configurable the STM32 can be as we go through this book.

At the programming connector, note that the input supply voltage is +3.3 volts. This
connection is electrically the same as any of the others that are labeled “+3.3V” around
the PCB. These are shown in a light orange.
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+3.3V Regulator

The STM32F103C8T6 chip is designed to operate from any voltage from 2 to 3.3 volts.
The Blue Pill PCB provides a tiny +3.3-volt regulator labeled “U1” on the underside
(see Figure 3-2). My unit used a regulator with an SMD code of 4A2D, which is an
XC6204 series part. Yours may vary.

Figure 3-2. The +3.3-volt regulator on the underside of the PCB. Pin 1 of the 4A2D
(XC6204 series) regulator chip is marked.

The official schematic for this board specifies the regulator as being the RT9193-33,
which supports 300 mA.! It is possible that my PCB is a clone using a cheaper regulator
chip. My XC6204 series regulator chip is limited to 150 mA. Unless you know the
specifics of your unit, it is safest to assume 150 mA is the current limit.

The power performance of the MCU will be examined in a later chapter. But as a
starting reference point, the blink program in the device as supplied uses about 30 mA
(measured with the +5-volt input supply at 4.97 volts). This measurement includes the
small additional current used by the regulator itself.

The datasheet for the STM32F103C8T6 documents the maximum current draw at
about 50 mA. This document measurement was obtained with the external clock and
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all peripherals enabled, while operating in “run mode” at 72 MHz. Subtracting 50 from
your regulator max of 150 leaves you a current budget of about 100 mA from the +3.3-volt
regulator. It’s always good to know what the limits are!

USB Power/+5VY

When powered by a USB cable, the power arrives by the Micro-USB B connector. This
+5-volt supply is regulated to the +3.3 volts needed by the MCU. Similarly, at the top
right of Figure 3-1, there is a pin labelled “+5V” (with a plus sign), which can be used as a
power input. This goes to the same regulator input that the USB connector supplies.

Because of the low current requirements of your MCU, you can also power the unit
from a TTL serial adapter. Many USB serial adapters will have a +5-volt line available that
can supply your MCU. Check your serial adapter for specifications to be certain.

Be careful not to connect a USB cable and supply +5 volts simultaneously. Doing so
could cause damage to your desktop/laptop through the USB cable. For example, if your
+5-volt supply is slightly higher in voltage, you will be injecting current into your desktop
USB circuit.

+3.3V Supply

If you have a +3.3-volt power supply, you can leave the +5V inputs unconnected. Connect
your +3.3-volt power supply directly to the +3.3V input (make sure that the USB cable

is unplugged). This works because the regulator disables itself when there is no input
provided on the 5-volt input.

When supplying power to the +3.3-volt input, you are connecting your power to the
VOUT terminal of the regulator shown in Figure 3-3. In this case, there is no 5-volt power
flowing into VIN of the regulator. The CE pin is also connected to VIN, but when VIN is
unconnected, the CE pin becomes grounded by a capacitor. A low level on CE causes the
regulator to shut down its internal subsystems.
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Figure 3-3. Block diagram of the 5 to 3.3 volt regulator

There is, however, a small amount of current flow into the regulator’s voltage divider.
This current will flow from your +3.3 volts to ground, through internal resistances R1 and
R2 of the regulator. These resistances are high, and the current involved is negligible. But
be aware of this when measuring current for ultra-low-power battery applications.

Caution Do not supply both +5 volts and +3.3 volts at the same time. This could
cause damage to the regulator or your desktop when the USB cable is plugged in.
Use a single power source.

One Power Source Rule

What I've been leading up to is the general advice to use just one power source. I can’t
stress enough that supplying your PCB with more than one power source can cause
damage.

This tends to be obvious with the +3.3-volt and +5-volt supply inputs. What can easily
be forgotten, however, is the USB cable. Consider that you could have power arriving
from a USB serial adapter, the ST-Link V2 programmer, or the USB cable. Move slowly
when changing your power arrangement, especially when switching from programming
the device to your normal power configuration.
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Certain applications may require you to use additional supplies; for example, when
powering motors or relays. In those cases, you would supply the external circuits with the
power they need but not the MCU PCB. Only the signals and the ground need to share

connections. If this isn’t clear, then assume the one power source rule.

Ground

The return side of the power circuit, or the negative side, is known as the ground
connection. It is labeled in Figure 3-1 in black. All of these ground connections are
electrically connected together. These pins can be used interchangeably.

Reset

The PCB also supplies a button labeled “RESET” and a connection on one side labeled
“R” This connection permits an external circuit to reset the MCU if required. Figure 3-4
illustrates the push-button circuit, including the connection going to the MCU.

+3.3V
S
RESET T -
MCU
0.1uF

=]

Figure 3-4. The STM32F103C8T6 Reset circuit. Connection “R” is found on the
edge of the PCB.

Showtime

You've probably already tested your unit, but if you haven’t yet then do so now. The
safest and easiest way to do this is to use a USB cable with a Micro-USB B connector.
Plug your cable into a USB power source, which doesn’t have to be a computer.
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Once powered, your unit should blink away. If not, then try pressing the Reset button.
Also make sure that your boot-0 and boot-1 jumpers are positioned as shown in Figure 3-1
(both jumpers should be positioned to the side labeled “0”).

There are two built-in LEDs. The LED on the left indicates that power has been
applied (mine was yellow, but yours may differ). The LED at right is activated by GPIO
port PC13 under program control (mine was red; again, yours may differ).

Caution Some have reported having their USB connector break off of the
PCB. Be gentle inserting the Micro-USB B cable end.

If you are currently lacking a suitable USB cable, you can try the unit out if you can
supply either +5 volts or +3.3 volts to the appropriate connection as discussed. Even a pair
of dry cells in series for +3 volts will do (recall that this MCU will function on 2 to 3.3 volts).

Figure 3-5 illustrates the unit’s being powered from the +3.3-volt connection at the
top of the PCB where the programmer connects. Be careful when using alligator clips,
ensuring they don’t short to other pins. DuPont wires can be used with greater safety.

r g
i TAGE
Q voL

Figure 3-5. The STM32F108C8T6 blinking and powered by a HP 6284A power
supply using the top header strip (+3.3 volts)
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ST-Link V2

The next item to check off our list in this chapter is to hook up and run the st-info
utility. When you get your programmer, you will likely just get four DuPont wires with
female ends. This isn’t real convenient but does work if you wire it correctly. If you
switch devices to be programmed frequently, you’ll want to make a custom cable for the
purpose. The programmer hookup diagram is shown in Figure 3-6. It has been reported
that different models of the programmer are available using different connections and

wiring.
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Figure 3-6. ST-LINK V2 programmer hookup to STM32F103C8T6 device. Check
the connections on the device you have, assome ST-Link programmers are different.

With the programmer hooked up according to Figure 3-6, check your boot-0 and
boot-1 jumpers located beside the Reset button. These should appear as they do in
Figure 3-1 (with both jumpers close to the side marked “0”).
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Plug your ST-Link V2 programmer into a USB port or use a USB extension cable.
Once you do this, the power LED should immediately light. Also, the PC13 LED should
also blink if your unit still has the blink program in it. Figure 3-7 illustrates the setup.

Figure 3-7. ST-Link V2 programmer using a USB extension cable, hooked up to
the STM32F103C8T6 using DuPont wires

From your desktop, run the st-info command as follows:

$ st-info --probe
Found 1 stlink programmers
serial: 493f6f06483f53564554133f
openocd: "\x49\x3f\x6F\x06\x48\x3f\x53\x56\x45\x54\x13\x3f"
flash: 131072 (pagesize: 1024)
sram: 20480
chipid: 0x0410
descr: F1 Medium-density device

The st-info command should find your ST-Link V2 programmer and the
STM32F103C8T6 attached to it. The successful result should be similar to mine shown.
Notice that the CPU serial number is reported along with the SRAM (20K). The amount
of flash memory reported here is 128K, but you might see 64K instead. It will probably
support 128K anyway.
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st-flash Utility

Let’s now look at how you can use the st-flash utility to read (save), write (program), or
erase your STM32 device.

Read STM32

Saving memory content from your device to a file will allow you to restore the original
programming, should you need it later. The following example reads from your device’s
flash memory, starting at address 0x80000000, and saves 0x1000 (4K) worth of data to a
file named saved. img. Unless otherwise stated, the C programming Ox prefix convention
will be used to indicate hexadecimal numbers in this book:

$ st-flash read ./saved.img 0x8000000 0x1000
st-flash 1.3.1-9-gc04df7f-dirty
2017-07-29T09:54:02 INFO src/common.c: Loading device parameters....
2017-07-29T09:54:02 INFO src/common.c: Device connected is: \
F1 Medium-density device, id 0x20036410
2017-07-29T09:54:02 INFO src/common.c: SRAM size: 0x5000 bytes (20 KiB), \
Flash: 0x20000 bytes (128 KiB) in pages of 1024 bytes

To check the content of the saved image file, use the hexedit utility (you may need to
use your package manager to install it on your desktop):

$ hexedit saved.img

To get help while in the utility, press F1. You can use Control-V to scroll down a page
at a time. Use Control-C to exit out to the command line.

Examining the file, you should see hexadecimal content until about offset 0x4EC.
From that point on, you may see hexadecimal OxFF bytes, representing unwritten
(erased) flashed memory. If you see nothing but zeros or 0xFF bytes, then something
is wrong. Make sure you include the 0x prefix on the address and size arguments of the
command.

If you don’t see a bunch of 0xFF bytes at the end of the saved image, it may be that
you need to save a larger-sized image.

36



CHAPTER 3  POWER UP AND BLINK

Write Image

Writing flash memory is the reverse of reading, of course. A saved memory image can be
“flashed” by use of the write subcommand using st-flash. Note that we omit the size
argument for this command. For this example, we write it back to the same address:

$ st-flash write ./saved.img 0x8000000

st-flash 1.3.1-9-gco4df7f-dirty

2017-07-29T10:00:39 INFO src/common.c: Loading device parameters....

2017-07-29T10:00:39 INFO src/common.c: Device connected is: \
F1 Medium-density device, id 0x20036410

2017-07-29T710:00:39 INFO src/common.c: SRAM size: 0x5000 bytes (20 KiB), \
Flash: 0x20000 bytes (128 KiB) in pages of 1024 bytes

2017-07-29T10:00:39 INFO src/common.c: Ignoring 2868 bytes of oxff \
at end of file

2017-07-29T10:00:39 INFO src/common.c: Attempting to write 1228 (0x4cc) \
bytes to stm32 address: 134217728 (0x8000000)

Flash page at addr: 0x08000400 erased

2017-07-29T10:00:39 INFO src/common.c: Finished erasing 2 pages of 1024 \
(0x400) bytes

2017-07-29T10:00:39 INFO src/common.c: Starting Flash write for \
VL/FO/F3 core id

2017-07-29T10:00:39 INFO src/flash _loader.c: Successfully loaded flash \
loader in sram

1/1 pages written

2017-07-29T10:00:39 INFO src/common.c: Starting verification of write \
complete

2017-07-29T10:00:39 INFO src/common.c: Flash written and verified! \
jolly good!

This operation will restore your saved blink image file to the flash memory in your
device. It may start to blink immediately. Otherwise, press the Reset button to force a
restart.
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Erase Flash

There may be times when you want to force a full erasure of the device. Perhaps you

want to donate your device to a friend and want to eliminate your last experiment:

$ st-flash erase

st-flash 1.3.1-9-gco4df7f-dirty

2017-07-29T10:06:17 INFO src/common.c: Loading device parameters....

2017-07-29T10:06:17 INFO src/common.c: Device connected is: \
F1 Medium-density device, id 0x20036410

2017-07-29T10:06:17 INFO src/common.c: SRAM size: 0x5000 bytes (20 KiB), \
Flash: 0x20000 bytes (128 KiB) in pages of 1024 bytes

Mass erasing

After this operation completes, your device should be fully erased. It should also stop
blinking. For fun, try now to restore the image and reset.

Summary

This chapter provided important information about powering options. This is critical
because failures in this area can lead to permanent damage. By now, you have plugged
in your unit and verified that it is functional with the included blink program. Then, you
confirmed that the programmer and the device to be programmed are both functional
using the st-1ink command. Finally, you learned how to use the st-flash utility to
read, write, and erase flash memory on the device.

Bibliography

1. http://wiki.stm32duino.com/images/c/c1/Vcc-gnd.com-
STM32F103C8-schematic.pdf
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CHAPTER 4

GPIO

In this chapter, you're going to use the libopencma3 library to build a blink program
from source code. This example program demonstrates the configuration and use of
GPIO (General Purpose Input/Output). The program presented is a slightly modified
version of a libopencm3 example program named miniblink. It has been modified to
provide a different timing so that it will be obvious that your newly flashed code is the
one executing. After building and running this program, we’ll discuss the GPIO API
(Application Programming Interface) that is provided by libopencm3.

Building miniblink
Change to the subdirectory miniblink as shown, and type make:

$ cd ~/stm32f103c8t6/miniblink
$ make
gmake: Nothing to be done for 'all'.

If you see the preceding message, it may be because you have already built all of
the projects from the top level (there is nothing wrong with that). If, however, you made
changes to the source-code files, make should automatically detect this and rebuild the
affected components. Here, we just want to force the rebuilding of the miniblink project.
To do this, type make clobber in the project directory, and then make afterward, as shown:

$ make clobber

m -f *.0 *.d generated.* miniblink.o miniblink.d
rm -f *.elf *.bin *.hex *.srec *.list *.map

$ make
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arm-none-eabi-size miniblink.elf
text data bss dec hex filename
696 0 0 696 2b8 miniblink.elf
arm-none-eabi-objcopy -Obinary miniblink.elf miniblink.bin

When you do this, you will see a few long command lines executed to compile and
link your executable named miniblink.elf. To flash your device, however, we also need
an image file. The last step of the build shows how the ARM-specific objcopy utility is
used to convert miniblink.elf into the image fileminiblink.bin.

Just prior to the last step, however, you can see that the ARM-specific size command
has dumped out the sizes of the data and text sections of your program. Our miniblink
program consists only of 696 bytes of flash (section text) and uses no allocated SRAM
(section data). While this is accurate, there is still SRAM being used for a call stack.

Flashing miniblink

Using the make framework again, we can now flash your device with the new program
image. Hook up your ST-Link V2 programmer, check the jumpers, and execute the
following:

$ make flash

/usr/local/bin/st-flash write miniblink.bin 0x8000000

st-flash 1.3.1-9-gco4df7f-dirty

2017-07-30T12:57:56 INFO src/common.c: Loading device parameters....

2017-07-30T12:57:56 INFO src/common.c: Device connected is: \
F1 Medium-density device, id 0x20036410

2017-07-30T12:57:56 INFO src/common.c: SRAM size: 0x5000 bytes (20 KiB),\
Flash: 0x20000 bytes (128 KiB) in pages of 1024 bytes

2017-07-30T12:57:56 INFO src/common.c: Attempting to write 696 (0x2b8) \
bytes to stm32 address: 134217728 (0x8000000)

Flash page at addr: 0x08000000 erased

2017-07-30T12:57:56 INFO src/common.c: Finished erasing 1 pages of \
1024 (0x400) bytes

2017-07-30T12:57:57 INFO src/common.c: Flash written and verified! \
jolly good!
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Once this is done, your device should automatically reset and start the flashed
miniblink program. With the modified time constants used, you should see it now
blinking frequently, with a mostly-on 70/30 duty cycle. Your supplied device blink
program likely used a slower 50/50 duty cycle instead. If your blink pattern varies
somewhat from what is described, don’t worry. The important point is that you've
flashed and run a different program.

This program does not use a crystal-controlled CPU clock. It uses the internal RC
clock (resistor/capacitor clock). For this reason, your unit may flash quite a bit faster or
slower than someone else’s unit.

miniblink.c Source Code

Let’s now examine the source code for the miniblink program you just ran. If not still in
the subdirectory miniblink, change to there now:

$ cd ~/stm32f103c8t6/miniblink

Within this subdirectory, you should find the source program file miniblink.c.
Listing 4-1 illustrates the program without comment boilerplate:

Listing 4-1. Listing of miniblink.c

0019: #include <libopencm3/stm32/rcc.h>

0020: #include <libopencm3/stm32/gpio.h>

0021:

0022: static void

0023: gpio setup(void) {

0024:

0025:  /* Enable GPIOC clock. */

0026:  rcc_periph clock enable(RCC_GPIOC);

0027:

0028:  /* Set GPIO8 (in GPIO port C) to 'output push-pull'. */
0029: gpio set mode(GPIOC,GPIO MODE_OUTPUT 2 MHZ,
0030: GPIO CNF_OUTPUT PUSHPULL,GPIO13);
0031: }

0032:
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0033: int
0034: main(void) {
0035: int i;

0036:

0037:  gpio_setup();

0038:

0039: for (5;) {

0040: gpio_clear(GPIOC,GPI013); /* LED on */
0041: for (i = 0; i < 1500000; i++) /* Wait a bit. */
0042: __asm__("nop");

0043:

0044: gpio set(GPIOC,GPI013); /* LED off */
0045: for (i = 0; i < 500000; i++) /* Wait a bit. */
0046: __asm__("nop");

0047: '}

0048:

0049: return 0;

0050: }

Note The line numbers appearing at the left in the listings are not part of the
source file. These are used for ease of reference only.

The structure of the program is rather simple. It consists of the following:

1. A main program function declared in lines 33-50. Note that unlike
a POSIX program, there are no argc or argv arguments to function
main.

2. Within the main program, function gpio _setup() is called to
perform some initialization.

3. Lines 39-47 form an infinite loop, where an LED is turned on and
off. Note that the return statement in line 49 is never executed
and is provided only to keep the compiler from complaining.

Even in this simple program there is much to discuss. As we will see later, this
example program runs at a default CPU frequency since none is defined. This will be
explored later.
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Let’s drill down on the simple things first. Figure 4-1 illustrates how the LED that
we're flashing is attached to the MCU on the Blue Pill PCB. In this schematic view, we
see that power enters the LED from the +3.3-volt supply through limiting resistor R1.

To complete the circuit, the GPIO PC13 must connect the LED to ground to allow the
current to flow. This is why the comment on line 40 says that the LED is being turned on,
even though the function call is gpio_clear(). Line 44 uses gpio_set() to turn the LED
off. This inverted logic is used simply because of the way the LED is wired.

+3.3V
— (]
ry S
{, LED

STM32F103C8T6

L=

Figure 4-1. LED connected to PC13 on the Blue Pill PCB

Look again at these function calls:

gpio_clear(GPIOC,GPI013); /* LED on */

gpio set(GPIOC,GPIO13); /* LED off */
Notice that these two calls require two arguments, as follows:
1. A GPIO portname
2. A GPIO pin number

If you are used to the Arduino environment, you are used to using something like the
following:

int ledPin = 13; // LED on digital pin 13
digitalWrite(ledPin,HIGH);

digitalWrite(ledPin,LOW);
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In the non-Arduino world, you generally work directly with a port and a pin. Within
the libopencm3 library, you specify whether you are clearing or setting a bit based upon
the function name (gpio clear() or gpio_set()). You can also toggle a bit with the
use of gpio_toggle(). Finally, it is possible to read and write the full set of pins by port
alone, using gpio port read() and gpio port write() respectively.

GPIO API

This is a good place to discuss the libopencm3 functions that are available for GPIO use.
The first thing you need to do is include the appropriate header files, as follows:

#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>

The rcc. hfile is needed for definitions so as to enable the GPIO clock. The gpio.h
file is necessary for the remainder:

void gpio_set(uint32_t gpioport, uint16_t gpios);

void gpio clear(uint32_t gpioport, uint16_t gpios);

uint16_t gpio get(uint32_t gpioport, uint16 t gpios);

void gpio_toggle(uint32_t gpioport, uint16_t gpios);

uint16 t gpio port read(uint32_t gpioport);

void gpio port write(uint32_ t gpioport, uint16 t data);

void gpio port config lock(uint32 t gpioport, uint16 t gpios);

In all of the preceding functions, the argument gpioport can be one of the macros
from Table 4-1 (on other STM32 platforms, there can be additional ports). Only one port
can be specified at a time.

Table 4-1. libopencm3 GPIO Macros for STM32F103C816

Port Macro Description
GPIOA GPIO port A
GPIOB GPIO port B
GPIOC GPIO port C
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In the libopencm3 GPIO functions, one or more GPIO bits may be set or cleared at
once. Table 4-2 lists the macro names supported. Note also the macro named GPIO ALL.

Table 4-2. libopencm3 GPIO pin designation macros

Pin Macro Definition Description
GPIO0O (1<<0) Bit0

GPIO2 (1<<1) Bit 1

GPIO2 (1<<?2) Bit 2

GPIO3 (1<<3) Bit 3
GPIO4 (1<<4) Bit 4

GPIO5 (1<<b) Bit 5
GPI06 (1<<6) Bit 6

GPIO7 (1<<7) Bit 7

GPIO8 (1<<8) Bit 8
GPI09 (1<<9) Bit9
GPI010 (1 <<10) Bit 10
GPIO11 (1<<11) Bit 11
GPIO012 (1<<12) Bit 12
GPI013 (1<<13) Bit 13
GPI014 (1 << 14) Bit 14
GPIO15 (1 << 15) Bit 15
GPIO_ALL Oxffff All bits 0 through 15

An example of GPIO_ALL might be the following:
gpio _clear(PORTB,GPIO ALL); // clear all PORTB pins

A special feature of the STM32 series, which libopencm3 supports, is the ability to
lock a GPIO I/0O definition, as follows:

void gpio port config lock(uint32_ t gpioport, uinti16 t gpios);
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After calling gpio_port config lock() on a port for the selected GPIO pins, the I/O
configuration is frozen until the next system reset. This can be helpful in safety-critical
systems where you don’t want an errant program to change these. When a selected GPIO
is made an input or an output, it is guaranteed to remain so.

GPI0 Configuration

Let’s now examine how the GPIO was set up in function gpio_setup(). Line 26 of
Listing 4-1 has the following curious call:

rcc_periph clock enable(RCC GPIOC);

You will discover throughout this book that the STM32 series is very configurable.
This includes the underlying clocks needed for the various GPIO ports and peripherals.
The shown libopencm3 function is used to turn on the system clock for GPIO port C. If
this clock were not enabled, GPIO port C wouldn’t function. Sometimes the affected
software will have operations ignored (visible result), while in other situations the system
can seize up. Consequently, this is one of those critical “ducks” that needs to be “in a row.”
The reason that clocks are disabled at all is to save on power consumption. This is

important for battery conservation.

Tip If your peripheral or GPIO is not functioning, check that you have enabled the
necessary clock(s).

The next call made is to gpio_set mode() in line 29:

gpio set mode(
GPIOC, // Table 4-1
GPIO MODE_OUTPUT 2 MHZ, // Table 4-3
GPIO CNF_OUTPUT PUSHPULL,  // Table 4-4
GPIO13 // Table 4-2

)
This function requires four arguments. The first argument specifies the affected
GPIO port (Table 4-1). The fourth argument specifies the GPIO pins affected (Table 4-2).

The third argument’s macro values are listed in Table 4-3 and define the general mode of
the GPIO port.
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Table 4-3. GPIO Mode Definitions

Mode Macro Name Value Description
GPIO_MODE_INPUT 0x00 Input mode

GPIO MODE_OUTPUT 2 MHZ 0x02 Output mode, at 2 MHz
GPIO _MODE_OUTPUT 10 MHZ 0x01 Output mode, at 10 MHz
GPIO_MODE_OUTPUT 50 MHZ 0x03 Output mode, at 50 MHz

The macro GPIO_MODE_INPUT defines the GPIO pin as an input, as you would expect.
But there are three output mode macros listed.

Each output selection affects how quickly each output pin responds to a change.
In our example program, the 2 MHz option was selected. This was chosen because the
speed of an LED signal change is not going to be noticed by human eyes. By choosing 2
MHz, power is saved and EMI (electromagnetic interference) is reduced.

The third argument further specializes how the port should be configured. Table 4-4
lists the macro names provided.

Table 4-4. 1/0 Configuration Specializing Macros

Specialization Macro Name Value Description
GPIO_CNF_INPUT_ANALOG 0x00 Analog input mode

GPIO CNF_INPUT FLOAT 0x01 Digital input, floating (default)
GPIO_CNF_INPUT PULL_UPDOWN 0x02 Digital input, pull up and down
GPIO_CNF_OUTPUT PUSHPULL 0x00 Digital output, push/pull
GPIO_CNF_OUTPUT_OPENDRAIN 0x01 Digital output, open drain

GPIO CNF_OUTPUT_ALTFN_PUSHPULL 0x02 Alternate function output, push/pull
GPIO_CNF_OUTPUT_ALTFN_ 0x03 Alternate function output, open drain
OPENDRAIN
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Input Ports

The macro names including INPUT only apply when the second argument implies an
input port. We see from Table 4-4 that inputs can be specialized three different ways:

e Analog
o Digital, floating input
o Digital, pull up and down
To make greater sense of the GPIO input and its configuration, examine the
simplified Figure 4-2.
VDD

ANAI OG_INPUT

ALT INPUT 2

on/off g yi

INPUT |
2 A\ 1 O Input

R1

Input data
register

Figure 4-2. Basic structure of the GPIO input

The MCU receiving side is on the left side, while the external input comes in from the
right. There are two protection diodes attached, which normally only come into play if
the static voltage goes negative or exceeds the supply.

When the input port is configured as an analog input, the switches connected to
resistors R1 and R2 are switched off. This is to avoid pulling the analog signal up or

48



CHAPTER4  GPIO

down. With the resistors disconnected, the analog input is routed to the line labeled
“Analog Input” with no further signal effect for the ADC (analog-to-digital conversion)
peripheral. The Schmitt trigger is also disabled to save on power consumption.

When the input port is configured for digital input, resistors R1 or R2 are in operation
unless you select the “float” option GPIO_CNF_INPUT FLOAT. For both digital input
modes, the Schmitt trigger is enabled to provide a cleaner signal with hystersis. The
output of the Schmitt trigger then goes to the “Alternate Function Input” and to the input
data (GPIO) register. More will be said about alternate functions later, but the simple
answer is that an input can act as a GPIO input or as a peripheral input.

The 5-volt-tolerant inputs are identical to the diagram shown in Figure 4-2, except that
the high side protective diode allows the voltage to rise above 3.3 volts to at least +5 volts.

Note When configuring a peripheral output, be sure to use one of the alternate
function macros. Otherwise, only GPIO signals will be configured.

Output Ports

When the GPIO port is configured for output, you have four specializations to choose from:
e GPIO push/pull
e GPIO open drain
e Alternate function push/pull
e Alternate function open drain

For GPIO operation, you always choose the non-alternate function modes. For
peripheral use like the USART, you choose from the alternate function modes instead. A
common mistake is to configure for GPIO use, like GPIO_CNF_OUTPUT_PUSHPULL for the
TX output of the USART. The correct macro is GPIO_CNF_OUTPUT_ALTFN_PUSHPULL for the
peripheral. If you're not seeing peripheral output, ask yourself if you chose from the one
of the alternate function values.

Figure 4-3 illustrates the block diagram for GPIO outputs. For 5-volt-tolerant outputs
(like the inputs), the only change to the circuit is that the high side protective diode is
capable of accepting voltages as high as +5 volts. For non-5-volt-tolerant ports, the high
side protective diode can only rise to +3.3 volts (actually, it can rise to one diode drop
above 3.3 volts).
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The “output control” circuit determines if it is driving the P-MOS and N-MOS
transistors (in push/pull mode) or just the N-MOS (in open-drain mode). In open-drain
mode, the P-MOS transistor is always kept off. Only when you write a zero to the output
will the N-MOS transistor turn on and pull the output pin low. Writing a 1-bit to an open-
drain port effectively disconnects the port since both transistors are put into the “off” state.

The weak input resistors shown in Figure 4-2 are disabled in output mode. For this
reason, they were omitted from Figure 4-3.

The output data bits are selected from either the output (GPIO) data register or
the alternate function source. GPIO outputs go to the output data register, which can
be written as an entire word or as individual bits. The bit set/reset register permits
individual GPIO bits to be altered as if they were one atomic operation. In other words,
an interrupt cannot occur in the middle of an “and/or” operation on a bit.

Because GPIO output data is captured in the output data register, it is possible to
read back what the current output settings are. This doesn’t work for alternate function
configurations, however.
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Figure 4-3. The output GPIO driver circuit
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When the output is configured for a peripheral like the USART, the data comes from
the peripheral through the alternate function output line. Seeing how the data is steered
in Figure 4-3 should emphasize the fact that you must configure the port for GPIO or
alternate functions. I am harping on this so that you won’t waste your time having to
debug this kind of problem.

Ducks in a Row

While the origin of the saying “to have one’s ducks in a row” is unclear, the one possibility
that I like refers to the fairground amusement of shooting at a row of mechanical ducks.
This arrangement makes it easier for the shooter to get them all and win the prize.
Peripherals on the STM32 platform are highly configurable, which also leaves more
than the usual opportunity for mistakes. Consequently, I'll refer often to this idea of
getting your ducks in a row, as a shorthand recipe for success. When your peripheral
configuration is not working as expected, review the ducks-in-a-row list.
Often, the problem is an omission or the use of an incorrect macro that failed to
raise a compiler warning. Sequence is also often important—you need to enable a clock
before configuring a device that needs that clock, for example.

GPIO Inputs

When configuring GPIO input pins, use the following procedure to configure it. This
applies to GPIO inputs only—not a peripheral input, like the USART. Peripherals require
other considerations, especially if alternate pin configurations are involved (they will be
covered later in the book).

1. Enable the GPIO port clock. For example, if the GPIO pin is on
port C, then enable the clock with a call to rcc_periph clock
enable(RCC_GPIOC). You must enable each port used individually,
using the RCC_GPIOx macros.

2. Set the mode of the input pin with gpio_set mode(), specifying
the portin argument one, and the GPIO_MODE_INPUT macro in
argument two.
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3. Within the gpio_set_mode() call, choose the appropriate
specialization macro GPIO_CNF_INPUT ANALOG, GPIO CNF_INPUT
FLOAT, or GPIO_INPUT_PULL_UPDOWN as appropriate.

4. Finally, specify in the last argument in the gpio_set mode()
call all pin numbers that apply. These are or-ed together, as in
GPI012|GPIO15, for example.

Digital Output, Push/Pull

Normally, digital outputs are configured for push/pull mode. This ducks-in-a-row advice
is provided for this normal case:

1. Enable the GPIO port clock. For example, if the GPIO pin is on
port B, then enable the clock with a call to rcc_periph_clock_
enable(RCC_GPIOB).You must enable each port used individually,
using the RCC_GPIOx macros.

2. Set the mode of the output pin with gpio_set mode(), specifying
the port in argument one and one of the GPIO _MODE_OUTPUT * MHZ
macros in argument two. For non-critical signal rates, choose the
lowest value GPIO_MODE_OUTPUT_2_MHZ to save power and to lower
EMI.

3. Specify GPIO_CNF_OUTPUT_PUSHPULL in argument three in the call
to gpio_set mode().Do not use any of the ALTFN macros for GPIO
use (those are for peripheral use only).

4. Finally, specify in the last argument in the gpio_set mode()
call all pin numbers that apply. These are or-ed together, as in
GPI012|GPIO15, for example.
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Digital Output, Open Drain

When working with a bus, where more than one transistor may be used to pull down
avoltage, an open-drain output may be required. Examples are found in I2C or CAN
bus communications. The following procedure is recommended for GPIO open-drain

outputs only (do not use this procedure for peripherals):

1.

Enable the GPIO port clock. For example, if the GPIO pin is on
port B, then enable the clock with a call to rcc_periph_clock
enable(RCC_GPIOB).You must enable each port used individually,
using the RCC_GPIOx macros.

Set the mode of the output pin with gpio _set_mode(), specifying
the port in argument one, and one of the GPI0O_MODE_OUTPUT *
MHZ macros in argument two. For non-critical signal rates, choose
the lowest value GPIO_MODE_OUTPUT_2_MHZ to save power and to
lower EMI.

Specify GPIO_CNF_OUTPUT_OPENDRAIN in argument three in the call
to gpio_set mode().Do not use any of the ALTFN macros for GPIO
use (those are for peripheral use).

Finally, specify in the last argument in the gpio set mode()
call all pin numbers that apply (one or more). These are or-ed
together, as in GPI012 | GPI015, for example.

GPI0 Characteristics

This is a good place to summarize the capabilities of the STM32 GPIO pins. Many are
5-volt tolerant as inputs, while a few others are current limited for output. Using the
STM32 documentation convention, ports are often referenced as PB5, for example,
to refer to GPIO port B pin GPIO5. I'll be using this convention throughout this book.

Table 4-5 summarizes these important GPIO characteristics as they apply to the Blue Pill

device.
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Table 4-5. GPIO Capabilities: Except Where Noted, All GPIO Pins Can Source or
Sink a Maximum of 25 mA of Current

Pin GPIO_PORTA GPIO_PORTB GPIO_PORTC
3V/5V | Reset Alt 3V/5V | Reset Alt ' 3V/5V |Reset Alt
GPIOO 3V PAO Yes 3V PBO Yes
GPIO1 3V PA1 Yes 3V PB1 Yes
GPI02 3V PA2 Yes 5V PB2/BO0T1 No
GPIO3 3V PA3 Yes 5V JTDO Yes
GPIO4 3V PA4 Yes 5V JNTRST Yes
GPIO5 3V PA5 Yes 3V PB5 Yes
GPIO6 3V PAG Yes 5V PB6 Yes
GPIO7 3V PA7 Yes 5V PB7 Yes
GPIO8 5V PA8 No 5V PB8 Yes
GPIO9 5V PA9 No 5V PB9 Yes
GPIO10 5V PA10 No 5V PB10 Yes
GPIO11 5V PA11 No 5V PB11 Yes
GPIO12 5V PA12 No 5V PB12 No
GPIO13 5V JTMS/SWDIO Yes 5V PB13 No 3V 3mA@2MHz Yes
GPIO14 5V JTCK/SWCLK Yes 5V PB14 No 3V 3mMA@2MHz Yes
GPIO15 5V JTDI Yes 5V PB15 No 3V 3MA@2MHz Yes

The column ALT in Table 4-5 indicates where alternate functions can apply. Input
GPIOs marked with “5V” can safely tolerate a 5-volt signal, whereas the others marked
“3V” can only accept signals up to +3.3 volts. The column labeled Reset indicates the
state of the GPIO configuration after an MCU reset has occurred.

GPIO pins PC13, PC14, and PC15 are current limited. These can sink a maximum
of 3 mA and should never be used to source a current. Additionally, the documentation
indicates that these should never be configured for operations of more than 2 MHz when
configured as outputs.
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Input Voltage Thresholds

Given that the STM32F103C8T6 can operate over a range of voltages, the GPIO input-
threshold voltages follow a formula. Table 4-6 documents what you can expect for the
Blue Pill device, operating at +3.3 volts.

Table 4-6. Input-Voltage Thresholds Based Upon V,,, = +3.3volts

Symbol Description Range

v, Standard low-input voltage 0to 1.164 volts
5-volt-tolerant inputs 0 to 1.166 volts

v, High-input voltage 1.155 t0 3.3/5.0 volts

You may have noticed that there is a small overlap between the high end of the V,,
and the low end of the V,; range. The STM32 documentation indicates that there is
about 200 mV of hysterisis between these input states.

Output-Voltage Thresholds

The output GPIO thresholds are documented in Table 4-7, based upon the Blue Pill
device operating at +3.3 volts. Note that the ranges degrade as current increases.

Table 4-7. GPIO Output-Voltage Levels with Current <= 20 mA

Symbol Description Range

Output voltage low 0.4 to 1.3 volts
VOL
v Output voltage high 2 to 3.3 volts

OH
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Programmed Delays

Returning now to the program illustrated in Listing 4-1, let’s examine the timing aspect
of that program, repeated here for convenience:

0039: for (;;) {

0040: gpio_clear(GPIOC,GPI013); /* LED on */
0041: for (i = 0; i < 1500000; i++) /* Wait a bit. */
0042: __asm__("nop");

0043:

0044: gpio set(GPIOC,GPI013); /* LED off */
0045: for (i = 0; i < 500000; i++) /* Wait a bit. */
0046: __asm__("nop");

0047: }

The first thing to notice about this segment is that the loop counts differ: 1,500,000 in
line 41 and 500,000 in line 45. This causes the LED to remain on 75 percent of the time
and turn off for 25 percent.

The _asm__ ("nop") statement forces the compiler to emit the ARM assembler
instruction nop as the body of both loops. Why is this necessary? Why not code an empty
loop like the following?

0041: for (i = 0; i < 1500000; i++) /* Wait a bit. */
0042: ; /% empty loop */

The problem with an empty loop is that the compiler may optimize it away.
Compiler optimization is always being improved, and this type of construct could
be seen as redundant and be removed from the compiled result. This feature is also
sensitive to the optimize options used for the compile. This __asm__ trickis one
way to force the compiler to always produce the loop code and perform the nop (no

operation) instruction.
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The Problem with Programmed Delay

The good thing about programmed delays is that they are easy to code. But, beyond that,
there are problems:

e How many iterations do I need for a timed delay?
e Poor source code portability:
o the delay will vary for different platforms
o the delay will vary by CPU clock rate
o the delay will vary by different execution contexts

o Wastes CPU, which could be used by other tasks in a multi-tasking
environment

e The delays are unreliable when preemptive multi-tasking is used

The first problem is the difficulty of computing the number of iterations needed to
achieve a delay. This loop count depends upon several factors, as follows:

o The CPU clock rate
e The instruction cycle times used
o Single or multi-tasking environment

In the miniblink program, there was no CPU clock rate established. Consequently,
this code is at the mercy of the default used. By experiment, loop counts that “seem to
work” can be derived. But if you run the same loops from SRAM instead of flash, the
delays will be shorter. This is because there are no wait cycles necessary to fetch the
instruction words from SRAM. Fetching instructions from flash, on the other hand, may
involve wait cycles, depending upon the CPU clock rate chosen.

In a multi-tasking environment, like FreeRTOS, programmed delays are a poor choice.
One reason is because you don’t know how much time is consumed by the other tasks.

Finally, programmed delays are not portable to other platforms. Perhaps the source
code will be reused on an STM32F4 device, where the execution efficiency is different.
The code will need manual intervention to correct the timing deficiency.

All of these reasons are why FreeRTOS provides an API for timing and delay. This will
be examined later when we apply FreeRTOS in our demo programs.
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Summary

This chapter has necessarily covered a lot of ground, even though we’re just getting started.
You've exercised the st-flash utility and programmed your device with the miniblink
program, which was a different blink program than the one supplied with your unit.

More interestingly, the libopencm3 GPIO API was discussed, and the miniblink
program was examined in detail. This explained GPIO configuration and operations.
Finally, the problems of programmed delays were discussed.

EXERCISES

1. What GPIO port does the built-in LED on the Blue Pill PCB use? Specify the
libopencm3 macro name for the port.

2. What GPIO pin does the built-in LED on the Blue Pill PCB use? Specify the
libopencm3 macro name.

3. What level is required to turn the built-in LED on for the Blue Pill PCB?

4. What are two factors affecting the chosen loop count in a programmed delay in
non-multi-tasking environments?

5. Why are programmed delays not used in a multi-tasking environment?
6. What three factors affect instruction timing?
7. What are the three modes of an input GPIO port?
8. Do the weak pull-up and pull-down resistors participate in an analog input?
9. When is the Schmitt trigger enabled for input ports?
10. Do the weak pull-up and pull-down resistors participate for output GPIO ports?

11. When configuring a USART TX (transmit) output for push/pull operation, which
specialization macro should be used?

12.  When configuring a pin for LED use, which GPIO mode macro is preferred for
low EMI?
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FreeRTOS

Early in this book, we transition to the use of FreeRTOS. Doing so offers a number of
advantages, mainly because the programming becomes much simpler and offers greater
reliability as a result.

Not all platforms are capable of supporting an RTOS (real-time operating system).
Each task within a multi-tasking system requires some stack space to be allocated where
variables and return addresses of function calls are stored. There simply isn’t much RAM
on an ATmega328, for example, with only 2K. The STM32F103C8TS6, on the other hand,
has 20K of SRAM available to divide among a reasonable complement of tasks.

This chapter introduces FreeRTOS, which is open sourced and available for free. The
FreeRTOS source code is licensed under GPL License 2. There is a special provision to
allow you to distribute your linked product without requiring the distribution of your
own proprietary source code. Look for the text file named LICENSE for the details.

FreeRTOS Facilities

What makes an RTOS desirable? What does it provide? Let’s examine some major

categories of services found in FreeRTOS:
e Multi-tasking and scheduling
e Message queues
e Semaphores and mutexes
o Timers

e Event groups
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Tasking

In the Arduino environment, everything runs as a single task, with a single stack for
variables and return addresses. This style of programming requires you to run a loop polling
each event to be serviced. With every iteration, you may need to poll the temperature
sensor and then invoke another routine as part of the loop to broadcast that result.

With FreeRTOS (an RTOS), logical functions are placed into separate tasks that run
independently. One task might be responsible for reading and computing the current
temperature. Another task could be responsible for broadcasting that last computed
temperature. In effect, it becomes a pair of programs running at the same time.

For very simple applications, this overhead of task scheduling might be seen as
overkill. However, as complexity increases, the advantages of partitioning the problem
into tasks become much more pronounced.

FreeRTOS is very flexible. It provides two types of task scheduling:

e Preemptive multi-tasking
e Cooperative multi-tasking (coroutines)

With preemptive multi-tasking, a task runs until it runs out of its time slice, or
becomes blocked, or yields control explicitly. The task scheduler manages which task is
run next, taking priorities into account. This is the type of multi-tasking that will be used
within this book’s projects.

Another form of multi-tasking is coroutines. The difference is that the current task
runs until it gives up control. There is no time slice or timeout. If no function call would
block (like a mutex), then a coroutine must call a yield function in order to hand control
over to another task. The task scheduler then decides which task to pass control to next.
This form of scheduling is desirable for safety-critical applications needing strict control
of CPU time.

Message Queues

As soon as you adopt multi-tasking, you inherit a communication problem. Using our
temperature-reading example, how does the temperature-reading task safely communicate
the value to the temperature-broadcasting task? If the temperature is stored as four bytes,
how do you pass that value without interruption? Preemptive multi-tasking means that
copying four bytes of data to another location might get interrupted partway through.
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A crude way to solve this would be to inhibit interrupts while copying your
temperature to a location used by the broadcast task. But this approach could be
intolerable if you have frequently occurring interrupts. The problem worsens when the
objects to be copied increase in size.

The message-queue facility within FreeRTOS provides a task-safe way to
communicate a complete message. The message queue guarantees that only complete
messages will be received. Additionally, it limits the length of the queue so that a
sending task can’t use up all the memory. By using a predetermined queue length, the
task adding messages becomes blocked until space is available. When a task becomes
blocked, the task scheduler automatically switches to another task that is ready to run,
which may remove messages from that same queue. The fixed length gives the message
queue a form of flow control.

Semaphores and Mutexes

Within the implementation of a queue, there is a mutex operation at work. The process
of adding a message may require several instructions to complete. Yet, in a preemptive
multi-tasking system, it is possible for a message to be half added before being
interrupted to execute another task.

Within FreeRTOS, the queue is designed to have messages added in an atomic
manner. To accomplish this, some sort of mutex device is used behind the scenes. The
mutex is an all-or-nothing device. You either have the lock or don’t.

Similar to mutexes, there are semaphores. In some situations where you might want
to limit a certain number of concurrent requests, for example, a semaphore can manage
that in an atomic manner. It might allow a maximum value of three, for example. Then,
up to three “take” requests will succeed. Additional “take” requests will block until one
or more “give” requests have been made to give back the resource.

Timers

Timers are important for many applications, including the blink variety of program.
When you have multiple tasks consuming CPU time, a delay routine is not only
unreliable, but it also robs other tasks of CPU time that could have been used more
productively.
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Within an RTOS system, there is usually a “systick” interrupt that helps with time
management. This systick interrupt not only tracks the current number of “ticks” issued
so far but is also used by the task scheduler to switch tasks.

Within FreeRTOS, you can choose to delay execution by a specified number of
ticks. This works by noting the current “tick time” and yielding to another task until the
required tick time has arrived. In this way, the delay precision is limited only to the tick
interval configured. It also permits other tasks to do real work until the right time arrives.

FreeRTOS also has the facility of software timers that can be created. Only when
the timer expires is your function callback executed. This approach is memory frugal
because all timers will make use of the same stack.

Event Groups

One problem that often occurs is that a task may need to monitor multiple queues at
once. For example, a task might need to block until a message arrives from either of two
different queues. FreeRTOS provides for the creation of “queue sets.” This allows a task to
block until a message from any of the queues in the set has a message.

What about user-defined events? Event groups can be created to allow binary bits
to represent an event. Once established, the FreeRTOS API permits a task to wait until a
specific combination of events occurs. Events can be triggered from normal task code or
from within an ISR (interrupt service routine).

The blinky2 Program

Change to the blinky2 demo directory:
$ cd ~/stm32f103c8t6/rtos/blinky2

This example program uses the FreeRTOS API to implement a blink program in an
RTOS environment. Listing 5-1 illustrates the top of the source code file main.c. From
this listing, notice the include files used:

e FreeRTOS.h

o task.h

o libopencm3/stm32/rcc.h

o libopencm3/stm32/gpio.h
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You have seen the libopencm3 header files before. The task.h header file defines
macros and functions related to the creation of tasks. Finally, there is FreeRT0S.h, which
every project needs in order to customize and configure FreeRTOS. We'll examine that
after we finish with main.c.

The program main.c also defines the function prototype for the function named
vApplicationStackOverflowHook() inlines 11-13 of Listing 5-1. FreeRTOS does not
provide a function prototype for it, so we must provide it here to avoid having the
compiler complain about it.

Listing 5-1. The Top of stm32/rtos/blinky2/main.c Source Code

0001: /* Simple LED task demo, using timed delays:

0002: *
0003: * The LED on PC13 is toggled in taskil.
0004: */

0005: #include "FreeRTOS.h"

0006: #include "task.h"

0007:

0008: #include <libopencm3/stm32/rcc.h>

0009: #include <libopencm3/stm32/gpio.h>

0010:

0011: extern void vApplicationStackOverflowHook(
0012:  xTaskHandle *pxTask,

0013:  signed portCHAR *pcTaskName);

Listing 5-2 lists the definition of the vApplicationStackOverflowHook() optional
function. This function could have been left out of the program without causing a
problem. It is provided here to illustrate how you would define it, if you wanted it.

Listing 5-2. blinky2/main.c, Function vApplicationStackOverflowHook()

0017: void

0018: vApplicationStackOverflowHook(

0019:  xTaskHandle *pxTask  attribute((unused)),

0020:  signed portCHAR *pcTaskName _ attribute((unused))
0021: ) {

0022: for(;;); // Loop forever here..

0023: }
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If the function is defined, FreeRTOS will invoke it when it detects that it has overrun
a stack limit. This allows the application designer to decide what should be done about
it. You might, for example, want to flash a special red LED to indicate program failure.

Listing 5-3 illustrates the task that performs the LED blinking. It accepts a void *
argument, which is unused in this example. The _attribute((unused)) isagcc
attribute to indicate to the compiler that the argument args is unused, and it prevents
warnings about it.

Listing 5-3. blinky2/main.c, Function task1()

0025: static void
0026: taski(void *args  attribute((unused))) {

0027:

0028: for (;;) {

0029: gpio toggle(GPIOC,GPI013);
0030: vTaskDelay(pdMS_TO TICKS(500));
0031: }

0032: }

The body of the function task1() otherwise is very simple. At the top of the loop,
it toggles the on/off state of GPIO PC13. Next, a delay is executed for 500 ms. The
vTaskDelay () function requires the number of ticks to delay. It is often more convenient
to specify milliseconds instead. The macro pdMS_TO TICKS() converts milliseconds to
ticks according to your FreeRTOS configuration.

This task, of course, assumes that all of the necessary setup has been done
beforehand. This is taken care of by the main program, illustrated in Listing 5-4.

Listing 5-4. blinky2/main.c, main() Function

0034: int
0035: main(void) {
0036:

0037:  rcc_clock setup in_hse 8mhz_out_72mhz(); // For "blue pill"
0038:

0039:  rcc_periph clock enable(RCC_GPIOC);

0040: gpio set mode(

0041: GPIOC,
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0042: GPIO MODE_OUTPUT 2 MHZ,
0043: GPIO CNF_OUTPUT _PUSHPULL,
0044: GPI013);

0045:

0046:  xTaskCreate(task1,"LED",100,NULL,configMAX PRIORITIES-1,NULL);
0047:  vTaskStartScheduler();

0048:

0049: for (5;);

0050: return O;

0051: }

The main() program is defined as returning an int in lines 34 and 35, even though
the main program should never return in this MCU context. This simply satisfies the
compiler that it is conforming to POSIX (Portable Operating System Inferface) standards.
The return statement in line 50 is never executed.

Line 37 illustrates something new—the establishment of the CPU clock speed. For
your Blue Pill device, you'll normally want to invoke this function for best performance.
It configures clocks so that the HSE (high-speed external oscillator) is using an 8 MHz
crystal, multiplied by 9 (implied) by a PLL (phase-locked loop), to arrive at a CPU clock
rate of 72 MHz. Without this call, we would rely on the RC clock (resistor/capacitor
clock).

Line 39 enables the GPIO clock for port C. This is the first step in the ducks-in-a-row
setup for GPIO PC13, which drives the built-in LED. Lines 40-44 define the remaining
ducks in a row so that PC13 is an output pin, at 2 MHz, in push/pull configuration.

Line 46 creates a new task, using our function named task1(). We give the task a
symbolic name of “LED,” which can be a name of your choosing. The third argument
specifies how many stack words are required for the stack space. Notice the emphasis
on “words.” For the STM32 platform, a word is four bytes. Estimating stack space is often
tricky, and there are ways to measure it (see Chapter 21, “Troubleshooting”). For now,
accept that 400 bytes (100 words) is enough.

The fourth argument in line 46 points to any data that you want to pass to your task.
We don’t need to here, so we specify NULL. This pointer is passed to the argument args
in task1(). The fifth argument specifies the task priority. We only have one task in this
example (aside from the main task). We simply give it a high priority. The last argument
allows a task handle to be returned if we provide a pointer. We don’t need the handle
returned, so NULL is supplied.
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Creating a task alone is not enough to start it running. You can create several
tasks before you start the task scheduler. Once you invoke the FreeRTOS function
vTaskStartScheduler(), the tasks will start from the function address that you named in
argument one.

Exercise some care in choosing functions to call prior to the start of the task
scheduler. Some of the more advanced functions may only be called after the scheduler
is running. There are still others that can only be called prior to the scheduler being
started. Check the FreeRTOS documentation when necessary.

Once the task scheduler is running, it never returns from line 47 of Listing 5-4 unless
the scheduler is stopped. In case it does return, it is customary to put a forever loop
(line 49) after the call to prevent it from returning from main (line 50).

Build and Test blinky2

With your programmer hooked up to your device, perform the following:

$ make clobber
$ make
# make flash

The make clobber deletes any built or partially built components so that a plain make
will completely recompile in the project again. The make flash will invoke the st-flash
utility to write the new program to your device. Press the Reset button if necessary, but it
may start on its own.

The code shows that the built-in LED should change state every 500 ms. If you have
a scope, you can confirm that this does indeed happen (scope pin PC13). This not only
confirms that the program works as intended, but also confirms that our FreeRTO0S.h file
has been properly configured.

Execution

The example program is rather simple, but let’s summarize the high-level activities of
what is happening:

o The function task1() is concurrently executing, toggling the built-in
LED on and off. This is timed by the timer facility through the use of
vTaskDelay().
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e Themain() function has called vTaskStartScheduler(). This gives
control to the FreeRTOS scheduler, which starts and switches various
tasks. The main thread will continue to execute within FreeRTOS
(within the scheduler) unless a task stops the scheduler.

Task task1() has a stack allocated from the heap to execute with (we gave it 100
words). If that task were ever deleted, this storage would be returned to the heap. The
main task is currently executing within the FreeRTOS scheduler, using the stack it was
given.

While these may seem like elementary points to make, it is important to know where
the resources are allocated. Larger applications need to carefully allocate memory and
CPU so that no task becomes starved. This also outlines the overall control structure that
is operating.

The use of preemptive multi-tasking requires new responsibility. Sharing data
between tasks requires thread-safe disciplines to be used. This simple example
skirts the issue because there is only one task. Later projects will require inter-task

communication.

FreeRTOSConfig.h

Each of the projects found in the ~/stm321103c8t6/rtos subdirectories has its own copy
of FreeRTOSConfig.h. This is by design since this configures your RTOS resources and
features, which may vary by project. This permits some projects to leave out FreeRTOS
features that they don’t require, resulting in a smaller executable. In other cases, there
can be differences in timing, memory allocation, and other RTOS-related features.
Listing 5-1, line 5, illustrated that FreeRTOS. h is included. This file in turn causes your
local FreeRTOSConfig.h file to be included. Let’s now examine some of the important
configuration elements within the FreeRT0SConfig.h file, shown in Listing 5-5.

Listing 5-5. Some Configuration Macros Defined in the FreeRTOSConfig.h File

0088: #define configUSE_PREEMPTION 1
0089: #define configUSE_IDLE_HOOK 0
0090: #define configUSE_TICK HOOK 0
0091: #define configCPU CLOCK HZ ( ( unsigned long ) 72000000 )

0092: #define configSYSTICK CLOCK Hz ( configCPU CLOCK HZ / 8 )
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0093: #define configTICK RATE_HZ
0094: #define configMAX PRIORITIES
0095: #define configMINIMAL_STACK_SIZE

( ( TickType t ) 250 )

(5)

(
0096: #define configTOTAL HEAP_SIZE (

(1

0

0

1

(

5

( unsigned short ) 128 )
((size t ) (17 * 1024 ) )
0097: #define configMAX TASK NAME_LEN 6)
0098: #define configUSE_TRACE_FACILITY

0099: #define configUSE_16 BIT TICKS

0100: #define configIDLE_SHOULD YIELD

0101: #define configUSE_MUTEXES 0

0102: #define configCHECK FOR_STACK OVERFLOW 1

The most important of these configuration macros is perhaps the configUSE
PREEMPTION macro. When set to non-zero, it indicates that we want preemptive
scheduling in FreeRTOS. There are two hook functions, which were not used, so
configUSE_IDLE_HOOK and configUSE_TICK HOOK are set to zero.

The following three macros configure FreeRTOS so that it can compute the correct

timing for us:

0091: #define configCPU CLOCK HZ ( ( unsigned long ) 72000000 )
0092: #define configSYSTICK CLOCK HZ  ( configCPU CLOCK HZ / 8 )
0093: #define configTICK RATE HZ ( ( TickType t ) 250 )

These declarations indicate a 72 MHz CPU clock rate, a system timer counter that
will increment every 8 CPU cycles, and that we want a system click interrupt to happen
250 times per second (every 4 ms). If you get these values incorrect then FreeRTOS won'’t
get timings or delays correct.

The value of configMAX_PRIORITIES defines the maximum number of priorities that
will be supported. Each priority level requires RAM within RTOS, so the levels should not
be set higher than necessary.

The minimum stack size (in words) specifies how much space the FreeRTOS idle task
needs. This should not normally be modified. The heap size in bytes declares how much
RAM can be dynamically allocated. In this example, the 17K of SRAM out of the 20K total
is available as heap:

0095: #define configMINIMAL STACK SIZE ( ( unsigned short ) 128 )
0096: #define configTOTAL HEAP SIZE ( (sizet ) (17 * 1024 ) )
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The configIDLE_SHOULD YIELD macro should be enabled if you want the idle
task to invoke another task that is ready to run. Finally, configCHECK_FOR_STACK _
OVERFLOW was enabled for this application so that we could demonstrate the function
vApplicationStackOverflowHook() in Listing 5-2. If you don’t need this functionality,
turn it off by setting it to zero.

The following macros are examples of other customizations. In our example
program, we never use the vTaskDelete() function, for example, so INCLUDE
vTaskDelete is set to zero. This reduces the overhead of the compiled FreeRTOS code.
We do, however, need the vTaskDelay() function, so the macro INCLUDE vTaskDelay is
configured as 1:

0111: #define INCLUDE vTaskPrioritySet
0112: #define INCLUDE uxTaskPriorityGet
0113: #define INCLUDE vTaskDelete

0114: #define INCLUDE vTaskCleanUpResources
0115: #define INCLUDE vTaskSuspend

0116: #define INCLUDE vTaskDelayUntil

0117: #define INCLUDE vTaskDelay

R O O O O O ©o

FreeRTOS Naming Convention

The FreeRTOS naming convention differs from that used by libopencm3. The FreeRTOS
group uses a unique naming convention for variables, macros, and functions. As

a software developer myself, I don’t recommend the practice of including type
information in named entities. The problem is that types can change as the project
matures or is ported to a new platform. When that happens, you're faced with two ugly
choices, as follows:

1. Leave the entity names as they are and live with the fact that the
type information is not correct.

2. Edit all of the name references to reflect the new type.

u_n

The UNIX convention of including a “p” to indicate a pointer variable is usually
acceptable because it is uncommon for a variable to change from a pointer to an
instance. Yet this too can happen in C++, where reference variables can be used.
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Despite this odd naming convention, let’s not waste time rewriting FreeRTOS or
putting layers around it. Here, I'll simply identify the conventions that they have used so
that it is easier for you to make use of their API in Table 5-1.

Table 5-1. FreeRTOS Type Prefix Characters

Prefix Description

v void (function return value)

C char type

S short type

1 long type

X BaseType_t and any other type not covered
u unsigned type

p pointer

So, if the variable has a type of unsigned char, they will use the prefix “uc.” If the
variable is a pointer to an unsigned character, they will use “puc.”

You have already seen the function named vTaskDelay(), which indicates that there
is no return value (void). The FreeRTOS function named xQueueReceive() returns a

u_.n

type BaseType_t, which is why the function name prefix is “x.

FreeRTOS Macros

FreeRTOS writes macro names with a prefix to indicate where they are defined. Table 5-2
lists these.
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Table 5-2. Macro Prefixes Used by FreeRTOS

PREFIX Example Source

port portMAX_ DELAY portable.h

task taskENTER _CRITICAL() task.h

pd pdTRUE projdefs.h

config configUSE_PREEMPTION FreeRTOSConfig.h

err errQUEUE_FULL projdefs.h
Summary

The blink program, as simple as it is, was presented running under FreeRTOS as a task.
And yet it still remained uncomplicated and provided a reliable timing, changing state
every 500 ms.

We also saw how to configure the CPU clock rate so that we would not have to
accept a default RC clock for it. This is important for FreeRTOS so that its timing will be
accurate. An optional hook function for capturing a stack overrun event was illustrated.
FreeRTOS configuration and conventions were covered, and you saw how easy it is to
create preemptive tasks.

EXERCISES

1. How many tasks are running in blinky2?
2. How many threads of control are operating in blinky2?

3. What would happen to the blink rate of blinky2 if the value of
configCPU_CLOCK_HZ were configured as 36000000?

4. Where does task1’s stack come from?
5. Exactly when does task1() begin?

6. Why is a message queue needed?
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Change to the project in stm32/rtos/blinky, build it, and run it. Then, answer the
following:

7. Eventhough it uses an execution delay loop, why does it seem to work with a
nearly 50 percent duty cycle?

8. How difficult is it to estimate how long the LED on PC13 is on for? Why?

9. Using a scope, measure the on and off times of PC13 (or count how many
blinks per second and compute the inverse). How many milliseconds is the LED
on for?

10. If another task were added to this project that consumed most of the CPU, how
would the blink rate be affected?

11. Add to the file main. c a task2 that does nothing but execute __asm__
("nop™) in a loop. Create that task in main() prior to starting the scheduler.
How did that impact the blink rate? Why?

72



CHAPTER 6

USART

The Blue Pill PCB provides one GPIO-controlled LED to communicate by. Needless to
say, this would be limiting if it were all you had. Perhaps the best early-development
peripheral to pursue for communication is the USART (Universal Synchronous/
Asynchronous Receiver/Transmitter).

