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Preface

This book is the culmination of over a decade of teaching of a newly designed
umbrella course on visual computing that would provide students with funda-
mentals in the different areas of computer graphics, computer vision and image
processing. Looking back, this was a very forward looking curriculum which be-
came the launching pad for all computer graphics, computer vision and image
processing students at UCI and helped future new faculty hires in this direction
to count on this course to provide exposure to fundamentals that are common
to all these domains. This course is a core entry-level course in the graduate
curriculum providing students the opportunity to explore a larger breadth be-
fore moving on to more focused channels of computer graphics, computer vision
and/or image processing. It is also being adopted as one of the core courses for
our professional masters degree program which began in Fall 2017. Interestingly,
the research community has also followed this trend since 2006 when we started
to see researchers from one of the domains of computer graphics, computer vision
and image processing having strong presence in others leading to a young and
dynamic research sub-community that traverses all these domains with equal
dexterity. Therefore, having a breadth of knowledge in the general area of visual
computing is perceived today as a strength that helps students delve easily into
inter-disciplinary domains both within CS and other domains where it is being
extensively used.

The inspiration for writing this book came from many instructors and educa-
tors who inquired about our visual computing course at UCI, designed a similar
course at their home institutions, and were requesting a standard single textbook
to cover all the topics. The key exercises that we undertook prior to writing this
book were (a) to carefully choose a lean set of topics that would provide adequate
breadth for an introductory course in visual computing enabling the students to
take one course instead of three different courses in CG, CV and IP before decid-
ing on the direction they would like to pursue; (b) to carefully design the depth
of material in each of these topics so that it can be dealt with nicely during
the offering of a single course without being overwhelming; (c) to categorize the
topics from the perspective of visual computing in such a manner that students
are able to see the common threads that run through these different domains.
This exercise led to the organization of the book into five different parts.

xi



xii Preface

1. Part 1: Fundamentals provide an exposure to all kinds of different visual
data (e.g. 2D images and videos and 3D geometry) and the core mathe-
matical techniques that are required for their processing in any of the CG,
CV or IP domains (e.g. interpolation and linear regression).

2. Part 2: Image Based Visual Computing deals with several fundamental
techniques to process 2D images (e.g. convolution, spectral analysis and
feature detection) and corresponds to the low level retinal image processing
that happens in the eye in the human visual system pathway.

3. Part 3: Geometric Visual Computing deals with the fundamental tech-
niques used to combine the geometric information from multiple eyes cre-
ating a 3D interpretation of the object and world around us (e.g. trans-
formations, projective and epipolar geometry). This deals with the higher
level processing that happens in the brain that combines information from
both the eyes helping us to navigate through the 3D world around us.

4. Part 4: Radiometric Visual Computing deals with the fundamental tech-
niques for processing information arising from the interaction of light with
the objects around us. This topic covers both lower and higher level pro-
cessing in the human visual system that deals with intensity of light (e.g.
interpretation of shadows, reflectance, illumination and color properties).

5. Part 5: Visual Content Synthesis presents fundamentals of creating virtual
computer generated worlds that mimic all the processing presented in the
prior sections.

The book is written for a 16 week long semester course and can be used for
both UG and graduate teaching. The recommended timeline for teaching would
be to dedicate two weeks for Part 1, three weeks each for Parts 2 and 4, and
three and half weeks each for Parts 3 and 5. The exercises following each chapter
can be used to provide weekly or biweekly written assignments. The ideal way to
provide hands-on implementation experience would be to have one programming
assignment accompany each part of the course picking a subset of topics taught in
each part based on the expertise level of the students. The decision of making this
book independent of any programming language or platform is to enable each
instructor to choose the most convenient topics, platforms, and programming
language for their assignments based on the resources at hand and the skill set
of the audience. Evaluation via two midterms at the end of the 6th and 12th
week and a comprehensive final is probably most conducive.

Teaching the material in this book in a 10 week quarter usually poses a chal-
lenge. There can be multiple ways to handle this. The easiest way is to increase
the number of credits for this course leading to more contact hours to compen-
sate for the reduced number of weeks. The second way is to pare down or divide
the content presented in a standard semester long offering of the course. For



Preface xiii

example, Visual Computing-I can focus on low level visual computing focusing
on Chapters 1-5 and 9-10 and the first two sections of Chapter 11 while Vi-
sual Computing-II can focus on higher level visual processing and representation
focusing on Chapters 6-8, the last section of Chapter 11 and Chapters 12-15.
Alternatively, parts of a chapter or complete chapters can be skipped to created
a pared down version of the course that avoids reducing the rigor of the concepts
taught in the class. Such an approach has been explored in the past in UCI by
removing Chapters 8,10,15, and most of Chapter 14 beyond texture mapping.
The decision of what to present, what to shorten and what to completely remove
resides best with the instructors. The book has been written carefully to min-
imize dependencies between chapters and sections so that they can be chosen
independently by instructors without worrying overtly about dependencies on
other parts of the book.

We hope that the material presented in this book and its non-traditional
organization inspires instructors to design a visual computing course in their
institutions, use this book as a textbook for its offering, and hopefully see an
increased interest amongst the students towards the study of the general domain
of visual computing. We would like to get feedback from instructors who are
using this book as a textbook. Please feel free to write to us about anything you
faced while using this book — desired additions, details, or organization. Such
feedback will be instrumental towards more refined and better suited subsequent
editions of this book.

We acknowledge our colleagues at the University of California at Irvine for
their support in designing non-traditional courses leading to experimentation
which provided the building blocks for this book. We would like to thank the
numerous students who took the Visual Computing course at UCI and the teach-
ing assistants who helped us execute and experiment during different offerings
of this course which led to the development and organization of the material
presented in this book. We also acknowledge the help rendered by our students,
Nitin Agrawal and Zahra Montazeri, in designing and rendering to perfection
the various figures used in this book. We deeply appreciate the special efforts of
Prof. Shuang Zhao of the University of California, Irvine, Prof. Amy and Bruce
Gooch of the University of British Columbia, Dr. David Kirk of nVidia, Prof.
Chee Yap of New York University, and Prof. Jan Verschelde of the University
of Illinois, Chicago, in providing some of the images in this book on physically
based modeling, non-photorealistic rendering, geometric compression and GPU
architecture respectively.

Aditi Majumder
Gopi Meenakshisundaram
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Data

In the context of visual computing, data can be thought of as a function that de-
pends on one or more independent variables. For example, audio can be thought
of as one dimensional (1D) data that is dependent on the variable time. Thus,
it can be represented as A(t) where ¢t denotes time. An image is data that is two
dimensional (2D) data dependent on two spatial coordinates z and y and can
be denoted as I(x,y). A video is three dimensional (3D) data that is dependent
on three variables — two spatial coordinates (x,y) and one temporal coordinate
t. It can therefore be denoted by V(z,y,t).
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Figure 1.1. Most common visualization of 1D (left) and 2D (right) data. The 1D data
shows the population of US (Y-axis) during the 20th century (specified by time in the
X-axis) while the 2D data shows the surface elevation (Z-axis) of a geographical region
(specified by X and Y-axes). This is often called height field.



4 1. Data

Figure 1.2. Conducive Visualizations: An image is represented as three 2D functions,
R(z,y), G(z,y) and B(z,y). But instead of three height fields, a more conducive vi-
sualization is where every pixel (z,y) is shown in RGB color (left). Similarly, volume
data T'(z,y, z) is visualized by depicting the data at every 3D point by its transparency
(right).

1.1 Visualization

The simplest visualization of a multi-dimensional data is a traditional plot of
the dependent variable with respect to the independent ones, as illustrated in
Figure 1.1. For example, such a visualization in 2D is called height field. How-
ever, as data becomes more complex, such visualization do not suffice due to the
inherent inability of humans to visualize geometrical structures beyond three
dimensions. Alternative perceptual modalities (e.g. color) are therefore used to
encode data. For example, color image comprises of information of three color
channels, usually red, green and blue, each dependent on two spatial coordinates
(z,y) — R(z,y), G(z,y) and B(z,y). However, often visualizing these three func-
tions together is much more informative that visualizing them as three different
height fields. Thus, the ideal visualization is an image where each spatial coordi-
nate is visualized as a color which is also a 3D quantity. Similarly, a 3D volume
data T'(z,y, z), providing scalar data at each 3D grid point, is visualized in 3D by
assigning color or transparency to each grid point computed using a user defined
transfer function f(T(x,y,z)) that is common to the entire data set (See Figure
1.2).

1.2 Discretization

Data exists in nature as a continuous function. For example, the sound we hear
changes continuously over time; the dynamic scenes that we see around us also
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Figure 1.3. This figure illustrates the process of sampling. On top left, the function
f(t) (curve in blue) is sampled uniformly. The samples are shown with red dots and
the values of ¢ at which the function is sampled is shown by the vertical blue dotted lines.
On top right, the same function is sampled at double the density. The corresponding
discrete function is shown in the bottom left. On the bottom right, the same function
is now sampled non-uniformly i.e. the interval between different values of ¢ at which it
is sampled varies.

change continuously with time and space. However, if we have to digitally rep-
resent this data, we need to change the continuous function to a discrete one,
i.e. a function that is only defined at certain values of the independent variable.
This process is called discretization. For example, when we discretize an image
defined in continuous spatial coordinates (z,y), the values of the corresponding
discrete function are only defined at integer locations of (z,y), i.e. pixels.

1.2.1 Sampling

A sample is a value (or a set of values) of a continuous function f(¢) at a specified
value of the independent variable ¢. Sampling is a process by which one or more
samples are extracted from a continuous signal f(t) thereby reducing it to a
discrete function f (t). The samples can be extracted at equal intervals of the
independent variable. This is termed as uniform sampling. Note that the density
of sampling can be changed by changing the interval at which the function is
sampled. If the samples are extracted at unequal intervals, then it is termed as
non-uniform sampling. These are illustrated in Figure 1.3.

The process of getting the continuous function f(¢) back from the discrete
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Figure 1.4. This figure illustrates the effect of sampling frequency on reconstruction.
Consider the high frequency sine wave shown in blue. Consider two types of sampling
shown by the blue and red samples respectively. Note that none of these sample the
high frequency sine wave adequately and hence the samples represent sine waves of
different frequencies.

function f(t) is called reconstruction. In order to get an accurate reconstruction,
it is important to sample f(t) adequately during discretization. For example,
in Figure 1.4, a high frequency sine wave (in blue) is sampled in two different
ways, both uniformly, shown by the red and blue samples. But in both cases
the sampling frequency or rate is not adequate. Hence, a different frequency
sine wave is reconstructed — for blue samples a zero frequency sine wave and
for red samples a much lower frequency sine wave than the original wave. These
incorrectly reconstructed functions are called aliases (for imposters) and the
phenomenon is called aliasing.

This brings us to the question of what is adequate sampling frequency? As it
turns out, for sine or cosine waves of frequency f, one has to sample them at a
minimum of double the frequency, i.e. 2f, to assure correct reconstruction. This
rate is called the Nyquist sampling rate. However, note that the reconstruction
is not a process of merely connecting the samples. The reconstruction process is
discussed in details in later chapters.

We just discussed adequate sampling for sine and cosine waves. But, what is
adequate sampling for a general signal — not a sine or a cosine wave? To answer
this question, we have to turn to the operation complementary to reconstruction,
called decomposition. Legendary 19th century mathematician, Fourier, showed
that any periodic function f(¢) can be decomposed into a number of sine and
cosine waves which when added together give the function back. We will revisit
Fourier decomposition in greater detail at Chapter 4. For now, it is sufficient to
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Figure 1.5. This figure illustrates how addition of different frequency sine waves results
in the process of generation of general periodic signals.

understand that there is a way by which any general signal can be decomposed
into a number of sine and cosine waves. An example is shown in Figure 1.5
where different frequency sine waves are added to create new signals. Hence, the
adequate sampling rate of a general signal is guided by the highest frequency sine
or cosine wave present in it. If the signal is sampled at a rate that is greater than
twice the highest frequency sine or cosine wave present in the signal, sampling will
be adequate and the signal can be reconstructed. Therefore, the signal in Figure
1.5 has to be sampled at least at a rate of 6f to assure a correct reconstruction.

1.2.2 Quantization

A analog or continuous signal can have any value of infinite precision. However,
whenever it is converted to digital signal, it can only have a limited set of value.
So a range of analog signal values is assigned to one digital value. This process
is called quantization. The difference between the original value of a signal and
its digital value is called the quantization error.

The discrete values can be placed at equal intervals resulting in uniform step
size in the range of continuous values. Each continuous value is usually assigned
the nearest discrete value. Hence, the maximum error is half the step size. This
is illustrated in Figure 1.6.
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Put a Face to the Name

Harry Theodore Nyquist is considered to be one of
the founders of communication theory. He was born
to Swedish parents in February 1886 and immigrated
to the United States at the age of 18. He received his
B.S. and M.S. in electrical engineering from the Uni-
versity of North Dakota in 1914 and 1915 respectively.
He received his PhD in physics in 1917 from Yale Uni-
versity. He worked in the Department of Development
and Research at AT&T from 1917 to 1934, and contin-
ued there when it became Bell Telephone Laboratories until his retirement
in 1954. He died in April 1976.

However, human perception is usually not linear. For example, human per-
ception of brightness of light is non-linear, i.e. if the brightness is increased by a
factor of 2, its perception increases by less than a factor of 2. In fact, any modal-
ity of human perception (e.g. vision, audio, nervous) is known to be non-linear.
It has been shown that most human perception modalities follow Steven’s power
law which says that for input I, the perception P is related by the equation
P o I7. If v < 1, as is the case of human response to brightness of light, the
response is said to be sub-linear. If v > 1, as is the case for human response to
electric shock, the response is said to be super-linear.

Due to such non-linear response of the human system, in many cases, a non-
uniform step size is desired when converting a continuous signal to digital. For
example, in displays, the relationship of the input voltage to the produced bright-
ness needs to be super-linear to compensate for the sub-linear response of the
human eye. This function in displays (e.g. projectors, monitors) is commonly
termed as the gamma function. When such non-uniform step size is used during
the conversion of the continuous signal to digital, the maximum quantization
error is half the maximum step size, as illustrated in Figure 1.6.

1.3 Representation

In this section we will discuss data representation in the context of visual com-
puting — namely audio, images, videos and meshes. An analytical representation
of data is in the form of a function of one or more independent variables. Audio
data A(t), where ¢ denotes time, can be represented as A(t) = sin(t) + 1 sin(2t).
However, for digital representation of an arbitrary audio signal, we usually use
a 1D array to represent the audio data. From now on, we will distinguish the
digital representation from the analog by using A[t] instead of A(t). Note that
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Figure 1.6. This figure illustrates the effect of step size on quantization error. The
blue dotted lines show the eight discrete values. Note that these can be distributed at
equal intervals resulting in uniform step size throughout the range of continuous values.
The intervals can also change to create non-uniform step size. The range of continuous
signal values that are assigned a particular discrete value is shown on the independent
axis leading to maximum quantization error of half the maximum step size. Hence, for
uniform step size, the maximum error is half the uniform step size.

Figure 1.7. This figure illustrates the gray scale image (left) being represented as a
height field (right).

representation using an 1D array follows an underlying assumption that the data
is structured, which in this case means uniformly sampled.

Similarly, a 2D digital grayscale image I is denoted by the 2D array I[z,y]
where z,y stands for spatial coordinates. This also assumes structured data.
This can be visualized as an image with a grayscale color assigned to every (x,y)
coordinates. It can also be visualized as a height field in which the height (Z-
value) is the grayscale value at every (z,y) coordinate forming a surface (Figure
1.7).

Color images also have multiple channels, typically red, green and blue.
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Hence, they are represented by a three dimensional array I[c,x,y] where ¢ de-
notes the channel, ¢ € {R, G, B}. Video involves the additional dimension of time
and hence is represented by a four dimensional array V¢, ¢, z, y]. Note that all of
these data are structured, which assumes a uniform sampling in each dimension.
All these aforementioned representations are called the time or spatial domain
representation.

An alternate representation, called
the frequency domain representation,
considers the signal as a composition

% Pi (e.g. linear combination) of a number
of more fundamental signals (e.g. sine
’ > or cosine waves). Then the signal can
be represented by the coefficients of
these fundamental signals in the com-
position that would result in the orig-
inal signal.. For example, the Fourier
transform provides us with a way to find the weights of the sine and cosine waves
that form the signal. Since the frequencies of these fundamental signals are pre-
defined based on their sampling rate, the signal can then be represented by a set
of coefficients for these waves. In this chapter we will briefly discuss the Fourier
transformation, and will revisit this topic in greater detail in Chapter 4.
Let us consider a 1D sig-
nal ¢(t) (e.g. audio). This can
be represented as

> f g ‘>f.

Figure 1.8. Informal representation of the
frequency domain response of a 1D signal

Amplitude

c(t) =Y aiCos(fi +ps)

i=1

iy
Frequency = (g*+h?)*2
Orientation = tan"(h/g)

where a; and p; denote re-
spectively the amplitude and
the phase of the constitut- Figure 1.9. Left: Informal representation of the am-
ing cosine waves. Therefore, plitude part of the frequency domain response of a
the frequency domain repre- 2D signal. Right: A grayscale representation of the

sentation of c(t) is two plots ~Same plot on the left.

— amplitude plot that shows
a; plotted with respect to f; and phase plot that shows p; plotted with respect
to f;. Together they show the amplitude and phase of each wave of frequency
fi- A typical 1D frequency response plot is shown in Figure 1.8. Since higher
frequency waves only create the sharp features, they are usually present in very
small amplitudes. Hence, most amplitude plots, especially for natural signals,
taper away at higher frequencies as shown in 1.8.

Let us now try to extend this concept intuitively to 2D signals (e.g. grayscale
image). Note that when considering these waves in 2D, they can now not only
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differ in frequency f but also in orientation o. A horizontal cosine wave is entirely
different than a vertical one even if they have the same frequency. Therefore, the
frequency response of 2D signals results in 2D plots where the amplitude/phase
are functions of both frequency and orientation. However, understanding a 2D
plot whose one axis is frequency and other orientation is very hard for us to
comprehend. An easier way to plot these is to use polar coordinates g and h
such that frequency f at coordinate (g, h) is given by the length /g% + h? and
the orientation is given by the angle tan~' 2. This means that a circle in (g,h)
would provide cosine waves of the same frequency and different orientation and a
ray from the origin will provide cosine waves of the same orientation and different
frequencies. Figure 1.9 shows an example 2D amplitude plot. Note that here also
the higher frequencies have much less amplitude than the lower frequencies given
by the radially decreasing values of the plot. Alternatively, the same plot can be
visualized as a grayscale image where the amplitude is normalized and plotted
as a gray value between black and white (Figure 1.9).

1.3.1 Geometric Data

A geometric entity (e.g. lines, planes or surfaces) can be represented analytically.
Alternatively, a discrete representation can also be used. Continuous represen-
tations can be implicit, explicit or parametric.
An explicit representation is one where one dependent variable is expressed as
a function of all the independent variables and constants. The explicit equation
of a 2D line is
Yy =mx—+c

where m and ¢ are the slope and y-intercept of the line. Similarly, the explicit
representation of a 2D quadratic curve can be

y=azx?+br+c

where a, b and c¢ are the coefficients of the quadratic function representing the
curve. Another popular explicit function occuring in physics and signal process-
ing is

y = Asin(wt + ¢).
This represents a sine wave of amplitude A, frequency w and phase ¢. Note
that an explicit representation allows easy evaluation of the function at different
values of the independent variables.

However, more complex functions are sometimes not easy to represent using
explicit form. Implicit representations consider a point p to be of interest if it
satisfies an equation F(p) = ¢, where c¢ is a constant. The implicit equation of a
2D line is

ax +by+c=0,
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Vertices
V, Xy, Y1, 24)
V, (X, Vs, Z5)
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Figure 1.10. This figure shows the representation of a 3D mesh of a cube. It comprises
of a list of vertices followed by a list of triangles. Each triangle is described by the
indices of the vertices it comprises.

while that of a 3D plane is
ax+by+cz+d=0.
Similarly, the implicit equation of a 2D circle is
(x—a)?+ (y—b)?*=r?

where (a,b) is the center and r is the radius of the circle. The implicit equation
of a 3D sphere is
(@=a)’+(y =)+ (-0 =1

where (a, b, ¢) is the center and r is the radius of the sphere. In explicit function,
sometimes dependent and independent variables have to be swapped to represent
special cases. For example, it is not possible to represent a vertical line using
explicit equation y = mx + ¢ since m = oo. So we need to change x to be a
dependent variable to represent this horizontal line x = m’y + ¢’ where m’ = 0.
On the other hand, there are no special cases in implicit function representation.
The advantage of an implicit representation is an easy inside or outside test. If
F(p) < 0, the point is ‘above’ or ‘outside’ the surface and if F(p) < 0, the point
is ‘below’ or ‘inside’ the surface.

Finally, the parametric equation allows the representation of the function
using one or more parameters. For example, a point p = L(t) on a line segment
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Manifold Manifold with Boundaries Non-Manifold

Figure 1.11. This figure illustrates manifold (closed objects), manifolds with boundaries
(objects with holes) and non-manifolds (objects with folds and creases.

between two points and P and @) can be represented in the parametric form as
L(t) = P+ Q- P),

where the parameter is t and 0 < ¢ < 1. Similarly, the parametric equation of a
point inside the triangle formed by P, Q and R is given by the two parameter
equation given by

p=P+u(@—-P)+v(R—-P).

where the parameters are u and v such that 0 < u,v < 1 and u+ v < 1. The
parametric equation allows easy sampling of the parametric space and evaluating
any function at these different sampled values.

In a discrete representation, a geometric entity is represented as a collection
of other geometric entities as opposed to an analytical equation. For example,
a 2D square can be defined by a set of lines embedded in the 2D space; a 3D
cube can be defined by a set of quadrilaterals or traingles embedded in the 3D
space. Such a representation is called a mesh. For example, when using triangles
to define a 3D object, we call it a triangular mesh. The entities that make up
the mesh (e.g. lines, triangles or quadrilaterals) are called the primitives.

Though there are many different ways to represent 3D geometry, the most
common is a triangular mesh. So, we discuss some key elements of triangular
mesh representation here. More details of other geometric representations and
their use are presented in later chapters. A triangular mesh is defined by a
set of vertices and a set of triangles formed by connecting those vertices. The
representation therefore consists of two parts: (a) a list of vertices represented
by their 3D coordinates; and (b) a list of triangles each defined by indices of
the three vertices of its corners. Figure 1.10 shows an example of the mesh
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Figure 1.12. Left: This shows how a genus 1 donut is transformed to a genus 1 cup by
just changing the geometry. Right: This shows the diagram of a mobius strip.

representation of a simple 3D object, a cube. The coordinates of the vertices
define the geometry of the mesh. In other words, changing these coordinates
changes the geometry of the object. For example, if we want change the cube
into a rectangular parallelepiped or a bigger cube, the 3D coordinates of the
vertices will be changed. However, note that this will not change the triangle
list since the connectivity of the vertices forming the triangles does not change.
Hence, the latter is termed as the topological property of the mesh. Topology
refers to connectivity that remains invariant to changes in geometric properties
of the data.

Next, we will define certain geometric and topological properties of meshes,
but not in a rigorous fashion. We will give you intuitions and informal definitions.
Closed meshes (informally defined to have no holes) have several nice properties
in the context of computer graphics operations like morphing, mesh simplification
and editing. Such meshes are manifolds where every edge has exactly two incident
triangles. A mesh where every edge has one or two incident triangles is called
manifold with boundaries. For example, a piece of paper denoted by two triangles
where the four edges forming the sides of the paper have only one incident
triangle, is a manifold with boundaries. Note that manifold with boundaries are
less restrictive than manifolds and hence a superset of manifolds. Meshes where
edges can have more than two incident triangles are called non-manifolds. Note
that non-manifolds are a superset of manifolds with boundaries. Figure 1.11
illustrate this.

Meshes can be defined with geometric properties or attributes. In Figure 1.10
each vertex has 3D spatial coordinates. In addition to this basic information, each
vertex can have RGB color, normal vectors, or 2D coordinates of an image to
be pasted on the mesh (formally known as texture coordinates), or any other
vertex-based attribute that is useful for the given application. Topological prop-
erties are properties that do not change with change in geometric properties. For
mesh processing, a few topological properties are very important. First is Euler
characteristics e defined as V — E + F where V is the number of vertices, E is
the number of edges, and F' is the number of faces (not necessarily triangular)
of the mesh. Note that if you change the cube to a parallelepiped by changing
the position of the vertices which is a geometric property, e does not change.
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Essentially e may change only when the object undergoes some change in the
mesh connectivity. Genus of a mesh is defined as the number of handles. For ex-
ample, a sphere has a genus zero, a donut has a genus 1 and a double donut has
a genus 2. One will need to change the topology of the mesh to change from one
genus to another while only geometric changes are sufficient to change one object
to another with same genus (Figure 1.12). Finally, a mesh is not orientable if you
start walking on the top of the mesh and end up in its backside. An example of
a non-orientable mesh is the mobius strip (Figure 1.12).

Fun Facts

Tk, A non-orientable surface that has been intriguing to topologists

-1 is the Klein bottle. Unlike a mobius strip, it does not have any
3 boundary. It is what you get when you put two mobius strips
together. The Klein bottle was first described in 1882 by the
German mathematician Felix Klein. It cannot be embedded in
3D space, only in 4D space. It is hard to say how much water
Klein bottles would hold, they contain themselves when embedded in 4D
space! This has not stopped people from trying to embed them in 3D
however, and there are some beautifully-made representations on display at
the London Science Museum!

We have so far only considered triangular primitives for meshes. Though
other primitives can be used (e.g. six quadrilaterals instead of 12 triangles for
mesh representation of a cube), triangles are preferred for various reasons. First,
triangles are always planar since three non-collinear points define a plane. Hence,
modeling packages do not need to assure that a surface fits the vertices when
they output the mesh representation. Second, as we will see in the next chapter,
in computer graphics it is important to find out the attributes or properties of
points lying inside a primitive from the properties at its vertices via techniques
called interpolation where triangular primitives hold a great advantage.

1.4 Noise

Any discussion on data cannot be complete without discussing noise. Noise can
be caused due to several factors like mechanical imprecision, sensor imprecision
(e.g. occasional always-dead or always-live pixels) and so on. The origins of noise
in different systems are different. It is best described as addition of random values
as random locations in the data. In this chapter we will discuss some common
types of noise.
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Figure 1.13. This figure illustrates random noise in 1D audio data (left), 2D image data
(middle), and 3D surface data (right). In each example, the clean data is shown on the
left and the corresponding noisy data is shown on the right.

The most common and general kind of noise is what we call random noise
i.e. addition of small random values at any location of the data. Figure 13 shows
some examples. A common technique to reduce such noise in data is what we
call low pass ﬁlterlng and it will be dealt with in detail in Chapter 3.

: ] Another common type of
noise originates from having
outliers in the data i.e. sam-
ples which clearly cannot be-
long to the data. For exam-
ple, in a camera some sensor

Figure 1.14. This shows the outliers or salt and pep- pixels may be dead making
per noise in 1D (left), 2D (middle) and 3D (right) thereby blocking or allowing
data. On the left, we show the effect of a median all the light providing pixels
filter in removing the outliers in red. that are always either black

or white respectively. The lo-
cations of such pixels may be random. In the specific case of 2D images, this
noise is called salt and pepper noise (see Figure 1.14). Such outliers are handled
adequately by median filters or other order statistics filters. We will see some of
these in Chapter 5.

Finally, some noise may look random in the spatial domain but can be isolated
to a few frequencies in the spectral domain. An example of such noise is shown
in Figure 1.15. Such noise can be removed by applying a filter in the frequency
domain called the notch filter and we are going to talk about that in detail in
Chapter 4.

1.5 Conclusion

In this chapter we discussed the fundamentals of representing and visualizing
different kinds of visual data like images, 3D surfaces and point clouds. We also
learned about two alternate representations of data in the spatial/time domain
and frequency domain. We talked about practical issues involving noise in data
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Figure 1.15. This figure shows the frequency domain noise that can be removed or
reduced by notch filters.

and how it needs to be handled on a case by case basis. Here are some references
for familiarizing yourself for some advanced concepts. [Ware 04] explores in de-
tails all about information visualization. [Goldstein 10] provides an excellent first
reading for topics related to sensation and human perception. The chapter on
Data Structures for 3D graphics in [Ferguson 01] provides a detailed description
of representation of 3D models. The chapter on noise on [Gonzalez and Woods 06]
provides a very detailed treatise on noise that is worth reading.
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Exercises

1.

Consider an 8-bit grayscale image I(x,y) whose size is 256 x 256. Each
column of the image has the same gray value which starts from 0 for the
left most column and increases by 1 as we sweep from left to right. What
kind of shape does the height field of this image form? Find its equation?

. Consider a height field H(xz,y) of size 256 x 256 given by the function

H(z,y) = (r mod 16) * 16. What kind of shape would this height field
have? How many gray levels would this image have? Create a table to
show the percentage of pixels that belong to each of these gray levels.

. Consider a gray scale spatial function A(xz,y) which does not vary in the

y-direction but form a sine wave as we go from left to right in x-direction
making 50 cycles. What will be the minimum horizontal resolution of an
digital image that can sample this function adequately? Consider another
function B(z,y) formed by rotating A about the axis perpendicular to the
plane formed by z and y. Now consider the function formed by adding
A and B. What is the minimum horizontal and vertical resolution of the
image required to sample A + B adequately?

. Consider an object moving at 60 units per second. How many frames per

second video is required to adequately capture this motion? What kind of
artifact would you expect if the frame rate is lesser than this desired rate?
What is this artifact more commonly known as?

. The image of your TV looks washed out. The technician says that the

intensity response curve of the TV is linear and hence the problem. To
correct the problem, he has to make it non-linear. Why? What kind of
non-linear response do you think he will put in?

. If the number of bits used for representing the color of each pixel is in-

creased quantization error is reduced. Justify this statement.

Can quantization be explained as an artifact of insufficient sampling? Jus-
tify your answer.

. Your TV has three channels — R, G and B. However one of these channels

is broken and now you can only see blacks and purples. Which channel is
broken?

. A 1D function contains all the harmonics of the sine wave that makes 1

cycle with a spatial span of 1 unit. Choose the correct answer.

(a) The amplitude plot of the frequency domain response of this function
is a (i) a sine wave; (ii) a horizontal line; (iii) a comb function.
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10.

11.

12.

13.

14.

(b) The phase plot of the frequency domain response of this function is a
(i) a sine wave; (ii) a horizontal line; (iii) a comb function.

What is the euler characteristics of a cube represented by six planar quadri-
laterals. Euler characteristics of an object are related to its genus by the
formula e = 2 — 2¢g. Can you derive the genus of a sphere from the Euler
characteristics of a cube? If so, how?

Topologically, a cube is an approximation of a sphere using quadrilateral
faces. In such a cube, all vertices have degree three. It is claimed that one
can construct an approximation of a sphere using quadrilaterals where each
vertex has degree 4. Prove or disprove this claim.

Objects like spheres are usually approximated in computer graphics by
simpler objects made of flat polygons. Start with a regular tetrahedron
constructed from four triangles. Derive one or more methods to obtain
a close approximation of a sphere based on subdividing each face of the
tetrahedron recursively using the same geometric operation. Does these
constructions change the topological properties of the sphere? Can you
think of some criteria to evaluate the quality of these constructions?

Match the noisy images in the top row with the filters that will remove the
noise in the bottom row.

Notch Filter Low Pass Filter Median Filter

Consider the mesh representing a pyramid with a quadrilateral as base
and four triangles attached to each of its sides to form the structure of the
pyramid. Find its Euler characteristics and genus.
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We are familiar with different kinds of data. In this chapter, we will introduce two
fundamental techniques that we will be using throughout this book: interpolation
and computation of geometric intersections.

2.1 Interpolation

Consider a function (e.g. attributes or properties like color or position) sampled
at certain parametric values. Interpolation is a process by which this function is
estimated at parametric values at which it has not been measured or sampled. An
image data can be considered as samples of a 2D function I(x,y) that provides
color at each spatial location (x,y). Typically, image data points are sampled
at integer values of x and y. Given the function values of I(x,y) at the integer
grid points (z,y), we use interpolation to find the function value I(z,y) at in-
between, and possibly non-integer values of x,y. Or, consider a triangle. The
position function (defined by 3D coordinates) is defined only at the vertices. We
need to interpolate the positions of the vertices to the interior of the triangle to
compute the position of any point lying inside the triangle.

Interpolation is based on the as-
sumption that the function changes
smoothly between the different sam-
pled values. However, interpolation
techniques differ based on the degree
of smoothness of change assumed be-
tween the samples. For example, con-
sider the 1D function shown in Fig-
ure 2.1. The simplest assumption is
that the 1D function changes linearly
between two adjacent samples, i.e.
two adjacent samples are connected
by straight lines. Therefore, the func-
tion can be estimated at a parameter
where it is not sampled, by consider-
ing the function values at its two nearest neighbors which defines the straight

Figure 2.1. This shows the assumption of
smooth transition between samples in in-
terpolation and how it can be modeled dif-
ferently. Top: Linear; Bottom: Non-Linear.
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line. This kind of interpolation that uses a straight line to estimate function val-
ues at points where it is not sampled is called linear interpolation. However, it is
evident from Figure 2.1 that at sample points, the function values can changes
abruptly (also called C° continuity). In many applications such discontinuities
in the derivative of the function values are not acceptable. Therefore, in more so-
phisticated interpolation techniques, it is assumed a smooth curve passes through
multiple of these samples such that the tangent vector of the curve also smoothly
changes. In order to compute the derivatives, we need a larger neighborhood of
sample points rather than just two that we used for linear interpolation. For
tangent continuity (aka first derivative continuous, C"' continuous, quadratic
interpolation), we use three sample points. Similarly, for second derivative con-
tinuous cubic curve (C? continuous), we use four sample points, and so on. In
this book we will almost always use only linear interpolation and therefore we
will explore this in detail. We will first describe linear interpolation in 1D (as
shown in Figure 2.1) and then extend the concept to 2D data (e.g. images and
meshes) in which case it is called a bilinear interpolation.

2.1.1 Linear Interpolation

Let us consider a straight line segment between the endpoints V; and V5. Let
the color at these two vertices be C(V1) = (r1,91,b1) and C(Va2) = (rz, gz, b2)
respectively. Any point V on the line segment V1 V5 is given by V = aVi+(1—a) Vs
where 0 < o < 1.

We say a function f is linear if f(aX+bY) = af(X)+bf(Y). Similarly, we say
the color at the point V', C(V), in the line segment V; V5 is linearly interpolated
when

C(V) = Ca(Vi) + (1 - a)(Va)) = aC(Vi) + (L - a)C(Va).  (2.1)

We can see that rate of change of color of a point between V; to Vo, with respect
to the distance traveled between V; and V3, is constant.

Technically, the above interpolation is much more specific than a general
linear interpolation (or linear combination) — it is called a convex combination
of C(V1) and C(V,) where the coefficients are positive and they add up to 1.0. Tt
is said that the function value at V' (in this case color) is interpolated from the
function values at V7 and V5 linearly by weighting the function at those values
using coefficients @ and (1 — «). The coefficients « are typically computed as a
relative function of the distance of the point V' from V; and V5. For example, we
know that the parametric equation of a line is given by

(2,y,2) = a(z1,y1, 21) + (1 — @) (22, Y2, 22) (2.2)

where (z,y, z) are the 3D coordinates of any point on the line V1 V5. Note that,
though the coordinates are 3D, the geometric entity is 1D line embedded in 3D
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Figure 2.2. Left: Bilinear interpolation at V from Vi, V2 and V3 in a triangle. Right:
Bilinear interpolation to find the value of F' at P from the value of F' at the integer
pixels at (4,7), (i +1,7), (i,7+1) and (¢ + 1,5 + 1) in an image.

and therefore we are using linear interpolation. Given the locations of the points
V1, Vo and V', we can find a by solving the equation

x=oar+ (1 —a)xs (2.3)

and use this « to find the value of C(V') from C(V1) and C(Va). The coefficients
for V3 and V5 are both between 0 and 1 and their sum is equal to 1.0. Therefore,
the function at V is estimated by a weighted sum of functions at V7 and V5 where
each of the weights are fraction between 0 to 1 and their sum is equal to 1. This
is called a convex combination of V; and V5.

If the constraint is only that the sum of the coefficients is 1.0, but the coef-
ficients can be of any value, then it is called an affine combination. If there are
no constraints on the coefficients, it is called a linear combination. Note that a
linear combination does not always mean linear interpolation. For example, if
the Equation 2.1 was C(V) = o2C(V1) + (1 — o?)C(Vz), it would not be a linear
interpolation in «, but would still be a linear combination of C'(V;) and C(V)
because alpha? and (1 — alpha?) are still scalar values. In other words, for linear
interpolation, the derivative of the interpolated function should be a constant.

2.1.2 Bilinear Interpolation

Instead of considering 1D data, let us now consider 2D data where the neighbor-
hood of a sample extends in two different directions. Bilinear interpolation entails
interpolating in one direction followed by interpolating in the second direction.

For this, let us consider a triangle with three vertices V1, V5 and V3 (Figure
2.2a). To estimate the function C at a point V inside the triangle, we first
estimate the function in the two directions V1 V3 and V1 V5. The point @ on Vi V3
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is given by linear interpolation as

Q=(1-a)Vi+aVs. (2.4)
Similarly, the point R along V,V; is given as

R=(1-B)Vi + BVa. (2.5)

where 0.0 < «, 8 < 1.0. Therefore V' is given by the vector addition of V7, R and
Q as

V=n+{1-a)W +OZV3+(1—5)V1 + BV, (2.6)
=(1—a—-p3)Vi+aVs+ Vs, (2.7)

Therefore C' at V' can be estimated as
CV)=(1—-a-p8)C(V1)+ aC(V3) + C(Va). (2.8)

Bilinear interpolation also results in a convex combination and the values of
« and B can be recovered by solving two equations formed by the coordinates
of V, Vi, V5 and V3 in Equation 2.7. Further, you can verify for yourself that
the coefficients for finding V' does not change if you consider any two different
directions like V3V and Vi3V; or ViVa and VaVs (See exercise for problems on
this).
Now let us consider bilinear in-

() o 00 terpolation in another scenario of an
image (Figure 2.2b). Any non-integer

o 0 0 o 0 O spatial location may be considered 4-
connected when its neighborhood is

("] o 0 0 defined by four nearest neighbors, two

in horizontal direction and two in ver-

tical direction. A neighborhood can
also be 8-connected when the diago-
nal neighbors are also included. The
distance of the neighbors in the 8-
connected neighborhood can be dif-
ferent (for example, diagonal neigh-
bors are v/2 distance away while the horizontal and vertical neighbors are unit
distance away). This is illustrated in Figure 2.3.

Let us consider a function F' that defines the color at integer pixels at (¢, j),
(i,7+ 1), (1 +1,5) and (¢ + 1,75 + 1) denoted by A, B, C and D respectively.
Let us consider a point P where C' has to be estimated as shown in Figure
2.2b. Note that in this case, the location of each of these pixels is defined using
2D coordinates. Therefore, the distance between pixel (7, j) and P in horizontal

4-connected 8-connected

Figure 2.3. This shows the 4 and 8 con-
nected neighbors in blue for the red pixel in
the center.
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and vertical direction can be found from their location. Let this be a and f
respectively where 0 < «, 5 < 1. Therefore, the value of C' at the pixel @ is given
by linear interpolation in the horizontal direction as

F(Q)=(1-a)C+aD (2.9)
Similarly the value of F' at R is given by
F(R)=(1-a)A+ aB. (2.10)

Now, the value of C' at P is found by interpolating between R and @ linearly in
the vertical direction as

F(P)=F(Q)8+ F(R)(1-p) (2.11)
= B(1 — a)C + BaD ( )
+(1-8)(1-a)A+(1-pB)aB (2.13)
=p1l—-a)F(i+1,j)+ BaF(i+1,j+1) (2.14)

+ (1 =81 —a)F(i,j) + (1 - B)aF(i,j+1) (2.15)

Now, consider the case where P happens to be on the straight line connecting
A and D. In this case, P can be expressed as a linear combination of these two
points. The distance AP is given by /a2 + 32 and the distance PD is given by
V(1 = )2 + (1 — B)2. Therefore,

F(P)=+a?+ 32D ++/(1-a)2+ (1 - B)2A (2.16)

B Therefore, there are multiple ways
to interpolate F' at P, using either
equation 2.14 and 2.16 and many

W more can be found. For example, we

may want to interpolate the point at
the intersection of AD and BC using
A, B and C followed by an interpo-

lation of this point and A to get P.

Each of these will result in different

coeflicients. This non-uniqueness of

interpolation in an image data which

is sampled uniformly in the same two
Figure 2.4. This shows a mesh made of directions, horizontal and vertical, is
quadrilaterals. avoided by always interpolating along

these two directions. You can verify
that interpolating in the vertical direction first and then in the horizontal direc-
tion will yield the same result as Equation 2.14.

W,
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However, unlike this case of a uniform planar grid, if this 2D surface happens
to be a mesh as in Figure 2.4, the result of the interpolation will completely
depend on the particular intermediate points you use. Consider the quadrilat-
eral highlighted in red in Figure 2.4. Let two opposite vertices have color black
denoted by B and the other two vertices have color white denoted by W. A point
at the intersection of the two diagonals shown by dotted red lines can be inter-
polated to have two completely different colors. If interpolated from the black
vertices, it will be black. If interpolated from the white vertices it will be white.

Therefore, there is something spe-
cial about a triangle, where a point
inside it will be interpolated uniquely
irrespective of how you do it. This is
because a triangle is a simplex. A sim-
plex is a geometric construct achieved

by connecting n points to each other Figure 2.5. From left to right: The smallest

%n (n—1) d%mensions. A.Straight line yp (line), 2D (triangle) and 3D (tetrahe-
is the 1D simplex. A triangle is the dron) simplex.

2D simplex (encloses a surface). Sim-

ilarly, a tetrahedron is the 3D simplex. These are illustrated in Figure 2.5. The
linear interpolation on these simplices (called bilinear for 2D, trilinear for 3D)
yields unique interpolation coefficients which are also called barycentric coor-
dinates of a point inside the simplex with respect to the vertices forming the
simplex. Therefore in Equation 2.8 provides the barycentric coordinates of the
point V' with respect to Vi, V5, and V3 respectively in Figure 2.2a. This is the
reason triangles and not any other polygons are chosen for representing geomet-
ric meshes. The advantages will be even more evident when we cover computer
graphics later in the book.

2.2 Geometric Intersections

Linear equations represent lines (when using 2 variables) or planes (when using
three variables) and we would often need to compute the intersection of such
geometric entities. Such intersections are computed by solving a set of linear
equations. In order to solve equations with n unknowns, we need at least n
equations. First, let us derive a matrix formulation for this problem. Let us con-
sider n linear equations with n unknowns, z1, xs, ... x,, where the ith equation
is given by

11 + a2 + ...+ @ity = bz (217)

Now, this can be written as
Ax =10 (2.18)
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where A is a n X n matrix given by

a1 ai2 e Q1np
a921 as2 ... Qop
A= a (2.19)
apl Ap2 ... Qpp
and x and b are n x 1 column vectors given by 27 = (z; 3 ... z,) and b7 =
(b1 by ... b,) respectively. The solution to this system of linear equations is
X=A"'B (2.20)

Note that A~! exists only when all the equa-
tions are linearly independent of each other. Ge-
ometrically, you can imagine this problem in an
n dimensional space where each of the n equa-
tions defines a hyperplane and z will give you
the intersection point in n dimensions of all these
n hyperplanes. Full rank A indicates non-parallel
hyperplanes which will have a unique intersection

Figure 2.6. This shows three point. For example, when n = 2, two non-parallel
non-parallel lines in 2D which  Jines will always intersect at a point.
may not meet at a single point. Now consider the case when you have the same
The _red hn?s show the per- number of unknowns but have a much larger num-
pendicular distance of each of .
these lines from the point P. ber of equatl(?ns, m, where m > n. Su'ch a system
of equations is called an over-constrained system

of equations. In this case, note that there may not be one common intersection
point. For example, consider m = 3 and n = 2. Therefore, we are considering
three lines which may not intersect at a point as shown in Figure 2.6. Therefore,
one (and probably the most widely used) way to geometrically solve this set of
over-constrained equations is equivalent to finding a point P such that the sum
of the squares of the distance from P to the lines defined by the set of linear
equations is minimized. The squaring is done to make sure that negative and
positive distances do not cancel each other out. This process is called linear re-
gression. Since the square of the distances is used, this is also often referred to
as linear least square optimization.

An over-constrained system of linear equations can be expressed by the same
Equation 2.18. However, the dimension of A is now m x n and that of b is m x 1.
Now, since A is no longer a square matrix, its inverse is not-defined. Therefore,
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let us consider the following.

Figure 2.7. This
shows  the  struc-
ture of D matrix
in singular value
decomposition.

Az =b (2.21)
Or, AT Az = ATb (2.22)
Or,z = (ATA)71ATD (2.23)

Note that AT is a n x m matrix. Therefore, AT A is
a n X n square matrix whose inverse is defined and is
called the pseudo-inverse of A. Therefore, x can be solved
now using this pseudo-inverse. However, it only works well
when AT A is a full-ranked matrix and not singular (i.e.
determinant is not zero). Often when m >> n, it is very
hard to assure that the pseudo inverse is full-ranked.

Singular value decomposition (SVD) is a technique
that helps us to solve x in such situations. It decomposes
A into three matrices U, D and V such that

A=UDVT (2.24)

where U is a m X m square matrix, D is a m x n diagonal

matrix and V is a n X n square matrix.

Linear regression, one of the most used
optimization techniques, was first concep-
tualized in 1894 by Sir Francis Galton,
who was a cousin of Charles Darwin. This
started with the then vexing problem of
heredity — understanding how strongly the

Put a Face to the Name

characteristics of one generation of living

things manifested in the following genera- Figure 2.8. Left: Sir Francis Gal-
tion. Galton initially approached this prob- ~ ton; Right: Karl Pearson

lem by examining characteristics of the sweet pea plant. Galton’s first in-
sights about regression sprang from a two-dimensional diagram plotting the
sizes of daughter peas against the sizes of mother peas. Galton realized that
the median weights of daughter seeds from a particular size of mother seed
approximately described a straight line with positive slope less than 1.0.
Later on, Galton’s colleague and researcher from his own lab, Karl Pearson,
formalized this concept mathematically in 1922 after Galton’s death in 1911.

If the rank of A is r < m, then only the first r of the diagonal entries of D
are non-zero as shown in Figure 2.7. Also, U and V are orthonormal matrices,
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i.e. they represent unit vectors that are orthogonal to each other. One property
of orthonormal matrices that is important here is that their inverse is their
transpose. Therefore, U™! = UT and V! = V7. Now, let us consider a matrix
D* given by inverting the r X r submatrix of D while the rest of the entries
remain zero as in D. Note that D* is again a diagonal matrix whose top left
r X r submatrix has diagonal elements that are reciprocal of those of D. It can
be shown that AV D*UTb = b. Therefore, z = VD*U7Tb is the solution of Az = b.

2.3  Conclusion

We have given enough details in this chapter to take you through the book.
However, such mathematical fundamentals and their geometric interpretations
are an interesting area of study by itself. To learn more about this, refer to
[Lengyel 02]. Matrices inherently represent geometry and analysis of matrices
and in fact analysis of the underlying geometry they represent. To know more
in this direction, refer to [Saff and Snider 15, Nielsen and Bhatia 13].
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Exercises

1. Consider the triangle Py PoP3; where P, = (100,100), P, = (300, 150),

P; = (200, 200). Consider a function whose values at Py, P, and P5 are %,
% and i respectively. Find the interpolation coefficients at P = (220, 160).
Compute them considering two different directions to verify getting the
same interpolation coefficients. What is the interpolated value of the func-

tion at P?

2. Consider two planes given by 4z+y+22z = 10 and 3z+42y+3z = 8. Consider
a line given by 2z+y = 2. Solve the equations to find the intersection points
of these planes and the line. Next verify your result using matrix based on
solution of the equation Az = b.

3. Consider the set of linear equations given by x —y = 0, 2z + 5y = 10,
4z — 3y = 12 and x = 5. Solve these using SVD.
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Convolution

3.1 Linear Systems

A system is defined as a method that modifies a signal. An audio amplifier that
modifies the 1D audio signal to make it louder, or an image processing method
that modifies the 2D image signal to detect some features are a few examples of
a system. Systems can be very complex. But we will be mostly dealing with a
specific class of systems that are simpler, namely linear systems.

Linear systems satisfy some conducive properties of linearity. We will denote
the ystem by S, input to the systems by x and output by y and z. For the sake
of simplicity of explanation, we assume 1D signals which depend on the single
parameter t. However, the following properties hold for a linear signal in any
dimension.

1. Homogeneity: If the input to a linear system is scaled, the output would
also be scaled by the same factor.

. x(t) ﬂs yt) then Kex () 5 Ky (t)

2. Additivity: The independent responses (output) of multiple different input
signals are added when the inputs are added. This implies that each signal is
passed through the system independently without interacting with others.

X, ® s y.©

Ko + K, 0

t) + t
If and then 75151() 82()=

X0 1 Yal)
—_— > S ——

3. Shift Invariance: Finally, the output of a shifted input is also shifted.

35
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it x (&) S Y then x(t+s) TS yk+s)

When that data passes through multiple systems, the properties of linearity
assures the following.

1. Commutative: If two linear systems are applied to a signal in a cascaded
manner (i.e. in series), the order of their application does not matter. Given
two linear systems S4 and Spg,

If &’M_’M then —<® M _,. y®

2. Superposition: If each input generates multiple outputs in a linear system,
the addition of the inputs will generate an additions of the outputs.

x, 0 99
—_—
Yt
If and then X0 +x,@® < Y L® + Ya (t)=
gl >
z, ) +z, @t
Xl(t) 21(t)
z ,(t)

This superposition property is especially important for finding the response of
a complex signal when passing through a linear system. A complex input signal
z(t) can be broken into a bunch of simpler input signals x1(t), z2(t), . . ., z,(t), via
different processes of decomposition. It is usually easier to find the outputs y;(t)
of the simpler input signals x;(¢) when passing through the system. The y;s are
then combined or added via the process of synthesis to create the output y(t) for
the complex signal. This is illustrated in Figure 3.1. We will study many different
ways to decompose and synthesize in the following sections and chapters.

3.1.1 Response of a Linear System

An impulse, i[t], is a discrete signal with only one non-zero sample. Therefore,
it is a signal with a sharp spike at one location and zero elsewhere. Delta, d[t],
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X (t)
l Decomposition

x, 8 x,8 x.t) eee x, (t
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Synthesis

l

Yyt

Figure 3.1. This figure illustrates the process of decomposing a complex signal to
simpler signals which are then passed through the linear system and combined to
generate the output of the complex signal.

is a special kind of impulse whose non-zero sample is at ¢ = 0 and has a value
0[0] = 1. Therefore, 0[t] has a normalized spike at 0. Considering each sample
to be of unit width and height proportional to its value, the area covered by a
delta is therefore 1. §[t] is considered the simplest signal.

Consider an impulse with value i[2] = 3 and zero elsewhere. This impulse
can be represented as a scaled and shifted § as 3§[t — 2]. Therefore, any impulse
with a non-zero value of k at ¢ = s can be represented in general as a scaled and
shifted 0 as

ift] = ko[t — s (3.1)

The impulse response (also called kernel or filter), hlt], of a linear system is
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x(t) h(t)

h(t-0) 1h(t-0)
X(t) @ h(t) = 1h(t-0)+2h(t-1)+3h(t-3)+1h(t-4)

hi(t-1) 2h(t-1)

Figure 3.2. This figure illustrates the input side algorithm for convolution.

defined as the output of the system to the input d[t]. The size of h (width in
case of 1D h) is also called its support. Due to the properties of shift invariance
and homogeneity, the response of the same linear system to a general impulse
function is given by a scaled and shifted h as kh[t — s].

Convolution is the method to find the response of a linear system with impulse
response, h, to a general signal or function. It is rather evident that convolution
is hence a pretty powerful function.

Let us consider a discrete signal z[t] where t = 1,2,...,n. Note that 2 can
be decomposed as the sum of n impulse functions i1 [t], i2[t], . .., ix[t] where i;[t]
has a non-zero value of z[l] at ¢t = [ and z[t] = Y}, 4[t]. The response of the

system to each 4;[t] is given by z[l]h[t — []. Due to the additivity property of the
linear system, the response R[t] of the linear system to z[t] is given by

R =
l

n

z[lJh[t — 1] = x[t] % h[t]. (3.2)
=1
x[t] % h[t] is the convolution of z[t] with the impulse response h[t]. We will use
the symbol x for convolution. This is illustrated in Figure 3.2.

Now that we have defined convolution, let us ponder for a while on Figure 3.2.
First, note that when the first few or last few samples of z are being multiplied
by h, h extends beyond z in left and right where x is not defined (for e.g. we do
not know the value of z at t = 0 or t = —1 or t = n+1). In such cases, we assume
some arbitrary values for . The most common assumption is to consider x to be
0 at these indices. Sometimes, z is reflected about the left and right ends. Either
way, this brings in two important issues. First, the size of R is larger than that
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of z. If the support of h is m, then the size of R is n +m — 1. This is illustrated
in Figure 3.2 where n = 4 and m = 3 and therefore the size of the output is
5+3—1 = 6. Second, some of the values of R are not accurate since they involve
calculations from assumed information. For example in Figure 3.2, the output
of convolution at t = —1,0, 3,4 depends on the values of x at ¢t = —1,4,5 and
z is not defined at these locations. Therefore, only a subset of samples of R, in
fact only n —m+ 1 of them, are obtained from precisely defined information and
these samples are called fully immersed samples. In Figure 3.2, the only fully
immersed samples are samples at ¢ = 1 and 2.

Another point to note here is that in using Equation 3.2, each sample of
the input x corresponds to a scaled and shifted impulse response to create an
intermediate function z[lJhlt — {]. All these intermediate functions are added up
to create R (Figure 3.2). Hence, any single output sample of R is generated by
accumulating the samples at the same location from all of these intermediate
functions. Since a single sample at [ from input x contributes to multiple output
samples via the corresponding intermediate function x[l]h[t — ], this is called the
input side algorithm

Now take a careful look at one of the fully immersed samples at ¢t = 1 in
Figure 3.2. Note that it is given by

R[1] = h[1]z[0] + A[0]z[1] + h[—1]z[2]

This is the same as flipping h and weighting the neighborhood of x at ¢t = 1 with
this flipped h. Therefore, another method to find the convolution is to generate
each output sample at ¢ by shifting a flipped h to align its center with [ and find
the weighted sum of the underlying x and the flipped shifted h. Therefore, the
sample at [, R[l], is generated by the dot product of z[t] with flipped h shifted
at

R[l] =x-h[—(t—1)]. (3.3)

Note that for all indices at which the value of h is not defined, it is assumed
to be 0. In this method, each output sample of R gets constructed in each step
by gathering contributions from multiple samples of h. Hence, this is called the
output side algorithm. This is a more efficient algorithm since no intermediate
functions needs to be maintained. Each output can be generated directly from
the input and h. Further, if i is symmetric (as in Figure 3.2), then the flipping
can also be avoided.

Extending convolution to 2D is really trivial. z, R, and h are now two di-
mensional functions. In the case of images, these two dimensions are due to two
spatial coordinates s and t. However, the support of A is usually much smaller
than x. Rl[s,t] is now obtained by moving h that is flipped in both dimensions
to the desired location (s,t) and finding the dot product of this flipped h with «
. However, note that in most cases in image processing, we use symmetric filters
or h which deems the flipping unnecessary.
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In the rest of the chapter we will study the properties of convolution using 1D
signal since they are simple to understand. The concepts can be easily extended
to 2D and we will mention them at the end of each treatise on 1D signals.

3.1.2 Properties of Convolution

In this section we are going to discuss the properties of convolution. Consider a
signal = convolved with ¢. This means that if the impulse response of a system
is the impulse itself, what will be its response to an arbitrary function xz[t]. Tt
is rather intuitive that this system outputs the impulse unchanged and hence it
will also output the signal z unchanged. Therefore,

z[t] % 8[t] = z[t]. (3.4)

This is called an all pass system.
Let us now consider a system which simply scales the impulse response.
Therefore,
x[t] * kd[t] = kxlt]. (3.5)

If £ > 1, then this system is called an amplifier since it increases the strength
of the signal z[t]. On the other hand, if k¥ < 1, it is called an attenuator since it
reduces the strength of z[t].
Finally, if we consider a system whose impulse response is to shift the signal,
then
z[t] % Ot + ] = z[t + s]. (3.6)

This is called a delay system.

As a mathematical operation, convolution has the following conducive prop-
erties.

First, it is commutative, i.e.

alt] % blt] = b[t] * a[t]. (3.7)

This indicates that when convolving two functions, the order does not matter.
This is why we always use the smaller sized function as the kernel for more
efficient processing.

Second, convolution is associative, i.e.

(aft] % blt]) * c[t] = aft]  (b]t] * c[t]). (3.8)

This means that if an function x undergoes cascading convolutions using two
different kernels b and ¢, the same operation can be achieved by first designing a
new kernel by d = b*c and convolving x with this new d to provide x xd (Figure
3.3.

Third, convolution is distributive, i.e.

alt] * b[t] + alt] * c[t] = a[t] * (b[t] + c[t]).
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altI*b[t]*e[t]
—_—

€% bt
altl ;w alt] Lla[t] ARI*OL*el] | ak]

o bIET* eIt

Figure 3.3. This figure illustrates the effect of cascading convolutions.

bIt]
alt] alE]*0It] + altl*elt]
—" j% T xR

ol

Figure 3.4. This figure illustrates the effect of combination of parallel convolutions.

This means that if a function x undergoes two different convolutions in parallel
with b and ¢ which are then combined, the same effect can be obtained by
designing a new kernel d by adding b and ¢ (d = b+ ¢) and then undergoing a
single convolution with this new kernel d (Figure 3.4).

3.2 Linear Filters

The next question to ask is how does knowing about convolution help us in
any way? In fact, convolution can help us greatly in designing systems since
instead of worrying about complex signals, we need to only worry about the
simple § function. If we can design the impulse response of a system, we know
that convolving the input signal with impulse response would provide us with
the correct answer for any general function.

Let us take the case of designing a filter (or impulse response) that will blur
any general signal. To design this, we have to first think intuitively about what a
blurred delta signal would look like. In other words, what would a linear system
that blurs a signal produce when a delta is provided as its input. For this consider
Figure 3.5. Delta is a function that has a single sample of value 1 at 0 which
is essentially a sharp spike. Therefore, intuitively, blurring a delta function can
be expected to produce a spike with a broader base and a smaller height. This
is represented by a function that has multiple samples centered around 0 whose
values are smaller than 1. Now the next question is, how much broader should
the base be and how much shorter should the spike be? In fact, there can be
many answers to this question. For example, it can be three samples centered at
0, each of value 0.7. Or, it can be five samples centered around 0, each of value
0.5. So, how do we constrain this problem to find an appropriate answer to these
questions?

One way to constrain the problem may be to first fix the base of the spike
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Spike of Delta Blurring by Box Filter More Blurring by a Wider Box Filter
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Figure 3.5. This figure shows how to design a blur filter by considering just the simple
0 function. The top row shows the concept at work in a digital representation while
the bottom row shows the analog counterpart. (a) shows a ¢. (b)shows the impulse
response of a blurring system, i.e. the fate of § when passed through a blurring system.
Instead of having a spike of 1 at 0, it now has a value of 1/3 at each of —1, 0 and 1.
The width of the filterv is also often referred to as the support of the kernel or filter.
If the width of the blur is wider, it is said that the support of the filter is now higher.

as a parameter for the amount of blurring. Therefore, a width of seven pixels
indicates more blurring than a width of five. And a width of five pixels indicates
more blurring than a width of three pixels. Now the question that remains is once
the base width is fixed, how should we decide the height of the blurred spike?
To decide this, we can apply the constraint that the energy (defined by the area
under the curve depicting a function) of the delta function will not be changed
by blurring. This constraint is that the delta function spike has a height of 1
and a width of 1. Therefore, its energy is given by the multiplication of its width
and height, i.e. 1. Now, if a three pixel wide blurred spike needs to have the area
1, then its height should be % Therefore, this additional energy constraint has
now allowed us to define a blurred delta to be a spike of three pixel width and
value of % centered around 0. Therefore, if delta is given as input to the blurring
system we want to design, we would expect its output to be the aforementioned
shorter and wider spike. Therefore, the impulse response of this blurring system
is given by a function that is a three pixel wide spike, centered at 0 and has a
constant value of % at those three pixels. The advantage of defining this impulse
function is that if we now convolve any other general function with this impulse
response, it will now result in the blurring of this function.

Now, if we want to design a system that blurs the signal even more, we have to
again design an impulse response for this system. Since we know more blurring
implies widening the base and shortening the height of the spike further, one
possible impulse response will be a five pixel wide spike centered around zero
with height % Hence, the impulse response of this system would be five pixels in
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Figure 3.6. This figure shows how the extension of 1D box filters to 2D.

size with a value of { at every pixel as shown in Figure 3.5(c). Notice the analog
representations of these filters in (d) and (e). Since they look like boxes, these
are most commonly referred to as boz filters.

However, there are multiple ways to maintain the same energy as the § of
which only one is to assign the same value at every pixel. Therefore, conceptually,
the shape of the filter can change and still remain a blurring filter as long as the
support of the kernel increases. It is indeed true that many such blurring filters
exist and we will revisit this issue in the next chapter where we will find that
though box filter is the easiest to implement, it is not the best for blurring.

Now the next question is how do we extend this blurring filter to 2D. In
this case, the energy of the § should be spread around a 2D box around the
surrounding of origin. So, the extension of the three pixel 1D box filter to 2D
will be a 3 x 3 filter with each value as i and that of the wider box filter will be

9
a 5 x b array with cach value as 5= (Figure 3.6).

it alt] — > aff] and bEI—F  wrg
then alt]* bt] —F—» AIfIBIfl and altlblt] —F 5 Al *BIf]

Figure 3.7. The duality in convolution is given by the fact that multiplication of two
functions in the spatial domain is a multiplication of their frequency responses in the
frequency domain and vice versa. Here the I’ denotes an operation that converts the
time domain function to the frequency domain.

3.2.1 All, Low, Band and High Pass Filters

Interestingly you will find that a box filter is often referred to as a low pass
filter. In order to understand why it may be worthwhile to go back and review
frequency domain representations discussed in Chapter 1. In this chapter we will
understand this concept very informally and intuitively, and will revisit it more
formally in the next chapter.
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Figure 3.8. This shows the concept of an all pass filter. The frequency response of a ¢
function is a constant. So, the frequency response of a general function when multiplied
by a constant does not cut away any frequencies. Since, it passes all the frequencies it
is called an all pass filter.

Let us start again from the delta function in 1D. This can be thought of as a
very sharp spike at origin. Now, intutively, what would you expect the frequency
domain representation of the J function to be? Remember, that to form sharp
features very high frequency signals are needed. This fact may convince you that
a function like ¢, which is the sharpest possible digital function, would involve
all high frequencies. In fact, it can be shown formally that equal strength of
all frequencies is needed to create §. Therefore the frequency domain response
(we only consider amplitude here) of the ¢ function is a constant. Now, lets us
ask what would the frequency domain response of a constant function be i.e. a
function which remains at a constant value in the time domain. It is probably
easy to see that such a function is represented by a zero frequency cosine wave.
Therefore, the frequency domain response of this constant function is a single
value at the origin in the frequency domain, i.e. a  function in frequency domain.

You probably notice an interesting pattern here. A ¢ is the time domain is a
constant in the frequency domain while a constant in the time domain is a ¢ in
the frequency domain. Is this really a coincidence? As it turns out, it is not! This
is termed as the duality and we explore it more formally in the next chapter. But
we will use this concept to understand a few things in this chapter.

The concept of duality gives rise to an important property of convolution
which is as follows. If the frequency domain response of two functions in spa-
tial domain «aft] and b[t] are A[f] and B[f] respectively, the frequency domain
response of their convolution in time domain is given by the multiplication of
their frequency domain responses and vice versa (Figure 3.7).

This provides us the background to understand the all, low, high and band
pass filters. Let us first revisit Equation 3.4. We mentioned that a convolution
of any function z[t] with delta is termed as an all pass system. Let us see if we
can explain this using what we just learned about duality. First, the frequency
response of a ¢ is a constant. Therefore, the frequency response of x[t] x J[t]
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Figure 3.9. This shows the concept that as a function becomes narrower or wider, its
frequency response gets wider and narrower respectively.

will be X[f] multiplied by a constant. This says that by this convolution, no
frequency will be blocked (or eliminated). Since this will pass all the frequencies,
convolution with a delta is an all pass filter. This is illustrated in Figure 3.8.

Next, let us take a look at low pass filter. For this, we need to turn our
attention to another intuitive consequence of duality. Consider a function which
is compressed in space to create another function that undergoes similar changes
but in a much smaller space. Therefore, intuitively, the latter function is similar
to the former but has much sharper changes. How are the frequency responses of
these two signals related? It is evident that we will need more higher frequency
signals to create a “sharper” function and fewer higher frequency signals to create
a “flatter” function. Therefore, we can probably infer that the frequency response
of the sharper function will be wider than the other. The inverse is also true.
If the function becomes smoother, the frequency response gets narrower (Figure
3.9). Now, assuming that delta is the sharpest of all functions, you can see how
as the function gets sharper and sharper, its frequency gets wider and wider and
finally comes to span all possible frequencies for §.

Note that as the size of the filter (also called the support of the kernel)
increases the cut-off frequency beyond which the frequencies are blocked reduces,
i.e. the filter achieves more blurriness due to greater loss of higher frequencies.
Thus, convolving with kernels with progressively increasing size creates a blurrier
and blurrier function. The final stage would be a filter of the same size as the
function which would provide the average value of the entire function.