This chapter will examine how to coax a STM32 USART to speak to your desktop
through a USB serial adapter cable. A second project will demonstrate the same USART
using two FreeRTOS tasks and a message queue.

USART/UART Peripheral

Within this book and technical literature at large, you will see the terms USART and
UART used almost interchangeably. The difference between the two is in capability:
USART is short for Universal Synchronous/Asynchronous Receiver/Transmitter. The
UART moniker drops the synchronous function from the designation.

USART/UART peripherals send data serially over a wire. One wire is used for
sending (TX) and another for receiving (RX) data. There is implied a common-ground
connection between the two endpoints. Synchronous communication sometimes
requires one end to act as the master and provide a clock signal. Asynchronous
communication does not use a separate clock signal but does require both ends to agree
precisely on a clock rate—known as the baud rate. Asynchronous communication begins
with a start bit and ends with a stop bit for each character.

The USART peripherals provided by the STM32F103 are quite flexible. These can
indeed function as USART or UART, depending upon configuration. This chapter will
focus on the asynchronous mode for simplicity, and thus the name UART applies to the
remainder of this chapter.
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Asynchronous Data

Figure 6-1 provides an annotated scope trace of an asynchronous byte 0x65 being
transmitted. This TTL (Transistor Transistor Logic) signal starts at the left with the line
idle high (near 5 volts). The beginning of the character is marked by a low bit (near zero
volts), known as the start bit. This alerts the receiver that data bits are following, with the
least significant bits first (little endian). This example was an 8-bit value. The end of the
character is marked by a stop bit. If the stop bit is not seen by the receiver, then an error
is flagged.

I

a
y o
S
wn
_

Figure 6-1. Annotated scope trace of the UART signal for the value 0x65. Note how
the least significant bits are sent first.

Values being sent can be configured to be 8 or 9 bits in length. The last bit is the
parity bit when enabled. The stop bit(s) end the transmission of a character and are
configured as 0.5, 1, 1.5, or 2 bits in length.

USB Serial Adapters

A USB TTL serial adapter is an extremely helpful thing to own when working with
microcontrollers. With very little hookup, you can use a terminal program on your
desktop to communicate with your STM32. This eliminates the need for a costly LCD
screen and keyboard.
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If you haven’t acquired one yet, here are some guidelines for what to look for:
e Itmustbea “TTL” adapter (signals at +5 volts or +3.3 volts).
o The USB device is supported by your operating system.
o The unit supports hardware flow control (RTS and CTS).

The TTL distinction is important. Normal RS-232 adapters operate at plus and minus
about 3 volts or more. These cannot be wired directly to your STM32.

The TTL serial adapters, on the other hand, signal between zero and +5 volts and can
be used with any of the 5-volt-tolerant inputs. Fortunately, ST Microelectronics arranged
that the receive line (RX) for UART 1 and 3 has 5-volt-tolerant inputs. Sending from the
3.3-volt STM32 works fine because the high signal is well above the threshold needed to
be received as a 1-bit by the adapter.

Figure 6-2 illustrates one that is used by the author. These can be purchased for
around $3 US on eBay. Be sure to get a unit that supports hardware flow control. These
will include connections for RTS and CTS. Without hardware flow control, you won’t be
able to support higher rates like 115,200 baud without losing data. Be careful about FTDI
units. In the past there have been reports of FTDI (FTDI Chip) drivers bricking FTDI
clones. It is best to get a genuine FTDI unit or to avoid units claiming FTDI compatibility.
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Figure 6-2. Example USB TTL serial adapter cable. A tag was added as a colored-
wires legend.

Hookup

The two projects featured in this chapter require you to attach a USB TTL serial adapter
so that your desktop can view the output. Figure 6-3 shows the hookup required.
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Figure 6-3. USB TTL serial hookup for outgoing communication. No flow control
is used in this example.

The baud rate used in this chapter is 38,400, which is a relatively low speed. This allows
us to avoid flow control for simplicity for our first demo. You should be able to power your
device from the serial adapter’s +5 volt line, as shown. Connect that supply to the +5 volt
input on your Blue Pill so that the onboard regulator will provide the MCU 3.3 volts.

If this is not possible, then power the device separately. Be sure to make a common
ground connection between the power source, the MCU, and the serial adapter.

Finally, note that only one data connection is required for these particular demos.
This is because these demonstration programs only transmit and do not receive data
from the desktop.

Project uart

Change to the following source directory:

$ cd ~/stm32f103c8t6/rtos/uart
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Make sure that the USB serial adapter has been unplugged before attaching the
programmer. With the programmer ready, build and flash it as follows:

$ make clobber
$ make
$ make flash

Once flashed and the device starts to run the program, it will output text. To see it,
you will need to use a terminal emulator on your desktop. Disconnect the ST-Link V2
programmer and attach the USB serial adapter. Figure 6-2 illustrates the connections.
With the power applied from the serial adapter, you should see the STM32 device’s
power LED light and the PC13 LED flashing.

I'will be using the older minicom terminal program in this text, but another good
program is putty. Use your system’s package manager to install either of these if
necessary.

To use your serial adapter, you will need to know the operating system-specific
device pathname or COM port. For Mac or Linux, you might be able to discover it just
by looking into the /dev directory. On the Mac, the device will show up with a /dev/cu
prefix when it is plugged in and active (otherwise, look for /dev/ttyusbserial*). When
you unplug it, this device name will disappear.

Using minicom, you'll need to configure the communication port first by supplying
the -s option:

$ minicom -s

+----- [configuration]------ +

| Filenames and paths |

| File transfer protocols |

|>Serial port setup |
| Modem and dialing

Screen and keyboard |

Save setup as dfl |

|

|

|

Exit

|

|

| Save setup as..

|

| Exit from Minicom
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Scroll down to “Serial port setup” and press Enter:

Type in “A” if the device pathname shown is incorrect. Make sure that flow control
is disabled by typing “F” and/or “G” if necessary. Finally, type “E” to change the port

settings:

Hommmm e Hmmmmmmm e [Comm Parameters]---------- Hm-mm - +
| A - Serial De] | |
| B - Lockfile Loc| Current: 38400 8N1 |2.7/var|
| C - (Callin Pro| Speed Parity Data | |
| D - Callout Pro| A: <next> L: None S: 5 | |
| E - Bps/Par/B| B: <prev> M: Even T: 6 | |
| F - Hardware Flo| C 9600 N: Odd U: 7 | |
| G - Software Flo| D: 38400 0: Mark V: 8 | |
| | E: 115200 P: Space | |
| Change which | |
S EGEEEEEE R | Stopbits |-------

| Screen a| W: 1 Q: 8-N-1

| Save set| X: 2 R: 7-E-1

| Save set| |

| Exit | |

| Exit fro| Choice, or <Enter> to exit?

tmmmmm - R T R +

- Serial Device
Lockfile Location

Callin Program
Callout Program
Bps/Par/Bits

O Mmoo N @ >
1

Change which setting?

Hardware Flow Control :
Software Flow Control :

No
No

1 2400 801
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: /dev/cu.usbserial-A703CYQ5
: /usr/local/Cellar/minicom/2.7/var
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Once the “Comm Parameters” panel is shown, you can type “Q” to choose “8-N-1"
and then type “D” to set the baud rate to 38,400. Then, press Enter twice to return to the
main menu.

At the main menu, choose “Save setup as...” to save your settings for next time. Let’s
use “chap6” for the name and press Enter. If you have difficulty saving, it is likely because
the packaged minicom has set the directory to a location that you lack permissions on (a
big sigh from the author!). In this case, you should use the full pathname, starting with
slash, to override the directory component.

|> chap6 |

If your device started after being flashed, you might see an incomplete first line, but
the remainder of the output should be similar to the following:

Welcome to minicom 2.7

OPTIONS:
Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbserial-A703CYQ5, 16:30:48

Press Meta-Z for help on special keys

UVIWXYZ

0123456789 ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 ;<=>?@

The program is designed to slowly write repeating lines, with time in between each
character. Being slow like this avoids the need for flow control.
If you need to restart minicom, you can now use your saved settings as follows:

$ minicom chap6
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On the Mac, minicom can develop USB driver problems if you just unplug the
adapter without first exiting the program. To exit minicom, use ESC-X (on some systems
you must use Control-A-X instead).

| Leave Minicom? |
| Yes No

Yes should be highlighted by default, allowing you to just press Enter. If you don’t see
this, then you need to try again. Press X immediately after pressing ESC (or Control-A),
since this operation is time sensitive. Once minicom has closed the USB driver and
exited, it is safe to unplug the serial adapter. If you spoil a USB port, you can either use
another port or reboot.

Project

Listing 6-1 illustrates the main program uart.c. The only thing new in the main function
is the call to a separate setup routine named uart_setup() in line 94.

Listing 6-1. Listing of ~/stm32f103c8t6/rtos/uart/uart.c Main Program

0081: int
0082: main(void) {
0083:

0084:  rcc_clock setup in hse 8mhz_out 72mhz(); // Blue pill
0085:

0086: // PC13:

0087:  rcc_periph clock enable(RCC_GPIOC);
0088:  gpio set mode(

0089: GPIOC,

0090: GPIO_MODE_OUTPUT 2 MHZ,
0091: GPIO_CNF_OUTPUT PUSHPULL,
0092: GPI013);

0093:

0094: uart setup();

0095:
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0096:  xTaskCreate(taski1,"task1",100,NULL,configMAX PRIORITIES-1,NULL);
0097:  vTaskStartScheduler();

0098:

0099: for (5;);

0100: return O;

0101: }

Listing 6-2 illustrates this setup code for UART1. Notice that two clock systems are
enabled in lines 31 and 32. The TX output of UART1 comes out to PA9 by default (we'll
examine alternate-function I/0 later in the book), so the GPIOA subsystem needs its
clock enabled. The USART1 peripheral also needs a clock, which is enabled in line 32.

Lines 35 to 38 use function gpio _set mode() to configure that output pin. Note
that the higher-rate GPIO_MODE_OUTPUT 50 MHZ option is chosen here to allow sharper
signal changes. Note especially that the macro GPIO_CNF_OUTPUT_ALTFN_PUSHPULL
specifies that it is non-GPIO (the ALTFN part) and that the output should use a push/pull
configuration. The ALTFN aspect is super critical here—a common mistake is to choose
the GPIO form (apologies for harping on it).

Line 38 specifies libopencm3 macro GPIO _USART1_TX, which on the STM32F103
platform equates to pin PA9. Using the macro GPI013 would have been equally valid,
although the code is more portable as given.

Line 40 calls upon usart_set baudrate() to establish the baud rate of 38,400. This
function calculates a divisor necessary to arrive at the approximate value for the baud
rate. Odd-valued baud rates may lack the accuracy that standard baud rates enjoy.

Line 41 uses function usart_set_databits() to configure how many bits each
character will contain. Here, the valid choices are 8 or 9. With parity enabled, this implies
7 or 8 bits of data, respectively.

One stop bit is configured in line 42, and the peripheral is set for transmit-only in
line 43. Line 44 indicates no parity bit will be sent, and line 45 indicates that no hardware
flow control will be used. Finally, line 46 enables the peripheral for operation.

Listing 6-2. Listing of uart_setup( ) in stm32/rtos/uart/uart.c

0028: static void

0029: uart setup(void) {

0030:

0031:  rcc_periph clock enable(RCC_GPIOA);
0032:  rcc_periph clock enable(RCC USART1);
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0033:
0034: // UART TX on PA9 (GPIO USART1 TX)
0035: gpio set mode(GPIOA,

0036: GPIO_MODE_OUTPUT 50 MHZ,

0037: GPIO _CNF_OUTPUT_ALTFN_PUSHPULL,
0038: GPIO USART1 TX);

0039:

0040: usart_set baudrate(USART1,38400);

0041: usart_set databits(USARTZ1,8);

0042: usart_set stopbits(USART1,USART STOPBITS 1);

0043: usart set mode(USART1,USART MODE TX);

0044: usart set parity(USART1,USART PARITY NONE);

0045: usart_set flow control(USART1,USART FLOWCONTROL_NONE);
0046: usart _enable(USART1);

0047: }

As you can see, there are several UART details that require configuration, and all of
these must match what you are using in the receiving desktop terminal program.

Our application task1() function sends data to another routine, uart_putc(), which
is provided. Function task1() is illustrated in Listing 6-3. The task is designed to put out
lines of text of the following form:

0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVIWXYZ

As part of the loop, the built-in LED PC13 is toggled in line 65. This gives us
confidence that the program is running, should there be trouble in getting the UART
output to the desktop. In between each character, the task waits 200 ms to slow the
sending down (line 66). This saves us from having to deal with flow control for now.
Lines 67 to 74 transmit the character (line 67 increments c) by calling uart_putc().

Listing 6-3. The Function taskl1( ) of the Application Program

0060: static void

0061: taski(void *args  attribute ((unused))) {
0062: int c = '0' - 1;

0063:
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0064: for (;;) {

0065 gpio toggle(GPIOC,GPI013);
0066: vTaskDelay(pdMS TO TICKS(200));
0067: if (++c>='2" ) {

0068: uart_putc(c);

0069: uart_putc('\r");

0070: uart _putc('\n");

0071: c="0"-1;

0072: } else {

0073: uart_putc(c);

0074: }

0075: }

0076: }

Listing 6-4 illustrates function uart_putc(), which simply calls upon the libopencm3
routine usart_send_blocking(). As implied by the function name, control does not
return until the USART is ready to accept more data. In the next example, a more task-
friendly approach will be applied.

Listing 6-4. The uart_putc( ) Function uart.c

0052: static inline void

0053: uart putc(char ch) {

0054: usart_send blocking(USART1,ch);
0055: }

Essentially, this example boils down to the following main points:
1. How to configure and enable the UART for transmission
2. How to apply libopencm3 to send data to UART1

Apart from the fact that the main thread is running the task scheduling and the
application is running in function task1(), the design is still inelegant. The example
works as presented, but let’s partition it a little more and correct the deficiencies in
design.
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Project uart2

Change now to the following project directory:
$ cd ~/stm32f103c8t6/rtos/uart2

The source module uart. c in this project has some enhancements in it. First, there is
anew include file named queue.h (line 15), which is provided by FreeRTOS. This allows
a message queue handle uart_txq to be declared at line 21 (Listing 6-5).

Listing 6-5. Include Files Used by stm32/rtos/uart2/uart.c

0013: #include <FreeRTOS.h>

0014: #include <task.h>

0015: #include <queue.h>

0016:

0017: #include <libopencm3/stm32/rcc.h>

0018: #include <libopencm3/stm32/gpio.h>

0019: #include <libopencm3/stm32/usart.h>

0020:

0021: static QueueHandle t uart txgq; // TX queue for UART

The setup routine remains the same except for the creation of the message queue
atline 47 of Listing 6-6. The call creates a message queue that will contain a maximum
of 256 messages, each with a message length of one byte. The variable uart_txq then
receives a valid handle.

Listing 6-6. The uart_setup( ) Function

0026: static void

0027: uart_setup(void) {

0028:

0029:  rcc_periph clock enable(RCC GPIOA);
0030:  rcc_periph clock enable(RCC_USART1);
0031:

0032: // UART TX on PA9 (GPIO USART1 TX)
0033: gpio set mode(GPIOA,

0034: GPIO_MODE_OUTPUT 50 MHZ,
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0035: GPIO _CNF_OUTPUT ALTFN_PUSHPULL,
0036: GPIO USART1 TX);
0037:

0038: usart_set baudrate(USART1,38400);

0039: usart set databits(USARTZ1,8);

0040: usart_set stopbits(USART1,USART_STOPBITS 1);
0041: usart_set mode(USART1,USART MODE TX);

0042: usart_set parity(USART1,USART PARITY NONE);
0043: usart _set flow control(USART1,USART FLOWCONTROL NONE);
0044: usart_enable(USART1);

0045:

0046: // Create a queue for data to transmit from UART
0047: uart txq = xQueueCreate(256,sizeof(char));

0048: }

The routine for writing out characters is now run from function uart_task(), which
is scheduled as a task in Listing 6-7.

Listing 6-7. The uart_task( ) Task Function

0053: static void
0054: uart task(void *args _ attribute_ ((unused))) {
0055:  char ch;

0056:

0057: for (5;) {

0058: // Receive char to be TX

0059: if ( xQueueReceive(uart txq,&ch,500) == pdPASS ) {
0060: while ( lusart get flag(USART1,USART SR TXE) )
0061: taskYIELD(); // Yield until ready

0062: usart_send(USART1,ch);

0063: }

0064: // Toggle LED to show signs of life

0065: gpio_toggle(GPIOC,GPI013);

0066: }

0067: }
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The uart_task() function operates within a loop starting at line 57. The FreeRTOS
function xQueueReceive() is called to obtain a message. The last argument 500 indicates
that this call should timeout after 500 ticks. By timing out, the built-in LED on PC13
can be toggled to indicate that the program is still alive. The function xQueueReceive()
returns pdFAIL when it times out.

When xQueueReceive() returns pdPASS, however, the task has received a message.
The message is received as a single character into variable ch in our demo. Once we have
received a character from the queue, we need to send it to the UART.

Notice the while loop in lines 60 and 61. This calls FreeRTOS function taskYIELD()
until the UART is able to accept another character (in line 62). Library libopencm3
provides the function usart_get flag() to allow the testing of various status-register
flags. In this manner, the status-register bit TXE (transmit empty) is tested. As long as
this register indicates “not empty,” we direct the scheduler to run another task by calling
taskYIELD().

If we did not yield control, the function usart_send_blocking() would simply
spin, waiting for the UART to become ready. If the UART didn’t become ready in time,
this spinning would burn up CPU time until that task’s time slice ran out. This spinning
would still appear to function OK for the application but would waste CPU time that
might be more profitably used elsewhere. Because the TXE flag indicates that the UART is
ready at line 62, we can use the usart_send() function instead.

The uart_task() and the demo_task() run concurrently. Listing 6-8 illustrates the
new demo_task(), which queues up pairs of lines to be sent. Listing 6-10 illustrates the
changes to the main program made to establish these two tasks.

Listing 6-8. The demo_task( ), Which Produces a Repeating Pair of Lines

0081: /HFkkkrkiiihkkkkikiiibkkkkkikiitokkkkirkkkhokkkkkkkdokokokkk

0082: * Demo Task:

0083: * Simply queues up two line messages to be TX, one second
0084: * apart.

0086: static void

0087: demo_task(void *args  attribute ((unused))) {

0088:
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0089: for (;;) {

0090: uart_puts("Now this is a message..\n\r");

0091: uart_puts(" sent via FreeRTOS queues.\n\n\r");
0092: vTaskDelay(pdMS_TO TICKS(1000));

0093: }

0094: }

The demo_task() invokes a new function, illustrated in Listing 6-9. Function
uart_puts() simply calls upon uart_putc() to put each character within a string to the
UART. One important point to notice is that the xQueueSend() call in line 77 will block
if the queue becomes full. The third argument specifies portMAX DELAY so that it will
block forever until it succeeds. Since this is a FreeRTOS call, the function knows to yield
control to another task when the queue is full.

Listing 6-9. Function uart_puts( ) Uses uart_putc() to Transmit a String of
Characters to the UART

0072: static void
0073: uart puts(const char *s) {

0074:

0075:  for ( ; *s; ++s ) {

0076: // blocks when queue is full

0077: xQueueSend(uart_txq,s,portMAX DELAY);
0078: }

0079: }

The main program in Listing 6-10 simply calls xTaskCreate() twice to establish
two tasks. One executes function uart_task() in line 114, while the other executes
demo_task() inline 115. The create order is unimportant, since the FreeRTOS scheduler
is not started until line 117.

Listing 6-10. The Main Program for stm32/rtos/uart2/uart.c

0099: int
0100: main(void) {
0101:

0102:  rcc_clock setup in hse 8mhz_out_72mhz(); // CPU clock is 72 MHz
0103:
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0104: // GPIO PC13:
0105:  rcc_periph clock enable(RCC_GPIOC);
0106: gpio set mode(

0107: GPIOC,

0108: GPIO MODE_OUTPUT 2 MHZ,

0109: GPIO_CNF_OUTPUT_PUSHPULL,

0110: GPI013);

0111:

0112: uart_setup();

0113:

0114: xTaskCreate(uart_task, "UART",100,NULL,configMAX PRIORITIES-
1,NULL);

0115: xTaskCreate(demo_task, "DEMO",100,NULL,configMAX PRIORITIES-
2,NULL);

0116:

0117:  vTaskStartScheduler();
0118: for (5;);

0119:  return O;

0120: }

This is a general summary of the operation of the program:

1. Taskdemo task() calls upon a routine uart_puts() to send
strings of text to the UART, one second apart.

2. The function uart_puts() invokes uart_putc() to queue the
characters in a message queue referenced by handle uart_txq. If
the queue is full, control of demo_task() yields.

3. Taskuart task() unqueues characters received from the queue
referenced by handle uart_txq.

4. Each character received is delivered to the UART to be sent,
provided that it is ready. When the UART is busy, the control of the
task yields.

USART
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While this has been a simple example, we see the elegance of FreeRTOS in action.
One task produces while another consumes. The control loops for both are trivial.
By partitioning an application into tasks, we break the problem into manageable
components. We see that inter-task communication can be safely accomplished through
a FreeRTOS message queue.

USART API

For your reference, let’s list the API (Application Programming Interface) used in this
chapter and document its arguments. Additionally, advanced API functions are included
to keep the reference in one place.

For the functions listed, some arguments need special values, which are supplied
by defined libopencm32 macros. They are listed in Tables 6-1 through 6-7. The table
caption lists the argument name that the values refer to. For example, Table 6-2 lists the
valid macro names for the parity argument.

Table 6-1 lists the different USARTSs that are available to the STM32F103C8T6 device.
The default pins are listed for each function. For example, USART2 receives on PA3 by
default unless alternate-function I/O configuration has been applied.

Table 6-1. USARTS Available to the STM32F103C8T6 (Argument usart)

USART Macro 5V TX RX CTS RTS
1 USART1 Yes PA9 PA10 PA11 PA12
2 USART2 No PA2 PA3 PAO PA1
3 USART3 Yes PB10 PB11 PB14 PB12

Table 6-2. USART Parity Macros (Argument Parity)

Macro Description
USART_PARITY_NONE No parity
USART _PARITY_ EVEN Even parity
USART _PARITY ODD 0dd parity
USART _PARITY MASK Mask
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Table 6-3. USART Operation Mode Macros (Mode Argument)

Macro Description

USART MODE_RX Receive only

USART _MODE_TX Transmit only
USART_MODE_TX_RX Transmit and receive
USART_MODE_MASK Mask

Table 6-4. USART Stop Bit Macros (Argument Stopbits)

Macro Description
USART STOPBITS 0 5 0.5 stop bits
USART _STOPBITS 1 1 stop bit
USART STOPBITS 1 5 1.5 stop bits
USART_STOPBITS 2 2 stop bits

Table 6-5. USART Flow Control Macros

Macro Description

USART _FLOWCONTROL NONE No hardware flow control
USART_FLOWCONTROL_RTS RTS hardware flow control
USART _FLOWCONTROL_CTS CTS hardware flow control
USART _FLOWCONTROL RTS CTS  RTS and CTS hardware flow control
USART_FLOWCONTROL_MASK Mask

Table 6-6. USART Data Bits (Bits Argument)

Value Data Bits (No Parity) Data Bits (With Parity)

8 8 7
9 9 8
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Table 6-7. USART Status Flag Bit Macros (Flag Argument)

Macro Flag Description

USART SR _CTS Clear to send flag

USART SR_LBD LIN break-detection flag
USART_SR_TXE Transmit data buffer empty
USART SR TC Transmission complete
USART_SR_RXNE Read data register not empty
USART_SR_IDLE ldle line detected

USART SR _ORE Overrun error
USART_SR_NE Noise error flag
USART_SR_FE Framing error
USART_SR_PE Parity error

Include Files

#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/usart.h>

Clocks

rcc_periph clock enable(RCC_GPIOXx);
rcc_periph clock enable(RCC USARTn);

Configuration

void usart_set mode(uint32_t usart, uint32_t mode);

void usart set baudrate(uint32 t usart, uint32 t baud);

void usart set databits(uint32_t usart, uint32 t bits);

void usart set stopbits(uint32_ t usart, uint32 t stopbits);

void usart set parity(uint32 t usart, uint32 t parity);

void usart set flow control(uint32 t usart, uint32 t flowcontrol);
void usart enable(uint32_t usart);

void usart disable(uint32 t usart);
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DMA

void usart _enable rx dma(uint32_t usart);
void usart disable rx dma(uint32_t usart);
void usart enable tx dma(uint32 t usart);
void usart disable tx dma(uint32_t usart);

Interrupts

void usart _enable rx interrupt(uint32_t usart);
void usart disable rx interrupt(uint32_t usart);
void usart _enable tx_interrupt(uint32_t usart);
void usart disable tx interrupt(uint32_t usart);
void usart enable error interrupt(uint32_t usart);
void usart disable error interrupt(uint32_t usart);

Input/Output/Status

bool usart get flag(uint32_ t usart, uint32_t flag)
void usart send(uint32_t usart, uint16 t data)
uint16_t usart recv(uint32 t usart)

Ducks-in-a-Row
With the exception of interrupts and DMA, the following is a summary of the ducks that

must be lined up to make your UART peripheral functional:

1. Enable the appropriate GPIO clocks for all involved I/0 pins:
rcc_periph _clock_enable(RCC_GPIOX).

2. Enable the clock for your selected UART peripheral: rcc_periph_
clock_enable(RCC_USARTn).

3. Configure the mode of your I/O pins with gpio_set_mode().

a.  For output pins, choose GPIO_CNF_OUTPUT_ALTFN_PUSHPULL
for the third argument (note the ALTFN).

b.  For inputs, choose GPIO_CNF_INPUT_PULL_UPDOWN or GPIO

CNF_INPUT_FLOAT.
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4. usart_set baudrate()

5. usart set databits()

6. usart set stopbits()

7. usart_set mode()

8. usart_set parity()

9. usart_set flow _control()

10. usart_enable()

FreeRTOS

In this chapter, we’ve made use of a few FreeRTOS API functions, some of which we have
seen before. They’ll be summarized here for your convenience.

Tasks

The following are task-related FreeRTOS functions that we have used to create tasks,
start the scheduler, and delay execution, respectively:

BaseType_t xTaskCreate(

TaskFunction_t pvTaskCode, // function ptr

const char * const pcName, // string name

unsigned short usStackDepth, // stack size in words

void *pvParameters, // Pointer to argument

uBaseType_t uxPriority, // Task priority

TaskHandle_t *pxCreatedTask // NULL or pointer to task handle
); // Returns: pdPass or errCOULD NOT ALLOCATE REQUIRED MEMORY

void vTaskStartScheduler(void); // Start the task scheduler
void vTaskDelay(TickType t xTicksToDelay);
void taskYIELD();
The pvTaskCode pointer value is simply a pointer to a function of the following form:
void my task(void *args)
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The value provided to args comes from pvParameters in the xTaskCreate() call. If not
required, this value can be supplied with NULL. The stack depth is in words (4 bytes each).

Each task has an associated priority and is provided by the uxPriority argument. If
you're running all tasks at the same priority, supply the value configMAX PRIORITIES-1
or just use the value 1. Unless you need different priorities, set them all to the same value
(see Chapter 21, “Troubleshooting,” for reasons why). Be aware that you can create more
tasks after vTaskStartScheduler() has been called, when necessary.

A commonly used macro for vTaskDelay() is the following:

pdMS_TO TICKS(ms) // Macro: convert ms to ticks

This converts a millisecond time into a tick count for programming convenience.

Queues

The queue API functions used in this chapter include the following:

QueueHandle t xQueueCreate(
UBaseType t uxQueuelength, // Max # of items
UBaseType t uxItemSize // Ttem size (bytes)

)5 // Returns: handle else NULL

BaseType t xQueueSend(
QueueHandle t xQueue, // Queue handle
const void *pvItemToQueue, // pointer to item
TickType t xTicksToWait // 0, ticks or portMAX DELAY

)s // Returns: pdPASS or errQUEUE_FULL
BaseType t xQueueReceive(
QueueHandle t xQueue, // Queue handle
void *pvBuffer, // Pointer to receiving item buffer
TickType t xTicksToWait // 0, ticks or portMAX DELAY
); // Returns: pdPASS or errQUEUE EMPTY

The function xQueueCreate() allocates storage for the created queue, and its handle
is returned. Argument uxQueuelength indicates the maximum number of items that can
be held in the queue. The value uxItemSize specifies the size of each item.

Function xQueueSend() adds an item to the queue. The item pointed to by
pvItemToQueue is copied into the queue’s storage. Conversely, xQueueReceive() takes
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an item from the queue and copies it to the caller’s storage at the address pvBuffer. This
buffer must be at least the size given by uxItemSize or memory corruption will result. If
there is no item to be received, the call blocks according to xTicksTolWait.

Summary

This chapter has demonstrated the general recipe for configuring and activating the
USART in asynchronous mode. This permits the Blue Pill to send data to the desktop for
debugging or any other reporting.

At the same time, a demonstration of FreeRTOS tasks and message queues was
provided. This approach divided the sending and receiving sides of the application into
their own separate tasks. This simplified the programming since each only needed to
concern itself with its own operation. The message queue provided the conduit for inter-
task communication between application tasks.

EXERCISES

1. What is the idle state of the TTL level of a USART signal?
USART data is provided in a big or little endian sequence?
What clock(s) must be enabled for UART use?

What does the abbreviation 8N1 stand for?

What happens if you provide UART data to be sent if the device is not yet empty?

o a0 A~ w DN

Can tasks be created before, after, or before and after
vTaskStartScheduler()?

~

What is the minimum buffer size determined by xQueueReceive()?

8. How do you specify that xQueueSend () should return immediately if the
queue is full?

9. How do you specify that xQueueReceive() should block forever if the queue
is empty?

10. What happens to the task if xQueueReceive () finds the queue empty and it
must wait?
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USB Serial

One of the nice things about the STM32 MCU is the availability of the USB (Universal
Serial Bus) peripheral. With USB, it is possible to communicate directly with a desktop
platform in various modes. One of these flexible modes is USB’s emulation of a serial link
between the MCU and the desktop.

This chapter will explore the use of libopencm3 and FreeRTOS working together
to provide a convenient means of communication. You will use the USB CDC class of
operation (USB communication device class). This provides a very convenient means for
interacting with your Blue Pill.

Blue Pill USB Issue

First, let’s clear the air about the Blue Pill USB issue. What is this issue you may have read
about in the Internet forums?

It turns out that the PCB is manufactured with a 10 kohm resistor ( R,,) pullup
resistor to +3.3 volts, which is incorrect. For full-speed USB, this is supposed to be 1.5
kohm. You can test this by measuring resistance with your DMM between the A12 pin on
the PCB and the +3.3-volt pin. You will likely read 10 kohms.

This defect does not always prevent it from working, however. For example, I had
no difficulty using USB from the STM32 to a MacBook Pro. But your mileage may vary.
The hard way to correct this is to replace R,, on the PCB, but this is difficult because the
resistor is so incredibly small.

Caution Many people have reported in online forums that their Blue Pill USB
connector has broken off or become inoperable. Exercise extra-gentle care when
inserting the cable.
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Correction of the issue is best accomplished by placing another resistor in parallel
with it. Placing a 1.8 kohm resistor in parallel with the 10 kohm resistor produces a
combined resistance of 1.5 kohms. Figure 7-1 illustrates how the author soldered a
resistor to one of his units. The 1/8-Watt resistor is simply soldered carefully between
pins A12 and the +3.3-volt pin. It’s not pretty, but it works!

QCISCIAC)aVB |

,\'J‘ - .- \ \

e »
L8002 56 08 g o0

il

Figure 7-1. Correcting the USB pullup by addition of a 1.8-kohm resistor

To see how pullup resistance makes a difference, look at the scope trace in Figure 7-2.
This is what the D+ line looked like with the default 10-kohm resistor.

Figure 7-2. D+ line scope trace using 10-kohm pullup resistance

In the figure, you can see a rise at the start followed by a slump to perhaps the 70
percent level. To the right where the high-frequency signals begin, you can see that the
signal rests at about the 70 percent level in between excursions. Attach this device to a
different PC USB port or hub and the degradation might be worse.
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Compare this to Figure 7-3, which is a scope trace after the 1.5-kohm pullup
resistance was in effect.

Figure 7-3. D+ line scope trace with 1.5-kohm pullup resistance

Ignoring capture-timing differences, you can see that the signal rests much higher,
perhaps at the 90 percent level. This helps to assure improved signal thresholds.

Introduction to USB

USB is a popular means of communication from a personal computer to various
peripherals, such as printers, scanners, keyboards, and a mouse. Part of its success is due
to its standardization and low cost. The standard also includes USB hubs allowing the
cost-effective extension of the network to accommodate additional devices.

In USB communication, the host directs all traffic. Each device is polled on a regular
basis based upon its configuration and requirements. A keyboard infrequently needs to
send data, for example, while a sound-recording device needs to send bulk recording
data in real time. These differences are accommodated by the USB standard and are part
of the device configuration.

Pipes and Endpoints

USB uses the concept of endpoints with connecting pipes to carry the data. The pipe
carries the information, while the endpoints send or receive. Every USB device has at
least one endpoint known as endpoint 0. This is a default and control endpoint, which
allows host and device to configure device-specific operations and parameters. This
occurs during device enumeration.
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Figure 7-4 provides a high-level view of endpoints 0, 1, and 2 that we will be using
in the example program. Technically, endpoint 0 is just one pipe. It is drawn here as
two pipes because the control endpoint permits a response back to the host. All other
endpoints have data travelling in one direction only. Note that the “In” and “Out” in
Figure 7-4 are labeled according to the host controller’s viewpoint.

A L )
(Out Endpoint 0 —> Control 0)

(In Endpoint 0 -«—— Control 0)

(Out Endpoint 1 —> Endpoint 1)
[ ]

(In Endpoint2 --=— Endpoint2)

Host l l Device

Figure 7-4. USB pipes and endpoints

A device may have additional endpoints, but our USB CDC example only needs two
in addition to the required control endpoint 0:

e Endpoint 1 is the device’s receiving endpoint (host’s sending,
specified as 0x01)

e Endpoint 2 is the device’s sending endpoint (host’s receiving,
specified as 0x82)

As will be seen in the source code, bit 7 of the endpoint number indicates whether
itis an input or output (with respect to the host controller). The value 0x82 indicates in
hexadecimal that endpoint 2 (with bit 7) is sending (from the device’s point of view).
Unlike a TCP/IP socket, USB pipes transfer data in one direction only.
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As you may have realized, one potentially confusing aspect of USB programming is
that input and output are specified in the code from the host controller’s point of view.
For example, endpoint 0x82 is a receiving (input) endpoint from the host’s point of view.
This tends to be confusing when writing for the device. Be aware of that when setting up
USB descriptors.

This necessarily has been a brief introduction to USB. Entire books have been written
on the subject, and the interested reader is encouraged to seek them out. Our focus will
be limited to the successful use of the USB peripheral for the benefit of our STM32. Let’s
get started!

USB Serial Device

With the MCU flashed and plugged into the system, you need to access it on your
operating system as a serial device. This practice varies with the operating system, which
complicates things slightly. The MCU source code is found in the following directory:

$ cd ~/stm32f103c8t6/rtos/usbcdcdemo
$ make clobber

$ make

$ make flash

The preceding steps will build and flash the code into your MCU device. The
following sections will describe details on the desktop side of the USB conduit.

Linux USB Serial Device

Under Linux, with the STM32 flashed and plugged into a USB port, you can use the
lsusb command to view the connected devices:

$ lsusb
Bus 002 Device 003: ID 0483:5740 STMicroelectronics STM32F407
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In this example, I only had one device. Don’t be worried about the STM32F407
designation. This is just the description given to the device ID 0483:5740 that ST
Microelectronics registered. But how do you find out what device path to use? Try the
following after plugging in your cable:

$ dmesg | grep 'USB ACM device'
[ 709.468447] cdc_acm 2-7:1.0: ttyACMO: USB ACM device

This is obviously not very user friendly, but from this you find that the device name is
/dev/ttyACMo. Listing it confirms this:

$ 1s -1 /dev/ttyACMo
CIw-Iw---- 1 root dialout 166, 0 Jan 25 23:38 /dev/ttyACMO

The next problem is having permissions to use the device. Notice that the group for
the device is dialout. Add yourself to the dialout group (substitute fred with your own
user ID):

$ sudo usermod -a -G dialout fred

Log out and log in again to verify that you have the correct group:

$ id
uid=1000(fred) gid=1000(fred) groups=1000(fred),20(dialout),24(cdrom),...

Being a member of the dialout group saves you from having to use root access to
access the serial device.

MacOS USB Serial Device

Perhaps the simplest way to find the USB device under MacOS is to simply list the callout

devices:

$ 1s -1 /dev/cu.*

crw-rw-rw- 1 root wheel 35, 1 6 Jan 15:14 /dev/cu.Bluetooth-Incoming-Port
crw-rw-rw- 1 root wheel 35, 3 6 Jan 15:14 /dev/cu.FredsiPhone-Wireless
crw-rw-rw- 1 root wheel 35, 45 26 Jan 00:01 /dev/cu.usbmodemFD12411

For the USB demo, the new device will appear as something like the path /dev/
cu.usbmodemFD12411. The device number may vary, so look for cu.usbmodem in the
pathname. Notice that all permissions are given.
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Windows USB Serial Device

Serial devices under Windows show up as COM devices in the Device Manager once the
cable is plugged in and the driver is installed. Figure 7-5 is an example screenshot.

File Action View Help

e @ E Hml 8 R %S

4 g SolemnShade A
» § Audio inputs and outputs
» ) Bluetooth
b (M Computer
b e Disk drives
v M Display adapters
b i DVD/CD-ROM drives
b [l Firmware
2 h Human Interface Devices
v g IDE ATA/ATAPI controllers
b g Imaging devices
p = Keyboards
> B Mice and other pointing devices
v I Menitors
p ¥ Network adapters
4 Y Ports (COM & LPT)
! STMicroelectronics Virtual COM Port MI
b @ Print queves
» [ Processors
p [ Software devices
> & Sound, video and game controllers
b €& Storage controllers
b (M8 System devices
4§ Universal Serial Bus controllers
# Generic USB Hub
B Genedc 1SR Hih

Figure 7-5. Example Windows Device Manager dialog

In this example, the USB device is attached as Windows port COM3. If you're using
Cygwin under Windows, the device pathname is /dev/ttyS2 (subtract 1 from the COM
port number).

USB GPIO

The STMF103 series only supports USB on GPIO pins PA11 (USB_DM) and PA12 (USB_DP).
There are no alternate configurations for USB. Further, there is no need to configure

PA11 and PA12, because these are automatically taken over when the USB peripheral is
enabled.! This is the only peripheral that I am aware of that behaves this way and is a tiny
detail hidden in the reference manual RM0008 about alternate configurations. You do,
however, need to enable the clocks for GPIOA and the USB peripheral.
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Demo Source Code

Before running the supplied demo software, let’s examine some of the USB-related

portions of code found in the directory (again):

$ cd ~/stm32f103c8t6/rtos/usbcdcdemo

The code that will be discussed is found in source module usbcdc. c. Listing 7-1

illustrates the initialization code for the USB peripheral, using the libopencm3 driver

and FreeRTOS for data queues.

Listing 7-1. The usb_start() Function for Initializing USB

0386:
0387:
0388:
0389:
0390:
0391:
0392:
0393:
0394:
0395:
0396:
0397:
0398:
0399:
0400:
0401:
0402:
0403:
0404 :

void
usb_start(void) {

}

usbd device *udev = 0;

usb_txq = xQueueCreate(128,sizeof(char));

usb_rxq = xQueueCreate(128,sizeof(char));

rcc_periph clock enable(RCC_GPIOA);
rcc_periph clock enable(RCC USB);

// PA11=USB_DM, PA12=USB_DP

udev = usbd init(&st usbfs vi usb driver,&dev,&config,
usb_strings,3,
usbd_control buffer,sizeof(usbd control buffer));

usbd register set config callback(udev,cdcacm_set config);

xTaskCreate(usb_task, "USB",200,udev,configMAX PRIORITIES-1,NULL);

Lines 390 and 391 create FreeRTOS queues, which will be used to communicate to

and from the USB stream, respectively.
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Since enabling the USB peripheral automatically takes over the GPIOs PA11 and
PA12, all we have to do is enable the GPIO and USB clocks in lines 393 and 394. After that
is done, the libopencma3 routine usbd_init() performs the rest in lines 397 to 399.

Once the peripheral is initialized, the callback cdcacm_set config() is registered in
line 401. Finally, a FreeRTOS task is created in line 403 to service the USB events.

cdcacm_set_config()

When the USB peripheral is contacted by the host controller, it will call upon the callback
illustrated in Listing 7-2 to configure/reconfigure the USB CDC device.

Listing 7-2. The cdcadm_set_config() Callback

0030: // True when USB configured:
0031: static volatile bool initialized = false;

0252: static void

0253: cdcacm_set config(

0254: usbd device *usbd dev,

0255: uint16 t wvalue _ attribute ((unused))

0256: ) {

0257:

0258:  usbd ep setup(usbd dev,
0259: 0x01,

0260: USB_ENDPOINT ATTR BULK,
0261: 64,

0262: cdcacm_data_rx_cb);
0263:  usbd ep setup(usbd dev,
0264: 0x82,

0265: USB_ENDPOINT ATTR_BULK,
0266: 64,

0267: NULL);
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0268:  usbd register control callback(

0269: usbd dev,

0270: USB_REQ TYPE_CLASS | USB_REQ_TYPE_INTERFACE,
0271: USB_REQ_TYPE_TYPE | USB_REQ TYPE RECIPIENT,
0272: cdcacm_control request);

0273:

0274: initialized = true;

0275: }

From lines 258 to 262, it can be seen that callback cdcacm_data_rx_cb() is registered
so that it can receive data. From the host’s perspective, this is an OUT port, thus specified
as endpoint 0x01 (OUT endpoint 1).

Next, lines 263 to 267 register another endpoint, which is considered as an IN port
from the host controller’s perspective. Hence, the IN endpoint 2 is specified with the
high bit on in the constant 0x82.

Finally, control requests will call upon callback cdcacm_control request() as
registered in lines 268 to 272.

Lastly, the Boolean variable initialized is set to true in line 274 so that other tasks
can know the ready status of the USB infrastructure.

cdc_control_request()

The USB infrastructure uses the cdcacm_control request() callback to act on
specialized messages (Listing 7-3). This driver reacts to two req->bRequest message
types, the first of which is to satisfy a Linux deficiency (lines 203 to 209).

Listing 7-3. The cdcacm_control_request() Callback

0190: static int

0191: cdcacm_control request(

0192: usbd device *usbd dev _ attribute ((unused)),
0193:  struct usb _setup data *req,

0194: uint8 t **buf _ attribute  ((unused)),

0195: uint16_t *len,
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0196:
0197:
0198:
0199:
0200:
0201:
0202:
0203:
0204:
0205:
0206:
0207:
0208:
0209:
0210:
0211:
0212:
0213:
0214:
0215:
0216:
0217:

}
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void (**complete)(
usbd device *usbd dev,
struct usb_setup data *req
) __attribute ((unused))

switch (req->bRequest) {
case USB_CDC_REQ SET CONTROL_LINE STATE:
/*
* The Linux cdc_acm driver requires this to be implemented
* even though it's optional in the CDC spec, and we don't
* advertise it in the ACM functional descriptor.
*/
return 1;
case USB_CDC_REQ SET LINE CODING:
if ( *len < sizeof(struct usb_cdc_line coding) ) {

return 0;
}
return 1;
}
return 0;

Lines 210 to 214 check on the length of a structure and return fail if the length is out

of line (line 212). Otherwise, a return of 1 indicates a “handled” status (line 214).

cdcacm_data_rx_ch()

This callback is invoked by the USB infrastructure when data has been sent over the bus
to the STM32 MCU. The first thing performed in line 228 is to determine how much buffer
space is remaining assigned to variable rx_avail. If there is insufficient space available,

the callback simply returns in line 233. The host will send the same data again, later.

If we have room for some data, we decide how much in line 236. The call to usbd_ep_

read_packet() in line 239 then obtains some or all of the received data. Lines 241 to 244

send it to the receive queue for the receiving task. See Listing 7-4.
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Listing 7-4. The USB Receive Callback

0222: static void

0223: cdcacm_data_rx_cb(

0224: usbd_device *usbd_dev,

0225: uint8 t ep attribute ((unused))

0226: ) {

0227:  // How much queue capacity left?

0228:  unsigned rx_avail = uxQueueSpacesAvailable(usb_rxq);
0229: char buf[64]; // rx buffer

0230: int len, x;

0231:

0232: if ( rx_avail <=0)

0233: return; // No space to rx
0234:

0235: // Bytes to read

0236: len = sizeof buf < rx_avail ? sizeof buf : rx_avail;
0237:

0238: // Read what we can, leave the rest:

0239: len = usbd ep read packet(usbd dev,0x01,buf,len);
0240:

0241:  for ( x=0; x<len; ++x ) {

0242: // Send data to the rx queue
0243: xQueueSend(usb_rxq,&buf[x],0);
0244: '}

0245: }

USB Task

The task that we created for the USB handling is a forever loop starting in line 284. The
loop must call the libopencm3 driver routine usbd_pol1() frequently enough that the
USB link is maintained by the host. This is done at the top of the loop in line 285 of
Listing 7-5.
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Listing 7-5. The usb_task() Function

0278:
0279:
0280:
0281:
0282:
0283:
0284:
0285:
0286:
0287:
0288:

0289:
0290:
0291:

0292:
0293:
0294:
0295:
0296:
0297:
0298:

static void
usb_task(void *arg) {

usbd device *udev = (usbd device *)arg;
char txbuf[32];
unsigned txlen = 0;

for (5;) {
usbd poll(udev); /* Allow driver to do its thing */
if ( initialized ) {
while ( txlen < sizeof txbuf
88 xQueueReceive(usb txq,&txbuf[txlen],0)
== pdPASS )
++txlen; /* Read data to be sent */
if ( txlen > 0 ) {
if ( usbd ep write packet(udev,0x82,
txbuf,txlen) =0 )
txlen = 0; /* Reset if sent ok */
} else {
taskYIELD(); /* Then give up CPU */

}

USB SERIAL

The volatile bool variable initialized is checked in line 286. Until initialized is

true, other USB calls like usbd_ep write packet() must be avoided.

After the driver has initialized, a check of the transmit queue is made in lines 287 to

289. As many queued characters as possible are taken from the queue to be sent. The

sending of the USB data occurs in lines 290 to 292. If there are no characters to transmit,
the FreeRTOS call to taskYIELD() is made to give another task CPU time.
From this, you can see that the purpose of this task is simply to send any queued

bytes of data to the USB host. The receiving of data occurs from another place.
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USB Receiving

When the application wants to read serial data, it calls upon usb_getc() or wrapper
routines like usb_getline(). Listing 7-6 illustrates the code for usb_getc().

In line 367 you can see that it calls upon xQueueReceive() to pull a byte of received
data from the queue. If there is no data, the call will block there because of the parameter
given as portMAX DELAY. Once the callback cdcacm data_rx_cb() is invoked and queues
up data, this code will receive data and unblock.

While it should never happen, the return of -1 in line 369 is taken if the queue has
been destroyed or otherwise has become non-functional. Normally, the single character
is returned by line 370.

Listing 7-6. The Listing of Function usb_getc()

0362: int

0363: usb _getc(void) {

0364: char ch;

0365: uint32_t rc;

0366:

0367: rc = xQueueReceive(usb_rxq,8&ch,portMAX DELAY);
0368: if ( rc != pdPASS )

0369: return -1;
0370:  return ch;
0371: }

USB Sending

To send a byte of data to USB, it is put into the FreeRTOS usb_txq by function usb_
putc(), as shown in Listing 7-7. Before it does that, however, a check is made in line 307
to make sure that the USB driver is ready. If it is not available yet, taskYIELD() is called
in line 308 to share the CPU cycles.

Once the USB driver is known to be ready, the byte is queued in line 312, where it
will block if the queue is full. Once bytes are drained from that queue, the character is
queued and the call returns.
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Listing 7-7. Sending Data Through USB Using Function usb_putc()

0303: void
0304: usb putc(char ch) {
0305: static const char cr = "\1r';

0306:

0307: while ( lusb _ready() )

0308: taskYIELD();

0309:

0310: if ( ch == "\n' )

0311: xQueueSend(usb_txq,8cr,portMAX DELAY);
0312:  xQueueSend(usb_txq,8&ch,portMAX DELAY);
0313: }

0407: bool

0408: usb_ready(void) {
0409: return initialized;
0410: }

To make things character friendly, the function usb_putc() checks to see if you are
sending a \n (newline, also known as linefeed) character. If so, line 311 first sends a
carriage-return character. Under Unix/Linux, this type of processing is known as cooked
mode. The receiving side in the terminal emulator will then move the cursor to the start
of the line before advancing to the next line because of the newline.

USB Serial Demo

To demonstrate serial I/0O over USB, I've modified an open source text-based game
written by Jeff Tranter. His source code, found in the module adventure.c, has been
modified to use the USB routines that have just been covered.

To build the code to be flashed, perform the following:

$ make clobber
$ make
$ make flash
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After flashing the MCU, gently push the USB cable into the STM32 and connect the
other end of the cable to your laptop/PC. Assuming you know the device name (from
earlier in the chapter), set up your minicom or other terminal program (review minicom
instructions in Chapter 6 if necessary). I recommend you save these settings to a profile
name like “usb2” since they differ from the USB settings used later in this book.

With everything ready, start your terminal emulator as follows:

$ minicom usb2
Welcome to minicom 2.7

OPTIONS:
Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbmodemFD12411, 16:56:26

Press Meta-Z for help on special keys

Abandoned Farmhouse Adventure
By Jeff Tranter

Your three-year-old grandson has gone
missing and was last seen headed in the
direction of the abandoned family farm.
It's a dangerous place to play. You
have to find him before he gets hurt,

and it will be getting dark soon...
?

Don’t worry if you missed the introductory text in the session shown (you can
obviously read it here or shut down minicom and start over). This can happen if you
had to mess around with the configuration of minicom. Entering “help” will get you the
important information you need.

From the first screen, you can read about the adventure. Information is available by

typing “help”:

? help

Valid commands:

go east/west/north/south/up/down
look
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use <object>

examine <object>

take <object>

drop <object>

inventory

help

You can abbreviate commands and
directions to the first letter.
Type just the first letter of

a direction to move.
?

The game consists of using a verb and sometimes an object. The following session
gives you a sample:

? look
You are in the driveway near your car.
You see:
key
You can go: north
? take key
Took key.
? inventory
You are carrying:
flashlight
key
?

Summary

USB is a large subject because it must adapt to many different uses. The serial stream
shown in this chapter is one of the many applications of USB. Additionally, control
structures were declared but left undescribed from the source module usbcdc.c. The
interested reader is encouraged to study them and experiment with the source code.
Several books have been written about USB, and this project gives you a foundation from
which to start.
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You have also seen how a convenient USB interface can be constructed between the
STM32 and your laptop/PC. No baud rates, data bits, stop bits, parity, or flow control
were required for you to configure the USB. Provided that the necessary driver support is
present on the USB host, it is as simple as plugging in your cable.

While the focus has been on USB as a serial communications medium, the demo
also highlighted some FreeRTOS facilities, like tasks and message queues. Having
separately executing tasks and safe inter-task communications greatly simplifies
application development.

Finally, the known USB defect of the Blue Pill is actually not that difficult to correct.
Given the power of the STM32 MCU, available at the price of an AVR device, there is no

reason for anyone to miss out on the fun!

Bibliography

1. Reference Manual RM0008, http://www.st.com/resource/en/
reference_manual/cd00171190.pdf, Table 29, page 167.

EXERCISES

1. What GPIO preparation is necessary before enabling the USB peripheral?
2. What are the alternate GPIO configurations available for USB?

3. What libopencm3 routine must be called regularly to handle USB events?
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CHAPTER 8

SPI Flash

As resourceful as the STM32 MCU is, sometimes you need additional persistent data
storage. Small applications may leave leftover program flash storage that can be utilized,
but if you are collecting larger amounts of data, you will probably look to a serial flash
solution.

This chapter will describe communication with the Winbond W25Q32 or W25Q64
chips using the SPI peripheral in master mode. The W25Q32 chip provides 4 MB of
erasable flash storage, while the W25Q64 provides 8 MB. These chips can be purchased
on eBay for a few dollars each, making them attractive for many applications.

Introducing W25QXX

The W25Q32/64 chips provide a fair amount of storage but require only a few wires to
communicate. They operate from 2.7 to 3.6 volts, use 50 pA of standby current, and use
approximately 15 mA for data reads. Writing and erasure require a little more at 25 mA.
Furthermore, the W25QXX chips can be powered down under software control to save
power when you need to.

Since these flash chips use the SPI bus to communicate, let’s briefly review how
SPI operates.

Serial Peripheral Interface Bus

The serial peripheral interface (SPI) is a synchronous serial interface that communicates
over short distances using three wires and a chip-select signal. One end of the bus
operates as the master on the bus while the remaining devices are slave devices.

The SPI interface was developed by Motorola in the late 1980s and has since become
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CHAPTER 8  SPI FLASH

a de facto standard.' Figure 8-1 illustrates one master communicating with one slave
device. This is how this chapter’s demo project will be configured. Additional slave
devices could be attached to the bus, but each would have its own chip-select signal.

SCK
MOSI
|
Master « MISO Slave
STM32 ICS - W25QXX

Figure 8-1. SPI single master to single slave example

The system clock signal (SCK) line provides clock pulses that time the data bits being
transmitted and received. Signal MOSI is the master out slave in data, while MISO is the
master in slave out signal. The fourth signal is the device chip select (E?) , which is used
to activate the chosen device. It is shown with an overhead bar or preceding slash (/CS)
to indicate that it is active in the low state. Sometimes this signal is referred as the slave
select (ﬁ)

One of the unique aspects of the SPI bus is its method of communication. As the
master sends out data bits on the MOSI line, the slave is simultaneously returning data
bits to the master on the MISO line. Figure 8-2 illustrates how the pair behaves as two
sets of shift registers.

Master Slave
Sending MOSI Receiving
[7]6]s]4[3]2]1]0] »7]6[s5][4[3][2]1]0]
[1[e[s[a[3]2[1 o} —{7]6]5[a]3]2]1]0]
Receiving | Sending
SCK

Figure 8-2. SPI master and slave as a set of shift registers
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The SPI master always generates the clock pulse (SCK) to time when the data is
sampled and shifted into the receiving register. Once the full word length is received, the
receiving slave and master can simultaneously read the received data.

The SPI bus design leads to some quirky programming. For example, the slave device
may not know what data to send until it has received a command word from the master.
Consequently, when the master sends the command word to the slave, the first word
received from the slave is discarded because it is meaningless. Once the slave device
has received the command word it then knows how to reply. But the slave needs the
master to send a dummy word to allow its reply to be shifted into the master’s receive
register. Because of this characteristic, SPI programming often requires the discarding of
some received data and the sending of dummy words. The word size for the STM32 SPI
controller can be 8 or 16 bits in length.

Chip Select

You might be asking “Why do we need a chip-select line when there is only one slave
involved in this demo?” The problem is that there can be bus line noise. To guard against
that, the slave needs to know when a transmission begins and ends. If noise is received
on the SCK line, for example, the slave could end up one bit out of step with the master.
Perhaps a scrambled command could be received by the flash chip as a “chip erase”
function, which would be disastrous. For this reason, the /CS goes low prior to the first
bit of data being sent by the master. This tells the slave device that the first bit is coming.
When the last word of data has been sent, the /CS returns to the high state to signal the
end of the transmission. The Winbond flash chip will insist upon this prior to executing a
write or erase operation; otherwise, the command is disregarded.

Wiring and Voltages

When wiring up UARTS, it is often necessary to connect TX to RX, and RX to TX, and so
forth, depending upon the sense of the device and how the manufacturer labeled the
connections. This can be confusing. With the SPI bus, the situation is very simple—the
SCK line always connects to SCK, MOSI always to MOSI, MISO always to MISO and CS
to CS.

The SPI bus voltage can vary, being usually 5 volts or 3.3 volts. The Winbond W25QXX
devices can operate at the 3.3-volt level, making it simple to interface with the STM32.
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SPI Circuit

Figure 8-1 illustrates the full circuit related to our SPI flash project. The Winbond chip
includes some other pins that we haven’t discussed, as follows:

e /WP Write Protect (wire to +3.3 V to enable writes)
e /HOLD Hold Input (wire to +3.3 V when not used)

Both of these features are not used in this chapter and should be wired to the
+3.3-volt supply. The /WP signal is a safety option that you might find useful in some
applications. When /WP is grounded, no writes or erasures are possible.

Hardware /NSS Control

A feature of the STM32 SPI peripheral that has vexed a number of people, judging

by forum posts, is the optional hardware drive of the /CS pin in SPI master mode. If
you omit the pull-up resistor R1 shown in Figure 8-3, you will discover that it doesn’t
work. Many have reported that “it doesn’t seem to work” or “it just doesn’t seem to do
anything” The forums’ answer to this problem has been to advise the use of software
management of the pin instead (operate as a GPIO).

Vﬁ(.))c
=3
1" 3
PA4 | /NSS . 1,5 veo 2 o
) )
PAS SO 2 : Do HAOLD '| 7
PA7 | MOSI IR O T L —
) )
PAS | SCK — 4 ) GND DIO 2
W250%K
Xio
STM32F103CeTE
D
GND

Figure 8-3. STM32 wired up to the W25Q32 or W25Q64. If you have a PCB with
a different layout, ignore the PCB’s pin numbers and match by function (CLK for
example, is connected to SCK on the MCU).
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This problem is partly based upon the assumption that the /NSS (/CS) pin is a
totem-pole (push/pull) output. After all, that is how it is usually configured during SPI
setup (see line 652 of Listing 8-2 later). The ST documentation is also weak on this point.
The only hint at this behavior is in the reference manual (RM0008), section “25.3 SPI
functional description” under “Slave select (NSS) management”:

NSS signal is driven low when the master starts the communication and is
kept low until the SPI is disabled.

The documentation never mentions the /NSS signal being driven high. Hmmm.
Then, there is Application Note AN2576, which describes “STM32F10xxx SPI and
M25P64 Flash memory communication.” Present in that document’s Figure 5 is a 10-
kohm pull-up resistor that is never mentioned.

This characteristic of the SPI peripheral is not entirely surprising when you read
about the features of the peripheral. One of the features touted is support for multi-
master mode. In this mode of operation, the /NSS pin would have to function as both an
input and output. An open-drain driver is suited for this mode of operation. In a perfect
world, the peripheral would enable push/pull output in single master mode and use
open drain for multi-master mode. But this is not the case here. Reading datasheets and
working with hardware often leads to some interesting puzzles.

If you're just getting started in digital electronics, then the simple answer in this
circuit is that you need that 10-kohm resistor. Perhaps some readers may be muttering,
“Why all this fuss about hardware control? Why not just control /NSS with GPIO
commands?” That word “just” creates so much trouble!

From a purely logical point of view, and disregarding the small efficiency loss, GPIO
control of the /NSS is perfectly valid, if a nuisance to code for. But the main reason for
desiring the hardware /NSS pin control is to reduce the chance of noise corrupting
SPI messages. The timespan between starting an SPI transaction and activating the /
NSS line is shorter in hardware than when setting the GPIO in software. Likewise, the
SPI hardware can deactivate the /NSS line at the end of the transaction sooner than
a software GPIO action can. The times aren’t majorly different, but it does reduce the
opportunity for message corruption.
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Not to flog a dead horse further, one final reason for employing hardware control
of the /NSS line is that it saves us from having to do it ourselves. That may seem like a
Captain Obvious thing to say, but it means that we can’t forget to disable the /NSS line.
If we were to forget, the last write or erase operation would be ignored by the flash chip.
The worst and most insidious errors are those that go unnoticed until it becomes too late
to trace why.

Note that V. here is +3.3-volt supply. Signals /WP and /HOLD are active low and
must be wired to V. to disable them.