Let us apply this concept to the three filters seen in the bottom row of Figure
3.5 where the filter gets wider to create a three-pixel-wide and subsequently, a
five-pixel-wide box filter. So, intuitively, their frequency responses will be nar-
rowing as shown in Figure 3.10(a). Therefore, the frequency response of these
blur filters will have cut-off frequencies that will reduce as the width of the filter
increases. Therefore, the cut-off frequency for the three pixel filter is f1 and that
of the five pixel is fo such that fy < fi. Now let us consider a general function
x[t] as in Figure 3.10(b) and its frequency response. When we convolve z[t] with
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Figure 3.10. This shows the concept of a low pass box filter. (a) On the left the §
(red), three pixel (blue) and five pixel (green) box filters are shown in time domain.
On the right, their frequency components are shown with cut-off frequencies at f; and
f2 respectively. (b) On the left, a general function z[t] is shown in black. On the right,
its frequency response is shown in black. A convolution between x and b on the left
indicates a multiplication between X [f] and B[f] on the right. When this multiplication
happens, the frequencies that are thrown away (blocked) by each filter are shown by
their corresponding colors - all the frequencies above fi for the three pixel filter and
those above fa for the five pixel filter are blocked. (c¢) This shows the result of the
convolution and multiplication in spatial and frequency domain respectively. Note that
all higher frequencies are removed to different degrees (based on the width of the filters)
when convolved with the box filters while the lower frequencies are passed, hence the
name low pass filter. The strength of the low frequency components is also changed,
and in general reduced, after this filtering process. The signal in the time domain gets
progressively smoother or blurrier.

t

the blur filter b[t], their frequency responses X|[f] and B[f] are multiplied. The
consequence of this is that all frequencies beyond f; are multiplied by zero when
convolving with the three pixel filter i.e. all the frequencies above f; are thrown
away creating the blurry or smoother signal in Figure 3.10(c). Similarly, when
multiplied by the frequency response of the five pixel filter, even more frequen-
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Figure 3.11. This image shows the effect of increasing the size of the box filter and
convolving it with an image. From left: Original image and the same image convolved
with a 3 x 3, 5 x 5 and 15 x 15 box filter.

cies — essentially everything above fo where fo < f1 — are thrown away thereby
creating an even blurrier signal in Figure 3.10(c). Since higher frequencies are
thrown away as a result of convolution with box filters while the lower frequen-
cies are passed, these are called low pass filters. However, note that box filters
are only one kind of low-pass filter. The shape of the filter need not be an exact
box to spread the energy of the delta from a single pixel to multiple ones. For
example, a triangular shaped filter can also be used for this purpose. The dif-
ference between these filters will be in the way they spread the energy which is
defined by their shape. In a box filter, the energy is spread equally to all the pix-
els while in a triangular filter the amount of the energy reduces from the center
towards the periphery. Another important thing to note in this context is that all
the frequencies that are passed by the low-pass filter are not passed unchanged.
In fact, different frequencies are attenuated differently, with the higher of the
passed frequencies getting more severely attenuated. The figures in this chapter
focuses on the frequency content (the range of frequencies passed) rather than
the exact shape of the frequency response of the filters so that your attention
is not distracted from the most important aspect of frequency domain analysis,
the frequency content. The exact shape of the frequency response of the filter
will only affect the amount of attenuation of the passed frequencies and will be
discussed in details in the next chapter.

Now consider this same situation in 2D. Consider an image which is being
progressively convolved with filters of larger and larger size (3, 5, 7 and so forth).
The images that would be created would be progressively blurrier (Figure 3.11)
with the final one being a flat gray colored image where the gray color is given
by the average of all the pixels in the original image. In the frequency domain,
we know that the cut-off frequency for each of these images will be progressively
reducing. In 2D, different frequencies are represented as concentric circles with
the length of the radius representing the frequency. Figure 3.12 illustrates the
cut-off frequency of low pass filters beyond which all frequencies are blocked.
With larger kernel size, this cut-off frequency gets smaller.
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Figure 3.12. This image shows the effect of increasing the size of the box filter when
convolving with an image in the frequency domain. The frequency response is visualized
as a gray scale image. From left to right: Frequency response of the original image and
the same image convolved with filters of increasingly bigger size. Note that the cut-off
frequency is denoted by a circle beyond which every frequency has zero contribution
and is hence black. The radius of this circle reduces as the size of the filter increases to
show that more high frequencies are getting chopped off.

Issue of Sampling Let us now consider the sampling consequences of low pass
filtering an image. Nyquist sampling criteria says that the minimum samples
required to sample an image are double the highest frequency contained in the
image. As an image undergoes low pass filtering, its frequency content decreases
(fs < fo < f1 in Figure 3.12). This means that the minimum number of samples
required to adequately sample the low pass filtered image goes down too. This
says that the low pass filtered image can be at a smaller size than the original
image. Or, as we progressively increase the size of the low pass filter, we do not
need to have the image at its original size, but we can resample and store them
at a much smaller size, just adequately large to sample the highest frequencies
in them.

This property is used to build a pyramid of progressively low pass filtered
images called the Gaussian pyramid. For this, we resample the original image to
the size of 2" x 2™. This forms level 0 of the pyramid. 2 x 2 pixel blocks of this
image are low pass filtered to create a single pixel of the image at the next level
of the hierarchy providing a 2"~! x 2"~! image. When using a box filter, this
amounts to just averaging every 2 x 2 blocks of pixels in level n to create each
pixel of level (n + 1) x (n + 1). Note that since the image at level i + 1 is a low
pass filtered from the image at level 4, the lower resolution is adequate to sample
this image with lower frequency content. This process if progressively continued
creates n levels of the pyramid with the last level being a single pixel which can
be considered to be an image of 277" x 2"~" = 1 x 1. This is illustrated in Figure
3.13.
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Figure 3.13. This image illustrates the concept of Gaussian Pyramid. On the left, it
shows a 4-image pyramid with n=3. On the right, we show the example of a Gaussian
pyramid starting with a 512 x 512 image where n = 9. Note how the images halve
in size and it is very difficult to see the content of the smaller images. Therefore, on
the top each image is shown resampled at the same size to show the reduction in the
frequency content.

Put a Face to the Name

Johann Carl Friedrich Gauss (30 April 1777 to 23
February 1855) was a German mathematician who
contributed significantly to the fields of number the-
ory, algebra, statistics, analysis, differential geom-
etry, geodesy, geophysics, mechanics, electrostatics,
astronomy, matrix theory, and optics. He came from
poor working-class parents. His mother was illiterate
and never recorded the date of his birth, remember-
ing only that he had been born on a Wednesday,
; eight days before the Feast of the Ascension, which
itself occurs 40 days after Easter. Gauss would later solve this puzzle about
his birthdate, deriving methods to compute the date in both past and fu-
ture years. At the age of three, Gauss corrected an arithmetical error in a
complicated payroll calculation for his father.

Gauss made his first ground-breaking mathematical discoveries while still
a teenager. At age 19, he demonstrated a method which had eluded the
Greeks for constructing a heptadecagon using only a straightedge and com-
pass. Gauss’s intellectual abilities attracted the attention of the Duke of
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Brunswick, who sent him to the Collegium Carolinum (now Braunschweig
University of Technology) from 1792 to 1795, and to the University of Got-
tingen from 1795 to 1798. He completed Disquisitiones Arithmeticae, his
magnum opus, in 1798 at the age of 21, though it was not published un-
til 1801. This work was fundamental in consolidating number theory as a
discipline and has shaped the field to the present day. Unfortunately for
mathematics, Gauss reworked and improved papers incessantly, therefore
publishing only a fraction of his work, in keeping with his motto ”pauca sed
matura” (few but ripe). He kept a terse diary, just 19 pages long, which
later confirmed his precedence on many results he had not published. Gauss
wanted a heptadecagon placed on his gravestone, but the carver refused, say-
ing it would be indistinguishable from a circle. The heptadecagon appears,
however, as the shape of a pedestal with a statue erected in his honor in his
home town of Braunschweig.

Let us assume that we are working with a box filter. Therefore, every 2 x 2
block of pixels in level 0 is averaged to create a single pixel in level 1. 2 x 2
pixels in level 1 are in turn averaged to create a single pixel in level 2. When
2 x 2 pixels in level 1 are averaged i.e. a weighted sum with equal weights of i,
it is equivalent to averaging 4 x 4 pixels in level 0 i.e. a weighted sum with equal
weights of 1—16. In other words, applying a 2 x 2 box filter to level 1 is equivalent
to applying a 4 x 4 = 22 x 22 box filter to level 0 to create the image at level 2.
This concept can be generalized to show that level ¢ is equivalent to applying a
2¢ x 2 filter to level 0. Therefore, as we are going up in the levels, each image is
a low pass filtered version of the original image, but using filters of progressively
larger sizes and therefore of progressively lesser frequency content as shown in
Figure 3.10. But creating it from level 1 —1 using a 2 x 2 filter is computationally
more efficient. Generalizing this concept, you can see that level n is created by
applying a box filter of size 2™ x 2™ to level 0 which is essentially averaging all
the values of the image. Therefore, the level n of the pyramid is a single gray
value. Note that this concept generalizes to any low pass filter, not necessarily
a box filter. In case of other filters, the weights used for filtering are not equal
for every pixel, but the notion of filter size increasing as the levels increase still
remains the same.

From the aforementioned explanation, you may think that images in a Gaus-
sian pyramid should progressively reduce in size. This is not true. The reducing
size only defines the minimum sampling requirement at each level and it can be
proved mathematically. However, having a size larger than 27~% x 27~ for level
¢ only provides a higher sampling density that the minimum sampling require-
ment. Therefore, an alternate way to create the pyramid is to simply convolve
the image in level ¢ with 2 x 2 box filter to create level i 4 1 creating an image of
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the same size of level ¢ for level ¢+ 1. In this case, though the images at all levels
of the Gaussian pyramid will be the same size, the content slowly loses details
as we go higher up in the pyramid. However, since the size is unchanged, it is
much easier to perceive this removal of details. In both cases, the pyramid is still
called a Gaussian pyramid since the important concept here is the progressively
reducing frequency content as you go higher in the pyramid. The sampling is
inconsequential as long as the minimum sampling criteria is met. Figure 3.13
shows the representation with reducing image size while Figure 3.14 shows the
representation where the image size is kept unchanged.

In fact, this can also be shown mathematically from the properties of convo-
lution. Let us denote the image at ¢ level of the Gaussian pyramid by G; and
the low pass filter of size 2 x 2 as [. Therefore,

Gl*l:(Go*l)*l:Go*(l*l) (39)

Note that [ x [ is a kernel of greater size than [. Similarly, for ¢th level, [ is
convolved multiple times with itself to create a much wider kernel and hence a
much lower frequency content of the filtered image. These kinds of operation are
also called multi-scale operations. This is due to the fact that the scale of the
objects appearing in each level of the pyramid differs. For example, at the lowest
level of the Gaussian pyramid, all the minute edges are present. But as we go up
the pyramid, only the bigger changes show up as edges, the details are lost.

At this point, one question remain: what is the use of Gaussian pyramids?
Here is a very common application. Suppose we want to reduce the size of an
image to half to display the image in a smaller mobile device. The first instinct in
this situation is to subsample the image which is essentially throwing away every
other pixel in the horizontal and vertical direction. However, this may lead to a
sampling that fall below the Nyquist rate for the highest frequencies in the image
leading to aliasing artifacts. Therefore, a better way to achieve this is to first low
pass filter the image and then subsample it. This way the low pass filtering first
reduces the Nyquist sampling criterion by removing the high frequency content
following which the subsampling resolution provides adequate sampling. This
is called pre-filtering and then subsampling. Reducing the image size to half is
equivalent to the next highest level of the Gaussian pyramid. This is illustrated
in Figure 3.14. A more drastic example of aliasing in such situations is given in
Figure 3.15.

3.2.2 Designing New Filters

Now that we know the concepts of low pass filters, let us see how we can use this
and the knowledge of the mathematical properties of convolution to design new
filters. Being able to design new filters arms us with a entirely new set of tools
that we can start using in several contexts.
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Figure 3.14. This figure illustrates the difference between simple subsampling (top)
and pre-filtering and subsampling (bottom). The resolution is halved as we go from
left to right — but the images are generated in the alternative way to keep their size
unchanged throughout the pyramid.

A low pass filter is a filter that allows the lower frequencies of an image to
be retained. Now let us consider a filter which is complementary to this — a filter
that will throw away the frequencies passed by the low pass filter and retain the
higher frequencies that are thrown away by the low pass filters. Such a filter, as
you can probably guess, is called an high pass filter. The question is how we can
design a high pass filter? One way that probably has come to the mind of most
of you is to subtract the low pass filtered image from the original image. And
this is a perfect route to take.

Let us consider I to be the image and [ be the low pass filter. Let the low
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Pre-Filtering reduces

[ frequency content. ]
Hence, lower sampling
is sufficient.
Input (256 x 256) Filtered (256 x 256)
E— Insufficient sampling. DE—
Hence, aliasing.
Subsampled(128 x 128) Subsampled (128 x 128)

Figure 3.15. This figure illustrates severe aliasing artifacts that can occur due to sub-
sampling without prefiltering.

pass filtered image be I; and the high passed image be Ij,. Therefore

I,=I-1Ixl (3.10)
=Ixd—1%l (3.11)
=1%x(0—1) (3.12)

In the second line of the above algebra, we consider the image to be an all
pass filtered version of itself. Using this fact and the mathematical properties
of convolution, we see that the high pass filtered image I, can be expressed
as the convolution of the original image I with a single filter given by § — [.
This gives us the design of an high pass filter resulting from the subtraction
of any low pass filter from §, as shown in Figure 3.16. This figure also shows
the general shape of any high pass filter with its charactaristic positive spike
near the center and the negative lobes adjacent to it. For example, a Gaussian
function is another good low pass filter which has a much smoother response
than the box filter. In this case, the high pass filter will still look the same
having smoother and deeper negative lobes. The image formed due to high pass
filtering will have the complementary frequencies that will give the details of
the image. This is illustrated in Figure 3.17. Now, do not confuse a Gaussian
filter with a Gaussian pyramid. Both are named after the same person, but are
entirely different concepts. A Gaussian filter is a kind of low pass filter, while a
Gaussian pyramid is a pyramid of image formed by progressively applying any
low pass filter on an image, not necessarily a Gaussian filter.

Now, let us consider the Gaussian pyramid Gg, Gy, ..., G,. Let us now build
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Figure 3.16. This figure illustrates the creation of high pass filters (bottom) in 1D from
box filters of size 3 (top) and 5 (middle)

another pyramid Lg, Lo, ... L,_1 where L; = G; — G;11. Note that to construct
this pyramid, G;41 has to be resampled at double the resolution since G; and
G;41 are not at the same resolution to perform an image subtraction (which
is essentially a pixel by pixel subtraction). Now note what happens from the
frequency standpoint in this pyramid. If fo, f1,..., f, are considered to be the
cut-off frequency of Gy, G1,...,G,, then each of L; consists of only a band or
range of frequencies f; — f;11. Therefore, these images are created by passing a
band of frequencies. This pyramid is called a Laplacian Pyramid as illustrated
in Figure 3.18.

Now, let us consider the single filter that we will use on G to create the ith
level of the Laplacian pyramid L;. This single filter is given by convolving [ with
itself for i 4+ 1 times and subtracting from it [ convolved for i times. This filter
passes the band of frequencies between f; and f; 11 and is the band pass filter.

3.2.3 2D Filter Separability

From the above discussions, we are now capable of visualizing or generating 2D
filters like a 2D box filter or a 2D high pass filter (Figure 3.19).. Now, when
considering 2D filters, there is another important property to be aware of. This
is called separability. Let us consider a p x g 2D filter given by hli][j] where
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Figure 3.17. This figure shows the original image (left), the corresponding low pass
filtered image (middle) that provides the basic shape of the object, and the high pass
filtered image (right) created by subtracting the low pass filter from a delta that pro-
vides the details required to identify the face. The frequency contents of the right
3two images are complementary to each other and together create the entire range of
frequencies present in the original image on the left.

1<i<pandl<j<gq.If hcan be separated into two 1D filters, a and b of size
p and q respectively, such that h[i][j] = a[i] x b[j], then h is a separable filter.

As an example, let us consider a 3 x 3 box filter where p = ¢ = 3. We know
that h is a constant function where h[i][j] = §. Now, consider two filters a and
b, each of size 3 such that a[i] = %,1 <i<pandbd[j] = %,1 < j < q. You can
think of @ and b as two 1D box filters, one in horizontal direction and the other in
vertical direction. Note that in this case, h[i][j] is indeed equal to a[i]b[j], V(4, 5).
Therefore, a 2D box filter is separable.

The advantage of this is that it can be shown that the result of convolving
an image with A is equivalent to convolving its rows with a and then its columns

with b. This is because for any image I,
(Ixa)xb=1T%(axb)=1Ixh (3.13)

You can verify that a x b is indeed h for the box filter.

Let us now discuss the advantage of convolving the rows with a and the
columns with b. Let us consider an image with IV pixels. The convolution for
each pixel with h of size pg will need pgIN multiplications and pg/N additions,
i.e. a total of 2pqN floating point operations. If we instead apply a first, we will
need 2pN operations. Next, with b, we will need 2¢/N operations. This leads to
a total of 2(p + ¢)N operations that is much less than 2pgN. In other words,
separable filters can be implemented a lot more efficiently.

Let us now consider the 1D Gaussian function given by

1 2

o(x) = U\/%e_m, (3.14)
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Figure 3.18. On the left we show the frequency response of the band pass filters which
can act on the original picture to create the first three levels of the Laplacian pyramid.
On the right we show the Laplacian pyramid itself for the same image shown in Figure
3.13. The images are shown in the same size on the top for better perception.

We will see in the next chapter that this Gaussian function is a very good low
pass filter (Figure 3.19). Now, let us consider the 2D Gaussian filter given by

o(x,y) = 27302 ) (3.15)
= o(x) x ¢(y). (3.16)

Since the 2D Gaussian can be expressed as above, it is a separable filter. There-
fore, it can be implemented efficiently using

I'xo(z,y) = (I o(x)) x d(y)

3.2.4 Correlation and Pattern Matching

In this section, we will introduce yet another application of convolution. Consider
a picture which is a checkerboard pattern and a filter which looks like a corner
of the checker board (Fig 3.20). Consider the image and template both to be in
grayscale with values between 0 and 1 (0 for black and 1 for white).
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Figure 3.19. Visualizing the 2D filters from their 1D counter part: Box filter (left),
Gaussian filter (middle) which is a very good low pass filter and High-Pass Filter
(right) obtained by subtracting the Gaussian from a delta.

On the left in Fig 3.20 the value of the convolution is shown for sample colored
windows. Note that the value of the convolution is highest where the template
matches the image at the blue window. It is also the lowest where the image is
exactly complementary to the template as in the red window. Further it is some-
thing in between at the purple window which is also showing a corner but with
a different distribution of black and white around it. But the problem is, other
areas like the green window also shows the highest value and the yellow window
shows the lowest value. Intuitively, correlation should provide a measure of the
match between the template and the subregion of the image being considered.
From that perspective, the subregions defined by the green and yellow windows
are similar despite their vastly different colors (one black and one white). The
justification for this is based on the variation of colors present in the template
which can be considered maximal. Since correlation is a measure of similarity,
one would expect the blue window to have the highest value since it has iden-
tical spatial distribution as the template (white on top right and bottom left
quadrants and black elsewhere). Using the same measure of similarity, the red
window should have the lowest value though it has the same color variation due
to the complementary spatial distribution (black on top right and bottom left
quadrants and white elsewhere). Also, one would expect the yellow and green
windows to have some value right in the middle of these lowest and highest values
since the template has to go through either of these to go to the complementary
pattern in the red window. Similarly, the pattern in the purple window should
also have a value between the lowest and the highest, but it should be closer
to the lowest value (red square) than the highest value (blue square) since the
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Figure 3.20. This image shows the convolution of an 8 x 8 template that needs to be
matched with an identical subregion to the checkboard image. On the left image this
is achieved by a simple convolution of the template with the image and on the right
image this is achieved by first subtracting the average value of all the pixels from the
template and the region to be matched before applying the convolution. On the left
image, window of different colors show the result of convolution in those windows. On
the right image, the information is also augmented with the value of the mean (u) at
those windows.

spatial distribution of the black and white pixels in the purple window is more
similar more similar to the former than the latter.

Put a Face to the Name

Pierre-Simon Laplace (23 March 1749 to 5 March
1827) was an influential French scholar whose work
was important to the development of mathemat-
ics, statistics, physics, and astronomy. He summa-
rized and extended the work of his predecessors in
his five-volume Mecanique Celeste (Celestial Mechan-
ics) (1799-1825). This work translated the geomet-
ric study of classical mechanics to one based on cal-

; culus, opening up a broader range of problems. He
formulated the Lapla(nan differential operator widely used in mathematics,
pioneered the Laplace transform that forms the cornerstone of many
branches of mathematical physics, and was one the first scientists to
postulate the existence of black holes and the notion of gravitational
collapse.

Laplace was the son of a farmer and cider merchant who intended that
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he be ordained in the Roman Catholic Church and sent to the University of
Caen to read theology at the age of 16. At the university, two enthusiastic
teachers of mathematics, Christophe Gadbled and Pierre Le Canu, inspired
his zeal for the subject. His brilliance as a mathematician was quickly recog-
nized and while still at Caen he wrote his first paper in a journal founded by
Lagrange. Recognizing that he did not have any inclination towards priest-
hood, Laplace became an atheist, broke away from the church and left for
Paris to become the student of Jean le Rond d’Alembert (famous today for
Lambertian reflectance models). Lambert tried to get rid of Laplace initially
by giving him impossible assignments of reading tough math books and solv-
ing unsolved math problems. But when Laplace’s brilliance allowed him to
complete such tasks in much less time than was provided, he took him un-
der his wings and recommended a teaching position in the Royal Military
Academy of Belgium where Laplace devoted his time to path breaking re-
search for the next seventeen years. Laplace became a count of the First
French Empire in 1806 and was named a marquis (nobleman) in 1817. He
died in 1827. Intrigued by the magnitude of his brilliance, his physician re-
moved his brain and preserved it before it was displayed in an anatomical
museum in Britain. It was reportedly much smaller than the average human
brain.

To arrive at this intuitive result, we will still do the convolution, but first we
will subtract the mean of all the pixel colors from the template and the region
of the image it is overlapping with before performing the convolution. This is
shown in the right image of Fig 3.20 where the mean is also indicated by p. Note
that now the convolution provides us with what we expected from the correlation
operation intuitively. The blue window has the highest value of 1, the red window
has the lowest value of —1 and the yellow and green windows have a value of
0 which is halfway between —1 and 1. Also, note that the value at the purple
window is negative making it closer to the red window than the blue window.
Therefore, convolution when used on functions offset by their mean, can be used
to find the extent of similarity between a template and a region in the image.
This process is called cross-correlation.

Recall that convolution usually involves flipping the impulse response which
we did not need to do in this chapter (and in many image processing applications)
since we deal with symmetric filters most of the time. The way cross-correlation
differs from convolution is that the flipping of the kernel is not required.

Next, let us take another perspective to this cross correlation. You can think
of it as an element wise multiplication of the template elements with the under-
lying image elements with which the template overlaps and then adding them
up. Does this remind you of anything? Well, this is a dot product of two vectors,
one vector consisting of the elements of the template and the other made up of
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Figure 3.21. On the left is an image and the template to be matched in the image. In
the middle is the result of the process of normalized cross correlation. On the right is
the template (in color) superimposed at the location given by the highest value of the
normalized cross-correlation finding an exact match.

the elements of the region of the image with which the template overlaps. The
value of the dot product gives an estimate of how close is one vector to another.
The dot product of 1 signifies identical vectors, the dot product of zero signifies
orthogonal vectors and the dot product of —1 signifies opposite vectors. Notice
that the same thing holds for cross correlation.

Now, you probably remember that while performing dot products for vectors,
they needed to be normalized. This was to make sure that we are only considering
the directions of the vectors and not their magnitudes. The values of this dot
product range between —1 to +1 only when such normalization is applied. Our
subtraction of the mean, as shown in Figure 3.21, was an attempting to do
approximate this normalization. But a subtraction does not affect the magnitude
of the colors to assure unit vectors. Therefore, ideally, we should subtract the
mean and divide with the standard deviation, given by the square root of the
sum of squared differences of each value from the mean. This step would achieve
the desired normalization.

What does this normalization mean in the context of image processing. Fun-
damentally, cross-correlation is a way to examine if any part of the image matches
with a template image. Ideally, we should be able to do this matching irrespec-
tive of three factors changing between the two images: (a) scene illumination; (b)
the camera exposure that decides the brightness of the image; and the (¢) the
camera gain that decides the contrast of the image. The normalization allows
us to make the cross-correlation robust against these three changes and is often
called normalized cross-correlation.

3.3 Implementation Details

This brings us to the end of the fundamental concepts behind the linear system
and convolution. However, you may still find some challenges when implementing
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convolution. So, following are the things to be remembered for this purpose.

1.

When performing convolution of a filter with an image, it is important to
align the filter with every pixel and then apply the convolution. Note that
the result of convolution at each pixel should be stored in a different image.
Otherwise it will affect the convolutions at other pixels performed later.

. If the filter size is an even number, you will not be able to find a central

pixel to align with the image pixel at which convolution is being performed.
The common thing to do in this case is to align the image pixel with the
top left pixel of the filter. This will shift the image by half the size of the
kernel in each direction and should be shifted back after the operation.

. When the filter overlaps an area outside the edge of the image, the pixel

values of those pixels are undefined. What should we do then? Usually you
can pad the image with 0 or 1 or by reflecting the image about the edge
or any other way you choose. What is chosen does not matter since these
will only contribute to the samples that are not fully immersed and hence
should be ignored from a data accuracy perspective.

. Convolution is made of many floating point operations while images are

usually stored as 8-bit integers. Performing floating point operations on
integers results in accumulation of errors at every step of the operation
(e.g. every multiplication and addition). The best way to handle this is to
first convert the image and the filter into a floating point representation,
perform the filtering and then round it back to the integer representation.

. Finally, sometimes convolution can lead to out-of-range values in the re-

sulting image (beyond 0 to 1 or beyond 0 to 256. The best way to handle
this is to find the minimum and maximum values after the operation and
scale the image back to be within range.

3.4 Conclusion

In this chapter you were introduced to one of the most fundamental concepts
of visual computing — systems and their responses and how to find responses
of arbitrary inputs to the systems. We have tried to give you a less mathemat-
ical and more engineering view of convolution which is directly applicable to
digital image processing. To get a more mathematical treatise of the subject,
especially considering general multi-dimensional continuous signals, please refer
to [Pratt 07, Gonzalez and Woods 06].
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Exercises

Exercises

1.

Consider a signal blurring system. Every sample of the output signal is
generated by averaging the values of the sample itself, and its left and right
neighbors in the input signal. (Assume that the samples at the boundary
of the input signal are zero).

(a) Is this system linear? Prove your answer.

(b) What is the impulse response of the system?

(¢) How would this impulse response change if a larger neighborhood of
five samples is considered?

. Calculate the convolution of the following signals (your answer will be in

the form of an equation).

(a) hlt] = 6[t — 1] + o[t + 1], [t] = 8t — a] + 5[t + b]
(b) hlt] = o[t +2],2[t] = €'

() hlt] = e™", x[t] = 6]t — 2]

(d) hlt] = o[t] = o[t — 1], z[t] = e~

. g[t] is a 1D discrete signal defined for —3¢4. The impulse response h[t] of a

linear system is another discrete signal defined for 2¢6. The response of g[t]
when passed through this system is given by the convolution of g[t] with
h[t] and denoted by y[t]. What is the length of y[t]? What is the range of ¢
for which yl[t] is generated? What is the range of n for which the input g[t]
is completely immersed in the output y[t]?

. The low pass filter is a linear operation. Given this prove that the high

pass filter is also a linear operation.

. System A is an ”all pass” system, i.e. its output is identical to its input.

System B is a low-pass filter that passes all frequencies below the cutoff fre-
quency without change, and blocks all frequencies above. Call the impulse
response of system B, b[t].

(a) What is the impulse response of system A?

(b) How would the impulse response of system B need to be changed to
make the system have an inverted output (i.e., the same output, just
changed in sign)?

(c) If the two systems are arranged in parallel with added outputs, what
is the impulse response of the combination?

(d) If the two systems are arranged in parallel, with the output of sys-
tem B subtracted from the output of system A, what is the impulse
response of the combination?
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6.

10.

11.

12.

(e) What kind of filter is the system in (d)?

(f) In this problem, system B has the ideal characteristic of passing cer-
tain frequencies ”without change.” How would the outputs of the sys-
tems described in (¢) and (d) be affected if the low-pass filter delayed
(i.e. shifted) the output signal by a small amount, relative to the input
signal?

Design a three pixel 1D kernel for ghosting the image where the ghost ap-
pears two pixels to the right of the image and has half its intensity. Extend
this concept to design a 2D filter where two ghosts appear in horizontal
and vertical direction in the same manner.

Let f(x,y) denote an image and fg(z,y) denote the image obtained by
applying a Gaussian filter g(z,y) to f(z,y). In the photography industry
an operation called high boost filtering generates an image fp(x,y) =
af(x,y) — fG(x,y), where al.

(a) You are asked to achieve high boost filtering by using a single filter.
Derive an expression, h(zx,y), for such a filter.

(b) How would the frequency response, H(u,v), of this filter look like?

. You are asked to boost the edges of an image. How would you achieve this

operation at multiple scales using the Gaussian pyramid? Can you design
a single filter to be applied at every level of the pyramid to achieve the
same?

. Consider a 1D signal that has a repeatable pattern of width n pixels.

Provide a method to find the value of n using correlation?

Given the Laplacian pyramid of an image, how would you reconstruct the
original image?

Consider the frequency domain response of the box filter and the Gaussian
filter, both of the same size. Which one these do you think will be smoother?
Justify your answer.

Consider two image taken by a stereo pair of cameras (two cameras placed
closed to each other like the two human eyes). We have marked some
features in the first image. Provide a method to find accurately the location
of these features in the second image.
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Spectral Analysis

In this chapter we will learn a new way of decomposing a signal into simpler
signals, each of which is a sinusoid. Studying the nature of each of these sinusoids
and their relationship with each other can give us important insights about the
signal and help us alleviate problems during common filtering techniques. This
kind of analysis of a signal is often called spectral analysis — since it decomposes
a complex signal into a bunch of signals that span a spectrum of frequencies,
phases and orientations. Such a study will also provide us a way to synthesize
signals and we will study some of that as well.

In this chapter, we will focus on the most fundamental and popular technique
for spectral analysis — the discrete Fourier transform or DFT. However, it is
important to be aware that several different ways exist for such spectral analysis.
They mostly differ in the kind of simpler signals (or basis functions) that are
used to decompose the complex signal into. Radial basis functions or wavelets
can be used to provide a different kind of spectral analysis using data dependent
basis functions. However, DFT provides one of the most popular tool for spectral
analysis of visual signals using data independent or standard basis functions. We
will first study DFT for 1D signals. Usually this provides us key insights which
are applicable to higher dimensional data. Later in the chapter we will study its
interpretation for 2D data like images.

4.1 Discrete Fourier Transform

Discrete Fourier Transform or DFT is a technique that takes as input a periodic
signal of infinite length and decomposes it into a set of sine and cosine waves
which when combined (via a process called inverse DFT) would provide the
periodic signal itself. As soon as we define DFT likewise, the first question that
comes to mind maybe how we would use DFT on digital signals? Digital signals
are hardly periodic and never infinite. In order to make a digital signal periodic
and infinite, we assume that the span of the signal is its period and the signal
span is repeated infinite number of times. For example, if we have an audio
signal with 100 samples, we will consider a periodic signal where each period

67
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Figure 4.1. This figure shows how the finite 1D signal on the left is repeated to be
considered a periodic, infinite signal in order to make it appropriate for applying DFT.

of the signal is 100 samples long and is the function defined by the given 100
samples, as illustrated in Figure 4.1. This assumption has its consequences which
we will discuss later in the chapter.

Let the input to the DFT be a signal xz with N samples denoted by
x[0,1,..., N —1]. DFT is a process that generates two arrays from z, denoted by
z. and s each with % + 1 samples denoted by z.[0,1, ..., %] and z[0,1, ..., %]
respectively. x is said to be in time or spatial domain while x. and z is the rep-
resentation of the same function/signal in the frequency domain, as illustrated
in Figure 4.2.

Time/Spatial Domain In;/er:E D!:T/ Frequency Domain andS(;; wmhzzn%oels);%
x[0, 1, ... N-1] <—yn—il [0, 1, ... N/2] decomposes x into
DFT / Analysis x[0, 1, ... N/2] T + 1 cosine and
sine waves, each of
a different frequency.
These cosine and sine
waves when added to-
gether create the signal x. x. and x, gives us the amplitude of the cosine and
sine waves respectively. Note that the length of each of these waves is N. z.[k]
denotes the amplitude of a cosine wave that makes k cycles over the N sam-
ples. For e.g. xc[%] is a cosine wave that makes % cycles over N samples, i.e. 2
samples per cycle. Note that this is the highest frequency wave possible given N
samples and abiding by the Nyquist sampling criteria. Similarly, z4[k] denotes
the amplitude of a sine wave that makes k cycles over N samples.

Next, we will discuss alternate ways of expressing the frequency of these
waves. We have already seen that the wave with index k£ makes k cycles over
the N pixels (samples). This means that each pixel constitutes f = % cycles.
This is another way to represent the frequency in terms of cycles per pixel. Note
that as k spans from 0 to %, f ranges from 0 to 0.5. Finally, the frequency can
be expressed as w = f X 27, its natural frequency. w ranges from 0 to 7. You
may come across any of these representations when you work with spectral data.
Examining the range of the independent axes of such data will immediately tell

Figure 4.2. This figure shows the processes of DFT and in-
verse DFT converting a signal in time/spatial domain to its
representation in frequency domain and viceversa.
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Figure 4.3. This figure shows how the sine and cosine waves are scaled by the factors
produced in z. and xs. These waves when added will create x, the original signal shown
on the left.

you the particular representation used.

Now, consider the cosine wave ¢; whose amplitude is given by x.[k]. Note
that ¢y is a signal with N samples. Further, it is a cosine wave that makes k
cycles over these N samples, and has an amplitude of z.[k]. This cosine wave
can be described as

2mki
cxli] = cos (%) = cos(2n fi) = cos(wi) (4.1)
where i denotes the ith sample of ¢, 0 < i < N —1. Similarly, the kth sine wave,

Sk, is given by

skli] = sin (%’”) = sin(2n fi) = sin(wi) (4.2)
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Figure 4.4. This figure shows decomposition of the time domain signal = to the fre-
quency domain z. and xs.

Now, recall that the signal x is formed by the addition of all the cosine and sine
waves weighted by their amplitudes given by x. and x respectively. Therefore,

2e[K]cos (27;\;“) + 5 [K]sin (2”“) (4.3)

N

Note that this provides us the equation for using z. and x; and combining the
different sine and cosine waves to create the signal x. Therefore, this is the
equation behind the inverse DFT or synthesis. It is simpler to understand this
and hence we derived this first. Figure 4.3 shows weighted sine and cosine waves
that when combined create the original signal.

However, the actual equations for synthesis are slightly different than Equa-
tion 4.3. There are some scale factors associated with each term. All the terms

M w2
M w2

x[i] =

k=0 k=0

except for z.[0] and z,[4] are scaled by 2. z.[0] and z,[§] are scaled by .
Therefore the actual amplitudes %, and &5 are given by
2
Felk] = 2] (1.4)
2
Zslk] = N:cs[k:] (4.5)
for all k except for
1
Z.[0] = Nxc[O] (4.6)
N 1 N
| B = Nxs[g] (4.7)
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Figure 4.5. Two example signals are shown to be correlated with the same basis func-
tion. The first leads to the value of 0.5 indicating an amplitude of 1.0 for that basis
function in the synthesis equation. The second one leads to a value of 0 indicating that
this basis function has no contribution in synthesizing the function.

and the actual synthesis equation is

ofi] = kziafc[k}cos (2}’”) + 3 lksin (27;\;“) (4.8)

These scale factors are related to the underlying process of discretization of the
analog Fourier transform during its digital processing and we will come back to
it soon.

The next question is how we really find z. and x,. Note that this decompo-
sition is trying to figure out how much of each of these sine and cosine waves
is contained in the signal . What does this remind you of? Of course, this is
best computed by correlation. If x is a cosine or sine wave, it will be completely
correlated with the sine and cosine waves of the same frequency resulting in only
one element of z. and z, to be non-zero. Thus, we can write the equation for
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DFT as a correlation as

Nzxu (55) (19)

__1x[i]sin <27;“>

1=

x.[k]

Z =

w4 [k] (4.10)

(=)

Here too, due to the same scale factors, the real coefficients are given by . and
Ts. In fact, these are the exact weights that are used in Figure 4.3. The arrays
z. and x4 thus generated from z are shown in Figure 4.4. An example of the
process of correlation is shown in Figure 4.5.

12 2 2 2 1 Let us briefly examine Equation
NN N NNUN 4.10 first. Note that z.[0] is given
L — e by correlation with cos(0) = 1. This

means

1 V=l
Zel0] = Z [, (4.11)
=
i.e. the first coeflicient for cosine
— waves is the average of all the samples
k=0 k=N/2  of z. This is often called the DC com-
f=0 f=0.5  ponent. Second, note that sin[0] =
w=0 w=M

Figure 4.6. This figure shows the origin
of the scale factors in Equation 4.8. The
blue lines indicate the frequencies generated
by DFT. The dotted red lines denote the
boundaries of the ranges of frequencies rep-
resented by each of these frequencies.

sin[mi] = 0. Therefore, 7,[0] = 2y =
0. Some of you may have been won-
dering before how we generate N + 2
samples in the frequency domain from
N samples in the spatial domain.
Here you can see that we actually do
not generate more information since

two of the N + 2 samples are zero.

Let us now revisit the issue of the scale factors introduced to generate Equa-
tion 4.8. In this book, we do not discuss analog Fourier transform. However,
mathematically, discrete Fourier transform is derived from analog Fourier trans-
form. In DFT, when we move from time/spatial domain to frequency domain,
we generate a few discrete frequencies, with uniform distance between them. In
other words, DFT only creates frequencies that makes k cycles over the N sam-
ple, where k is limited to an interger. However, when we perform the same Fourier
transform in the analog domain, it can generate many different frequencies since
conceptually both k and NV can take any value.

Therefore, the set of frequencies generated by the DFT can be thought of
as the sampling of the frequencies in continuous domain. Each of these discrete
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frequencies can be considered to be a representative of a range of frequencies. All
the frequencies with £k = 1,2, ... % can be thought of representative of a range
of frequencies with width % (Figure 4.6). However, the range of frequencies
represented by the first and last frequency, i.e. kK = 0, % is half of this, i.e. %
These are exactly the scale factors used for the different frequencies in Equation
4.8. Therefore, these scale factors originate from the width of the spectral band

represented by each of the discrete frequencies.

Put a Face to the Name

Jean-Baptiste Joseph Fourier was a French mathemati-
cian (21 March 1768 — 16 May 1830) who played an
important role during the French Revolution for which
he was briefly imprsioned. He accompanied Napoleon
Bonaparte in his Egyptian expedition in 1798 and con-
tributed heavily to the Egyptian institute in Cairo
that Napoleon founded. Fourier’s biggest contribution
is in the investigation of Fourier series and their ap-
plications to problems of heat transfer and vibrations.
Though Fourier transform is probably the most fundamental mainstay
of image processing, it was not easy for Fourier to publish this work.
Fourier first tried to publish this work in 1807 when he claimed that ”any
continuous periodic signal can be expressed as a sum of properly chosen
sinusoids”. Two stalwart mathematicians of those times, Lagrange and
Laplace, reviewed the paper. While Laplace wanted to publish the paper,
Lagrange vehemently opposed it saying that sinusoids cannot be sufficient to
represent signals with corners. The paper was published 15 years later after
Lagrange’s death. As to the question of who was right, — well, both were. It
is true that you cannot represent signals with corners with sinusoids, but
you can get extremely close. In fact, you can get so close that the energy
difference is zero which was shown by Gibbs later on and is famously called
the Gibbs effect. Also, it was shown that this is true only in the analog
domain. In the digital domain, the representation is exact, even for signals
with corners.

4.1.1 Why Sine and Cosine Waves?

A question that is probably hovering in everyone’s mind by this time, is what is so
special about sine and cosine waves and why are we decomposing general signals
into sine and cosine waves? In fact, sine and cosine waves are indeed special.
You can show the sine and cosine waves of different frequencies are completely
independent of each other. In other words, none of these waves can be given by a
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Figure 4.7. This shows both the rectangular and the polar representation for the same
function.

linear combination of the others. You can verify this by correlating any of these
waves with any of the other. The answer will always be zero confirming that each
wave is completely uncorrelated and hence independent of another. Therefore,
these waves form a basis for representing other functions. It can be shown that
these set of waves are both necessary and sufficient to represent any general 1D
periodic function.

4.2 Polar Notation

Now, the question is, how do we represent this frequency domain for us to inter-
pret it for our needs. Of course, one obvious way is to plot z. and = (as shown
in Figure 4.4). This is referred to as the rectangular representation. But note
that we are dealing with sine and cosine waves in the rectangular representation
which when drawn out as in Figure 4.3 will cause constructive and destructive
interference (yes, this is the concept in physics that you learned in high school!).
Therefore, some parts of one wave will cancel out some parts of another wave
while others will reinforce it. Therefore, it is very difficult to really understand
anything useful from this plot of z. and z.

However, there is respite from this. When considering a pair of scaled sine
and cosine waves of the same frequency, they can be represented by a single
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cosine wave of certain amplitude and phase. This is due to the fact that sine and
cosine waves are phase shifted versions of each other. Therefore, for each pair of
same frequency sine and cosine waves, we can do the following.

xc[k]cos(wi) + xs[k]sin(wi) = Mycos(wi + 0) (4.12)
where M, = \/x.[k]2 + z4[k]? and 6; = tan! (ir{ZD are the amplitude and

phase respectively of the k cosine wave. Therefore, instead of two arrays x.
and xs which makes it a little complicated to analyze, we can represent x by a
set of only the cosine waves, each with a different amplitude and phase. % such
cosine waves each of which scaled by the right amplitude and shifted by the right
phase is added together to create the original signal. This amplitude and phase
generates two 1D plots which constitutes the frequency domain representation of
the signal x. This representation is called the polar representation. Now note here,
that the phase can be expressed either in degrees or in radians. If expressed in
degrees, the independent axis will range from —180 to 180. If expressed in radians
it will range from —7 tp 7. Another aspect to keep in mind when coding this up
is computing 6 involves a division with z.[k]. Therefore, sometimes this can lead
to a division zero. The case of z.[k] = 0 should be treated as an exception and
appropriate phase assigned to it. Most of these are more pertinent if you have
to code up DFT which will be rare since multiple mathematical packages (e.g.
Matlab) are available today that do this for you.

Figure 4.7 shows the rectangular
representation and the corresponding

; T~ g polar representation of the DFT of
: i a 1D signal. Now, let us take a mo-
T ment to study this polar representa-

tion a little more. Interpreting this
plot is absolutely essential to internal-
ize concepts in image analysis. While
multiple computer programs will gen-
erate this plot for you in no time,
none will tell you how to interpret it. First, note that the independent axis
of the plot can be either k£ ranging from 0 to % or f ranging from 0.0 to 0.5 or
w ranging from 0 to 7 (in Figure 4.7 we have used f). You should be prepared
to see any of these representations. The ranges will tell you which particular
parameter is being used. Second, note that phase provides us information about
how synchronous the rise and fall of the different waves are, indicating whether
they result in features (e.g. edges, corners). Such features are best studied in the
spatial/time domain and not in the frequency domain. Therefore, the amplitude
plot is of most importance to us as we saw in the previous chapter.

However, the polar notation is not devoid of problems. Consider the two cases

Figure 4.8. This figure shows the the pro-
cess of unwrapping of phase.
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of xs[k] = z.[k] = 1 and zs[k] = z.[k] = —1. In both these cases M[k] = 1.414.
But the phase for one of them is 45° and the other is —135°. This is due to the
phase ambiguity. Similar problem arises because, for example, a phase shift of 6
is equal to that of 6 + 27 or 6 + 47 and so on. This ambiguity in representation
needs to be taken care of after 6 is computed. This process is called unwrapping
of the phase and is illustrated in Figure 4.8.

4.2.1 Properties
It is now time to explore some basic properties of DFT as follows.

1. Homogeneity: If the DFT of a signal z[t] is given by M[f], the DFT of the
signal scaled by a factor k is also scaled by k. In other words, homogeneity
implies that if a signal is scaled in the spatial domain, its amplitude in
frequency domain is also scaled similarly. Assuming — stands for DFT,
this can be expressed as,

alt] = (M[f1,0[f]) = kali] = (EM[f],0[f]) (4.13)
Note that the phase §[f] remains unchanged with scaling.

2. Additivity: Addition of signals in the spatial domain results in an addition
of its responses in the frequency domain. This can be expressed as

.’E[t] - (xc[fos[f])’y[t] - (yr[.ﬂvyz[f]) (414)
= ft] +ylt] = (@[f] + vrlf] 25 [f] + wil f]) (4.15)

Addition of two sine or cosine waves makes sense only when they are of
the same phase. Therefore, this addition cannot be performed in the polar
notation (where we express x as sum of different cosine waves of different
phase and amplitude). Hence, we resort to the rectangular notation (where
we express the signal as a sum of sine and cosine waves of similar phase)
to achieve this addition.

3. Linear Phase Shift: A shift in the signal in the spatial domain results in a
linear phase shift proportional to the spatial shift in the frequency domain
as follows.

aft) = (M[f],0[f]) = [t +s] = (M[f],0[f] + 27 fs) (4.16)

This can be intuitively explained also. Think of x[t] getting shifted by s in
the spatial domain. This means that all the waves comprising z[t] will be
shifted by s. Note that the same shift s makes up a larger part of a cycle for
a lower frequency wave than a higher frequency wave which corresponds to
a lower phase shift. Therefore the phase shift for each wave is proportional
to its frequency.
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Figure 4.9. This shows how a symmetric signal can be decomposed to two signals which
are complex conjugates of each other.

4.2.2 Example Analysis of Signals

Let us see if we can explain some of the phenomena using what we have learned
so far. This will help you understand how to use these properties for analyzing
signals. First let us consider a symmetric signal as seen in Figure 4.10. What can
you say about the phase of a symmetric signal?

For this we need to understand something called the complex conjugate of
a signal. A signal whose frequency domain response has the same magnitude
but negative phase is called the complex conjugate of x and is denoted by x*.
It can also be shown that if the frequency response of a signal and its complex
conjugate are added, the resulting phase is zero at all frequencies. Further, if the
phase response in the frequency domain is negated as above, the signal is flipped
in the spatial domain.

Now comnsidering this, let us look at a symmetric signal as shown in Figure
4.9. A symmetric signal can be decomposed into two signals, each of which is
a flipped version of the other i.e. complex conjugate of the other. Therefore,
the addition of these two signals provides a signal whose phase response is zero.
Therefore a symmetric signal always has zero phase as shown in Figure 4.10.

Now, let us next consider what happens when we consider shifting of such
a symmetric signal. For this, please refer to Figure 4.10. Here we show circular
shifts of the symmetric signal. Note that from the property of linear phase shift
due to spatial shift in the signal we know that any such shift will cause the phase
to be shifted linearly. The slope of this shift will be positive or negative based
on if the shift is to the right or left respectively. Finally, when the circular shift
results in another symmetric signal as shown in Figure 4.10, it leads to a zero
phase signal again.

This provides us with an example of how these properties can be used to
analyze signals. However, the issue of phase of symmetric signals also brings in
the question of what does it meant by a non-linear phase? Usually non-linear
phase means non-linear features superimposed on linear phase as shown in Figure
4.11. Tt is typical of more general non-symmetric signals.
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Figure 4.10. This shows the frequency responses of symmetric signals and their circular
movement.

Let us now see another example of signal analysis called amplitude modu-
lation. Lets us consider an audio signal z[t] whose response X[f] in frequency
domain is bandlimited by b. This signal is multiplied by a very high frequency
cosine wave y[t] called the carrier wave or carrier frequency. The frequency of
this wave is called the carrier frequency and denoted by c. Note that since
this is a single cosine wave, its frequency response Y[f] is a shifted delta at c.
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Figure 4.11. This shows the
non linear phase of a typical
non-symmetric signal.

A multiplication in spatial domain is a convolution
is frequency domain which results in creating two
mirror copies of X|[f] centered around ¢. To recover
the signal in frequency domain a filter that extracts
a region of bandwidth b to the left or right of ¢, of-
ten called a motch filter, would be sufficient. This
is exactly how AM (standing for amplitude modu-
lation) radio works with each station having their
own carrier frequency transmitting a signal mod-
ulated by the carrier wave. When we tune in the
radio, we are applying the notch filter to recover
the signal back. Note that ¢ >> b for this to work

and also the carrier frequencies of the different channels needs to be at least
2b apart to ensure no mingling of signals. We will see in Section 4.4 that this
mingling of signals have a name and distinct feature.

mm

Spatial Domain Frequency Domain

X[f]

y[t]

x[tly[t]

YIf] k

XIF1*Y[f]
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Figure 4.12. This shows the phenomenon of amplitude modulation. A audio signal z[t]
in spatial domain, bandlimited by b in frequency domain, is multiplied by a carrier
sine wave y[t] of very high frequency c. This multiplication results in a convolution of
a shifted delta with the frequency response X|[f] of the audio signal. This results in a
shifted copy of X|[f] centered at frequency c.
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Figure 4.13. The amplitude plot is frequency domain is periodic and repeats itself as
an even function. The red plot signifies the [0, 7] range that we have seen so far.

This constraint that carrier frequencies should be 2b apart did not allow
enough carrier frequencies as were demanded by the fast growing number of
stations. So, frequency modulation or FM came later. Here, the frequency, and
not the amplitude, of the signal to be transmitted is modulated based on the
amplitude of the spatial signal. For example, the frequency can be modulated
from 55KHz to 65KHz for one station and between 40-50KHz in another station.
Here also a frequency domain notch filter extracts the signal on the receiver end.
However, the range of frequencies to be used for modulation can be much smaller
allowing much larger number of stations to be packed in.

4.3 Periodicity of Frequency Domain

As explained in Figure 4.1, DFT consider the signal to be repeating itself peri-
odically infinitely. However, we have not discussed yet, the consequence of such
an assumption. A question may be hovering in your minds as to how does an
infinitely periodic function have a finite DFT. In fact, it doesn’t! We will now dis-
cuss how this periodicity in spatial domain induces a periodicity in the frequency
domain. Let us explore now how this periodicity looks.

DFT decomposes a signal into cosine waves of different magnitude and phase.
If we consider a frequency f, we know from trigonometry that

Acos(f) = Acos(—f) = Acos(2m — f) = Acos(n2m — f) (4.17)

where n is any integer. From this, you can see that if the value of the amplitude
at f in the DF'T magnitude response is A, then the same value would repeat at
—f and also at 27 — f and so on. Therefore the amplitude repeats as

MIf] = M[-f] (4.18)

as shown in Figure 4.13. Thus it repeats as an even function, a function whose
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Figure 4.14. The phase plot is frequency domain is periodic and repeats itself as an
odd function. The red plot signifies the [0, 7] range that we have seen so far.

value at a negated parameter is the same as its value at the corresponding positive
parameter.
Let us now see what happens to the phase. We know from trigonometry that

cos(f +0) =cos(—f —0). (4.19)

Therefore, the negative of the value of the phase 6 repeats at — f. Therefore, the
phase repeats itself as

0lf] = —0[—f] (4.20)

as shown in Figure 4.14. This is an odd function, a function whose value at
the negated parameter is the negative of its value at the corresponding positive
parameter. Also, note that hence forth most of the times when you will be shown
a 1D frequency plot you will be shown the plot for the entire range of [—m,7].

4.4  Aliasing

Now that we have understood periodicity, this brings us to a very important
phenomenon called aliasing. Let us start with the amplitude modulation we did
in Section 4.2.2. Let us assume that the carrier frequencies of different stations
are less than 2b apart. Let us see what happens in that case.

Check out Figure 4.15. We see here two signals, blue and green transmit-
ted with carrier frequencies ¢ and d respectively. On the left when ¢ and d are
2b apart, the blue and green signals do not overlap with each other after con-
volution. Therefore, when the blue signal is reconstructed using a notch filter
with frequencies from ¢ to ¢ + b, the original signal is reconstructed via inverse
DFT. But now note what happens when ¢ and b are not 2b apart as shown in
the right. Here the blue and green signals overlap each other and now during
reconstruction part of the green signals higher frequencies get added to the blue
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Figure 4.15. Left: The Y and X denote the frequency domain response of the carrier
wave and the signal to be transmitted respectively. Since carrier waves are a cosine or
sine wave of a single frequency, their response is a single spike at the carrier frequency.
Two such carrier frequencies, ¢ and d, are exactly 2b apart and the reconstructed signal
by notch filter of frequency ¢ to ¢ + b would give the correct signal back. Right: ¢
and d are less than 2b apart. Now during reconstruction, part of the green signal gets
added to the blue signal giving a signal which has some extra high frequencies. This
reconstructed signal is highlighted in dark blue.

signal thereby amplifying its higher frequency. This would create high frequency
artifacts in the reconstructed signal. The phenomena of ghost frequencies from
other signals contaminating a signal is called aliasing.

To start with this, let us start with
the simplest case. Let us consider a
discrete 1D signal x[t] of size n = 100
samples being convolved with a filter
ht] of size m = 25. We know that the
size of the resulting signal will have

-62-50 0 50 62 n+m — 1 = 125 samples. Now let us
— f consider performing the same convo-

lution by first finding the DFT of =

Figure 4.16. This figure shows the aliasing  and h given by X and H of size 50
stemming from the periodicity of the DFT. 4,4 13 respectively. Then, we multi-
ply X and H to get the response of size 50 and then find the inverse DFT that
results in a signal with 100 samples. So, using one approach we get an answer
which is 125 samples long and using another we get to a signal with 100 samples.
So, what is the problem here? In fact, since the convolved signal should be 124
samples, it would need sinusoids that make 0 to 62 cycles to represent the con-
volved signal as per the Nyquist criterion. However, when going by the frequency
domain multiplication, we are not sampling the frequency domain adequately by
using only 50 samples. Hence, the convolved signal achieved via that route will
show an aliasing artifact. Here the aliasing is purely due to inadequate sampling.
To do this correctly via the frequency domain, you should first pad both z and h
adequately to make them 125 samples in size. Next, we find the DFT of x and h
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yielding X and H, each of which is 62 samples in size. These after inverse DFT
will create the correct 124 sample sized convolved signal.

Note that this aliasing essentially stems from the periodicity of the DFT as
shown in Figure 4.16. The size of the frequency response array is supposed to
be 62 and when 50 samples are used the frequency response overlaps with each
other. It is almost as if the last 12 samples have flipped over to be part of the
frequency response when it is not supposed to be like that. This leads to leak-in
high frequency that shows up as aliasing artifacts.

4.5 Extension for 2D Interpretation

In this chapter, we have so far Spatial Domain Frequency Domain
been considering only 1D signals. .
Now lets us consider 2D data. As
you already know, grayscale images
are considered as 2D data. Therefore,
they can undergo DFT too. A mul-
titude of software can perform this
DFT, but it is important to inter-

pret the results of DF'T. So, let us see Figure 4.17. This figure shows the ampli-
how would the frequency domain rep-  tyde and phase plot on the right corre-
resentation of the DFT of 2D data be  sponding to the frequency domain represen-
interpreted. We had already touched tation of the image in the left.

upon this briefly in Section 1.3 of

Chapter 1. It may be useful if you want to go back and brush up on this section.
We will get into lot more details in this chapter.

As we saw in Chapter 1, the frequency domain response of a 2D data will
result in a 2D plot. Therefore, M and 6 are now a 2D functions representing the
amplitude and phase of cosine waves of different frequencies (as in the case of
1D) and different orientation. Let M and 6 depend on two variables g and h such
that Mg, h] and 0[g, h] give the amplitude and phase respectively of a cosine
wave of frequency /g2 + h? and orientation tan‘l(g). The most common way
of visualizing M and 6 is to plot them as a grayscale image where the values of
M]g, h] and 0[g, h] is visualized as a gray value between black and white.

Let us now understand this representation thoroughly. Let us consider a
grayscale image which is 2D data — note that an RGB image will be considered
as a 3D data due to multiple channels. However, each channel of RGB image
is usually considered as 2D data. The frequency domain representation of an
example image is shown in Figure 4.17. There are a few things to note here in
the amplitude and phase plots. First, the zero frequency (or the DC component)
is at the bottom center of the image. Second, the orientation of the cosine wave

Amplitude

Phase
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Figure 4.18. This figure shows that when the phase information of one image is com-
bined with the amplitude of another to create a new image via inverse DFT, the
perception of the image whose phase was used prevails.

can be from 0 to 180. Beyond that the orientation can be mapped back to 0 to
180. Therefore the bottom horizontal line denotes frequencies of 0 degree on the
right and 180 degree on the left. Third, note that as expected, high gray values
are at lower radius from the center denoting concentration of the most of the
energy of the signal at lower frequencies. In this particular plot, note that the
the vertical frequencies (90 degrees) have high frequencies. Finally, note that it
is almost impossible to make any sense out of the phase plot. This is expected
since this plot is not unwrapped. Also, as mentioned earlier, the phase plot shows
how synchronous the rise and fall of the cosine waves are. This information is
pertinent for detecting features (e.g. edges). However, feature detection is usually
done in the spatial domain and hence the phase plot is typically not interpreted
for spectral analysis.

This may give you an impression that the phase plot is not that important.
But this is a grave misconception as is illustrated by Figure 4.18. Here we have
taken the phase response of the cheetah image and the amplitude response of the
zebra image and combined them using the inverse DFT to create a new image
back. Note that the predominant perception of this image is that of cheetah
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whose phase plot has been used. This shows that phase information is very
important, just that it is easier to study this in the spatial domain rather then
the frequency domain.

45.1 Effect of Periodicity

Now let us see how this periodicity extends to 2D. We have seen that the am-
plitude and phase plots repeat themselves to infinity in positive and negative
directions as an even and odd function respectively. The same will be true in
2D. But now since we are dealing with 2D functions, the plot will repeat itself
in each of the four quadrant directions. We will be working with amplitude plots
mostly and to show one period of the plot, we will be showing four quadrants
where the bottom two quadrants will be the reflection of the top two quadrants.

Let us now look at a few frequency response plots (amplitude only) in Figure
4.19 to understand these better. (a) is the image of a sine wave making 8 cycles in
the horizontal direction. Note that horizontal direction sinusoids result in vertical
stripes and vice versa. Therefore, you see the plot with two high points on the
x axis denoting the symmetric position for the horizontal sinusoid which can be
considered to be of orientation 0 or 180. The bright spot in the center is due to
the averaging of all the pixels in the image. (b) contains only one frequency in
the vertical direction. Therefore, again we find two highlights in the vertical axis
at 90 and 370 degrees. The next two images, (c) and (d), contains both vertical
and horizontal frequencies and therefore you see four highlights instead of two
in the amplitude graph in the frequency domain. Finally, (e) shows an image
which is just a rotation of a single sinusoid. Ideally, you would see two highlights
in the direction perpendicular to the direction of the stripes as shown in (g).
However, instead we see strong horizontal and vertical patterns in Figure 4.19.
This may look surprising but this is exactly what is due to the periodicity. Due to
periodicity we are finding the DFT of the image in (e) repeated in both directions
multiple times as shown in (h). The edges thus created causes the horizontal and
vertical highlights in the frequency domain. To alleviate this effect, we perform a
windowing operation on this image as shown in (f). This is essentially pixel-wise
multiplication of an image with a gaussian image that has the peak brightness at
the center and the brightness falls off smoothly to a medium gray near the fringes
based on a Gaussian function. Though this brings in a new effect getting rid of
the edges when repeated in horizontal and vertical direction, we can see a better
approximation of the original non-repeated sinusoid where the two highlights
can at least be deciphered.

4.5.2 Notch Filter

At this point, you may possibly be wondering about the possible uses of frequency
domain computation and how it can be more effective than spatial domain com-
putation. Towards this, let us see an example of a notch filter. Consider an image
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Figure 4.19. The top row shows the spatial domain image and the bottom row shows its
amplitude response in the frequency domain. (a) A cosine of 8 horizontal cycles. (b) A
cosine of 32 vertical cycles. (¢) A cosine of 4 cycles horizontally and 16 cycles vertically.
(d) A cosine of 32 cycles horizontally and 2 cycles vertically. (e) This is (a) rotated by
45 degrees. The ideal frequency domain response of an infinite image of this pattern is
(g). But this is suppressed due to the extra pattern and therefore frequencies created
by tiling as shown in (h). (f) This image is that of (e) but with a “windowing” that
slowly tapers off to a medium gray at the edge and therefore the frequency response is
closer to (g).

which has some periodic high frequency pattern superimposed on it — this can
be due to the technology of its creation (e.g. newsprint, tapestry). Removing this
superimposed pattern in spatial domain is not obvious. But if you now see the
spectral response of the image you will see that its magnitude plot will clearly
show this pattern as a outlier high frequency. It is easy to isolate this high fre-
quency in the magnitude plot, remove it and then apply the inverse DFT to get
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Figure 4.20. A: The original image with a high frequency pattern superimposed on it;
B: The DFT of the image in A - note the white high frequency regions corresponding to
the high frequency pattern; C: Removal of the outlier frequency in the spectral domain;
D: Inverse DFT is applied on C to get a new image back. This is devoid of the high
frequency pattern.

a new image back. And voila! This high frequency pattern is removed from this
image. This example is illustrated in Figure 4.20.

4.5.3 Example of Aliasing

To discuss aliasing in the context of 2D images, a very good example is provided
by the process of digital image generation and display. We will discuss this using
1D images, but you will see that it will be adequate. An analog image is sampled
to create a digital image. This process is called sampling. The process of using
a light spot (called pixel) of a particular size and intensity profile to display
these samples is called is called reconstruction. We will now provide a frequency
domain analysis of these two processes and show how aliasing artifacts can result
during these processes.

Let us now consider an analog signal with bandwidth f, which means that
the highest frequency wave present in the signal fs. Now sampling this image
to convert it to digital domain can be considered as a multiplication by a comb
function in the spatial domain. A comb function is a periodic function where
a scaled impulse repeats itself periodically (Figure 4.21). Since the frequency
domain response of a comb function is another comb function, the sampling
process becomes a convolution with a comb function in the frequency domain.
Since the largest frequency present in the function is fs, it has to be sampled at
least at the rate of 2f,. This means that the interval between the combs in the
spatial domain is i Therefore, by duality, the interval between the combs in
the frequency domain is 2f5 as shown in Figure 4.21. Note that if the distance
between the combs is greater than 2f, in frequency domain (by duality, if the
interval between the combs is greater than # in the spatial domain), then the
copies achieved due to convolution in the frequency domain would overlap with
each other leading to aliasing. This is also what Nyquist criterion states.
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Figure 4.21. This figure shows the process of sampling an analog signal to its digital
counterpart in frequency domain by convolution with a comb function. The bandwidth
of the analog image is fs.

Now, let us consider the process of displaying a digital signal on a display.
Now note that a pixel, though thought of as a dot of light, practically is formed by
illuminating a finite area. Though ideally we would like this area to be uniformly
illuminated and the light to be cut-off sharply away from the boundaries of the
pixel, practically this is hardly possible. The illumination of a pixel is usually
highest at the center and then drops of smoothly towards its boundary and hope-
fully dies down before reaching the other pixel. Let us consider the illumination
profile of the pixel to be a signal is spatial domain. We call this function as the
point spread function or PSF. The process of image reconstruction is to convolve
the sampled signal in the spatial domain with the kernel of PSF. Therefore, it
is a multiplication in the frequency domain as shown in Figure 4.22. Now note
that if the bandwidth of the PSF (or highest frequency in the PSF) is exactly
fs, a correct reconstruction will be assured. However, if the bandwidth is a little
higher (i.e. pixels are sharper and become dark before reaching the boundary), as
shown by the orange function, the reconstructed signal will have leakage high-
frequencies from the other copies leading to aliasing artifacts. This artifact is
commonly called pizelization. If the bandwidth is a little smaller (i.e. pixels are
larger and bleeds into the next pixel), only a smaller band of frequencies will be
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Figure 4.22. This figure shows the process of reconstruction of a digital signal to its
analog counterpart in frequency domain. Note that if the PSF does not have the perfect
bandwidth of fs, artifacts will result. If the PSF is too wide, higher frequencies will leak
in (shown in orange) causing a pixelization artifact. If the PSF is too narrow, higher
frequencies will be cut off causing a blurring artifact.

recovered i.e. the image will be blurred as in low pass filters. These are indicated
in Figure 4.22 via colored lines that mark the bandwidth of the reconstructed
signal for each of these three different cases.

Note that most of the concepts in this chapter have been illustrated in 1D,
however they provide perfect understanding for 2D image phenomenon. Ponder
over this deeply and carry this skill forward. DFTs can be extended to higher
dimension and they are surprisingly widespread in their use. However, under-
standing 1D DFT goes a long way in understanding DFT in higher dimensions.

4.6 Duality

The most effective aspect of DFT is its duality which has been proved theoreti-
cally, but here we would only explore the concept without proof. Intuitively, you
can see this by going back and examining the DFT synthesis and analysis equa-
tions (Equation 4.3 and 4.5) and appreciating the striking similarity between
them. This duality gives rise to several interesting properties that become very
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Figure 4.23. This shows the duality in expansion and compression of spatial domain
signals that lead to the compression and expansion of their frequency domain counter
parts.

handy tools in analyzing signals. With all the background that you have in DFT
now, this should become a very intuitive now and let us explore this more in this
section. However, note that when we are talking about duality we consider only
amplitude and not the phase. As such, we saw earlier that phase information is
not studied in frequency domain much. Also, since time and spatial parameters
are common independent variables for 1D and 2D respectively, they are often
referred to as time domain and spatial domain functions respectively. But the
terms are used interchangeably since they both refer to the primal space. The
dual space is given by the frequency domain representation.