Figure 8-4 illustrates the two main packages that the W25Q32 comes in. The price for
the DIP (Dual Inline Package) package is about the same as for the SOIC (Small Outline
Integrated Circuit) on a PCB, from eBay.

Figure 8-4. W25Q32 in DIP form (left) and W25Q32 as SOIC on PCB (right)

STM32 SPI Configuration

To communicate with the external flash chip, we need to configure and ready the STM32
SPI peripheral. This chapter’s demo source code is found in the following directory:

$ cd ~/stm32f103c8t6/rtos/winbond

Table 8-1 summarizes the GPIO pins that will be used to connect the SPI1 peripheral
to the Winbond flash chip. These are also shown in schematic in Figure 8-3.
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Table 8-1. STM32 SPI1 Pins Used

GPIO Pin  SPI Function Description

PA4 /CS Chip Select (active low)
PA5 SCK System Clock

PAG MISO Master In, Slave Out
PA7 MOSI Master Out, Slave In

SPI FLASH

Listing 8-1 provides the general initialization source code found in the main program.

Line 679 enables the clock for GPIOA, since our SPI peripheral is using those pins

(Table 8-1). The remaining SPI setup is performed in line 685, function spi_setup(),

which we’ll examine shortly.

Listing 8-1. The Main Program Initialization

0674:
0675:
0676:
0677:
0678:
0679:
0680:
0681:
0682:
0683:

0684:
0685:
0686:
0687:
0688:
0689:
0690:
0691:

int
main(void) {

rcc_clock setup_in_hse 8mhz_out 72mhz(); // Blue pill

rcc_periph clock enable(RCC_GPIOA);
rcc_periph clock enable(RCC_GPIOC);

// LED on PC13
gpio set mode(GPIOC,GPIO MODE OUTPUT 2 MHZ,
GPIO CNF_OUTPUT PUSHPULL,GPIO013);

spi_setup();
gpio set(GPIOC,GPI013); // PC13 = on

usb_start(1);
std_set _device(mcu_usb); // Use USB for std I/0
gpio_clear(GPIOC,GPIO013); // PC13 = off
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0692:  xTaskCreate(monitor task,"monitor",
500,NULL,configMAX PRIORITIES-1,NULL);

0693:  vTaskStartScheduler();

0694: for (5;);

0695: return 0;

0696: }

To allow us to focus on SPI in this chapter, we use a library to furnish the USB
communications to the desktop. The static library is located here:

o ~/stm32f103c8t6/rtos/libwwg/libwwg.a
The source code for the library is found in the following two directories:

o ~/stm32f103c8t6/rtos/libwwg/include
o ~/stm32f103c8t6/rtos/libwwg/src

Lines 688 and 689 perform the USB initialization, allowing the program to
communicate with a terminal program. Line 689 simply redirects all calls to std_
printf() tousb _printf() instead, and so forth. If you should later decide to use a UART
for communication, this redirector can be set for that instead.

Listing 8-2 shows the spi_setup() routine, which covers the SPI specifics. The
following steps are used to initialize peripheral SPI1:

1. The clock for SPI1 is enabled (line 648)

2. GPIOA pins are configured for (lines 649-654):
a. alternate function output (push-pull)
b. 50 MHz (for fast rise/fall times)
c. for PA4,PA5, and PA7

3. GPIO PA6 is configured for input without pull-up resistor (lines
655-660)

4. The SPI1 peripheral is reset (line 661)
5. SPII is configured to use:
a. afpclk divisor 256 (line 664)
b. SCK polarity of 0 (low) when idle (line 655)

c. Clock phase occurs on first transition (line 666)
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d. Word length is 8 bits (line 667)
e. Bits are shifted out MSB (Most Significant Bit) first (line 668)

6. SPI1 is using hardware /CS management (i.e., not using software
slave management, line 670).

7. SPIperipheral can assert /CS (line 671).

Listing 8-2. SPI Peripheral Setup

0645: static void

0646: spi_setup(void) {

0647:

0648:  rcc_periph clock enable(RCC_SPI1);
0649: gpio set mode(

0650: GPIOA,

0651: GPIO_MODE_OUTPUT 50 MHZ,

0652: GPIO CNF_OUTPUT ALTFN_PUSHPULL,
0653: GPI04|GPIO5|GPIO7 // NSS=PA4,SCK=PA5,MOSI=PA7
0654: );

0655:  gpio set mode(

0656: GPIOA,

0657: GPIO_MODE_INPUT,

0658: GPIO CNF_INPUT FLOAT,

0659: GPIO6 // MISO=PA6
0660: );

0661:  spi reset(SPI1);
0662: spi init master(

0663 SPI1,

0664: SPI_CR1_BAUDRATE_FPCLK DIV 256,
0665: SPI_CR1_CPOL_CLK TO 0 WHEN_IDLE,
0666 SPI_CR1_CPHA CLK_TRANSITION 1,
0667: SPI_CR1_DFF_8BIT,

0668: SPI_CR1_MSBFIRST

0669: );

0670: spi disable software slave management(SPI1);
0671:  spi enable ss output(SPI1);

0672: }
123



CHAPTER 8  SPI FLASH

SPI Clock Rate

One of the most vexing things about the STM32 platform is the complexity of the clock
system. The question we want to answer is what frequency does the macro SPI_CR1_
BAUDRATE_FPCLK_DIV_256 provide? Part of the answer lies in the determination of fpc;x
For the STM32F103, SPI1 uses the APB2 bus clock, which has a maximum frequency of
72 MHz. SPI2 uses the APB1 bus clock, which has a maximum frequency of 36 MHz.

The main program used the following libopencma3 function to establish some of the
main clocks:

0677:  rcc_clock setup in hse 8mhz_out 72mhz(); // Blue pill
With these clock settings in effect, we can summarize the SPI’s fp;« as in Table 8-2.

Table 8-2. Frequencies for SPI1 and SPI2, Assuming
rcc_clock_setup_in_hse_8mhz_out_72mhz( )

Clock Bus Peripheral fPCLK
PCLK1 APB1 SPI2 36 MHz
PCLK2 APB2 SPI1 72 MHz

With this information, we can summarize the choices for the SPIx clock divisors, as
shown in Table 8-3. I verified with a DSO (digital storage oscilloscope) that the period of
the SCK signal is about 3.56 uS when running the demonstration program. This evaluates
to a frequency of about 281 kHz, as expected.
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Table 8-3. SPI Divisor Frequencies, Based Upon Table 8-3.

Divisor Macro SPI1 Frequency SPI2 Frequency
2 SPI_CR1_BAUDRATE_FPCLK DIV 2 36 MHz 18 MHz

4 SPI_CR1_BAUDRATE FPCLK DIV.4 18 MHz 9 MHz

8 SPI_CR1_BAUDRATE_FPCLK DIV 8 9 MHz 4.5 MHz

16 SPI_CR1_BAUDRATE FPCLK DIV 16 4.5 MHz 2.25 MHz

32 SPI_CR1_BAUDRATE FPCLK DIV 32  2.25MHz 1.125 MHz

64 SPI_CR1_BAUDRATE FPCLK DIV 64  1.125 MHz 562.5 kHz

128 SPI_CR1_BAUDRATE_FPCLK DIV 128  562.5 kHz 281.25 kHz

256 SPI_CR1_BAUDRATE_FPCLK DIV 256  281.25 kHz 140.625 kHz

I chose a low frequency for this demonstration to guarantee good results on the
breadboard. Sometimes with breadboards and long wires, noise can be disruptive to the
SPI communication. With the source code at your disposal, you might try higher bit rates
after your initial success. The Winbond chip will read continuously up to 50 MHz, but
SPI1 is limited to 36 MHz on the STM32 platform, establishing your upper limit.

SPI Clock Modes

The spi_setup() routine in Listing 8-2 used the following configuration parameter:
0665: SPI CR1_CPOL_CLK TO 0 WHEN_ IDLE,

What does that mean to the programmer?

SPI can operate in one of four modes, which can lead to confusion. The Winbond
flash chips used in this chapter can operate in modes 0 or 3. Figure 8-5 illustrates the
relationships between the various libopencm3 configuration macros. It must be kept in
mind that clock polarity and phase fogether determine the SPI mode of operation.
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SPI_CR1_CPOL_CLK_TO_0_WHEN_IDLE | | |
SPI_CR1_CPOL_CLK_TO_1_WHEN_IDLE | | |

SPI_CR1_CPHA_CLK_TRANSITION_1 ; ¢ #

SPI_CR1_CPHA_CLK_TRANSITION_2 v

Read Data Events

Figure 8-5. Clock polarity and phase configurations

When SPI_CR1_CPOL_CLK TO 0 WHEN_IDLE is used with SPI_CR1_CPHA CLK_
TRANSITION 1, the receiver samples the data input at the rising clock transition (short
arrows of Figure 8-5). If the same clock polarity is used and SPI_CR1_CPHA CLK_
TRANSITION 2 is configured instead, the data is sampled at the falling edge of the clock
(long arrows).

The situation is reversed when SPI_CR1_CPOL_CLK TO 1 WHEN_IDLE polarity is used
(second line from the top in Figure 8-5). The falling edge (short arrows) of the clock are
used when SPI_CR1 CPHA CLK TRANSITION 1 is configured; otherwise, the rising clock
(long arrows) are used.

Table 8-4 summarizes the SPI modes using the libopencm3 macro names. Knowing
that the Winbond W25QXX chips will operate on modes 0 or 3, we can arrive at the
conclusion that they operate only on the rising edge of the SCK signal.

Table 8-4. A Summary of SPI Modes by Number

SPI Mode  Clock Polarity Clock Phase

0 SPI_CR1_CPOL CLK_TO 0 WHEN IDLE SPI_CR1 CPHA CLK TRANSITION 1
1 SPI_CR1_CPOL _CLK_TO 0 WHEN IDLE  SPI_CR1 CPHA CLK TRANSITION 2
2 SPI_CR1_CPOL_CLK TO 1 WHEN IDLE SPI_CR1 CPHA CLK TRANSITION 1
3 SPI_CR1 CPOL CLK TO 1 WHEN IDLE SPI_CR1_CPHA CLK TRANSITION 2
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Another point needs to be made about the SPI clock polarity, at least in reference to
the libopencm3 macro names. The macro SPI_CR1_CPOL_CLK_TO_0_WHEN_IDLE describes
the clock idle polarity during chip-select time. Figure 8-6 is a captured scope trace of SCK

becoming active with the /CS going low. Prior to /CS activation, the clock was resting at

the high level. But during the SPI transaction (/CS active), the clock was indeed idle at

the low level. This is important to bear in mind when examining the SPI signals.

Figure 8-6. DSO trace of SCK and /CS, with SCK idle at low

Endianess and Word Length

Now, we can cover the final aspects of the SPI1 configuration (from Listing 8-2):

0662:
0663:
0664:
0665:
0666:
0667:
0668:
0669:

spi_init master(

)s

SPI1,
SPI_CR1_BAUDRATE_FPCLK_DIV_256,
SPI_CR1_CPOL_CLK TO 0 WHEN_IDLE,
SPI_CR1_CPHA CLK_TRANSITION 1,
SPI_CR1 DFF_8BIT,
SPI_CR1_MSBFIRST
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Macro SPI_CR1_DFF_8BIT (line 667) specifies that our word length is a byte (8 bits).
Macro SPI_CR1_MSBFIRST (line 668) indicates that we will be transmitting the most
significant bit first (big endian). The other libopencm3 choices are SPI_CR1_DFF_16BIT
and SPI_CR1_LSBFIRST.

The SPI setup routine ends with two more calls:

0670:  spi disable software_slave management(SPI1);
0671: spi_enable ss output(SPI1);

Line 670 simply indicates in a backhanded way that we will be using a hardware
assertion of the NSS pin (/CS). This call may not be strictly necessary after a reset, but
it does serve to document our intention. Line 671 indicates that the SPI peripheral is to
assert control of the NSS (/CS) pin. With those steps performed, SPI1 is ready for use.

SPI1/0

With the SPI device configured, we can now initiate commands on the SPI bus and
communicate with the Winbond W25Q32 or its larger cousin, W25Q64. No interrupts are
used for this example because our code is the master. As the master SPI device, our code
sets the timing of the transactions. The slave marches to our drummer. Consequently, if
our code is held up for any reason, the slave will wait for us. If there is a risk of extremely
long delays, you may want to use interrupts to avoid bus noise.

SPI can perform send-only, read-only, or bidirectional send and receive operations.
In our application, the Winbond chip will be sending back data, so we will always use the
spi_xfer() function so that we can both send and receive a byte. This will be illustrated
in the next section.

Read SR1

Listing 8-3 illustrates the code found in module main.c, which performs the SPI read of
Winbond device status register one (SR1).

Listing 8-3. The Read Status Routine w25_read_sr1( )

0059: static uint8 t
0060: w25 _read sri(uint32_t spi) {
0061: uint8 t sri;
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0062:

0063:  spi enable(spi);

0064: spi xfer(spi,W25_CMD_READ SR1);
0065:  sr1 = spi xfer(spi,DUMMY);
0066: spi disable(spi);

0067: return sri;

0068: }

The process begins by enabling SPI1 in line 63 (SPI1 is passed as the argument spi).
This causes the hardware to assert the /CS signal and enable the clock (SCK). Then,
libopencma3 function spi_xfer() is called to send a byte, which is defined as a macro:

0036: #define W25_CMD _READ_SR1 0x05

As part of the transaction, spi_xfer() returns a byte from the flash device, which in
this case is discarded (Line 64). The received value is discarded because the flash device
doesn’t know what to send us until it receives our command. This kind of thing happens
frequently in SPI transactions.

Line 65 now sends a dummy value (zero) so that it can receive the flash device’s answer
now that it knows what we are asking for. This return value is saved in variable sr1.

Finally, the SPI1 device is disabled in line 66 to end the SPI transaction. At this point,
the hardware deasserts /CS, releasing the SPI bus. The flash device now enters a standby
state. The read value in variable sr1 is then returned to the caller.

Once the configuration of the SPI device is complete, the use of the peripheral is nice
and simple.

Waiting for Ready

The Winbond “read status” command is the only command that the flash device accepts
at any time. All other requests require that the device be “not busy.” If the device is
queried when it is busy, the request is silently ignored. This is a Winbond flash device
feature and is not related to SPI.

Because the flash device might be busy writing a page or erasing sectors, it is
convenient to use a function to query for ready status. Listing 8-4 shows the code used.
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Listing 8-4. The Winbond Wait Ready Function

0081: static void
0082: w25 wait(uint32_t spi) {

0083:

0084: while ( w25 read sri(spi) & W25_SR1 BUSY )
0085: taskYIELD();

0086: }

The listed w25_wait() function queries the status register SR1 and then checks the bit
W25 _SR1_BUSY. If that bit is set, the routine calls upon taskYIELD() in line 85 to allow other
tasks to enjoy use of the CPU. When that bit becomes zero, the routine simply returns.

Read Manufacturer ID

The “read manufacturer ID” command is interesting because of the interplay of ignored
received data and dummy writes. Listing 8-5 illustrates.

Listing 8-5. The Read Manufacturer ID Function

0107: static uint16_t

0108: w25 _manuf_device(uint32_t spi) {

0109: uint16_t info;

0110:

0111: w25 wait(spi);

0112:  spi enable(spi);

0113:  spi xfer(spi,W25_CMD_MANUF DEVICE); // Byte 1

0114:  spi xfer(spi,DUMMY); // Dummy1 (2)
0115:  spi xfer(spi,DUMMY); // Dummy2 (3)
0116:  spi xfer(spi,0x00); // Byte 4
0117:  info = spi xfer(spi,DUMMY) << 8; // Byte 5
0118: info |= spi xfer(spi,DUMMY); // Byte 6

0119:  spi disable(spi);
0120:  return info;
0121: }
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Notice how line 111 calls upon w25 _wait() to block until the flash device is ready for
anew command. Then, the command to read the manufacturer device information is
written to the SPI bus in line 113. The returned byte is discarded.

Lines 114 and 115 both send dummy bytes (zero was used). This is necessary to
give the flash device enough clock pulses to read and ready the data to be sent back in
response. Notice that those received bytes are also ignored (the flash device was not yet
ready). Line 116 has the value 0x00 written out (as per flash device specs) to start the
receiving of data on the next byte.

Finally, in lines 117 and 118, two more dummy bytes are sent out to cause the slave
device to transmit its data. We save the values received in the 16-bit variable info, which
is later returned in line 120.

This may seem like a crazy transaction, but device transactions are often this way.

Writing Flash

The Winbond chips are very careful to protect your flash storage. They offer an extensive
API for protecting regions of the supported memory, all of it by software, or the entire
chip by the assertion of the /WP signal on the chip. This makes sense in desktop
motherboards where you don’t want to lose BIOS code or settings.

The chip’s flash safety has another consequence. After power up, after a data write
or erase operation, the chip returns to a “write disabled” mode. To perform a data write,
it must be preceded by a “write enable” operation. This is done by setting the “Write
Enable Latch” option in the status register 1 (SR1). Listing 8-6 shows the code used for
this purpose.

Listing 8-6. Enabling the Write Enable Latch

0095: static void

0096: w25 write en(uint32_t spi,bool en) {

0097:

0098: w25 wait(spi);

0099:

0100:  spi enable(spi);

0101:  spi xfer(spi,en ? W25 CMD_WRITE_EN : W25 _CMD WRITE DI);
0102: spi disable(spi);
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0103:
0104: w25 wait(spi);
0105: }

Line 98 waits for the device to become ready (else any further commands would be
ignored). Depending upon whether the routine was called to enable or disable writes,
the appropriate command is sent in line 101. Since setting the latch might require some
device time, we wait for a ready in line 104 prior to returning.

You should probably read the SR1 register back to see if that succeeded or not. If the /
WP signal was set to active on the chip, then this operation would fail. In our project we
have hardwired /WP to be inactive, so this was disregarded.

With the flash chip write enabled, we can now write one or more bytes of flash.
Listing 8-7 presents the function w25_write data() for programming data.

Listing 8-7. Write Data Function

0211: static unsigned // New address is returned

0212: w25 write data(uint32_t spi,uint32 t addr,void *data,uint32_t bytes)
{

0213: uint8 t *udata = (uint8 t*)data;

0214:

0215: w25 write en(spi,true);

0216: w25 wait(spi);

0217:

0218:  if ( w25_is wprotect(spi) ) {

0219: std_printf("Write disabled.\n");
0220: return OxFFFFFFFF; // Indicate error
0221: }

0222:

0223: while ( bytes > 0 ) {

0224: spi_enable(spi);

0225: spi_xfer(spi,W25_CMD_WRITE_DATA);
0226 spi_xfer(spi,addr >> 16);

0227: spi_xfer(spi,(addr >> 8) & OxFF);
0228: spi_xfer(spi,addr & OxFF);

132



CHAPTER 8  SPI FLASH

0229: while ( bytes > 0 ) {

0230: spi_xfer(spi,*udata++);

0231: --bytes;

0232: if ( (++addr & OxFF) == 0x00 )
0233: break;

0234: }

0235: spi_disable(spi);

0236:

0237: if ( bytes > 0)

0238: w25_write_en(spi,true); // More to write
0239: }

0240:  return addr;

0241: }

Line 215 enables the “Write Enable Latch” option and checks that it got set in line
218 (by reading SR1). If the “Write Enable Latch” is not set, the console receives the
message “Write disabled.” in line 219, prior to returning a fail code.

The loop in lines 223 through 239 issues the “data write” command and three flash
address bytes. Then, the bytes are transferred in the loop of lines 229 and 234. The new
flash address is returned in the lower 24 bits of the return value.

The outer loop (Line 223) is designed to perform writes within 256-byte pages. The
Winbond chip will wrap the address around within the same page if you try to cross page
boundaries, so this code writes each page as a separate SPI command.

Flash Erase

Itis easy to forget that we are dealing with flash memory. For values to be written
successfully, the affected memory must be erased first. In the erased state, the byte has
the value OxFF (all bits set to 1). Once the byte is written as 0x00, it cannot be set back to
0xFF without an erase operation (nor can any bit be set back to 1).

Despite that, it is possible to cheat when writing a flash file system. Let’s say you have
one byte under consideration that represents eight clusters of data storage, where a 1-bit
represents an available cluster and a 0-bit represents a cluster that is in use. If the present
byte value is 0x7F with the high bit (bit 7) cleared, you can allocate the next cluster by

133



CHAPTER 8  SPI FLASH

zeroing the next bit without doing an erase. A write of value 0x3F (or even 0xBF) will
clear the next bit, resulting in a read-back value of 0x3F. Notice that writing 0xBF also
works, because the seventh bit is ignored when it is already zeroed. Programming 1-bits
are no-ops, but programming 0-bits flip 1-bits to zeros.

Eventually, however, no matter how clever the scheme, the reality requires the
eventual use of an erase operation. The difficulty in this is that an erase must be
performed on a large-block basis. The W25QXX chips allow you to erase the following:

e One sector (4 KB)
e 32KBblock

e 64 KB block

o Entire chip

Listing 8-8 illustrates the chip-erase code used in the demo program. Write-protect
status is checked in lines 170 to 173. If the chip is protected, a message of protest is given
in line 171 prior to an error return. Lines 175 to 177 perform the chip erase, while the
remainder of the function checks to see if the operation was successful. If the “Write
Enable Latch” did not return to disabled, then this indicates that the command failed or
was ignored. If this happens, there is likely a software problem or the message on the SPI
bus was corrupted somehow.

Listing 8-8. Chip-Erase Function

0167: static bool
0168: w25 chip erase(uint32_t spi) {

0169:

0170:  if ( w25_is wprotect(spi) ) {

0171: std _printf("Not Erased! Chip is not write enabled.\n");
0172: return false;

0173: }

0174:

0175:  spi enable(spi);

0176:  spi xfer(spi,W25_CMD_CHIP ERASE);
0177:  spi disable(spi);

0178:
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0179:  std printf("Erasing chip..\n");

0180:

0181:  if ( !w25_is wprotect(spi) ) {

0182: std_printf("Not Erased! Chip erase failed.\n");
0183: return false;

0184: }

0185:

0186:  std printf("Chip erased!\n");
0187:  return true;
0188: }

The remaining erasure functions are nearly the same, except for the fact that they
identify the block number that they are erasing. Listing 8-9 illustrates the routine used.

Listing 8-9. Block-Erasure Routine w25_erase_block( )

0233: static void
0234: w25_erase block(uint32_ t spi,uint32 t addr,uint8 t cmd) {
0235: const char *what;

0236:

0237:  if ( w25_is wprotect(spi) ) {

0238: std_printf("Write protected. Erase not performed.\n");
0239: return;

0240: }

0241:

0242: switch (emd ) {
0243:  case W25_CMD_ERA_SECTOR:

0244: what = "sector";
0245: addr 8= ~(4*1024-1);
0246: break;

0247: case W25 CMD_ERA 32K:
0248: what = "32K block";
0249: addr &= ~(32*1024-1);
0250: break;
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0251: case W25 CMD ERA 64K:

0252: what = "64K block";

0253: addr &= ~(64*1024-1);

0254: break;

0255:  default:

0256: return; // Should not happen
0257: }

0258:

0259:  spi enable(spi);

0260: spi xfer(spi,cmd);

0261: spi xfer(spi,addr »> 16);

0262: spi xfer(spi,(addr >> 8) & OxFF);
0263:  spi xfer(spi,addr & OxFF);

0264: spi disable(spi);

0265:

0266:  std printf("%s erased, starting at %06X\n",
0267: what, (unsigned)addr);

0268: }

The argument passed as addr is taken to be the block number to be erased. The
argument cmd then indicates which type of erasure to perform. Line 242 then determines
what type of erasure is being performed and performs a mask operation on addr
according to the block size being used.

The erasure command happens in lines 260 to 263, where the command and three
bytes of block numbers are transmitted.

Reading Flash

Once the flash has been written, we need the ability to read it back. Listing 8-10 shows a
function to perform this task.

Listing 8-10. A Function to Read SPI Flash

0191: static uint32_t // New address is returned

0192: w25 read data(uint32_t spi,uint32_t addr,void *data,uint32_t bytes) {
0193: uint8 t *udata = (uint8 t*)data;

0194:
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0195: w25 wait(spi);

0196:

0197:  spi_enable(spi);

0198:  spi_xfer(spi,W25_CMD_FAST READ);
0199:  spi xfer(spi,addr >> 16);

0200:  spi_xfer(spi,(addr >> 8) & OxFF);
0201: spi xfer(spi,addr & OxFF);

0202:  spi xfer(spi,DUMMY);

0203:

0204: for ( ; bytes-- > 0; ++addr )

0205: *udata++ = spi_ xfer(spi,DUMMY);
0206:

0207:  spi disable(spi);
0208:  return addr;
0209: }

The argument addr indicates the flash relative address to read, while arguments
data and bytes indicate where to place the read data. Line 198 issues the SPI “read”
command, and then three bytes of address information is transmitted to the slave device.
The “Fast Read” requires a dummy byte be written out after the address (line 202). After
that, the loop in lines 204 and 205 reads back the bytes transmitted by the flash device.

The “Fast Read” Winbond command was not used here for speed. The regular read
command has the problem that it will wrap around within the current 256-byte page. To
allow reads to cross page boundaries, the “Fast Read” command is used instead.

Demonstration

Enough tech talk! Time for a demonstration. If you've not already done so, build the
program now (in directory ~/stm32103c8t6/rtos/winbond):

$ make clobber
$ make

arm-none-eabi-size main.elf
text data bss dec hex filename
17376 1472 18104 36952 9058 main.elf
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Attach your programmer and perform the following:

$ make flash

/usr/local/bin/st-flash write main.bin 0x8000000

st-flash 1.3.1-9-gco4df7f-dirty

2017-11-04T10:03:37 INFO src/usb.c: -- exit dfu_mode
2017-11-04T10:03:37 INFO src/common.c: Loading device parameters....

2017-11-04T10:03:39 INFO src/common.c: Starting verification of write
complete

2017-11-04T10:03:39 INFO src/common.c: Flash written and verified!
jolly good!

With the STM32 device flashed, unplug the programmer first (important) and then plug
in a USB cable between the STM32 and your desktop. I am using minicom as the terminal
program here, but you can use another if you prefer. In order to connect via USB, you'll need
to discover the device name to use. Review Chapter 7, “USB Serial,” if you need help with this.

Tip If your minicom is installed so that the default save directory requires root
permission, you may want to use sudo minicom -s.

To set up minicom to use this, use the following
$ minicom -s
This brings up the following dialog:
Hm---- [configuration]------ +
Filenames and paths
File transfer protocols

Serial port setup
Modem and dialing

<--- choose

| |
| |
| |
| |
| Screen and keyboard |
| Save setup as dfl |
| Save setup as..

| Exit |
| Exit from Minicom |
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Choose "Serial port setup" by using the cursor down key. Then, a setup
dialog is shown, as follows:

e +
| A - Serial Device : /dev/cu.usbserial-A100MX3L

| B - Lockfile Location : /usr/local/Cellar/minicom/2.7/var |
| C - Callin Program :

| D - Callout Program :

| E - Bps/Par/Bits : 2400 801

| F - Hardware Flow Control : No

| G - Software Flow Control : No

| |
| |

Change which setting?

Type “A” and enter the device pathname for your USB device. The remaining settings
are unimportant. Press Return to end that dialog, then save those settings by selecting
"Save setupas..."Iusedthe name of "usb." Saving your settings will save you time in
the later chapters of this book.

Exit out of minicom by selecting "Exit from minicom." If you chose “Exit”
instead and it didn’t error back to the command line, you might need to use the Esc-X
(or Control-A X) keystroke to exit. They must be typed quickly in succession to be
recognized by minicom.

Running the Demo

With the minicom setup out of the way, you should be able to plug in your STM32’s
USB cable and start minicom (in that sequence). Use your saved settings name as the
argument on the minicom command line (I used “usb” here):

$ minicom usb
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Upon connecting through USB to your STM32, minicom should display the
following:

Welcome to minicom 2.7

OPTIONS:
Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbmodemWGDEM1, 10:17:40

Press Meta-Z for help on special keys

Now we can communicate with the STM32. Press Return to prompt the demo code
to show the following menu:

Winbond Flash Menu:
0 ... Power down
. Power on
. Set address
.. Dump page
. Erase (Sector/Block/64K/Chip)
. Manufacture/Device info
.. Ready to load Intel hex
.. JEDEC ID info
. Read byte
. Program byte(s)
. Flash status
.. Read unique ID
... Write Enable
. Write protect

X £ € W T HKH WU > H DO Q 9 B

Address: 000000
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Pressing any unrecognized command letter or pressing Return will cause this menu
to redisplayed. The first thing to do is to see if we can read the flash device’s status. Press
“s” (or “S”) to cause a status read:

: S
SR1 = 00 (write protected)
SR2 = 00

The demo program reports the W25Q25’s SR1 as hex 00 and SR2 as 00. If you are
seeing FF instead, then you may not be communicating over SPI correctly.
To Write Enable, press “W”:

W
SR1 = 02 (write enabled)
SR2 = 00

From this you can see that the flash device’s SR1 now reads as hex 02, indicating that
write is now enabled. With write enabled, you can perform a chip erase (press “E”):

. E

Erase what?
s ... Erase 4K sector
b ... Erase 32K block
z ... Erase 64K block
Cc ... Erase entire chip

anything else to cancel
i c

Erasing chip..

Chip erased!

Don’t panic if the erase takes a few seconds. It’s a dirty job, but somebody’s got to do
it. It's not a software hang, just the Winbond chip working hard.

Now, let’s set the address and check if the chip is in fact erased. Type “A” and enter a
zero, followed by Return:

A
Address: 0
Address: 000000
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Now, let’s dump a page (256 bytes) by typing “D”:

: D

000000
000010
000020
000030
000040
000050
000060
000070
000080
000090
0000A0
0000B0
0000C0
0000D0
0000E0
0000F0

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

Address: 000100

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

That seems to confirm an erasure, at least of page 0. Notice that the address

has incremented by a page, so continued presses of “D” will allow the displaying of

successive pages.

Now, let’s write some bytes. Follow the session shown:

W
SR1 =
SR2 = 00
A
Address: 0

02 (write enabled)

Address: 000000

. P

$000000 AA BB CC DD EE

$000005 5 bytes written.
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: D

000000 AA BB CC DD EE FF FF FF FF FF FF FF FF FF FF FF «vveiiiiennnnnnn
000010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF «veviiieennnnnn
000020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF «vviiiieennnnnn

In the session, we reset the address to zero after enabling writes and then typed
“P” to program some bytes. In between each of the data bytes AA, BB, and so on, press
Return. Pressing one extra Return will exit the program mode.

To verify that the data was written, page 0 was dumped. ASCII data can also be
programmed by typing a quote character followed by the single character you want to
enter. The following session illustrates this (page 0 assumed erased):

: P

$000000 '‘H 'e '1 'l 'o ' 'W 'o 'r '1 'd "!

$00000C 12 bytes written.

: D

000000 48 65 6C 6C 6F 20 57 6F 72 6C 64 21 FF FF FF FF Hello World!....

000010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...cvviviienen
000020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...ooiviionen

It’s a little tedious, but the text was entered successfully.
Now, let’s test the nature of flash programming. Set the address to an erased location
and program it as 0x7F. Here, we’ll use address hex 10:

: P
$000010 7F
$000011 1 bytes written.

: D

Check that the second line displays 7F at the left side. Now, program location hex 10,
with the hex value BF:
A
Address: 10
Address: 000010
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: P
$000010 BF
$000011 1 bytes written.

: D

000010 3F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2..0eivinnnnn..

Notice that the high bit (bit 7) of location 000010 is left unchanged. But because bit
6 (in 0xBF) was a zero, a new zero bit (bit 6) was programmed, leading to the resulting
value of 0x3F.

Manufacturer ID

The identification of the flash chip can be tested with the “I” and “J” menu commands:

¢ I
Manufacturer $EF Device $15 (W25X32)

.
Manufacturer $EF Type $40 Capacity $16 (W25X32)

Power Down

The Winbond chip can be powered down for current savings. Use menu options “0” and
“1” to power off and on, respectively:

: 0

When on and reading status, the current draw on my unit was about 19.4 mA. When
powered off, the current was reduced to 0.7 pA.
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Summary

This has been a lengthy chapter, so give yourself a break. There are a couple of
unexplored options in this demo program, like the unique ID and the Intel Hex upload.
Do check out the unique ID feature. The Intel Hex upload feature will be used in the
next chapter to program code overlays, so stay tuned for that. There are also a number of
W25QXX features that were not explored, like its many protection features. To get the full
scope of its capabilities, read the manufacturer datasheets. A simple Google search for
“W25Q64 datasheet PDF” will find what you need.

Completion of this chapter means that now you are equipped with knowledge about
the SPI protocol and how to apply it on the STM32 under FreeRTOS using libopencm3.
That might seem like a lot of ducks to get in a row, and indeed it was. The next chapter
will turn our attention to one practical use for external flash: code overlays.
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EXERCISES

1. How many data lines are used by SPI in bidirectional links? What are their
signal names?

Where does the clock originate from?
What voltage levels are used for SPI signalling?

Why must a pull-up resistor be used for the STM32 /NSS line?

a ~ w N

Why must a dummy value be sent in some SPI transactions?
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CHAPTER 9

Code Overlays

You don’t hear much about code overlays today. With today’s seemingly unlimited
virtual memory in desktops and servers, applications often don’t check for the risk of
running out of memory. Yet in the early days of the mainframe’s using core memory and
the fledgling IBM PC, running out of memory was a frequent concern. Overlays were
instrumental in doing more with less.

Overlays continue to have a role today in microcontrollers because of those products’
own memory limits. Embedded products may begin with a selected microcontroller,
only to discover later that the software won't fit. If this happens late in the product
development cycle, a solution for using the existing MCU (Micro Controller Unit) must
be found or software features must be dropped.

The designer may know that some sections of code are not needed often. A full-
featured BASIC interpreter, for example, could swap in a code segment to renumber the
program only when it is needed. The rest of the time, that code would remain unused
and would not need to be resident.

There isn’t much information available online about how to use GCC overlays.!
There is plenty of discussion about load scripts, but specifics about the rest are usually
left as an exercise for the reader. This chapter is dedicated to a full demonstration of a
working example. This demo will swap overlays from the SPI flash chip into an SRAM
overlay region, where the code will be executed. Given that these flash chips offer
4 MB or 8 MB of code storage, your imagination is the limit when it comes to larger
applications on the STM32.

The Linker Challenge

In application development, your imagination leads you to write C code that is translated
by the compiler into one or more object files (*.0). If the application is small enough,
you link it into one final *. elf file, which is designed to fit the available flash memory
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in the MCU. For the STM32, the st-flash utility needs a memory image file, so the
following build step converts the .elf file to a binary image first:

$ arm-none-eabi-objcopy -Obinary main.elf main.bin
Then, the image file main.bin is uploaded to flash at address 0x8000000:
$ st-flash write main.bin 0x8000000

That is the typical link process, but how do you create overlays? Let’s get started with
the Winbond demo project. Go to the following subdirectory:

cd ~/stm32f103c8t6/rtos/winbond
Then, perform the following:

$ make clobber
$ make

This will force recompile that project, and at the end of it all the link step will look
something like the following (the lines are broken up to fit the page for readability):

arm-none-eabi-gcc --static -nostartfiles -Tstm32f103c8t6.1d \
-mthumb -mcpu=cortex-m3 -msoft-float -mfix-cortex-m3-ldrd \
-W1,-Map=main.map -Wl,--gc-sections main.o rtos/heap 4.0 \
rtos/list.o rtos/port.o rtos/queue.o rtos/tasks.o \
rtos/opencm3.o -specs=nosys.specs -Wl,--start-group \
-lc -1lgcc -lnosys -Wl,--end-group \
-L/Users/ve3wwg/stm321103c8t6//rtos/libwwg -lwwg \
-L/Users/ve3wwg/stm32f103c8t6/1ibopencm3/1ib \
-lopencm3_stm32f1 -o main.elf

This whole linking process is governed by the link script specified by the option
-Tstm321103c8t6.1d. When there is no -T option given on a Linux build command,
for example, one will be assumed by default. But let’s examine the file provided in the

Winbond project.
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MEMORY Section

The linker script contains a MEMORY section at the beginning that looks like the following:

MEMORY
{
rom (rx) : ORIGIN = 0x08000000, LENGTH = 64K
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 20K
}

This part of the load script declares two memory regions. These are regions that we
are going to load code into (rom) or allocate space for (ram). If you are building large
applications, I would advise you to change that rom size to 128K in the linker script and
use the open-sourced st-1ink command to flash it using the - -flash=128k option
(doing a “make bigflash” will specify this option from the provided Makefile). As noted
before, the STMF103C8T6 seems to support 128K despite its claim that only 64K exists.

After expanding rom to 128K, the MEMORY section should look like the following:

MEMORY
{
rom (rx) : ORIGIN = 0x08000000, LENGTH = 128K
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 20K
}

The optional attributes within brackets, like (rwx), describe the intended uses for
the memory region (read, write, and execute). GCC documentation says that they are
supported for backward compatibility with the AT&T linker but are otherwise only
checked for validity.?

The ORIGIN = 0x20000000 parameter indicates where the block of ram memory
physically resides. The LENGTH parameter is the size in bytes. Let’s compare this notion of
memory with the basic physical memory map of the MCU, shown in Figure 9-1.
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Peripherals
40000000
20005000
SRAM (20k)
20000000
08020000
Flash (128Kk)
08000000
Aliased Flash
or System Memory
00000000

Figure 9-1. Basic STM32F103C8T6 memory layout (addresses in hexadecimal)

The memory that appears at the region starting at 0x00000000 depends upon the
BOOTO and BOOT1 switches. Normally, the setting BOOT0=0 is used, causing the flash
memory to appear at location zero as well as at 0x08000000. This allows the MCU startup
code to be the programmed flash memory.

At the higher address of 0x20000000 we find the static ram (SRAM). The size of this
memory region is 20K for the STM32F103C8T6. Now, let’s look at the remainder of the
load script to see how it works.

150



CHAPTER9  CODE OVERLAYS

Entry

The main driver of the load process is going to be the SECTIONS region of the file that
we'll examine next, but there are two entries I'll discuss first. These are the ENTRY and
EXTERN keywords:

ENTRY(reset_handler)
EXTERN (vector table)

These entries do not appear in the MEMORY or SECTIONS areas of the load script but
rather stand alone. The ENTRY keyword names the routine that is passed control at
startup. The EXTERN keyword identifies a data area that will define the initial interrupt
vector. With the environment being used, these will be supplied from the libopencm3
static library from a module named vector.o as follows:

~/stm32f103c8t6/1ibopencm3/1ib/1ibopencm3_stm32f1.a

If you need to change the startup in any way, or are just curious, view the libopencm3
module here:

~/stm321103c8t6/1ibopencm3/1ib/cm3/vector.c

Because the symbol reset_handler is referenced by the ENTRY keyword, the
vector.o module is loaded (unless you have supplied one of your own). This saves
you from having to define all of the initialization required. When the reset handler has
performed its setup, it will then call upon your main() program.

Sections

This is where things get interesting in the load script. In general terms, you'll find that
this section appears like the following:

SECTIONS
{
Jtext ¢ {
*(.vectors) /* Vector table */
*(Ltext*) /* Program code */

. = ALIGN(4);
*(.rodata*) /* Read-only data */
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. = ALIGN(4);
} >rom
..etc...

I've trimmed some of the content so that you can focus on the essentials. From the
snippet shown you can see that comments exist in the load script in C language form; for
example, /* comment */.Don’tlet the remainder of the odd-looking syntax put you off.
Let’s break it down.

Jtext |
*(.vectors) /* Vector table */
*(.text*) /* Program code */

. = ALIGN(4);
*(.rodata*) /* Read-only data */
. = ALIGN(4);

} >rom

A specific section begins with a name, which is . text in this example. Section
names can be composed of almost any character, though odd characters or spaces must
be quoted using ("). Otherwise, a symbol is expected to be surrounded by white space.

The section declared is named .text and is followed by a colon (:) and then a
starting and ending curly brace. After the closing brace, we see >rom. This specifies
that the input described between the curly braces will be placed into the MEMORY region
named rom (remember that MEMORY section?)

What appears between the braces describes input and symbol calculations. Let’s
look at one input example first:

*(.vectors)

What this means is that any input file (*) containing an object file section named
.vectors is to be included in the output section being defined (in this case, . text).
Keep in mind that there are two kinds of sections involved:

1. Input object sections (like .vectors in the example)

2. Output sections (like . text in the example)
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The initial asterisk names any file but could specify filenames instead. For example,
the following two examples are possibilities:

*.0(.vectors) /* any .o file having .vectors */
special.o(.vectors) /* special.o having a .vectors section */

If we strip the example down to just the inputs, we would have the following:

Jtext ¢ {
*(.vectors) /* Vector table */
*(Ltext*) /* Program code */
*(.rodata*) /* Read-only data */
} >rom

Boiled down from the preceding example, then, we are loading from any input file,
from object file sections .vectors, .text, or .rodata. These will be loaded into the
memory region named rom. Still with me?

Now, what about that other voodoo? The symbol dot (. ) is used as the current
location within the section. This practice undoubtedly comes from the assembler’s use
of the dot for the “location assignment counter.” Within the link script, the dot symbol
serves a similar purpose:

Jtext ¢ {
*(.vectors) /* Vector table */
*(.text*) /* Program code */

. = ALIGN(4);
*(.rodata*) /* Read-only data */
. = ALIGN(4);

} >rom

The value of the dot at the middle (after .text) is the location at the end of the .text
section (at that point in the link), but rounded up to the 4-byte word boundary (due to
the use of special function ALIGN(4)). In this case, the current location is bumped up to
the next aligned location. This is invoked a second time after the loading of input section
.rodata (read-only data) so that if anything else is loaded into . text it will be aligned.
Now, the mystery has been revealed!
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Note that expressions like those involving dot are ended with a semicolon (;).
Symbols can also be calculated in the same manner. For example, in the same script, and
between section declarations, you'll find the following:

} >rom

. = ALIGN(4);
_etext = .;

Because these last two lines are expressions appearing outside of the section
definition (that is loading into rom), dot here will refer to the last location referenced
(inside of rom). From this, we see that dot is aligned to the next word boundary and then
assigned to a symbol _etext. Arithmetic is allowed in these expressions, if required. The
symbol _etext in your program will then have the address of the first byte past the end of
your read-only region in flash (rom).

PROVIDE

The PROVIDE keyword, used within a linker script, gives you the ability to define a symbol
ifitis needed (referenced). If the symbol isn’t referenced, then its definition is withheld
from the link to avoid symbol conflicts. The following will be found in your load script:

PROVIDE( stack = ORIGIN(ram) + LENGTH(ram));

This statement says, provide symbol _stack if it is referenced. Calculate it as the
starting address of memory region ram plus the length of the memory region. In other
words, the starting address of a stack, which grows downward in the available SRAM

region.

Relocation

As part of directing the linker, one issue that comes up is the need to have the linker put
some stuff in flash memory, but to relocate references to that stuff as if it existed in SRAM.
To look at this another way, we will be using some data in SRAM, but it will not live in SRAM
until some startup code copies it there. Here is an example from your load script:

.data : {
_data = .;
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*(.data*) /* Read-write initialized data */
. = ALIGN(4);
_edata = .;

} >ram AT >rom

Here we define two symbols:
1. _data(start of data)
2. _edata(end of data)

Of particular interest is the last line:
} >ram AT >rom

As you probably have guessed, this means that the symbols should be defined as if
they were in ram (SRAM), but they will be written into the flash section (rom) instead. The
initialization code within the module vector.o discussed earlier will copy this data from
flash into the final SRAM location before main() is called.

This affects the relocation of any symbol references. If you had a static int constant,
for example, that was not declared const, then it would be destined for SRAM. The
address of that int will be set up by the linker to be somewhere in SRAM (address
0x20000000 to 0x20004FFF). However, the int value itself will be loaded into flash
memory (somewhere between 0x08000000 and 0x0801FFFF). Startup initialization must
copy it to SRAM to make it valid.

Keep this in mind as we turn our attention to overlays.

Defining Overlays

Now that you're armed and dangerous, let’s get started with using the linker to define
overlays. Change to the project directory overlay1:

$ cd ~/stm32f103c8t6/rtos/overlayl

In this project subdirectory, we have a modified version of the linker script
stm32f103c8t6.1d that we'll be looking at.
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The first thing of interest is that we've declared four memory regions instead of the

usual two:

MEMORY

{
rom (rx) : ORIGIN = 0x08000000, LENGTH = 128K
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 18K
/* Overlay area in RAM */
ovl (rwx) : ORIGIN = 0x20004800, LENGTH = 2K
/* Give external flash its own storage */
xflash (r) : ORIGIN = 0x00000000, LENGTH = 4M

The ramregion has been shortened by 2K to leave room for the new SRAM overlay
region named ov1l. The memory addressed from 0x20004800 to 0x20004FFF is reserved
to execute our overlay code.

The other new region, named xflash, is defined so that the linker can emit code that
will reside in our external SPI flash. There will be more about this later.

The remainder of the linker script magic can be found later in the file as follows:

OVERLAY : NOCROSSREFS {

.fee {
.overlayl start = .;
*(.ov_fee) /* fee() */
*(.ov_fee data) /* static data for fee() */
}
.fie { *(.ov_fie) } /* fie() */
.foo { *(.ov_foo) } /* foo() */
fum { *(.ov_fum) } /* fum() */

} >ovl AT >xflash
PROVIDE (overlayl = .overlayl start);

Let’s now pick this apart. The OVERLAY keyword tells the linker to load all sections
into the overlay section in an overlapping manner. In the example shown, the sections
.fee, .fie, .foo, and .fumwill all start at the same location. Given that >ov1 puts this
code into the overlay memory region, they will all have a starting address of 0x20004800.
Of course, it is understood that not all of them can reside in that space at the same time.
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The symbol .overlayl start captures the starting address of the overlay region and
is eventually passed into the PROVIDE statement so that symbol overlay1 will contain the
overlay starting address 0x20004800. This symbol can be used within the C program.

The keyword NOCROSSREFS provides another important linker feature. It would be
unworkable for one overlay to call upon or reference another overlay in the same region.
Only one overlay can reside in a region at one time. Calling function fie() from fee()
would be disastrous. The NOCROSSREFS keyword instructs the linker to treat this scenario
as an error.

Finally, note the following line:
} >ovl AT >xflash

This directs the linker to relocate the code as if it runs at the overlay (ov1) address (in
SRAM) but to place that overlay code into the memory region xflash instead. The xflash
memory region will require a bit of special handling later on, but we need the linker to
do this bit of trickery first.

An important concept here is that whatever goes into xflash is destined for the
Winbond SPI flash device, starting at SPI flash address zero. This was established by the
ORIGIN keyword in the following:

xflash (r) : ORIGIN = 0x00000000, LENGTH = 4M

Overlay Code

The section declared as . fee consists of two input sections, which come from the .ov_
feeand .ov_fee data sections. This provides an example of declaring code and data
within the same overlay, presented in Listing 9-1.

Listing 9-1. The fee() Function Overlay Declaration
0027: int fee(int arg) _ attribute ((noinline,section(".ov_fee")));
0115: int

0116: fee(int arg) {
0117: static const char format[] // Placed in overlay

0118: __attribute_ ((section(".ov_fee data")))
0119: - "***********\n"
0120: "fee(0x%04X)\n"
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0121: "***********\n";

0122:

0123:  std printf(format,arg);
0124:  return arg + 0x0001;
0125: }

To tell the compiler that the fee() function is to go to section .ov_fee (in the object
file), we must use the GCC __attribute keyword (line 27). This attribute can only be
specified in the function prototype.

The noinline keyword prevents GCC from inlining the code for fee(). This is
especially important for our demo because the function is small enough to be inlined at
the point of the call by GCC.

The second argument, section(".ov_fee"), names the section that our fee()
function code should be written to in the main.o object file. The read-only data declared
in lines 117 to 121 is specified to go into section .ov_fee_data. The compiler insists that
this data section be different from the function code.

The remaining functions are simpler but apply the same idea. Listing 9-2 illustrates
the fie() overlay function.

Listing 9-2. The fie() Function Overlay Code

0028: int fie(int arg) _ attribute ((noinline,section(".ov_fie")));

0131: int
0132: fie(int arg) {
0133:

0134:  std _printf("fie(0x%04X)\n",arg);
0135:  return arg + 0x0010;
0136: }

Again, the overlay is named in the function prototype (line 28). The declaration of
the function in lines 131 to 136 is per usual. Note that unlike fee(), the string constant
used in line 134 will become part of the non-overlay code in the rom region here.
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Overlay Stubs

Before the overlay code can be executed, the code from the SPI flash must be copied
into the overlay area in SRAM. For this reason, each of the overlay functions uses a “stub
function” and overlay manager, like the one shown in Listing 9-3.

Listing 9-3. Stub Function for fee()

0164: static int

0165: fee stub(int arg) {

0166: int (*feep)(int arg) = module lookup(& load start fee);
0167:

0168: return feep(arg);

0169: }

Our fee() function takes an int argument and returns an int value. Consequently,
the stub function must do the same. However, before we can call the overlay function,
the function module lookup() is invoked to see if it is already in the ov1 (overlay) region
and, if not, to copy it there now. Finally, we need to know its function address so that we
can call it, which the module lookup() function will return.

Overlay Manager

An overlay manager of some sort is usually required, especially when multiple overlay
regions are used. Our demo program sets up an overlay table using an array of struct
s_overlay:

0036: typedef struct {

0037:  short regionx; // Overlay region index
0038:  void *vma; // Overlay's mapped address
0039: char *start; // Load start address

0040: char *stop; // Load stop address

0041: unsigned long size; // Size in bytes
0042:  void *func;  // Function pointer
0043: } s overlay;
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For this demo, only one overlay region is used; therefore, regionx is always the index
value zero. However, if you were to support three overlay regions, for example, this index
could be a value of 0, 1, or 2. It is used to track which overlay is currently in the overlay
region so that it is not always necessary to copy in the code.

The member vma is the overlay’s mapped address (its SRAM location when executed).
Members start and stop are the external flash addresses (from region xflash) that we
need to load. Member size will have the calculated overlay size in bytes, while the final
member func will contain the SRAM function pointer.

Are you still mulling over the values of start and stop right now? Give yourself
points if you are. The question is how does the demo program locate the SPI flash code
to load?

VMA and Load Addresses

The VMA (virtual memory address) and the load address for overlays are different. We
have arranged for the overlay code and data to be written into the xflash memory area.
Those load addresses will start from zero, since that is where the SPI flash addresses will
begin. The VMAs for that code will be calculated for the overlay area in SRAM.

This is pointed out because we cannot use the VMAs for our overlay table as they
map to the same region of SRAM. Some of the function pointers might even be the same.
However, the load addresses (from SPI flash) will be unique. This permits us to use them
as identifiers in our overlay table.

In the demo program a macro is used for programming convenience:

0048: #define OVERLAY(region,ov,sym) \
{ region, &ov, & load start ## sym, & load stop ## sym, 0, sym }

Because we are using only one overlay region, the region parameter will always be
zero. But if you choose to add another, then you can supply the index as parameter 1.

The ov parameter refers to the overlay’s starting address. The sym parameter allows
us to specify the overlay function. Let’s expand on this after we illustrate the demo
program’s table:

0056: // Overlay table:

0057: static s_overlay overlays[N OVLY] = {
0058:  OVERLAY(0,overlayi,fee),

0059:  OVERLAY(0,overlayi,fie),
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0060:  OVERLAY(0,overlay1,foo),
0061:  OVERLAY(0,overlayi,fum)
0062: };

In the demo table’s contents, the symbol overlay1 is referenced as the symbol
describing the overlay’s starting address in SRAM. The load script defines the start of that
region as address 0x20004800 (for 2K bytes). Recall that the symbol was defined in the
load script as follows:

PROVIDE (overlayl = .overlayl start);
Looking closer at one table entry,
0058:  OVERLAY(0,overlayi,fee),

we see that argument three is supplied as fee. The macro expands into the
following line:

{ o, &overlayi, & 1load start fee, & load stop fee, 0, fee }

Where do the symbols __load start feeand load stop fee come from? These
are automatically generated by the linker when the section . fee is processed. These two
lines can be found in your main.map file that is written by the linker:

0x0000000000 PROVIDE (_ load start fee, LOADADDR (.fee))
0x0000000045 PROVIDE (_ load stop fee, (LOADADDR (.fee) + SIZEOF (.fee)))

From this we learn that the . fee section is loaded at address zero in the xflash (SPI
flash) memory region and is 0x45 bytes (69 bytes) long.

Linker Symbols in Code

One thing that trips up new players when using linker symbols like load start fee,
for example, is that they try to use the values at those addresses rather than the addresses
themselves. Let’s clear this up with a code example:

extern long _ load start fee;
Which is the correct usage to access the linker symbol _load start fee?Isit:

1. _ load start fee (the value), or

2. & load start fee (the address)?
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I've already given it away. Solution 2 is the correct answer, but why?

Solution 1 would imply that that the linker put 4 bytes of storage at the address of
__load _start_fee, containing the symbol’s value (which is an address). But the linker
defines a symbol’s value as an address, so no storage is allocated.

Returning to the overlay table that is used by the overlay manager, we see that the
structure members of the first entry are populated as follows:

0036: typedef struct {

0037:  short regionx; // 0 (overlay index)
0038:  void *vma; // &overlay1

0039: char *start; // & load start fee
0040: char *stop; // & load_stop_fee
0041: unsigned long size; // 0 (initially)

0042:  void *func; // A pointer inside SRAM

0043: } s overlay;

This entry then defines the address of the SRAM overlay area in struct member vma
using the linker-provided address &overlay1. Likewise, members start and stop also
use linker-provided addresses. The size member will be calculated once at runtime.
Finally, the member func is provided the value fee. What? What'’s going on with that?

Because the compiler knows that fee is the symbol of a function entry point of the
function fee(), the simple reference to the symbol serves as the address. This linker-
symbol mambo can be a little confusing.

Overlay Manager Function

Let’s finally present the overlay function (Listing 9-4). The value that is passed in as the
argument module is the overlay load address; for example, & load start fee. Thisis
the address that the linker placed the overlay code in, which will come from the SPI flash.

Listing 9-4. The Overlay Manager Function

0071: static void *
0072: module lookup(void *module) {

0073: unsigned regionx; // Overlay region index
0074: s overlay *ovl = 0; // Table struct ptr
0075:
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0077:
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0079:
0080:
0081:
0082:
0083:
0084:
0085:
0086:
0087:
0088:
0089:
0090:
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0092:
0093:
0094:
0095:
0096:
0097:
0098:
0099:
0100:
0101:
0102:
0103:
0104:
0105:
0106:
0107:
0108:
0109:
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std_printf("module lookup(%p):\n",module);

for ( unsigned ux=0; ux<N_OVLY; ++ux ) {
if ( overlays[ux].start == module ) {
regionx = overlays[ux].regionx;
ovl = 8overlays[ux];
break;

if ( lovl )
return 0; // Not found

if ( !cur overlay[regionx] || cur overlay[regionx] != ovl ) {
if ( ovl->size == 0 )
ovl->size = (char *)ovl->stop - (char *)ovl->start;
cur_overlay[regionx] = ovl;

std printf("Reading %u from SPI at 0x%04X into 0x%04X\n",
(unsigned)ovl->size,
(unsigned)ovl->start,
(unsigned)ovl->vma);

w25 read data(SPI1, (unsigned)ovl->start,ovl->vma,ovl->size);

std_printf("Returned...\n");
std_printf("Read %u bytes: %02X %02X %02X...\n",
(unsigned)ovl->size,
((uint8_t*)ovl->vma)[o],
((uint8 t*)ovl->vma)[1],
((uint8 t*)ovl->vma)[2]);
}

return ovl->func;
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Lines 78 to 84 perform a linear search of the table looking for a match on the module
address (matching occurs in line 79). If a match is found, the index of the entry is saved
in regionx (line 80). Then, the address of the overlay table entry is captured in line 81 in
ovl before breaking out of the loop.

If the loop was exited without a match, 0 (null) is returned in line 87. This is fatal if
used as a function call and indicates a bug in the application.

Line 89 checks to see if the overlay is valid and is already loaded or not. If the overlay
must be read in, lines 90 to 107 are executed to make the overlay ready for use. If the
overlay size is not yet known, it is calculated and saved in the table at lines 90 to 91. Line
92 tracks which overlay is currently loaded. Line 99 performs the SPI read from the flash
device from the device’s flash address ovl->start into the overlay SRAM memory at ov1-
>vma for ovl->size bytes.

With the overlay code loaded, the function pointer is returned in line 108.

Overlay Stubs

To ease the use of overlays, a stub function is normally used as a surrogate so that it can be
called like a regular function. Listing 9-5 illustrates the stub function for the overlay fee().

Listing 9-5. The fee() Stub Function

0164: static int

0165: fee stub(int arg) {

0166:  int (*feep)(int arg) = module lookup(& load start fee);
0167:

0168:  return feep(arg);

0169: }

The stub function merely calls the overlay manager with the correct symbol (&
load_start feein this case). Once it has the function pointer captured in feep, it is
safe to make the function call because the overlay manager can load the code when
necessary. The function pointer feep allows the function to be invoked with the correct
arguments and return the overlay’s return value.
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Demonstration

The demonstration program main.c (Listing 9-6) performs some initialization for SPI
and for USB. Then, task1 is launched to perform USB terminal I/0O.

Listing 9-6. Initialization

0247: int
0248: main(void) {
0249:
0250:  rcc_clock setup in hse 8mhz_out 72mhz(); // Use this for "blue
pill"
0251:  rcc_periph clock_enable(RCC_GPIOC);
0252:  gpio_set mode(GPIOC,GPIO MODE OUTPUT 2 MHZ,
GPIO CNF_OUTPUT PUSHPULL,GPIO013);
0253:
0254: usb start(1);
0255:  std_set device(mcu_usb); // Use USB for std I/0
0256:
0257: w25_spi_setup(SPI1,true,true,true,SPI_CR1_BAUDRATE_FPCLK
DIV_256);
0258:
0259:  xTaskCreate(taski,"task1",100,NULL,configMAX PRIORITIES-1,NULL);
0260:  vTaskStartScheduler();
0261: for (5;);
0262: return O;
0263: }

To rebuild this project from scratch, perform:

$ make clobber
$ make

But don’t flash your STM32 just yet.
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Extracting Overlays

Before you can exercise your overlays, you have to get that overlay code loaded onto your
W25Q32 flash device. Recall that we placed the overlay code in linker memory region
xflash? Now we have to get that from the linker output and load it into the SPI device.

You may have noticed that the make command performed some extra steps in this
project:

arm-none-eabi-gcc --static -nostartfiles -Tstm32f103c8t6.1d ... -o main.elf
for v in fee fie foo fum ; do \
arm-none-eabi-objcopy -0 ihex -j.$v main.elf $v.ov ; \
cat $v.ov | sed '/”:04000005/d;/":00000001/d" >>all.hex ; \
done
arm-none-eabi-objcopy -Obinary -R.fee -R.fie -R.foo -R.fum main.elf main.bin

After the normal link step (arm-none-eabi-gcc), you see some additional shell
commands being issued as part of a for loop. For each of the overlay sections (fee, fie,
fo00, and fum) a pair of commands is issued, as follows:

arm-none-eabi-objcopy -0 ihex -j.$v main.elf $v.ov
cat $v.ov | sed '/”:04000005/d;/*:00000001/d' >>all.hex

The first command extracts the named section in Intel hex format output (-0 ihex).
If variable v is the name fee, section . fee (-j.fee)is extracted to the file named fee.
ov. The sed command that follows just strips out type 05 and 01 records from the hex file
that we don’t need and concatenates them all to the file all.hex.

The last step requires that we remove the overlay sections from main.elf so that the
final image file doesn’t include the overlays. If we left them in, then st-flash would try
to upload that to the STM32 and fail.

arm-none-eabi-objcopy -Obinary -R.fee -R.fie -R.foo -R.fum main.elf main.bin

This command writes the image file main.bin (option -Obinary) and removes
sections . fee, . fie, .foo, and . fum using the -R option. The main.bin is the image file
that the st-flash command will use for the upload.