First, let us consider a ¢ in the spatial domain. We know that it is the
sharpest signal possible and therefore is created by assembling all the different
cosine and sine waves — from the smoothest to the sharpest of them. Therefore,
its frequency response is a constant. Now consider a signal which is constant in
time domain. This means that it is of frequency zero and hence its amplitude
frequency response is a spike at 0. This is called duality — the frequency response
of a spike is a constant and that of a constant is a spike.

Next, let us consider a signal in spatial domain, as in Figure 4.23. Note that as
the signal expands in the spatial domain, its frequency response compresses and
vice versa. This can also be explained intuitively. When the signal compresses
in the spatial domain, it gets sharper which indicates that the higher frequency
increases. Therefore, the response in frequency domain expands. In fact, this
is the basis of low pass filtering. Widening kernel indicates smaller range of
frequency getting passed and therefore a more drastic low pass filtering.

Given this duality, let us define some Fourier pairs (Figure 4.24). These are
specific functions and their DFT amplitude response in frequency domain. For
example, the DFT of a Gaussian filter is a Gaussian. However, their widths are
inversely related; i.e. if the width of the spatial domain Gaussian increases, the
width of its frequency response decreases. This is [a} Fourier pair. Similarly, the
Sin[f

f

DFT of the box filter is a Sinc function given by , and that of a sinc function
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Figure 4.24. This figure shows three Fourier pairs from top to bottom. (a) A Gaussian
is a Fourier pair of a Gaussian; (b) A box is a Fourier pair of a sinc and (¢) a comb is
a Fourier pair of a comb.

in the spatial domain is a box function, thus forming another Fourier pair. Note
that the sinc is an infinite function that asymptotically approaches to zero with
increasing f. Another dual function is a comb function. The frequency response
of a comb function is also a comb function, only that their intervals are inversely
related similar to the Gaussian function duality. In other words, if the spatial
domain comb gets denser, its frequency response gets sparser and vice versa.
These Fourier pairs can give us a lot of insights. Recall from the low pass
filtering discussion that the box filter is not the greatest low pass filter. Now
the time has come to explain why. An ideal low pass filter will be a box filter
in the frequency domain which would completely cut off frequencies above a
certain threshold and retain the ones below the threshold. However, a box in
frequency domain is a sinc in spatial domain. Sinc is an infinite function and
no finite digital kernel can be developed for it. So, an ideal low pass filter is
impossible to build. Further, the most commonly used low pass filter is a box
filter (often achieved by averaging neighboring pixels in a square region of an
image). However, note that the frequency response of a box is a sinc. Convolution
by a box in spatial domain is a multiplication by sinc in the frequency domain.
Since sinc is an infinite function, it means that by low pass filtering by a box, some
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high frequencies will always remain in the filtered function due to multiplication
with an infinite function. Therefore, a box filter in reality is not ideal since it
leads to leakage of high frequency in the filtered signal. Practically, a Gaussian
filter offers us the best of both worlds since it has very little high frequency leaks.
However, the higher frequencies can get significantly attenuated. In fact, a box
multiplied by a Gaussian in spatial domain (sinc convolved with a Gaussian in
frequency domain) turns out to be one of the best low pass filters since it reduces
the attenuation of the higher frequencies without compromising the leakage of
high frequencies. More complex filters exist, offering different tradeoffs between
the amount of attenuation of the higher frequencies and the amount of leakage
of higher frequencies.

Fun Facts

Did you know that your ears do Fourier transform automatically! There are
little hairs (cilia) in you ears which vibrate at specific (and different) frequen-
cies. When a wave enters your ear, the cilia will vibrate if the wavefunction
“contains” any component of the correponding frequency! Because of this,
you can distinguish sounds of various pitches!

In fact, Fourier transform is one of the most widely used mathematical
tools. It has been used to study the vibrations of submersible structures
interacting with fluids, to try to predict upcoming earthquakes, to identify
the ingredients of very distant galaxies, to search for new physics in the heat
remnants of the Big Bang, to uncover the structure of proteins from X-ray
diffraction patterns, to study the acoustics of musical instruments, to refine
models of the water cycle, to search for pulsars (spinning neutron stars), and
to understand the structure of molecules using nuclear magnetic resonance.
The Fourier transform has even been used to identify a counterfeit Jackson
Pollock painting by deciphering the chemicals in the paint. That is quite the
legacy for a little math trick.

4.7 Conclusion

Fourier analysis is a mathematical concept that can be applied to any func-
tion of any dimension. There are different flavors of Fourier transform based on
whether we are dealing with periodic signals or aperiodic signals, continuous or
digital signals. A large number of books has explored Fourier analysis from a
mathematical standpoint — [Tolstov 76, Spiegel 74, Morrison 94] and, in more
recent times, from the perspective of its application [Stein and Shakarchi 03, Fol-
land 09, Kammler 08]. Other texts explore it from the context of signal pro-
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cessing in the electrical engineering domain where it is mostly relevant for 1D
signals [Smith 97, Proakis and Manolakis 06]. Few image processing books pro-
vide the insights of application of Fourier analysis to digital images. In this book,
we have tried to provide you with this rare understanding of spectral analysis of
images.
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Exercises

1. Consider an one dimensional signal x of length 16 where sample ¢ is given
by x[i] = 2sin(7) + 3cos(%) + 4cos(mi) + 5.
(a) What is the length of each of the arrays x. and x4?
(b) Write out the arrays x. and z,.
(c) Convert the z. and z; representation to that of magnitude M and
phase 6. Write out the arrays M and 6.

2. Consider the box filter in spatial domain for a low pass filter.

(a) What is its frequency domain response?
(b) Is the box filter an ideal low pass filter? Justify your answer.

(¢) Is a box filter in the frequency domain an ideal low pass filter? Justify
your answer.

(d) What is the frequency domain response of a Gaussian filter in the
spatial domain?

(e) How does it compare to a box filter in the spatial domain for low pass
filtering? Justify your answer.

(f) A multiplication of Gaussian and Sinc in the spatial domain is con-
sidered an ideal low pass filter. Express analytically the frequency
domain response of this filter.

(g) How does this filter compare with the Gaussian filter in the spatial
domain? Justify your answer. (Hint: Use pictures of the frequency
domain response to identify pros and cons)

3. (a) shows you a picture of Goofy. This was smoothed only in the horizontal
direction to create the image (b). Consider the two amplitude responses in
(c) and (d). One of them belongs to (a) and the other to (b). Match them

and justify your answer.
(c) (d)

4. You want to digitize an analog signal of bandwidth 120Hz. The sampling
frequency of your display is 100 Hz. The bandwidth of your reconstruction
kernel is 80 Hz.
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(a) Why wont you be able to sample and reconstruct this signal without
artifacts using this display?

(b) How would you process the image to reconstruct it without any arti-
facts?

(¢c) What kind of artifacts would the reconstruction kernel generate?
(d) How would you change the reconstruction kernel to correct it?
5. (a) and (b) show two images. Consider the two amplitude responses in (c)

and (d). One of them belongs to (a) and the other to (b). Match them and
justify your answer.

0

(a) (b) (c) (d)

6. Match the images on the left with their amplitude responses on the right.
Justify your answers.
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7. How would you get rid of the shadows of the bars in the left image to get
the right image below?

8. The amplitude response of the left image below is given by the right image
which does not seem to suffer from the effects of periodicity. Justify this
phenomenon.

9. (a) and (b) show two images. Consider the two amplitude responses in (c)
and (d). One of them belongs to (a) and the other to (b). Match them and
justify your answer.

(b) (c) (d)

10. Consider a filter in the spatial domain formed by the multiplication of
a Gaussian and a box filter. What is the frequency domain response of
this filter? Is this response sharper or smoother than a sinc? Justify your
answer.
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Feature Detection

Features of an image are defined as regions where some unusual action happens.
For example, the brightness changes drastically to form an edge; or, gradients of
edges change drastically to form corner. In this chapter, we will see how some
of these features can be detected using convolution, which is a linear filtering
process. Therefore, the properties of scale, shift invariance, and additivity are
true for these filters. However, later in the chapter we will see that some features
can only be detected via more complex non-linear filters.
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Figure 5.1. This figure shows the salient features (right) detected by humans from an
image of an object (left). We will see in this chapter that such clean and crisp detection
of features is still not possible by computers.
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5.1 Edge Detection

Edges have a special importance in our perception. Several cells in the human
cortex have been found to be specialized for edge detection. Edges help us un-
derstand several aspects of an object including texture, lighting and shape. In
this section, we will see how we can detect edges in an image using computers.
Figure 5.1 shows the kind of edge detection we would like to have. In the
rest of this section we will explore algorithms to achieve this goal and see how
close we can get to it. As humans it is very easy for us to perform this task.
However, we will see in the following sections that the job is not that easy for
computers and developing algorithms that can achieve similar performance is

rather difficult.
Edges can have multiple

surface normal discontinuity origins (Figure 5.2). They can
be caused by discontinuity
= depth discontinuity in depth or surface normals.
L They can be caused by a
._-_%—surface color discontinuity stark change in color or il-
lumination. We will perform

—=— illumination discontinuity

edge detection using the fol-
lowing steps. (a) Find all the
pixels that are part of an
edge. These are called edgels.
We would take an image as
input and create a binary im-
age as output where all the edgels will be marked as white and the non-edgels as
black. We may also output a gray scale image where the color value will denote
the strength of the edge. Black would indicate no edge at all. (b)Next, we will use
methods to aggregate this edgels into longer edges, sometimes using a compact
parametric representation.

Figure 5.2. This shows the different kinds of edges
and the causes of their origin for a simple figure of
a bottle.

5.1.1 Edgel Detectors

In this section, we will discuss different methods to detect edgels, their advan-
tages and disadvantages. Finally, we will explore methods to detect edges at
different levels of details.

Gradient Based Detectors Let us now take a close look at the edges in Figure
5.2. Despite having different origins they have one feature in common. Edges
are formed when there is a drastic change in the brightness over one or more
pixels as shown in Figure 5.3 creating a roof, ramp or step edge. Therefore, if
we consider the image to be a function, a sharp change in its value causes an
edgel. Change is measured by the first derivative. Therefore, a pixel is an edgel
if the magnitude of the first derivative of the image at that pixel is large. Let us
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Figure 5.3. This shows edges in 1D functions. There can be three types of edges: step

edge, ramp edge and roof edge.
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Figure 5.4. This figure shows how the partial derivatives relate to the kind of edges we
see in an image.
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denote the image by a 2D function f. So, the gradient of f has a direction. We
can compute gradient at a pixel in x-direction and y-direction separately and
then combine them to get the gradient of the image at that point as follows.

af o
v = (S5 = tea 6.1

The gradient points in the direction of most rapid change as shown in Figure
5.4. In fact, we can quantify the direction and strength of the edge respectively
by

0 =tan~' (5.2)

9z

IVfIl = /92 + g2 (5.3)

Therefore, now that we know how to detect edges, the next question is how
we evaluate the partial derivatives in the digital domain. For this, we use the
method of finite differences. The difference between the pixel’s function value and
that of its right (or left) neighbor gives g, at that pixel. Similarly, the difference
between its value and that of its top (or bottom) neighbor gives g,.

9z = f(z+1,y) = f(z,y) (5-4)
gy = e,y +1) = f(z,y) (5.5)
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Figure 5.5. This shows the gradient function represented as kernels or filters which are
then convolved with the image to give two images — the gradient in x-direction (top)
and y-direction (bottom) at any pixel.
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Figure 5.6. Left: The top row shows the same image with noise increased as we go
from left to right. The bottom row shows the effect of applying a finite different x-
gradient filter to the corresponding images on the top row. These images get grainier
and grainier as the noise increases. Right:This shows the Sobel gradient operator for x
and y direction.

o
o

In fact, we can express this as a kernel or filter as shown in Figure 5.5 and when
an image is convolved with each of these filters, we get two gradient images - one
each for x and y directions. Once the gradient is detected we identify a pixel as
an edgel if the strength of the edge (Equation 5.3) is above a certain value. The
value we choose is called a threshold and is a parameter to the edgel detection
process. This process of generating a binary image by choosing a threshold is
called thresholding. Following the thresholding, instead of generating a binary
image, one can also generate an image in which the egdes are marked by different
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Figure 5.7. From left to right: The original image, the gradient image obtained after
applying the Sobel detector where the gray values denote the strength of the edges, the
edgel binary image after thresholding with gray value of 64 and 96. Note fewer edges
exist for larger thresholding value.

Figure 5.8. This figure shows the effect of noise on edge detection using the Sobel
operator followed by thresholding with gray value of 150. From left to right: The original
image, the edge detected image, the original image after noise is removed, the edge
detected image.

gray levels based on the direction or strength of the edges. Therefore, the gray
value would encode 6 or ||V f]|.

The above finite difference gradients are the simplest operator possible and
do not take noise in the image into account. Noise has its origin in the physical
device and can be modeled by a random value added to every pixel of an image.
Noise shows up as graininess in the image and if sufficiently high, it can increase
error of most image processing algorithms including edge detection. Figure 5.6
shows the effect of noise in finding the finite difference to generate the gradient
images. The image becomes more and more grainy as the noise increases which
indicates that the thresholding will start responding to noise rather than the
content of the image. One way to make these filters more robust to noise would
be to consider a bigger neighborhood. Several such filters exist and the one that
is found to be very robust is the Sobel operator (Figure 5.6). The scale value of
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Figure 5.9. This shows the noisy function (f) first smoothed using a Gaussian filter (h)
to give h x f which is then convolved with g, = a% giving a% (h* f).

% does not make any difference in the edgel detection since the threshold can
be adjusted to accommodate for it. It is there to normalize the gradient value.
Figure 5.7 shows the results of the Sobel operator on an image where the gray
values at the pixels indicate magnitude of the gradient at that pixel.

Nevertheless, noise poses a serious issue in edge detection and if it goes beyond
a certain level, no operator can really achieve an accurate edgel detection (Figure
5.8). So, it is important to handle noise. The most common way to do it is to low
pass filter the image first so that the noise is smoothed out. A Gaussian filter
is usually used for this purpose due to the property of reducing high frequency
leaks. The edge operator is then applied on the smoothed signal to achieve the
edgel detection. This concept is explain pictorially using 1D signals in Figure
5.9.

However, the operation of smoothing and the gradient filter can be achieved
in one filter. It can be showed that

h
(%(h*f):%*f. (5.6)

This means that the effect of applying a gradient filter (%) to a function f
convolved with a low pass filter h is the same as convolving f with a new filter
formed by applying the gradient filter to the low pass filter (%). Therefore, we
can take the derivative of the Gaussian low pass filter to create a single filter
which can then be convolved with the image to provide our gradient images.
This is explained in the Figure 5.10.
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Figure 5.10. This shows the noisy function (f) convolved with the derivative of the
Gaussian, %, providing g, = % * f.

Curvature Based Detectors The gradient based operators work well but they suf-
fer from two problems. First, for step or ramp edges (brightness that smoothly
changes from one level to another to create the edge rather than a sharp change
from one level to another and back to the previous level), they have poor lo-
calization (i.e. precise location of the edge) after thresholding which becomes
especially evident at thicker edges.

: This is due to the fact that a step or ramp
edge can trigger response on multiple adja-
cent pixels based on how smooth the step or
ramp is. Second, the response of the gradient
based operators is different for different di-
| | rection edges. As a result, the gradient based
Zero | | operators can miss edges based on the thresh-

Gray scale
profile

Crossings
olding value since the value favors some direc-
tions over others.

Curvature based edge detectors alleviate
Figure 5.11. This shows the zero these problems. The basic idea behind these
crossing in the 2nd derivative for a  operators lies in the realization that edges oc-
feature edge in 1D. cur when the first derivative (or gradient) of
an image reaches a maxima or a minima. This means at these points the second
derivative or curvature should have a zero-crossing (Figure 5.11). The goal of
the curvature based operators is to detect these zero crossings to find the precise
location of the edge and mark these pixels. This edge detector is often called the
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Marr-Hildreth edge detector based on the name of scientists who first proposed
it. The advantage of this detector is that it responds similarly to all different
direction edges and finds the correct positions of the edges.

The curvature of any 2D function is given by the

sum of the directional curvatures in two orthogonal ll Bl g Nl
directions as 52 52 s 4w
ol <y |« | =1
vep=24 4,94 (5.7)
0x2 = 0Oy?

Figure 5.12. The Lapla-
cian operator considering
only four perpendicular

The curvature at a pixel can be computed using fi-
nite differences for digital data. Curvature at a pixel
(z,y) in x-direction is computed by the difference be- neighbors (left) and con-
tween the gradient g, and g,11 at (z,y) and (z+1,y) dering all eight neigh-
respectively. Therefore, curvature in this direction is . (right).

given by

9z — gz—1 :f($+1ay) —f(l')— (f(!E— 17y) _f(may)) (58)

If we consider the same finite differences gradient in the vertical direction
and add it to the above formula, the curvature operator will involve the pixel
itself and its 4-connected neighbors to the left, right, top and bottom. Similarly,
if the diagonal neighbors are also considered, the finite difference formula for
curvature involves all the eight neighbors around a pixel, referred to as the 8-
connected neighbors. The filters thus formed as shown in Figure 5.12 are called
the Laplacian operators. Once the image is convolved for Laplacian operator,
pixels at which a zero crossing occurs are marked as edge pixels. In order to
detect the zero crossings, first the convolved image is thresholded to retain values

Dervative of Gaussian Laplacian of Gausasian

o N
fgla, v) = 2::12'" ard ﬁ.ﬂ-n{u.w] T, 1) :'-_t'f

Figure 5.13. This figure shows a 2D Gaussian filter, its derivative and a LoG filter
along with their analog equations. Sampling these functions would generate the filters
we have been discussing for edge detection.
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Figure 5.14. The original image (left) and the edges detected by the curvature based
detector (middle) and canny edge detector (right).

near the zero. Then the neighborhood of every marked pixel is examined to see
if both positive and negative values exist to indicate a zero crossing.

However, in this case also, before the Laplacian operator is applied to the
image, a convolution with a Gaussian is required to reduce the noise level. The
effect of a convolution with a Gaussian followed by a convolution with a Laplacian
operator on an image is equivalent to a single convolution of the image with a
kernel that is a Gaussian function convolved with a Laplacian operator. This is
called the Laplacian of Gaussian or LoG operator (Figure 5.13). However, this
removes the option of two different sized operators for Gaussian and Laplacian.

Often the same effect of a LoG operator can be achieved by subtracting a
delta function from a Gaussian filter (this is different than a high pass filter which
is a Gaussian subtracted from delta). This is because the shape of this filter, as
you can probably intuitively visualize, is very close to the LoG filter. Figure
5.14 shows the result of the curvature based detector on an image. However, the
apparent advantage of a curvature based detector in finding the exact location of
the edge becomes its undoing for feature edges (Figure 5.15). Feature edges are
caused by the intensity moving from one level to another and then coming back
close to the original (instead of a ramp edge where intensity changes just from
one level to another). For feature edges, two zero crossings are detected for the
same edge as shown in Figure 5.15. This phenomenon can often lead to spurious
edges. Thresholding parameters can also allow some edges to get undetected.
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These are called missed edges. You can see this easily in 5.14 where most edges
have a ghost and there are several spurious edges.

Canny Edge Detector The Canny edge detector tries to alleviate all the various
problems of the gradient and curvature based detectors. Canny first formalized a
set of properties an optimal edge detector should have and then worked towards
a method that satisfies these properties. According to Canny, an optimal edge
detector should have the properties of good detection, good localization and min-
imal response. Good detection says that the filter should respond to edges only
and not noise. Therefore, edges should be found with the minimum of spurious
edges. Good localization means that the detected edge is near the true edge.
Finally, minimal response says that the edge’s exact location is marked with a
single point response. There is a tradeoff to be achieved between these different
goals. In any real image, noise will play a role. Smoothing or low pass filtering
will improve the detection at the cost of localization and minimal response. In
fact, we see that both the methods we have discussed so far suffer from both
inaccurate detection and localization.

Based on the above goals, Canny proposed a four
step method: (a)Suppress noise using low pass filter-
ing; (b) Compute gradient magnitude and direction
images; (¢) Apply non-maxima suppression to the gra-
dient magnitude image; (d) Use hysteresis and con-
I nectivity analysis to detect edges.
dertvathe . .

In the first stage, the image is low pass filtered
using a Gaussian filter. Next, the gradient strength
and direction are calculated using the standard Sobel
g:imm operator. At this point, we have achieved the property

of good detection and localization, but the property
of minimal response is still not ensured. In order to
ensure minimal response, we apply the technique of
non-maxima suppression. The exact location of the
edge occurs wherever the gradient reaches a maxima.
Figure 5.15. This shows This implies that if the strength of the gradient does
that the zero crossing may ¢ achieve a maxima at any of the marked pixels, it
not happen at a single o}, 414 he suppressed. Every marked pixel p can be
pixel location to provide a . .
o part of an edge which can have one of four or eight
good edge localization. orientations depending on 4 or 8 connectedness of the
neighborhoods considered. The computed gradient p is binned to one of these
values. Next the two neighbors with gradients in the same bin are considered.
If the magnitude of their gradient is larger than that of p, the gradient at p is
suppressed (made zero). Applying this operation to every marked pixel achieves
the minimal response with each edge being detected by a single pixel.

grey-scale
prefla
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Put a Face to the Name

David Courtney Marr (1945-1980) was a
British neuroscientist and psychologist who was
considered instrumental in the resurgence of inter-
est in the discipline of computational neuroscience.
He integrated results from psychology, artifical in-
telligence and neurophysiology to build new visual
processing models. One of the great examples of
his visionary contributions is the Marr-Heldrith edge detector which was
designed with his student Ellen Heldrith. Marr and Heldrith modeled the
edge detection operation in the human brain to be carried on by adjacently
located minima and maxima detector cells whose response is then combined
with a logical AND operation by closely located zero detector cells. The
Marr-Heldrith operator that performs edge detection following this model
was first proposed in 1980. Interestingly, scientists Hubel and Weisl found
the existence of all these predicted cells in our visual pathways, though this
happened after Marr’s death. A process called lateral inhibition in the gan-
glion cells performs the convolution. Cells called simple cells in the cortex
respond to maxima and minima of the signals sent from ganglion cells. Fi-
nally, cells called the complex cells have been found near these simple cells
that act like zero detectors. Therefore, this edge detector is one that behaves
closest to our human brain. Marr’s life was ended prematurely at the age of
35 due to leukemia. His findings are collected in the book Vision: A Com-
putational Investigation into the Human Representation and Processing of
Visual Information, which was finished mainly on 1979 summer, was pub-
lished in 1982 after his death and re-printed in 2010 by The MIT Press. The
Marr Prize, one of the most prestigious awards in computer vision, is named
in his honor. Ellen Hildreth is currently a professor in Wellesley College and
continues to study computer modeling of human vision.

Finally, hysteresis is used to avoid streaking, a phenomenon of breaking of
the edge contour when the output of the previous step fluctuates above and
below a single threshold. In hysteresis, two thresholds are defined, L and H
where L < H. The gradient at any pixel being higher than H is detected to be a
strong edge pixel and hence marked. The gradient being lower than L assumes
a non-edge pixel and is not marked. Any pixel with a gradient value between
L and H is considered to be a weak edge pixel and its candidacy to the set
of edgels is additionally evaluated using connectivity analysis. If a weak edge
pixel is connected to at least one strong edge pixel, then it is considered to be
continuation of a strong edge and hence marked. This removes spurious short
edges under the assumption that edges are long lines. Figure 5.16 shows the
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Figure 5.16. The figure shows the different steps of Canny edge detector. From left to
right: The original image, the gradient magnitude image, the image after non-maximum
suppression, the final image after applying hysteresis.

different steps of this process. Figure 5.14 compares the Canny edge detector
with the Marr-Heldrith curvature based edge detector.

Put a Face to the Name

John F. Canny is an Australian scientist who currently
is a professor in the EECS department of UC-Berkeley.
He is known for designing the most effective edge detector
for which he received the ACM Doctoral Dissertation and
Machtey award in 1987. He also received the 2002 Amer-
ican Association for Artificial Intelligence Classic Paper
award for the most influential paper from a 1983 national
conference on artificial intelligence. He is known for his
seminal contributions in robotics and human perception.

However, as a note of caution, every edge detector is dependent on several
parameters starting from the size of the Gaussian filter used (determined often
by the amount of noise), the thresholds chosen and the 4 or 8 connectivity of
the neighborhood considered. Changing these parameters differently can lead to
very different results. This is illustrated in Figure 5.18. That is the reason, it
is important to take the results shown in this chapter with a pinch of salt. The
results have been generated with efforts to get the parameters as comparable as
possible and yet to extract the best out of each method. Therefore, we believe
they do highlight the pros and cons of the methods fairly, but one can indeed
tweak the parameters to achieve results close to what they specifically desire.
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Figure 5.17. The figure shows the effect of multi-resolution edge detection on two dif-
ferent images. The images are low pass filtered using wider and wider Gaussian kernels
(in a clockwise fashion for the wheel image and from left to right for the sculpture
image) and the edge detection performed following that. As the kernel gets wider, finer
edges disappear while the larger ones remain.

5.1.2 Multi-Resolution Edge Detection

Edges in an image can have different resolution, i.e. how sharp or smooth the
edge is. Changes in intensity that occur over a larger space (i.e. smoother changes
in the image intensity) form low-resolution edges, while intensity changes over
a smaller space constitute low resolution edges. Perceptually, lower resolution
edges are more important than the higher resolution ones in detecting objects,
illumination and their interaction. However, a low resolution edge formed by a
very gradual and slow ramp will be not be detected unless the image is low pass
filtered to remove higher frequencies to enable resampling using a much smaller
number of pixels where the same edge shows up as a step or a much sharper
ramp and gets easily detected. This effect is shown in Figure 5.17. The image
is low pass filtered with widening kernel indicating lower band of frequencies
passed and the edge detection is applied on these low pass filtered images. This
is what we call multi-resolution edge detection.

Incidentally, when discussing different edge detectors, we have discussed the
role of low pass filtering for noise removal. However, this is not the only mo-
tivation behind using low pass filtering or smoothing. Its greater use lies in
multi-resolution edge detection where a pyramid of edge images is created where
each level of the pyramid provided edges of a particular resolution. As the levels
increase, the low pass filter kernel is increased in size to create progressively low
pass images (as in a Gaussian pyramid). As the images get more and more blurry
higher up in the pyramid, higher resolution edges (finer scale edges) disappear.
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Figure 5.18. The figure shows the effect scale versus threshold. The images on the top
right and bottom left are the results of applying edge detection applied on top left
image at finer and coarser scale respectively. However, the two images on the bottom
are at the same scale but the right one is the result of having a higher thresholding
parameter.

The lower resolution (i.e. coarser scale) edges remain across all the different lev-
els. These are the edges that are perceptually most salient and contributes more
significantly to our perception. However, different kinds of edges can be detected
by changing the parameters of resolution and thresholding as shown in Figure
5.18.

The next question is how easy is it to find the corresponding edges across
the different levels of the multi-resolution edge pyramid? As it turns out, this
is more complex than you think primarily due to the fact that the same edge
can be localized at slightly different places in different levels of the pyramids.
However, we humans achieve it with rather uncanny accuracy. You can convince
yourself by staring at the images for a few seconds and you can easily detect
this correspondence at least for the larger scale edges. A seminal work by Witkin
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Figure 5.19. The figure shows the effect of local edge aggregation. Left: The original
image; Right: The image with edgels detected by Canny edge detector which are then
linked by local aggregation. Each linked edge is colored with a different color, not
necessarily unique.

shows that the multi-resolution operation of edge detection occurs in our brain
with continuous levels rather than discrete levels. The characteristics of edges
across these continuous levels follow some very predictable patterns. The most
important of these patterns are: (a) The edge position may shift as the scale
becomes coarser but the shift will not be drastic or discontinuous; (b) two edges
can merge with coarser scales but can never split. These patterns are exploited
to find the correspondences by humans. Since generating close to continuous
scales of edges is almost impossible in computers, this automatic detecting of
corresponding edges across different levels still remains as a challenge.

5.1.3 Aggregating Edgels

Edge detectors produce edgels which lie on a edge. The next step is to collect
this edgels together to create a set of longer edges. This may seem to be trivially
achieved by just tracing the edges starting from a pixel. But this is only true in
an ideal case. As you see in the examples shown in the previous section, edgels
are not perfectly detected. Some parts of an edge may be missing or some small
edges may appear to be present in a place where there are no edges in reality.
Therefore aggregating edgels turn out to be more complex than naive. There are
two types of aggregation method. The first applies local edge linkers to trace out
longer edges while the latter uses global edge linkers to classify multiple edgels
to belong to a single edge.
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Path Tracing Via Local Aggregation Almost all edge detectors yield information
about the magnitude and direction at an edgel during the process of detecting the
edgel. Local edge linking methods usually start at some arbitrary edge point and
consider and add those pixels from a local neighborhoods to the edge set whose
edge direction and magnitude are similar to each other. The basic premise is that
neighboring edgels with similar properties are likely to lie on the same edge. The
neighbourhoods based around the recently added edgels are then considered in
turn and so on. If the edgels do not satisfy the constraint then we conclude we
are at the end of the edge, and so the process stops. A new starting edge point
is found which does not belong to any edge set found so far, and the process is
repeated. The algorithm terminates when all edgels have been linked to one edge
or at least have been considered for linking once.

Thus the basic process used by local edge linkers is that of tracking and
traversing a sequence of edgels. Branching edges are considered in a breadth or
depth first fashion just as in tree traversal. An advantage of local aggregation
methods is that they can readily be used to find arbitrary curves. Probabilistic
methods can also be applied to achieve better estimates by global relaxation
labeling techniques. An example of linked edges is shown in Figure 5.19 where
each linked image is shown with a different, but not always unique, color.

Global Aggregation Via Hough Transform A complementary approach to edge
linking is to identify parametric edges (e.g. lines and parametric curves like
circles, parabolas) in an image so that we not only identify edges but also have
a more compact representation of them which can be used for other purposes
such as finding how an image was scaled or rotated to create another image).
Such a representation is also called a vector representation of edges/images. The
most popular way to compute this vector representation is using a voting based
method called Hough transform.

To understand this, let us assume that we would like to find lines in the edgel
image. Let us now consider the set of all the different lines that can be present
in the image. Only small subset of these lines, some of which are shown in blue
in Figure 5.20 can pass through the point (z,y). Also, a much larger subset of
lines, some of which are shown in red in Figure 5.20 will not pass through (z,y).
The first step of the Hough transform is to find the set of lines that would pass
through (z,y). A line passing through (x,y) has the equation y = mx + b where
m is the slope and b is the y-intercept of the line. The set of all values of m and b
that satisfy this equation for a given coordinate (x,y) defines the set of all lines
that pass through (z,y).

Let us now consider an alternate 2D space spanned by m and b. Each line in
the image space that passes through (z,y) will be defined by a specific slope and
offset and therefore will be denoted by the point in the space spanned by (m, b).
For example, the x-axis is a line with slope and offset both zero. Therefore, in the
(m, b) space, it will be represented by the origin, (0,0). Now the line equation
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X theta

Figure 5.20. These plots explain the dual spaces. Left: An image space (z,y) with
different lines detected as edgels. Right: The corresponding Hough space after voting.
Note that the number of maximas are the same as the number of lines present in the
image.

can be written as

b=y —mz (5.10)

Therefore, for a known (x,y) this will span a straight line in the (m,b) space
defining the set of all lines that pass through the point (z,y). In other words,
the (m,d) space, called the Hough space based on its inventor, is a dual of the
(z,y) space because a point in the (x,y) space denotes a line in the (m,b) space
and vice versa.

To identify a parametric edge we will do the following. For each detected
edgel (z,y), we will vote on all the lines that would pass through that edgel
(m, b) space — — this will be just a line given by —b = mx —y. If aline y = mx+b
is actually present in the edge image, all the edgels on it will vote for the same
point (m,b) in the (m,b) space. Therefore, presence of an edge corresponds to
a high number of votes for that (m,b) location. Once all the edgels have voted,
we can detect the maximas in the (m,b) space to find the slope and offset and
therefore the parametric equation of the detected lines. However the vertical
lines have infinite m which makes it difficult to handle them in (m,b) space.
Therefore, we use a polar notation for the lines where the lines are represented
defined based on their distance from the origin (d) and the angle made with the
x-axis (). Therefore, the Hough space is defined by (d,6) rather than (m,b).
The image space and its dual Hough space are shown for a simple edgel image
in Figure 5.21. We visualize the Hough space using a gray scale image. There
are five maximas (shown by the white bright spots) denoting the five lines in the
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Figure 5.21. This figure shows the straight lines detected (right) in an image (left)
using Hough transform after edge detection. Note that some spurious edges can also
be detected (as shown in the left) due to inaccuracies resulting from thresholding.

image. We also show the results of finding
lines using Hough transform.