Tip To make it easier to access from minicom, you may want to copy the file
all.hex to your home directory or /tmp.
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Upload Overlays to W25032

To upload the overlay code to the Winbond flash chip, use the project winbond to do it,
from the project directory:

cd ~/stm32f103c8t6/rtos/winbond
Rebuild that project and flash it to your STM32:

$ make clobber
$ make
$ make flash

Before starting minicom, however, make sure that you have the following command
installed on your system:

$ type ascii-xfr
ascii-xfr is /usr/local/bin/ascii-xfr

This is normally installed with minicom and may be installed in a different directory
on your system. If not found, you'll need to fix that (maybe re-install minicom).
Then, disconnect the programmer and plug in the USB cable. Start up minicom:

$ minicom usb

With minicom running, check your upload settings next. Press Esc-0 (or use
Control-A 0 if necessary) quickly to bring up a menu, then select “File Transfer
Protocols.” If a menu didn’t pop up, then try again. There cannot be much delay between
typing the Escape/Control-A key and the letter O (oh).

Look for the protocol name “ascii,” which is usually at the end of the list. Type the
letter for the entry (letter I on my system), and press Return to enter the “Program” input
area. Modify that entry to look as follows:

/usr/local/bin/ascii-xfr -n -e -s -175

The most important option is the -175 (lowercase el), which causes a 75 ms delay
after each text line is sent. Without a reasonable delay, the uploads will fail. You probably
should also set the other options as shown.

The remaining option flags are known to work:

Name U/D FullScr I0-Red. Multi
Y U N Y N
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Press Return to move through the list of input settings. Press Return one more time
to pop back to the main menu, then select “Save setup as USB.” You should now be able
to use the minicom session to upload the all.hex file.

Once out of the menu, or in minicom initially, press Return to cause the program to
present a menu:

Winbond Flash Menu:
0 ... Power down
. Power on
. Set address
.. Dump page
. Erase (Sector/Block/64K/Chip)
.. Manufacture/Device info
.. Ready to load Intel hex
.. JEDEC ID info
. Read byte
. Program byte(s)
. Flash status
. Read unique ID
. Write Enable
. Write protect

X = € W T HKH W > H DO Q 9 B

Address: 000000

Check that your SPI flash is responding and erase it if necessary.

W

SR1 = 02 (write enabled)
SR2 = 00

: E

Erase what?
s ... Erase 4K sector
b ... Erase 32K block
z ... Erase 64K block
c ... Erase entire chip
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anything else to cancel

1S

sector erased, starting at 000000
Sector erased.

Here, our address is still zero, but if not set it to zero now:

A
Address: 0
Address: 000000

Enable write again (erase disables it) and then prepare to upload the hex file:

t W

SR1 = 02 (write enabled)
SR2 = 00

: H

Ready for Intel Hex upload:
00000000 _

Now press Escape-S (or Control-A S) to pop up the Upload menu and choose "ascii":

+-[Upload]--+
| zmodem |
| ymodem |
| xmodem |
| kermit |
| ascii |<-- Choose

Another menu will pop up to allow you to choose a file to upload. I recommend just
pressing Return and entering the file name (all.hex). I copy mine to the home directory
so that I only need to type in "all.hex."
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[No file selected - enter filename: |
|> all.hex |

Upon pressing Return, an upload window pops up and sends the all.hex Intel hex
code up to your STM32.
To check that it got there, you can dump the page, as follows:

: D

000000 10 B5 04 46 01 46 02 48 00 FO 06 F8 60 1C 10 BD ...F.F.H.... ...
000010 20 48 00 20 00 00 00 00 5F F8 00 FO FD 18 00 08 H. .... .......
000020 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A OA 66 65 65 28 *¥¥¥kkxkkxk fee(
000030 30 78 25 30 34 58 29 OA 2A 2A 2A 2A 2A 2A 2A 2A OX%04X).********

000040 2A 2A 2A OA 00 10 B5 04 46 01 46 03 48 00 FO 06 *** . ...F.F.H...
000050 F8 04 F1 10 00 10 BD 00 BF 30 31 00 08 5F F8 00 ......... 01.. ..
000060 FO FD 18 00 08 10 B5 04 46 01 46 03 48 00 FO 06 ........ F.F.H...
000070 F8 04 F5 00 70 10 BD 00 BF 3D 31 00 08 5F F8 00 ....p....=1.. ..
000080 FO FD 18 00 08 10 B5 04 46 01 46 03 48 00 FO 06 ........ F.F.H...

000090 F8 04 F5 40 50 10 BD 00 BF 4A 31 00 08 5F F8 00 ...@P....J1.. ..
0000AO FO FD 18 00 08 FF FF FF FF FF FF FF FF FF FF FF ..uuvuvvnnnnnn..
0000B0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .oevvvirnnnnnn..
0000CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .oovvvennnnnnnn.
000000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF uvvevvrnnnnnns.
0000EQ FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .oovvvvrnnnnnn..
0000FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .eovvvvnnnnnnn..

You should be able to see the text used by the fee() program'’s printf() string in the
ASCII portion of the dump at right. You're now done with the flash memory upload!

Tip Always exit minicom (Esc-X) prior to unplugging the USB cable. Otherwise,
the USB driver can get hung or disabled.
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Overlay Demo Continued

Now, exit minicom and unplug the USB cable, then return to the overlay1 project directory:
$ cd ~/stm32f103c8t6/rtos/overlay1
Flash the STM32 with the overlay code (main.bin):

$ make flash
Upon completion, unplug the programmer and plug in the USB cable. Enter minicom:

SPI SR1 = 00
Enter R when ready:

At this point, the demo program is waiting for your permission to try executing the
overlays. Press "R" to try it:

OVERLAY TABLE:

[0] { regionx=0, vma=0x20004800, start=0x0, stop=0x45, \
size=0, func=0x20004801 }

[1] { regionx=0, vma=0x20004800, start=0x45, stop=0x65, \
size=0, func=0x20004801 }

[2] { regionx=0, vma=0x20004800, start=0x65, stop=0x85, \
size=0, func=0x20004801 }

[3] { regionx=0, vma=0x20004800, start=0x85, stop=0xa5, \
size=0, func=0x20004801 }

fang(0x0001)

module lookup(0x0):

Reading 69 from SPI at 0x0000 into 0x20004800

Returned...

Read 69 bytes: 10 B5 04...

kkokokok ok ok Kk sk ok

fee(0x0001)
kkokok kosk sk kokokk

module_lookup(0x45):
Reading 32 from SPI at 0x0045 into 0x20004800
Returned...
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Read 32 bytes: 10 B5 04...

fie(0x0002)

module lookup(0x65):

Reading 32 from SPI at 0x0065 into 0x20004800
Returned...

Read 32 bytes: 10 B5 04...

fo0(0x0012)

module_lookup(0x85):

Reading 32 from SPI at 0x0085 into 0x20004800
Returned...

Read 32 bytes: 10 B5 04...

fum(0x0212)

calls(oxA) returned 0x3212

It worked!!

SPI SR1 = 00
Enter R when ready:

If your demo program gets as far as saying “It worked!!” and prompting you again for
an “R,” then your overlays worked. Notice that the sizes are zero initially in the dump of the
overlay table. But if you type “R” again, you'll see that the size in bytes has been filled in:

OVERLAY TABLE:

[0] { regionx=0, vma=0x20004800, start=0x0, stop=0x45, \
size=69, func=0x20004801 }

[1] { regionx=0, vma=0x20004800, start=0x45, stop=0x65, \
size=32, func=0x20004801 }

[2] { regionx=0, vma=0x20004800, start=0x65, stop=0x85, \
size=32, func=0x20004801 }

[3] { regionx=0, vma=0x20004800, start=0x85, stop=0xa5, \
size=32, func=0x20004801 }

The size of . fee overlay is largest because we included some string text data
with the code.
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In the session output, the following can be disconcerting:

module lookup(0x0):
Reading 69 from SPI at 0x0000 into 0x20004800

The first& load start fee address used is SPI flash address 0x0 (not to be
confused with a null pointer!). But that simply represents the first byte available in your
SPI flash. The second line indicates that 69 bytes were loaded from flash at address
0x0000. We also see the reported overlay address of 0x20004800, which the code was
loaded into for execution.

fie(0x0002)
module lookup(0x65):
Reading 32 from SPI at 0x0065 into 0x20004800

From this we see that function fie() is called with an argument value of 2. It is
located at address 0x65 in the SPI flash and loaded into the same overlay region at
address 0x20004800.

Code Change Trap

Programmers are always looking for shortcuts, so I want to warn you about one trap that
is easy to fall into. During this project’s development, I made the assumption that I didn’t
need to re-upload the overlay file all.hex to the SPI flash because those routines didn’t
change. However, the location of the std_printf() routine they called does change in
the non-overlay code.

The routines that your overlays call may move around as you change and recompile
the code. When that happens, your overlay functions will crash when they call with the
stale function addresses. Always update your overlay code even when the non-overlay
code is changed.

Summary

This has been a technical chapter and was necessarily long. The benefit for you,
however, is that you hold a complete recipe in your hands for implementing your own
overlays. You are no longer confined to the STM32f103C8T6’s flash limit of 128K. Spread
your wings and fly!
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EXERCISES

In the structure typedef’ed as s_overlay, why are members defined as
character pointers rather than long int?

Why was the xflash memory region added to the linker script?
What is the purpose of the overlay stub function?

In the GNU declaration _attribute ((noinline, section(".ov_
fee"))), what is the purpose of noinline? Why is it needed?

Where does the declaration _attribute((section("...")) belong?
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CHAPTER 10

Real-Time Clock (RTC)

Tracking time is often important in applications. For this reason, the STM32 platform
provides a built-in real-time clock (RTC) peripheral. The datasheets for the RTC appear
almost trivial to use, but there are wrinkles waiting for the unwary.

This chapter will examine how to set up interrupt service routines (ISR) for a
recurring one-second interrupt event as well as the optional alarm feature. Armed with
this information, there is no reason for your MCU applications to lack time information.

Demonstration Projects

The demonstration programs for this chapter come from the following two project

directories:

$ cd ~/stm32f103c8t6/rtos/rtc
$ cd ~/stm32f103c8t6/rtos/rtc2

Initially the focus will be on the first project, where one ISR is implemented. The
second example will apply the second alarm ISR, which will be examined near the end of
the chapter.

RTC Using One Interrupt

The STM32F1 platform provides up to two interrupts for the RTC. The entry-point names
when using libopencma3 are as follows:

#include <libopencm3/cm3/nvic.h>

void rtc_isr(void);
void rtc_alarm isr(void);
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Our first demonstration will use only the rtc_isr() routine because it is the simplest
to set up and use. The serviced interruptible events are as follows:

1. One-second event (one-second timer tick)
2. Timer alarm event
3. Timer overflow event

The RTC can define one alarm such that an interrupt will be generated when the
alarm expires at some time in the future. This can be used as a coarse-grained watchdog.

Even though the RTC counter is 32 bits in size, given enough time the counter will
eventually overflow. Sometimes special time accounting must be performed at this
point. The pending alarm may also need adjustment.

In our first demo, all of these optional events will be funneled through the rtc_isr()
routine. This is the easiest approach.

RTC Configuration

The next sections will describe the configuration of the RTC clock using the libopencm3
library functions.

RTC Clock Source

The STM32F103C8T6 RTC can use one of three possible clock sources, as follows:

1. The LSE clock (32.768 kHz crystal oscillator), which continues to
work even when the supply voltage is off, provided that the battery
voltage V4 supply is maintained. The RTCCLK rate provided is
32.768 kHz. Setup choice is RCC_LSE.

2. The LSI clock (~40 kHz RC oscillator), but only while power is
maintained. The RTCCLK rate provided is approximately 40 kHz.
Setup choice is RCC_LST.

3. The HSE clock (8 MHz crystal oscillator), but only while power is
MHz

8
maintained. The RTCCLK rate provided is
choice is RCC_HSE.

=62.5 kHz . Setup
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The clock source used by this chapter’s project is the HSE clock, which is selected by
the following libopencm3 function call:

rtc_awake from off(RCC_HSE);

Prescaler

Since we have chosen the RCC_HSE clock as the source for the RTC peripheral and are
using the 8 MHz/128 = 62500 as the RTCCLK rate, we can now define the clock rate from
the following formula:

62500

=—Hz
divisor

We'll use the divisor of 62,500 in this chapter so that the frequency is 1 Hz. This provides a
one-second tick time. You could, however, choose to use a divisor like 6,250 to produce a tick
at tenth-second intervals, if required. Using libopencm3, we set the divisor as follows:

rtc_set prescale val(62500);

Starting Counter Value

Normally, the RTC counter would be started at zero, but there is no law that says you
must. In the demo program, we’re going to initialize it about 16 seconds before the
counter overflows so that we can demonstrate the timer overflow interrupt.

The counter can be initialized with the following call:
rtc_set counter val(OxFFFFFFFO);

The RTC counter is 32 bits in size, so it overflows after counting to OXFFFFFFFE The
preceding code initializes the counter to 16 counts prior to overflow.

RTC Flags

The RTC control register (RTC_CRL) contains three flags that we are interested in (using
libopencm3 macro names):

1. RTC_SEC(tick)
2. RTC_ALR (alarm)

3. RTC_OW (overflow)
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These flags can be tested and cleared, respectively, using the following libopencm3
calls:

rtc_check flag(flag);
rtc_clear flag(flag);

Interrupt and Setup

Listing 10-1 illustrates the steps necessary to initialize the RTC for one-second tick events
and to receive interrupts.

Listing 10-1. The RTC Peripheral Setup for Interrupts

0166: static void

0167: rtc_setup(void) {

0168:

0169: rcc_enable rtc _clock();

0170:  rtc_interrupt disable(RTC_SEC);
0171:  rtc_interrupt disable(RTC_ALR);
0172:  rtc_interrupt disable(RTC OW);
0173:

0174:  // RCC_HSE, RCC_LSE, RCC_LSI
0175:  rtc_awake from off(RCC HSE);
0176: rtc_set prescale val(62500);
0177:  rtc_set counter val(OxFFFFFFFO);
0178:

0179: nvic_enable irq(NVIC RTC IRQ);
0180:

0181: cm disable interrupts();

0182:  rtc_clear flag(RTC_SEC);

0183:  rtc_clear flag(RTC ALR);

0184:  rtc_clear flag(RTC OW);

0185:  rtc_interrupt enable(RTC SEC);
0186: rtc_interrupt enable(RTC ALR);
0187:  rtc_interrupt enable(RTC OW);
0188: cm_enable_interrupts();

0189: }
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Since the RTC peripheral is disabled after reset, it is enabled in line 169 so that it can
be initialized. Lines 170 to 172 disable interrupts temporarily to prevent them while the
peripheral is being set up.

Line 175 chooses the RTC clock source, and the clock rate is configured in line 176 to
be once per second. Line 177 initializes the RTC counter to 16 seconds before overflow to
demonstrate an overflow event without waiting a very long time.

Line 179 enables the interrupt controller for the rtc_isr() interrupt handler. All
interrupts are temporarily suppressed in line 181 to allow the final interrupt setup to
occur without generating interrupts. Lines 182 to 184 make sure that the RTC flags are
cleared. Lines 185 to 187 enable the generation of interrupts when those flags are set.
Last of all, interrupts are generally enabled once again at line 188.

At this point, the RTC peripheral is ready to generate interrupts.

Interrupt Service Routine

Listing 10-2 illustrates the code used to service the RTC interrupts. Don’t let the length of
the routine worry you, since there isn’t really much going on there.

Listing 10-2. The RTC Interrupt Service Routine

0057: void

0058: rtc_isr(void) {

0059: UBaseType t intstatus;

0060: BaseType t woken = pdFALSE;
0061:

0062: ++rtc_isr count;

0063: if ( rtc_check flag(RTC OW) ) {

0064: // Timer overflowed:

0065: ++rtc_overflow count;

0066: rtc_clear flag(RTC_OW);

0067: if ( 'alarm ) // If no alarm pending, clear ALRF
0068: rtc_clear flag(RTC_ALR);

0069: }

0070:

0071: if ( rtc_check flag(RTC SEC) ) {

0072: // RTC tick interrupt:

0073: rtc_clear flag(RTC_SEC);
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0074:

0075: // Increment time:

0076: intstatus = taskENTER_CRITICAL FROM ISR();
0077: if ( ++seconds >= 60 ) {

0078: ++minutes;

0079: seconds -= 60;

0080: }

0081: if ( minutes >= 60 ) {

0082: ++hours;

0083: minutes -= 60;

0084: }

0085: if ( hours »>= 24 ) {

0086: ++days;

0087: hours -= 24;

0088: }

0089: taskEXIT CRITICAL_FROM ISR(intstatus);
0090:

0091: // Wake task2 if we can:

0092: vTaskNotifyGiveFromISR(h task2,&woken);
0093: portYIELD_FROM_ISR(woken);

0094: return;

0095: }

0096:

0097:  if ( rtc_check flag(RTC_ALR) ) {

0098: // Alarm interrupt:

0099: ++rtc_alarm count;

0100: rtc_clear flag(RTC_ALR);

0101:

0102: // Wake task3 if we can:

0103: vTaskNotifyGiveFromISR(h task3,&woken);
0104: portYIELD FROM ISR(woken);

0105: return;

0106: }

0107: }
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An ISR counter named rtc_isr countisincremented in line 62. This is only used to
print the fact that the ISR was called in our demo code.

Lines 63 to 69 check to see if the counter overflowed, and if so clears the flag (RTC_OW).
If there is no alarm pending, it also clears the alarm flag. It appears that the alarm flag is
always set when an overflow happens, whether there was an alarm pending or not. As far
as I can tell, this is one of those undocumented features.

Normally, the rtc_isr() routine is entered because of a timer tick. Lines 71 to 95
service the one-second tick. After clearing the interrupt flag (RTC_SEC), a critical section
is begun in line 76. This is the FreeRTOS way to disable interrupts in an ISR until you
finish with the critical section (line 89 ends the critical section). Here, it is critical that
the time ripples up from seconds to minutes, hours, and days without being interrupted
in the middle. Otherwise, a higher-priority interrupt could occur and discover that the
current time is 12:05:60 or 13:60:45.

Line 92 is a notify check for task 2 (to be examined shortly). The notification (if woken
is true) occurs in line 93. The idea is that task 2 will be blocked from executing until this
notification arrives. Stay tuned for more about that.

Finally, lines 97 to 106 service the RTC alarm if the alarm flag is set. Aside from
incrementing rtc_alarm_count for the demo print, it clears the alarm flag RTC_ALR in
line 100. Lines 103 and 104 are designed to notify task 3, which will also be examined
shortly.

Servicing Interrupts

The alert reader has probably noticed that the ISR routine didn’t always service all three
interrupt sources in one call. What happens if RTC_SEC, RTC_OW, and RTC_ALR are all set
when the rtc_isr() routine is called but only RTC_SEC is cleared?

Any one of those flags may cause the interrupt to be raised. Since we enabled all
three interrupt sources, the rtc_isr() routine will continue to be called until all flags are
cleared.

Task Notification

FreeRTOS supports an efficient mechanism for allowing a task to block its own execution
until another task or interrupt notifies it. Listing 10-3 illustrates the code used for task 2.
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Listing 10-3. Task 2, Using Task Notify

0144: static void
0145: task2(void *args  attribute ((unused))) {

0146:

0147:  for (5;) {

0148: // Block execution until notified

0149: ulTaskNotifyTake(pdTRUE,portMAX DELAY);

0150:

0151: // Toggle LED

0152: gpio toggle(GPIOC,GPI013);

0153:

0154: mutex_lock();

0155: std_printf("Time: %3u days %02u:%02u:%02u isr count: %u,"
" alarms: %u, overflows: %u\n",

0156: days,hours,minutes, seconds,

0157: rtc_isr count,rtc_alarm count,rtc_overflow count);

0158: mutex_unlock();

0159: }

0160: }

Like many tasks, it begins with an infinite loop in line 147. The first thing performed
in that loop, however, is a call to ulTaskNotifyTake(), with a “wait forever” timeout
(argument 2). Task 2 will grind to a halt there until it is notified. The only place it is
notified is from the rtc_isr() routine in lines 92 and 93. Once the interrupt occurs, the
function call in line 149 returns control and execution continues. This allows the print
call in lines 155 to 157 to report the time.

When the demo runs, you will see that this notification occurs once per second
as the rtc_isr() routine is called. This is a very convenient ISR to non-ISR routine
synchronization. If you noticed the mutex_lock()/unlock calls, then just keep those in
the back of your head for now.

Task 3 uses a similar mechanism for alarmes, illustrated in Listing 10-4.

Listing 10-4. Task 3 and Its Alarm Notify

0126: static void
0127: task3(void *args _ attribute_  ((unused))) {
0128:
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0129: for (5;) {

0130: // Block execution until notified

0131: ulTaskNotifyTake(pdTRUE,portMAX DELAY);

0132:

0133: mutex lock();

0134: std_printf("*** ALARM *** at %3u days %02u:%02u:%02u\n",
0135: days,hours,minutes, seconds);

0136: mutex_unlock();

0137: }

0138: }

Line 131 blocks task 3’s execution until it is notified by the rtc_isr() routine in
lines 103 and 104 (Listing 10-2). In this manner, task 3 remains blocked until an alarm is
sensed by the ISR.

Mutexes

Sometimes, mutexes (mutual-exclusion devices) are required to lock multiple tasks from
competing for a shared resource. In this demo, we need to be able to format a complete
line of text before allowing another task to do the same. The use of routines mutex_
lock() and mutex_unlock() prevents competing tasks from printing in the middle of our
own line of text. These routines use the FreeRTOS API and are shown in Listing 10-5.

Listing 10-5. Mutex Functions

0039: static void

0040: mutex lock(void) {

0041:  xSemaphoreTake(h _mutex,portMAX DELAY);
0042: }

0048: static void

0049: mutex_unlock(void) {

0050:  xSemaphoreGive(h mutex);
0051: }

The handle to the mutex is created in the main program with the following call:

0259:  h_mutex = xSemaphoreCreateMutex();
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If you're new to mutexes, the following happens when you lock (take) a mutex:

1. Ifthe mutex is already locked, the calling task blocks (waits) until
it becomes free.

2. When the mutex is free, an attempt will be made to lock it. If
another competing task grabbed the lock first, return to step 1 to
block until the mutex becomes free again.

3. Otherwise, the lock is now owned by the caller, until the mutex is
unlocked.

Once the task using the mutex is done with it, it can release the mutex. The act of
unlocking the mutex may allow another blocked task to continue. Otherwise, if no other
task is waiting on the mutex, the mutex is simply unlocked.

Demonstration

The main demonstration program presented in this chapter can be run using a USB-based
TTLUART or directly over a USB cable. The UART choice is perhaps the best since the USB
link sometimes introduces delays that mask the timing of the print statements. However,
both work equally well once things get going, and the USB cable is usually more convenient.
The following statement defines which approach you want to use (in file named main. c):

0020: #define USE_USB 0 // Set to 1 for USB

It defaults to UART use. If you set it to 1, the USB device will be used instead. The
setup for UART or USB occurs in the main() function of main. c (Listing 10-6).

Listing 10-6. Main Program for Initializing UART or USB

0251: int
0252: main(void) {
0253:

0254:  rcc_clock setup_in_hse 8mhz_out_72mhz(); // Use this for "blue pill"
0255:
0256:  rcc_periph clock enable(RCC_GPIOC);
0257: gpio set mode(GPIOC,GPIO MODE_OUTPUT 50 MHZ,
GPIO CNF_OUTPUT PUSHPULL,GPI013);
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0258:
0259:
0260:
0261:
0262:
0263:
0264:
0265:
0266:
0267:
0268:
0269:
0270:
0271:
0272:
0273:
0274:
0275:
0276:
0277:
0278:
0279:
0280:
0281:
0282:
0283:
0284:
0285:
0286:
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h mutex = xSemaphoreCreateMutex();
xTaskCreate(task1, "task1",350,NULL,1,NULL);
xTaskCreate(task2,"task2",400,NULL,3,8h task2);
xTaskCreate(task3, "task3",400,NULL,3,8h task3);

gpio clear(GPIOC,GPI013);

#if USE_USB

usb_start(1,1);
std_set device(mcu_usb); // Use USB for std I/0

ttelse

rcc_periph_clock enable(RCC_GPIOA); // TX=A9,RX=A10,CTS=A11,RTS=A12
rcc_periph clock enable(RCC_USART1);

gpio set mode(GPIOA,GPIO MODE OUTPUT 50 MHZ,

GPIO CNF _OUTPUT ALTFN PUSHPULL,GPIO9|GPIO11);
gpio_set mode(GPIOA,GPIO MODE_INPUT,

GPIO CNF_INPUT FLOAT,GPIO10|GPIO12);
open_uart(1,115200,"8N1","rw",1,1); // RTS/CTS flow control
// open_uart(1,9600,"8N1","rw",0,0); // UART1 9600 with no f.control
std_set_device(mcu_uarti); // Use UART1 for std I/0

ttendif

vTaskStartScheduler();
for (5;);

return 0;

The device control is initialized in lines 267 and 268 for USB and lines 270 to 279
for UART. For the UART, the baud rate 115,200 is used by default in line 277. This works
well if you use hardware flow control. If for some reason your TTL serial device doesn’t

support hardware flow control, then comment out line 277 and uncomment line 278

instead. At the lower baud rate of 9,600 you should be able to operate safely without flow

control.
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Lines 268 or 279 determine whether std_printf() et al. are directed to the USB
device or to the UART device.

As we noted earlier, we used a mutex to guarantee that complete text lines would be
printed to the console (USB or UART). This FreeRTOS mutex is created in line 259.

Task 1 (line 260) will be our main “console,” allowing us to type characters to affect
the operation of the demo. Task 2 (line 261) will toggle the LED (PC13) for each RTC tick,
as well as print the current time since startup (see earlier Listing 10-3). Finally, task 3 will
print an alarm notice when the alarm has been triggered (see earlier Listing 10-4).

Listing 10-7 illustrates the console task (task 1).

Listing 10-7. The “Console Task,” Task 1

0220: static void

0221: taski(void *args _ attribute ((unused))) {
0222: char ch;

0223:

0224: wait terminal();

0225:  std printf("Started!\n\n");

0226:

0227: rtc_setup(); // Start RTC interrupts
0228:  taskYIELD();

0229:

0230: for (5;) {

0231: mutex lock();

0232: std_printf("\nPress 'A' to set 10 second alarm,\n"

0233: "else any key to read time.\n\n");

0234: mutex_unlock();

0235:

0236: ch = std _getc();

0237:

0238: if (ch=="a" || ch=="A") {

0239: mutex_lock();

0240: std_printf("\nAlarm configured for 10 seconds"
" from now.\n");

0241: mutex_unlock();
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0242: set_alarm(10u);
0243: }

0244: '}

0245: }

Task 1 is there to allow synchronization with the user who is connecting with the
USB or UART link, using minicom. Line 224 callswait_terminal(), which prompts the
user to press any key, after which the function returns. Then, the RTC clock is initialized
atline 227 and an initial taskYIELD() call is made. This helps to get everything prior to
entering the task 1 loop.

The main loop of task 1 simply issues a printed message to press “A” to set a ten-
second alarm. Any other key will just cause the console loop to repeat. Because the RTC
timer is interrupt driven, the rtc_isr() method is called each second, or when overflow
or alarm occurs. This in turn notifies task 2 or task 3 as previously discussed.

UART1 Connections

When you use the TTL UART, the connections are made according to Table 10-1. In this
case, we can power the STM32 from the TTL UART device. If you are not powering the
STM32 from the TTL UART, then omit the +5V connection.

Table 10-1. UART Wiring to STM32F103C8T6

GPIO UART1  TTLUART Description

A9 (out) X RX STM32 sends to TTL UART

A10 (in) RX X STM32 receives from TTL UART

A11 (out) CTS RTS STM32 clear to send

A12 (in) RTS CTS STM32 request to send

+5V +5V Powers STM32 from USB TTL UART (otherwise, omit this
connection when STM32 is powered by another source).

Gnd Gnd Ground
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Note UART1 was chosen because it uses 5-volt-tolerant GPIOs.

From a wiring and terminal-emulator standpoint, the USB cable is a much simpler
option.

Running the Demo

Depending upon how you configured the main.c program to run, you will be using the
USB cable or the TTL UART. USB is the simplest—just plug in and go. If you're using
the UART, then you need to configure your terminal program (minicom) to match the
communication parameters: baud rate, 8 data bits, no parity, and one stop bit.

Upon starting your terminal program (I'm using minicom), you should see a prompt
to press any key:

Welcome to minicom 2.7
OPTIONS:

Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbserial-A703CYQ5, 19:13:38

Press Meta-Z for help on special keys
Press any key to start...

Press any key to start...
Press any key to start...

Press any key to get things rolling (I used the Return key):

Press any key to start...
Started!

Press 'A' to set 10 second alarm,
else any key to read time.

Time: 0 days 00:00:01 isr count: 1, alarms: 0, overflows: O
Time: 0 days 00:00:02 isr count: 2, alarms: 0, overflows: O
Time: 0 days 00:00:03 isr count: 3, alarms: 0, overflows: O
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Time: 0 days 00:00:20 isr count:
Time: 0 days 00:00:21 isr count:
Time: 0 days 00:00:22 isr count:
Time: 0 days 00:00:23 isr count:
Time: 0 days 00:00:24 isr count:
Time: 0 days 00:00:25 isr count:
Time: 0 days 00:00:26 isr count:
Time: 0 days 00:00:27 isr count:

20,
21,
22,
23,
24,
25,
26,
27,

alarms:
alarms:
alarms:
alarms:
alarms:
alarms:
alarms:
alarms:
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0,

)

-

-

-

-

O O O O © O o
-

)

overflows:
overflows:
overflows:
overflows:
overflows:
overflows:
overflows:
overflows:

P, P P O O O O

Once started, the rtc_isr() is enabled and the evidence of one-second interrupts

isrealized in the printed messages. The count value isr_count indicates how often
the interrupt has invoked the ISR routine rtc_isr(). Notice that the overflows count

increases when the isr_count is 24. This indicates that the RTC counter has overflowed

and is now restarting from zero.

The elapsed time in days, hours, minutes, and seconds is shown in each message.
These values were calculated in the critical section within the rtc_isr() routine.

To create an alarm, press “A” This will start an alarm that will expire in ten seconds.

The following session begins the alarm near time 00:07:40, and the alarm message

appears at 00:07:50 as expected:

Time: 0 days 00:07:38 isr_count: 458, alarms:
Time: 0 days 00:07:39 isr count: 459, alarms:

Alarm configured for 10 seconds from now.

Press 'A' to set 10 second alarm,
else any key to read time.

Time: 0 days 00:07:40 isr_count:
Time: 0 days 00:07:41 isr_count:

Time: 0 days 00:07:48 isr count:
Time: 0 days 00:07:49 isr count:
**k ALARM *** at 0 days 00:07:50
Time: 0 days 00:07:50 isr_count:
Time: 0 days 00:07:51 isr count:

0,

0,
460, alarms: 0,
461, alarms: 0,
468, alarms: 0,
469, alarms: 0,
471, alarms: 1,
472, alarms: 1,

overflows: 1
overflows:

overflows:
overflows: 1

overflows:
overflows:

overflows: 1
overflows:
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Listing 10-8 shows the snippet of code that starts the ten-second alarm. It uses the
libopencma3 routine set_alarm() in line 242. The function call sets up a register to
trigger an alarm ten seconds from the present time.

Listing 10-8. The Alarm-Triggering Code

0236: ch = std getc();

0237:

0238: if (ch=="a" || ch=="A"){

0239: mutex_lock();

0240: std_printf("\nAlarm configured for 10 seconds"
" from now.\n");

0241: mutex_unlock();

0242: set_alarm(10u);

0243: }

rtc_alarm_isr()

If you've read any of the STM32F103C8T8 datasheet information, you're probably aware
that there is a second possible ISR entry point. The datasheet is rather cryptic about
this, unless you know what they mean by the “RTC global interrupt” and “EXTI Line 17”
references. The entry point rtc_isr() routine is the “RTC global interrupt,” while “EXTI
Line 17” means something else.

The EXTI controller refers to the external interrupt/event controller. The purpose
of this controller is to allow GPIO input lines to trigger an interrupt on a signal rise or
fall event. So, I think that you'd be excused if you asked “What's external about RTC?”
The demo code implementing the rtc_alarm isr() interrupt is found in the following
directory:

$ cd ~/stm32f103c8t6/rtos/rtc2

EXTI Controller

As previously mentioned, the EXTI controller allows GPIO input lines to trigger an
interrupt if their input level rises or falls, depending upon the configuration (or both rise
and fall). All GPIO 0’s map to interrupt EXT0. For the STM32F103C8T6, this means GPIO
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ports PAO, PB0O, and PCO0. Other STM32 devices with additional GPIO ports might also
have PDO, PEQ, etc. Likewise, the EXT15 interrupt is raised by GPIO ports PA15, PB15,
PC15, etc.

This defines EXTO0 through EXT15 as interrupt sources. But in addition to these, there
are up to four more:

e EXT16 - PVD output (programmable voltage detector)
e EXT17 - RTC alarm event

o EXT18 - USB wakeup event

e EXT19 - Ethernet wakeup event (not on F103C8T6)

These are internal events that can also create interrupts. Of immediate interest is the
RTC alarm event (EXT17).

Configuring EXT17

To get interrupts on rtc_alarm_isr(), we must configure event EXTI17 to raise an
interrupt. This requires the following libopencm3 steps:

1. #include <libopencm3/stm32/exti.h>

2. exti_set trigger(EXTI17,EXTI_TRIGGER RISING);
3. exti_enable request(EXTI17);

4. nvic_enable irq(NVIC RTC_ALARM IRQ);

Step one is the additional libopencm3 include file required. Step two indicates
what event we want as a trigger, and this configures the rising edge of the alarm event.
Step three enables the EXTI17 interrupt in the peripheral. Finally, step four enables the
interrupt controller to process the RTC_ALARM IRQ event.

Because the alarm handling has been separated out from the rtc_isr() handler, the
new rtc_alarm isr() looks rather simple in Listing 10-9.

Listing 10-9. The rtc_alarm_isr() Routine

0098: void

0099: rtc_alarm isr(void) {

0100: BaseType t woken = pdFALSE;
0101:
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0102:  ++rtc_alarm count;

0103: exti reset request(EXTI17);

0104:  rtc_clear flag(RTC_ALR);

0105:

0106:  vTaskNotifyGiveFromISR(h task3,8woken);
0107:  portYIELD_FROM ISR(woken);

0108: }

The handler is almost identical to the alarm-event handling presented earlier, but
there is one more step that must be observed, as follows:

0103: exti reset request(EXTI17);

This libopencm3 call is necessary to reset the EXTI17 interrupt in addition to usual
clearing the flag RTC_ALR in line 104.

This additional setup for EXTI17 is not particularly burdensome but can be tricky to
get working from the datasheets. Now that you've seen the secret sauce, this should be a
no brainer.

Run the RTC2 demo the same way as RTC. The only difference between the two is
the interrupt handling.

Summary

This chapter has explored the configuration and use of the real-time clock. From this
presentation, it is clear that the RTC is not a complicated peripheral within the STM32.
The utility of having a solid and accurate time should not be underappreciated, however.
Despite the simplicity, there are areas that require careful consideration, like correct
handling of timer overflows. This becomes even more critical as higher-resolution units

1
are used, like ﬁth second. When the alarm feature is used, the RTC counter overflow

event may also require special handling after an overflow.
Knowing how to set up EXTI17 also permits you to set up GPIO signal-change
interrupts. The procedure is the same, except that you specify EXTIn for GPIOn.
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EXERCISES

What are the three possible interrupt events from the RTC?

What is the purpose of the calls taskENTER_CRITICAL_FROM ISR and
taskEXIT_CRITICAL_FROM ISR?

How many bits wide is the RTC counter?
Which clock source continues when the STM32 is powered down?

Which is the most accurate clock source?
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12C

The I2C bus is a convenient hardware system mainly because it requires only two
wires for communication. The bus is also known by other names, such as the IIC
(inter-integrated circuit) or TWI (two-wire interface). Phillips Semiconductor
developed the I2C bus, which Intel later extended with the SMBus protocol. These
are largely interchangeable, but I will focus on I2C in this chapter.

With the utility of the I2C bus, it is no surprise that the STM32 platform includes
a hardware peripheral for it. This chapter will explore how to utilize the peripheral in
concert with the PCF8574 GPIO extender device attached to the bus.

The 12C Bus

One of the hallmarks of I2C as a serial communications bus is that it requires only two
wires. The power supply and ground connections are not included in this count. The two

communication lines involved are the following:
e System clock (usually labeled SCL)
e System data (usually labeled SDA)

Each of these lines rests at a high voltage level (usually at 5 or 3.3 volts). Any device
on the bus can generate a data signal by pulling the line down low (zero volts). This
works well for open-collector (bipolar) or open-drain (FET) transistors. When the
transistor is active, they act like a switch shorting the bus line to ground. When the bus
is idle, a pullup resistor pulls the voltage of the line high. For this reason, both I12C lines
operate with at least one pullup resistor.
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Master and Slave

With every device on the bus able to pull the lines low, there must be some sort

of protocol to keep things organized. Otherwise, the bus would have multiple
conversations going on with no receivers making sense of the garbled messages. For this
reason, the 12C protocol often uses one master and many slave devices. In more-complex
systems, it is possible to have more than one master controller, which is out of scope for
this chapter.

The master device always starts the conversation and drives the clock signal. The
exception to the SCL line’s being driven by the master is that slaves can sometimes
stretch the clock to buy extra time (when it is supported by the master). Clock stretching
occurs when the slave device continues to hold the SCL line low after the master has
released it.

Slave devices only respond when spoken to. Each slave has a unique 7-bit device
address so that it knows when a bus message has been sent to it. This is one area where
12C differs from the SPI bus. Each 12C device is addressed by an address, while SPI
devices are selected by a chip-select line.

Start and Stop

The 12C is idle when both the SDA and SCL lines are pulled high. In this case, no
device—master or slave—is pulling the bus lines low.
The start of an I2C transaction is indicated by the following events:

1. The SCL line remains high.
2. The SDA line is pulled down.

Step two usually happens within a clock cycle, although it need not be precisely so.
When the bus is idle, it is enough to see the SDA line going low while the SCL remains
high. Figure 11-1 illustrates the start, stop, and repeated start I2C signals.
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| J L

SDA

T T ‘ T
Start Bit Stop Bit Stop Bit & Start Bit

(Repeated Start)

Figure 11-1. I2C start, stop, and repeated start bit signals

The repeated start is both an optimization of the stop and start and a way to hold the
bus while continuing with a longer 12C transaction. Later, we’ll discuss this further.

Data Bits

Data bits are transmitted in concert with a high-to-low transition in the clock (SCL)
signal. Figure 11-2 illustrates.

SCL

! T

1-Bit 0-Bit

Figure 11-2. 12C data bit signals

The sampling of the SDA bus line occurs where the arrows are shown. The high or
low state of the SDA line is read at the point where the SCL line is pulled low (by the
master).
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12C Address

Before we look at the whole bus transaction, let’s describe the address byte, which is
used to identify the slave device that is expected to respond (Figure 11-3). In addition
to the address, a read/write bit indicates the intention to read or write from/to the slave
device.

76 543 210

R
W

A6 | A5 | A4 | A3 | A2 | A1 | AO

Figure 11-3. 12C 7-bit address format

The 7 bits of address are shifted up 1 bit in the address byte, while the read/write bit
is rightmost. The read/write bit is defined as follows:

e 1-bitindicates that a read operation from the slave device will follow
e 0-bitindicates that a write operation to the slave device will follow

The address and read/write bit always follow a start or repeated start bit on the
12C bus. The start bit requires the 12C controller to check that the bus is not in use by
another master; it does this by using a bus arbitration procedure (when multi-master
is supported). But once bus access is won, the bus is owned by the controller until it is
released with a stop bit.

The repeated start allows the current transaction to continue without further bus
arbitration. Since an address and read/write bit must follow, this allows multiple slaves
to be serviced with one transaction. Alternatively, the same slave may be addressed but
be accessed with a different read/write mode.

Tip Sometimes people report that slave addresses shifted up by one bit as they
were sent. This has the effect of multiplying the address by two. The address 0x42
when shifted right is actually 0x21. Watch out for this in documentation.
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12C Transactions

Figure 11-4 illustrates a write and a read transaction (where no repeated start is used).

12C Write Transaction
Stop Bit
54 3 210 'i I\

A4 A3 A2 A1 A0|0| D2|D1|D0|A|—>E

7-bit Address ‘ Write 0-bit \ Data to Slave

12C Read Transaction

X

.—V | D3 D2|D1|D0|NI—>E

7-bit Address ‘ Read 1-bit \ Data from Slave

Figure 11-4. 12C write transaction and a read transaction

Stop Bit

The upper portion of Figure 11-4 illustrates a simple write transaction. The basic
train of events for the illustrated write are as follows:

1. The I2C controller gains control of the bus and emits a start bit.

2. 'The master (controller) writes out seven address bits followed by a
0-bit, indicating that this will be a write transaction.

3. The slave device acknowledges the request and pulls the data line
low during the ACK (acknowlege) bit. If no slave responds, the
data line will float high and cause a NAK (negative acknowlege) to
be received by the controller instead.

4. Because this is a write transaction, the data byte is written out.
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5. The slave device acknowledges the receipt of the data byte by
pulling down the data line during the ACK bit time.

6. The master is not sending any more data, so it writes a stop bit and
releases the 12C bus.

The read request is similar:
1. The I2C controller gains control of the bus and emits a start bit.

2. 'The master (controller) writes out seven address bits followed by a
1-bit, indicating that this will be a read transaction.

3. The slave device acknowledges the request and pulls the data line
low during the ACK bit. If no slave responds, the data line will float
high and cause a NAK to be received by the controller instead.

4. Because this is a read transaction, the master continues to write
out clock bits to allow the slave device to synchronize its data
response back to the master.

5. With each clock pulse, the slave device writes out the eight data
bytes to the master controller.

6. During the ACK time, the master controller normally sends a NAK
when no more bytes are to be read.

7. 'The controller sends a stop bit, which always ends the transaction
with the slave (regardless of the last ACK/NAK sent).

PCF8574 GPIO Extender

To exercise the 12C bus in this chapter, we’ll be using the PCF8574 GPIO extender chip
(Figure 11-5). This is a great chip for adding additional GPIO lines, provided that you
don’t need high speed (the demo operates the 12C bus at 100 kHz).
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Figure 11-5. Pinout of the PCF8574P
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The +3.3 volts power is applied to pin 16, while the grounded connection is pin
8. Pins A0 through A2 are used to select the chip’s slave address (Table 11-1). Pins PO

12C

through P7 are the GPIO databit lines, which can be input or output. Pin 14 connects to
the clock line (SCL), while pin 15 connects to the data line (SDA). Pin 13 can be used for

notification.

Table 11-1. PCF8574 Address Configuration

A0 A1 A2 PCF8574 Address PCF8574A Address
0 0 0 0x20 0x38
0 0 1 0x21 0x39
0 1 0 0x22 0x3A
0 1 1 0x23 0x3B
1 0 0 0x24 0x3C
1 0 1 0x25 0x3D
1 1 0 0x26 0x3E
1 1 1 0x27 0x3F
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Address lines A0 through A2 are programmed as zeros when grounded and as 1-bits
when connected to V. (+3.3 volts in this demo). If you have the PCF8575A chip, then
the address should be taken from the right column. The earlier PCF8574 chip uses
hexadecimal addresses in the left column of the table.

12C Circuit

Figure 11-6 illustrates three PCF8574P devices attached to the STM32 through the 12C bus.

VCC
@]
+3.3 Volls
S, S S,
2R 3R foras
Voo LY+ @7 « Y =
PBA/SCL SCL
PBO/SDA SDA .
PC14 . ANT
1c1 Ic2 IC2
STM32 v e 16 |
13| &l 4
T Po - s
Gnad 15 PR o3 5
n = T pz & 6
4] goL Pz |- 7
[T L
U an ] ﬁ ;—;
M Ps 13 2
i k3

cND ahp  PCFa574P

PCFo574P
&fio o o

PCF8574P

Figure 11-6. STM32 attached to three PCF8574P slave devices using the 12C bus

The schematic looks a little busy, but it’s not that bad. Notice that the 12C bus
consists only of a pair of lines, SCL and SDA, originating from the STM32. These two
lines are pulled high by resistors R1 and R2, respectively. Each slave device is also
connected to these bus lines, allowing each of these to respond when it recognizes its
slave address.

Notice how IC1, IC2, and IC3 each have a different wiring for the address pins A0,
Al, and A2. This configures each device to respond to a different slave address (review
Table 11-1). These addresses must be unique.
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The PCF8574 v Line

The remaining connections in Figure 11-6 are power and the INT line. The INT lineis
an optional bus component that has nothing to do with the 12C bus itself. You might not
even attach all PCF8574P devices to the INT line if they never get used for GPIO input.

The INT line signals that an input GPIO has changed and is usually attached to a
microprocessor interrupt line. This saves the MCU from continuously polling the 12C
devices to see if a button was pressed, for example. If any input line changes from high
to low, or low to high, the open-drain transistor in the PCF8574 is activated and pulls
the INT line low. This remains low until the device has its interrupt “serviced”” A simple
read or write to the peripheral is all that is necessary to service the interrupt.

The INT line does not identify which slave device has registered a change. The MCU
must still poll its participating slave devices to see where the change occurred.

There is a small limitation that is important to keep in mind. If the GPIO level
change occurs too quickly, no interrupt will be generated. It is also possible for a GPIO
change event to occur during the ACK/NAK cycle when the interrupt is being cleared.
An interrupt occurring then can also be lost. The NXP (NXP Semiconductors) datasheet
indicates that it takes 4 ps from the sensing of a GPIO change to the activation of the
INT line. The remaining time will consist of the MCU's interrupt response and software-
handler processing.

PCF8574 Configuration

The NXP Semiconductors datasheet describes the I/O ports as quasi-bidirectional. What
this means is that the GPIO ports (P0 through P7) can be used as outputs or be read as
inputs directly, without any configuration through a device register.

To send an output value, you simply write to the PCF8574 device over the 12C bus.
Input GPIOs, on the other hand, require a little trick—where you want GPIO inputs, you
write a 1-bit to the GPIO port first. To see how this works, review Figure 11-7.
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VCC
|
+
M3
ACK Drive |I
o a
100 uA
Read Input
O M2
I'a
Hi/Lo Drive '
O O GPIO I©O
25 mA 100 uA
o
M1 ¢

XD

Figure 11-7. PCF8574 simplified GPIO circuit

Start at the top of the diagram where V. (+3.3 volts) is located. Within the
chip is a 100 pA constant-current regulator in series with transistors M2 and M1.
Consequently, when a high (1-bit) is written to the GPIO port, transistor M2 is turned
on and M1 is turned off (driven by the “hi/lo drive” internal to the chip). Transistor
M3 is off at this time.

If you short circuited the GPIO pin to ground, the constant-current regulator limits
the current to 100 pA as it flows through M2 and out the GPIO pin to ground (rightmost
arrow in Figure 11-7). While shorted like this, the internals of the PCF8574 are able to
sense a low on the internal “Read Input” connected to the GPIO, which is read back as
a 0-bit. By writing a 1-bit to the GPIO, you allow an external circuit to bring the voltage
level low, or leave it pulled high. The current is always limited to a trickle of 100 pA, so no
harm is done.

If, instead, the GPIO pin were written as a 0-bit, transistor M1 would always be
turned on, shorting out the GPIO level. The “Read Input” would always be sensed as a
0-bit as a result. By the simple rule of writing a 1-bit to the GPIO, you can sense when it is
pulled to ground as an input.
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PCF8574 GPIO Drive

The quasi-bidirectional design of the GPIO has a consequence. You've already seen that
the shorted GPIO output is current-limited to 100 pA. This means that the GPIO cannot
act as a current source for an LED. A typical LED needs about 10 mA of current, which is

100 times what this GPIO is capable of supplying!

vCC
M3 >
ACK Drive | "II E§
O I
100 uA o~
Read Input ;’fS'ZB
O M2 -
|
i
Hi/Lo Drive ' /—/
O O GPIO IO
| 25 mA
B NN
M1

Figure 11-8. Driving higher-current loads with the PCF8574

However, transistor M1 is able to handle a maximum of 25 mA if you use the GPIO
pin to sink power for the LED. Figure 11-8 illustrates how to drive an LED.

The LED and resistor R, are supplied from V., which is not current limited. So, M1
acts as a switch to sink the current to ground, lighting the LED. The logic impact of this
is that you need to write a 0-bit to turn the LED on.

Note While the high drive of the PCF8574 is limited to 100 pA, this is sufficient
for driving other CMOS (complementary metal oxide semiconductor) signal inputs.
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Wave Shaping

When the GPIO output is written as a 1-bit, only 100 pA of current is available to pull it
up to V... This presents a bit of a problem when it is currently at low potential, resulting
in a slow rise time.

The designers of the PCF8574 included a circuit with transistor M3 (Figure 11-8),
which is normally off. However, when the device is written to, each GPIO that is receiving
a 1-bit gets a boost from M3 during the I2C ACK/NAK cycle. This helps to provide a
snappy low-to-high transition on the outputs. Once the ACK/NAK cycle is completed,
M3 turns off again, leaving the 100 pA current limiter to maintain the high output.

Demo Circuit

Figure 11-9 illustrates the final circuit for the demo program. The noteworthy changes
are that only one PCF8574 chip is used, using two LEDs and one push button.

VCC
: +33Volls .
- 4 - -
SR gIZN mgrﬁ b
vee 5 ¢ G5« @3« §§$:’§
PB8/SCL SCL
PBY/SDA SDA
PC14 /INT
— o
Ic1
STM32 vYE v Y3
vop 8 - -
1 T PO ;
P
Gnd S spa b2 8
14 scL ps L
Pa |2 81
; A0 P5 % e
g A1 P6 |2 ‘T/
— a2 P7 [ |
ves f8
D D PCF8574P Jﬁ
GND

Figure 11-9. The demo 12C schematic with LEDs and push button
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When wiring this circuit up, don’t forget to include the pullup resistor R; so that the
idle potential of GPIO PC14 is high. Note also that both LEDs are supplied from the V.
rail so that ports PO and P1 sink the current to light the LEDs. Port P7 will read the push
button, which will be normally high (recall that the port is pulled high by the 100 pA
constant-current source within the PCF8574). When the button is pressed, P7 will be
pulled to ground, causing a 0-bit to be read.

EXTI Interrupt

The RTC2 project made use of the EXTI interrupt to achieve a separate alarm interrupt.
A few more steps are required to achieve an interrupt on PC14 for the /INT interrupt.
Let’s look at the software involved. The project software for this chapter is found in this
directory:

$ cd ~/stm32f103c8t6/rtos/i2c-pcf8574
Initially, we’ll examine the 12C and EXTI setup in the main() routine of main.c
(Listing 11-1).

Listing 11-1. The Initial Setup of the I2C Peripheral and EXTI Interrupts

0197: int

0198: main(void) {

0199:

0200:  rcc_clock setup in_hse 8mhz_out_72mhz();// For "blue pill"
0201:  rcc_periph clock enable(RCC_GPIOB); // I2C

0202:  rcc_periph clock enable(RCC_GPIOC); // LED

0203:  rcc_periph clock enable(RCC_AFIO); // EXTI

0204:  rcc_periph clock enable(RCC_I2C1); // I2C

0205:

0206: gpio set mode(GPIOB,

0207: GPIO_MODE_OUTPUT 50 MHZ,

0208: GPIO_CNF_OUTPUT ALTFN_OPENDRAIN,

0209: GPI06|GPI07); // 12C

0210:  gpio set(GPIOB,GPIO6|GPIO7); // Idle high
0211:
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0212: gpio set mode(GPIOC,

0213: GPIO_MODE_OUTPUT 2 MHZ,
0214: GPIO_CNF_OUTPUT PUSHPULL,

0215: GPI013); // LED on PC13
0216: gpio set(GPIOC,GPIO13); // PC13 LED dark
0217:

0218:  // AFIO_MAPR_I2C1 REMAP=0, PB6+PB7
0219:  gpio primary remap(0,0);

0220:

0221: gpio_set_mode(GPIOC, // PCF8574 /INT
0222: GPIO_MODE_INPUT, // Input

0223: GPIO_CNF_INPUT FLOAT,

0224: GPI014); // on PC14
0225:

0226: exti select source(EXTI14,GPIOC);

0227: exti_set trigger(EXTI14,EXTI_TRIGGER FALLING);

0228: exti enable request(EXTI14);

0229: nvic_enable irq(NVIC EXTI15 10 IRQ); // PC14 <- /INT

Lines 201 through 204 enable clocks that are needed by GPIOB (for 12C), GPIOC (for
LED- and PC14-sensing INT ), EXTI, and the 12C peripheral itself. Line 206 configures
GPIO PB6 and PB7 for open-drain operation for the 12C peripheral. Line 210 may not be
strictly necessary, but until the 12C peripheral is configured, the 12C bus lines should be
allowed to be pulled high.

Line 219 configures I12C1 to use PB6 and PB7. The gpio_primary remap()
libopencm3 function can be used to make other choices. PB6 and PB7 are extra useful
because these have 5-volt-tolerant inputs.

Line 221 sets up GPIO PC14 to be an input in floating mode. This line will be pulled
high by R; in Figure 11-9.

Lines 226 through 229 configure the EXTI interrupt. The exti_select source()
function chooses GPIO PC14 to be added to the list of potential interrupt sources. Line
227 then configures that the interrupt should occur when the signal falls from high to
low. Finally, line 228 enables the EXTI peripheral to request interrupts. The call to nvic_
enable irq() enables the interrupt vector NVIC_EXTI15 10 IRQ. When this interrupt
occurs, the entry point exti15 10 isr() will be called.
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To save you much head scratching if you're working from the ST Microelectronics
datasheet (RM0008), Table 11-2 is provided. The datasheet isn’t clear, in my opinion,
about how the interrupts are supported for EXTI. The table shows that lines zero through
four have their own private interrupt vector. But for GPIO ports numbering 5 to 9, or 10
to 15, the interrupt vectors are more widely shared.

Table 11-2. The List of EXTI STM32F103 Interrupts and ISR Routine Names

Interrupt ISR Routine Description

NVIC EXTIO IRQ extio_isr() Line 0: PAO/PBO/PCO

NVIC_EXTI1 IRQ extil isr() Line 1: PA1/PB1/PC1

NVIC_EXTI2 IRQ exti2 isr() Line 2: PA2/PB2/PC2

NVIC EXTI3 IRQ exti3_isr() Line 3: PA3/PB3/PC3

NVIC_EXTI4 IRQ exti4_isr() Line 4: PA4/PB4/PC4

NVIC_EXTI9 5 IRQ exti9 5 isr() Lines 5 to 9: PA5-9/PB5-9/PC5-9

NVIC EXTI15 10 IRQ exti15 10 isr() Lines 10 to 15: PA10-15/PB10-15/PC10-15
NVIC PVD _IRQ pvd isr() Line 16: Power

NVIC RTC ALARM IRQ rtc_alarm isr() Line 17:RTCAlarm
NVIC USB WAKEUP IRQ  usb wakeup isr() Line 18: USB Wakeup

12C Software

The source code to drive the I2C peripheral has been placed in the source module i2c.c.
The first function of interest is i2c_configure(), illustrated in Listing 11-2.

Listing 11-2. 12C Configuration

0061: void

0062: i2c_configure(I2C Control *dev,uint32 t i2c,uint32 t ticks) {
0063:

0064: dev->device = i2c;

0065: dev->timeout = ticks;

0066:

0067: i2c_peripheral disable(dev->device);
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0068:  i2c_reset(dev->device);
0069:  I2C CR1(dev->device) &= ~I2C CR1 STOP; // Clear stop

0070:  i2c_set standard _mode(dev->device); // 100 kHz mode

0071:  i2c_set clock frequency(dev->device,I2C CR2 FREQ 36MHZ); // APB Freq
0072: i2c_set trise(dev->device,36); // 1000 ns

0073:  i2c_set dutycycle(dev->device,I2C_CCR _DUTY DIV2);

0074: i2c_set ccr(dev->device,180); // 100 kHz <= 180 * 1
/36M

0075: i2c_set own_7bit slave address(dev->device,0x23);
0076:  i2c_peripheral enable(dev->device);
0077: }

A structure named I2C_Control is passed in as the first argument to hold the
configuration. The I12C peripheral address is passed in the argument 12c, which will be
I2C1 for this demo. The last argument defines a timeout to be used, specified in ticks.
These values are preserved in I2C_Control in lines 64 and 65 for later use.

Lines 67 to 69 clear and reset the I12C peripheral so that if it is stuck, it can be
“unstuck”” One of the disadvantages of I2C is that the protocol can sometimes hang if
unpleasant things happen on the bus.

Lines 70 to 76 configure the I12C peripheral and enable it. Line 75 is only necessary if
you want to operate the controller in slave mode.

Testing 12C Ready

Before any I12C operations can be initiated, you must test whether the device is busy.
Otherwise, your request will likely be ignored or will impair the current operation.
Listing 11-3 shows the routine used.

Listing 11-3. Testing for I2C Ready

0083: void

0084: i2c_wait busy(I2C Control *dev) {

0085:

0086: while ( I2C SR2(dev->device) & I2C SR2 BUSY )
0087: taskYIELD(); // 12C Busy
0088:

0089: }
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This routine uses libopencm3 routines and macros to manage the peripheral. If
the device is busy, however, the control is passed to other FreeRTOS tasks using the
taskYIELD() statement.

Start 12C

To initiate an I2C bus transaction, the peripheral must perform a “start” operation. This
can involve bus arbitration if there are multiple masters being used. Listing 11-4 shows
the routine used by the demo.

Listing 11-4. 12C Start Function

0095: void
0096: i2c_start addr(I2C_Control *dev,uint8 t addr,enum I2C RW rw) {
0097: TickType t t0 = systicks();

0098:

0099: i2c_wait busy(dev); // Block until not busy
0100:  I2C SRi(dev->device) &= ~I2C _SR1_AF; // Clear Acknowledge failure
0101: i2c_clear stop(dev->device); // Do not generate a Stop
0102: if ( 1w == Read )

0103: i2c_enable ack(dev->device);

0104:  i2c_send start(dev->device); // Generate a Start/Restart
0105:

0106: // Loop until ready:
0107: while ( !((I2C_SR1(dev->device) & I2C SR1 SB)

0108: && (I2C_SR2(dev->device) & (I2C_SR2_MSL|I2C_SR2 BUSY))) ) {
0109: if ( diff _ticks(to,systicks()) > dev->timeout )

0110: longjmp(i2c_exception,I2C_Addr Timeout);

0111: taskYIELD();

0112: }

0113:

0114: // Send Address & R/W flag:

0115: i2c_send 7bit address(dev->device,addr,
0116: 1w == Read ? I2C READ : I2C WRITE);
0117:
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0118:  // Wait until completion, NAK, or timeout
0119: 10 = systicks();
0120:  while ( !(I2C SR1(dev->device) & I2C SR1 ADDR) ) {

0121: if ( I2C SRi(dev->device) & I2C SR1 AF ) {

0122: i2c_send stop(dev->device);

0123: (void)I2C SR1(dev->device);

0124: (void)I2C SR2(dev->device); // Clear flags
0125: // NAK Received (no ADDR flag will be set here)
0126: longjmp(i2c_exception,I2C_Addr NAK);

0127: }

0128: if ( diff_ticks(to,systicks()) > dev->timeout )
0129: longjmp(i2c_exception,I2C_Addr Timeout);

0130: taskYIELD();

0131: }

0132:

0133:  (void)I2C SR2(dev->device); // Clear flags
0134: }

The first step is to determine the current tick time in line 97. This allows us to time
the operation and time out if necessary. Line 99 waits for the peripheral to become
ready. Once ready, line 100 clears an acknowledge failure, if there was one. Line 101
indicates that no stop should be generated.

If the operation is going to be a read, the 12c_enable ack() is called to allow receipt
of the ACK from the slave. The peripheral is then told to generate a start bit in line 104.