Similar techniques can be used to de-
tect other parametric entities like circles and
parabolas. Lets us consider briefly one such
case. Let us consider the circle whose equation
is given by (z — ¢;)? + (y — ¢y)? = r? where
(cz,cy) is its center and r its radius. There-
fore, the Hough space is a 3D space spanned
by (cg,c¢y,r). Therefore, binning and count-
ing of the votes cast and maximas have to be
detected in this 3D space to find the circles in
the image. Alsor = /(z — ¢z)? + (y — ¢y)? is
a conic. Therefore, a point in the image space
corresponds to a conic in the Hough space.

Figure 5.22. This shows an edgel
(z,v). The blue lines denote some
of the possible circles that can pass
through (z,y). Some of the circles
that do not pass through (z,y) are
shown in red.

5.2 Feature Detection

Feature, in general, refers to a pixel or a set of pixels that stand out from their
surrounding. So far in this chapter, we have focused on the special feature of
edges. Though features can often be formed by intersection of multiple lines that
can be identified via edge detectors, in this section we will explore some non-
linear operators for feature detection in general. The first of these we will discuss
is called the Morovac operator and it measures the self-similarity of an image
near a point. So, what does self similarity mean? If you consider a pixel (z,y),
self-similarity defines how similar are the patches that are largely overlapping
(z,y). Most of the pixels in an image have high self-similarity. Pixels at an edge
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are not similar in the direction perpendicular to the edge. And corners are not
similar in any direction. In fact, a general feature is a point of interest where
neighboring patches overlapping the pixel have a high degree of variance.

The next question is how do we compute self-
similarity. Let us show an example in Figure 5.23.
Here we are computing the self similarity of A5. Let
us call the 3 x 3 neighborhood around the pixel A5,
which includes pixels A;...Ag, as patch A. Let us also
consider other patches of size 3 x 3 that overlap with
A. Let one such overlapping neighboring patch be B.
Nine such neighboring patches exist, another one of
which is shown in green. The similarity of A with B
is defined as

CH

MH
sk

B

LR iR

=
i

Figure 5.23. This shows

the self-similarity opera- n )
tor. As belongs to a 3 x 3 Sap = Z(Az - B;) (5.11)
patch shown in red. Two i=1

other neighboring patches

are shown in blue and If we add up the similarity of all the nine neighboring

. patches of A and sum them together, it will provide
green. The corresponding " o 5 . :
pixels in A and B whose &0 estimate of how similar A is to all its neighbor-
squared differences mea- 108 patches. If we likewise calculate the self-similarity
sure self-similarity is also for every pixel in an image, a maxima in this self-
indicated. similarity image is a corner.

However, the Morovac operator has some limitations. If a one pixel noise is
present, the Morovac filter will respond to that. It will also be triggered for an
edge. Further, this filter is not isotropic. What this means is that the classification
of pixels will change if the image is rotated. Therefore, this operator is not
rotationally invariant as shown in Figure 5.24.

To alleviate this problem, the Harris and Stephens-Plessey corner detector
was proposed. This starts with first generating the gradient images g, and g,.
Next, for every pixel (u,v) the geometry of the surface near the pixel is defined
by the matrix

_ g2 (w,0)? gu(u,v)gy(u,v)
Af;;w(u,v) ( ol 5 > (5.12)

u,v)gy(u,v) gy(u,v)

where w(u, v) is a weight that decreases with distance from (u, v). The two eigen-
values, A1 and Ao, of this matrix are proportional to the principal curvatures at
(u,v). If the magnitude of both are small, no feature exists at (u,v). If one of
them has a large magnitude, an edge exists at (u, v). And only if both eigenvalues
are large a corner is detected at (u,v). This is illustrated in Figure 5.26. Inter-
estingly, it can be theoretically proved that if w is a Gaussian then this corner
detector is isotropic - i.e. rotationally invariant. Figure 5.25 shows the results of
this corner detector.
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Figure 5.24. This shows the features detected by the Morovac filter (in red) as the
image orientation is changed by rotating it by 30 degrees. Vastly different pixels are
now detected as corners.

Figure 5.25. This shows the results of the Harris Stephens and Plessey corner detector.

5.3 Other Non-Linear Filters

Let us now discuss a few non-linear filters which are not used for feature detec-
tion. This will give you an idea of how such filters can be used for other domains
as well.

For this we will first explore a filter called the median filter. This filter is very
similar to the linear filter which is the mean or box filter. In a box filter, the
mean of all the values in the neighborhood of a pixel is used to replace the value
of the pixel. This effectively achieves a smoothing of the function and is often
used for reducing noise. In a median filter, the pixel is replaced by the median
(instead of mean) of all the values in its neighborhood. Using the median makes
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Figure 5.27. This figure illustrates the effect of a median filter. From left to right:
the original image; the original image with salt and pepper noise added to it; the noisy
image processed using a box or mean filter; the noisy image processed using the median
filter to provide an image almost identical to the original image.

the filter a non-linear filter.

A median filter is used to remove outliers, i.e. val-
ues that are drastically different from their neighbor-
hood. They can be due to different device limitations
in different applications. For example, a dead pixel in
a camera can cause the value of that pixel to be a one
or a zero at all times which will turn out to be an out-
lier. In the case of images, such outliers define a noise
which is often called the salt and pepper noise — pix-
els turned either black or white due to system issues.
Unlike a median. filter, a mean filter reduces a Gaus- Figure 5.26. This shows
sian noise effectively, but does not work well for salt | = .0 Goiected
and pepper noise since the mean tends to spread the 5t 5 pixel in a Har
contribution from the very localized salt and pepper 1is and Stephens-Plessey
locations to their neighborhood. However, a median corner detector based on
filter works much better since the median is usually the magnitude of the two
unaffected by variation in the values in the neighbor- eigenvalues A1 and As.
hood. Figure 5.27 shows an example.

The median filter is in fact a specific type of a more general type of non-
linear filters called order statistics filters. For example, instead of the median,
we can replace the pixel with the value of the minimum or maximum value in its
neighborhood. These are called minimum and maximum filter the respectively.
For regular images (not having salt and pepper noise), these achieve the results
of morphological operators of erosion and dilation. Erosion is the process of
suppressing higher values thereby darkening the image, while dilation is the
process of growing regions of higher values thereby brightening the image. These
are illustrated in Figure 5.28. They form the building blocks of a set of image
processing operations called morphological operators.

My
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Figure 5.28. This figure illustrates the effect of the minimum (middle) and maximum
(right) filter on an image (left) to achieve the effects of erosion and dilation respectively.

5.4 Conclusion

Feature detection is considered to be part of low level processing in human
vision. In this chapter we have discussed the basic techniques to simulate human
vision which have been combined to provide a much more sophisticated feature
detector, relatively more popular of which is called the Scale Invariant Feature
Transform (SIFT) [Lowe 04]. Such low level feature detection processes then
become important for image segmentation and identifying objects often aided
heavily by prior knowledge learned. To learn more about these advanced steps
of computer vision, please refer to [Forsyth and Ponce 11, Prince 12].
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Exercises

1. You would like to detect edges in an image. You can use a curvature based
method C or a gradient based method G.

(a) Would using C require using a single or multiple convolution opera-
tions? Justify your answer.

(b) Would using G require using a single or multiple convolution opera-
tions? Justify your answer.

(c) Edge detector filters usually combine a low pass filter with a curvature
or gradient filter. Why?

(d) How does the width of this low pass filter affect the resolution of the
edges you would detect?

2. In gradient-based edge detection algorithms, a gradient is approximated
by a difference. Three such difference operations are shown below. This
difference can be viewed as a convolution of f(z,y) with some impulse
response of a filter h(z,y). Determine h(z,y) for each of the following
difference operators.

(a)

flxy) = flz—1,9)
(b)

fle+1y) = fz,y)
()

fe+lLy+)—fle—Ly+1)+2[f(z+1,y) - flz—1Ly)]
—i—f(m—l—l,y—l)—f(x—l,y—l)

3. Consider a binary image created by an edge detection method that marks
all the edge pixels. I would like to use a Hough transform to see if this
image has any circles. The equation of a circle with center (a,b) and radius
c is given by (v —a)? + (y — b)? = %

(a) What is the dimension of the Hough space?

(b) Write the equation of the corresponding Hough space entity for each
pixel (z,y) ?

(¢) Infer from this equation the shape in the Hough space that corre-
sponds to each pixel (z,y)?
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4. The Harris corner detector is invariant to which of the following transfor-
mations: Scaling, Translation and Rotation. Justify your answer.

5. Consider a parabola given by equation y = ax? + bz + c.

(a) What is the dimension of the Hough space?

(b) What is the entity in Hough space to which the parabola corresponds
to?

(¢) What is the equation of the entity in Hough space?

6. Consider the Harris corner detector where M(z,y) is the Hessian of at
pixel (z,y).

(a) Is a pixel at location (z,y) a corner when the largest eigenvalue of
M (z,y) is much larger than the smallest eigenvalue of M (x,y)? Jus-
tify your answer.

(b) Are all eigenvalues of M (z,y) positive? Does the criterion of selecting
corners that you specied above work for a negative eigenvalue?

7. Explain from properties of convolution why

ah*g*h

f*%i&v '
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Geometric Transformations

Geometric transformation, in general, means transforming a geometric entity
(e.g. point, line, object) to another. This can happen in any dimension. For
example, a 2D image can be transformed to another by translating it or scaling
it or applying a unique transformation to each of its pixels. Or, a 3D object like
a cube can be transformed into a parallelepiped or sphere. All of these will be
considered as geometric transformations. Often a 2D image transformation is
also called an image warp.

6.1 Homogeneous Coordinates

Before we start with geometric transformations, we will first introduce a very
important concept of homogeneous coordinates. Let us consider the very simple
case of the 1D world (see the red line in Figure 6.1left). Let us consider a point
P’ on this line. The coordinate of this point will be one dimensional. Let it be
(p). Now consider a higher dimensional 2D world in which this line is embedded
at y = 1. Draw a ray from the origin of this world through the point P’. Consider

Y Z
Q (2x,2y)
et L&y, 2)
Py P /2, v/2,1)
" — y=1 /
P (x/y,1) X
X Y

Figure 6.1. Homogeneous coordinates in 1D (left) and in 2D (right).
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a point P(z,y) on this line. Now, find out what would be the coordinate of P’
in the 1D world of the red line when expressed using x and y. Using similar
triangles you can see that p = % Further, any point on this ray from the origin
can be expressed as (kz, ky) where k # 0, and the value of p is invariant to the
location of P on this ray.

Therefore, a point in the 1D world, such as P’, when embedded in 2D, can
be thought of as the projection of all points on a ray in the 2D world and the
2D coordinate of the projection is given by (f,1). Thus, any point in 1D can be
considered as the projection of a ray in the 2D world on to a specific 1D world, in
this case, the world of y = 1. This is called the (n+ 1)D homogeneous coordinate
of a n dimensional point. Therefore, (%, 1) is the 2D homogeneous coordinate of
the 1D point P’. Also, (k%, k) refers to the same ray but the projection is now
on the y = k plane. Since, they refer to the same ray, these two homogeneous
coordinates are considered equivalent.

Let us now extend this concept to the next dimension using the right figure
of Figure 6.1). Consider the 2D world of the red plane and consider the point P’
on this plane. This point can be considered to be the projection of a ray from the
origin through P’ in the 3D world. Therefore, we will have a 3D homogeneous
coordinate for the 2D point P’.

Extending this idea to the 3D world, it is evident that we will get 4D homo-
geneous coordinates for 3D points. In homogeneous coordinate representation,
the last coordinate denotes the lower dimensional hyperplane in which the point
resides and therefore need not be 1. However, when we deal with objects, it is
important for us to consider them residing in the same hyperplane. The easiest
way to achieve this is by normalizing the homogeneous coordinates i.e. when
considering the 4D homogeneous coordinate (x,y, z,w) where w # 1, we convert
it to (£, 2, 2.1).

Though at this point it may seem strange to look at points as rays in a
higher dimension space, it is not as ad-hoc as it may seem. Intuitively, it stems
from considerations in computer vision, which is the science of recovering 3D
scene from 2D images. In our visual system, the 3D scene is projected as an
image on the retina of the eye. Our brain identifies each point of the image in
the retina as a ray into the 3D world. From only one eye and its retinal image,
we cannot recover any information beyond the ray - i.e. we can only tell which
ray contains the point but not where on the ray the point lies. In other words,
we cannot decipher the depth of the point. But, when two eyes see the same
point in 3D, we get two different rays from the two image projections on the
retinas. Intersection of these two rays gives the exact position (depth) of the
point in 3D. This is called stereo vision. Hopefully this will convince you of the
importance of rays in computer vision and visual perception to motivate this ray
representation.

There are several other practical advantages of this representation. In this
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chapter we will consider the 3D world with 4D homogeneous points for all our
discussions. First, let us consider how you would represent points at infinity using
3D coordinates? The only option we have is (00, 00, 00). Now, this representa-
tion is pretty useless since it is the same for all points in infinity, even if they
are in different directions from the origin. However, using a 4D homogeneous
coordinate, points at infinity can be represented as (x,y, z,0), where (x,y, z) is
the direction of the point from the origin. When we normalize this to get the 3D
point back, we get (00, 00,00) as expected. As a consequence, homogeneous co-
ordinates provides a way to represent directions (vectors) and distinguish them
from the representation of points. w # 0 signifies a point and w = 0 signifies a
direction.

In the rest of the chapter we are going to represent points or vectors as 4 x 1
column vectors. Therefore a point P = (z,y, z,1) will be written as

Y
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If P is a vector instead of a point, then the last coordinate will be 0.

6.2 Linear Transformations

Linear transformation is a special kind of transformation. Given two points P
and @, the transformation £ is considered a linear transformation if

L(aP +bQ) = aL(P) + bL(Q) (6.2)

where a, b are scalars. In other words, the transformation of the linear combina-
tion of points is the linear combination of transformation of points. This holds
true for multiple points and not just two.

The implications of linear transformations are quite important. aP + bQ de-
fines a plane and a line if a + b = 1. Linear transformation implies that to
transform a line or a plane, we do not need to sample multiple points inside it,
transform them and then connect them to get the transformed entity. Instead,
it says that the same result will be achieved if the points are transformed and
connected via a straight line or plane passing through it. Computationally, this
has a huge impact since now, we save on computing the transformations of a
bunch of points on the line and instead need to compute only two transforma-
tions. Second, linear transformation also implies that a line transforms to a line
and a plane transforms to a plane. In fact, this can be generalized to higher
orders of functions. If you consider a curve of degree n (e.g. a straight line is
a function of degree 1, circle is of degree 2 and so on), a linear transformation
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Figure 6.2. Left: This figure illustrates different kinds of linear transformation. Con-
sider the square object in (a). (b) is a Euclidean transformation (angles and lengths
preserved), (¢) is an affine transformation (ratio of angles and lengths preserved) and (d)
is a projective transformation (parallel lines became non-parallel). Right: This shows
the projective transformation of a camera captured image and the relevant vanishing
points.

Vanishing

— Point
i‘

will not change the degree of the curve. Finally, a linear transformation can be
represented as a matrix multiplication where a (n + 1) x (n 4+ 1) matrix rep-
resenting the transformation converts a homogeneous coordinate represented as
a (n+ 1) x 1 column vector to another. Therefore, linear transformations are
represented by 3 x 3 matrices in 2D and 4 x 4 matrices in 3D.

Next we will discuss three type of linear transformations: Euclidean, affine
and projective. Euclidean transformations preserve lengths and angles. For exam-
ple, a square will not be changed to a rectangle by an Euclidean transformation.
Translation and rotation are Euclidean transformations. Affine transformation
preserves the ratios of lengths and angles. Therefore, a square can be converted
to rectangle or a rhombus by an affine transformation, but cannot be trans-
formed to a general quadrilateral. Examples of affine transformations are shear
and scaling which will still retain the parallel sides of a rectangle and it will
still remain a parallelogram. Both Euclidean and affine transformations cannot
transform points within finite range to points at infinity and vice versa. This
can only be achieved by projective transformations. What does this mean? This
means that parallel lines will remain parallel and intersecting lines will remain
intersecting with Euclidean or affine transformations. However, with projective
transformation, parallel lines can become intersecting and vice versa. This is the
kind of transformation we see in a camera image where parallel lines bounding
rectangular sides of buildings become non-parallel and tend to meet somewhere
within or outside the image called the wvanishing point. This is illustrated in
Figure 6.2.
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Put a Face to the Name

Euclid is known as Father of Geometry. He was a Greek
mathematician from Alexandria, Egypt who lived in 300
B.C. (yes! more than 2000 years back). He is best known
for his work, Elements, where he collected the work of
many mathematicians who preceded him. The whole new
stream of geometry established by him is known as Eu-
clidean Geometry. Basically the modern 2D geometry is ac-

CUAEE tually adopted from Euclidean Geometry. Elements, a set of
13 books, is one of the most influential and successful textbooks ever writ-
ten. Euclid proved that it is impossible to find the “largest prime number,”
because if you take the largest known prime number, add 1 to the product
of all the primes up to and including it, you will get another prime number.
Euclid’s proof for this theorem is generally accepted as one of the “classic”
proofs because of its conciseness and clarity. Millions of prime numbers are
known to exist, and more are being added by mathematicians and computer
scientists even today.

6.3 Euclidean and Affine Transformations

In this section we will explore the different Euclidean and affine transformations
in detail. For each of these, we will start with the simpler case of 2D transfor-
mations and then extend them to 3D.

6.3.1 Translation

Translation is as simple as it sounds. Translate a point from one location to
another. Let us consider the 2D point P = (x,y) transformed to P’ = (2/,y’),
such that
¥=z+t, (6.3)
v =y+t, (6.4)

The matrix form of this transformation of a 2D point P represented as 3 x 1
homogeneous coordinates is given by

x’ T+t 1 0 t, T
P=|vy |=| v+tt, =0 1 ¢ y | =T(ts,ty)P  (6.5)
1 1 0 0 1 1

Note that since the last element of P’ is 1, the last row of the matrix should
be (0,0,1). We denote this translation matrix by 7. Any translation matrix will
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have the same format where the last column will have the translation parameters.
Therefore, we denote this with 7 (t,,t,). Anytime we use this notation we will
refer to a matrix where the top left sub-matrix is identity and the translation
parameters go to the last column.

Every transformation has an inverse. This is defined
as the transformation that takes the transformed point
P’ back to P. It is intuitive that the inverse of a transla-
tion would be another translation whose parameters are
negated. Or, in other words,

T Hte ty) = T(—te, —ty) (6.6)

This is consistent with the math, since x = 2’ — ¢, and
y =y —t,. We can extend this to 3D as

Figure 6.3. This

shows a point (z,y) 1 0 0 ¢
being rotated by 01 0 ¢t
an angle 6 to be T(t;wtyatz): 00 1 ty (6.7)
transformed to the 00 0 c
point (z',y’).
and
T =T (~ty,ty, —t.) (6.8)

You can verify this by finding the inverse of 7 using standard matrix algebra.

6.3.2 Rotation

Next, we will consider the case of another Euclidean transformation, the rotation.
Here also we will first consider the easier case of 2D rotation. For this, please
take a look at Figure 6.3. This shows a point P = (z,y) being rotated by an
angle 0 to be transformed to the point P’ = (2, /).
Consider the point P in polar coordinates given by the length r and angle ¢.
P is then expressed as
x = rcos(p) (6.9)
y = rsin(p) (6.10)
The rotation can be expressed using the equations

2 =rcos(0 + ¢) (
0s(6)cos(d) — rsin(0)sin(p) (
0s(0) — ysin(0) (6.13

n(9 +9¢) (
( (
in( (

re
TC
rs

sin(0)cos(p) + rcos(0)sin(d)
0) + ycos(0)
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Therefore, using the same technique as we used before, we can find the rota-
tion matrix R as

@ cos(d) —sin(d) 0 x
P=\| 4y | =1 sin(@) cos() 0 y | =R(O)P (6.17)
1 0 0 1 1

Clearly, the inverse transformation of R is a rotation by —f. Therefore,

R(O) = R(—0) (6.18)

R(O) =R(-0) = R(O)T (6.19)

This property of inverse of rotation matrix being its transpose is a very special
and useful one and is true for all rotation matrices, even in higher dimensions!
z Now, let us extend this concept to 3D.
While a rotation about a plane occurs around
a point, a 3D rotation occurs about an axis.
Figure 6.4 shows a rotation about the z-
axis. For a rotation about the z-axis, the z-
coordinates of the points remain unchanged.
The rotation still affects the x and y coordi-
nates just the same way as it would in a 2D on
Figure 6.4. This shows the 3D ro- the Xy plane. Therefore the 3D rotation can
tation of a point (z,y,z) about De represented by the following equations.

the z-axis resulting in the point

(2,9, 2). x' = xcos(0) — ysin(6) (6.20)
y' = zsin(0) + ycos(0) (6.21)
2=z (6.22)

In 3D we distinguish the rotations with their axes. Therefore, the 3D rotation
about z-axis, R, is given by

cgs(@) —sin(@) 0 0O
R0y= | O w0 00 o2
0 0 0 1

Also, in this case of 3D rotation,

R.(0)"' =R.(—0) =R.(6)" (6.24)
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Similarly, a 3D rotation about Y axis keeps the y-coordinate unchanged while
the rotation happens in the xz plane giving us the matrix

cos(d) 0 —sin(f) 0O
Ry (0) = sir?(@) 0 0030(9) 0 (6.25)
0 0 0 1

Try to write out the matrix for rotation about X-axis.

6.3.3 Scaling

Scaling is the transformation by which a point is scaled along one of the axes
directions. Figure 6.5 shows an example. In this case, we will go directly to 3D
scaling. The equations defining a scaling of s, s, and s, along the X, Y and Z
axes respectively to transform P to P’ are given by

2 = s, (6.26)
y' = syy (6.27)
2 =5,z (6.28)

The matrix for this is given by

x! s, 0 0 0 T
/
==l 0 SOZ 1LY | =8tnsnsar (629)
1 0 0 0 1 1
v v Y Clearly, the scale factors
form the parameters of the
scaling matrix. If s, = s, =
s,, then we call this a uni-
X X X form scaling, otherwise non-
uniform. Also, intuitively, the
inverse matrix of scaling would
(a) (b) (c)

be a scaling with reciprocal of

Figure 6.5. This shows an example of scaling. A jche scale factors. You can ver-
square (a) is scaled along X and Y axes to create ify that
the rectangles in (b) and (c) respectively.
1 1 1 1
S(Smasyasz) IS(—,—,—)

Sz Sy S,

(6.30)
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Y Y Y Y !
.x _ X ! X X
(a) (b) (c) (d)

Figure 6.6. Left: This shows an example of 2D shear. A square (a) undergoes a Y-
shear to create the rhombus in (b). In Y-shear the y-coordinate remains unchanged
while the x-coordinate gets translated proportional to the value of the y-coordinate.
Therefore, all the points on the X-axis whose y-coordinate is 0 remain unchanged. But
as the y-coordinate increases, the x-coordinate moves, in this example, towards the
right, creating the shear. Similarly, (c) shows an X-shear. (d) shows the result of first
applying a X shear followed by a Y shear. Therefore, the only unchanged point is the
origin where both x and y coordinates are 0. Note that if the proportionality constant
for the shear is negative, then the Y-shear will move the square to the left instead of
right. Right: This shows an example of Z-shear in 3D where Z is the axis of the cylinder.

6.3.4 Shear

Shear is a transformation where one coordinate gets translated by an amount
that is proportional to the other coordinate. Figure 6.6 shows an example of 2D
shear. The shear is identified by the coordinate that remains unchanged due to
the shear. So, a Y-shear keeps the y-coordinate unchanged and translates the
x-coordinate proportional to the y-coordinate.

The equations that describe the transformation of point P to P’ due to a
Y-shear is given by

' =z+ay (6.31)
Y =y (6.32)

' 1 a O T
P=|4y |=1010 y | =Hy(a)P (6.33)
1 0 0 1 1

When extending this to 3D, two coordinates should be translated propor-
tional to the third one. So, for Z shear, the z-coordinate remains unchanged while
the x and y coordinates are translated proportional to z. However, the constant
of proportionality can be different and therefore the shear matrix would have
two parameters. The matrix for a 3D Z-shear is given by

/

x 1 0 a O x
; y' _ 01 b O Y .
P = z’ = 00 1 0 M =H.(a,b)P (6.34)
1 0 0 0 1 1
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where a and b are the two parameters of the shear matrix. It can be verified that
the inverse of a shear matrix is

H.(a,b)"' = H.(—a,—b). (6.35)

6.3.5 Some Observations

This brings us to the end of the discussion on basic Euclidean and affine transfor-
mations. Here are a few observations from this discussion. First, since Euclidean
transformations preserve lengths and angles, they will automatically preserve
the ratio of lengths and angles. Therefore, Fuclidean transformations are a sub-
set of affine transformations. Euclidean transformations are often called rigid
body transformation since the shape of the object cannot be changed by these
transformations.

Next, all affine transformations of 3D space we have discussed have the last
row predefined to be (0,0,0,1). This is not a coincidence. Affine transformation
in 3D can be represented as a linear transformation in 4D, and is a subspace
of all 4D linear transformations. In other words, in affine transformation, we
have the liberty to change only 12 parameters of the 4 x 4 matrix and still be
in this subspace. This is often described as the degrees of freedom of a class of
transformations. In other words, affine transformations in 8D have 12 degrees of
freedom. However, it is a coincidence that for affine transformations the number
of degrees of freedom is the same as the number of entries that can be changed
in the matrix. We will have an in-depth discussion on the degrees of freedom at
the end of this chapter.

Next, some points or lines are fixed under certain transformations i.e. they
do not change position with the transformation. For example, the origin is fixed
under scaling and shear in 3D. The axis of rotation is fixed under 3D rotation and
the origin is fixed under 2D rotation. These are called fized points of mappings.
It can be seen that there are fixed points under translation.

Finally, the translation matrix cannot be expressed as a 3 x 3 matrix while
scaling or rotation or shear can be. Homogeneous coordinates are essential to ex-
press translation in 3D as a linear transformation in 4D. This is another practical
importance of having homogeneous coordinates.

6.4 Concatenation of Transformations

You now know all the basic affine transformations. The next step is how to use
this basic knowledge to find the matrices for more complex transformations like
scaling or rotation about an arbitrary axes. To achieve this, we need to learn
how to concatenate transformations.



6.4. Concatenation of Transformations 137

Let us consider a case where a point P is first translated and then rotated.
Now let us see how to find the final point. Let the translated point be P’ and it
is given by

P =TP (6.36)

P’ is then rotated to produce P” given by
P> =RP =RTP (6.37)

Therefore, to concatenate the effect of a translation followed by rotation, we
have to premultiply the respective matrices based on the order of transforma-
tions. Of course, the order of this multiplication is critical since we know matrix
multiplication is not commutative, i.e.

RTP # TRP (6.38)

Therefore, you will end up with grossly inaccurate transformations if you do not
pay special attention to the order. Further, the inverse of the transformation to
get to P back from P” is given by multiplying the inverse matrices in the reverse
order due.

P=T'R7'pP” (6.39)

Let us now try to find the matrices for more complex transformations. The
algorithm to achieve this is as follows.

1. Step 1: Apply one or more transformations to get to a case where you can
apply basic known affine transformations. Let this set of transformations
be denoted by F.

2. Step 2: Apply the basic affine transformation B.
3. Step 3: Apply the inverse of F to undo the effect of F~1.

4. Step 4: Since they are applied in order, the matrix that needs to be pre-
multiplied with the point is given by F~!BF.

Let us illustrate the use of concatenation of transformations to design more
complex transformations.

6.4.1 Scaling About the Center

Let us consider the 2D transformation where we want to scale a square of size 2
units with its bottom left corner coincident with the origin by a factor 2 about
its center (1, 1) as shown in Figure 6.7. It is pretty intuitive to figure out the final
transformed square. But we will learn here how to find the matrix that would
achieve this transformation.
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Y
(0?2() (2,2) (-1,3) (3,3)
(0,0 20 X <

(1,1) (3:-1)

Figure 6.7. Left: This shows a square of size 2 units with its bottom left corner aligned
with the origin. Right: This shows the same square after transformation by a factor of
2 about its origin.

1. Step 1: We know that scaling keeps the origin fixed. Therefore, if we want
to keep the center of the square fixed, the first transformation we need to
apply should bring this point at the origin. Now, the center of the square
s (1,1). So, the transformation to achieve this would be T(—1,—1). So,
our Fis T(—1,-1).

2. Step 2: Now with the center at origin, you can apply the basic transforma-
tion asked of you, i.e. scaling with factor 2 along both X and Y directions.
Therefore B = §(2,2).

3. Step 3: Now we need to apply F~! = T(—1,—1)"! = 7(1,1) to undo the
effect of F.

4. Step 4: Therefore the final concatenated transformation is given by
T(1,1)8(2,2)T (-1, —1). If you write these out completely, the 3 x 3 matrix
for this transformation is given by

10 1 2.0 0 10 -1
01 1 02 0 01 —1 (6.40)
00 1 00 1 00 1

All these steps are illustrated in Figure 6.8.

6.4.2 Rotation About an Arbitrary Axis

Now, let us consider a more complex case of rotation by an angle # about an
arbitrary axis instead of one of the three coordinate axes. Let us consider an axis
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A% Y
(0,2)
:> (-1,1) (1,1)
(0,0) 20" X X
(-1,-1) (1,-1)
(-1,3) (3,3) Y
(-2,2) 2,2)

—

X

(-1,-1) (3,-1)

(-2,-2) (2,-2)

Figure 6.8. This shows the different steps of using the concatenation of transformation
to achieve the scaling about the center. First is the original square which is then trans-
lated by (—1,—1) to get the center coincident with the origin. Next it is scaled by 2
and then translated back by (1,1) to undo the effect of the earlier translation.

rooted at the point (z,y, z) with direction specified by the unit vector (a, b, ¢). It
is important to normalize the axis to be a unit vector. Otherwise a scale factor
equivalent to the magnitude of the vector will creep into the transformation.
When we derived the matrix for 3D rotation earlier, we did assume unit vectors
as axes.

The arbitrary axes are illustrated in Figure 6.9. The goal here would be to
first take this arbitrary axis to a position where the desired transformation can
be related to the basic transformations we know. Since we know the matrices
for transformation along one of the coordinate axes, the first step would be to
design F such that the arbitrary axis is aligned with one of the coordinate axes.
Without loss of generality, we will try to align it with the Z axis. Once this is
achieved, we will apply the rotation about the Z axis by an angle 6. Therefore,
B =R.(0). Next, we will apply F~! to undo the effect of F.

Now, let us focus on finding F. Let us see what we need to do to get the
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Figure 6.9. This shows an arbitrary axis of rotation rooted at (z,y,z) and directed
towards the unit vector (a,b,c) and the transformations it undergoes to get aligned
with the Z axis. First, the vector is translated to be rooted at the origin. Next it is
rotated by a about X axis to lie on the XZ plane. Next it is rotated by S about Y axis
to be coincident with the Z axis.

arbitrary axis aligned with Z-axis, as illustrated in Figure 6.9. First we translate
the scene by (—x, —y, —z) so that the base point of the vector moves to origin.
This transformation is therefore 7 (—z, —y, —z). The arbitrary axis now becomes
the unit vector (a,b,c). We will align this vector with the Z axis in two steps —
first we will rotate the vector about X axis so as to get it coincident with the XZ
plane. Next we will rotate this vector on the XZ plane about the Y axis to get it
coincident with the Z axis. Let us now compute the angles we have to rotate —
« about X and 8 about Y — to achieve this. Once we figure this out, the former
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rotation will be given by R, («) and the latter by R, (5). Thus,
F=Ry(B)Ro(a)T (—x, —y, —2) (6.41)
From this we can find F~! as
FH =T (2,9, 2)Re(—)Ry(—5) (6.42)
Therefore the complete transformation, F~'BF, will be given by

T(z,y,2)Re(—)Ry(—L)R(ORy(B) Rz ()T (—z, —y, —2) (6.43)
= T(J?, Y, Z)RI(O‘)TRy (ﬁ)TRz (H)Ry (B)Rw (OJ)T(—.I, Y, _Z) (644)

Now that we have deciphered the complete transformations, let us find out
the matrices R;(a) and Ry (8). Please refer to Figure 6.9. We first consider
the projection of w on the YZ plane, u,, denoted by the blue vector. This is
computed by setting the x coordinate of u as 0. Therefore, u, = (0,b,¢). The
angle o that u has to rotate about X to get to v’ is the same that u, has to rotate
to be coincident with the XZ plane. Therefore, if we consider v/c2 + b2 = d, then

sin(o) = 2 and cos(a) = . Therefore,

1 0 0 0
0t —< 0
Re(@)=1 4 ¢ ' (6.45)
d d
00 0 1

Premultiplying v with R, (a) gives us v’ = (a,0,d). Next, we need to find the
matrix R, (). This is pretty straightforward since u’ is already in the XZ plane.