Lines 107 and 108 test if the start bit has been generated. If it is not yet generated,
lines 109 and 110 test and perform a longjmp() if the operation has timed out. We'll
speak more about the longjmp() acting as an exception later. If not timed out, the
FreeRTOS statement taskYIELD() is performed to share the CPU while we wait.

Once the start bit has been generated, execution continues at line 115 to send the
slave address and the read/write indicator.

In line 119 we note the time again for another potential timeout. Line 120 waits for
the I12C address to be sent, while line 121 tests if the slave device ACKed the request. If no
device responds to the address requested, a NAK will be received by default (thanks to
the pull-up resistor). If the operation times out, a longjmp() is performed at line 129.

If the operation succeeds, a flag is cleared by calling I2C_SR2() to read the status
register.
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12C Write

Once the start bit has been generated and the address sent, if we indicated that a write
follows, we must do that next. Listing 11-5 shows the write function used.

Listing 11-5. 12C Write Function

0140: void

0141: i2c_write(I2C Control *dev,uint8 t byte) {

0142:  TickType t t0 = systicks();

0143:

0144:  1i2c_send data(dev->device,byte);

0145: while ( !(I2C SR1(dev->device) & (I2C SR1 BTF)) ) {

0146: if ( diff ticks(to,systicks()) > dev->timeout )
0147: longjmp(i2c_exception,I2C Write Timeout);
0148: taskYIELD();

0149: }

0150: }

Line 142 notes the time for a possible timeout. Line 144 ships the data byte to the
12C peripheral to be sent serially on the bus. Line 145 tests for the completion of this
operation and times out with a longjmp() if necessary (line 147). Aside from sharing the
CPU with taskYIELD(), the function returns when successful.

12C Read

If the intention was to read, the read routine is used to read a data byte. Listing 11-6
illustrates the code used.

Listing 11-6. The I12C Read Function

0157: uint8 t
0158: i2c_read(I2C Control *dev,bool lastf) {
0159:  TickType t t0 = systicks();

0160:

0161: if ( lastf )

0162: i2c_disable ack(dev->device); // Reading last/only byte
0163:
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0164: while ( !(I2C SR1(dev->device) & I2C SR1 RxNE) ) {

0165: if ( diff ticks(to,systicks()) > dev->timeout )
0166: longjmp(i2c_exception,I2C Read Timeout);
0167: taskYIELD();

0168: }

0169:

0170:  return i2c_get data(dev->device);

0171: }

One of the unusual aspects of the i2c_read() function presented is that it has a
Boolean lastf flag. This is set true by the caller if it is the last or only byte to be read.
This gives the slave device a head’s up that it can relax (some slaves must prefetch data
in order to stay in step with the master controller). This is the purpose of the call on line
162.

Otherwise, it is a matter of status testing in line 164 and timing out in line 166 if the
operation takes too long. Otherwise, the CPU is shared with taskYIELD(), and the byte is
returned in line 170.

12C Restart

The i2c_write restart() routine partially shown in Listing 11-7 provides the ability to
change from a write request into another request (read or write) without stopping. You
can continue with the same slave device (by repeating the same slave address) or switch
to another. This is significant when there are multiple I2C masters because this permits
another message without renegotiating the access to the bus.

Listing 11-7. The “Secret Sauce” to Performing an 12C Restart Transaction

void

0179: i2c write restart(I2C_Control *dev,uint8 t byte,uint8 t addr) {
0180:  TickType t t0 = systicks();

0181:

0182:  taskENTER_CRITICAL();

0183:  i2c_send data(dev->device,byte);

0184: // Must set start before byte has written out

0185:  i2c_send start(dev->device);

0186:  taskEXIT CRITICAL();
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Some of this kind of information is difficult to tease from the STM32 reference
manual (RM0008). However, careful attention to the fine print and footnotes can
sometimes yield gold nuggets. The manual says:

In master mode, setting the START bit causes the interface to generate a
ReStart condition at the end of the current byte transfer.

By making lines 182 to 186 a critical section, you guarantee that you request another
“start” prior to the current 12C’s write being completed.

Demo Program

Listing 11-8 illustrates the main loop of the demo program. Most of it is straightforward,
but there are a few things that are noteworthy. After the 12C device is configured in line
131, the inner loop begins at line 134. As long as there is no keyboard input, this loop
continues writing and reading from the PCF8574 chip.

Listing 11-8. Main Loop of the Demo Program

0116: static void
0117: taski(void *args  attribute ((unused))) {
0118: uint8 t addr = PCF8574 ADDR(0); // I2C Address

0119: volatile unsigned line = Ou; // Print line #
0120:  volatile uint16_t value = Ou; // PCF8574P value
0121: uint8_t byte = OxFF; // Read I2C byte
0122: volatile bool read flag; // True if Interrupted
0123: I2C Fails fc; // 1I2C fail code
0124:

0125:  for (;;) {

0126: wait start();

0127: usb_puts("\nI2C Demo Begins "

0128: "(Press any key to stop)\n\n");

0129:

0130: // Configure I2C1

0131: i2c_configure(&i2c,I2C1,1000);

0132:
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0133: // Until a key is pressed:
0134: while ( usb peek() <=0 ) {
0135: if ( (fc = setjmp(i2c_exception)) != I2C Ok ) {
0136: // I2C Exception occurred:
0137: usb_printf("I2C Fail code %d\n\n",
fc,i2c_error(fc));
0138: break;
0139: }
0140:
0141: read_flag = wait_event(); // Interrupt or timeout
0142:
0143: // Left four bits for input, are set to 1-bits
0144: // Right four bits for output:
0145:
0146: value = (value & OxOF) | OxFo;
0147: usb_printf("Writing $%02X "
"I2C @ $%02X\n",value,addr);
0148: #if 0
0150: * This example performs a write transaction,
0151: * followed by a separate read transaction:
0152: KRR ARk KRRk Rk KRk Kok /
0153: i2c_start addr(&i2c,addr,Write);
0154: i2c_write(&i2c,value80xOFF);
0155: i2c_stop(&i2c);
0156:
0157: i2c_start addr(&i2c,addr,Read);
0158: byte = i2c_read(&i2c,true);
0159: i2c_stop(&i2c);
0160: #else
0161: /*********************************************
0162: * This example performs a write followed
0163: * immediately by a read in one I2C transaction,
0164: * using a "Repeated Start"
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0166: i2c_start addr(&i2c,addr,Write);
0167: i2c_write restart(&i2c,value&0xoFF,addr);
0168: byte = i2c_read(&i2c,true);
0169: i2c_stop(&i2c);
0170: #endif
0171: if ( read flag ) {
0172: // Received an ISR interrupt:
0173: if ( byte & 0b10000000 )
0174: usb_printf("%04u: BUTTON RELEASED: "
0175: "$%02X; wrote $%02X, "

"ISR %d\n",
0176: ++line,byte,

value,isr count);
0177: else usb printf("%04u: BUTTON PRESSED: "
0178: "$%02X; wrote $%02X, "

"ISR %d\n",
0179: ++line,byte,

value,isr count);
0180: } else {
0181: // No interrupt(s):
0182: usb_printf("%04u: "

"Read: $%02X, "

0183: "wrote $%02X, ISR %d\n",
0184: ++line,byte,value,isr count);
0185: }
0186: value = (value + 1) & OxOF;
0187: }
0188:
0189: usb_printf("\nPress any key to restart.\n");
0190: }
0191: }

Of particular note is the setjmp() at line 135. Since C lacks the exception mechanism
that C++ possesses, the longjmp () was used instead. Our doing a setjmp() at the top
of the loop allows us to make several later 12C calls, each with its own points of failure,
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including timeouts. If any failure occurs, the longjmp() will take the control back to line
135 and return a non-zero failure code. From there the problem can be reported and
exited out of the inner loop.

The setjmp/longjmp mechanism does exact a small price, however. Notice that
variables 1ine, value, and read_flag are marked volatile (lines 119 to 122). This was
necessary to silence the compiler because it warns about those values’ being changed as
aresult of the longjmp(), should it occur. The setjmp saves a bunch of registers, while
the longjmp restores them to bring control back. Any variables still cached in a register
would be clobbered by a longjmp.

There are #1f, #else, and #endif statements in lines 148, 160, and 170, respectively.
By changing line 148 from the value zero to a non-zero value, all transactions will be
individual; i.e., the byte will be written out to the PCF8574P in one transaction, followed
by a completely separate 12C transaction to read from it.

Leaving line 148 at the value zero allows you to test the I2C restart operation. Lines
166 through 169 perform a write followed by a read in the same transaction.

Demo Session

Perform a build from scratch as follows:

$ make clobber
$ make
arm-none-eabi-gcc ... -0 main.elf
arm-none-eabi-size main.elf
text data bss dec hex filename
13024 28 18200 31252 7al14 main.elf

Ready the device for flashing and perform the following:

$ make flash
arm-none-eabi-objcopy -Obinary main.elf main.bin
/usr/local/bin/st-flash write main.bin 0x8000000

2017-12-09T21:32:12 INFO src/common.c: Flash written and verified!
jolly good!
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Now, plug the USB cable in and start minicom, as follows:

$ minicom usb
Welcome to minicom 2.7

OPTIONS:
Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbmodemWGDEM1, 21:33:40

Press Meta-Z for help on special keys
Task1l begun.
Press any key to begin.

Once again, the “usb” argument to minicom is the name of the file that you saved
your minicom settings to. I used the file named usb in this example.

Once you see “Taskl begun,” press any key. I pressed Return. Once you do that, the
12C device should get configured, and you should start seeing messages of the following
form:

I2C Demo Begins (Press any key to stop)

Writing $FO I2C @ $20

0001: Read: $FO0, wrote $FO, ISR O
Writing $F1 I2C @ $20
0002: Read: $F1, wrote $F1, ISR O

If you press a key again, the control will stop and then fall out to the outer loop.
Pressing a key again will restart the demo in the inner loop.

The values written out to the PCF8574P will increment in the lower four bits. If you
attached LEDs to PO and P1 as in the schematic, you should see them count down in
binary. When you press the button, you should see some messages indicating button
press and release events.

Writing $F5 I2C @ $20

0006: Read: $F5, wrote $F5, ISR 0
Writing $F6 I2C @ $20
0007: Read: $F6, wrote $F6, ISR 0
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Writing $F7 I2C @ $20

0008: BUTTON PRESSED: $77; wrote $F7, ISR 4
Writing $F8 I2C @ $20

0009: BUTTON PRESSED: $78; wrote $F8, ISR 4
Writing $F9 I2C @ $20

0010: BUTTON PRESSED: $79; wrote $F9, ISR 5
Writing $FA I2C @ $20

0011: BUTTON PRESSED: $7A; wrote $FA, ISR 6
Writing $FB I2C @ $20

0012: BUTTON PRESSED: $7B; wrote $FB, ISR 7
Writing $FC I2C @ $20

0013: BUTTON PRESSED: $7C; wrote $FC, ISR 8
Writing $FD I2C @ $20

0014: Read: $7D, wrote $FD, ISR 8
Writing $FE I2C @ $20

0015: BUTTON RELEASED: $FE; wrote $FE, ISR 11

The value shown after ISR shows you how many times the ISR routine was called when
the PCF8574P indicated an interrupt. My button was pretty scratchy, and without any
debouncing you see several button-press events. Notice that while the button was held
down, the upper bit changed from a 1-bit to a 0-bit (for example, $FX changed to a $7X).

Summary

This chapter leaves you well prepared for I2C work. The PCF8574 is a very economical
solution for adding more GPIO ports provided you don’t have high speed requirements.
At the same time, it provides you with experience in the world of I2C. The PCF8574 has
demonstrated that it can generate interrupts so that you don’t have to continually poll
for input-line changes. This eases the burden of I2C traffic on the bus.
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EXERCISES

What is the byte value sent when reading from slave address $21
(hexadecimal)?

When the master requests a response from a non-existing slave device on the
bus, how does the NAK get received?

What is the advantage of the /INT line from the PCF8574?
What does quasi-bidirectional mean in the context of the PCF85747?

What is the difference between sourcing and sinking current?
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OLED

The OLED (organic light-emitting diode) provides the hobbyist with an exciting form of
low-cost display. Because they are based upon LEDs, they require no backlighting like an
LCD device does, nor polarizing filters. This equates to lower cost.

The OLED device used in this chapter is monochrome, though it may display two
colors in addition to black. That sounds contradictory, but the monochrome nature just
means that it only displays one color for a given pixel. OLEDs with dual colors will have
a band of pixels in one color, with the remainder in another. The background is always
black (LED not lit).

The devices available today are small, usually 128 x 32 or 128 x 64 pixels in size. The
physical dimensions also tend to be small. Yet because of their low cost and vivid color,
they make great display widgets. This chapter will demonstrate the display of an analog
meter on an OLED.

OLED Display

The unit I purchased from eBay was advertised as “White/Blue/Yellow Blue 0.96” SPI
Serial 128 x 64 OLED LCD LED Display Module S” for a few dollars. But be wary of the
“I2C” versus “SPI” in the listing. Many vendors don'’t get this right.

The important thing is that the OLED should use the SSD1306 controller for the
demo software. The display itself is WiseChip part number UG-2864HSWEGO01, although
the auction might not state that. Some eBay offers may be selling display part number
UG-2864AMBAGO1, which is considerably different and can’t be used with this chapter’s
software. If you don’t mind paying a little more, Adafruit sells them as “Monochrome
0.96” 128 x 64 OLED graphic display.” Buying from them is easier than trying to obtain
the correct part from eBay.
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Figure 12-1 illustrates the OLED display I am using. The Adafruit OLED is similar, but
the backside of the PCB differs. This chapter’s software requires a unit 128 pixels wide by
64 pixels high.

Figure 12-1. The OLED using a SSD1306 controller

Configuration

For this demo, you want a unit configured for four-wire SPI. The bottom side configures
the device according to the resistors installed (Figure 12-2). Note that R; and R, are
installed in the figure, confirming that this unit is configured for four-wire SPI. Those
using the Adafruit unit should have jumper pads SJ1 and SJ2 unconnected.
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11G: m R4 RG m RS R4tf"
SPI:R3 R4

3SP1:R2 R3
0.96°0LED

Figure 12-2. The backside of the OLED, illustrating the configuration resistors R,
through Ry

Table 12-1 summarizes the different configurations possible. The four-wire SPI
reference refers to the normal three SPI signals plus an additional line indicating a
command or data signal. This extra line goes low to indicate when a command byte is
being sent, and high for display data.

Table 12-1. OLED Configurations

R1 R2 R3 R4 Configuration

In Out Out In 12C (not used for this demo)

Out Out In In Four-wire SPI

Out In In Out Three-wire SPI (not used for this demo)
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Display Connections

The display unit comes with seven connections, listed in Table 12-2. The Reset
connection is optional and should be wired high (inactive) if unused. The demo program
will use a GPIO to activate reset at startup.

The precise current draw will depend upon several factors. Adafruit suggests that
typical current may be about 20 mA. In my own testing, I measured a current of 13.2
mA with all pixels on. But different OLED configuration options may increase current
consumption. This level is low enough that it is safe to supply the OLED from the +3.3-volt
regulator.

Table 12-2. OLED Connections

OLED Pin Function Description

Gnd Ground Common return path

VCC 3.3t0 5.0 volts Supply voltage (up to 20 mA)

DO (or SCK) SCK SPI system clock

D1 (or SDA) SDIN SPI MOSI (system data in for OLED)
RES Reset Reset signal (active low)

DC Data / Command Data (high), Command (low)

cS ChipSelect Chip select (active low)

Display Features

Before examining the demo program, it is helpful to look at the OLED display features
that it will be driving. Figure 12-3 illustrates the author’s OLED with all pixels turned on
(using controller command 0xA5).
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Figure 12-3. Author’s yellow/blue OLED with all pixels on

While this is a yellow/blue OLED, the display is monochrome. You only get yellow
in the top sixteen rows. After a gap of one row, there are forty-eight rows of blue pixels
below. Some single-color units might lack this gap. Choose carefully for your application.
With all pixels turned on, my OLED measured 13.3 mA of current.

Demo Schematic

The demo circuit uses the same SPI hookup we used in the Winbond project (Chapter 8)
but uses a few extra control lines for the OLED device. This demo still uses SPI1 for the
SPI controller but is using an alternate GPIO configuration, to be described later. PA15 is
acting as NSS that will drive the chip select of the OLED. PB10 will signal to the OLED
whether commands or data are being sent. Finally, PB11 can be activated at startup to
initialize the OLED when the demo program begins. Figure 12-4 illustrates the demo
circuit.
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Figure 12-4. Demo OLED circuit using SPI

The RES pin of the OLED, which is wired to the SSD1306 controller, must remain
low for a minimum of 3 ps for it to be effective. The reset sets the controller into several
default modes, which saves some initialization.

AFIO

The STM32 platform supports the concept of remapping I/0 functions. It is referred to in
their documentation as “Alternate Function I/O.” This chapter’s demo takes advantage of
this feature to have SPI1 appear on GPIOs PA15, PB3, PB4, and PB5. Table 12-3 lists the
AFIO options for SPI1.

Table 12-3. Alternate Function 1/0 for SPI1

Alternate Function SPI1_REMAP=0 SPI1_REMAP=1

SPI1_NSS PA4 PA15
SPI1_SCK PA5 PB3
SPI1_MISO PAG PB4
SPI1_MOSI PA7 PB5
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The AFIO feature allows additional flexibility in planning your STM32 resources. If
you needed 5-volt-tolerant inputs, you would want to use SPI1_REMAP=1. Sometimes
AFIO is used to avoid conflict with pins used by another peripheral.

To take advantage of AFIO, you need to get the following ducks in a row:

1. Enable the AFIO clock.
2. Configure the alternate function.

3. Configure GPIO outputs for ALTEN. Inputs do not require special
treatment other than to be configured as an input.

All three of these steps are essential. Forgetting to enable the AFIO clock, for example,
will result in nothing happening or the peripheral hanging. Using libopencm3, the AFIO
clock is enabled with the following:

rcc_periph_clock enable(RCC_AFIO);
The demo program uses the following libopencm3 call to choose SPI1’s alternate
function using libopencm3’s gpio primary remap() function:

// Put SPI1 on PB5/PB4/PB3/PA15

gpio_primary remap(
AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW _OFF, // Optional
AFIO_MAPR_SPI1_REMAP); // SPI1_REMAP=1

The first argument disables JTAG functionality and is secondary to our goal of
remapping. The second argument indicates that you want SPI1 to be remapped (SPI_
REMAP=1 in Table 12-3). The natural mapping (SPI1_REMAP=0) is used by default after a
system reset.

For GPIO outputs, you must choose one of the following macros when configuring it.
Otherwise, the peripheral would not be able to reach the output pins.

« GPIO CNF_OUTPUT ALTFN_PUSHPULL
« GPIO CNF_OUTPUT ALTFN_OPENDRAIN
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For example:

gpio set mode(
GPIOB,
GPIO MODE_OUTPUT 50 MHZ,
GPIO CNF_OUTPUT ALTFN_PUSHPULL, // Note!
GPIO5|GPIO3);

Notice the ALTFN in the argument three macro name. An easy mistake to make
is to use the non-ALTFN macro instead and then wonder why your peripheral is not
communicating with the pin.

Graphics

One of the hurdles when working with graphics devices is performing operations like
drawing lines, circles, and rectangles. It is true that lines and rectangles are simple
enough if they use perfectly horizontal and vertical lines. But lines tilted on an angle and
filled circles present a challenge. Then, there is the need for fonts.

These software problems are large enough that the average developer doesn’t want
to expend time on re-developing solutions for them. After all, these are problems that
have been solved before. Why do we have to keep solving them again?

The good news is that the problem has been solved before and that the software is
available in open source form. The demo project in this chapter will employ the graphics
software written by Achim Ddbler, available on github here:

https://github.com/achimdoebler/UGUI

The one characteristic of this graphics software that I give the author kudos for
is that it is designed to be adapted to any graphics platform. Aside from some simple
configuration in the ugui_config.h file, the only other requirement is a user-supplied
function:

void
local draw point(UG_S16 x,UG S16 y,UG COLOR c) {
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Given x and y coordinates and a color, this function is called upon to draw a point
in your own graphics environment. To make this work, the uGUI environment is simply
initialized with a function pointer:

static UG_GUI gui;

UG_Init(&gui,local draw point,128,64);

The arguments 128 and 64 in this example define the maximum width and height of
the drawing canvas. Once this has been done, uGUI functions can be called upon to fill a
circle; for example:

UG FillCircle(x,y,c);
The demo project is located in the following directory:

$ cd ~/stm32f103c8t6/rtos/oled
Our OLED device, however, is monochrome, so some special color handling is needed.
To translate color into monochrome, the following routine is provided in meter.c:

0059: static int

0060: ug to pen(UG_COLOR c) {
0061:

0062: switch (¢ ) {

0063: case C_BLACK:

0064 : return 0;
0065: case C _RED:
0066: return 2;
0067:  default:
0068: return 1;
0069: }

0070: }

This function merely converts any color except for red and white to a 1 (white),
with black represented as a 0. The color red is used by the demo software to represent
exclusive-or.

The exclusive-or operation has the special property that if the pixel is currently
0 (black) it will be painted as white. If the current pixel is white, then it is converted to
black. Regardless of the current state of the graphics canvas, something is always visibly
drawn in exclusive-or mode.
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Tip Depending upon your compiler and options used, you may want to spend
time reducing the amount of code compiled. Use #if to eliminate unused
functions in the ugui.c module.

The Pixmap

To facilitate graphic drawing on the OLED, a pixel map (pixmap) buffer is used. This
allows extensive drawing operations to occur at full CPU speed. At the appropriate time,
the pixmap is then copied to the OLED device for display.

The pixmap is defined in the file meter.c as follows:

static uint8 t pixmap[128*64/8];

This defines 128 times 64 pixels, with eight pixels to a byte, thus using 1024 bytes of
SRAM.

To facilitate drawing into the pixmap, the to_pixel() function is used, illustrated in
Listing 12-1. It computes a byte address within the pixmap based upon the given x and y
coordinates and then returns a bit number through the pointer argument bitno.

Listing 12-1. The to_pixel() Function

0020: static uint8_t dummy;

0021:

0022: static uint8 t *

0023: to pixel(short x,short y,unsigned *bitno) {

0024: *bitno =7 -y % 8; // Inverted
0025:

0026: if ( x <0 || x >= 128

0027: [l y<o|]y>= 64)

0028: return &dummy;

0029:

0030: unsigned inv_y = 63 - y;
0031: unsigned pageno = inv_y / 8;
0032: unsigned colno = x % 128;
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0033:
0034:  return &pixmap[pageno * 128 + colno];
0035: }

A couple of points require explaining. Lines 24 and 30 are used to invert the display.
This was done to arrange that the yellow band of 16 rows would appear as the top of the
display. To use non-inverted coordinates, you would change line 24 from:

0024: *bitno =7 -y % 8; // Inverted
to
0024:  *bitno =y % 8§; // Non-inverted

Likewise, y would be used instead of the computed inv_y value. Centralizing this
mapping in one place makes it possible to introduce translations to the display. For
example, you could rework this function to transform x and y to display on the device in
portrait mode rather than landscape.

In theory, there should be no call to this routine with the x and y coordinates out of
range. But should that happen, the routine returns a pointer to the value dummy so that
the call can be ignored without fatal consequences.

Pixmap Writing

After the byte and bit numbers have been determined by the to_pixel() function,
the actual point-drawing function becomes simpler, shown in Listing 12-2. The draw_
point() function is called by the earlier Llocal draw_point() function. The draw_
point() routine expects the 2, 1, or 0 pen value rather than a color.

Listing 12-2. The Internal draw_point() Function

0037: static void
0038: draw_point(short x,short y,short pen) {

0039:

0040: if ( x <0 || x>=128 || y<oO ||y>=64)
0041: return;

0042:

0043: unsigned bitno;
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0044: uint8 t *byte = to_pixel(x,y,&bitno);
0045: uint8 t mask = 1 << bitno;

0046:

0047:  switch ( pen ) {

0048: case O:

0049: *byte &= ~mask;
0050: break;

0051: case 1:

0052: *byte |= mask;
0053: break;

0054:  default:

0055: *byte "= mask;
0056: }

0057: }

Lines 40 and 41 exit the function without doing anything when the x and/or y
coordinates are out of range. Otherwise, lines 43 and 44 determine the byte address and
bit number for the pixel being altered. Line 45 computes a bit mask from the bitno value
and saves it to mask.

What happens next depends upon the pen value. If the pen was 0 (white), that bit is
masked out so that the pixel bit is cleared to zero. If the pixel is 1, the mask value is or-ed
with the byte to produce a 1-bit in the pixel. Finally, in line 55, the default pen value (2
normally) will produce an exclusive-or of the pixel instead.

The Meter Software

The graphics software specific to the meter display is found in the file meter.c. Those
interested in the design of this program can examine the source code for the details. For
brevity, I'll just highlight the important functions within it.

meter_init()

void meter init(struct Meter *m,float range);

If this were C++, you could think of the meter_init() function as the constructor.
The struct Meter mis initialized by the call, while the float argument range
configures the meter’s upper range. In the demo main.c program, range is provided as
3.5 for 3.5 volts.

234



CHAPTER 12  OLED

meter_set_value()
void meter set value(struct Meter *m,float v);

This function changes the value stored in meter object m to the value v. This will
move the graphics pointer in the pixmap.

meter_redraw()
void meter redraw(struct Meter *m);

This function is used internally at initialization time to draw the entire meter into
the pixmap. It can be called again if the software suspects or knows that the image was
corrupted somehow. In the demo, this is only called once at initialization.

meter_update()
This is the function used to transfer the pixmap in SRAM to the OLED using SPI1:

void meter update(void);
The SPI transfer code is illustrated in Listing 12-3.

Listing 12-3. The meter_update() SPI Transfer Function

0195: void

0196: meter update(void) {

0197: uint8_ t *pp = pixmap;

0198:

0199: oled command2(0x20,0x02);// Page mode
0200:  oled command(0x40);

0201: oled command2(0xD3,0x00);

0202: for ( uint8 t px=0; px<8; ++px ) {

0203: oled command(0xB0|px);

0204: oled command(0x00); // Lo col

0205: oled command(0x10); // Hi col

0206: for ( unsigned bx=0; bx<128; ++bx )
0207: oled data(*pp++);

0208: }

0209: }
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Line 197 obtains the address of the first byte of the pixmap. Line 199 makes certain
that the SSD1306 controller is in “page mode.” In this mode, the OLED memory is broken
up into eight pages of 128 bytes of pixels.

Line 200 initializes the SSD1306 to start at display line zero, while line 201 initializes
the SSD1306 to set the display offset to zero.

The loop in lines 202 to 208 then takes care of transferring data one page at a time to
the OLED. Line 203 chooses the OLED page to update. Lines 204 and 205 initialize the
column index to zero. Lines 206 and 207 actually pass the data to the OLED controller
and update the display pixel data pointer pp.

The functions oled_command(), oled command2(), and oled data() are found in the
demo module main.c.

Main Module

Since the OLED module requires some special processing with the Data/Command
signal line, let’s examine the functions used by the meter program.

oled_command()

This function is used to send command bytes to the OLED controller and is illustrated in
Listing 12-4.

Listing 12-4. The oled_command() Function

0034: void

0035: oled command(uint8 t byte) {
0036: gpio clear(GPIOB,GPI010);
0037: spi _enable(SPI1);

0038:  spi xfer(SPI1,byte);

0039: spi disable(SPI1);

0040: }

Line 36 clears GPIO PB10 so that the Data/Command line goes low, indicating to
the OLED controller that SPI data is to be interpreted as command bytes. Lines 37 to 39
transfer this command byte over SPI1.

oled _command2() is identical, except that it sends two command bytes instead of one.
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oled_data()

The oled_data() function is very similar to oled_command(). It simply sets the GPIO line
PB10 high (line 53 of Listing 12-5) so that the OLED controller will accept SPI data as
pixel data.

Listing 12-5. The oled_data() Function

0051: void

0052: oled data(uint8 t byte) {
0053:  gpio set(GPIOB,GPI010);
0054:  spi enable(SPI1);

0055:  spi xfer(SPI1,byte);
0056: spi disable(SPI1);
0057: }

oled_reset()

The main module calls upon function oled reset() to initialize the OLED controller, as
shown in Listing 12-6.

Listing 12-6. The oled_reset() Function

0059: static void

0060: oled reset(void) {

0061: gpio clear(GPIOB,GPIO11);
0062:  vTaskDelay(1);

0063: gpio set(GPIOB,GPIO11);
0064: }

Line 61 sets PB11 to low. Then, FreeRTOS routine vTaskDelay () is called for one tick
(about 1 ms), which should be more than enough time (a minimum of 3 ps is required).
Then, after the delay in line 62, the PB11 pin is brought high again.

oled_init()

The function oled_init isillustrated in Listing 12-7. Lines 73 and 77 are non-essential,
simply activating the built-in LED on PC13. The OLED is reset in line 74 and is followed by
several commands sent to it from the array cmds (line 68) from the loop in lines 75 and 76.
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Listing 12-7. The oled_init() Function

0066: static void
0067: oled init(void) {
0068: static uint8 t cmds[] = {

0069: OxAE, 0x00, 0x10, 0x40, 0x81, OxCF, OxA1, OxA6,
0070: 0xA8, O0x3F, oxD3, 0x00, OxD5, 0x80, 0xD9, OxF1,
0071: 0xDA, 0x12, OxDB, 0x40, 0x8D, 0x14, OXAF, OXFF };
0072:

0073:  gpio clear(GPIOC,GPIO13);

0074: oled reset();

0075:  for ( unsigned ux=0; cmds[ux] != OXFF; ++ux )
0076: oled command(cmds[ux]);

0077: gpio set(GPIOC,GPIO013);

0078: }

Demonstration

In the project directory, perform the following:

$ make clobber
$ make
$ make flash

Once your STM32 is flashed and wired up according to the schematic in Figure 12-4,
you should be able to unplug the programmer and then plug in the USB cable for the
STM32 device. After a brief pause, you should see the display in Figure 12-5, if everything is
working. Depending upon your device, you may see different colors.

Tip When developing a new project, if the linker tells you that .bss will

not fit in region ram, review the value of configTOTAL HEAP_SIZE in file
FreeRTOSConfig.h.You may need to reduce the heap size to make room for
your program’s own storage.
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Figure 12-5. The demonstration program produces a voltmeter graphic on the
OLED

If the display did not initialize correctly, it is best to immediately unplug the USB
cable and recheck your wiring. If successful, start up minicom with your USB startup
settings (mine is named “usb”):

$ minicom usb
After minicom connects to your USB device and starts, you should see a session
display like the following:

Welcome to minicom 2.7
OPTIONS:

Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbmodemWGDEM1, 22:46:21

Press Meta-Z for help on special keys
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Press the Return key to prompt a menu display from the demo program:

Test Menu:
0 .. set to 0.0 volts
1 .. set to 1.0 volts
2 .. set to 2.0 volts
3 .. set to 3.0 volts
4 .. set to 3.5 volts
+ .. increase by 0.1 volts

- .. decrease by 0.1 volts

Pressing “1” should immediately cause the meter (OLED) to display 1.0 volts.

Likewise, pressing “3” points the meter at 3 volts. Pressing the “+” or “-” key will allow
you to increase/decrease respectively the voltage displayed by tenths of a volt.

Summary

In this chapter, SPI was applied to the real-world problem of driving an OLED display.
In doing so, the advantage of using open-sourced software for graphics operations was
demonstrated. Graphics permitted the drawing of an analog meter on the OLED as well
as the use of a font to display the voltage digitally.

Moreover, the signals for Data/ Command and RESET were demonstrated to drive
the OLED display, in addition to the usual SPI signals.

The concept of AFIO for the STM32 family was also applied in this chapter to
demonstrate how SPI1 could have its I/O pins moved to different pins. AFIO permits
greater flexibility in applying the resources of the STM32 chip.

EXERCISES

1. For AFIO output pins, what GPIO configuration macros must be used?
What clock must be enabled for AFIO changes?

What GPIO configuration macros should be used for input pins?

> L N

What is the purpose of the OLED D/C input?

240



CHAPTER 13

OLED Using DMA

In the previous chapter, software was developed to drive the OLED using master-mode
SPI transactions. The STM32 platform does, however, support a DMA (direct memory
access) controller, which can be exploited to perform the I/O operations and leave more
cycles available for the CPU. This chapter will explore how to set up and use that DMA
controller to drive the OLED device.

Challenges

This project will challenge us a little bit because our OLED device requires some special
handling. The main challenges are as follows:

e The OLED SSD1306 controller allows us to only update one of eight
pages at a time, requiring multiple DMA transfers.

o In between pages of data sent, additional SSD1306 controller
commands must be sent to select the next page to be updated.

o Switching between OLED commands and data requires us to change
a GPIO signal level in between transfers, which cannot be integrated
with the DMA operation itself.

In some applications, it is possible to configure the DMA controller and simply
launch it. The DMA controller then optionally notifies us of completion with an
interrupt. In this project, the DMA will be launched a number of times to refresh eight
pages of OLED memory data. This project will allow you to learn how to conquer this
challenge.
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Circuit

The circuit used for this chapter’s project is identical to the one used in Chapter 12
(see Figure 12-4). The changes for this project are entirely contained within the software
used.

DMA Operation

The DMA controller is a simple machine that operates in three phases:
1. Initial configuration
2. Execution
3. Notification of completion, or repeat execution

The DMA'’s purpose is to read data from its source and write it to its destination. How
exactly this is performed depends upon its configuration.

DMA Execution

How does the DMA controller manage this automated data transfer? In this chapter,
the presented project will configure the DMA controller to read data from one of two

memory locations:
o array of OLED command bytes, or
o array of pixel data bytes.

As far as the DMA controller is concerned, our data source will be memory. When
configuring the controller, the software will configure the byte address and length.

The DMA destination will be the SPI data port for transmitting (a peripheral). The
configured destination therefore will be the memory-mapped port address for SPI1’s
data register (4SPI1 DR in C-language terms).
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There is still the matter of when a given data byte is transferred. A DMA transfer cycle

consists of the following series of events:

1.

2.

A request signal is sent to the DMA controller.

The DMA controller performs the data transfer (in this case,
memory to peripheral). The configured priority will determine
which transfer occurs first.

The DMA controller sends an acknowledge signal to the requestor.
The request signal is released.

The DMA acknowledge signal is released.

The DMA controller decrements the length count.

When configured to do so, the source or destination address is
incremented. The address is incremented by the size (in bytes) of
the transfer.

This process repeats until the transfer length reaches zero. At that point, the DMA

controller reaches a completed status, which will include a completion interrupt when

configured for it.

DMA Request Signals

Internal to the STM32 MCU are request signals connected to DMA channels. The
STM32F103C8T6 MCU is a medium-density controller and thus has only one DMA
controller (DMA1). DMA1 supports seven DMA channels, while larger MCUs sport a
second controller that supports an additional five channels.

Table 13-1 summarizes the DMA channels supported by the STM32F103C8T6. Our
project will make use of DMALI, channel 3 because it supports the requestor SPI1_TX.
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Table 13-1. Supported DMAI Channels

Requestor Channel Description

ADC1 1 DMA1, Channel 1 (highest priority)

TIM2_CH3

TIM4 CH1

USART3_TX 2 DMAT1, Channel 2

TIM1 CH1

TIM2_UP

TIM3_CH3

SPI1_RX

USART3_RX 3 DMAT1, Channel 3

TIM1_CH2

TIM3_CH4

TIM3_UP

SPI1_TX

(continued)
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Requestor Channel

Description

USART1_TX 4

TIM1_CH4

TIM1 TRIG

TIM1_COM

TIM1_CH2

SPI2/I252 RX

1202 TX

USART1_RX 5

TIM1_UP

SPI2/I2C2 TX

TIM2_CH1

TIM4_CH3

I12C2_RX

DMAT1, Channel 4

DMAT1, Channel 5

(continued)
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Table 13-1. (continued)

Requestor Channel

Description

USART2_RX 6

TIM1 CH3

TIM3_CH1

TIM3_TRIG

1201 TX

USART2_TX 7

TIM2_CH2

TIM2_CH4

TIM4_UP

I12C1_RX

DMAT1, Channel 6

DMAT1, Channel 7 (lowest priority)

Because of the groupings in Table 13-1, it is evident that other signals can act on

channel 3 in addition to SPI1_TX. These are as follows:

« USART3_RX
« TIM1_CH2
« TIM3 CH4
« TIM3_UP

Only one of these requestors can be active at a time. An application needing to use
SPI1_TX and USART3_RX must arrange it so that the DMA controller is only configured for

one of these at a given instant.
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Each channel has a configured priority of four levels. However, if competing
channels have the same priority, the lowest numbered channel has the priority.

You can think of Table 13-1 as the wiring between peripherals and the DMA
controller request lines. For example, SPI1 can request for transmission on channel
3, while its receiving requests are wired to channel 2. SPI2 is hardwired to request on
channels 4 and 5.

A memory-to-memory transfer can also be performed by the DMA controller, with
source and destination on any available channel.

SPI1_TX Request

Our project will make use of the SPI1_TX request, available on DMA channel 3. This
request line is active when the following are true:

o The SPI1 status register SPI_SR flag TXE flag is set to 1 (transmit buffer
empty).

o The SPI1 control register SPI_CR2 flag TXDMAEN is set to 1 (DMA
enabled).

o The SPI1 peripheral itself is enabled (register SPI_CR1 bit SPE set to 1).

Assuming the remaining aspects of SPI1 configuration are correct, establishing
the preceding three conditions activates the DMA request line. In order for the DMA
controller to respond to this, the following conditions must also be met:

e One-time configuration of DMA has been established.
e The DMA channel is enabled.

Once those conditions are established in both the SPI1 peripheral and the DMA
controller, then the DMA operation will proceed without software intervention.

The Demonstration

Seeing the involved software will help to bring these concepts into focus. The source
code for this chapter is included in the following directory:

$ cd ~/stm32f103c8t6/rtos/oled dma
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Change to that directory and rebuild from scratch:

$ make clobber
$ make
$ make flash

Note It is usually necessary to change the Boot0 jumper to flash the device
when a prior flash has configured AFIO. Set Boot0=1, leave Boot1=0, and then
flash. Return Boot0=0.

Listing 13-1 summarizes a few changes made to the main() program from the
previous chapter’s source code. Line 403 affects the SPI1/0 transfer rate. With the divisor
set to 64, the SPI SCLK rate is increased to 1.125 Mhz. If you experience trouble getting
your circuit to work, increase the divisor to 256. Breadboard arrangements can be very
noisy and limit performance.

Listing 13-1. Main Program Changes

0401: spi init master(

0402: SPI1,

0403: SPI_CR1_BAUDRATE_FPCLK DIV 64, // 1.125 MHz
0404: SPI_CR1_CPOL_CLK_TO 0 WHEN_IDLE,

0405: SPI_CR1_CPHA CLK_TRANSITION 1,

0406 SPI_CR1_DFF_8BIT,

0407: SPI_CR1 MSBFIRST

0408: );

0412: // DMA

0413:  rcc_periph clock enable(RCC DMA1);
0414: nvic_set priority(NVIC DMA1_CHANNEL3_IRQ,0);
0415:  nvic_enable irq(NVIC_DMA1 CHANNEL3 IRQ);

0422:  xTaskCreate(spidma_task,"spi dma",100,NULL,1,8h spidma);

For the DMAL1 operation, line 413 enables a system clock. Lines 414 and 415
configure the NVIC (nested vectored interrupt controller) to allow generation of the
DMALI channel 3 operation-complete interrupt.
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Finally, line 422 creates another FreeRTOS task spidma_task() to orchestrate the
DMA transfers needed.

Listing 13-2 illustrates a small change made to the meter.c module. It simply calls
into the main.c module to issue an OLED update request in line 199.

Listing 13-2. Modification to meter.c

0197: void

0198: meter update(void) {
0199:  spi dma_xmit _pixmap();
0200: }

Listing 13-4 (later) illustrates the spi_dma_xmit_pixmap() function, which gets the
OLED DMA1/0 started.

Initializing DMA

There is a fair amount of software required to get the DMA controller set up for use. The
good news is that much of it only needs to be done once. Listing 13-3 illustrates the one-
time DMA configuration used by the demonstration program.

Listing 13-3. One-time DMA Initialization

0189: static void

0190: dma_init(void) {

0191:

0192:  dma_channel reset(DMA1,DMA CHANNEL3);

0193: dma_set peripheral address(DMA1,DMA CHANNEL3,
(uint32_t)&SPI1 DR);

0194:  dma_set read from_memory(DMA1,DMA CHANNEL3);

0195:  dma_enable memory increment mode(DMA1,DMA CHANNEL3);

0196:  dma_set peripheral size(DMA1,DMA_CHANNEL3,DMA CCR_PSIZE 8BIT);

0197: dma_set memory size(DMA1,DMA CHANNEL3,DMA CCR MSIZE 8BIT);

0198: dma_set priority(DMA1,DMA_CHANNEL3,DMA CCR PL HIGH);

0199: dma_enable transfer complete interrupt(DMA1,DMA CHANNEL3);

0200: }
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Line 192 resets the DMA1 controller. This clears the controller of any fault conditions
and establishes a number of convenient defaults. Line 193 specifies the peripheral
address to be SPI1_DR (SPI1 data register). Line 194 indicates that the controller will be
reading from memory for channel 3 (thus the peripheral will be the written destination).
Line 195 configures the DMA controller to increment the memory address after each
byte is transferred. Line 196 indicates that the unit size is the byte for the peripheral,
while the next line does the same for the memory side. Line 198 gives DMA channel 3 a
high priority. Line 199 enables notifications of the DMA transfer completion by interrupt.

At this stage, the DMA1 controller is poised for action, needing just a few more
details before it can pounce.

Launching DMA

The first step in launching the OLED refresh by DMA uses the main.c routine spi_dma_
xmit_pixmap(), illustrated in abbreviated form in Listing 13-4. When DMA is started for
the first time, this routine calls function start_dma(). We'll discuss the full logic of that
routine later on.

Listing 13-4. Starting the DMA Transfer

0156: void
0157: spi_dma_xmit_pixmap(void) {

0169:  if ( prime )
0170: start_dma(); // Start from idle
0171: }

The code for start_dma() is provided in Listing 13-5. The first thing it does is reset
the OLED pageno value back to zero (line 146) and save the start of the OLED pixmap
buffer in pointer variable pixmapp (line 147).

The first SPI I/O requires command bytes, so the GPIO PB10 is set to low to indicate
to the OLED controller that the following data are command bytes (line 148). Finally, the
spidma_task() is “goosed” in line 149.
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Listing 13-5. Initiating the spidma Task to Start a New DMA Transfer

0040:
0044:
0045:
0142:
0143:
0144:
0145:
0146:
0147:
0148:

0149:
0150:

static TaskHandle t h_spidma = NULL;

static volatile uint8 t *pixmapp = NULL;
static volatile uint8 t pageno = 0;

static void
start_dma(void) {
extern uint8 t pixmap[128*64/8];

pageno = 0;

pixmapp = &pixmap[O];

gpio _clear(GPIOB,GPI010); // Cmd mode
xTaskNotifyGive(h spidma);

OLED SPI/DMA Management Task

The management of the OLED DMA I/0 transfers is tricky because we must break the
refresh into eight OLED page updates, each requiring its own set of command and data
bytes. The task spidma_task() is shown in Listing 13-6.

Listing 13-6. The spidma_task() Managing OLED DMA Updates

0041:
0042:
0043:
0044:
0045:
0088:
0089:
0090:
0091:
0092:
0093:

static volatile bool dma_busy = false;
static volatile bool dma_idle = true;
static volatile bool dma_more = false;

static volatile uint8_t *pixmapp = NULL;
static volatile uint8 t pageno = 0;

static void
spidma_task(void *arg  attribute((unused))) {
static uint8 t cmds[] = {
0x20, 0x02, // 0: Page mode
0x40, // 2: Display start line
oxD3, 0x00, // 3: Display offset
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0094:
0095:
0096:
0097:
0098:
0099:
0100:
0101:
0102:
0103:
0104:
0105:
0106:
0107:
0108:
0109:
0110:
0111:
0112:
0113:
0114:
0115:
0116:
0117:
0118:
0119:
0120:
0121:
0122:
0123:
0124:
0125:
0126:
0127:
0128:
0129:
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0xBo, // 5: Page #
0x00, // 6: Lo col
0x10 // 7: Hi Col
}s
for (5;) {

// Block until ISR notifies

ulTaskNotifyTake(pdTRUE,portMAX DELAY);

if ( dma_busy ) {
spi_clean disable(SPI1);
dma_busy = false;
if ( gpio _get(GPIOB,GPI010) ) {
// Advance data
pixmapp += 128;
++pageno;
}
// Toggle between Command/Data
gpio toggle(GPIOB,GPI010);

if ( pageno >= 8 ) {
// All OLED pages sent:
dma_idle = true;
if ( dma_more ) {
// Restart update
dma_more = false;
start _dma();
}
} else {
// Another page to send:
cmds[5] = 0xBO | pageno;
if ( !gpio_get(GPIOB,GPI010) ) {
// Send commands:
if ( !pageno )

spi_dma_transmit(&cmds[0],8);
else spi dma_transmit(8cmds[5],3);
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0130: } else {

0131: // Send page data:

0132: spi_dma_transmit(pixmapp,128);
0133: }

0134: }

0135: }

0136: }

The task consists of executing a loop starting at line 99, looping forever. The first
step in each loop is to call ulTaskNotifyTake(), which causes it to block forever until
notified. The DMA complete interrupt will notify the task in the ISR routine (to be
examined shortly). Once notified, execution returns to line 102.

The dma_busy flag is examined in line 102 to see if a DMA operation is currently in
progress. The first time through, however, control resumes at line 114. This checks for
an OLED update complete, which it is not on the first time through. Control then passes
to lines 124 and 125. Line 125 checks the status of GPIO PB10. If the state of PB10 is low,
then we are sending out command bytes this time through. Line 124 has placed the
correct pageno value into the command sequence (pageno=0 the first time through).

The first command sequence is longer (line 128) because additional commands are
included to make sure the OLED SSD1306 controller is in the correct update mode. This
is done in case a data error has caused the SSD1306 controller to execute an erroneous
command at some point. Following those commands, the bytes at cmds[5] through
cmds[ 7] are sent to establish the graphics page being updated. On pages 1 through 7, we
simply send the page-setting commands alone for efficiency.

After the DMA has completed the command bytes send, the control passes to line
102 in the loop again, with dma_busy true. Line 103 performs a call to libopencm3 routine
spi_clean disable() to wait until it is safe to manipulate SPI1 after a DMA transfer. The
DMA will have sent an SPI byte, but the data byte may not have left the SPI controller yet.
When control reaches line 104, it is known to be safe to start a new I/0.

Line 105 checks the state of GPIO PB10. After the command bytes have been sent,
this will still be low, causing lines 107 to 108 to be skipped this time around. Line 111 will
be executed, however, changing the D/C line to high for a data transfer.

Control passes to line 125, but GPIO PB10 is high at this point, so line 132 executes.
This launches a DMA SPI transfer of 128 bytes of data.
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Around we go, and we end up at line 103 again. This time, the GPIO PB10 is high,
so the pointer variable pixmapp is incremented by 128 (line 107) to point to the next
graphics page. The pageno value is also incremented (line 108). Because of the toggle
that happens in line 111, GPIO PB10 returns to low, indicating another few bytes of
commands to be sent in lines 124 to 129.

This cycle repeats seven more times to cause pages 1 through 7 to be sent to the OLED
controller. Eventually, pageno is incremented to 8, and this is noticed in line 114. Line
116 sets the flag dma_idle=true but will start yet another round of OLED updates if flag
variable dma_more was found enabled. The reason for this check will be explained later.

The task-notify mechanism has been used to facilitate this transfer. To understand
why, the ISR routine will now be revealed.

DMA ISR Routine

Listing 13-7 presents the DMA1 channel 3 ISR routine. Line 57 checks for the DMA1
channel 3DMA_TCIF flag (transfer complete interrupt flag), and if so, clears it in the
following line. As configured in this demo, this should be the only reason to enter this
function.

Listing 13-7. The DMA Complete ISR

0053: void

0054: dmal_channel3_isr(void) {

0055:  BaseType t woken attribute ((unused)) = pdFALSE;

0056:

0057: if ( dma_get interrupt flag(DMA1,DMA CHANNEL3,DMA TCIF) )

0058: dma_clear_interrupt flags(DMA1,DMA CHANNEL3,DMA TCIF);
0059:

0060:  spi_disable_tx_dma(SPI1);

0061:

0062: // Notify spidma_task to start another:
0063:  vTaskNotifyGiveFromISR(h_ spidma,8woken);
0064: }

The clearing of the DMA_TCIF flag is important in line 58. There are two other sources
of interrupts possible in the same ISR. The complete list for a given DMA channel
includes the following:
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e DMA TCIF — Transfer Complete Interrupt Flag
o DMA TEIF — Transfer Error Interrupt Flag
o DMA THIF — Transfer Half-done Interrupt Flag

The latter two are not used in the demo. For your reference, Table 13-2 lists all of the
interrupts and ISR routine names available for DMAL.

Table 13-2. Interrupt Vectors for DMA

DMA1 Channel ISR Routine

NVIC_DMA1_CHANNEL1_IRQ dmai_channel1 isr
NVIC DMA1 CHANNEL2 IRQ dmal_channel2 isr
NVIC DMA1 CHANNEL3 IRQ dmal_channel3 isr
NVIC_DMA1_CHANNEL4_IRQ dmai_channel4 isr
NVIC DMA1 CHANNEL5_ IRQ dmal_channel5 isr
NVIC DMA1 CHANNEL6 IRQ dmal_channel6 isr
NVIC_DMA1_CHANNEL7_IRQ dmal_channel7_isr

Line 60 of the ISR disables SPI1’s requests for DMA, while line 63 notifies the spidma_
task() function, which is blocked in a call to ulTaskNotifyTake(). Note that the ISR
must use the “FromISR” version of the call vTaskNotifyGiveFromISR(). ISRs are limited
in what they can do, so these special forms of the calls allow for that.

Restarting DMA Transfers

Now, let’s present the spi_dma_xmit_pixmap()routine in full in Listing 13-8.

Listing 13-8. The Full Listing of the spi_dma_xmit_pixmap() Function

0156: void
0157: spi_dma_xmit_pixmap(void) {
0158:  bool prime = false;
0159:
0160:  taskENTER CRITICAL();
0161: if ( !dma_idle ) {
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0162: // Restart dma at DMA completion

0163: dma_more = true;// Restart upon completion
0164: } else {

0165: prime = true; // Start from idle

0166: }

0167:  taskEXIT CRITICAL();

0168:

0169:  if ( prime )

0170: start_dma();  // Start from idle

0171: }

If meter updates were to occur frequently enough, they might arrive faster than the
OLED can be refreshed with DMA. With the SPI clock set for 1.125 MHz, the full OLED
refresh requires about 7.54 ms. This demo doesn’t have any provision for interrupting
the DMA transfer after it begins, and it would be undesirable to leave the display partially
written anyway. So, how do we handle this crunch?

When updates occur frequently, we don’t want to interrupt the one in progress.
However, once the current DMA transfer completes we want at least one more OLED
update to occur in order to display the current state. The volatile flag variable dma_more
serves this purpose. But we have a race condition to contend with.

Line 160 begins a critical section that cannot be interrupted. Interrupts include
preemption to allow other tasks to be run. Disabling interrupts in line 160 allows a test of
the current state of dma_idle. If the variable is found to be false, then it knows that a set
of DMA transfers is in progress or coming to an end. In this case, dma_more is set to true
to request one more OLED update when the current one completes.

However, if dna_idle is found to be true, the DMA machinery is known to be idle and
must be started up again. The local flag variable prime is set to true in this case (line 165).

Executing the Demo

The demo executes the same as in Chapter 12. However, the interactive menu has a new

w_n

option, “p”—the meter “pummel” command:

$ minicom usb
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When minicom connects to your USB device, press Return to get it started:

Welcome to minicom 2.7

OPTIONS:
Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbmodemWGDEM1, 21:29:29

Press Meta-Z for help on special keys

Monitor Task Started.

Test Menu:
0 .. set to 0.0 volts
1 .. set to 1.0 volts
2 .. set to 2.0 volts
3 .. set to 3.0 volts
4 .. set to 3.5 volts
+ .. increase by 0.1 volts

- .. decrease by 0.1 volts
p .. Meter pummel test

u_n

The menu items work as they did in the previous chapter, with menu option “p
added. This “pummel test” hits the meter with rapid updates. When activated by

pressing “p,” the meter will move from end to end in rapid updates. The code for the
pummel test is illustrated in Listing 13-9.

Listing 13-9. The Pummel Test Routine

0230: static void

0231: pummel test(struct Meter *m1) {

0232:  TickType t t0 = xTaskGetTickCount();

0233: double v = 0.0;

0234: double incr = 0.05;

0235:

0236: meter set value(mi,v);

0237: meter update();

0238: while ( (xTaskGetTickCount() - t0) < 5000 ) {
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0239: vTaskDelay(6);

0240: vV += 1incr;

0241: if (v>3.3){

0242: incr = -0.05;
0243: vV = 3.3;

0244: } else if (v < 0.0) {
0245: V = 0.0;

0246: incr = 0.05;

0247: }

0248: meter_set value(mi,v);
0249: meter update();

0250: }

0251: }

The test routine is designed to operate for five seconds (line 238). The delay in line
239 determines how quickly the meter is updated. Here it is set to delay for six ticks
(about 6 ms) between updates. Given the update takes 7.54 ms, this will overlap with a
DMA transfer at least some of the time.

You may find that the text part of the display does not get updated during the pummel
test. It will catch up after the pummeling ends. This illustrates the nature of the problem.

Further Challenges

While the demonstration code works as intended, it has one remaining flaw. If the
updates occur too frequently—say, for example, at one-millisecond intervals—the
display shown on the OLED can lose the pointer. Why does this happen?

The background of the meter is only written to the pixmap once. Only the pointer
and the digital reading are redrawn in the pixmap. Whenever the meter is moved, the
original pointer is drawn in the background color to erase it, followed by writing the new
pointer in the foreground color. What can happen is that the pixmap being copied by
DMA to the OLED copies the erased pointer because of poor timing.

To correct for this, a few different approaches are possible. One approach would be
to have the pixmap copied to another pixmap buffer using a DMA memory-to-memory
transfer. Then, the OLED can be updated by this pixmap buffer, which is never modified
by the ongoing software. This obviously involves extra time for the in-memory copy as
well as another pixmap buffer in SRAM.
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Another approach might be to limit the meter updates to a maximum frequency by
software. After all, a hardware meter pointer is unable to update instantly. This just a
taste of some of the problems that come up in embedded computing.

Summary

This chapter built upon the software developed in Chapter 12, adding the DMA
controller to manage data transfers to the OLED device. The demo helped you develop
familiarity with the DMA controller and its capabilities. Using a FreeRTOS task
mechanism, the DMA transfer was managed with command and data transfers that
occurred by manipulating GPIO line PB10. Finally, the DMA transfer-complete interrupt
was used to knit the events together.

The use of DMA is not always this complicated. However, this demo prepares you for
something more difficult than your average textbook example.

EXERCISES

1. In the demo program, what DMA controller aspects had to be changed before
starting the next transfer?

2. Does each DMA channel have its own ISR routine?

3. Ina memory-to-peripheral transfer, like the demo, where does the DMA request
come from?

4. Inthe demo program where SPI was used, what were the three conditions
necessary before a DMA transfer could begin?
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Analog-to-Digital
Conversion

Embedded computing often needs to convert an analog signal level into a digital form
for analysis. One application is measuring temperature by the voltage developed across
a semiconductor. It is no surprise then that the STM32 platform has both an analog-to-
digital converter (ADC) and a built-in channel to the ADC for measuring temperature.

This chapter’s demonstration project will illustrate how to use the libopencm3
routines to access the ADC peripheral, reading analog channels PAQ and PA1, in addition
to reading the chip temperature and its internal reference voltage.

STM32F103C8T6 Resources

The STM32F103C8T6 sports two ADC controllers, specified by the following libopencm3

macro names:
e ADC1 — 12-bit Analog Digital Controller 1 with 18 input channels
e ADC2 — 12-bit Analog Digital Controller 2 with 16 input channels

These each support 16 analog input channels. ADC1 can also access internal levels for
temperature and a reference voltage V.

The ADC peripheral also includes a programmable prescaler that establishes the
conversion rate. The input to the prescaler is the PCLK2 (same as APB2) clock. Since our
demo initializes with the call

rcc_clock setup _in hse 8mhz_out _72mhz();
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this results in the APB2 frequency being established as

rcc_apb2_frequency = 72000000;
or 72 MHz. The ADC input clock must not exceed 14 MHz, so this limits us to the divisor
6, generating a clock of 72 + 6 = 12 MHz.

Demonstration

There is no schematic for this demonstration since all is provided by the onboard ADC
peripheral. The only external connections of interest are the analog inputs PAO and
PA1. However, a schematic will be provided later for how to hook up a potentiometer to
generate voltages that can be sensed. This chapter is mostly about how to arrange the
software to operate the ADC peripheral.

Caution GPIO inputs PAO and PA1 are not 5-volt tolerant and should only receive
voltages between zero and +3.3 volts.

The software for this chapter is found at the following directory:
$ cd ~/stm321103c8t6/rtos/adc
Change to that subdirectory and rebuild the project from scratch:

$ make clobber
$ make
$ make flash

Tip It should not be necessary to change the Boot-0 jumper to reflash the STM32
for this project, except perhaps the first time.
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Analog Inputs PAO and PA1

In the main() program, the ADC peripheral and its GPIOs are initialized. The first step
configures the analog inputs, as follows:

0087:  rcc_periph clock enable(RCC_GPIOA); // Enable GPIOA for ADC
0088:  gpio set mode(GPIOA,

0089: GPIO MODE_INPUT,
0090: GPIO CNF_INPUT_ANALOG, // Analog mode
0091: GPIOO|GPIO1); // PAO & PA1

As usual, the clock for GPIO is enabled in line 87. Lines 88 to 91 configure GPIOs
PAO and PA1 for analog input. Notice that the value GPIO_CNF_INPUT ANALOG is used to
configure the GPIO input. This permits a varying voltage to reach the ADC instead of a
digital high/low value.

ADC Peripheral Configuration

The main complexity of this demonstration is correctly configuring the ADC peripheral.
The STM32 has a dizzying array of options in this area. Listing 14-1 illustrates the
configuration used by this demo. All source code presented in this chapter is found in file
main.c.

The ADC peripheral’s clock needs to be turned on, which line 103 accomplishes. The
ADC peripheral’s power (not its clock) is disabled in line 104 for initialization.

Listing 14-1. ADC Configuration

0102: // Initialize ADC:

0103: rcc_peripheral enable clock(&RCC_APB2ENR,RCC_APB2ENR_ADC1EN);

0104:  adc_power off(ADC1);

0105:  rcc_peripheral reset(&RCC_APB2RSTR,RCC_APB2RSTR_ADC1RST);

0106:  rcc_peripheral clear reset(8RCC_APB2RSTR,RCC_APB2RSTR_ADCIRST);
0107:  rcc_set adcpre(RCC_CFGR_ADCPRE_PCLK2 DIV6);// Set. 12MHz, Max. 14MHz
0108: adc_set dual mode(ADC_CR1 DUALMOD IND); // Independent mode
0109: adc_disable scan mode(ADC1);

0110:  adc_set right aligned(ADC1);

0111: adc_set_single conversion mode(ADC1);
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0112:  adc_set sample time(ADC1,ADC_CHANNEL TEMP,ADC_SMPR_SMP_239DOT5CYC);
0113: adc_enable temperature sensor();

0114:  adc_power on(ADC1);

0115:  adc_reset calibration(ADC1);

0116: adc_calibrate async(ADC1);

0117: while (adc_is_calibrating(ADC1));

Lines 105 and 106 reset the ADC further. These are separate calls because of the
different registers involved.

ADC Prescaler

Line 107 sets the ADC prescaler to operate at 12 MHz maximum. The ADC clock will
function up to 14 MHz, but the divisor of 4 results in 18 MHz, which is clearly over

the limit. If your application requires the highest possible ADC conversion rate, the

only choice is to alter the CPU and other clocks first. Keep in mind that there are clock
constraints affecting the USB controller, which may limit your options if USB is required.