So, sin(3) = e and cos(B) = ﬁ where Va2 +d? = Va2 + b2 +c2 =1
since u is an unit vector. Therefore,
d 0 —a 0
01 0 O
R =1, 0 a4 o (6.46)
00 0 1

Using the values of the transformations from Equations 6.45 and 6.46 in Equation
6.44 we can get the complete transformation.

6.5 Coordinate Systems

Throughout all the discussions in this chapter, we have assumed that we have
a reference — an orthogonal coordinate system. For n dimensional world, this is
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made of n orthogonal unit vectors, uq,us, ..., u, and an origin R. When consid-
ering the 3D world, we would have three vectors u;, us and us. Let each vector
u; in homogeneous coordinates be given by (u;z, Uiy, Uiz, 0) and the origin R be
given by (Rg, Ry, R.,1). The coordinates of a point P in the standard coordinate
system X = (1,0,0,0), Y = (0,1,0,0), and Z = (0,0,1,0) is expressed by its
coordinates (a1, as, ag) in the ug, us, ug coordinates system as linear combination
of its axes and the origin as

P =aju; + asus + aguz + R (647)

This can further be expressed as a matrix as

ay Ulye U2g U3z RI a1
a U U U R a
P= ( Uy U2 U3 R ) 2 = ly 2y 3y Y 2 :MuC’u
asz u; uz; uz, R as
1 0 0 0 1 1

(6.48)
where M, denotes the matrix that defines the coordinate system and C,, defines
the coordinates of P in the coordinate system denoted by M,. This is a very
important relationship since now you can see that even coordinate systems can
be defined using matrices. For the X, Y, and Z axes respectively defined by
vectors (1,0,0,0), (0,1,0,0) and (0,0, 1,0) and origin is R = (0,0,0,1), and the
matrix representing this coordinate system is essentially an identity matrix, i.e.
M, =1.

6.5.1 Change of Coordinate Systems

Coordinate systems are reference frames. Think of them as reference points that
you use when you tell someone your home address. You may say that from the
University High School take a left and then immediate right to get to our house.
However, you may want to use a completely different reference point, say Trader
Joes, and say from Trader Joes take an immediate right and then the second
left. As your reference changes, the coordinates of your house with respect to
that reference also changes. This does not mean that your house has moved — it
is still in the same location — just the way your address the house differs due
to the change in reference.

Something similar happens when you work with multiple coordinate systems.
A point P will have different coordinates in different coordinate systems though
its actual location remains the same. Let us now consider a second coordinate
system made of vectors vy, v, v3 and origin (). Let the coordinate of the same
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point P in this coordinate system be (by, ba, b3) which means

bl Uiz vly U1z Qm bl
_ by | | vee v2y v2r Qy by |
P=(ov v v Q) bs | | vsa w3y vs. Q. by | M, G-
1 0 0 0 1 1

(6.49)

From Equations 6.48 and 6.49, we see that M,,C,, = M, C,. Therefore, the co-

ordinate C, of the same point P in a new coordinate system when the coordinate
C, in the first coordinate system is known, is given by

C,=M,'M,C, (6.50)

Now let us ponder a little bit on the matrix M = M, ' M, that achieves the
change of coordinates. What kind of transformation does this matrix represent?
Let us say a point P is at the origin in one coordinate system and the same
point has the coordinate (5,0,0) in another coordinate system. Going from one
‘version’ of P to another, i.e. to get a point from (0,0, 0) to (5,0,0), we need to
translate it by 5 units. From the perspective of the point P (if it did not move),
but the same change in coordinates can be achieved by moving one coordinate
system by —b5 units along the X direction. This can be viewed as the transfor-
mation that takes one coordinate system and transforms it in such a way so as
to coincide with the second coordinate system.

Using the same concept, the matrix M that trans-
forms the coordinates from one system to another can
also be viewed as a transformation that transforms
one coordinate system to another. So, now let us ex-
plore, what kind of transformation would it take to
align one coordinate system to another. Please refer
to the illustration in Figure 6.10. This shows the two
coordinate systems represented by M, and M,. The
Figure 6.10. This shows transformation needed to align the two orthogonal co-
example of two different ordinate systems is given by a translation to align the
coordinate systems that origin, followed by a rotation to align the axes. Let
can represent My and My. s consider a rotation matrix R, and a translation

matrix 7, such that

ri1 riz T3 0O 1 0 0 t;

_ T21 To2 T23 0 o 0 1 0 tz
Re = r31 r32 rzz 0 Te=10 0 1 t3 (6.51)

0 0 0 1 0 0 0 1

then the coordinate transformation matrix M = M, M, in Equation 6.50 is
given from the above two equations as

M =TR.T.. (6.52)
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Let us take a closer look at the matrices R. and 7. and compute their multi-
plication. At this juncture, we would like to introduce a different kind of matrix
notation. Let us consider R to be the top left 3 x 3 matrix of R., T to be the
translation vector given by the 3 x 1 column vector (tw,ty,tZ)T, Ibeadx3
identity matrix, and O to be the 1 x 3 row vector given by (0,0, 0). Therefore
R. and 7. can now be expressed as

o(8) - (3]7) e

This is a notation using sub-matrices to write a matrix. The sizes of the sub-
matrices should be consistent to yield the correct dimension of the matrix. For
example, the size of R is 3x 3, OT is 3 x 1, size of O is 1 x 3 and 1 is just a scaler
of dimension 1 x 1 leading to the dimension of R. to be 4 x 4 as is consistent for
a 3D rotation matrix.

Now let us consider the multiplication of these two matrices which can also
be represented in terms of sub-matrices as

OI+0 | OT+1 (6.54)

T T
M:RcTC:(RIJrO O | RT+O ):<1(); ‘ RlT)
Verify that all the sub-matrix multiplications are consistent in their dimension.
Coming back to the composition of M, you can see that it is created by a rotation
and a translation matrix. Later in this book, we will make use of this sub-matrix
representation to learn about decomposition of this matrix M during camera
calibration.

Next, let us look at one more issue. How can we create an orthogonal co-
ordinate system from as minimal information as possible? Let us consider the
origin to be at (0,0,0). Suppose we are given one vector unit u;. Is there are
a simple way to find two other orthogonal unit vectors us and us which can
form a coordinate system together with w;. As it turns out, it is pretty simple.
First, find uy via a cross product of u; and any of the X, Y or Z axes. Therefore
Uus = Uy X Uy where u,, is the unit vector in the direction of X axis. By design, u
and ug are orthogonal. Next, find the third vector uz = uy X ug. Also, by design,
ug is orthogonal to both u; and uy and therefore they form a coordinate system.
This is illustrated in Figure 6.11.

Finally, consider the matrix M = M, M, one more time. Let us consider
these two coordinate systems (shown in Figure 6.10 to have the same origin. In
that case, M, and M,, are each a rotation matrix and M, * is M. Now consider
v1, v2 and vz to be the standard X, Y, Z coordinate axes. Therefore M, =
MT = I. Now consider this situation of having one coordinate system which
is our standard XYZ coordinate system and we have another coordinate system
rooted at the same origin defined by w1, us and ug. Therefore, the transformation
to make this coordinate system coincident with XYZ coordinates is given by
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M = IM, = M,. Interestingly, if u;, us and ug are known, this rotation matrix
is simply given by plugging in these vectors as

(6.55)

Let us relate this back to another situation we
face when finding the matrix of rotation about an
arbitrary axes. After we rooted the arbitrary axes to
the origin, we could have used an alternate way to
find the matrix that would align u with one of the
coordinate axes. We could have considered u = ug and
created a coordinate system using us = us x (1,0, 0)
Figure 6.11. This shows and u; = wus X u;. Then we could have put these
how to create a 3D coordi- vectors in the Equation 6.55 to generate the rotation
nate system using a single matrix to align u with Z-axis. This matrix would be
vector us. equivalent to what you achieved by Ry, (8)Rs(a) in
Equation 6.41 and its inverse given by MI will be exactly what you would
achieve by R, () "R, (8)~! in Equation 6.42. In other words, we can just define
a coordinate system using the arbitrary axis and the vectors of this coordinate
system will define the rotation matrix as one of the orthogonal axes computing
«a and .

6.6 Properties of Concatenation

Now that we have learned about both coordinate systems and concatenation of
transformations, we will now explore some relationships between them. We have
already seen before that since concatenation of transformation is represented by
matrix multiplication and since matrix multiplication is not commutative, the
order in which we concatenate transformations is critical to arrive at the desired
transformation.

However, though matrix multiplication is not commutative, it is associative.
To understand the implication of this associative law, let us consider two different
transformations — 77, 73, and a point P. These transformations can be any
linear transformation and so can be represented by a matrix. Now, due to the
associative law, we can say that

TiToP = (Tu(T2P)) = (T1T2) P) (6.56)

The above equation says that it really does not matter if the multiplications are
performed from the left to right or right to left i.e. 71 and 75 can be multiplied
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first and then the result post-multiplied by P or 75 and P can be multiplied first
and the result pre-multiplied by 77 to get the same answer. Therefore, whether
the multiplications are performed as a post or pre-multiplication does not really
matter as long as their order is preserved. Though this may seem to be of trivial
consideration, it has a rather deep geometric interpretation.

6.6.1 Global vs Local Coordinate System

The transformation 7772 P transforms the point P and whether it is done using
pre-multiplication or post-multiplication, the result will be the same. However,
the geometric interpretation of the intermediate steps are dependent on the pre
or post multiplication.

So far, in this chapter, we have been doing concatenation as a pre-
multiplication, i.e. pre-multiply 75 with P first and then pre-multiply the result
with 7;. When we perform each of these steps we consider the coordinate system
to be constant. Hence, the coordinate systems remain global across the different
transformations. This is usually easy to understand since we typically work with
a standard frame of reference.

However, the post multiplication also has a interpretation. It means that the
coordinate system itself is being transformed. Therefore when you post multiply
T1 with 73, it means that you have first applied the transformation 7; to the
coordinate system followed by 75 to the transformed coordinate system and then
placed P in this transformed coordinate system. Here, the coordinate system
remains local to each transformation and changes from one transformation to
another.

However, the result of implementing the transformation both in global or
local coordinates achieves the same result. To illustrate this, please see Figure
6.12. We consider the transformation R7 P in 2D for this object and perform it
in both global and local coordinate systems to achieve the same result.

6.7 Projective Transformation

This brings us to the end of affine transformation. Now, we will explore projective
transformation. Projective transformations are most general linear transforma-
tions which take points P = (z,y, z, w) to points P’ = (2/,y/, 2/, w’). Projective
transform P is expressed as

&\
s
S
=

P12 P13 DPi4
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44

~

<

(6.57)
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Figure 6.12. We consider the transformation R7 P in 2D for this object. Top: This
shows the transformation performed in a global coordinate system, i.e. using pre-
multiplication. Therefore, the object is first translated and then rotated. Bottom:
This shows the transformation performed in a local coordinate system i.e. using post-
multiplication. Therefore, the coordinate system is first rotated relative to its own co-
ordinate system. The object will also change position due to this since its coordinates
with respect to the local coordinate system have not changed. Next the coordinate
system is translated relative to itself. The changing coordinates are shown in red. Note
the final location of the object is the same which is due to the associative nature of
matrix multiplication.

The most important difference of projective transformation is that it can take
finite points to points at infinity. The implication of this is that non-parallel lines
can become parallel and vice versa. However, it still does not change the degree
of a curve. So, a line cannot become a curve. A circle can become an ellipse
(none of its points go to infinity) or even a parabola (where some of its points
go to infinity) but it cannot become a degree-3 polynomial. Please see exercise
problems to check it for yourselves.

The most common projective transformation we face is when we deal with
a camera. A camera projects the 3D objects in the world on a 2D image plane
to create an image. The most basic camera model is called the pin-hole camera
where the camera is considered to be a simple pinhole. Think of a box with a
hole in one of its face and the opposite face acting as an imaging plane and voila!
There we have a pin-hole camera as illustrated in Figure 6.13. Here O denotes
the pinhole. Rays of light from 3D points A, B and C come through O and
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Figure 6.13. This shows a pinhole camera where O is the pinhole. Rays of light from
3D points A, B and C' come through O and intersect the image plane behind it form
their 2D image at A’, B’ and C’ respectively.

intersect the image plane behind it to form their 2D image at A’, B’ and C’
respectively under a projective transformation. It is important to note that such
a projective transformation changes the size of the image based on the distance
from the pinhole. For example, objects B and C' appear to be of the same height
in the image B’ and C’. However, B is double the size of C' in 3D, but it is double
distance away. Further, multiple points on the same ray will have the same image
on the image plane therefore losing their depth information. We will explore the
camera projective transformation in more details in the next chapter.

6.8 Degrees of Freedom

Degrees of freedom defines the number of parameters that can be changed dur-
ing a transformation. Let us consider for example, a 2D rigid body transform.
This will be represented by a 3 x 3 matrix when considering homogeneous coor-
dinates. This is often referred to as the 3 x 3 homogeneous transformation. As
you know, for rigid body transformation, the object can undergo only transla-
tion (2 parameters) or rotation (1 parameter). Therefore, this matrix has three
degrees of freedom. This matrix will have the translation parameters on the last
column and the rotation parameters will be used to fill the top left 2 x 2 sub-
matrix. Therefore, though six entries of this matrix can be changed, they are not
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Figure 6.14. Left two images show non-linear lens distortion that changes straight lines
to curves. Right two images show the non-linear transformation (right) of a cubical 3D
color gamut (left) during color management.

completely independent. Therefore, the degree of freedom of this matrix is three
although the number of matrix entries that can be changed is six.

However, the degrees of freedom cannot be greater than the number of ma-
trix elements that get affected by the transformation. Let us consider a 2D affine
transformation represented using a 3 x 3 matrix. Since affine transformation
allows scaling and shear, it may seem that we will have an additional four pa-
rameters we can control (2 each for scaling and shear) in addition to the three
parameters for rigid-body transformation. Therefore, this transformation has 7
degrees of freedom. However, since only six entries of the matrix have been af-
fected, it has 6 degrees of freedom. On deeper analysis, you can see that the
rotation can be expressed as a combination of scaling and shear. For example, x
coordinate will be transformed as ax + by where a is considered the scale factor
and b, the shear factor. But, they will be similar to cosine and sine of the angle
of rotation. Therefore, the rotational degree of freedom in absorbed by the scal-
ing and shear parameters, thereby providing the transformation with only six
degrees of freedom.

From a matrix computations perspective, any constraint imposed on a matrix
reduces its degrees of freedom. So, for example, if you had a matrix of degree
7 with the special constraint that the matrix is rank deficient (i.e. determinant
of the matrix is 0), each deficiency in rank would be translated to a reduction
of degree of freedom by one. As we go into the next chapters on geometric
visual computing, we will be discussing degrees of freedom in several occasions
to provide a more comprehensive understanding.

6.9 Non-Linear Transformations

The discussion in this chapter is incomplete without discussing non-linear trans-
formations. Any transformation that changes the degree of a curve (e.g. a line
to a curve) is called a non-linear transformation. Distortion due to the lens of
a camera is a good example of a non-linear distortion. This is the distortion
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introduced by the camera lens following the projective transformation from 3D
to 2D. Such a distortion is shown in Figure 6.14 for a checkerboard pattern and
of an architectural site.

Non-linear transformations cannot be achieved as simple as a matrix multipli-
cation. Typically, points on the objects should be sampled; each of them should
be transformed and then another surface should be found via surface fitting to
find the transformed object. Such transformations are common is applications
like modeling, surface design, color management and simulation. In this book,
we will focus mostly on linear transformations.

Fun Facts

The word geometry comes from the Greek words geo, meaning earth, and
metria, meaning measure. Geometry was one of the two fields of pre-modern
mathematics, the other being the study of numbers (arithmetic). The ear-
liest recorded beginnings of geometry can be traced to early peoples, who
discovered obtuse triangles in the ancient Indus Valley Civilization (now in
India and Pakistan) and ancient Babylonia (now in Iran) from around 3000
BC. Ancient Egyptians used geometric principles as far back as 3000 BC,
using equations to approximate the area of circles among other formulas.
The Babylonians may have known the general rules for measuring areas and
volumes. They measured the circumference of a circle as three times the di-
ameter and the area as one-twelfth the square of the circumference, which
would be correct if 7 is estimated as 3. Greek philosopher and mathematician
Pythagoras lived around the year 500 BC and is known for his Pythagorean
theorem relating to the three sides of a right angle triangle: a® + b? = c2.
Archimedes of Syracuse lived around the year 250 BC and played a large role
in the history of geometry including a method for determining the volume
of objects with irregular shapes.

When Europe began to emerge from its Dark Ages, the Hellenistic and
Islamic texts on geometry found in Islamic libraries were translated from
Arabic into Latin. The rigorous deductive methods of geometry found in
Euclids Elements of Geometry were relearned, and further development of
geometry in the styles of both Euclid (Euclidean geometry) and Khayyam
(algebraic geometry) was continued by Rene Descartes (1596 - 1650) and
Pierre de Fermat (1601 - 1665) in analytical geometry and by Girard Desar-
gues (1591 - 1661) in projective geometry.
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6.10 Conclusion

In this chapter we covered geometric transformation that forms the fundamental
of computer vision and graphics. Matrices provide us a formal framework to
work with difficult geometric problems in these domains. Advanced concepts in
these directions can be explored in computer vision books like [Faugeras 93] or
computer graphics books like [Hughes et al. 13, Shirley and Marschner 09].
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Exercises

1. Consider the following matrix [ Note: 1/2 = 0.707].

0.707 0 0.707 0

0 2 0 0

—-0.707 0 0.707 0 (6.58)
1

0 0 0

What transformation does the matrix achieve? What is the order of this
transformation in the local coordinate system?

2. Consider the figure below. Give a matrix, or a product of matrices, which
will transform the square ABCD to the square ABCD. Show what happens
if the same transformation is applied to the square ABCD.

LAy OTHY

Al

3. Consider a 2D rectangle ABCD where A = (0,0), B = (2,0), C = (2,1)
and D = (0,1). We want to apply a 2D transformation to this rectangle
which makes it a parallelopiped ABEF where E = (4,1) and F = (2,1). a.
What kind of transformation is this? What is the 3x3 matrix M achieving
this transformation? c. What additional transformation N would we need
to apply to ABEF to get the parallelopiped A’B’E'F’ where A’ = (1, 2),
B'=(3,2), E' = (5,3), and F’ = (3,3)? d. What is the final concatenated
matrix in terms of M and N that will transform ABCD to A’B'E'F'?

4. Derive the scaling matrix for scaling an object by a scale factor 3 along an
arbitrary direction given by vector v = (1,2,1) rooted at (5,5,5).

5. Explain what transformation is produced by each of the following matrices
when applied on a 4x1 homogeneous coordinate.

1000 10 p —p(l+r)

0100 01 ¢q —q(l+7)

0010 00 1+r —r(l+7) (6.59)
0010 00 1 —r
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6. Consider the 3 x 3 transformation

2a a a
T=| a a 0 (6.60)
20 a a

Is this a euclidean, affine or projective transformation? Prove or justify
yOUur answer.

[ = QEFR L T Y
T

7. Consider the house given above. Assume the Z axis to be coming out of
the page assuming the page to be the XY plane. Draw the house after
the following transformations performed in the local coordinate system:

T(1,0,0), R.(90), 7(0,2,0).

Mg

\’AT—) . V X

8. In the 2D space above, consider the point P and the three different coor-
dinate axes, A, B and C. What is the coordinate of P in coordinate system
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10.

11.

12.

A, B and C? What is the 3 x 3 matrix to convert from homogeneous coor-
dinates in coordinate system A to those in coordinate system B and from
coordinate system C to those in coordinate system A?

. How many degrees of freedom does a 3D homogeneous affine transformation

have? Justify your answer. What do you think would be the degrees of
freedom of a 3D projective transformation?

Consider the following matrix

(6.61)

o O O 9
OO O
o, 3
RS I S )

What are the different fundamental transformations involved in this matrix
and their parameters?

Consider a 3 x 3 projective transformation M that transforms a point
(z,y,w) to (z',y,w'). M~1is given by

(6.62)

N = DN
==
— O O

(a) Show that the circle 22 + y? = 1 is transformed to a parabola by
this projective transformation. Find the equation of this transformed
parabola.

(b) Consider two parallel lines given by 4z +y = 5 and 4o +y = 3.
Show that these two lines are transformed to intersecting lines by the
projective transformation. Find the equation of these two intersecting
lines.

Hint: Note that we are concerned about Z}—// and gj—/, and w = 1.

In 3D, show that R,(01)R,(02) = R.(02)R.(01). What does this tell about
the properties of rotation around coordinate axes? Show that R, (61 +62) =
R.(01)R.(02). Using this property show that rotation about any arbitrary
axis denoted by R, also follows the property, R, (61+62) = R, (01)R.(02) =
R.(02)R,(01).
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The Pinhole Camera

The pinhole camera model, introduced in the last chapter, is by far the most
popular model for a camera. The pin-hole camera is modeled as a closed box
with a tiny hole punched with a pin on one of its faces. Light rays from any
point in a scene enters the box only through this pinhole forming an inverted
image on the opposite face of the box which is therefore termed the image plane.
This image is formed by the intersection of the light rays passing through the
pinhole with the image plane, as illustrated in Figure 6.13. The advantage of the
pinhole camera is that every point in the scene, irrespective of its distance from
the pinhole, will form a crisp or focused point image on the image plane. Depth
of field of a camera is defined as the range of depth of the scene points which
the camera can image in a focused manner (without blurring it). Therefore,
a pinhole camera has an infinite depth of field. However, a pinhole camera is
very light inefficient — very little light can enter through a pin-hole. Therefore,
lenses are used to make the camera more light efficient. The result of this is a
camera that no longer has an infinite depth of field, but still acts like a pinhole
camera for all the points within its depth of field — i.e within the range of depth
that the camera can image in a focused manner. In this chapter, we will first
develop a mathematical model for pinhole camera. Then we will discuss how
the deviation from the pinhole model affects image capture or acquisition from
practical cameras.

7.1 The Model

Figure 7.1 shows a schematic for the pinhole camera model. The image plane is
brought to the side of the scene to avoid inversion. In a practical camera, this is
confirmed via the use of a complex lens system. O is the center of projection of
the camera and the principal axis is parallel to the Z axis. The image plane is at
a distance f from O and perpendicular to the principal axis (parallel to the XY
plane). f is referred to as the focal length of the camera. To find the image of
a 3D point P = (X,Y, Z) on the camera’s image plane, a straight line is drawn
from P to O and its point of intersection with the image plane defines the image

157
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Figure 7.1. The Pinhole Camera

of the point P, denoted by the image plane coordinate P, = (u,v).

First, we will derive this function that maps the 3D point P to its 2D pro-
jection P.. Considering the origin (0,0) of the image plane to be at the point
on the image plane where the principal axis intersects it, we find using similar
triangles

u v
=%~ (7.1)
which gives us
X
=1 2
u="13 (72)
Y
v = Y (7.3)
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Using homogeneous coordinates for P,, we can write this as

u f 00 X
v =0 f o0 Y (7.4)
w 0 0 1 7

You can verify that the above equation indeed generates the point P, =
(u,v,w) = (%, %, 1). However, note that P is not expressed in homogeneous
coordinates.

Fun Facts

Figure 7.2. Left: An artist in 18th century using camera obscura; Right: The
Brownie of 1900.

The early cameras were called camera obscura which was essentially a
pinhole camera that was used extensively by artists to create paintings by
tracing out the image formed by the camera obscura. An arab physicist, Ibn
al-Haytham, is credited with inventing the first camera obscura. He published
the first Book of Optics in 1021 AD. Before the invention of the photographic
film there was no way to preserve the image formed other than tracing it
out. Several people worked hard on developing the photographic process in-
cluding Nicphore Nipce in 1810s, Louis Daguerre and Henry Fox Talbot in
1830s and Richard Leach Maddox in 1870s. The use of photographic film was
finally pioneered by George Eastman in 1889. His first camera, called ”Ko-
dak”, was first offered for sale in 1889. It came preloaded with film to capture
barely 100 pictures. In 1900, Eastman took mass-market photography one
step further with the Brownie, a simple and very inexpensive box camera
that introduced the concept of the ‘snapshot’. The Brownie was extremely
popular and various of its models remained on sale until the 1960s. Oskar
Barnack, who was in charge of research and development at Leitz, commer-
cialized the first 3bmm camera, the Leica, in 1925. This was the early form
of consumer film cameras that was in use even in the late 1990s.

This defines an ideal situation where the camera image plane is parallel to the
XY plane and its origin is at the intersection of the principal axes with the image
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plane. Next, we will deviate from this ideal situation to add new parameters to
the model. Let the origin of the image plane not coincide with the point where
the Z axis intersects the image plane. In that case, we need to translate P. to
the desired origin. Let this translation be defined by (t,,t,). Hence, now (u,v)
is given by

X
=2 +t, 7.5
U Z + (7.5)
1Y
= — t’U .
V= + (7.6)
This can be expressed in a similar form as Equation 7.4 as
U f 0 X
v = 0 f ¢t Y (7.7)
w 0 0 1 Z

In the above equation, P, is expressed in inches. Since this is a camera image,
we need to express it in pixels. For this we will need to know the resolution
or density of pixels in the camera (pixels/inch). If the pixels are square the
resolution will be identical in both u and v directions. However, for a more
general model, we assume rectangle (and not square) pixels with resolution m,,
and m,, pixels/inch in u and v directions respectively. Therefore, to measure P,
in pixels, its u and v coordinates should be multiplied by m,, and m,, respectively.
Thus

X
U= muf? + Mytu (7.8)
Y
v = mv% + Moty (7.9)
which are then expressed as
u my f 0 Myl X ar, 0 wu,
v = 0 My f  Mmyty Y = 0 o vo |P=KP
w 0 0 1 Z 0 0 1
(7.10)

K in the above equation only depends on the internal camera parameters like
its focal length, principal axis, pixel size and resolution. These are called the
intrinsic parameters of the camera. If the image plane is not a perfect rectangle,
i.e. if the image plane axes are not orthogonal to each other, then K also includes
a skew parameter s as
Qp S U
K = 0 oy (7.11)
0 0 1

Note that K is an upper triangular 3 x 3 matrix and is usually called the intrinsic
parameter matrix for the camera.
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Now, consider the situation where the camera’s center of projection is not
at (0,0,0), the principal axis is not coincident with the Z-axis, and the image
plane — though still orthogonal to the principal axis — is not parallel to the XY
plane. In this case, we have to first use a matrix to coincide the camera’s center of
projection with (0,0, 0), its principal axis with the Z-axis and u-axis of the image
plane align with the X-axis (or v-axis of the image plane align with the Y-axis) to
make its image plane parallel to the XY plane. This transformation is achieved
by a translation that moves the center of projection to the origin followed by a
rotation to align the principal axis and the image plane. Let this translation be
T(T,,Ty,T.). Let the the rotation applied to coincide the principal axis with the
Z axis be given by a 3 x 3 rotation matrix R. Then the matrix formed by first
applying the translation followed by the rotation expressed using multiplication
of sub-matrices is given by the 3 x 4 matrix

E = (R | RT). (7.12)

F is called the extrinsic parameter matrix. Note that since translation is used
now, we have to move to homogeneous coordinate for P as well. So, the complete
transformation of P to P, is now given by

P.=K(R|RT)P = (KR | KRT)P = KR(I | T)P = CP (7.13)

where the 3 x 4 matrix C' is usually called the camera calibration matrix. Here,
P is in 4D homogeneous coordinates (X,Y,Z, 1) and P, derived by CP is in
3D homogeneous coordinates (u,v,w). Therefore, the exact 2D location of the
projection on the camera image plane will be obtained by normalizing the 3D
homogeneous coordinates (i, =, 1). The intrinsic parameter matrix has five de-
grees of freedom (2 for the location of the principal center, two for the size of
pixels in two directions and one skew factor) while the extrinsic matrix has six
degrees of freedom (3 each for translation and rotation). Therefore, C' has 11
degrees of freedom. It can be shown that this implies that the the bottom right

element of C' will always be 1.

7.1.1 Camera Calibration

In this section, we will see how to find C (i.e. the 11 entries of C') for a particular
camera and decompose it to get the intrinsic and extrinsic parameters. This
process is called camera calibration. The first step of camera calibration is to
find what is termed as correspondences. Correspondences are defined by the 3D
points and their corresponding 2D projections on the camera image plane. If we
know a 3D point P; is corresponding to P., on the camera image coordinate,
then

P.,=CP (7.14)
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Or,
u X
1
w |=c| & (7.15)
w 4
! 1
The normalized 2D camera image coordinates ({1, ¢L) are given by (uf,v}).

This normalization is critical to assure that all the correspondences lie on the
same 2D plane.

In order to find C' we have to solve for its 11 unknowns. Let the rows of C'
be given by r;, i = 1,2, 3. Thus,

c=1|r |. (7.16)

Since we know the correspondence P; and P.,, we know

’ (5% ’/‘1.P1
= - = 7.17
“ w1 7"3.P1 ( )
P
v = L =2t (7.18)

w1 T3.P1

This gives us two linear equations
uy(r3.P1) —r1.P1 =0 (7.19)

1}1 (7“3.P1) — T2.P1 =0 (720)

In the above equations, the unknowns are the elements of r1,75 and r3. Each
3D to 2D correspondence thus generates two linear equations. To solve for 11
unknowns, we will need at least six such correspondences. Usually for better ac-
curacy, many more than six correspondences are used and the over-constrained
system of linear equations thus formed is solved using linear regression methods
for 11 entries of C. The correspondences can be determined using fiducials or
markers. Markers are placed in known 3D locations in the 3D scene. Their coor-
dinates in the image are determined either manually or automatically via image
processing techniques to find the corresponding 2D locations.

Once C' is recovered, the next step is to break it up into its intrinsic and
extrinsic component. Since

C=(KR|KRT)= (M| MT), (7.21)

where KR = M, we can find M as the left 3 x 3 sub matrix of C'. Next, we use RQ
decomposition to break M into two 3 x 3 matrices M = AB, where A is upper
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triangular and B is an orthogonal matrix (i.e. BY B = I). This upper triangular
A corresponds to K and B corresponds to the rotation R. Let ¢4 denote the last
column of C'. From the previous equation, we can then find 7' from

MT = ¢y (7.22)
T =M "'cs (7.23)

Thus, we recover the intrinsic and extrinsic parameters of the camera.

7.1.2 3D Depth Estimation

In the previous section we saw how given 3D to 2D correspondences, we can
calibrate a camera. In this section, we will see how we can recover the 3D po-
sition (depth) of a scene seen by more than one calibrated cameras. In other
words, given P, and C of each camera, i.e. using 2D images of the 3D world
formed by calibrated cameras, we will estimate the exact location of points in 3D.
Let us assume an unknown position of a 3D point P, defined by homogeneous
coordinates,(X,Y, Z, W) and its known image on the image plane of a camera
defined by the matrix C; given by homogeneous coordinates P., = (u1,v1,wy).
Note that w; may not be 1.

Fun Facts

In 1900, George R. Lawrence built a mammoth
900 Ib. camera, then the worlds largest, for
$5,000 (enough to purchase a large house at that
time!) It took 15 men to move and operate the
gigantic camera. A photographer was commis-
sioned by the Chicago & Alton Railway to make
: the largest photograph (the plate was 8 x 4.5
in s1ze') of its tram for the companys pamphlet The Largest Photograph in
the World of the Handsomest Train in the World.

Therefore, we know

. X

1

Po={ w |=a| Y (7.24)
w1 W

The corresponding 2D image points detected in the camera image coordinates is

given by ({1, £L) = (uj,v}). Representing the rows of the calibration matrix C
C1

,1=1,2,3, from Equation 7.24, we get two linear equations as follows.

uy(r§r.P) —r$r P =0 (7.25)

as r;
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v (P P) —r$P P =0 (7.26)

Therefore, from each camera we can generate two linear equations for P. We
have 4 unknowns to be solved for P given by X,Y, Z, W. Therefore, we need at
least two cameras with different calibration matrices (i.e. two cameras at two
different positions) to find the 3D location of P. This provides what we call
binocular cues or disparity. Further, also note that to recover P, we do need to
find the point on the second camera’s image that corresponds to the same 3D
point P. Finding the image of the same 3D point on the images of two or more
cameras is often termed as the correspondence problem and is considered a hard
problem due to the large search space provided by an image. If there is no prior
knowledge, every pixel in the image of the second camera is a candidate for being
the 2D image of the P.

You may feel that sometimes humans can perceive depth even with a single
eye. How is it possible if we say that at least two cameras (eyes in the case of
humans) are needed for this purpose? It is not entirely true or entirely wrong
that humans do have depth perception even with a single eye. Actually, humans
have some depth perception with single eye due to several oculomotor (cues due
to movement of the muscles holding the cornea) and monocular cues (cues of the
eyeball moving inwards or outwards). These are not present for a camera and
hence depth estimation is not possible with a single camera. However, try the
following experiment with your friend to realize that we do not get an accurate
depth perception without both eyes. Sit in front of each other, each of you close
one of your eyes and both of you bring your right arm from left to right with index
finger pointing to the left, and attempt to exactly touch each other’s index finger
tip. Attempt the same with both eyes open. You will notice the importance of
depth perception in correctly judging the exact position of your friend’s finger tip.
In the absence of monocular or oculomotor cues, often more than two cameras are
used (called stereo rigs) for greater accuracy and singular value decomposition
is used to solve the over-constrained system of linear equations that result.