ADC Modes

Lines 108 through 111 configure a series of different modes available. Line 108 allows
ADCI1 and ADC2 to be operated independently. Line 109 disables the scan-mode option,
while line 110 configures the ADC to store the result right-justified in its register. Finally,
line 111 configures the ADC to stop when a single conversion is completed:

0108:  adc_set dual mode(ADC_CR1 DUALMOD IND); // Independent mode
0109:  adc_disable scan _mode(ADC1);

0110:  adc_set right aligned(ADC1);

0111: adc_set single conversion mode(ADC1);

Sample Time

Lines 112 and 113 establish the sample time to be used on the temperature and V.,
channels:

0112:  adc_set_sample time(ADC1,ADC_CHANNEL_TEMP,ADC_SMPR_SMP_239DOT5CYC);
0113: adc_set_sample time(ADC1,ADC_CHANNEL VREF,ADC_SMPR_SMP_239DOT5CYC);
0114: adc_enable temperature sensor();

264



CHAPTER 14  ANALOG-TO-DIGITAL CONVERSION

Each channel of the ADC can be sampled with a different number of clock cycles.
The default is to have each conversion occur in 1.5 cycles (ADC_SMPR_SMP_1DOT5CYC).
The total number of clock cycles is given by the following equation:

T =SampleRate+12.5

conv

In the case of line 112, the conversion time for temperature requires the following:

T =239.5+12.5cycles

conv

=252 cycles
Since the ADC clock rate is 12 MHz, we know that the total time for conversion is as
follows:

conv:£+21 IJ,S
12¢6

The default sample rate for a given channel is 1.5 cycles. Table 14-1 lists the sample rates
that are available.

Table 14-1. ADC Sample Rates

libopencm3 Macro Name Cycles Total time (12 MHz ADC clock)
ADC_SMPR_SMP_1DOT5CYC 15+125=14 1.167 ps
ADC_SMPR_SMP_7DOT5CYC 7.5+125=20 1.667 ps
ADC_SMPR_SMP_13DOT5CYC 135+ 125=26 2.167 ps
ADC_SMPR_SMP_28DOT5CYC 28.5+12.5 =41 3.417 ps
ADC_SMPR_SMP_41DOT5CYC 415+125=54 4.500 pis
ADC_SMPR_SMP_55D0T5CYC 55.5 + 12.5 = 68 5.667 ps
ADC_SMPR_SMP_71DOT5CYC 71.5+12.5 =84 7.000 ps

ADC_SMPR_SMP_239DOT5CYC ~ 239.5+125=252  21.00 s
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Readying the ADC

Before the ADC controller is used, three more steps are required (from Listing 14-1):

0114:  adc_power on(ADC1);

0115:  adc_reset calibration(ADC1);
0116:  adc_calibrate async(ADC1);

0117: while (adc_is calibrating(ADC1));

Power is turned on by line 114, and calibration constants reset in line 115. Line 116
starts the calibration, while line 117 waits for this to complete. In the demonstration
program this is all performed before the FreeRTOS scheduler is started.

Demonstration Run

Once the STM32 has been flashed with the demonstration code, plug in its USB cable and
start minicom (again, “usb” is the file name that I used to save the USB comms parameters):

$ minicom usb
Welcome to minicom 2.7

OPTIONS:
Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbmodemWGDEM1, 12:38:28

Press Meta-Z for help on special keys

Temperature 24.72 C, Vref 1.19 Volts, cho 1.92 V, ch1 0.00 V
Temperature 24.72 C, Vref 1.19 Volts, cho 1.94 V, ch1 0.00 V
Temperature 24.72 C, Vref 1.19 Volts, cho 1.97 V, ch1l 0.00 V
Temperature 24.72 C, Vref 1.19 Volts, cho 1.98 V, ch1 0.00 V

Every 1.5 seconds a new line will be displayed, showing the following:
o Internal STM32 temperature in °C (24.72 °C in the example)
o Internal V,,value of the STM32 (1.19 volts in example)
o Channel 0 voltage (1.92 volts in first example line)

e Channel 1 voltage (0.00 volts in the example)
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To test analog inputs A0 and A1, you can attach a jumper wire first to Gnd and then
to your +3.3-volt supply. Do not apply voltages higher than that or negative voltages—this
could result in permanent damage.

The session just shown had PA1 floating, while PA0 was grounded. If you now apply
+3.3 volts to the PAO input, the reported value should be close to +3.3 volts. I got 3.29
volts when I tried this. Repeat the grounding and +3.3-volt test on PA1, and the program
should report identical results.

Reading ADC

With the ADC configured in the main() program, it is possible for the demo_task()
function to read the analog voltages by channel, as follows:

0060: int adco, adci;

0068:  adco
0069: adc1

read_adc(0) * 330 / 4095;
read_adc(1) * 330 / 4095;

To avoid floating point for speed and to reduce flash size, integer arithmetic is used
here to compute voltages in variables adc0 and adc1. A 12-bit ADC result has 4096
possible steps, resulting in the returned result ranging from 0 to 4095. The result of the
calculation when multiplied by 330 is volts times one hundred.

The software responsible for reading from the ADC is given in Listing 14-2.

Listing 14-2. Reading the ADC Results

0030: static uint16_t

0031: read adc(uint8 t channel) {

0032:

0033: adc_set sample time(ADC1,channel,ADC_SMPR_SMP_239DOT5CYC);
0034: adc_set regular sequence(ADC1,1,&channel);

0035: adc_start conversion direct(ADC1);

0036: while ( !adc_eoc(ADC1) )

0037: taskYIELD();
0038:  return adc_read regular(ADC1);
0039: }
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Line 33 sets the sample time to 21 ps, and the sampling sequence is established in
line 34. It specifies that one channel is to be sampled (argument 2), with the channel
given by the list, starting with argument address &channel (this is a one-element list).

Line 35 launches the successive approximation ADC in line 35 and waits for
completion in lines 36 and 37. Once again, taskYIELD() is called to allow other tasks to
efficiently share the CPU time. Finally, line 38 fetches the conversion result and returns it
to the caller.

Computing Temperature

The demo_task() makes the following call to acquire internal temperature:
0066: temp100 = degrees C100();

Listing 14-3 lists the function degrees €100().

Listing 14-3. The degrees_C100() Function

0044: static int
0045: degrees C100(void) {
0046: static const int v25 = 143;
0047:  int vtemp;
0048:
0049: vtemp = (int)read adc(ADC_CHANNEL TEMP) * 3300 / 4095;
0050:
0051:  return (v25 - vtemp) / 45 + 2500;
// temp = (1.43 - Vtemp) / 4.5 + 25.00
0052: }

The STM32F103C8T6 documentation is very sketchy about this calculation. Since
the PDF reference document (RM0008) applies to a whole family of STM32 devices, it is
difficult to sort out the calculation needed by the Blue Pill device.

The information needed is available from the PDF found at:

http://www.st.com/resource/en/datasheet/stm32f103tb.pdf

For the STM32F103x8 and STM32F103xB series chips, look at the PDF’s Table 50.
That table is made available as Table 14-2 in this chapter for your convenience.
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As indicated in the source code, and derived from the PDF document, the
temperature for the STM32F103C8T6 device is computed as follows:

Temp — I/25 ; Is/sense + 25

Table 14-2. Temperature Sensor Characteristics for STM32F103x8 and
STM32F103xB Devices

Symbol Parameter Min Typ Max Unit
TL Vsense linearity with temperature - +1 +2 °C
Avg_Slope  Average slope 4.0 43 46 mV/°C
Vas Voltage at 25 °C 134 143 152 V
tSTART Startup time 4 - 10 us
TS_temp ADC sampling time when reading the temperature - - 171 ps

In Listing 14-3, you can see that the typical value of V,;=1.43 (x 100) was used from
Table 14-2. The value 45 comes from 4.5 for Avg_Slope (the value x 10). This seemed
to better match for the device I was using and is in the range listed. But if you find the
computed value to be high, try reducing the value 45 to 43 (representing the slope of 4.3).

Another value of interest is T ., which is given as 17.1 ps. This is the sampling
time performed by the testing that resulted in the tabled results. This is also the
recommended sampling time found in RM0008.

When you don’t need the temperature reading or the V,,; you can save power
consumption by turning them off, as follows:

adc_disable temperature sensor();

The datasheet also includes this note about temperature:

The temperature sensor output voltage changes linearly with temperature.
The offset of this line varies from chip to chip due to process variation (up to
45 °C from one chip to another).

The internal temperature sensor is more suited to applications that detect
temperature variations instead of absolute temperatures. If accurate tem-
perature readings are needed, an external temperature sensor part should
be used.
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Voltage Reference

ADCI allows you to read an internal voltage V... This value can be used to calibrate the
ADC to improve accuracy, with a typical value of 1.2 volts. Application Note AN2834
contains some very good information for those seeking the best available accuracy from
the STM32 platform.

Analog Voltages

Reading 0 volts or +3.3 volts may not seem too exciting, so let’s improve upon that. You
can generate any voltage in that range with the help of a potentiometer. While a range of
values from about 1 kohm to 15 kohms should be suitable, it is best to use the low end of
this range for stable readings.

Figure 14-1 illustrates the 10-kohm potentiometer (or simply “pot”) that I used for
this experiment. If you're purchasing one, get a linear pot rather than an audio-tapered
pot. Audio-tapered pots vary logarithmically to make volume controls change with the
sense of hearing. North American suppliers will use a “B” prefix like “B10K” to indicate
linear, like the one shown in Figure 14-1.

Figure 14-1. A linear 10-kohm potentiometer
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The circuit is illustrated in Figure 14-2. You can use just one pot if you lack a second.
Be sure to wire the lugs at opposite ends of the pot to the supply and ground. The center
lug is connected to the wiper inside the pot and should be wired to your ADC input PAO
or PAI.

With minicom connected, you can turn the pots counter-clockwise. If the voltage
reads near +3.3 volts when turned counter-clockwise, reverse the connections on the
outer lugs of the pot. Corrected, it should read near zero. When you turn the pot midway,
you should be able to read about +1.5 volts, and fully clockwise should return readings
near +3.3 volts.

VCC
+3.3 Volts

VCC

V. V.
PAO 4% ok =
PA1

STM32

Gnd

&b

Figure 14-2. A pair of potentiometers wired to ADC inputs PAO and PA1

Summary

The presented demo has just scratched the surface of what the STM32 ADC peripheral
provides in the way of flexibility. In addition to single conversions, the ADC peripheral
can be configured to use channel groups and perform scans. In addition to scanning
any sequence of channels, it is also possible to have ADC values injected into the results.
Finally, scanning and groups can include channels from peripherals ADC1 and ADC2.
This chapter gives you a simple place to start for ADC usage. Read chapter 11 of the
STM32 reference manual RM0008 for the full extent of the ADC’s sampling capabilities.!

271



CHAPTER 14  ANALOG-TO-DIGITAL CONVERSION

EXERCISES

1. How is the internal STM32 temperature represented?

2. How does GPIO_CNF_INPUT_ANALOG differ from the values GPIO_CNF_
INPUT_PULL_UPDOWN or GPIO_CNF_INPUT_FLOAT?

3. If PCLK has a frequency of 36 MHz, what would the ADC clock rate be when
configured with a prescale divisor of 4?

4. Name three configuration options that affect the total power consumed by ADC.

5. Assuming that the ADC clock after the prescaler is 12 MHz, how long does the
ADC_SMPR_SMP_41DOT5CYC configured sample take?

Bibliography

1. STMicroelectronics. Accessed January 12, 2018. http://www.
st.com/resource/en/reference manual/cd00171190.pdf
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CHAPTER 15

Clock Tree

Until this point, there’s been an elephant in the room. We've configured and used
various clocks without saying too much about them. Now is a good time to reveal some
of the clock components that have been lurking in the shadows.

While asynchronous logic circuit designs exist, most microprocessors use one or
more clocks. The STM32 series is no exception. This series is highly configurable, adding
somewhat to its software complexity. But this added flexibility allows the designer to
reduce power requirements by turning off peripherals and clocks that are not required.

This chapter will examine the clocks that the STM32F103C8T6 supports and how to
configure them. This information will make it possible for you to calculate the correct
prescaler counts needed to produce correct baud rates and SPI clock rates, and to
correctly feed timers. It will also give you inside information needed to take advantage of
special clock features and avoid pitfalls.

In the Beginning

Many clocks can be derived from others, but there has to be one or more sources at the
start of any chain. Within the STM32F103C8T6 there are a total of four independent
clock sources, as follows

1. 8 MHz RC oscillator (HSI)
2. 4-16 MHz crystal/ceramic oscillator (HSE)
3. 32.768 kHz crystal oscillator (LSE)

4. 40 kHz RC oscillator (LSI)
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Table 15-1 summarizes the notation used for the preceding oscillators, as well as some of
their major characteristics. For example, it is shown that the HSE oscillator is driven by

a crystal and enjoys good stability, while the HSI oscillator is driven by RC (resistor and
capacitor) and has relatively poor stability.

Table 15-1. STM32 Oscillator Notation

Notation Low/High Speed Internal/External Driven By Stability
LSI Low speed Internal Resistor and Capacitor Poor
LSE Low speed External Crystal Good
HSI High speed Internal Resistor and Capacitor Poor
HSE High speed External Crystal Good

RC Oscillators

A good question to ask is why provide RC oscillators if they are not that stable? For
some applications, it may be enough that the MCU has a reasonable clock to execute
instructions with. This saves the designer from having to supply a crystal and thus
reduces the parts count.

Figure 15-1 illustrates the two crystals that are provided with the Blue Pill board.
Notice the size of the 8.000 MHz crystal. Right beneath it in the photo is the 32.768 kHz
crystal, which is housed in a rectangular blob of plastic. Relative to the MCU chip (above
the 8 MHz crystal), these are large components.

The RC oscillator, as electronics folks know, consists of charging and discharging a
capacitor through a resistor. The combination of capacitance and resistance determines
the overall frequency. Creating capacitors inside of an IC (Integrated Circuit) presents
challenges but is worth doing for chip buyers who want to reduce external components.

Note that the only STM32 RC oscillators provided are internal oscillators. Otherwise,
resistors and capacitors would need to be supplied externally.

274



CHAPTER 15  CLOCK TREE

'ﬂ.‘J,

|
f=c)
o
|
bl
.

4

Figure 15-1. 8 MHz crystal and 32.768 kHz crystal below it

Crystal Oscillators

Crystal oscillators are far more accurate and stable than the RC oscillator. However, they
have the disadvantage that an external crystal must be supplied and wired up to the
MCU chip. Figure 15-1 illustrates the two crystals found on the Blue Pill PCB, with the

8 MHz crystal used by the HSE oscillator. The 32.768 kHz crystal drives the LSE oscillator.
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Oscillator Power

The higher rate at which the oscillator switches between low and high signal levels
means additional current consumption. Every time the oscillator switches from low to
high electrons have to be pushed into the circuit, thus requiring current flow (charging).
When the oscillator switches from high to low, electrons have to be drawn out of the
circuit and drained to ground (discharging). All of this requires energy.

It comes as no surprise then, if you do this charging and discharging more frequently
in a given second, then more overall current is consumed. This is why so much attention
is given to the clock design in the STM32 platform.

For some applications where the system is battery powered and the execution time
is less important, it makes sense to use a lower-speed oscillator. If, on the other hand, the
application is powered from a desktop over USB and speed is the dominant requirement,
then higher oscillator rates are preferred.

Another selection criterion is accuracy. If you implement a serial link between
different units, then you need to have an accurate notion of the baud rate. Having choice
provides designers with different trade-offs.

Real-time Clock

The HSE, LSE, or LSI clock can be chosen for the source of the RTCCLK (real-time
clock). Table 15-2 summarizes the clock configurations available. Note that the divisor is
hardwired as 128 when the HSE clock is chosen.

Table 15-2. Real-time Clock Sources When HSE Is 8 MHz

Oscillator Source Source Frequency Divisor Resulting Frequency
HSE 8.000 MHz 128 62.5 kHz

LSE 32.768 kHz 1 32.768 kHz

LSI 40 kHz 1 40 kHz

Watchdog Clock

The independent watchdog (IWDG) is hard wired to the LSI 40-kHz clock.
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System Clock (SYSCLK)

The most interesting category of basic clock configuration is the system clock, from
which other important clocks are derived. The SYSCLK can only be sourced from two of
the four clock sources:

« HSI(RC), 8 MHz
e HSE (crystal), 4-16 MHz (8 MHz on Blue Pill)

There is one additional source that is derived from a phase-locked loop (PLL), which
multiplies the frequency of the HSI or HSE clock input. When the source for the PLL is
the HSI clock, the input is first divided by two. Table 15-3 provides a convenient table of
values when HSI is used.

Table 15-3. System Clock Derived from HSI and PLL

Source Frequency PLL Multiplier Resulting Frequency
HSI 8 MHz No PLL 8 MHz
HSI 8 MHz = 2 2 8 MHz
HSI 8 MHz +- 2 3 12 MHz
HSI 8 MHz = 2 4 16 MHz
HSI 8 MHz + 2 5 20 MHz
HSI 8 MHz + 2 6 24 MHz
HSI 8 MHz + 2 7 28 MHz
HSI 8 MHz = 2 8 32 MHz
HSI 8 MHz + 2 9 36 MHz
HSI 8 MHz = 2 10 40 MHz
HSI 8 MHz = 2 11 44 MHz
HSI 8 MHz = 2 12 48 MHz
HSI 8 MHz = 2 13 52 MHz
HSI 8 MHz = 2 14 56 MHz
HSI 8 MHz = 2 15 60 MHz
HSI 8 MHz = 2 16 64 MHz
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When the HSE is the chosen clock source, the calculation changes to the values
shown in Table 15-4. The input to the PLL can use either the HSE divided by two
(HSE =+ 2) or not divided (HSE + 1). The maximum usable system clock is 72 MHz.

Table 15-4. System Clock Derived from HSE and PLL

Source Frequency PLL Multiplier HSE + 2 HSE + 1
HSE 8.000 MHz No PLL 8 MHz 8 MHz
HSE 8.000 MHz 2 8 MHz 16 MHz
HSE 8.000 MHz 3 12 MHz 24 MHz
HSE 8.000 MHz 4 16 MHz 32 MHz
HSE 8.000 MHz 5 20 MHz 40 MHz
HSE 8.000 MHz 6 24 MHz 48 MHz
HSE 8.000 MHz 7 28 MHz 56 MHz
HSE 8.000 MHz 8 32 MHz 64 MHz
HSE 8.000 MHz 9 36 MHz 72 MHz
HSE 8.000 MHz 10 40 MHz over limit
HSE 8.000 MHz 11 44 MHz over limit
HSE 8.000 MHz 12 48 MHz over limit
HSE 8.000 MHz 13 52 MHz over limit
HSE 8.000 MHz 14 56 MHz over limit
HSE 8.000 MHz 15 60 MHz over limit
HSE 8.000 MHz 16 64 MHz over limit

Figure 15-2 provides a slightly simplified diagram of the system clock tree up to the
point of the SYSCLK. The asterisks identify what is normally configured for the Blue Pill
STM32F103C8T6.
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Figure 15-2. Simplified summary of clock tree up to the point of SYSCLK

SYSCLK and USB

If you're not using USB, you can ignore this issue. But when USB support is required,

your choices are limited, as outlined in Table 15-5. The USB prescaler must be set so that

the USBCLK is 48 MHz.
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Table 15-5. Valid Clock Configurations when USB Is Used

SYSCLK Frequency USB Divisor Resulting USB Clock
72 MHz +15 48 MHz

48 MHz +1 48 MHz

AHB Bus

Throughout the ST Microelectronics document RM0008, which describes the STM32
series, references to AHB are made without ever explaining what it is. So, what is the

AHB anyway? Wikipedia helps with this:*

The ARM Advanced Microcontroller Bus Architecture (AMBA) is an
open-standard, on-chip interconnect specification for the connection and
management of functional blocks in system-on-a-chip (SoC) designs. . . .
AMBA was introduced by ARM in 1996. The first AMBA buses were
Advanced System Bus (ASB) and Advanced Peripheral Bus (APB). In its
second version, AMBA 2 in 1999, ARM added AMBA High-performance

Bus (AHB) that is a single clock-edge protocol.

There we have it—AHB is the AMBA high-performance bus. Within the STM32
family, the AHB has a prescaler that uses the SYSCLK as the input. Assuming that the
SYSCLK is 72 MHz, Table 15-6 summarizes the AHB choices.

Table 15-6. STM32F103C8T6 AHB Frequencies with a 72 MHz SYSCLK

Bit Value Divisor Resulting Frequency
0xxx SYSCLK not divided 72 MHz

1000 SYSCLK divided by 2 36 MHz

1001 SYSCLK divided by 4 18 MHz

1010 SYSCLK divided by 8 9 MHz

1011 SYSCLK divided by 16 4.5 MHz

1100 SYSCLK divided by 64 1.125 MHz

1101 SYSCLK divided by 128 562.5 kHz

1110 SYSCLK divided by 256 281.25 kHz

1111 SYSCLK divided by 512 140.625 kHz
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Starting from SYSCLK, Figure 15-3 illustrates why this is called a clock tree. From the
SYSCLK signal, many other clocks are derived from configured divisors and enables.

T|M1’8 I/_--l—EriaI:lle Enable TN T|M2,3,4,5
TIMXCLK ™\ —» /7 TIMXCLK

l

TIM1,8 TIM2,3,4,5
When APB2 When APB1
Prescaler = 1 Prescaler = 1
Then x1 Then x1
Else x2 Else x2
i A Eae MHz]
Max.
E fplafz APB1 Prescaler ___[\
peripherals +1,+2,+4,+8,+16 \ \) PCLK1
i L e toAPBL
/ peripherals
~ | Enable 72 MHZ Enable —FL/
' Max. ) It-l|CLK to AHB
= > ml:esrhg?)rleé\nd
Enable — DMA
APB2 Prescaler | .
‘ +1,+2,+4,+8,+16 > FCLK
> =8 ; To Cortex.
ADC prescaler [ S — System Timer
et - T2 MHZ
Max.
AHB Prescaler -
+1,+ +8,+16,+32
—64 128 256 512
? 72 MHz
SYSCLK

Figure 15-3. Clock tree starting from SYSCLK

rcc_clock_setup_in_hse_8mhz_out_72mhz()

In most of the demos presented in this book, the following libopencm3 routine is used at
the start of the main program:

rcc_clock setup in hse 8mhz_out 72mhz();
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To help us understand specifically what that is doing, Listing 15-1 illustrates the

libopencm3 function code for it.

Listing 15-1. The Function rcc_clock_setup_in_hse_8mhz_out_72mhz( )

0911:
0912:
0913:
0914:
0915:
0916:
0917:
0918:
0919:
0920:
0921:
0922:
0923:
0924:
0925:
0926:
0927:
0928:
0929:
0930:
0931:
0932:
0933:
0934:
0935:
0936:
0937:
0938:
0939:
0940:
0941:
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void rcc_clock setup in hse 8mhz_out 72mhz(void)

{

/* Enable internal high-speed oscillator. */
rcc_osc_on(RCC_HSI);
rcc_wait for osc_ready(RCC HSI);

/* Select HSI as SYSCLK source. */
rcc_set sysclk source(RCC_CFGR_SW_SYSCLKSEL HSICLK);

/* Enable external high-speed oscillator 8MHz. */
rcc_osc_on(RCC_HSE);
rcc_wait for osc_ready(RCC_HSE);

rcc_set sysclk source(RCC_CFGR_SW_SYSCLKSEL HSECLK);

/*

* Set prescalers for AHB, ADC, ABP1, ABP2.

* Do this before touching the PLL (TODO: why?).
*/

rcc_set _hpre(RCC_CFGR_HPRE_SYSCLK NODIV);/* Set. 72MHz Max.
rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2 DIV8);/*Set. 9MHz Max.
rcc_set ppre1(RCC_CFGR_PPRE1_HCLK DIV2); /* Set. 36MHz Max.
rcc_set_ppre2(RCC_CFGR_PPRE2_HCLK_NODIV);/* Set. 72MHz Max.

/*
* Sysclk runs with 72MHz -> 2 waitstates.
* OWS from 0-24MHz
* AWS from 24-48MHz
* 2WS from 48-72MHz
*/
flash_set ws(FLASH ACR_LATENCY 2WS);

72MHz
14MHz
36MHz
72MHz



0942:
0943:
0944:
0945:
0946:
0947:
0948:
0949:
0950:
0951:
0952:
0953:
0954:
0955:
0956:
0957:
0958:
0959:
0960:
0961:
0962:
0963:
0964:
0965:
0966:
0967:
0968:

CHAPTER 15  CLOCK TREE

/*

* Set the PLL multiplication factor to 9.

* 8MHz (external) * 9 (multiplier) = 72MHz

*/

rcc_set pll multiplication factor(RCC_CFGR_PLLMUL PLL CLK MUL9);

/* Select HSE as PLL source. */
rcc_set pll source(RCC_CFGR_PLLSRC_HSE CLK);

/*

* External frequency undivided before entering PLL
* (only valid/needed for HSE).

*/

rcc_set pllxtpre(RCC_CFGR_PLLXTPRE_HSE CLK);

/* Enable PLL oscillator and wait for it to stabilize. */
rcc_osc_on(RCC_PLL);
rcc_wait for osc_ready(RCC PLL);

/* Select PLL as SYSCLK source. */
rcc_set sysclk source(RCC_CFGR_SW_SYSCLKSEL PLLCLK);

/* Set the peripheral clock frequencies used */
rcc_ahb_frequency = 72000000;
rcc_apbl frequency = 36000000;
rcc_apb2_frequency = 72000000;

}

The basic steps used are the following:

1.

The HSI oscillator is turned on and waits for it to become ready
(lines 914 to 915).

Selects the HSI oscillator as the SYSCLK source (line 918).

The HSE (8 MHz crystal oscillator) is enabled in line 921, and the
code waits until it is ready (line 922).
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The SYSCLK is then switched to use the HSE clock (line 923).
Note that this is not the PLL yet, so at this point the SYSCLK is
8.000 MHz as determined by the crystal.

The AHB is set to use no divisor in its prescaler (line 929), resulting
in an input AHB clock of 72 MHz after the PLL is selected (later) as
the clock source.

The ADC prescaler is configured with a divisor of 8 (line 930),
which results in a frequency of 9 MHz (after switch to the PLL). As
the comment indicates, it must not exceed 14 MHz.

The prescaler for APB1 (Advanced Peripheral Bus 1) is set to
divide by 2, resulting in an APB1 clock of 36 MHz after switch to
the PLL (line 931). This is the maximum frequency for this bus.

The prescaler for APB2 is set to use no divisor, resulting in an APB2
frequency of 72 MHz when switched later to use the PLL (line
932). This is also the maximum frequency for APB2.

Since the SYSCLK runs at 72 MHz, there must be two wait cycles
inserted for each flash memory access (line 940).

The PLL is now set with a multiplier of 9 to set its output clock to
72 MHz (line 946).

Line 955 removes any =+ 2 setting for HSE entering the PLL that
might be set.

Finally, line 962 selects the PLL as the SYSCLK source. This
increases the SYSCLK from 8 to 72 MHz, with the AHB bus now
operating at 72 MHz, APB1 running at 36 MHz, and APB2 running
at 72 MHz.

Lines 965 to 967 set global values rcc_ahb_frequency, rcc_apb1
frequency and rcc_apb2_frequency for application use.
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The globals are defined in rcc.h and are defined as follows:
#include <libopencm3/stm32/rcc.h>

extern uint32_t rcc_ahb_frequency;
extern uint32 t rcc_apbi frequency;
extern uint32_t rcc_apb2 frequency;

From this, you can see that there is quite a bit that must be done at startup to make
sure that no clocks falter or fail.

APB1 Peripherals

Each peripheral connected to the APB1 bus in the Blue Pill device receives a 36 MHz
clock (unless otherwise configured). Each peripheral, however, has a private AND-gate to
enable/disable this clock in order to save power. To enable the receipt of the clock, the
peripheral must enable it. For example, the CAN peripheral must enable the clock for the
peripheral itself. The same applies to APB1 timer peripherals.

APB2 Peripherals

Like the APB1 peripherals, each peripheral attached to the APB2 bus must enable/
disable the receipt of their own 72 MHz clock. This also applies to APB2 timer
peripherals.

Timers

Special mention is made of timers here because there is a not-so-obvious wrinkle in
their configuration. APB1 and APB2 timers have a prescaler, allowing their bus clocks to
be divided down for a lower frequency. The exception, however, is that when the APB1/
APB2 prescaler is set to one, the bus frequency is multiplied by two!

Note When a timer prescaler is set to 1, the output of the prescaler is a bus
frequency times 2!
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rcc_set_mco()

The libopencma3 library provides a function named rcc_set_mco() to configure a clock
output on GPIO PA8. The valid macro values passed as an argument are described in
Table 15-7.

rcc_set_mco(macro);

Table 15-7. Valid Arguments to rcc_set_mco( )

Macro Name Value Description
RCC_CFGR_MCO_NOCLK 0x0 No clock to MCO (disconnected)
RCC_CFGR_MCO_SYSCLK 0x4 SYSCLK to MCO
RCC_CFGR_MCO_HSI 0x5 HSI to MCO
RCC_CFGR_MCO_HSE 0x6 HSE to MCO
RCC_CFGR_MCO_PLL_DIV2 0x7 PLL + 2 to MCO

Calling the routine rcc_set_mco() by itself is not enough. The GPIO PA8 must be
configured for alternate function 1/0:

rcc_periph clock enable(RCC_GPIOA);

gpio_set mode(GPIOA,
GPIO MODE_OUTPUT 50 MHZ,
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, // ALTFN
GPIO08); // PA8=MCO

HSI Demo

The example code for the HSI clock demo is located here:

$ cd ~/stm32f103c8t6/hsi
$ make clobber

$ make

$ make flash
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Note that this demo does not use FreeRTOS. Its code is very basic and simply
arranges to have the HSI clock brought out to GPIO pin PA8. Listing 15-2 shows the main
program responsible.

Listing 15-2. The hsi.c Demonstration Program

0010: int

0011: main(void) {

0012:

0013:  // LED Configuration:

0014:  rcc_periph _clock_enable(RCC_GPIOC);

0015:  gpio set mode(GPIOC,GPIO MODE OUTPUT 2 MHZ,

0016: GPIO_CNF_OUTPUT PUSHPULL,GPI013);
0017: gpio clear(GPIOC,GPIO13); // LED Off
0018:

0019: // MCO Configuration:
0020:  rcc_periph clock enable(RCC_GPIOA);
0021: gpio set mode(GPIOA,

0022: GPIO_MODE_OUTPUT 50 MHZ,

0023: GPIO_CNF_OUTPUT _ALTFN_PUSHPULL,
0024: GPI08); // PA8=MCO
0025:

0026:  rcc_set mco(RCC_CFGR_MCO HSI);
0027:

0028:  gpio_set(GPIOC,GPIO13); // LED On
0029: for (;;);
0030: return 0;
0031: }
Aside from configuring the LED PC13, the main elements are as follows:

1. The GPIOA peripheral clock is enabled in line 20.

2. The GPIOA to which pin PA8 is configured for output (max 50
MHz, line 22) is an alternate function (line 23) in push/pull mode.

3. The HSI clock is directed to PA8 in line 26.
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After flashing the STM32, you should be able to see the HSI clock on PA8 with a
scope or DSO as soon as power is applied or after reset (Figure 15-4). From the figure,
you can see that the HSI clock is near 8 MHz.

Figure 15-4. The HSI MCO trace

HSE Demo

The example code for the HSE clock demo is located here:

$ cd ~/stm32f103c8t6/hse
$ make clobber

$ make

$ make flash

Note that this demo also does not use FreeRTOS. Its code is basic and simply
arranges to have the HSE clock brought out to GPIO pin PA8. The only difference
between this demo program and the HSI demo is one line:

rcc_set mco(RCC_CFGR_MCO HSE);

After flashing the STM32, you should be able to see the HSE clock on PA8 with a
scope or DSO as soon as power is applied (Figure 15-5). In the figure, the frequency is
more accurate to 8 MHz.
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j_ JUUUL 8.00078MHz

Figure 15-5. The HSE MCO trace (note how similar this is to Figure 15-4)

PLL = 2 Demo

The example code for the PLL + 2 clock demo is located here:

$ cd ~/stm32f103c8t6/mco_pll2
$ make clobber

$ make

$ make flash

Note again that this demo also does not use FreeRTOS. Its code is basic and simply
arranges to have the PLL + 2 clock brought out to GPIO pin PA8. The only difference
between this demo program and the HSE demo is one line:

rcc_set mco(RCC_CFGR_MCO PLL DIV2);

Having the PLL =+ 2 clock sent out to PA8 is helpful because the GPIO pin is limited
to driving 50 MHz. You could attempt to send 72 MHz out, but the signal would be badly
degraded and perhaps stress the active components involved. But 36 MHz is well within
the acceptable performance range.

After flashing the STM32, you should be able to see the PLL + 2 clock on PA8 with a
scope or DSO as soon as power is applied. Notice that the frequency shown is near 36
MHyz, as expected (72 MHz =+ 2), in Figure 15-6.
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Figure 15-6. The PLL + 2 MCO trace

Summary

In this chapter, the overview of the clock-tree system was presented, starting with the
main clock sources: HSI and HSE for the system clock, and HSE, LSE, and LSI for the real-
time clock. Clock LSI was also used by the watchdog timer.

The next main category of clocks stem from the system clock. The system clock is
able to employ the use of the PLL, which is capable of multiplying its input clock up to
72 MHz. From the system clock, an AHB clock is derived. Then, from the AHB clock are
derived APB1 and APB2 clocks.

Finally, it was noted that each peripheral needing a clock has its own gate that it
must enable in order to use a given clock. This design saves power by leaving unneeded
clocks disabled.

The HSI, HSE, and PLL + 2 demos illustrated how to check a clock that is otherwise
internal and unseen. It is also possible that a clock placed on PA8 may have its
application to external peripherals needing an input clock.
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CHAPTER 15

CLOCK TREE

EXERCISES

o o o~ w N

What is the advantage of an RC clock?

What is the disadvantage of an RC clock?

What is the advantage of a crystal-derived clock?
What is the PLL used for?

What does AHB stand for?

Why must the GPIO PA8 be configured with GPIO_CNF_OUTPUT_ALTFN_
PUSHPULL?
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CHAPTER 16

PWM with Timer 2

The STM32 family has a complex array of options available for operating timers. The
STM32F103 has general-purpose timers TIM2, 3, 4, and 5 and then advanced timers
TIM1 and TIM8. The general-purpose timers have plenty of features so you won’t need
to reach for the advanced ones.

This chapter will demonstrate one of the frequently sought-after applications of
a timer—that of driving a PWM (Pulse Width Modulated) servo motor. Figure 16-1
illustrates one example of a typical servo motor, which was pulled out of service.

Figure 16-1. A typical RC (Radio Controlled) servo motor (PKZ1081 SV80)

PWM Signals

What does a PWM signal look like? Figure 16-2 illustrates one. The sample shown has a
high pulse that is 2.6 ms long (note the cursors and the BX-AX value shown). The measured
frequency was about 147 Hz. This means the entire period of the signal is about 6.8 ms.
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Most RC controls are based upon the length of time that the signal is high rather than
the duty cycle, but control systems do vary.

Figure 16-2. A PWM signal with a period of 147 Hz and pulse width of 2.6 ms

Timer 2

Timers 2 to 5 are general-purpose timers in the STM32F103C8T6. Despite being general
purpose, they are quite flexible. Their overall features include the following:

e 16-bit up, down, up/down auto-reload counter
e 16-bit prescaler to divide the counter-clock frequency by 1 to 65536
e Prescaler can be changed “on the fly.”
o Up to four independent channels for:
e input capture
e output capture
o PWM generation (edge- and center-aligned modes)
e One-pulse mode output

o Synchronization circuit controlling timer with external signals and

for interconnection with other timers
o Interrupt/DMA generation:

« Update counter overflow/underflow, counter initialization by
software or trigger
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o Trigger event (counter start, stop, initialization, or count by
internal/external trigger)

e Input capture
e Output capture
o Trigger input

Section 15 of the RM0008! reference manual discusses all of this, but in this
chapter we'll focus on the generation of a PWM signal. The software for this chapter’s
demonstration is found in the following directory:

$ cd ~/stm32f103c8t6/rtos/tim2_pwm

The source code is entirely in the file main. c. The portions of task1() that
apply to the timer will be listed in small sections to ease the discussion. Some initial
configuration is shown in Listing 16-1.

Listing 16-1. Configuration of PA1 for Timer 2 Output

0029:  rcc_periph clock enable(RCC TIM2);
0030:  rcc_periph clock enable(RCC_AFIO);
0031:

0032: // PA1 == TIM2.CH2

0033:  rcc_periph clock enable(RCC GPIOA);
0034: gpio_primary_ remap(

0035: AFIO MAPR_SWJ_CFG_JTAG OFF_SW OFF, // Optional

0036: AFIO MAPR_TIM2 REMAP_NO REMAP); // default: TIM2.CH2=GPIOA1
0037: gpio_set_mode(GPIOA,GPIO MODE_OUTPUT 50 MHZ, // High speed

0038: GPIO_CNF_OUTPUT ALTFN_PUSHPULL,GPIO1); // GPIOA1=TIM2.CH2

Line 29 enables the clock for Timer 2, while AFIO’s clock is enabled in line 30. This
needs to be done before line 35.

Line 33 enables the clock for GPIOA for PA1’s use. Lines 34 to 36 are an AFIO call that
says use the default mapping where channel 2 of Timer 2 comes out on PA1 (this can be
omitted in the default case). Change this call if you need it to come out to PB3 instead.
Finally, lines 37 and 38 use the ALTFN macro to connect the GPIO pin to the timer for
PA1. This is critical.

Listing 16-2 illustrates code that initializes the timer and establishes its operating mode.

295



CHAPTER 16 PWM WITH TIMER 2

Listing 16-2. Initialize Timer 2 and Set Its Mode

0042:
0043:
0044:
0045:
0046:
0047:
0048:
0049:

// TIM2:
timer disable counter(TIM2);
timer reset(TIM2);

timer_set_mode(TIM2,
TIM_CR1_CKD CK_INT,
TIM CR1_CMS_EDGE,
TIM_CR1_DIR_UP);

Lines 43 and 44 disable the counter and reset Timer 2. Line 46 then establishes the

operating mode for the timer as follows:

TIM CR1_CKD_CK_INT configures the division ration between the

timer clock (CLK_INT) frequency and the sampling clock used by the
digital filters. Here, we don’t use the digital filters, so this macro sets
the digital filter frequency equal to the clock frequency (see datasheet
TIMx_CR1.CKD for Timer 2 for more).

TIM_CR1_CMS_EDGE specifies that the edge-aligned mode is to be used
(versus center-aligned).

TIM_CR1_DIR_UP specifies that the counter will count up.

Listing 16-3 continues with the Timer 2 configuration and then launches into the

demonstration.

Listing 16-3. Remainder of Configuration and Timer Launch

0026:
0027:
0050:
0051:
0052:
0053:

0054:
0055:
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static const int ms[4] = { 500, 1200, 2500, 1200 };
int msx = 0;

timer set prescaler(TIM2,72);

// Only needed for advanced timers:

// timer set repetition_counter(TIM2,0);
timer_enable preload(TIM2);

timer continuous mode(TIM2);

timer set period(TIM2,33333);
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0056:

0057:  timer disable oc_output(TIM2,TIM 0C2);

0058:  timer set oc_mode(TIM2,TIM 0C2,TIM OCM PWM1);
0059:  timer enable oc_output(TIM2,TIM 0C2);

0060:

0061: timer set oc_value(TIM2,TIM 0C2,ms[msx=0]);
0062:  timer enable counter(TIM2);

Line 50 establishes the timer frequency by setting the prescaler for it. This will be
described fully later. Line 52 is needed for the advanced timers only (Timers 1 and 8) and
is thus commented out. This call is ignored by libopencm3 for Timers 2 through 5.

Lines 53 and 54 configure two more options for the timer. The timer_enable
preload() call indicates that the TIM2_ARR register is buffered (for reloading). The
function timer continuous mode() configures the timer to keep running rather than to
stop after one pulse. Line 55 sets the maximum timer count to establish its period. More
will be said about this later.

Lines 57 to 59 configure Timer 2’s channel OC2 (output-compare channel 2) to
operate in PWM1 mode. The configuration to PWM1 mode occurs in line 58. TIM_OCM _
PWM1 specifies the following:

When counting up, the output channel is active (high) when the timer’s
count is less than the timer capture/compare register, or else the channel
goes low.

Line 61 sets the output-compare register to the value found in the ms[ ] array.
This establishes a starting pulse width (in microseconds). The timer is finally started
in line 62.

Line 26 declares an array ms[ 4] containing four values. These are pulse widths in
microseconds, with 1200 (1.2 ms) as the center position. With the mode established in
line 58, the following will happen:

o Counter values 0 through ms[msx] -1 will cause GPIO PA1 to go high
(while it is considered active).

e Once the counter climbs above that value, the PA1 level goes low.

With this configuration, the PA1 output will initially go high for 500 psec (0.5 ms) for
a total of 33,333 counts (the period configured in line 55).
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PWM Loop
The demonstration program performs the loop illustrated in Listing 16-4.

Listing 16-4. Demonstration PWM Loop

0064: for (5;) {

0065: vTaskDelay(1000);

0066: gpio_toggle(GPIOC,GPI013);

0067: msx = (msx+1) % 4;

0068: timer set oc_value(TIM2,TIM 0C2,ms[msx]);
0069: }

At the top of the loop, line 65 delays execution for about one second (1000 ms), after
which the PC13 LED GPIO is toggled (line 66). Line 67 updates array index variable msx
so that it counts up, but starts over at zero if it goes past three. Using the index variable,
the next position value is used to change the output-compare register in line 68. Once
the servo sees this pulse, its position will change (or you can view the pulse-width
change on the scope).

Calculating Timer Prescale

In Listing 16-3, line 50 was a function call that established the prescaler count. Let’s
break that calculation down. For your convenience, the prescaler setting was this:

timer set prescaler(TIM2,72)

The input to the counter is 72 MHz because when the Blue Pill is configured the
APBI prescaler is normally set to 2, and thus the bus frequency is divided down to
36 MHz (its maximum). What does that note about the TIM2, 3, 4, and 5 prescaler say?

When APBI prescaler = 1, then is times 1, else it is times 2.

You could be excused if you got confused by all of this. After all, we have the 72 MHz
SYSCLCK frequency divided down by 2 to meet the 36 MHz maximum frequency for the
APBI1 bus. After that, there is another prescaler that applies for timers 2 through 5. 'll
refer to this as the global prescaler since it applies to all timers (2 through 5). The output
of that prescaler feeds into the timers’ own private prescalers. With all these prescalers,

it’s no wonder there is confusion!
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The quote about when prescaler = 1 reminds us of the fact that what comes out of the
global timer prescaler is actually the APB1 bus frequency times two! Therefore, what goes
into Timer 2’s own private prescaler is 72 MHz, not 36. So now we can explain the top
part of the formula:

M =1000000

The numerator represents the 72 MHz entering Timer 2’s private prescaler. Supplying
a private timer prescale value of 72 causes the timer to be updated at 1 MHz (line 50 of
Listing 16-3).

We didn’t have to use this ratio, but it proves to be convenient. Each count occurs in
1 psec, allowing us to specify the pulse width in microseconds.

30 Hz Cycle

I have assumed that your RC servo needs a cycle rate of 30 Hz. This is defined by the
configuration performed in Listing 16-3 line 55:

Sapsi X2 36000000 x 2
prescaler 72

f period 3 0

=333333

To program it, we could code:

timer set prescaler(TIM2,36000000%2/72/30);
or simply code:

timer set prescaler(TIM2,33333);

To reduce the period (increase the frequency) to 50 Hz, simply replace 30 with 50 in
the calculation.

Tip Remember that the frequency entering the timer’s private prescaler is
doubled if the APBx prescaler is 1.
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Servo Hookup

Unfortunately, servos generally operate at around 6 volts. For the STM32, this requires a
small driver circuit to bridge the gap.

The good news is that the interface is rather simple. You can use a CD4050BE CMOS
IC to accept a 3.3-volt signal on its input and produce a nearly 6-volt level on its output
(Figure 16-3). Notice that pin 1 of IC1A is connected to the servo motor’s supply. The
design of the CD4050 is such that the input (IC1A pin 3) can be safely connected to the
STM32.

+6Y
O
vee
+3.3 Volts
vee +6Y
|\1 JcrA
3 2 ‘
TIM4.CH1 PA1 PWM Signal In
Lo
%[ cD4osoBE

RC Servo
STM32 Motor

Gnd . Gnd

GND

Figure 16-3. The 6-volt interface circuit between STM32 MCU and servo motor

Other replacements for the CD4050 would be the 74HCT244 or 74HCT245 (with
different pinouts). It is critical that these special-talent chips are used to bridge the
voltage gap. For more about this, see the book Custom Raspberry Pi Interfaces, Chapter 2,
“3V/5V Signal Interfacing” While other CMOS chips can operate at 6 volts, they may not
see the STM32 input signal as a high (this depends upon the V; threshold value).

When hooking up your circuit, make certain that you connect the 6-volt system
ground to the STM32 ground. This provides a common voltage reference point.

300



CHAPTER 16 PWM WITH TIMER 2

Running the Demo

After building and flashing the software as follows:

$ make clobber
$ make
$ make flash

all you have to do is make sure your connections are correct and plug in the power
(or power the STM32 from USB). No USB or UART communication is used by this demo.

With the servo connected, it should twitch every second to one extreme, middle
position, other extreme, middle again, and back to the first extreme. Servos vary in their
PWM requirements, so you may need to change the following:

e The pulse-width table in Listing 16-3, line 26 (these are in
microseconds)

e The period in Listing 16-3, line 55

For amusement, attach a cat’s laser pointer to the servo arm.

PWM on PB3

Timer 2 output-compare 2 can be redirected to PB3. This can be exploited if you require
a 5-volt PWM signal. PB3 is a 5-volt-tolerant GPIO, though it can’t produce a 5-volt high
signal directly. When driven as an open-drain GPIO, however, a pull-up resistor can
make the signal rise to 5 volts.

The source code for this version of the project is located here:

$ cd stm32f103c8t6/rtos/tim2_pwm_pb3
The main.c module is nearly identical except for the differences shown here:

$ diff -c ../tim2_pwm/main.c main.c
! // PA1 == TIM2.CH2
! rcc_periph clock enable(RCC_GPIOA); // Need GPIOA clock

gpio_primary remap(
AFIO MAPR SWJ_CFG_JTAG OFF_SW_OFF, // Optional
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! AFIO MAPR TIM2 REMAP NO REMAP); // default: TIM2.CH2=GPIOA1
! gpio_set mode(GPIOA,GPIO MODE OUTPUT 50 MHZ, // High speed
! GPIO CNF_OUTPUT ALTFN_PUSHPULL,GPIO1);  // GPIOA1=TIM2.CH2

--- 29,41 ----
! // PB3 == TIM2.CH2
! rcc_periph _clock_enable(RCC_GPIOB); // Need GPIOB clock
gpio_primary remap(
AFIO MAPR SWJ_CFG_JTAG_OFF_SW_OFF, // Optional

! AFIO MAPR TIM2 REMAP PARTIAL REMAP1);  // TIM2.CH2=PB3
! gpio set mode(GPIOB,GPIO MODE OUTPUT 50 MHZ, // High speed
! GPIO CNF_OUTPUT ALTFN_OPENDRAIN,GPIO3); // PB3=TIM2.CH2

The first change is to activate GPIOB instead of GPIOA. Following that, the gpio_
primary remap() call uses argument AFI0 MAPR_TIM2 REMAP_PARTIAL REMAP1 to direct
Timer 2’s output-compare 2 to PB3.

The last change in gpio_set mode() configures PB3 to use open-drain output. This
is necessary because PB3 cannot produce a 5-volt signal directly (it can only pull it up to
+3.3 volts). PB3 can, however, allow it to be pulled up to +5 volts by a resistor when it is
operating as open drain. This change and the addition of a pullup resistor in the range of
2K to 10K ohms will permit a 5-volt output signal to be generated.

Other Timers

When it comes to servo PWM signals, people often want to know how many PWM
channels can be made available. Table 16-1 summarizes the timers available on the
STM32F103C8T6 and the default GPIO assignments. Some timers also have alternate
assignments available.
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Table 16-1. Timers Available to the STM32F103C8T6

Timer Type Channel 1 Channel 2 Channel 3 Channel 4

TIM1 Advanced PA12 PA8 PA9 PA10
PB13=CHIN  PB14=CH2N  PB15=CH3N  PB12=BKIN

TIM2 General Purpose PAO PA1 PA2 PA3

TIM3 General Purpose PAG PA7 PBO PB1

TIM4 General Purpose PB6 PB7 PB8 PB9

TIMS General Purpose None None None PA3

TIM8 Advanced None None None None

Timers have four channels, which are configurable as GPIO inputs or outputs. Timer
TIM8 has no GPIO connections at all but can link internally to other timers. TIM5 only
links its channel 4 to PA3. The remaining general-purpose timers TIM2 through TIM4
have a full complement of GPIOs.

Advanced timer TIM1 has the most comprehensive set of I/Os, with up to eight
assignments. Entries marked with CHxN are GPIOs that use the opposite polarity. Finally,
the signal BKIN serves as a special “break” input.

The answer to the question “How many PWM timers?” is five. To use all five, you
have to accept GPIO PA3 for TIM5. TIM1 through TIM4 can produce PWM output signals
on four GPIO-connected channels. Altogether, these five timers provide a possible total
of twenty-one output channels.

More PWM Channels

Getting more PWM output channels requires a little organization and software. Each
timer has four channels, so TIM8, for example, could be used to generate up to four
different interrupts based upon each channel’s output-compare register. Even though
none of Timer 8’s channels are connected to GPIOs, the interrupt routine itself can drive
GPIO outputs with software with no loss in precision.

303



CHAPTER 16 PWM WITH TIMER 2

Summary

This chapter applied hardware timers to the task of generating PWM signal outputs
suitable for driving RC servo motors. Of course, PWM is not restricted to servos alone.
PWM signals may be applied in other ways to take advantage of duty-cycle changes.

The beauty of using hardware timers is that it requires little or no software support
once it is configured to run. To change a pulse width or duty cycle requires one small
update to the timer, and then the timer goes on its merry way. Hardware timers also offer
greater precision since they are not subject to software delays.

EXERCISES

1. Inan RC servo signal, what is the period of the signal?

2. Why is the timer input clock frequency 72 MHz on the Blue Pill
STM32F103C8T6? Why isn’t it 36 MHz?

3. What is changed in the timer to effect a change in the pulse width?
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CHAPTER 17

PWM Input with Timer 4

The small size of the STM32 makes it a natural application for remote control flying
models. Using existing radio controllers, the STM32 could interface with receivers of RC
servo signals and perform some special control features from your own imagination.

This chapter includes a demo program that uses Timer 4 to measure an incoming RC
servo signal. Because the timer peripheral is doing all the work, the CPU is free to react
to the servo readings with more computing power.

The Servo Signal

There is no standard for an RC servo signal, but most seem to use a pulse width of about
0.9 ms at one extreme and about 2.1 ms at the other. The repetition rate is often near 50
Hz, but can be as high as 300 Hz, depending upon manufacturer. Figure 17-1 illustrates
the assumed signal that this chapter’s demo code will decode.

2.1 ms max.
—

Ll

| 0.9 ms min.
-
Figure 17-1. Typical RC servo signal

Positioning of the servo is governed by the width of the pulse—not the duty
cycle. Because of this, some argue that this should not be called PWM (Pulse Width
Modulation) at all. The mid-position of the servo is likely to be a pulse 1.5 ms wide.
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Signal Voltage

The demo program uses Timer 4, which naturally has its channel 2 on GPIO PB6. This
GPIO is 5-volt tolerant. Most servo signal voltages can vary from 4.5 to 6 volts. Use a
2-kohm resistor between the receiver and PB6 to safety limit the current flow. If there is a
signal conflict or if the signal rises slightly above 5 volts, the resistor will limit the current
to the safe amount of 0.5 mA.

Demo Project
The source code for this project is found here:
$ cd ~/stm32f103c8t6/rtos/tim4_pwm_in

Now, let’s examine the demo software.

GPI0 Configuration

The PB6 configuration is pretty routine. Line 45 enables GPIOB's clock, and the
remaining lines configure PB6 as an input. Even though this input is going into Timer 4,
inputs never need to be declared as an alternate GPIO.

0045:  // PB6 == TIM4.CH1

0046:  rcc_periph clock enable(RCC_GPIOB); // Need GPIOB clock
0047: gpio set mode(GPIOB,GPIO MODE INPUT, // Input

0048: GPIO CNF_INPUT FLOAT,GPIO6); // PB6=TIM4.CH1

Timer 4 Configuration
Like the GPIO, the clock for Timer 4 must be enabled:
0043:  rcc_periph clock enable(RCC _TIM4); // Need TIM4 clock

Next comes the configuration of the timer itself, shown in Listing 17-1.
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Listing 17-1. The Configuration of Timer 4

0050:
0051:
0052:
0053:
0054:
0055:
0056
0057:
0058:
0059:
0060:
0061:
0062:
0063:
0064 :
0065:
0066:
0067:
0068:
0069:
0070:
0071:
0072:

// TIM4:
timer disable counter(TIM4);
timer reset(TIM4);
nvic_set priority(NVIC DMA1 CHANNEL3 IRQ,2);
nvic_enable irq(NVIC_TIM4 IRQ);
timer set mode(TIM4,

TIM CR1_CKD CK_INT,

TIM CR1_CMS_EDGE,

TIM_CR1 DIR UP);
timer set prescaler(TIM4,72);
timer_ic_set input(TIM4,TIM IC1,TIM IC_IN TI1);
timer_ic_set_input(TIM4,TIM IC2,TIM IC IN_TI1);
timer ic set filter(TIM4,TIM IC IN TI1,TIM IC CK_INT N 2);
timer_ic_set prescaler(TIM4,TIM IC1,TIM IC PSC OFF);
timer slave set mode(TIM4,TIM SMCR_SMS RM);
timer slave set trigger(TIM4,TIM SMCR TS TI1FP1);
TIM CCER(TIM4) &= ~(TIM CCER CC2P|TIM_CCER_CC2E

|TIM CCER_CC1P|TIM CCER CC1E);
TIM CCER(TIM4) |= TIM CCER CC2P|TIM_CCER_CC2E|TIM CCER CC1E;
timer ic_enable(TIM4,TIM IC1);
timer_ic_enable(TIM4,TIM IC2);
timer_enable irq(TIM4,TIM DIER CC1IE|TIM DIER CC2IE);
timer enable counter(TIM4);

The counter is disabled and reset in lines 51 and 52. Many of the timer’s

configuration items cannot be changed when it is active. Lines 53 and 54 simply prepare

for the Timer 4 interrupts.

The call of line 55 establishes the main elements of TIM4:

The input to the timer prescaler will be the internal clock.
The events within the timer will be edge driven.

The counter will count up.
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Line 59 sets the timer’s prescaler to 72 so that one clock pulse will occur each
microsecond. Recall that the APB1 bus is limited to 36 MHz; therefore, the APB1
prescaler divides by 2 (SYSCLK is 72 MHz). But because the APB1 prescaler is not 1, the
timer global prescaler input is the APB1 bus frequency times 2, or 72 MHz.

Lines 60 and 61 indicate that timer inputs IC1 and IC2 are both being directed to
timer input 1 (TI1). This fancy bit of configuration means that we can sample the servo
signal with a single GPIO (PB6) but use two differently handled inputs to the timer.

Line 62 establishes a digital input filter that samples the internal clock signal (after
timer’s private prescaler) divided by two. Line 63 says that the digital filter clock will have
no prescaling.

Line 64 specifies that when the PB6 input rises (TI1) the counter should be cleared.
The clear happens after register TIM4 CCR1 is loaded with the counter’s captured value.
In this demo, this will be a measure of how long the repeat cycle is.

Line 65 sets the second trigger for Timer 2, causing the timer’s current count to be
copied to capture register TIM4 CCR2. This happens when the input signal on PB6 falls
back to low and thus will measure the time of the pulse width in counter ticks. This
signal-change detection is based upon the digitally filtered signal from TI1.

Lines 66 through 68 configure two capture configurations:

o Capture input 1 is enabled (TIM_CCER_CC1E), and
e Capture input 1 is active high (default), and

e Capture input 2 is enabled (TIM_CCER_CC2E), and
o Capture input 2 is active low (TIM_CCER_CC2P).

Unfortunately, there are no libopencma3 routines for this at this time, so macro
names were used.

Lines 69 and 70 enable the two Timer 4 inputs, and line 71 enables the Timer 4
interrupts for inputs 1 and 2. Finally, line 72 starts the Timer 4 counter.

Task1 Loop

With the timer running, our task enters a loop, which is shown in Listing 17-2. The loop
runs leisurely, napping for about a second at line 75. It then toggles the LED on PC13 (as
a sign of life).

308



CHAPTER 17 PWM INPUT WITH TIMER 4

Listing 17-2. The taskl Demo Loop

0019: static volatile uint32_t cc1if = 0, cc2if = 0,
0020: clcount = 0, c2count = 0;

0074:  for (5;) {

0075: vTaskDelay(1000);

0076: gpio toggle(GPIOC,GPI013);

0077:

0078: std printf("cciif=%u (%u), cc2if=%u (%u)\n",
0079: (unsigned)cc1if, (unsigned)cicount,

0080: (unsigned)cc2if, (unsigned)c2count);
0081: }

Lines 78 through 80 report some values of interest:

e CC1IF isthe counter value at the end of the cycle, which comes from
register TIM4 CCR1. This tells us how long the cycle was in counter
ticks. The value displayed in brackets after it is simply the number of
times the ISR routine was entered so far.

e CC2IF is the counter value captured when the input signal fell from
high to low. This represents the pulse width in counter ticks. The
value following in brackets is the ISR count so far.

ISR Routine

The values used by the main loop are updated by the timer’s ISR, which is shown in
Listing 17-3.

Listing 17-3. The Timer ISR Routine

0022: void

0023: tim4 isr(void) {

0024: uint32_t sr = TIM SR(TIM4);
0025:
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0026: if ( sr & TIM SR _CC1IF ) {

0027: cclif = TIM CCR1(TIM4);

0028: ++clcount;

0029: timer_clear flag(TIM4,TIM_ SR CC1IF);
0030: }

0031:  if ( sr & TIM SR CC2IF ) {

0032: cc2if = TIM CCR2(TIM4);

0033: ++c2count;

0034: timer clear flag(TIM4,TIM SR _CC2IF);
0035: }

0036: }

The ISR has been enabled for input capture 1 and input capture 2 (lines 69 and 70 of
Listing 17-1). When the routine is entered, the timer-status register is read in line 24. If
the interrupt is due to the capture 1 event, then flag TIM SR_CC1IF will be set (line 26).
When this is true, the count is captured in line 27 and the interrupt reset in line 29. Line
28 just increments an ISR counter for printing by the main loop.

If the ISR was entered for input capture 2, then the code is similarly executed in lines
32 to 34. The values cc1if, clcount, cc2if, and c2count are the values captured and
reported by the main loop (lines 78 to 80 of Listing 17-2). Note that these variables are
declared with the volatile attribute because different threads of control are updating/
reading these values.

Demonstration Run

The demonstration consists of hooking up the servo remote control receiver to input
GPIO PB6, which is +5-volt tolerant, flashing the code, and running minicom over USB.
First, prepare the software:

$ make clobber
$ make
$ make flash

Once the software is ready in the MCU flash, it is time to hook up the RC servo
receiver. Figure 17-2 illustrates the hookup.
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Figure 17-2. RC servo receiver hookup to STM32

Resistor R, is highly recommended for protection. If for some reason there is a signal

conflict, the resistor will limit the current flow to a safe value (3 mA or less). The GPIO

input is voltage sensitive, so the resistor won’t degrade the signal.

When ready to run, plug the USB cable in and start minicom. I saved my USB settings

in a file named “usb” (yours may differ):

$ minicom usb

Welcome to minicom 2.7

OPTIONS:

Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbmodemWGDEM1, 19:54:45

Press Meta-Z for help on special keys

cc1if=25174 (176),
cc1if=25119 (215),
cc1if=25125 (255),
cclif=25172 (294),
cc1if=25134 (333),

cc2if=985 (176)
cc2if=989 (215)
cc2if=974 (255)
cc2if=990 (294)
cc2if=985 (333)
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cc1if=25183 (372), cc2if=981 (372)
cc1if=25200 (411), cc2if=992 (411)
cc1if=25149 (450), cc2if=990 (450)
cc1if=25339 (489), cc2if=990 (489)
cc1if=24513 (528), cc2if=442 (528)
cc1if=24180 (569), cc2if=209 (569)
cc1if=24135 (610), cc2if=219 (610)
cc1if=24283 (650), cc2if=217 (650)
cc1if=24320 (691), cc2if=208 (691)
cclif=24265 (732), cc2if=258 (732)
cc1if=25344 (771), cc2if=1027 (771)
cc1if=26232 (809), cc2if=1698 (809)
cc1if=26354 (847), cc2if=1800 (847)
cc1if=26403 (884), cc2if=1871 (884)
cc1if=26495 (921), cc2if=1869 (921)
cc1if=26640 (959), cc2if=1887 (959)
cc1if=26464 (996), cc2if=1896 (996)
cc1if=26489 (1033), cc2if=1868 (1033)
cclif=26432 (1070), cc2if=1878 (1070)
cc1if=26648 (1107), cc2if=1900 (1107)
cc1if=26431 (1144), cc2if=1883 (1144)
cc1if=26654 (1181), cc2if=1891 (1181)
cc1if=26571 (1219), cc2if=1880 (1218)
cc1if=26566 (1256), cc2if=1889 (1256)
cclif=26621 (1293), cc2if=1880 (1293)
cc1if=26739 (1330), cc2if=1897 (1330)

Session OQutput

The session output consists of a one-second update of the timer values read. For
example, the first line is shown here:

cc1if=25174 (176), cc2if=985 (176)
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The first value shown is the period of the signal. Since the timer is sampling at 1
MHz, this represents a time of:

t= M =252 ms
1000000

From this figure, we can compute the period of the signal as follows:

1
0.0252

f= =39.7 Hz

The value (176) is the ISR counter value, which is helpful when debugging. This tells
us that the ISR was entered 176 times for a timer capture 1 event.
The second value, 985, gives us the pulse width:

985

t=—=0.985 ms
1000000

Later on, when the position is changed, we get:
cc1if=26739 (1330), cc2if=1897 (1330)
This represents a pulse width as follows:

f= _1897 =1.90 ms
1000000

Timer Inputs

The demonstration illustrated how to accomplish reading the servo receiver, but how did
the timer actually accomplish this? Let’s clear up the “smoke and mirrors” presentation
and examine the inner workings of the input channels.

Take a moment to study Figure 17-3. This presents a somewhat simplified view of the
Timer 4 inputs used. Timer 4 has a total of four inputs, but only inputs TI1 and TI2 can be
used in this mode of operation.
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Figure 17-3. Timer input configuration

The input signal for the demo enters at TI1 from GPIO PB6. This is timer input
channel 1.

TI1 is optionally conditioned by a digital filter controlled by configuration bit
IC1E The value IC1F represents a configuration item that is part of a STM32 timer
register set. In this case, it is a four-bit value in register TIM4 CCMR1. Line 62 of Listing 17-
1 sets this value so that the timer’s filter counter is 2. Since the clock rate fox vy =1 MHz,
this means that the sampled signal must be stable for two samples before the change
appears after the filter at TI1E. This prevents a spurious noise pulse from triggering the
timer and spoiling the reading.

Signal TI1F enters an edge detector, producing internal signals TI1F_Rising and
TI1F_Falling. Configuration item CC1P chooses which signal polarity to use. Line 60
configures CC1S so that signal TI1FP1 (rising) is used as the input capture signal IC1.
When this signal fires (through IC1PS), the timer’s counter is copied into the capture
1 register. Line 64 configures the timer such that the timer’s counter is reset after the
capture takes place.
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Input signal IC1 can be prescaled, then configured by IC1PSC. Line 63 disabled this
optional feature so that there is no prescaling. Lines 68 and 69 enable CC1E, allowing the
signal IC1PS to activate the capture 1 event. This particular capture measures the period
of the PWM signal in the demo.

But we're not done yet.

The configuration uses input channel 2 (IC2), derived from the signal sampled by
channel 1. Configuration item CC2S in this mode causes the TI1F_Rising or TI1F_Falling
(channel 1) signal to be used instead of the normal TI2 input. This is useful when
measuring PWM input because we need to capture different events from the same
signal. The remainder of the I2CPS chain is otherwise the same as for I1CPS, except that
it drives the capture 2 event. Because IC2 is the opposite polarity (falling edge) arranged
by CC2S, I2CPS can cause the capture of the counter when the signal falls. This gives us
the counter at the point at which the pulse width returns to low.

Summary

This chapter demonstrated how the STM32 timer can be used to effortlessly measure the
pulse width and period of a signal. In the demo, only 39 x 2 interrupts were executed to
capture the period and pulse width every second. The ISR code is quite minimal, leaving
valuable CPU cycles available to perform other useful work.

There are many other timer-input features that remain unexplored. The reader is
encouraged to scour the STM32 reference manual RM0008 for more ideas.

EXERCISES

1. Why does the timer have a digital filter available on its inputs?
2. When does the timer reset in PWM input mode?

3. Where does the IC2 input signal come from in PWM input mode?
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CAN Bus

The development of the CAN bus (controller area network) began in 1983 at Robert
Bosch GmbH as a way to standardize communications between components. Prior

to this, automotive ECUs (engine control units) each had their own proprietary
systems, which required a lot of point-to-point wiring. In 1986, Bosch released the
developed CAN protocol at the SAE Congress (Society of Automotive Engineers).! In
1991 the CAN 2.0 protocol was published by Bosch and was adopted in 1993 as the
international standard (ISO 11898). Since then, automobiles have used the protocol for
communication and to reduce wiring harness sizes by use of the bus.

Having CAN bus capability in the STM32 device makes it attractive for automotive or
control applications. Even though this chapter’s demonstration will model the control
system of a car, it will become apparent that the CAN bus need not be restricted to
automotive applications. Model aircraft, drones, and model railway systems are just
some of the potential hobby applications.

The CAN Bus

Imagine that you have the task of reducing the bulk of the wiring harness for a new

car model to be manufactured. This vehicle has several electronic control units at the
front, center, and rear of the vehicle, and each requires communication with the others,
including the master control unit, which is perhaps located behind the dashboard. How
do you reduce the number of wires needed?

Almost since the beginning, manufacturers have reduced the wiring by using the
metal body of the car as the negative terminal for the battery-return current. However,
the control of the load has been traditionally handled by switching the +12-volt power
on and off to the brake or signal lamp, for example. This requires a separate wire in the
harness for each load to be controlled.
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Additionally, with electronic control units, you now must also supply lines of

communication. With units that communicate with most or all of the other units, the
number of wired connections explodes.

The solution to the harness problem is to adopt a bus system. Every control unit that
communicates is attached to the same bus and sends messages over the bus. With this
configuration, you need the following:

e apower line (+12 volts)
e one or a pair of bus signal lines
e anegative return path for power (metal car body)

If we assume a pair of bus signal lines then we only need three wires to power and

communicate with all devices connected to it. Figure 18-1 illustrates a hypothetical bus
system and power connections.

Aianeg JOA-ZT+

’ cul ‘ cu2

Figure 18-1. Hypothetical automotive bus system

Using this arrangement, any control unit CUx can communicate with any other
control unit. If control unit CU3 is located at the rear of the vehicle, then it could also
control light bulbs located at the rear based upon messages passed on the bus. CU3

can switch nearby lamps by switching the +12-volt power with short runs of wire to the
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unit itself. While automobiles may not do this presently for brake and signal lights, it is
technically possible to do so. Sometimes there may be overriding safety concerns—it

is important that brake lights don’t fail as a result of software errors, for example. The
bus design does, however, allow widespread communication and provides control with
lighter wiring.

Differential Signals

High-speed linear CAN bus is defined by the ISO 11898-2 signal format, with an example
signal shown in the upper part of Figure 18-2. The signal pair consists of a CAN H (high)
and a CAN L (low) line, the latter of which idles near the 2.5-volt level. The idle state is
known as the recessive logic level.

5V —
—
CAN H
2.5V — —
CAN L
Recessive vy
L Logic | DominantLogic | | Dominant Logic|
oV I I I I 1
Time (CAN Signal)
3.3/5V —
ov

Time (Driver Lo gic)
Figure 18-2. High-speed linear CAN bus and driver-signal formats

The active state of the signal is known in the standard as the dominant logic
level. The dominant logic state has CAN H near +5 volts and CAN L near 0 volts. The
differential signal is required for high-speed communication with noise immunity. The
state of the logic is determined by how much CAN H differs from CAN L (V,in the
figure). To prevent signal reflections, the high-speed linear bus is terminated at each end
with 120 Q of resistance.
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The lower half of Figure 18-2 shows the single-ended driver signal. For our purposes,
this is the signal that leaves the STM32 and enters the driver chip. From a driver-signal
perspective, the dominant logic level is low, while the recessive level is high. High can be
5 volts or 3.3 volts, depending upon the logic levels being utilized.

The driver circuit requires only one wire, but this limits it to short runs because of
signal reflections and noise. The differential bus design, on the other hand, allows for
longer runs of several meters.

Dominant/Recessive

Recessive and dominant signal forms have already been described for the CAN bus. But
what is the significance of these terms, recessive and dominant?

A recessive signal is a relaxed form of the signal. In differential signalling, the CAN H
and CAN L signals reach their idle state through a resistive network. This is the natural
state for the signal at rest. For the single-ended driver signal, it represents a high level
that is achieved by a pull-up resistor. This too is the rest state of the driver signal.

A dominant signal, however, is driven from its rest state to its active state through
the work of transistors. For the differential bus signals, the CAN H line is pulled high by a
high-side transistor. Simultaneously, the CAN L line is pulled low by a low-side transistor
in the on state. The driver signal likewise goes from a pulled-high state to a pulled-low
state by a low-side transistor in conduction. In other words, the driver signal is driven
low by an open-drain transistor in the active state.

The differential bus is like the single-ended driver signal except that there are mirror
copies of each signal. They both idle near the middle when at rest (recessive) but are
pulled away from each other when made active (dominant).

Now imagine two units driving a common bus. It is easiest to think in terms of the
single-ended driver signal, but do realize that the principle also applies to the differential
bus. Table 18-1 illustrates a truth table for two drivers connected to the bus.
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Table 18-1. Truth Table for Bus Arbitration

Driver 1 Driver 2 Bus Result Description
recessive recessive recessive Bus is idle
dominant recessive dominant Dominant state
recessive dominant dominant Dominant state
dominant dominant dominant Dominant state

Essentially, the bus state becomes the logical OR of all drivers connected to the bus.
When any driver applies the dominant bit state, the bus takes the dominant state. Only
when no driver is driving the bus does the bus remain in the recessive state. It should be
obvious now why the states are named recessive and dominant.

Bus Arbitration

In bus systems such as I12C, there is one master and multiple slaves. The slave device is
not allowed to speak until requested by the master. In multi-master I2C there has to be
an arbitration procedure that works out which master is allowed to proceed in the event
that two or more devices collide trying to transmit at the same time. This tends to be a
complicated problem that can lead to bus lockups.

The CAN bus, on the other hand, permits every connected device to speak. Thus,
collision avoidance also requires arbitration. The way it is done for the CAN bus
is unique and relies on the principle of recessive and dominant states. Figure 18-3
illustrates how the recessive and dominant bits interact.
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Figure 18-3. CAN bus arbitration

Arbitration proceeds as follows:

1. Driver 1 and Driver 2 start a communication at the same time by
sending a message ID.

2. The first two bits are dominant (zero), so all devices connected to
the bus see the two zeros.

3. Driver 1 sends the third bit as dominant (zero), while Driver
2 attempts to send a recessive (one) bit. The bus sees only a
dominant bit (zero).

4. Driver 2, realizing that its recessive bit was “stomped on,” backs off
since it has lost the arbitration process. Driver 1’s message was not
harmed and can proceed.

Arbitration illustrates the purpose of the dominant bits. Each device continues to
transmit while listening to the bus. If any device sends a recessive bit but reads it back as
a dominant bit, it means that arbitration for the bus was lost. The losing device(s) then
cancel their transmission, allowing the winner to proceed with the message unharmed.

Synchronization

The arbitration procedure just presented is a simplified explanation for a more
complicated reality. How do several transmitters communicate in lockstep?
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Before the message ID is transmitted, there is an SOF bit (start of frame) sent. It is a
dominant (zero) bit, so no listening device will miss the start-of-message indication that
itis. Thus, when the SOF bit is received, the sending device on the same bus can cancel
an attempt to send a message if it is not ready. If the device is ready, it synchronizes its
clock and attempts to send the message ID.

After the SOF bit, each message begins with a message ID. Depending on the version
of the protocol, the message ID is 11 or 29 bits in length. The arbitration procedure
determines who will win based upon the message ID being sent. Recall that dominant
bits win over recessive bits. Consequently, a message ID value of all zero bits is the
highest priority message.

Message Format

The basic CAN message format is provided in Table 18-2. There is also an extended
format that differs slightly, which the reader is encouraged to research.

Table 18-2. CAN Bus Message Format (Non-extended)

Field Name  BitLength Description

SOF 1 Start of Frame

ID 11 Message ID/Priority

RTR 1 Remote Transmission Request: 0 for data frames, 1 for remote request
IDE 1 Identifier extension: 0 for 11-bit format, 1 for 29-bit

Reserved 1 Must be 0

DLC 4 Data Length Code: 0 to 8 bytes

Data 0-64 Transmitted data (DLC sets length)

CRC 15 Cyclic redundancy check

CRC delimiter 1 Must be 1 (recessive)

ACK slot 1 Transmitter sends 1 (recessive), receiver(s) respond with 0 (dominant)
ACK delimiter 1 Must be 1 (recessive)

EOF 1 End of Frame: 1 (recessive)
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Frame field RTR (Remote Transmission Request) has a provision for requesting a
transmission from the remote device. When the RTR bit is recessive, this indicates a
response from a device. In these messages, the DLC (Data Length Code) is not used, and
no data is sent.

The field IDE (Identifier extension bit) identifies whether an extended ID message
format is used. In this chapter, the demo uses the 11-bit format, using the dominant bit
setting to indicate this.

The DLC field indicates the data length (in non-RTR response) in bytes. The DLC
field is then followed by the indicated number of data bytes.

Near the frame end, the CRC (Cyclic Redundancy Check) field exists so that garbled
messages can be disregarded.

Finally, at the frame’s end is an ACK bit field. This bit is transmitted as a recessive bit
(1) so that if any device receives the message with CRC intact, the receiving device will
clamp the bus using a dominant state during that bit time. This allows the transmitter
to see that at least one device received the message ok. Generally speaking, if one
device receives the message ok, then all devices did. Note that all receiving devices are
permitted to respond with the ACK simultaneously.

If, on the other hand, no devices received the message, the ACK bit will remain at
the recessive state as transmitted. This indicates to the transmitter that the transmission
failed. This part of the protocol can make CAN bus driver development a little more
difficult because you need at least one other device on the bus to ACK the sent message.
The only other way to test the sending of a CAN message is to use an internal loop-back
feature of the STM32 peripheral.

STM32 Limitation

The STM32 CAN bus peripheral uses SRAM to store messages. Unfortunately, the design
of the STM32F103 MCU is such that CAN and USB share the same area of memory. For
this reason, CAN and USB cannot be used at the same time.

It is otherwise possible to disable one device and use the other and vice versa, but
this doesn’t appear to be practical. For this reason, the demonstration will use the UART
for communication.
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Demonstration

There is considerably more that could be described about CAN bus protocol and its
extensions. The interested reader is encouraged to seek out other books on the subject.
The focus of this chapter, however, is to illustrate how to use the STM32’s CAN bus
peripheral in ways that are simple enough to get started.

In this demo, we are going to implement three hypothetical EU (electronic units). I'll
refer to them as EU1 through EU3 and avoid the acronym ECU, which is normally known
as an engine control unit. The units are:

1. EU1, dashboard control unit (has UART interface). This provides
lamp controls and reads temperature from the rear EU3.

2. EU2, arear controller unit responsible for parking, signal, and
brake lamps

3. EUS3, a front controller unit responsible for front parking and
signal lamps

A full demonstration thus requires three STM32 MCUs. However, if you have two, you
can at least partially demonstrate the operation, though three works best. Leave out the
front EU2 if necessary. But with the low price of the Blue Pill, why limit yourself to only
two units?

Software Build

The software directory for the demonstration is located at the following:

$ cd stm32f103c8t6/rtos/can
Take a moment now to recompile it:

$ make clobber
$ make

This will compile three executables:

$ 1Is *.elf
front.elf main.elf rear.elf
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UART Interface

EU1 is the main control unit that will simulate what will reside behind the dashboard
of our hypothetical vehicle (module main.c). The demonstration is configured for
the following serial-port parameters, which must agree with minicom or the terminal
program of your choice:

e Baudrate: 115,200

e Data bits: 8

o Parity: None

e Stop bit: 1

e Hardware flow control: RTS/CTS

See Table 10-1 for the connection details.

Students, please note that hardware flow control requires RTS and CTS wires to
be connected to your TTL serial adapter and STM32. Once connected, your terminal
program must also be configured to use hardware flow control. If any detail is incorrect,
no communication will occur. If the flow control is not operational for some reason, then
you may see lost data and garbage.

If the hardware flow control presents issues or your TTL serial adapter lacks the
required RTS/CTS signals, change the following source line in main.c from open_
uart(1,115200,"8N1","rw",1,1); to the following:

open_uart(1,9600,"8N1","rw",0,0);
Later, after recompiling, if there seems to be some data loss, reduce the baud rate
even further. Otherwise, the lower baud rate of 9,600 should be alright.

MCU Flashing

There are three MCUs to flash for this demonstration:
1. EUl:main.c
2. EU2:front.c

3. EU3:rear.c
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Let’s flash the devices (after the build). You'll obviously need to hook the programmer
up to each device in turn. If you need to reflash these, you will likely need to change the
boot0 jumper temporarily.

$ make flash
$ make flash front
$ make flash rear

Demo Bus

To make things easier, this demonstration uses a short but single-wire CAN bus
(SWCAN) using a 4.7-kohm pull-up resistor. In this configuration, each STM32 MCU
has its CAN_RX and CAN_TX lines tied together and connected to the common bus
line. Normally, these connections would go to a CAN bus driver chip like PCA82C251,
with separate RX and TX connections. Search for “PCA82C251 datasheet PDF” for more
details about the chip.

When wiring the demo, make special note of the fact that the main.c MCU uses
different CAN connections from the others. This was done so that the 5-volt-tolerant
UART connections could be used, permitting 5-volt USB-TTL serial adapters to be used.
See Figure 18-4.
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Q+3.3Volts
I~
CAN_FHX.-'PEST T < l— CAN_RX/PA11
CAN_TX:PBY |— . . CAN_TX/PA12
- +3.3-volt single-ended bus -TXP
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Figure 18-4. Demonstration CAN bus hookup
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Resistor R, is a required pull-up resistance necessary to establish the recessive state.
Since the MCU is a 3.3-volt device, our recessive state will be near +3.3 volts. Because of
the pull-up resistor, we configure the GPIO for CAN_TX with GPIO_CNF_OUTPUT_ALTFN_
OPENDRAIN (emphasis on open drain).

The other MCUs share the bus and the grounds. Don’t forget to tie those grounds
together. Any message sent by one MCU is received by all of the others.

The LEDs are representative of automotive lamps for signal, brake, and parking
lights. The rear signal lamps operate as both brake and signal lamps.

Session Run

The demo can be set up on a breadboard. Figure 18-5 shows the author’s own
arrangement, with the power supplied by a MB102 PCB. This provides +5 volts to each
of the Blue Pill +5-volt inputs, resulting in each Blue Pill’s on-board regulator supplying
+3.3 volts to the remainder of the system.

Figure 18-5. Breadboard setup of CAN demo

In the center of the photo, you can see the SIP9 resistor array I used for the 220-ohm
LED resistors. These single inline package (nine pins) arrays conveniently replace up to
nine individual resistors. Pin 1 of the SIP9 resistor is common and goes to the +3.3-volt
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supply line. To turn on an LED, the connected GPIOs sink the current to ground. If not
using the SIP9 part, simply use individual resistors as shown (R, to Ry).

The top of the photo shows the USB-UART device cable and connections to the
top MCU (running firmware main. c). This represents the in-dash controller EU1. The
bottom MCU is the rear EU3 unit running firmware rear.c.

The LEDs are arranged with the front automotive lamps toward the top and the
rear lamps toward the bottom of the photo. The outer green LEDs represent the parking
lights. The inner yellow LEDs represent the front turn signals, while the rear red LEDs
represent the red turn signals and brake lights.

The single-ended CAN bus is located just to the right of the LEDs, with mostly white
DuPont wires connecting the CAN_RX and CAN_TX from each MCU. Within that mess
of wires is one 4.7-kohm resistor pulled up to +3.3 volts.

Once everything is ready, connect your USB-TTL serial device to your PC and start
minicom (or equivalent). Once that is ready, power up your breadboard. The main MCU
should respond to your serial link as follows:

Welcome to minicom 2.7

OPTIONS:
Compiled on Sep 17 2016, 05:53:15.
Port /dev/cu.usbserial-A703CYQ5, 20:38:01

Press Meta-Z for help on special keys

Car simulation begun.

Menu:
L - Turn on left signals
R - Turn on right signals
P - Turn on parking lights
B - Activate brake lights

Lower case the above to turn OFF
V - Verbose mode (show received messages)

CAN Console Ready:
>
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The serial link shows a menu allowing you to control various functions of your
hypothetical vehicle. If things are working correctly the front and rear MCU on-board
LEDs (PC13) should flash about once per second. If you see it blink twice and stop, this
indicates a bus connection problem. I experienced this problem when I forgot that CAN
GPIOs are different from the main and the front and rear units. Recheck your wiring.

Press a capital “P” to turn on the parking lights. If all went well, your parking lights
are now lit, and the console also returned a temperature:

CAN Console Ready:

> P

> Temperature: +24.73 C
>

The temperature was sent to the main unit from the rear unit. To turn the parking
lights off, press a lowercase “p.” The parking lights should go dark immediately.

If you now press capital “B,” the brake lights should come on (red in my setup).
Pressing lowercase “b” turns them off again.

Press capital “L” or “R” to turn on the left or right turn signals, respectively. Notice
that the front and rear signals blink in unison even though controlled by two separate
MCUs. Press the lowercase “1” or “r” to turn the signal off again. You can also turn on
four-way flashers by enabling left and right.

Last of all, enable a turn signal—say, left—by pressing capital “L.” Then, press capital
“B” to enable the brake lights. Now the left turn signal blinks, but the right rear remains
lit to indicate a brake light. Turning the turn signal lamp off should leave the two rear
brake lights lit.

CAN Messages

The messages are mainly sent from the main EU1 to the front and rear units. After each
lamp request, the main unit also sends a message to the rear requesting a temperature
(it sets the RTR bit to request a reply). When the rear unit receives a message with the
RTR flag true, it takes the temperature and transmits it to the bus. All others can read this
message, but only the main unit uses the information.

The other messages are sent to enable/disable a given lamp. To allow the signal
lamps to flash in unison, there is also a flash message sent.
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Synchronicity

When the signal lamps are flashing, they look very synchronized to the human eye. But
just how synchronized are they? Using an oscilloscope, the turning on and off of a signal
lamp varied by about +850 psec and changes over time. All MCUs receive the message
into their peripherals at the same time, but FreeRTOS does preemptive scheduling. Since
1-ms ticks are being used, timing could be off by up to 1 ms.

What if you need greater accuracy for a factory control application? One approach
would be to increase the timer tick frequency (reducing the time slice). Other
improvements are possible in the application software. For example, the ISR routine
could notify a waiting task. There is no single answer to this problem. It often comes down
to how important the issue is and how much effort you are willing to expend to obtain it.

Summary

This chapter has focused on introducing some CAN bus concepts and a demo circuit.
Running the demo proved that it is possible to have near real-time control over other
MCUs using short CAN messages. Additionally, it proves the concept of a shared
bus where there are no master and slave devices. Finally, it is seen that the STM32 is
capable of applying CAN communications in both single-wire or differential bus modes
(differential with the help of a driver chip).

Because of the size and complexity of this project, the software for this demo will be
described in the next chapter.
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CHAPTER 19

CAN Bus Software

The CAN bus demonstration in the previous chapter illustrated three STM32 MCUs
sharing messages on a common bus. None were masters and none were slaves. All of this
was orchestrated with the help of the STM32 CAN bus peripheral and the libopencm3
device driver.

This chapter will discuss the use of the libopencm3 driver API so that you can build
CAN bus applications of your own. When combined with the use of FreeRTOS, you will
have a convenient environment from which to program more-complex creations.

Initialization

The project source modules are located in the following directory:
$ cd ~/stm32f103c8t6/rtos/can

The most demanding part of setting up the CAN bus peripheral is the configuration
and initialization of it. Listing 19-1 illustrates the initialize can() function that was
provided in source module canmsgs.c.

Listing 19-1. The CAN Initialization Code

0090: void

0091: initialize can(bool nart,bool locked,bool altcfg) {

0092:

0093:  rcc_periph clock enable(RCC_AFIO);

0094:  rcc_peripheral enable_clock(&RCC_APB1ENR, RCC_APB1ENR_CAN1EN);
0095:

0097: * When:

0098: * altcfg CAN_RX=PB8, CAN_TX=PB9

0099: * laltcfg CAN_RX=PA11, CAN_TX=PA12
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0101: if ( altcfg ) {
0102: rcc_periph clock enable(RCC GPIOB);
0103: gpio_set mode(GPIOB,GPIO MODE_OUTPUT 50 MHZ,

GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN,
GPIO_CAN_PB TX);

0104: gpio_set mode(GPIOB,GPIO MODE_INPUT,GPIO CNF_INPUT FLOAT,
GPIO_CAN_PB RX);

0105:
0106: gpio primary remap( // Map CAN1 to use PB8/PB9
0107: AFIO MAPR_SWJ_CFG_JTAG OFF_SW OFF, // Optional
0108: AFIO MAPR_CAN1 REMAP_PORTB);
0109: } else {
0110: rcc_periph clock enable(RCC_GPIOA);
0111: gpio_set mode(GPIOA,GPIO MODE_OUTPUT 50 MHZ,

GPIO CNF_OUTPUT ALTFN_OPENDRAIN,GPIO CAN_TX);
0112: gpio_set mode(GPIOA,GPIO MODE_INPUT,

GPIO CNF_INPUT FLOAT,GPIO CAN RX);
0113:
0114: gpio primary remap( // Map CAN1 to use PA11/PA12
0115: AFIO MAPR_SWJ_CFG_JTAG OFF_SW OFF, // Optional
0116: AFIO MAPR CAN1 REMAP_PORTA);
0117: }
0118:

0119:  can_reset(CAN1);
0120:  can_init(

0121: CAN1,

0122: false, // ttcm=off

0123: false, // auto bus off management

0124: true, // Automatic wakeup mode.

0125: nart, // No automatic retransmission.

0126: locked, // Receive FIFO locked mode

0127: false, // Transmit FIFO priority (msg id)

0128: PARM_SJW, // Resynch time quanta jump width (0..3)
0129: PARM TS1, // segment 1 time quanta width

0130: PARM_TS2, // Time segment 2 time quanta width
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0131:
0132:
0133:
0134:
0135:
0137:
0138:
0139:
0140:
0141:
0142:
0143:
0145:
0146:
0147:
0148:
0149:
0150:
0151:
0152:
0153:
0154:
0155:
0156:
0157:

0158:

CHAPTER 19

PARM BRP, // Baud rate prescaler for 33.333 kbs

false, // Loopback
false); // Silent

can_filter id mask 16bit init(
0, //
0X000 << 5, 0x001 << 5,  //

0x000 << 5, 0x001 << 5, //
0, //
true);

can_filter id mask 16bit init(
1, //
0x010 << 5, 0x001 << 5, //
0x001 << 5, 0x001 << 5, //
1, //
true);

Filter bank 0
LSB == 0

Not used

FIFO O

Filter bank 1

LSB == 1 (no match)

Match when odd
FIFO 1

canrxq = XQueueCreate(33,sizeof(struct s _canmsg));

nvic_enable irq(NVIC USB_LP_CAN RX0 IRQ);

nvic_enable irq(NVIC CAN _RX1 IRQ);

can_enable_irq(CAN1,CAN IER_FMPIEO|CAN_IER FMPIE1);

xTaskCreate(can_rx_task,"canrx",400,NULL,

configMAX PRIORITIES-1,NULL);
}

This function provides initialization in the following basic steps:

CAN BUS SOFTWARE

1. The AFIO subsystem’s clock is enabled (line 93). This is necessary

so that we can chose which GPIOs are used for the CAN bus ports.

2. The CAN bus peripheral’s clock is enabled (line 94). This is

required for the peripheral to function.
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3. The appropriate GPIO has its clock enabled (line 102 or 110,
depending upon the configuration chosen by Boolean argument
altcfg).

4. The GPIO output mode is chosen for CAN_TX (line 103 or 111).
5. The GPIO input mode is chosen for CAN_RX (line 104 or 112).

6. The AFIO mapping is chosen for the CAN_TX and CAN_RX lines
(lines 106 to 108, or lines 114 to 116).

7. The libopencma3 routine can_reset() is called to initialize and
configure the CAN bus peripheral (lines 119 to 133).

8. CAN filter bank 0 is configured in lines 135 to 141 to determine
where certain messages should go.

9. CANfilter bank 1 is configured in lines 143 to 149 to determine
where other messages should go.

10. AFreeRTOS receive queue named canrxq is created in line 151.

11. The STM32 NVIC has two interrupt channels enabled in lines 153
and 154.

12. The CAN bus peripheral has the FIFO message pending interrupts
enabled for FIFO 0 and 1 (line 155).

13. Finally, a receiving task is created in line 157.

There is obviously quite a bit of detail in this procedure. Let’s break down some of the steps.

can_init()

The can_init() function is provided by libopencm3 and requires several arguments to
configure the device. Let’s examine the calling arguments in more detail. The arguments
provided are as follows:

1. Argument CAN1 indicates which peripheral to use. There is only
one available for the STM32F103C8T6.

2. 'This argument is supplied with false to indicate that we are not
using time-triggered communication mode.
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10.

11.

12.
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This argument is supplied with false to indicate that we are not
using automatic bus-off mode (if too many errors occur, the bus
can be auto-disabled).

This argument is supplied with true to indicate that we want
automatic wakeup mode, should the MCU be put to sleep.

This argument is supplied with our called argument nart. When
true, this indicates that we do not want the CAN peripheral auto-
retransmit when an error is detected.

The argument is supplied with our called argument locked. When
true, it means that when a receive FIFO becomes full, no new
message will displace an existing message (the FIFO is locked).
When false, new messages can displace existing messages when
the FIFO is full.

This argument is supplied as false to have outgoing messages be
given priority according to their message ID. Otherwise, messages
are transmitted in chronological order.

PARM_SJIW
PARM_TS1
PARM_TS2 defines CAN synchronization parameters.

PARM_BRP is declared as 78 and canmsgs . h so that the effective
baud rate is 33.333 kbs.

The second-to-last argument is supplied with false to disable the
loopback capability of the peripheral.

The last argument is supplied with false so that it operates in
“normal mode.” When in silent mode, the peripheral can receive
remote data but cannot initiate messages (it is silent).
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CAN Receive Filters

The CAN bus peripheral has the ability to filter messages of interest. If you imagine a
large set of bus-connected communicators, it becomes evident that a lot of message
traffic will be received. Normally, not every node is interested in all messages. Processing
every message would eat away at the available CPU budget.

The CAN peripheral supports two FIFO queues for receiving messages. With the help
of filtering, this demonstration arranges for even-numbered message IDs to land in FIFO
0 and odd-numbered messages in FIFO 1. This is arranged by the configuration of filter
banks 0 and 1.

The call to can_filter id mask16bit init() inlines 135 to 141 arranges a set of
messages to land in FIFO 0 (line 140). Argument two in this example is declaring the
configuration of filter bank 0 (line 137). The last argument (true) simply enables the filter.

Arguments three (line 138) and four (line 139) define the actual filter ID value and
bit mask to use. These are 16-bit filters, but the filter is 32 bits wide. For this reason, two

identical filters are used:
e 0x000 is the resulting ID to match against after applying the mask.
e 0x001 is the bit mask to be applied to the ID before comparing.

Both of these arguments must be shifted up five bits to the left in order to left justify
the 11-bit identifiers in the 16-bit field.

In the second configured filter (lines 143 to 149) we have the same mask value
(0x001) but compare two different ID values:

e 0x010is a “no match” ID.
e 0x001 is the odd value after masking.

If the mask 0x001 is applied to an ID, it matches 0x001 when the ID is odd. However,
no matter what ID is supplied after being masked with 0x001, it will never match the
value 0x010 given. This is simply another way of disabling the second unused filter.

As configured, a message will always be odd or even and will wind up in one of the
FIFO receive queues (CAN peripheral FIFO).

There are several other possibilities for specifying filters, including using 32-bit
values so that extended ID values can be compared. The reader is encouraged to review
the libopencm3 API documentation and the STMicroelectronics RM0008 reference
manual, section 24.7.4, for more information.
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CAN Receive Interrupts

Each CAN FIFO (first in first out queue) has its own ISR. This permits the designer to
allocate different interrupt priorities to each FIFO queue. In this demo, we treat both
identically, so Listing 19-2 illustrates the interlude routines used to redirect the code to
one common function named can_rx_isr().

Listing 19-2. The CAN Receive Interlude ISRs

0058: void

0059: usb 1lp can rx0 isr(void) {

0060: can_rx_isr(0,CAN_RFOR(CAN1)&3);
0061: }

0067: void

0068: can_rx1 isr(void) {

0069: can_rx_isr(1,CAN_RF1R(CAN1)&3);
0070: }

The macros CAN_RFOR() and CAN_RF1R() allow the code to determine the length of
the FIFO queues. The common code for the CAN receive ISR is shown in Listing 19-3.

Listing 19-3. The Common CAN Receive ISR

0029: static void
0030: can_rx_isr(uint8 t fifo,unsigned msgcount) {

0031: struct s_canmsg cmsg;

0032: bool xmsgidf, rtrf;

0033:

0034: while ( msgcount-- > 0 ) {

0035: can_receive(

0036: CAN1,

0037: fifo, // FIFO # 1

0038: true, // Release

0039: &cmsg.msgid,

0040: &xmsgidf, // true if msgid is extended
0041: drtrf, // true if requested transmission
0042: (uint8_t *)&cmsg.fmi, // Matched filter index
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0043:
0044:
0045:
0046:
0047:
0048:
0049:
0050:
0051:
0052:

&cmsg. length,
cmsg.data,
NULL);

// Returned length

// Unused timestamp

cmsg.xmsgidf = xmsgidf;

cmsg.rtrf = rtrf;
cmsg.fifo = fifo;

// If the queue is full, the message is lost

xQueueSendToBackFromISR(canrxq,&cmsg,NULL);

}

The general flow of the code is as follows:

1.

Receive the message (lines 35 to 45).
2. Queue the message to FreeRTOS queue canrxq (line 50).

3. Repeat until there are no more messages (line 34).

To understand the other details, we need to know about the structures involved.

These are illustrated in Listing 19-4.

Listing 19-4. Message Structures Found in canmsgs.h

0020:
0021:
0022:
0023:
0024:
0025:
0026:
0027:
0028:
0029:
0030:
0031:
0032:
0033:
0034:
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struct s_canmsg {
uint32_t msgid;
uint32_ t fmi;
uint8_t length;
uint8 t data[8];
uint8_t xmsgidf : 1;
uint8 t rtrf : 1;
uint8_t fifo : 1;

}s

enum MsgID {
ID LeftEn = 100,
ID RightEn,
ID_ParkEn,
ID BrakeEn,

// Message ID

// Filter index

// Data length

// Received data

// Extended message flag
// RTR flag

// RX Fifo 0 or 1

// Left signals on/off (s_lamp_en)
// Right signals on/off (s_lamp_en)
// Parking lights on/off (s_lamp_en)
// Brake lights on/off (s_lamp_en)
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0035:  ID Flash, // Inverts signal bulb flash
0036: ID Temp, // Temperature

0037:  ID HeartBeat = 200, // Heartbeat signal (s_lamp_status)
0038: ID HeartBeat2 // Rear unit heartbeat

0039: };

0040:

0041: struct s _lamp_en {

0042: uint8_t enable : 1; // 1==on, O==off

0043: uint8 t reserved : 1;

0044: };

0045:

0046: struct s temp100 {

0047: int celciusx100; // Degrees Celcius x 100
0048: };

0049:

0050: struct s lamp status {

0051: uint8_t left : 1; // Left signal on

0052: uint8 t right : 1; // Right signal on
0053: uint8 t park : 1; // Parking lights on

0054: uint8_t brake : 1; // Brake lines on

0055: uint8_t flash : 1; // True for signal flash
0056: uint8 t reserved : 4;

0057: };

Essentially, the message is received into the struct s_canmsg. See lines 35 to 45
of Listing 19-3. Some parts have to be loaded and then copied to the structure. For
example, the structure member xmsgidf is a 1-bit-sized member, so it is received in
alocal variable named xmsgidf (line 40) and then copied to cmsg.xmsgidf in line 46.
Other members are copied into the structure in lines 47 and 48. By the time execution
continues at line 50 the structure is fully populated and then copied to the queue.
Notice that the FreeRTOS routine called is xQueueSendToBackFromISR(); i.e., ending in
“FromISR(). This is necessary since special arrangements often need to be made in an
ISR due to their asynchronous nature.

The main payload is carried in the data[ 8] array, and its active length is given by
member length in this program. Our application uses truly small messages.
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The message is indicated by the message ID. This is documented in the following:

0030: enum MsgID {
0031: ID LeftEn = 100, // Left signals on/off (s_lamp en)

0032:  ID RightEn, // Right signals on/off (s_lamp en)
0033:  ID ParkEn, // Parking lights on/off (s_lamp _en)
0034: ID BrakeEn, // Brake lights on/off (s_lamp en)
0035:  ID Flash, // Inverts signal bulb flash

0036: ID Temp, // Temperature

0037: ID HeartBeat = 200, // Heartbeat signal (s_lamp status)
0038: ID HeartBeat2 // Rear unit heartbeat

0039: };

Pop quiz: Which is the highest-priority message in this set?

Answer: ID_LeftEn (with value 100).

Why? Because this is the lowest (defined) message ID in the set. Recall that with
the nature of CAN dominant bits the lowest message ID will always win an arbitration
contest.

These are message types used by our demo program. Message ID value ID
HeartBeat is an “I'm alive” message from the front controller, while ID HeartBeat2 is
a similar message from the rear controller. Our demo doesn’t do anything with these
messages when received, but with more code the main controller could warn if the front
or rear controller wasn’t sending a message at regular intervals.

Message ID values ID_LeftEn, ID_RightEn, ID_ParkEn, and ID BrakeEn indicate a
lamp-control message. The struct s _lamp_en carries the intended action. Its member
enable indicates whether the message is to turn on or off a lamp. This data is carried in
the data[ ] array member of s_canmsg:

0041: struct s lamp en {

0042: uint8_t enable : 1; // 1==on, O==off
0043: uint8_t reserved : 1;

0044: };
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The message ID_Temp is used both to request a temperature and to receive one.
The main control unit will request a temperature reading by sending ID_Temp, with the
member rtrf set to true. When the rear control unit receives this message, it will take a
reading and reply with the rtrf flag set to false. The temperature returned is carried in
the data[ ] member as a struct s_temp100:

0046: struct s temp100 {
0047: int celciusx100; // Degrees Celcius x 100
0048: };

Application Receiving

Once the ISR queues the data message s_canmsg, something must pull messages out of
the queue. In module canmsgs. c there is a task defined for this purpose:

0076: static void
0077: can_rx_task(void *arg _ attribute((unused))) {

0078: struct s_canmsg cmsg;

0079:

0080: for (;;) |

0081: if ( xQueueReceive(canrxq,&cmsg,portMAX DELAY) == pdPASS )
0082: can_recv(&cmsg);

0083: }

0084: }

This small task simply pulls messages from canrxq that were queued by the ISR. If
there are no messages in the queue, the task will block forever due to the timeout
argument portMAX DELAY in line 81. If a message is successfully pulled from the queue,
the application function can_recv() is called with it (not to be confused with the
libopencma3 routine named can_receive()).

Processing the Message

The application is made aware of incoming CAN messages when the can_recv()
function is called by the module canmsgs. c. This is performed outside of an ISR call, so
most programming functions should be safe to use. Listing 19-5 illustrates the function
declared in rear.c.
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Listing 19-5. Processing a Received CAN Message in the Application (from rear.c)

0119: void

0120: can_recv(struct s_canmsg *msg) {

0121: union u_msg {

0122: struct s lamp en lamp;

0123: } *msgp = (union u_msg *)msg->data;
0124: struct s_temp100 temp_msg;

0125:

0126: gpio_toggle(GPIO PORT_LED,GPIO_LED);
0127:

0128: if ( Imsg->rtrf ) {

0129: // Received commands:

0130: switch ( msg->msgid ) {

0131: case ID LeftEn:

0132: case ID RightEn:

0133: case ID ParkEn:

0134: case ID BrakeEn:

0135: case ID Flash:

0136: lamp_enable((enum MsgID)msg->msgid,msgp->lamp.enable);
0137: break;

0138: default:

0139: break;

0140: }

0141: } else {

0142: // Requests:

0143: switch ( msg->msgid ) {

0144: case ID Temp:

0145: temp_msg.celciusx100 = degrees C100();
0146: can_xmit(ID Temp,false,false,sizeof temp_msg,&temp msg);
0147: break;

01438: default:

0149: break;

0150: }

0151: }

0152: }
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The message is passed into can_recv() with a pointer to the s_canmsg structure,
which is populated with the received data. Because the data member msg->data is
interpreted based upon its message ID, the union u_msg is declared in lines 121 to 123.
This permits the programmer to access the msg->data array asa struct s_lamp_en
when it is needed.

To show sign of life, line 126 toggles the onboard LED (PC13). Normal messages
will not have the msg->rtrf flag set (line 128). In this case, we expect the usual lamp
commands (lines 130 to 137).

Otherwise, when msg->rtrf is true, this represents a request for the rear module
to read the temperature and respond with it (lines 143 to 150). The function degrees_
C100() returns the temperature in degrees Celsius times one hundred. This is simply
transmitted by line 146. Note that the third argument of the call is the RTR flag, which is
sent as false (this is the response). The function can_xmit() is declared in canmsgs.c,
not to be confused with the libopencm3 routine can_transmit().

Be mindful that can_recv() is called as part of another task. This requires safe inter-

task communication.

Sending CAN Messages

Sending messages is easy, since we simply need to call the libopencm3 routine can_
transmit():

0018: void

0019: can_xmit(uint32 t id,bool ext,bool rtr,uint8 t length,void *data) {
0020:

0021: while ( can_transmit(CAN1,id,ext,rtr,length, (uint8 t*)data) == -1 )
0022: taskYIELD();

0023: }

In the Blue Pill hardware there is only one CAN bus controller, so CAN1 is hardcoded
as argument one here. The message ID is passed through id, the extended address flag
is passed through ext, and the request flag rtr is passed as argument four. Lastly, the
length of the data and the pointer to the data are supplied. If the call fails by returning
-1, taskYIELD() is called to share the CPU time. The call will fail if the sending CAN bus
peripheral queue is full.

345



CHAPTER 19  CAN BUS SOFTWARE

This brings up an important point to keep in mind. Upon successful return from
can_transmit(), the caller cannot assume that the message has been sent yet. Recall
that in our configuration we declared whether messages are sent in priority sequence or
in chronological sequence. But the bus can also be busy, delaying the actual sending of
our messages. Further, if our message(s) are lower priority (higher message ID values)
than others on the bus, our CAN peripheral must wait until it can win bus arbitration.

Summary

The remainder of the demo is routine C code. The reader is encouraged to review it. By
packaging the CAN bus application API in modules canmsgs.c and canmsgs. h, the task of
writing the application becomes easier. It also saves time by using common tested code.

This demo has only scratched the surface of what can be done on the CAN bus. Some
folks may want to listen in on their vehicles, but a word of caution is warranted. Some
CAN bus designs, like GMLAN (General Motors Local Area Network), can include 12-
volt signal spikes for use as a wakeup signal. There are likely a number of other variations
of that theme.

The CAN bus has been applied to a number of other applications, such as factory
and elevator controls. After working with this demo project, you can entertain new
design ideas.

EXERCISES

1. How many FIFOs are supported by the STM32F103 CAN peripheral?
2. How many filter banks are supported by the CAN peripheral?

3. When a pair of filters must be supplied, but only one is needed, what are two
ways to accomplish this?

4. What is the RTR flag and what is its purpose?
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New Projects

Starting a new project from scratch can be a lot of work. That is why this chapter is
focused on helping you get started with the minimum of drudgery. I'm also going to
point you to a few details that have been ignored for the sake of simplicity that might be
important to your project. This will leave you in the driver’s seat.

Project Creation

The first step in a new project is to create its subdirectory, Makefile, then import the

FreeRTOS source modules and a starting configuration file named FreeRTOSConfig.h. Yes,

you can do this manually or with a script, but the provided Makefile will do this for you.
First, locate the right starting directory:

$ cd ~/stm32f103c8t6/rtos

Think of a good subdirectory name for your project that doesn’t already exist.
For this example, we'll call it myproj. To create a project named myproj, perform the
following make command:

$ make -f Project.mk PROJECT=myproj
...bunch of copies etc...
>k 3k ok ok ok ok >k >k >k ok ok ok 3k ok >k >k ok ok ok sk ok >k >k ok ok ok sk ok >k >k ok sk ok Sk ok ok >k sk ok ok ok ok >k >k ok sk ok sk sk >k sk ok ok ok sk sk ok sk sk sk sk sk sk >k

Your project in subdirectory myproj is now ready.

1. Edit FreeRTOSConfig.h per project requirements.

2. Edit Makefile SRCFILES as required. This also
chooses which heap *.c to use.

3. Edit stm32f103c8t6.1d if necessary.

4. make

5. make flash
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6. make clean or make clobber as required
3kokok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok Sk ok ok ok ok sk ok sk sk sk ok ok ok ok Sk ok skok ok sk sk sk sk sk ke ok sk ok sk sk skok sk k >k

If you now produce a recursive list of your subdirectory, you will see that it has been
populated with several files:

$ 1s -R ./myproj

FreeRTOSConfig.h  Makefile main.c rtos

stm32f103c8t6.1d

./myproj/rtos:

FreeRTOS.h heap 1.c list.h portmacro.h

task.h LICENSE heap_2.c mpu_prototypes.h
projdefs.h tasks.c StackMacros.h heap 3.c

mpu_wrappers.h queue.c timers.h croutine.h

heap 4.c opencm3.c queue.h deprecated definitions.h
heap 5.c port.c semphr.h event_groups.h

list.c portable.h  stdint.readme

Makefile

Listing 20-1 illustrates the Makefile that will be created for you. This file should normally
be edited slightly to reflect the source modules that you will use. This Makefile uses
several macros to define the overall project. Let’s examine those now.

Listing 20-1. Default Project Makefile

0001 : HHHfHHHHHHHHHHHHHHHHHHHHHHH

0002: # Project Makefile

0003 : HHHHHHHHHHHHHHHHEHEHEHHHEHHHHE A

0004:

0005: BINARY = main

0006: SRCFILES = main.c rtos/heap_4.c rtos/list.c rtos/port.c \
rtos/queue.c rtos/tasks.c rtos/opencm3.c

0007: LDSCRIPT = stm32f103c8t6.1d

0008:

0009: # DEPS = # Any additional dependencies for your build

0010: # CLOBBER += # Any additional files to be removed with \
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"make clobber"

0011:

0012: include ../../Makefile.incl

0013: include ../Makefile.rtos

0014:

0015: #HHHHHIH T

0016: # NOTES:

0017: # 1. remove any modules you don't need from SRCFILES

0018: # 2. "make clean" will remove *.o etc., but leaves *.elf, *.bin
0019: # 3. "make clobber" will "clean" and remove *.elf, *.bin etc.
0020: # 4. "make flash" will perform:

0021: # st-flash write main.bin 0x8000000

0022:
Macro BINARY

This macro defines the name of your compiled executable. By default, this is set to main

so thatmain.elf is produced when the project is built. By all means, change this to

something more exciting.

Macro SRCFILES

This macro defines the name of the source files that will be compiled into the final

executable main.elf. The default is to include the following source files:

main.c (main should match the name used in the BINARY macro)
rtos/heap 4.c

rtos/list.c

rtos/port.c

rtos/queue.c

rtos/tasks.c

rtos/opencm3.c
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The module main.c (or otherwise named) is the module you will write and
develop. The remaining modules are support modules, which will be discussed later
on. Some of these are optional. For example, if you don’t use FreeRTOS message
queues, you can leave out the module rtos/queue. c (with the appropriate changes to
FreeRTOSConfig.h).

If you have additional source files (in addition to main.c), add them to the SRCFILES
list. They too will be compiled and linked into the final build.

Macro LDSCRIPT

The provided Makefile sets this to stm32f103c8t6.1d. This points to a file in your project
directory, which you have already seen in Chapter 9, “Overlays.” Many projects can use
this file unchanged. If your project has special needs like overlays, it can be altered.

Macro DEPS

If you have special dependencies, you can define them with this macro. For example,
if you have a text file like mysettings.xml, which affects the build of main.elf, then to
force a rebuild of main.elf add the following:

DEPS = mysettings.xml

Macro CLOBBER

The make files have been written to support some basic targets, including clobber. For
example:

$ make clobber

This command eliminates files that were built and are unnecessary to keep. For
example, all object files (*.0) and executables (*.elf) would be deleted as a cleanup
operation. This also guarantees that everything is built from scratch the next time you
perform a make.

Sometimes a build procedure creates other objects that can be removed after
the build is complete. If a file.dat is generated by the build process and you want it
cleaned up after a clobber, add it to the macro:

CLOBBER = file.dat
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Included Makefiles

To reduce the footprint of the project Makefile and centralize other definitions, two
more Makefiles are included in your project file:

e ../../Makefile.incl (~/stm32f103c8t6/Makefile.incl)
e ../Makefile.rtos (~/stm32f103c8t6/rtos/Makefile.rtos)

The first of these defines macros and rules for building projects. If you need to make
project-wide enhancements to the make rules, this is the place to start.

The second of these simply adds the subdirectory . /rtos to be searched for include
files for FreeRTOS builds:

TGT_CFLAGS += -I./rtos -I.
TGT_CXXFLAGS += -I./rtos -I.

Header Dependencies

The DEPS macro described earlier adds dependencies for building main.elf. What if you
have another header file named myproj.h that, if changed, would cause a recompile of
main.o? This can be done with the usual Makefile dependency rule added:

main.o: myproj.h

This informs the make command that main.c should be recompiled into main.o if the
datestamp of file myproj.h is newer. That might save you from chasing bugs related to a
header-file change when main.o was not rebuilt when it should have been.

Compile Options

Sometimes a special compile option is needed for certain modules. In the OLED project,
this was used to suppress some compiler warnings from a third-party source module:

ugui.o: CFLAGS += -Wno-parentheses

This compile option is only added to the compile of ugui.o to suppress warnings
about brackets that should be added for clarity.
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Flashing 128k

If you haven'’t already done so, change to your project subdirectory. After you build your
project with

$ cd ./myproj
$ make

you need to program the STM32 flash storage. By default, the make command is set
up to do this with the following:

$ make flash
arm-none-eabi-objcopy -Obinary main.elf main.bin
/usr/local/bin/st-flash write main.bin 0x8000000

The first step in this is to convert the elf file (nain.elf) to a binary image (main.bin).
The ARM version of the objcopy utility performs that duty. After that, the st-flash utility
is used to program the STM32.

Most, if not all, STM32F103C8T6 chips will support flashing to 128k. You will need
to have the newer version st-flash utility installed. To flash more than 64k, perform the
following:

$ make bigflash
arm-none-eabi-objcopy -Obinary main.elf main.bin
/usr/local/bin/st-flash --flash=128k write main.bin 0x8000000

The new option --flash=128k is supplied to the st-flash utility to disregard the
device ID and flash up to 128k worth of memory.

The real question is whether all STM32F103C8T6 chips do indeed support 128k. All
four of my units did, purchased from different eBay sources. In fact, there is only one
online reported instance of this not working. Was this pilot error? Or is it that only the
lower 64k is factory tested and guaranteed? If someone knows the answer, I would like to
know.
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FreeRTOS

An important part of your project is the FreeRTOS components. Some are optional, while

others are mandatory. Let’s look at each in turn.

rtos/opencm3.c

This module was written by the author and is not actually part of FreeRTOS. It is required to

connect the libopencm3 framework into FreeRTOS. The module is shown in Listing 20-2.

Listing 20-2. Source Module ~/ stm32f103c8t6/rtos/opencma3.c

0001:
0002:
0003:
0004:
0005:
0006:
0007:
0008:
0009:
0010:
0011:
0012:
0013:
0014:
0015:
0016:
0017:
0018:
0019:
0020:
0021:
0022:
0023:
0024:

/* Warren W. Gay VE3WWG
*

*

To use libopencm3 with FreeRTOS on Cortex-M3 platform, we must
* define three interlude routines.
*/

#include "FreeRTOS.h"

#include "task.h"

#include <libopencm3/stm32/rcc.h>

#include <libopencm3/stm32/gpio.h>

#include <libopencm3/cm3/nvic.h>

extern void vPortSVCHandler( void )  attribute  (( naked ));
extern void xPortPendSVHandler( void )  attribute  (( naked ));
extern void xPortSysTickHandler( void );

void sv_call handler(void) {
vPortSVCHandler();

}

void pend_sv_handler(void) {
xPortPendSVHandler();

}
void sys tick handler(void) {
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0025:  xPortSysTickHandler();
0026: }

0027:

0028: /* end opncm3.c */

As the source code indicates, these libopencm3 functions call into FreeRTOS. For
example, function sys_tick handler() is invoked by libopencm3 when the system
timer tick interrupt occurs. But the call to xPortSysTickHandler() is a FreeRTOS
function that handles the system tick operations.

rtos/heap_4.c

This is the FreeRTOS module used throughout this book. However, there are actually
multiple choices possible. Quoted from the www. freertos.org web page":

o heap_1 - the very simplest; does not permit memory to be freed

e heap_2 - permits memory to be freed, but not does coalescence
adjacent free blocks

o heap_3 - simply wraps the standard malloc() and free() for thread
safety

o heap_4 - coalescences adjacent free blocks to avoid fragmentation;
includes absolute address placement option

e heap 5 -asperheap_ 4, with the ability to span the heap across
multiple non-adjacent memory areas

Some of these source modules can be affected by the FreeRT0OSConfig.h macro
setting configAPPLICATION_ALLOCATED HEAP. Simply swap the rtos/heap 4.c
mentioned in the Makefile with the module of your choice.

Required Modules

In addition to the dynamic memory module rtos/heap_*.c, the following are normally
required modules for FreeRTOS:

o rtos/list.c (internal list support)

o rtos/port.c (portability support)
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o rtos/queue.c (queue and semaphore support)
o rtos/tasks.c (task support)

Depending upon the options chosen in your FreeRT0SConfig.h file, in your project
directory, you may be able to exclude one or two modules for a smaller build. For
example, if you don’t use queue, mutex, or semaphore support, you can avoid linking in
rtos/queue.c.

FreeRTOSConfig.h

This is your project-level FreeRTOS configuration file. This include file contains macro
settings that affect the way that the FreeRTOS modules are compiled into your project.
They may also affect any macro calls invoked by your application. You should make
clobber before you rebuild if any of the values in that file are changed. Remember that
you are building both the O/S and the application together.

Listing 20-3 provides a partial listing of what is contained in the FreeRT0SConfig.h
file. The first section configures items such as the CPU clock rate (configCPU_CLOCK HZ).
Others determine features like preemption (configUSE_PREEMPTION).

One pair of important macro settings are configCPU_CLOCK_HZ and configSYSTICK _
CLOCK_HZ. For use with libopencm3, using a 72 MHz clock, you normally want to
configure configSYSTICK CLOCK HZ as follows:

#tdefine configSYSTICK CLOCK HZ ( configCPU CLOCK HZ / 8 )

If you get this wrong, a program using vTaskDelay() or other time-related functions
will be incorrect. You can check this by running the demo in stm32f103c8t6/rtos/
blinky2. When incorrectly configured, the blink will not be half a second.

Listing 20-3. Partial Listing of FreeRTOSConfig.h, Used in the RTC Project

* Application-specific definitions.

These definitions should be adjusted for your particular hardware and
application requirements.

THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.

I SR
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*

* See http://www.freertos.org/a00110.html.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

____________________________________________________ %/
configUSE_PREEMPTION 1

configUSE_IDLE_HOOK 0

configUSE_TICK HOOK 0

configCPU_CLOCK HZ ( ( unsigned long ) 72000000 )
configSYSTICK CLOCK HZ  ( configCPU _CLOCK HZ / 8 )

configTICK RATE HZ ( ( TickType t ) 1000 )

configMAX_PRIORITIES (5)
configMINIMAL STACK SIZE ( ( unsigned short ) 128 )
configTOTAL HEAP_SIZE ( (sizet) (17 * 1024 ) )
configMAX_TASK_NAME_LEN ( 16 )
configUSE_TRACE_FACILITY 0

configUSE_16 BIT TICKS 0

configIDLE_SHOULD YIELD 0

configUSE_MUTEXES 1

configUSE_TASK NOTIFICATIONS 1
configUSE_TIME_SLICING 1

configUSE _RECURSIVE MUTEXES 0

/* Co-routine definitions. */

#define
#define

configUSE_CO_ROUTINES 0
configMAX_CO_ROUTINE_PRIORITIES ( 2 )

/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */

#define
#define
#define
#define
#define
#define
#define
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INCLUDE_uxTaskPriorityGet
INCLUDE vTaskDelete

INCLUDE vTaskCleanUpResources
INCLUDE_vTaskSuspend
INCLUDE_vTaskDelayUntil
INCLUDE vTaskDelay
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The macro configTOTAL_HEAP_SIZE is important to configure if you encounter the
following error:

section '.bss' will not fit in region 'ram’
As defined:

#define configTOTAL HEAP SIZE ( (size_t ) (17 * 1024 ) )

FreeRTOS will allocate 17k to the heap. But as you develop your killer application
and use more static memory areas, the remaining SRAM storage may shrink to the point
where the heap won'’t fit. This will prevent the link step from completing. What you can
do is reduce the heap size until it builds. Advanced users can look at the memory map
produced to see how much you can re-increase the heap. Or you could just guess by
increasing the heap until it fails to build.

Other configuration macros like INCLUDE_vTaskDelete simply determine whether
that level of support should be compiled into FreeRTOS for your application. If you never
delete a task, why include code for it?

All of these configuration options are documented at the FreeRTOS website and in

their fine free manual.

User Libraries

It is common practice to place commonly used routines like USB or UART drivers in a
library. Once you develop these, you want to reuse them. You may have noticed that this
was done in some of our demo projects in this book. By default, all programs include
headers from ~/stm321103c8t6/rtos/libwwg/include and link to the library directory
~/stm32f103c8t6/rtos/libwwg, linking with 1ibwwg.a.

Within the directory ~/ stm32f103c8t6/rtos/libwwg/src are some source modules
that go into that static library. These get compiled and the object modules placed into
libwwg.a. But there is a problem here that you should be aware of.

These are all compiled against the following header file:

~/stm321103c8t6/rtos/libwwg/src/rtos/FreeRT0SConfig.h

This is likely different from your project-level file FreeRTOSConfig.h. If the
configurations differ in a material way, the best approach is to copy the needed source
files into your project directory and add them to your Makefile (SRCFILES). When you
do that, you guarantee that the subroutines use the FreeRTOSConfig.h that the rest of
your application is compiled with.
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Once again, this is related to the fact that every build of your application also
includes the build of the operating system. Much of it is driven by macros, so header files
play a significant role.

Rookie Mistakes

One rookie mistake that all of us get bitten by from time to time is to make a change

to a structure in a header file that affects modules that don’t get recompiled. When a
structure is altered, the offsets of members change. A previously compiled module will
continue to use the old member offsets.

Ideally, the Makefile would list every dependency or have it generated and then
included. However, this isn’t always done, or done perfectly enough, especially during
frantic project development.

If you have changed a struct (or class in C++), it is recommended practice to perform
amake clobber first so that everything is recompiled from scratch. In huge projects,
this approach is impractical. But for small projects, this ensures that all modules are
compiled from the same headers.

Do you have a bug that doesn’t make sense? The impossible is happening? Perhaps
you need to rebuild your project from scratch to make sure that you aren’t chasing
toolchain problems.

Summary

This chapter has prepared you for creating your own STM32 projects using
FreeRTOS. You've reviewed the FreeRTOS modules that go into your build, as well
as the glue module that links libopencm3 to FreeRTOS. With the ability to configure
FreeRTOSConfig.h, you can direct how your project is built.
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EXERCISES

LN

What does the make macro BINARY define?
What is the purpose of the header file FreeRTOSConfig.h?

How do you add compiler option -03 only to the compile of module speedy.c?

What is the main disadvantage of using heap 1?
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Troubleshooting

No matter how trivial the project or how sure we are about developing a project, we
inevitably run into the need for troubleshooting. The need is so often greater for an
embedded computing project because you don’t have the luxury of a core file dump to
be analyzed like you would under Linux. You might also not have a display device at the
point of the error.

In this chapter, we’ll first look at the debugging facilities that are available to the
STM32 platform. Then, some troubleshooting techniques will be examined, along with
other resources.

Gnu GDB

The Gnu GDB debugger is quite powerful and worth taking the time to learn. Using the
ST-LINK V2 USB programmer, it is possible to access the STM32 from your desktop and
step through the code, examining memory and registers and setting breakpoints. The
first step is to get the GDB server up and running.

GDB Server

Open another terminal session where you can run your GDB server. The st-util
command will have been installed with your st-flash software install. If you launch
st-util without the programmer being plugged into the USB port, your session will
appear something like this:

$ st-util
st-util 1.3.1-4-g9d08810
2018-02-08T21:09:22 WARN src/usb.c: Couldn't find any ST-Link/V2 devices

Ifyou see this, check that your ST-LINK V2 programmer is connected and plugged in.
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If your programmer is plugged in but it doesn’t see the STM32 device attached to it,
your session will appear something like this:

$ st-util
st-util 1.3.1-4-g9d08810
2018-02-08T21:10:52 INFO src/usb.c: -- exit dfu_mode

2018-02-08T21:10:52 INFO src/common.c: Loading device parameters....
2018-02-08T21:10:52 WARN src/common.c: unknown chip id! 0xe0042000

If your device is attached, unplug the programmer immediately to avoid damage and
recheck the wiring. If you are using individual DuPont wires between the programmer
and the STM32, it is easy to make a mistake. To avoid that, I recommend that you make a
custom cable for this purpose.

If everything goes well, you should have a session like the following:

$ st-util
st-util 1.3.1-4-g9d08810
2018-02-08T21:07:18 INFO src/usb.c: -- exit dfu_mode

2018-02-08T21:07:18 INFO src/common.c: Loading device parameters....

2018-02-08T21:07:18 INFO src/common.c: Device connected is: F1 \
Medium-density device, id 0x20036410

2018-02-08T21:07:18 INFO src/common.c: SRAM size: 0x5000 bytes (20 KiB), \
Flash: 0x20000 bytes (128 KiB) in pages of 1024 bytes

2018-02-08T21:07:18 INFO src/gdbserver/gdb-server.c: Chip ID is 00000410, \
Core ID is 1ba01477.

2018-02-08T21:07:18 INFO src/gdbserver/gdb-server.c: Listening at *:4242..

From this, we observe that we are connected to an F1 device (STM32F103) and that
it found 20K bytes of static RAM. Depending upon your device and the version of your
st-util command installed, it may show only 64K bytes of flash, or, as it does here, it
may show 128K bytes instead. Last of all, notice that it is listening at *:4242. The asterisk
indicates that it is listening on all interfaces at port 4242.

When you want to terminate this server, press AC (Control-C).
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Remote GDB

With the st-util server running, it is now possible to use GDB to connect to that server
to start a debug session. Let’s use the RTC project as a working example:

$ cd ~/stm32f103c8t6/rtos/rtc

It is critical that you use the version of GDB that matches your compiler tools. Most
of you will likely be using arm-none-eabi-gdb, though it may differ by your install. Since
this is tedious to type, you may want to use a shell alias for this purpose:

$ alias g='arm-none-eabi-gdb'

This allows you to just type “g” to invoke it. I'll list the command in full in this chapter,
but do use the alias to save typing if you like. Just start up the command to get started:

$ arm-none-eabi-gdb

GNU gdb (GNU Tools for ARM Embedded Processors 6-2017-q2-update)
7.12.1.20170417-git

Copyright (C) 2017 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb)

At this point, we have not yet attached to the st-util server. The next step is optional
but is necessary if you want to have source-level symbols and debugging in your session:

(gdb) file main.elf
Reading symbols from main.elf...done.

Notice that it confirms that the symbols were extracted from the file main.elf in the
current directory. Next, connect to the st-util server:

(gdb) target extended-remote :4242
Remote debugging using :4242
0x08003060 in ?? ()

(gdb)
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As a shortcut, no IP address is typed before the :4242. This implies that we are
connecting through the local loopback 127.0.0.1:4242. The connection is confirmed
with the message “Remote debugging using :4242.”

Now, let’s load the program into flash:

(gdb) load main.elf

Loading section .text, size 0x30e8 lma 0x8000000
Loading section .data, size 0x858 lma 0x80030e8
Start address 0x8002550, load size 14656
Transfer rate: 8 KB/sec, 7328 bytes/write.

The st-util server will automatically flash the file’s image into flash (note that it
loads it starting at address 0x8000000). There are also data areas programmed into flash
starting at address 0x80030e8. The startup code will locate this and copy that data to its
proper location in SRAM before the main() function is called.

Next, we set a breakpoint for the main() function:

(gdb) b main
Breakpoint 1 at 0x800046c: file main.c, line 252.
(gdb)

If we don’t set a breakpoint, the software will run away and execute when we launch
it. Setting the breakpoint at main allows all the initialization to run, but it stops at the
first statement in the main() program. Note that the breakpoint command will fail if you
leave out the file command (earlier) because it won’t know about the symbol main.

Now, let’s start the program:

(gdb) c
Continuing.

Breakpoint 1, main () at main.c:252
252 main(void) {
(gdb)

The program has started and then paused at the breakpoint that we set. Now, we can
step over source statements with the “n” (next) GDB command:

(gdb) n

254 rcc_clock_setup_in_hse 8mhz_out_72mhz(); // Use this for "blue
pill"
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(gdb) n

256 rcc_periph clock enable(RCC_GPIOC);

(gdb) n

257 gpio _set mode(GPIOC,GPIO MODE OUTPUT 50 MHZ,
GPIO_CNF_OUTPUT PUSHPULL,GPI013);

(gdb)

This has allowed us to step over these three statements. If you want to trace inside
any function, issue the “s” (step) GDB command instead.

To just run the program from this point forward, use the “c” (continue) GDB
command:

(gdb) c
Continuing.

Notice that no new (GDB) prompt is returned. To interrupt the program and regain
control, press *C (Control-C):

~C

Program received signal SIGTRAP, Trace/breakpoint trap.
0x08000842 in xPortPendSVHandler () at rtos/port.c:403
403 __asm volatile

(gdb)

Where the program is interrupted at will vary. To view the call stack, use the bt
(backtrace) GDB command:

(gdb) bt

#0 0x08000842 in xPortPendSVHandler () at rtos/port.c:403

#1 <signal handler called>

#2 0x08000798 in prvPortStartFirstTask () at rtos/port.c:270
#3 0x080008d6 in xPortStartScheduler () at rtos/port.c:350
Backtrace stopped: Cannot access memory at address 0x20005004

(gdb)

This tells us that we interrupted execution inside of the FreeRTOS scheduler code.
To exit GDB, type the command “quit.”
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GDB Text User Interface

To make debugging sessions more convenient, GDB supports a few different layouts.
Figure 21-1 is the layout obtained by typing the command “layout split.” This gives
you both the source code and the assembler-level instruction view.

KK rtc — arm-none-eabi-gdb — 52x25

22080004 6¢ el Fede Al
0x800046e <main+2> 0x80021a4 <rcc ¢
0x8000472 <main+6> mov.w r0, #772
0x8000476 <main+10> bl 0x800251e <rcc p
0x800047a <main+14> mov.w r3, #8192
0x800047e <main+18> movs r2, #0
0x8000480 <main+20> movs rl, #3

Thread <main> In: main 252 PC: 0x800046¢

Breakpoint 1 at 0x800046c: file main.c, line 252.

(gdb) c

Continuing.

Note: automatically using hardware breakpoints for r
ead-only addresses.

Breakpoint 1, main () at main.c:252
(gdb) |

Figure 21-1. GDB “layout split” display

Other views are possible. For example, to trace what happens in assembler language
programs you’ll want to use the “layout regs” view, shown in Figure 21-2. This view
shows the assembler language instructions as well as the register content. Changed
registers are highlighted. Unfortunately, the small terminal window size used for
Figure 21-2 doesn’t do it justice. When you use a wider terminal window, you will see all
of the registers.
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| NON rtc — arm-none-eabi-gdb — 57x27
—Regilster group: general

r0 0x20000858 536873048

rl 0x0 0

r2 0xe000ed14 3758157076

r3 0x200 512

r4 0x80030e8 134230248

r5 0x80030e8 134230248
2R [ 0x800046c <main> sh {x0 ; b bk

0x80021ad4 <rcc clock

r0, #772 ; Ox

0x800046e <main+2>
0x8000472 <main+6>

0x8000476 <main+10>

0x800047a <main+14>
0x800047e <main+18>
0x8000480 <main+20>

0x800251e <rcc_perip
r3, #8192 ; 0x2
r2, #0
rl, #3

Thread <main> In: main C: 0x800046c
(gdb) c

Continuing.

Note: automatically using hardware breakpoints

ead-only addresses.

Breakpoint 1, main () at main.c:252
(gdb) layout regs
(gdb)

Figure 21-2. GDB “layout regs” view (full register set displayed with wider
terminal window)

There is quite a bit more to GDB than can be described here. An investment in
reading the GDB manual or online tutorials can save you time in the long run.

Peripheral GPIO Trouble

You write a new program using the UART peripheral, which requires the use of a GPIO
output. You configure it, yet the output doesn’t work. Hopefully, this book has already
prepared you for the answer. What is wrong with this code fragment?

rcc_periph clock enable(RCC GPIOA);
rcc_periph clock enable(RCC USART1);

// UART TX on PA9 (GPIO USART1 TX)
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gpio_set mode(GPIOA,
GPIO_MODE_OUTPUT 50 MHZ,
GPIO_CNF_OUTPUT PUSHPULL,
GPIO_USART1_TX);

I am repeating myself here because this is such an easy mistake to make. Yes, the code
has configured PA9 for GPIO output. But this is not the same as the peripheral output. For
that, you must configure it as an alternate function output (note argument three):

// UART TX on PA9 (GPIO USART1 TX)

gpio_set mode(GPIOA,
GPIO_MODE_OUTPUT 50 MHZ,
GPIO_CNF_OUTPUT ALTFN_PUSHPULL, // NOTE!!
GPIO_USART1_TX);

This is what causes the peripheral to be connected to the GPIO pin and disconnects
the regular GPIO function. Get this wrong, and you can be driven to madness. The
code will look correct but will be laughing behind your back. Burn that into your

consciousness early.

Alternate Function Fail

Your code performs some initialization for a peripheral to use a GPIO output, and you
even use the correct GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN macro for the CAN bus, but
still no joy. Where is the bug?

rcc_peripheral enable clock(8RCC_APB1ENR,RCC_APB1ENR CAN1EN);

rcc_periph clock enable(RCC_GPIOB);

gpio_set mode(GPIOB,
GPIO_MODE_OUTPUT 50 MHZ,
GPIO_CNF_OUTPUT ALTFN_OPENDRAIN,
GPIO CAN_PB_TX);

gpio set mode(GPIOB,
GPIO_MODE_INPUT,
GPIO CNF_INPUT FLOAT,
GPIO_CAN_PB RX);

gpio_primary remap(
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AFIO MAPR_SWJ_CFG_JTAG OFF_SW OFF,
AFIO MAPR_CAN1 REMAP PORTB); // CAN_RX=PB8, CAN TX=PB9

Give yourself a pat on the back if you said that the AFIO clock needs to be enabled:
rcc_periph clock enable(RCC AFIO);

If you omit this call, the GPIO remapping won’t function. It needs a clock. An
omission like this can be insidious.

Peripheral Fail

This should be obvious, but peripherals need their own clocks enabled. For CAN bus, it
required this call:

rcc_peripheral enable clock(&RCC_APB1ENR,RCC_APBL1ENR CAN1EN);
For other peripherals like the UART, the call may be simpler:
rcc_periph_clock enable(RCC_USART1);

Obviously, if the peripheral’s clock is disabled, as it is after reset, then it will act like a
dead piece of silicon.

ISR FreeRTOS Crash

FreeRTOS has a rule about what can and can’t be called from within an ISR. While a task
may call xQueueSend() anytime, an ISR must use the xQueueSendFromISR() function
(note the FromISR on the end of the function name). The reasons may vary by platform,
but ISRs generally operate under very strict conditions.

Interrupts are asynchronous in nature, so any function call is suspect if it is not
known to be reentrant. FreeRTOS takes special measures to make certain that the called
function is safe when you use the correct name. Break this rule, and you may experience
sporadic fails.
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Stack Overflow

Unfortunately, stack sizes must be determined upfront when creating a task. For example:
xTaskCreate(monitor task,"monitor",350,NULL,1,NULL);

Argument three in the call allocates 350 words of storage for that task’s stack (each
word is four bytes in length). Function xTaskCreate() allocates the stack from the heap.
If the stack size is insufficient, memory corruption will follow, with unpredictable results.

An improvement would be to check for this condition and do something about it.
FreeRTOS provides three ways to address this. This is determined by the configCHECK _
FOR_STACK_OVERFLOW macro as defined in your FreeRT0SConfig.h file:

1. configCHECK FOR_STACK OVERFLOW is defined as 0. FreeRTOS will
not check for overflow; this is the most efficient for operation.

2. configCHECK_FOR_STACK_OVERFLOW is defined as 1 so that
FreeRTOS will perform a quick stack check. Less efficient than
approach 1, but more efficient than 3.

3. configCHECK_FOR_STACK_OVERFLOW is defined as 2 so that
FreeRTOS will perform a more thorough stack check. This is the
least efficient operation.

When the macro is defined as non-zero, you must supply a function to be called when
the stack has overflowed:

void
vApplicationStackOverflowHook(
xTaskHandle *pxTask,
signed portCHAR *pcTaskName
) |
// do something, perhaps
// flash an LED

When the stack overflow is detected, the hook function is called. Some memory
corruption is likely to have already occurred by the time this hook is called, so it is best to
signal it using the simplest of methods, like turning on an LED or flashing it so many times.
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Estimating Stack Size

Estimating the stack size required can be difficult for functions that call into library
routines, especially third-party ones. So, how do you confirm how much space is
needed? FreeRTOS provides a function that helps:

#include "FreeRTOS.h"
#include "task.h"

// Returns # of words:
UBaseType t uxTaskGetStackHighWaterMark(TaskHandle t task);

The FreeRTOS documentation doesn'’t state what it returns, but the return value is in
words. The function, when given the handle of a task, will return the number of unused
stack words. If the task was created with 350 words of stack and used a maximum of 100
words so far, then the return value will be 250. In other words, the closer the return value
is to zero, the more likely it is that the task is will overflow its stack.

The FreeRTOS documentation states that the function call can be costly and thus
should only be used in debugging. But be careful even then because stack usage can vary
with usage patterns. Even so, it is better than nothing when attempting to arrive at an
estimate.

When a Debugger Doesn’t Help

There are times when a debugger is impractical. When debugging device drivers, for
example, there may be interrupts and timeouts involved where stepping through the
code is not going to help. In this situation, you may want to collect clues like where it
crashes or what the last successfully processed event was. In many of these difficult
situations, having access to an LED or a GPIO can provide insights.

Within an ISR, you don’t have the luxury of sending a message to an LCD display or
a serial message to a terminal. Instead, you need to find simple ways to convey events,
like activating LEDs. If you have a DSO (digital storage scope) or logic analyzer, emitting
signals on multiple GPIOs can be very informative, especially when determining how
much time is spent within an ISR.

In more extreme cases, you may need to set aside a trace buffer that your ISR can
populate. Then, using GDB, you can interrupt the execution of the STM32 and examine
that trace buffer.
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Push/Pull or Open Drain

Some problems are centered on the use of the GPIO output. For example, many forum
posts claim that the hardware slave select doesn’t work for SPI. It does work, however, if
you use open-drain configuration and a pull-up resistor. While this might be surprising,
it does make sense when you consider that the STM32 supports multi-master mode SPI.
Any multi-mastered bus element must use a pull-up resistor because if one
controller is holding the bus signal high, another MCU would have to fight in order
to pull the same signal low. The pull-up resistor allows the signal to go high when no
controller is active on the signal. It also allows any bus participant to pull the signal low
without a fight.
This highlights another issue. When reading through STMicroelectronics datasheets,
it helps to keep an eye out for the fine print and footnotes. A lot of tricky stuff lurks there.

Peripheral Defects

In rare cases, you may encounter peripheral behavior that is incorrect. The STM32
peripherals are complex silicon-state machines, and they sometimes have deficiencies
in certain situations or in certain configurations. Search for and download the “STM32F1
Errata Sheet” PDF file for insight into what can go wrong. Usually a work-around is
provided.

Reading the errata, you may notice that many of the problems pertain to debugging.
This is a head’s up that not everything you might see in a remote GDB session is
representative of reality. Remote debugging is very useful but can run into difficulties in
special situations.

Resources

Most of your time will likely be spent getting the STM32 peripherals to work the way you
want them to. The more advanced your application is, the more likely it is that you will
spend time working through peripheral issues.

The very best source of information about the peripherals is contained in

) u

STMicroelectronics’ “reference manual” RM0008. At a minimum, you'll want to
download this PDF and have it available for working through difficult issues. But this is

not the only resource you want.
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Search for and download the “STM32F103x8 STM32F103xB PDF” document. The
one very important table contained in that document is table 5, “Medium-density
STM32F103xx pin definitions.” You might not be concerned about the pin definitions,
but you'll find it a gold mine for summarizing what each GPIO pin is able to become
with the correct configuration. To use Table 5, look down the column for LQFP48 for the
STM32F103C8T6. Following down the column, you will find pin numbers. Pin 11, for
example, is GPIO PA1 after reset and is configurable to be one of the following:

o USART2_RTS
« ADC12_IN1
« TIM2 CH2

And it is not 5-volt tolerant.

All of this is essential information that seems to belong in the reference manual, but
isn’t found there.

The section titled “Electrical Characteristics” will be of interest to those who are
looking for estimates of power consumption. For example, Table 17, “Typical current
consumption in Run mode, code with data processing running from Flash,” indicates
that the MCU running at 72 MHz will consume about 27 mA with all of the peripherals
disabled. Several other tables and charts of this nature are available in that document.

libopencm3

Even though libopencm3 has an API wiki, I find myself needing answers that are not
supplied or not obvious. I suspect that you will experience the same when developing
new applications. Questions like these occur:

e When can I combine different values in a function call argument?
e When must they be supplied in separate calls?

These are two sides of the same question. First, here is the direct link to the APT wiki
pages:
http://1ibopencm3.org/docs/latest/html
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Along the left side, the documentation is split up by STM32 family member. For the
STM32F103, you want to drill down on “STM32F1.” In some cases, the details are spelled
out. For example, the function

void gpio_set(uint32_t gpioport,uint16 t gpios);
is described with the following:

Set a Group of Pins Atomic.

Set one or more pins of the given GPIO port to 1 in an atomic operation.

This tells us clearly that you can combine multiple GPIO references using the C or (])
operator in argument two; for example:

gpio_set(GPIOB,GPIO5|GPIO5);

It probably goes without saying that you cannot combine values for gpioport.
There are other types of calls like this one:

bool usart get flag(uint32 t usart,uint32 t flag);

The singular name “flag” and the description “USART Read a Status Flag” both
indicate the singular. What happens if you combine flags? While this may not be a
safe or normal thing to do, the only way to answer that is to look at the source code. At
the bottom of the description, you will find a link “Definition at line 107 of file usart_
common_f124.c”” If you click on that, it brings up the source-file listing of the module
containing the function. From there, you can search or scroll down to the function
definition and see that it is defined as follows:

bool usart get flag(uint32_t usart, uint32_t flag)

{
return ((USART SR(usart) & flag) != 0);

This tells you a couple of things:

1. Ifyou supply multiple flags, you only get a bool result (any of the
flags may cause it to return true). This is not likely what you want.

2. Ittells you how to obtain the status flags yourself by use of the
macro USART_SR(usart). You may need, however, to include

another header file to make this available.
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The point of this section is to make you aware that you need to read the libopencm3
API descriptions carefully. If the argument type is an enum type, that almost guarantees
that you shouldn’t combine arguments. If the argument type is a signed or unsigned
integer, you might be able to combine. Check the documentation before you assume.
Where you don’t find those necessary answers, “use the source, Luke.”

FreeRTOS Task Priorities

FreeRTOS provides multi-tasking with multiple priority levels. Be aware that the priority
mechanism may not be what you expect. Task priorities are arranged so that level zero
is the lowest priority. Level configMAX PRIORITIES-1 is the highest task priority. The
macro configMAX_PRIORITIES is defined within FreeRTOSConfig.h.

The idle task has priority zero. It runs when no other task is ready to run. There are
some FreeRTOS configurable options for what happens during idle, which you can read
about in their manual. The default is to just spin the CPU until a higher-priority task
changes to the Ready state.

The FreeRTOS scheduler is designed to give CPU to tasks that are in the Ready or
Running state. If you have one or more tasks in the Ready or Running state at a higher
priority, then no lower-priority task will run. This is different than Linux, for example,
where the CPU is shared with lower-priority processes. Under FreeRTOS, lower-priority
processes require that all of the higher-priority tasks be in one of the following states:

o Suspended by calls like vTaskSuspend()
o Blocked by ablocking call like xTaskNotifyWait()

This has consequences for tasks that wait for a peripheral event. If the driver within
a task performs a busy loop, then CPU is not given up until the preemptive interrupt
occurs. Even when the busy loop calls upon taskYIELD(), the CPU is given to the other
ready task at the same priority in round-robin sequence. Again, the only way that a
lower-priority task will gain the CPU is when all tasks at the higher priority are either
suspended or blocked.

This requires an adjustment to your Linux/Unix way of thinking, where the CPU
is shared with every process that is ready to run. If you want that, then in FreeRTOS
you must run all of your tasks at the same priority level. All tasks at the same level are
scheduled in a round-robin fashion.
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The way that this problem manifests itself is that the lower-priority tasks appear to
be frozen or hung. This is a clear sign that your priority scheme needs adjustment or that
tasks are not being blocked/suspended as intended.

Scheduling Within libopencm3

The library libopencm3 was developed independently of FreeRTOS. Consequently,
when a peripheral driver waits for a peripheral event, it often includes a busy loop. Let’s
look at one example of what I mean:

void usart wait send ready(uint32_t usart)

{
/* Wait until the data has been transferred into the shift register. */
while ((USART SR(usart) & USART SR TXE) == 0);

The usart_wait send ready() function is called prior to sending the data byte to
the USART. But notice the while loop—it simply burns CPU waiting for the USART_SR _
TXE flag to become true. The effect of this is that the calling task will expend its entire
time slice before preemption gives the CPU to another task. This gets the job done but is
suboptimal.

To make better use of the CPU, it would be better to have the task yield its time slice
to another task so that other useful work can be done. Unfortunately, there are no hooks
for this in libopencm3. This leaves you with the following choices:

1. Live with it (perhaps it’s not critical for your application).
2. Copy the function into your code and add a taskYIELD() call.
3. Modify your copy of the libopencm3 library.

4. Implement hook functionality and submit it to the libopencm3
volunteers.
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The easiest fix is the second approach. Copy the function’s code into your own
application and amend it slightly to call taskYIELD():

void usart wait send ready(uint32_ t usart)

{
/* Wait until the data has been transferred into the shift register. */
while ((USART SR(usart) & USART SR TXE) == 0)
taskYIELD(); // Make FreeRTOS friendly
}
Summary

We have concentrated on the STM32F103C8T6 member of the STM32 family in this
book. This has allowed us to concentrate on a fixed number of features. There are, of
course, other family member devices with additional peripherals, like the DAC (digital-
to-analog converter), to name only one. If you now have an appetite for more-advanced
challenges, consider a STM32F407 family device, like the Discovery board. If you're on
a student budget, there are other choices, like the Core407V, on eBay. The STM32F4
provides much more in the way of SRAM, flash, and peripherals than we have considered
in this book. It also includes hardware floating point, which can be performance critical
to some applications.

I hope that this book has left you well informed about the STM32 platform and
has given you fun challenges to work through. In celebration of this, there will be no
exercises in this chapter! Thank you for allowing me to be your guide.
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Answers to Exercises

Chapter 4

1. What GPIO port does the built-in LED on the Blue Pill PCB use?
Specify the libopencm3 macro name for the port.

Answer: PORTC

2. What GPIO pin does the built-in LED on the Blue Pill PCB use?
Specify the libopencm3 macro name.

Answer: GPIO13

3. Whatlevel is required to turn the built-in LED on for the Blue Pill
PCB?

Answer: logic low (or zero volts)

4. What are two factors affecting the chosen loop count in a
programmed delay in non-multitasking environments?
Answer:

a. The CPU clock rate
b. Instruction execution time

5. Why are programmed delays not used in a multi-tasking
environment?

Answer: Because the timing of other tasks in your system will
affect the elapsed time of your programmed delay.
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6. What three factors that affect instruction timing?

Answer:

a. the chosen platform

b. CPU clockrate

c. execution context (running code in flash or SRAM)

7. What are the three modes of an input GPIO port?

Answer:

a. Analog

b. Digital, floating

c. Digital, pull up and pull down

8. Do the weak pull-up and pull-down resistors participate in an
analog input?

Answer: No

9. When is the Schmitt trigger enabled for input ports?

Answer: GPIO or peripheral digital input

10. Do the weak pull-up and pull-down resistors participate for
output GPIO ports?

Answer: No. They only apply to inputs.

11. When configuring a USART TX (transmit) output for push/pull
operation, which specialization macro should be used?

Answer: GPTO_CNF_OUTPUT ALTFN_PUSHPULL

12. When configuring a pin for LED use, which GPIO mode macro is
preferred for low EMI?

Answer: GPIO MODE _OUTPUT 2 MHZ (higher-rate choices like GPIO
MODE_OUTPUT_10_MHZ use more current and generate additional
EMI).
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Chapter 5

Answer the following:

1.

How many tasks are running in blinky2?

Answer: 1

How many threads of control are operating in blinky2?
Answer: 2 threads: main thread and task 1

What would happen to the blink rate of blinky?2 if the value of
configCPU_CLOCK_HZ were configured as 36000000?

Answer: The blink rate would double because the FreeRTOS
scheduler is expecting the CPU to be half as fast.

Where does task 1’s stack come from?

Answer: Task 1’s stack is allocated from the heap.

Exactly when does task1() begin?

Answer: when the function vTaskStartScheduler () is called

Why is a message queue needed?

Answer: to safely communicate between different threads of
control

Even though it uses an execution delay loop, why does it seem to
work with a nearly 50 percent duty cycle?

Answer: Because there is only one task executing, the timing
remains fairly consistent.

How difficult is it to estimate how long the LED on PC13 is on for?
Why?

Answer: Difficult due to instruction timing, flash prefetch, and so on
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9. Using a scope, measure the on and off times of PC13 (or count
how many blinks per second and compute the inverse). How
many milliseconds is the LED on for?

Answer: 84 ms

10. If another task were added to this project that consumed most of
the CPU, how would the blink rate be affected?

Answer: The blink rate would slow considerably.

11. Add to the file main.c a task 2 that does nothing but execute
asm__("nop") in aloop. Create that task in main() prior to starting
the scheduler. How did that impact the blink rate? Why?

Answer: It slowed considerably because the second task was
consuming CPU time away from the first task.

Chapter 6

1. What is the idle state of the TTL level of a USART signal?

Answer: High (near 5 volts)

2. USART data is provided in a big or little endian sequence?

Answer: little endian (least significant bit first)

3. What clock(s) must be enabled for UART use?

Answer: RCC_GPIOx and RCC_USARTn

4. What does the abbreviation 8N1 stand for?

Answer: 8 bits of data, no parity, and 1 stop bit.

5. What happens if you provide UART data to be sent if the device is
not yet empty?

Answer: Data is lost.
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Can tasks be created before, after, or before and after
vTaskStartScheduler()?

Answer: Before and after

What is the minimum buffer size determined by for
xQueueReceive()?

Answer: The receiving buffer size must meet or exceed the item

size as was specified when the queue was created.

How do you specify that xQueueSend() should return immediately
if the queue is full?

Answer: Supply argument xTicksToWait with the value 0.

How do you specify that xQueueReceive() should block forever if
the queue is empty?

Answer: Supply argument xTicksToWait with the macro portMAX
DELAY.

What happens to the task if xQueueReceive() finds the queue
empty and it must wait?

Answer: The task will yield to another task.

Chapter 7

1.

2.

What GPIO preparation is necessary before enabling the USB
peripheral?

Answer: The GPIOA clock must be enabled, but otherwise the
USB peripheral takes over PA11 and PA12 automatically.

What are the alternate GPIO configurations available for USB?

Answer: There are no alternate configurations for USB. Only PA11
and PA12 are used.
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3.

What libopencm3 routine must be called regularly to handle USB
events?

Answer: The routine usbd_poll() must be called frequently to
handle events that require action.

Chapter 8

384

1.

How many data lines are used by SPI in bidirectional links? What

are their signal names?

Answer: There are two data lines used by SPI bidirectional links:
MOSI and MISO.

Where does the clock originate from?

Answer: The clock (SCK) is always provided by the master of the
SPI bus.

What voltage levels are used for SPI signaling?

Answer: The voltage levels used are usually 5 volts or 3.3 volts,
according to the system design requirements. The STM32 device
will use 3.3 volts.

Why must a pull-up resistor be used for the STM32 /NSS line?

Answer: A pull-up resistor for /NSS must be used because the
STM32 MCU configures the output as an open-drain output,
regardless of how it was initially configured. Without the pull-up
resistor, the select line will never go high.

Why must a dummy value be sent in some SPI transactions?

Answer: A dummy value is written to cause the master peripheral
to emit the clock pulses necessary for the slave to send its data.
The slave always depends upon the SPI master to provide the
clock.
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Chapter 9

1. Inthe structure typedef'ed as s_overlay, why are members
defined as character pointers rather than long int?

Answer: When the byte size is calculated, you need character
pointers. If the type were long int, then the calculated size would
be in words instead of bytes.

2. Why was the xflash memory region added to the linker script?

Answer: The xflash region was created to hold all of the W25QXX
flash code, which will not appear in the MCU's flash. Additionally,
this code is loaded into the xflash at starting address of zero,
whereas the MCU flash started at 0x08000000 instead.

3. What is the purpose of the overlay stub function?

Answer: The stub function calls the overlay manager to make sure
the required code is loaded into the overlay region in SRAM. Once
the function pointer is known, it must then pass on the calling
arguments and return values, if any.

4. Inthe Gnudeclaration _attribute ((noinline, section(".
ov_fee"))), what is the purpose of noinline? Why is it needed?

Answer: The attribute noinline prevents the compiler from
treating the function as “inline” code. This is especially important
for small functions that the compiler may optimize.

5. Where does the declaration _attribute((section(".."))
belong?

Answer: The _attribute ((section("..")) declaration may
only appear in the function prototype.
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Chapter 10

What are the three possible interrupt events from the RTC?

Answer: The three interrupt sources are RTC (tick), Alarm, and
Overflow.

What is the purpose of the calls taskENTER_CRITICAL FROM ISR
and taskEXIT_CRITICAL_FROM_ISR?

Answer: The taskENTER_CRITICAL FROM ISR() and taskEXIT
CRITICAL FROM_ISR() calls block other interrupts from occurring
while performing a critical operation.

How many bits wide is the RTC counter?

Answer: The RTC counter is 32 bits wide.

Which clock source continues when the STM32 is powered down?

Answer: The LSE clock (32.768 kHz crystal oscillator), which
continues to work even when the supply voltage is off, provided
that the battery voltage Vy,; supply is maintained

Which is the most accurate clock source?

Answer: The most accurate clock source is the HSE clock because
itis controlled by an 8 MHz crystal oscillator, but only while power
is maintained.

Chapter 11

386

1.

What is the byte value sent when reading from slave address $21
(hexadecimal)?

Answer: Hexadecimal address $21 is $42 when shifted left by
one bit. A read operation requires a 1-bit in the least significant
position, which results in a byte value of $43.
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2. When the master requests a response from a non-existing slave
device on the bus, how does the NAK get received?

Answer: To ACK a response, the slave must pull the SDA line low.
If there is no slave acknowledging, the pull-up resistor keeps the
line high, causing the NAK to be received by default.

3. Whatis the advantage of the /INT line from the PCF8574?

Answer: The /INT line allows the slave device to notify the
controlling MCU directly if an input line changes state. Otherwise,
the MCU would need to busy the 12C bus with read requests to see
when the line changes.

4. What does quasi-bidirectional mean in the context of the
PCF8574?

Answer: To receive an input signal, the GPIO port needs to be set
weakly high so that an input driver can pull it low. This effectively
makes it an input or an output port. However, if the GPIO port

is set low, it cannot be used for input. For this reason, it is
considered quasi-bidirectional.

5. Whatis the difference between sourcing and sinking current?

Answer: When current is sourced, it is controlled and flows from
the positive side through a load connected to ground (negative).
When sinking current, the load is attached to the positive rail and
current is switched on and off at the ground end instead.

Chapter 12

1. For AFIO output pins, what GPIO configuration macros must be
used?

Answer: GPIO outputs must use GPIO_CNF_OUTPUT _ALTFN_
PUSHPULL or GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN macros or the
pin will remain unconnected to the peripheral (it will act as a
regular GPIO).
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2. What clock must be enabled for AFIO changes?

Answer: The RCC_AFIO clock must be enabled by rcc_periph_
clock enable().

What GPIO configuration macros be used for input pins?

Answer: Inputs require no special treatment other than having
the AFIO peripheral clock and the GPIO clock enabled, and the
peripheral’s needing the input initialized.

What is the purpose of the OLED D/C input serve?

Answer: The D/C input line (to the OLED) allows it to distinguish
between OLED command bytes (when low) and OLED graphics
data (when high).

Chapter 13

388

In the demo program, what DMA controller aspects had to be
changed before starting the next transfer?

Answer: The start address and length were changed after the DMA
channel was disabled.

Does each DMA channel have its own ISR routine?

Answer: Yes, each DMA channel has its own ISR.

In a memory-to-peripheral transfer, like the demo, where does the
DMA request come from?

Answer: The DMA request comes from the peripheral, except
in a memory-to-memory transfer. In the demo program, the SPI
transmit buffer empty flag signaled the need for a transfer.

In the demo program where SPI was used, what were the three
conditions necessary before a DMA transfer could begin?

Answer: In the demo program where SPI was used, the following
were necessary to cause the DMA to begin:
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a. The DMA channel must be enabled.

b. The DMA TX enable for SPI must be enabled.

c. SPI mustbe enabled.

Chapter 14

How is the internal STM32 temperature represented?

Answer: As a voltage

How does GPIO_CNF_INPUT_ANALOG differ from the value GPIO _
CNF_INPUT_PULL_UPDOWN or GPIO_CNF_INPUT_FLOAT?

Answer: The configuration value GPIO_CNF_INPUT_ANALOG allows
a varying voltage to reach the ADC input. Otherwise, only a low or
high signal would be sensed.

If PCLK has a frequency of 36 MHz, what would be the ADC clock
rate be when configured with a prescale divisor of 4?

Answer: The ADC clock would be 36 MHz =+ 4, which is 9 MHz.

Name three configuration options that affect the total power
consumed by ADC.

Answer: Three factors that affect power consumption for ADC are:
a. adc_power on(adc) (and off)

b. adc_enable temperature sensor() (and disable)

c. adc_start conversion direct(adc)

Assuming that the ADC clock after the prescaler is 12 MHz, how
long does the ADC_SMPR_SMP_41D0T5CYC configured sample take?

Answer: (41.5 + 12.5) + 12 MHz = 54 + 12e6 = 4.5 ps.
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Chapter 15

1. What is the advantage of an RC clock?

Answer: An RC clock requires no external crystal (crystals are too
large to include on an IC).

2. Whatis the disadvantage of an RC clock?

Answer: An RC clock is prone to drift and jitter and is less stable. It
is also less precise, leading to problems with generating baud rates
and so forth.

3. Whatis the advantage of a crystal-derived clock?

Answer: A crystal-controlled clock is stable and can match
external hardware. This makes it more ideal for generating baud
rates and so forth.

4. Whatis the PLL used for?

Answer: The PLL is used to multiply a clock to a rate higher than
its input clock.

5. What does AHB stand for?

Answer: AHB stands for AMBA High-performance Bus.

6. Why must the GPIO PA8 be configured with GPIO_CNF_OUTPUT_
ALTFN_PUSHPULL?

Answer: Without the ALTFN in the macro name, the GPIO would
remain disconnected and otherwise be a normal GPIO having
nothing to do with MCO output.

Chapter 16

1. InaRC Servo signal, what is the period of the signal?

Answer: The period of a PWM signal is the time between the start
of the pulse and the start of the next.
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Why is the timer input clock frequency 72 Mhz on the Blue Pill
STM32F103C8T6? Why isn’t it 36 MHz?

Answer: The input frequency to the timer is 72 MHz (for the Blue
Pill STM32) because when the AHB1 prescaler is not equal to one,
the timer frequency is the AHB1 bus frequency doubled.

What is changed in the timer to effect a change in the pulse width?

Answer: The value of the output compare register

Chapter 17

1.

2.

3.

Why does the timer have a digital filter available on its inputs?

Answer: The digital filter eliminates false triggering from random
noise pulses.

When does the timer reset in PWM input mode?

Answer: As configured in the demo of Chapter 17, the counter
resets after the capture 1 event occurs.

Where does the IC2 input signal come from in PWM input mode?

Answer: In PWM input mode, the IC2 input comes from input
channel 1.

Chapter 19

1.

How many FIFO'’s are supported by the STM32F103 CAN
peripheral?

Answer: There are two FIFOs in the CAN peripheral (FIFO 0 and
FIFO 1).

How many filter banks are supported by the CAN peripheral?

Answer: There are two filter banks in the CAN peripheral (banks 0
and 1).
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3. When a pair of filters must be supplied, but only one is needed,
what are two ways to accomplish this?

Answer: You can supply one filter when a pair are required in one
of two ways:

a. Declare two identical filters (only one will trigger)
b. Declare one good filter and one impossible filter.

4. What is the RTR flag and what is its purpose?

Answer: The RTR (remote transmission request) flag is used to
request a transmission when it is sent in the recessive state. The

reply is always sent with the RTR flag in the dominant state.

Chapter 20

1. What does the make macro BINARY define?

Answer: The BINARY macro defines the name of the application
executable with the .elf suffix attached.

2. What is the purpose of the header file FreeRTOSConfig.h?

Answer: The header file FreeRTOSConfig.h configures several
aspects of the FreeRTOS system.

3. How do you add compiler option -03 only to the compile of
module speedy.c?

Answer: In the Makefile, add the following rule: speedy.o:
CFLAGS += -03

4. What is the main disadvantage of using heap 1?

Answer: The main disadvantage of using heap_1.c in a FreeRTOS
project is that the function free() is not supported. No
dynamically allocated memory can be released and reused.
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STM32F103C8T6
GPIO Pins

This appendix is provided for convenience. This information is derived from the
STMicroelectronics PDF document that can be downloaded by googling “STM32F103x8
STM32F103xB datasheet.” The information here is extracted from Table 5, on page 28, for

just the STM32F103C8T6, which is an LQFP48 device.

Pin  Name Type 1/0 After Reset  Default Remap
Level

1 VBAT S ) VBAT ) )

2 PC13-TAMPER-RTC 1/0 - PC13 TAMPER-RTC -

3 PC14-0SC32_IN 1/0 - PC14 0SC32-IN -

4 PC15-0SC32_0UT 1/0 - PC15 0SC32-0UT -

5 0SC_IN I - 0SC_IN - PDO

6 0SC_out 0 - 0sC_out - PD1

7 NRST /0 - NRST - -

8 VSSA S - VSSA - -

9 VDDA S - VDDA - -
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Pin  Name Type 1/0 After Reset

Level

Default Remap

10 PAO-WKUP /0 - PAO

11 PA1 170 - PA1

12 PA2 /0 - PA2

13 PA3 1/0 - PA3

WKUP -

USART2_CTS

ADC12_INO

TIM2_CH1_ETR

USART2_RTS -

ADC12_IN1

TIM2_CH2

USART2_TX -

ADC12_IN2

TIM2_CH3

USART2_RX -

ADC12_IN3

TIM2_CH4
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Pin  Name Type 1/0 After Reset  Default Remap
Level

14 PA4 I/0 - PA4 SPI1_NSS -
USART2_CK
ADC12_IN4

15 PA5 /0 - PA5 SPI1_SCK -
ADC12_IN5

16 PAG 1/0 - PAG SPI1_MISO TIM1_BKIN
ADC12_IN6
TIM3_CH1

17 PA7 I/0 - PA7 SPI1_MOSI TIM1_CHIN
ADC12_IN7
TIM3_CH2

18 PBO I/0 - PBO ADC12_IN8 TIM1_CH2N
TIM3_CH3

19 PB1 I/0 - PB1 ADC12_IN9 TIM1_CH3N
TIM3_CH4

20 PB2 170 FT PB2/BO0T1 - -
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Pin  Name Type 1/0 After Reset  Default Remap
Level

21 PB10 I/0 FT PB10 12C2_SCL TIM2_CH3
USART3_TX

22 PB11 I/0 FT PB11 12C2_SDA TIM2_CH
USART3_RX

23 VSS._; S - VSS_; - -

24 VDD, S - VDD, - -

25 PB12 1/0 FT PB12 SPI2_NSS -
12C2_SMBAI
USART3_CK
TIM1_BKIN

26 PB13 I/0 FT PB13 SPI2_SCK -
USART3_CTS
TIM1_CHIN

27 PB14 1/0 FT PB14 SPI2_MISO -
USART3_RTS
TIM1_CH2N
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Pin  Name Type 1/0 After Reset  Default Remap
Level

28 PB15 I/0 FT PB15 SPI2_MOSI -
TIM1_CH3N

29 PA8 I/0 FT PA8 USART1_CK -
TIM1_CH1
MCO

30 PA9 1/0 FT PA9 USART1_TX -
TIM1_CH2

31 PA10 1/0 FT PA10 USART1_RX -
TIM1_CH3

32 PA11 170 FT PA11 USART1_CTS -
CANRX
USBDM
TIM1_CH4
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Pin  Name Type 1/0 After Reset  Default Remap
Level
33 PA12 I/0 FT PA12 USART1_RTS -
CANTX
USBDP
TIM1_ETR
34 PA13 I/0 FT JTMS/SWDIO - PA13
35 VSS_, S - VSS. , - -
36 VDD_, S - VoD , - -
37 PA14 I/0 FT JTCK/SWCLK - PA14
38 PA15 I/0 FT JTDI - TIM2_CH1_ETR
PA15
SPI1_NSS
39 PB3 I/0 FT JTDO - TIM2_CH2
PB3
TRACESWO
SPI1_SCK
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Pin  Name Type 1/0 After Reset  Default Remap
Level
40 PB4 I/0 FT JNTRST - TIM3_CH1
PB4
SPI1_MISO
41 PB5 170 FT PB5 12C1_SMBAI TIM3_CH2
SPI1_MOSI
42 PB6 1/0 FT PB6 12C1_SCL USART1_TX
TIM4_CH1
43 PB7 1/0 FT PB7 12C1_SDA USART1_RX
TIM4_CH2
44 BOOTO | - BOOTO - -
45 PB8 I/0 FT PB8 TIM4_CH3 12C1_SCL
CANRX
46 PB9 /0 FT PB9 TIM4_CH4 12C1_SDA
CANTX
47 VSS 5 S - VSS 4 - -
48 VDD, S - VoD 4 . -
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Legend
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Symbol Description

I Input

0 Output

S Supply

FT 5-volt tolerant
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Alternate function, 49
Alternate Function Input Output
(AFIO), 4, 228-230, 240
AMBA High-performance Bus (AHB)
APBI1 and APB2 peripherals, 285
description, 280
rcc_clock_setup_in_hse_8mhz_
out_72mbhz(), 281-285
rcc_set_mco(), 286
STM32F103C8T6 frequencies,
72 MHz SYSCLK, 280
timers, 285
Analog-to-digital converter (ADC)

analog inputs PAO and PA1, 263, 267

analog voltages, 270-271
computing temperature
datasheet, 269
degrees_C100() function, 268
STM32F103C8T6
documentation, 268

STM32F103x8 and STM32F103xB

devices, 268-269
demo_task() function, 267
directory, 262
exercises, 389
minicom, 266
modes, 264
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peripheral configuration, 263-264
prescaler, 264
reading, 267-268
sample time, 264-265
STM32F103C8T6 resources, 261
voltage reference, 270
Analog voltages
ADC inputs PAO and PA1,
potentiometers, 271
linear 10-kohm potentiometer, 270
ARM cross compiler
gcc, 22
packages, 20-21
PATH variable, 22-23
toolchain prefix, 22
ARM devices, 1

B

BINARY macro, 392

Black Pill PCB, 3

blinky2 program
clobber, 66
execution, 66-67
FreeRTOSConfig.h, 67-69
LED blinking, 64
main.c file, 62-65
vApplicationStackOverflow

Hook(), 63
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Blue Pill PCB, 3, 27-28
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D+ line, 10-kohm pullup resistance, 98

1.8-kohm resistor, 98
STM32 to MacBook Pro, 97
Breadboard, 9-10

C

Capacitors, 11-12
Clock tree
AHB (see AMBA High-performance
Bus (AHB))
asynchronous logic circuit, 273
crystal oscillators, 275
exercises, 390
HSE demo, 288-289
HSI demo, 286-288
oscillator power, 276
PLL + 2 demo, 289-290
RC oscillators, 274-275
real-time clock, 276
STM32F103C8T6, 273
STM32 oscillator notation, 274
SYSCLK (see System clock (SYSCLK))
watchdog clock, 276
Controller area network (CAN) bus
arbitration, 321-322
application receiving
data message s_canmsg, 343
message processing, 343-345
can_init(), 336-337
car model, 317-319
demonstration
breadboard setup, 328-330
engine control unit, 325
hookup, 327
MCU, 326
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messages, 330
software directory, 325-326
synchronicity, 331
UART interface, 326
dominant logic level, 319-321
driver signal, 320
exercises, 391-392
filters, 338
high-speed linear, 319-320
initialization, 333-336
interrupts, 339-342
message format, 323-324
recessive logic level, 319-321
sending messages, 345-346
SOF bit, 323
STM32 limitation, 324
Crystal oscillators, 275
Cygwin, 7, 17

D

Development framework, 7
Direct memory access (DMA) controller
challenges, 241
circuit, 242
demonstration
challenges, 258
ISR routine, 254-255
launching DMA, 250-251
main() program changes, 248
menu items, 256-257
meter.c module, 249
OLED SPI/DMA management
task, 251-254

one-time DMA initialization, 249-250

pummel test, 257-258

source code, 247

spi_dma_xmit_pixmap()
function, 255-256



destination, 242
DMA1 channels, 243-247
exercises, 388
FreeRTOS task mechanism, 259
memory locations, 242
memory-to-memory transfer, 247
phases, 242
SPI1_TX request, 247
STM32F103C8T6 MCU, 243
transfer cycle, events, 243
Dominant logic state, 319-321
Ducks-in-a-row
digital outputs, push/pull mode, 52
GPIO inputs, 51
open-drain output, 53
DuPont wires, 10-11

E

Embedded systems, 1
Engine control units (ECUs), 317, 325
ENTRY keyword, 151
Event loop model, 5
EXTI controller
configuration, 191
GPIO ports, 190
rtc_alarm_isr() routine, 191-192

F

fee() function, 157-158
fieQfunction, 158
Flash memory, 24
FreeRTOS, 181
create tasks, 94-95
event groups, 62
event loop model, 5
exercises, 381-382
FreeRTOSConfig.h, 347, 355-357

INDEX

macro prefixes, 70-71
message queues, 60-61
mutexes, 61
naming convention, 69-70
preemptive multitasking, 5
prefix characters, 70
queues, 95
required modules, 354
rtos/heap_4.c, 354
rtos/opencma3.c, 353-354
semaphores, 61
source code, 59
subdirectory, 19
task notification, 181-183
task scheduling, 60
timers, 61-62

FTDI, 13,75

G

General Motors Local Area Network
(GMLAN), 346
Gnu GDB debugger
description, 361
remote, 363-365
server, 361-362
text user interface, 366-367
GPIO
analog input, 48
characteristics
capabilities, 53-54
input voltage thresholds, 55
output voltage thresholds, 55
clock, 44
configuration, 46
digital input, 49
exercises, 379-380
general mode, 46
gpio_set_mode(), 46
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GPIO (cont.)
I/0 configuration, 46-48
libopencm3, 44-45
output ports, 49-50
programmed delays, 56-57
remainder, 44

Ground connection, 32

H

HP 6284A power supply, 33

,J,K
12C software
configuration, 209-210
read function, 213-214
restart, 214-215
start function, 211-212
testing 12C ready, 210
write function, 213
Independent watchdog (IWDG), 276
Inter-integrated circuit (12C)
address, 198
communication lines, 195
data bits, 197
data signal, 195
demo circuit
EXTI interrupt, 207-209

LEDs and push button, 206-207

demo program, 215-218
demo session, 218-220
exercises, 386-387

master and slave devices, 196
PCF8574 configuration

driving higher-current loads, 205

GPIO extender, 200-202
INT line, 203
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NXP Semiconductors, 203
quasi-bidirectional design of
GPIO, 205
simplified GPIO circuit, 204
wave shaping, 206
Phillips Semiconductor, 195
power supply and ground
connections, 195
start and stop, 196-197
STM32 attached to PCF8574P
devices, 202
transactions, 199-200
voltage level, 195
Interrupt service routines (ISR), 175
ISR FreeRTOS crash, 369

L

libopencm3, 5
git clone command, 18
solutions, 23
Linux, 17
Linux USB serial device, 101-102
Load addresses, 160-161

Mac Homebrew, 18
MacOS USB serial device, 102
Male-to-male DuPont wires, 11
Microcontroller unit (MCU), 1, 6
miniblink subdirectory

flash device, 40-41

make clobber, 39

source program file, 41-44
Mutual-exclusion devices

(mutexes), 61, 183-184
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NOCROSSREEFS keyword, 157

O

One power source rule, 31-32
Open-drain mode, 50
Open sourced tools and libraries, 6
Organic light-emitting diode
(OLED) display
AFIO, 228-230
configuration, 224-225
connections, 226
demo circuit, SPI, 227-228
demonstration, 238-240
description, 223
DMA controller (see Direct
memory access (DMA)
controller)
exercises, 387-388
graphics
configuration, 230
demo project, 231
drawing lines, circles, and
rectangles, 230
function pointer, 231
github, 230
meter_init(), 234
meter_redraw(), 235
meter_set_value(), 235
meter_update(), 235-236
monochrome, 231
oled_command(), 236
oled_data(), 237
oled_init(), 237-238
oled_reset(), 237
pixmap, 232-233
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pixmap writing, 233-234
uGUI functions, 231
12C vs. SPI, 223
pixels, yellow/blue, 226-227
SSD1306 controller, 223-224

Oscillator power, 276
Overlays

.elf file, 148
ENTRY keyword, 151
execution, 171-173
exercises, 385
fee() function, 157-158
fee() stub function, 164
fie() function, 158
linker symbols, 161-162
load addresses, 160-161
manager function, 162, 164
MEMORY section, 149-150
NOCROSSREEFS keyword,
156-157

PROVIDE keyword, 154
relocation, 154-155
sections, 151-154
shell commands, 166
struct s_overlay, 159-160
stub function, 159
USB terminal I/0, 165
VMAs, 160-161
Winbond demo project, 148
W25Q32

ascii, 169

dump page, 170

hex file, 169

menu, 168

minicom, 167

option flags, 167

project directory, 167
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P Q timer launch, 296-297

’ PWM with Timer 4
configuration, 306-308
demonstration, 310-311
exercises, 391
GPIO configuration, 306
inputs, 313-315
ISR routine, 309-310
session output, 312
taskl demo loop, 309
voltages, 306

PCF8574 GPIO extender, 200-202
Peripheral devices, 7
Power supply, 14
Preemptive multitasking, 5
Project creation
compile options, 351
exercises, 392
flashing 128k, 352
FreeRTOS (see FreeRTOS)
header dependencies, 351

Makefile
default project, 348-349 R
included, 351 Raspberry Pi, 17
macro BINARY, 349 RC oscillators, 274-275
macro CLOBBER, 350 Real-time clock (RTC), 175
macro DEPS, 350 configuration
macro LDSCRIPT, 350 clock source, 176-177
macro SRCFILES, 349-350 counter value, 177
myproj, 347 flags, 177
rookie mistakes, 358 prescaler, 177
subdirectory, 347-348 demonstration
user libraries, 357 alarm-triggering code, 190
PROVIDE keyword, 154 console task, 186-187
PWM with Timer2 projects, 175
channels, 303 rtc_isr() method, 187
configuration, 295 running, 188-190
demonstration loop, 298 UART1 connections, 187-188
exercises, 390-391 UART or USB, 184-185
features, 294 exercises, 386
GPIO, 302-303 HSE, LSE, and LSI, 276
30 Hz cycle, 299 interrupt and setup, 178-179
interface circuit, 300 interrupt service routine, 179-181
operating mode, 295 mutexes, 183-184
PB3, 301-302 rtc_alarm_isr()

prescaler, 298
requirements, 301
signals, 293
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RTC global interrupt, 190

servicing interrupts, 181



STM32F1 platform, interrupts, 175
task notification, 181-183

Real-time operating system (RTOS), 5, 59, 62

Recessive logic level, 319-321

Red Pill PCB, 3

Regulator, 29-31

Reset circuit, 32

Rookie mistakes, 358

Rremote transmission request
(RTR) flag, 392

RTC control register (RTC_CRL), 177

S

Semaphores, 61
Serial adapter, 12-13
Serial peripheral interface (SPI)
chip select, 117
definition, 115
demonstration
build program, 137
exit, 139
manufacturer ID, 144
minicom set up, 138
power down, 144
running, 139, 141-144
Save setup, 139
Serial port setup, 139
STM32 device, 138
exercises, 384
hardware /NSS control
Captain Obvious, 120
digital electronics, 119
DIP package, W25Q32, 120
multi-master mode, 119
ST documentation, 119
STM32 wired up to W25Q32/
W25Q64, 118
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timespan, 119
SCK, 116-117
shift registers, 116
single master to single slave, 116-117
W25QXX chips, 115
Winbond chip, 118
wiring and voltages, 117
SIP-9 resistor, 15
SPII/O
flash erase
chip-erase code, 134
clusters, data storage, 133
w25_erase_block(), 135-136
W25QXX chips, 134
reading flash, 136-137
read manufacturer ID, 130-131
read SR1, 128-129
spi_xfer() function, 128
wait ready function, 129-130
Winbond W25Q32, 128
Write Enable Latch, 131-133
Stack overflow, 370
st-flash utility
blink image file, 37
erase flash memory, 38
reading, 36
ST-Link V2
programmer hookup diagram, 34
programming unit, 8-9
st-info command, 35
USB extension cable, 35
STM32F103C8T6
breadboard, 3
CAN communications, 3
factors, 2
part number, 2
PCB, 3
peripherals, 4
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STM32F103x8 and STM32F103xB
datasheet, 393-399
STM32F108C8T6, LED blinking, 33
STM32 SPI configuration
clock polarity and phase, 125-127
clock rate, 124-125
DSO trace of SCK and /CS, 127
endianess and word length, 127-128
GPIO pins, 120-121
main program initialization, 121-122
spi_setup(), 122-123
Stub function, 159
Subdirectory
create, 18
FreeRTOS, 19
libopencm3, 18
~/stm32f103c8t6/rtos/Project.mk, 19
System clock signal (SCK), 116-118,
122,124, 127
System clock (SYSCLK)
clock sources, 277
clock tree, 281
HSE and PLL, 278
HSI and PLL, 277
simplified diagram, 278-279
STM32F103C8T6 AHB
frequencies, 280
USB, 279-280
Systick interrupt, 62

T

Troubleshooting
alternate function fail, 368-369
debugger, 371
FreeRTOS
idle task, 375
libopencm3, 376-377
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lower-priority tasks, 375
multi-tasking, 375
Ready or Running state, 375
Gnu GDB (see Gnu GDB debugger)
ISR FreeRTOS crash, 369
peripheral defects, 372
peripheral fail, 369
peripheral GPIO trouble, 367-368
push-pull/open-drain, 372
resources
libopencm3, 373-375
power consumption, 373
“STM32F103x8 STM32F103xB PDF”
document, 373
stack overflow, 370
stack size estimation, 371

0.1 uF bypass capacitors, 11-12
Universal Serial Bus (USB)

control structures, 113

definition, 99

exercises, 383-384

GPIO, 103

Linux, 101-102

MacOS, 102

MCU source code, 101

pipes and endpoints, 99-101

serial demo, 111-113

serial device, 101

sound-recording device, 99

source code
cdcacm_data_rx_cb(), 107-108
cdcacm_set_config(), 105-106
cdc_control_request(), 106-107
receiving, 110
sending, 110



usb_getc(), 110
usb_putc(), 110-111
usb_ start(), 104-105
usb_task(), 108-109
Windows, 103

Universal Synchronous/Asynchronous

Receiver/Transmitter (USART)
clocks, 92
configuration, 92
data bits, 91
DMA, 93
ducks-in-a-row, 93
exercises, 382-383
flow control macros, 91
FreeRTOS (see FreeRTOS)
GPIO-controlled LED, 73
include files, 92
input/output/status, 93
interrupts, 93
operation mode macros, 91
parity macros, 90
project uart
function taskl1(), 83
function uart_putc(), 84
main program uart.c, 81
setup code, UART1, 82
project uart2
demo_task(), 87
source module uart.c, 85
uart_puts(), 88
uart_setup(), 85
uart_task(), 86-87

uart_task() and demo_task(), 88-89

xTaskCreate(), 88
status flag bit macros, 92
STM32F103C8T6 device, 90

stop bit macros, 91

UART peripherals
asynchronous data, 74
differences, 73
STM32F103, 73
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synchronous communication, 73
USB TTL serial adapters (see USB TTL

serial adapters)
USB power, 30
USB TTL serial adapters, 12-13
cable, 76
FTDI drivers, 75
guidelines, 75
hookup, 76-77
microcontrollers, 74
project uart, 77-81
RS-232, 75
terminal program, 74
5-volt-tolerant inputs, 75

\'

Virtual memory address (VMA), 160-161

+3.3V regulator, 29-31
+5V regulator, 30

w

W25QXX chips, 115

Watchdog clock, 276

Winbond demo project, 148
Windows USB serial device, 103
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XC6204 series regulator, 29
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