7.1.3 Homography

Homography is a mathematical relationship between the position and orientation
of two cameras in a constrained situation where two cameras see the same points
on a plane. This relationship can be easily recovered without going through an
explicit camera calibration. Figure 7.3 illustrates the situation. Let us assume a
point P, on the plane 7. Let the normal to the plane be appropriately defined
as N = (a,b, c¢) such that the plane equation can be written

(N 1)P=0 (7.27)

where P is any point on the plane. Let the two cameras be defined by calibration
matrices C7 and Cy. Without the loss of generality, we can assume that the origin
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O 1
Figure 7.3. Homography between two cameras through a plane.

of the global coordinate system in which P is defined coincides with O;, the
center of projection of C7. Let the image of P; on camera C and Cy be P; and
P2 respectively. Therefore,

Uy
P =| v | =0C1P, (7.28)

T
wq

implying that the point P, lies on the ray (u, vy, w,0)7 in 3D. Let this point
be at a distance 7 on this ray. This implies

U
1
p—| v |- ( Pr ) (7.29)
w1 T
T

Since P, satisfies the plane equation, we get 7 from Equation 7.27 as

T=—N.PL. (7.30)
Therefore
Uy
P=| = 1 \pr (7.31)
g w1 —-N ™ ’
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Note that I is a 3 x 3 matrix and N is a 1 x 3 matrix. Hence, (I — N)7 is a
4 x 3 matrix.

Let Co = ( Ay ag ), where As is the 3 x 3 matrix and as is a 3 x 1 vector.
Then,

P% = (,.P; (7.32)
=(Ay a )( _IN )P,}. (7.33)

Using multiplication of sub-matrics we get a 3 x 3 matrix, what we call the
homography H, as follows.

P?=(Ay —ayN)P} = HP!. (7.34)

az is a 3 x 1 matrix and N is a 1 x 3 matrix. Thus, as N would generate a 3 X 3
matrix that can be subtracted from 3 x 3 matrix Ay to generate H. Therefore,
H is a 3 x 3 matrix that relates one camera image with another called the
homography. Using this matrix, the image from one camera can be warped to
produce the image from another camera. Therefore, for the special case when
the scene observed by the two cameras is planar, instead of going through a full
camera calibration, we can relate the image in one camera to another.

Homography is a 2D projective transformation and therefore has eight de-
grees of freedom that is equivalent to having the bottom right element as 1.
Therefore, when computing H the number of unknowns is 8. From each corre-
spondence, using Equation 7.33, we can generate two linear equations. To find
the 8 unknowns in H, we need just 4 correspondences. However, it is always
advisable to use more than four correspondences to create an over-constrained
system which would yield a more robust estimate of H.

Now let us consider an alternate scenario where the location of the two cam-
eras are the same (i.e. they have the same center of projection) but they have
different orientations. In this case, the extrinsic parameters of these two cameras
will differ only by a rotation, represented by a 3 x 3 matrix. The camera calibra-
tion matrix of these two cameras will be related by an invertible 3 x 3 matrix,
and therefore a homography. This is the situation in the common application
of panoramic image generation. A camera is usually mounted on a tripod or
held in hand and rotated about a fixed center of projection to capture multiple
images. Therefore, each camera position can be related to another via a homog-
raphy. Though each image covers a narrow field of view, the multiple images can
be stitched together to achieve an image with much larger field of view, more
commonly called a panorama. In this application usually adjacent images have
a considerable overlap. Common features in these overlaps are matched (man-
ually or using automatic methods) and then used to recover the homography
between adjacent camera locations. This homography is then used to transform
the images to the reference coordinate system of one of the cameras to achieve
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Figure 7.4. Three images (together) stitched together using homographic transforma-
tions to create a panorama (bottom). The red boundaries show the original images
and the blue boundary shows a rectangular section cut off from the non-rectangular
panorama.

a stitched panorama. This is illustrated in Figure 7.4. The overlap regions are
blended together (using methods discussed at length in Chapter 11) to achieve
a smooth color transition.
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Put a Face to the Name

George Eastman (July 12, 1854 March 14, 1932)
was an American innovator and entrepreneur who
founded the Eastman Kodak Company and popular-
ized the use of roll film making photography main-
stream. Roll film was also the basis for the inven-
tion of motion picture film in 1888. Eastman was
born in Waterville, New York as the youngest child
of George Washington Eastman and Maria Eastman
at the 10-acre farm which his parents bought in 1849.
He was largely self-educated, although he attended a
private school in Rochester after the age of eight. In
the early 1840s his father had started a business school, the Eastman Com-
mercial College in Rochester, New York, described as one of the first
“boomtowns” in the United States, based on rapid industrialization. As
his father’s health started deteriorating, the family gave up the farm and
moved to Rochester in 1860 where his father died of a brain disorder in May
1862. To survive and afford George’s schooling, his mother took in boarders.
The second of his two older sisters contracted polio when young and died
in late 1870s when George was 16 years old. The young George left school
early and started working to help support the family. As Eastman began
to experience success with his photography business, he vowed to repay his
mother for the hardships she had endured in raising him. He was a major
philanthropist contributing to the establishments of many institutions,
the most notable of them being the Eastman School of Music, schools
of dentistry and medicine at the University of Rochester, the Rochester
Institute of Technology (RIT), some buildings in MIT’s second campus on
the Charles River and historically black institutions of the South Tuskegee
and Hampton universities. In his final two years, Eastman was in intense
pain caused by a disorder affecting his spine. On March 14, 1932, Eastman
shot himself in the heart, leaving a note which read, “To my friends: my
work is done. Why wait?”[2]. The George Eastman House, now operated as
the International Museum of Photography and Film, has been designated a
National Historic Landmark.

7.2 Considerations in the Practical Camera

A pinhole camera is extremely light inefficient since very little light enters
through the pinhole. Therefore, the design of the practical camera needs to de-
viate from this ideal pinhole camera model as shown in Figure 7.5. It consists of
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f’ = distance to sensor f= fOCﬁE 1ength .
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¢, = Circle
Confusion

Aperture
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|
—

d= Depth‘ of Field '

Figure 7.5. This shows a practical camera with an opening called an aperture to let in
light, a lens to focus the light

a circular hole called the aperture to let the light in. This is usually made of a
diaphragm to allow changing of its size, denoted by radius a, thereby allowing
control of the amount of light to be let in (Figure 7.7). This is followed by a lens
which allows the focusing of light on the sensor behind it. Let us denote the focal
length of the lens with f. Let us consider a point in the 3D scene at a distance
f away from the lens. The rays of light from this point are collected by the lens
and focused on the sensor to form a sharp image (shown by the blue rays). For
a focused image, this camera behaves just like a pinhole camera and its model
that we developed in the previous section is valid. However, we need to consider
the issues related to the parts of the scene which are not in focus which will be
discussed in the rest of this section.

Consider Figure 7.6. Let the dis-
tance between the sensor and the lens
be r. Now, let us consider a point at a
depth z that is farther away or closer
than f, as shown by the red and green

o rays. Notice that these rays focus be-

fore or behind the sensor. Therefore,
instead of having a sharp focused im-
age they create a blurry circle on the
image plane called the circle of con-
fusion. Let the radius of the circle of confusion for a point at depth z be denoted

Figure 7.6. This shows how the aperture
opening is changed using a diaphragm.
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r = distance to sensor

> <

f = focal length |

> <

Sensor

Figure 7.7. Top: This shows the effect of reducing the aperture size on the circle of
confusion. The bold line shows the original aperture in Figure 7.5 and the dotted line
shows the effect of reducing the aperture size that reduces the circle of confusion. Bot-
tom: This shows some images taken from a camera using varying apertures decreasing
from left to right.

by c,. Using thin lens equation, it can be shown that

1 1
c, = ar <? - ;) ) (7.35)

where a is the aperture of the lens. If ¢, is less than the size of the pixel p, the
image will look focused. The range of depth for which ¢, < p can be shown to
be from (f —d) to (f + d) where d = pfp—fzm,. This range of depth from f — d to
f +d is called the depth of field of the camera.

Next, let us see how these different parameters like aperture and focus have an
effect on the picture captured by a camera. First let us check what happens when
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Figure 7.8. The left three images show the effect of the focal length on the depth of
field. Note that as the focal length increases the depth of field also increases. The right
three images show the same effect for a smaller aperture. Note that for the same focal
length, the smaller aperture have larger depth of field.

the aperture of the camera is reduced in size. Since ¢, is directly proportional
to aperture, the size of the circle of confusion goes down with reduced aperture.
The implication of this is that if the pixel size remains the same, points at greater
distance from f can now produce circle of confusion within p and therefore the
depth of field of the camera will increase. This is also consistent with the pinhole
camera model since as the aperture goes towards 0 as is the case in pinhole
camera, the depth of field goes towards infinity. Usually aperture is expressed
as a fraction of the focal length. An {2 aperture means an aperture size of f/2.
These are usually specified as f-numbers. Typical f-numbers are {2, f4, {8, {16,
2.8, 5.6, f11 and so on. Figure 7.6 shows this effect.

Now, lets see what happens when the focal length of the lens is changed.
With decrease in focal length, the 1 term in Equation 7.35 increases thereby
increasing c,. Therefore, the depth of field of the camera reduces. This effect is
shown in Figure 7.8. It also illustrates the combined effect of focal length and
aperture on the depth of field.

The change of the focal length also
has an effect on the field of view cap-
tured by the camera. The longer the
focal length, the smaller the field of
view. To understand this, let us go
back to the pinhole camera as shown
in Figure 7.9. Let the image plane be
moved at different focal lengths, fi,
fo and f3 such that fi < fo < f3.
Therefore, if the sensor size remains
constant, as the focal length increases
the field of view - the angle between
the lines passing from the center of
projection through the extremities of the sensor — decreases. This effect makes
the relative size of the flowers in 7.8 become bigger as the focal length increases.

Image Plane

Figure 7.9. This figure illustrates the effect
of focal length on the field of view if the
sensor size remains the same.
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Figure 7.10. This figure illustrates motion blur. The color wheel in the left is static
and its motion increases in the following figures from left to right, the rightmost one
being the fastest. The picture is taken with the same shutter speed creating more blur
for faster motion.

Finally, we will discuss one more parameter of a practical camera, the shutter
speed. The sensor in the camera needs to be exposed for a limited time to capture
the image. This exposure time is controlled by the shutter. When you hear a
camera ‘click’; the shutter opens and remains so for sometime exposing the sensor
to the light and then closes.

The time the shutter is open has a linear effect on the amount of light that
is let in. Usually the shutter is open for a fraction of a second (e.g. 3—10, %). If
any object in the scene moves during the time the shutter is open, the image of
the object is captured at multiple locations creating an effect called the motion

blur as shown in Figure 7.10.

7.3 Conclusion

In this chapter we covered the fundamental model of a pinhole camera and
its application in 3D depth reconstruction and homography based modeling.
A more mathematical treatise of this model is available in [Faugeras 93], the
classical book on 3D computer vision. More about stereo reconstruction and
camera calibration is available at [Szeliski 10]. Details about the practical camera
can be explored further by taking a course on computational photography —
[Lukac 10] offers a in depth treatise in this direction.
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Exercises
1. Consider the following 3 x 4 camera matrix

10 2 11 19
c=|( 10 5 10 50 (7.36)
5 14 2 17

Consider the 3D point in homogeneous coordinates X = (0,2,2,1)7.

(a) What are the Cartesian coordinates of the point X in 3D?

(b) What are the Cartesian image coordinates of the projection of X?

2. Consider an ideal pinhole camera with focal length of 5mm. Each pixel
is 0.02mm x 0.02mm and the image principal point is at pixel (500, 500).
Pixel coordinates start at (0,0) in the upper-left corner of the image.

(a) What is the 3 x 3 camera calibration matrix, K, for this camera con-
figuration?

(b) Assuming the world coordinate frame is aligned with the camera co-
ordinate frame (i.e., their origins are the same and their axes are
aligned), and the origins are at the cameras pinhole, what is the 3 x 4
matrix that represents the extrinsic, rigid body transformation be-
tween the camera coordinate system and the world coordinate sys-
tem?

(¢) Combining your results from the previous two questions, compute the
projection of scene point (100,150, 800) into image coordinates.

3. A camera is rigidly mounted so that it views a planar table top. A projector
is also rigidly mounted above the table and projects a narrow beam of light
onto the table, which is visible as a point in the image of the table top. The
height of the table top is precisely controllable but otherwise the positions
of the camera, projector, and table are unknown. For table top heights of
50mm and 100mm, the point of light on the table is detected at image
pixel coordinates (100, 250) and (140, 340) respectively.

(a) Using a projective camera model specialized for this particular sce-
nario, write a general formula that describes the relationship between
world coordinates (), specifying the height of the table top, and im-
age coordinates (u, v), specifying the pixel coordinates where the point
of light is detected. Give your answer using homogeneous coordinates
and a projection matrix containing variables.

(b) For the first table top position given above and using your answer
in the previous question, write out the explicit equations that are
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generated by this one observation. How many degrees of freedom does
this transformation have?

(¢) How many table top positions and associated images are required
to solve for all of the unknown parameters in the projective camera
model?

(d) Once the camera is calibrated, given a new unknown height of the
table and an associated image, can the height of the table be uniquely
solved for? If so, give the equation(s) that is/are used. If not, describe
briefly why not.

(e) If in each image we only measured the u pixel coordinate of the point
of light, could the camera still be calibrated? If so, how many table
top positions are required? If not, describe briefly why not.

4. Assume a camera with camera matrix C' = K|[rirarst], where K is the
intrinsic parameter matrix and rq, 9, and r3 are the columns of the rotation
matrix. Let m be the XY plane at Z = 0. We know that any point P in
this plane can be related to the camera image point P by a homography
H,ie. P = HP. Show that H = K[ryrat].

5. Consider a panoramic image generation application where the camera is
placed on a tripod and rotated to capture multiple images for panoramic
image generation. Can two adjacent images in this sequence be related by
a homography? If so, under what conditions is this possible?

6. Four projectors are tiled in a 2 x 2 array to create a tiled display on a flat
wall. The projectors have some overlap between each other. What is the
minimum dimension of the matrix that relates pixel (z,y) in one projector
to a pixel (2’,y’) in another. Justify your answer.

7. What are the two parameters in a practical camera that allow you to
control the amount of light reaching the sensor? How does the elements
or events of a scene guide the choice of which parameter you would use to
control the amount of light?

8. Freezing motion is a technique to choose the correct shutter speed for
capturing a moving object so that they appear to be static or frozen in the
image. You are asked to freeze motion for a moving car, a person jogging
in the park, a person taking a stroll on the beach, and a fast moving train.
You are allowed to choose between four shutter speeds of -, L and

1
0 _ . . ] 1257 3507 5007
Too0- Which speed will you choose for which object?

9. Counsider a parametric line Py + a(P; — Pp) in the 3D scene. Consider a
point P moving on this line as a goes from 0 to 1. Show that its projection
under the camera calibration matrix will converge to a vanishing point.
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10.

11.

12.

Are the intrinsic and extrinsic parameter matrices affine, Euclidian or pro-
jection? Justify your answer. We know that the camera calibration matrix is
a projective transformation matrix? Which of the intrinsic and the extrin-
sic parameter matrices contributes to it being a projective transformation?
Justify your answer.

The camera calibration matrix is a 3 x4 matrix whose inverse is not defined.
What is the geometric interpretation of this in the context of reconstructing
3D geometry from the 2D image of a single camera?

Explain why a portraits eyes appear to “follow you around the room”. Give
your answer in terms of a homography relationship between the viewer and
the picture.



Epipolar Geometry

In the previous chapter we learnt how we can use two or more cameras to re-
construct the geometry of a scene. This is often considered as one of the most
important goals of computer vision. Scene reconstruction is a fundamental step
towards automated scene understanding. Only when the basic scene geometry is
reconstructed, we can delve deeper in other aspects like understanding objects,
their movements and interactions with other elements of the scene — all of which
are related to much higher levels of cognition in humans as well.

Epipolar geometry defines geometric constraints across multiple cameras cap-
turing the same scene. This enables simplification of common problems (like
finding correspondences) when dealing with important vision tasks like motion
estimation or 3D depth reconstruction. It is fascinating to see how even relatively
simple constraints can make such hard problems tractable. In this chapter we
will cover the fundamental concepts of epipolar geometry. We start this chapter
by defining the notations we will be using.

8.1 Background

Let us consider a line defined by two 2D points, A(z,y,t) and B(u,v,w), in
homogeneous coordinates, as shown in Figure 8.1. Therefore, the normalized
homogeneous coordinates that provide the projection of these points in the 2D
plane defined by Z = 1 is given by A" = (7, %) and B’ = (%, 2). Let the line
between A’ and B’ be M;. M; is shown in red in Figure 8.1. The normal to the
plane OAB is given by

yw — tv
BxA=| tu—zw |. (8.1)
TV — Yu

Any point lying on M; should be the projection of a point P = (p, g, r) that lies
on the plane OAB. Therefore, P will satisfy the plane equation defined by the
above normal as

p(yw — tv) + q(tu — zw) + r(zv — yu) =0 (8.2)

177
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X

Figure 8.1. This figure shows two 2D points, A and B, in homogeneous coordinates
and how a point P lying in the plane OAB relates to A and B.

Therefore, B x A provides the coeflicients of the equation of the plane OAB. In
other words, P would satisfy the following equation.

yw — tv
PT| tu—aw | =PT(BxA)=0. (8.3)
U — Yyu

Now, consider the line M; on the plane Z = 1 formed by the normalized
homogeneous coordinates A" = (%, 4,1) and B’ = (%, 2, 1). Therefore, the slope
m and offset ¢ of this line M, is given by

tv — yw

= - 7 8.4

m tu — xw ( )

¢ = yu—v (8.5)
tu — xw

Therefore, the equation of M; is given by

(tv — yw)z; + (zw — tu)y; + (yu — zw) =0 (8.6)
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where (z;,y;) is the 2D point on M; denoted by the normalized homogeneous
coordinates (xy,y;,1). Alternatively,

yw — tv
(xry )| tu—2zw | =(x; 4y 1)(Bx A)=0. (8.7)
TV — Yu

Therefore, B x A defines the coefficients for both the equation of the line M,
or equation of the plane OAB based on whether we are considering normalized
or un-normalized homogeneous coordinates. We will use this fact effectively in
many places when working with epipolar geometric constraints. Also, we will be
using the coefficient matriz of a line to describe the line itself. Therefore, where
we define a line [ as

=[], (8.8)
C

we refer to a line [ with slope =% and offset 5%, as derived from the above

equations. This notation will be used frequently in the rest of this chapter.
Now note that

yw — tv 0 w -0 T
BxA=| tu—a2w | = —w 0 wu y | =[B]xA (8.9)
TV — Yyu v —u O t

The left matrix is a special matrix with only the coordinates of B as its entries
and hence is called [B]x. Note that [B]x is a symmetric matrix, i.e. [B]x = [B]%.
Now, since P satisfies Equation 8.3, the following equation will hold.

PT([B]xA) =0 (8.10)
In fact, it can also be shown that
PT([B]xA) = (AT[BI§)P = 0 (8.11)

Take a special note of the dimensions of the matrices and you will find the
result to be a 1 x 1 scalar. Also, the determinant of [B]x is 0 and all the 2 x 2
sub-matrices have non-zero determinant. Therefore, [B]x is a rank 2 matrix.

8.2 Correspondences in Multi-View Geometry

Consider two cameras, C; and Cy for stereo depth reconstruction (Figure 8.2).
Let their center of projection be O; and Oy and image planes be I; and I
respectively. The line segment 005 is called the baseline. The baseline should
be of non-zero length in order to perform stereo reconstruction i.e. O; # Os.
Let us consider a 3D point P and let its image on C7 and Cs be p; and ps
respectively. Let us now make some observations about this geometric setup.
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Figure 8.2. This figure illustrates the setting for finding the epipolar constraints in a
two camera system. These two cameras are defined by their center of projection Oq
and Oz and their image planes I1 and I2 respectively. Both of them are seeing the 3D
point P. The image of the point P is given by p1 and p2 on the two cameras. e; and
e2 define the epipoles of the two cameras and [y and [2 provide the epipolar lines for
searching for the correspondences for the 3D point P.

1. PO,05 forms a plane. As the location of the 3D point P changes, this
plane changes but it rotates about the baseline O;05.

2. The image of points on the ray O P falls on the line /; in C;. Similarly,
the image of any point on O; P falls on the line I5 in Cs.

3. The line joining O; 05 intersects the image plane I; and I at points e; and
eo respectively. These are called the epipoles. Note that the epipole need
not be located on the physical image plane of the camera, but can be on
the extension of its plane, as is the case for C.

4. The line [; and Iy are given by e;p; and esps respectively and are called
the epipolar lines. Note that as the plane PO;05 change with a change in
the position of P, the epipoles do not change since the baseline O; 05 does
not change. Therefore, all epipolar lines pass through the epipole of the
image.
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Figure 8.3. On the top we see the marked features in the left image which lie on
the epipolar lines in the right image and these lines can then be searched to find the
corresponding feature. In the bottom, we show two images captured from a stereo
camera pair and the epipolar lines on each of them. Note that the epipole in both the
images lie outside the physical image.

The question is, why is this important? The importance of the above con-
straints is that they reduce the search space for correspondence when using a
calibrated stereo camera pair. Since we consider calibrated cameras, the position
of each of the camera can be projected on the image plane of the other thus
giving us the epipoles e; and es. Next, if we detect the feature p; (image of P) in
camera (', then its correspondence is bound to lie on the line espy = l5. There-
fore, instead of searching the entire image, we can now search on the line ls for
the correspondence. Therefore, our search space for finding correspondence has
reduced from 2D to 1D which leads to significant computational savings when
finding the depth of points in the scene. This is illustrated in Figure 8.3. In the
following sections, we will learn the mathematical foundations for reducing the
search space for correspondences from 2D to 1D. Towards that, we need to first
learn about fundamental matrix.
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8.3 Fundamental Matrix

Fundamental matrix, F', is a 3 X 3 matrix that helps us to find the line I on
which a correspondence ps of p; in camera C lies in Cs. We will show that I5 is
given by Fp;.

In order to define the concept of fundamental matriz of a camera, we will use
the same geometric setup in Figure 8.2. Let p; = (x1,41,t1) and e; = (u, v, w).
From derivations in Section 8.1 we know that the line [; defined by its endpoints
e; and p; is given by

0 w o —v T
ll = [el]Xpl = —w 0 u Y1 = Lpl, (812)
v —u 0 t1
where L = [e1]x. Now we know from the concepts presented in the previous

chapter that since [; and l5 are coplanar, there is a 3 x 3 homography or a 2D
affine transformation A that maps l; to l5. Therefore,

lo = Al (8.13)
= ALp, (8.14)

Now let py = (22,y2,t2). Since ps lies on the line lo, it will satisfy the line
equation
psl=p3 Fp1 =0 (8.16)

Here, F related the two correspondences p; and ps and is called the fundamental
matrix. Since A and L are both 3 x 3 matrices, the fundamental matrix F' is also
a 3 x 3 matrix. Also L is a rank 2 matrix and A is a rank 3 matrix. Therefore, F’
is a rank 2 matrix. A being a homography has eight degrees of freedom. When
multiplied by rank 2 matrix L, the resultant F' has an additional constraint of
det(F) = 0. This reduces the degrees of freedom of F' by 1 resulting in a matrix
with seven degrees of freedom.

Fun Facts

Epipolar geometry seems to have been first uncovered by von Guido Hauck
in 1883. He wrote several papers on the trilinear relationships of points
and lines seen in three images. In his work, Hauck did not deeply analyze
these trilinear relationships theoretically, that was done later via trifocal
tensors in the the 1990s. He rather concentrated on the application of these
relationships to generate a third image from two given ones (often called
trifocal transfer in computer vision). This concept is the mainstay of the
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field of image based rendering in computer graphics developed in 1990s.
Epipolar geometry was also explored by Hesse, in a limited manner, in 1863
in response to a challenging problem posed by French mathematician, Michel
Chasles, where he challenged mathematicians to determine two pencils of 2D
lines in homographical relationship given seven pairs of matching points such
that matching lines are incident with matching points.

8.3.1 Properties

We can summarize the main properties of the fundamental matrix F' as follows.
1. Fis a rank 2 matrix with seven degrees of freedom.

2. The epipolar lines I; and I3 on which p; and ps respectively lie are given
by

lg = Fp1 (817)
ll = FTp2 (818)

3. Therefore, two corresponding points p; and p, are related by

p3 Fp1=0 (8.19)

or
pi FTpy = 0. (8.20)

Also, depending on which of the above two equations is being used, F”
can also be considered a fundamental matrix.

4. The epipoles are related to F' by

Fe; =FTey =0 (8.21)

At this point, you may be wondering that both the homography and fun-
damental matrix are 3 x 3 matrices that define constraints across two stereo
cameras. So, what is the difference between these two. Note that homography
helps you to find the corresponding point in another camera given a point in
the first one. Therefore, homography maps a point to another point. And this
constraint is imposed due to a more restrictive scene composition realized by
either C7 and C5 having a common center of projection or all 3D points lying
on a plane. The fundamental matrix, on the other hand, only defines a line on
which the correspondence will lie in the second camera. Therefore, fundamental
matrix maps a point to a line, and not another point as in homography.
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8.3.2 Estimating Fundamental Matrix

The next obvious question is, how do we estimate the fundamental matrix?
In this section, we will explore estimation of fundamental matrix for different
camera pair setups.

Calibrated Camera If we have a calibrated pair of stereo cameras, finding the
fundamental matrix is relatively easy. Let the 3 x 4 calibration matrix of camera
C: and C5 be given by A; and As respectively. Therefore,

p1=AP (8.22)

Since A; is not a square matrix, it is not invertible. But we can find its pseudo-
inverse A7 which is a 4 x 3 matrix such that A; A7 = I where I is the 3 x 3
identity matrix. It can be shown that A} = (AT A;)"1AT. Using this pseudo
inverse Af, we can write Equation 8.22 as

P=Afp (8.23)
Now, the image p2 of P in the second camera can be expressed as

p2 = AP (8.24)
= Ay Afm (8.25)
The line I can be defined by its endpoints e; and py and also by Equation 8.18
giving
l2 = €3 X P2 = [eg]xAgATpl = Fp1 (826)
Therefore, F' can be derived from the above equation as

F = [eg]xAgAIr. (827)

In fact, it can be shown that AQAT is a full rank 3 x 3 matrix and is the homog-
raphy A defined in Equation 8.14.

First Camera Aligned with World Coordinate Next, we will simplify the camera
setup even more. Let us consider C to be located at the origin aligned with the
coordinate axes. Let the intrinsic matrix for C; be K7. Therefore, A; is given by

Ay = K, (1|0) (8.28)

where I is the 3 x 3 identity matrix and O is (0,0,0)7. Further A] is given by

A = < K(l; 1 > . (8.29)
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Let the translation, rotation and intrinsic matrix of Cy be given by T, R and
K respectively. Therefore, the calibration matrix of Cs, As, is given by

As = Ko (R|IT) = (K2 R|KLT) . (8.30)
From the above equations we can find the homography A as
A=A Af = KbRE!. (8.31)
Let us now consider ey, the image of Oy on Is. ey is given by
0 0
0 0
€y = A2 0 = (K2R|K2T) 0 = KQT (832)
1 1

Therefore, from Equation 8.27, we can now derive the fundamental matrix F'
as

F = [SQ]XAQAT (833)
= [KoT)x Ko RE (8.34)

This shows that when using a simplified setup of calibrated cameras where one
of them is aligned with the world coordinate axes, finding fundamental matrix
is even easier.

8.3.3 Camera Setup Akin to Two Frontal Eyes

Next, we will explore a very specific type of camera setup like the two frontal
eyes in animals like humans (and not lateral eyes in animals like rabbits). In
this case, the two cameras can be assumed to have the same intrinsic matrix,
i.e. K1 = Ko = K. This assumption is not as unlikely as it may seem. Even in
consumer devices, most cameras of the same make often have the same intrinsic
matrix. When considering frontal eyes, the relative orientation of the second
camera can be defined by just a translation with respect to the first camera and
no rotation. Therefore, both the cameras are in exactly the same orientation
coincident with the coordinate axes, but while one is at the origin the other is
translated to another location. Under these assumptions, Equation 8.34 becomes

F=leg)x KK = [eg]x. (8.35)

Now let us simplify the setup further by assuming that the translation is
parallel to the X axis — exactly the way the human eye is. In this scenario, the
epipole e; will be on the X axis but at infinity. Therefore, e; = (1,0,0)7 and

00 0
F=ledx=[0 0 -1 ]. (8.36)
01 0



186 8. Epipolar Geometry

Let us now consider two corresponding pixels (z1,y1) and (z2,y2) as camera
C and Cs respectively. Plugging the above fundamental matrix in Equation 8.19
gives

0 0 O T
( T2 Y2 1 ) 0 0 -1 Y1 =0 (837)
0 1 0 1
T
Or, (01 =y )| n =0 (8.38)
1
Or, Y1 — Y2 =0 (8.39)

Therefore, for this setup,
the epipolar lines are raster-
lines (lines parallel to the X
axis) and the epipoles are
at infinity. Therefore, corre-
spondences lie on the same
raster lines on the two im-
ages and hence finding them
is very easy as illustrated in
Figure 8.4.

Figure 8.4. This figure shows this case of the frontal
eye and how the correspondences lie on the same
rater lines (shown by the green lines).

Uncalibrated Camera More often than not, we face a situation where the cameras
are not calibrated. The question is, how do we find the fundamental matrix if
the camera calibration matrices are unknown?

For that, let us consider two points in the images of C; and C5 respectively,
given by (z1,y1) and (z2,y2) to be corresponding features detected manually or
any software assisted process. These two points will satisfy Equation 8.19 and
therefore

i fa f3 Ty Ty
(22 w2 1) fa f5 Jo yi |=(a2 w2 1)F| 51 | =0
I Is fo 1 1
(8.40)
where f1,... fo denote the entries of the fundamental matrix F'. From the above

equation we can generate the following linear equation

T1Z2 f1 + T1y2fo + 21 fs +yizafs +viye fs + i fo + 2o fr +yafs + fo =0 (8.41)

Thus, every pair of correspondences detected creates a linear equation. There-
fore, with adequate correspondences we can estimate F. Though F has seven
degrees of freedom, it can be shown that it has eight parameters in the matrix
that can be affected by the seven degrees of freedom. Therefore, we need at
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least eight correspondences to estimate F' using this method. In the subsequent
sections we will see how F' is used for different purposes in different situations.

8.4 Essential Matrix

Essential matrix F is defined as the fundamental matrix of normalized cameras.
A normalized camera is achieved when the coordinates of the camera are nor-
malized and hence the name. Therefore, the intrinsic matrix K of a normalized
camera is identity, i.e. K = I. Therefore, when considering two normalized cor-
respondences p; and ps, all the properties of fundamental matrix described in
Section 8.3.1 are now applicable to essential matrix, the most useful of them
being

l, = Epy (8.42)

I, = ETp, (8.43)

P2 Epyr =0 (8.44)
p ETpy =0. (8.45)

The normalization removes two scale factors that denote the size of the pixel.
Therefore, two degrees of freedom are reduced from F' to yield E. Hence, FE has
five degrees of freedom.

Since any pair of camera can be reduced to the situation where C is aligned
with the world coordinate axes and Cs translated by T and rotated by R with
respect to C1, we derive the essential matrix E by replacing K1 = Ky = [ in
Equation 8.34 giving

E=[T|xR (8.46)

Since R and [T]x are both symmetric matrices, we can find ET as
ET = (TIxR)T = RT[T]% = R[T)x (3.47)

The five degrees of freedom of F can also be seen from the above equations. Since
FE depends on R and T that have two and three degrees of freedom respectively,
FE has five degrees of freedom.

8.5 Rectification

Rectification is a process by which we take the images from a pair of stereo
cameras and apply appropriate transformations such that they simulate the case
of the frontal eyes and therefore the correspondences lie on the raster lines. In
this section we will learn how to rectify images from two normalized uncalibrated
cameras.
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We can assume without loss of generality that one of these normalized cam-
eras is aligned with the world coordinates while the other is translated by T'
and rotated by R with respect to it. Therefore, correspondences in these two
normalized cameras will be related by essential matrix as explained by equations
in the previous section. However, since these are uncalibrated cameras, we do
not know R and 7. But we can use a few normalized correspondences to esti-
mate the essential matrix using the method to estimate fundamental matrix for
uncalibrated cameras explained in Section 8.3.3.

Now, since we know that this E is related to R and T by Equations 8.46
and 8.47, if we can recover R and T from the computed E, we can apply the
appropriate transformation to the second normalized camera image plane to
convert the configuration of the camera pair to that of the frontal eye where the
two cameras only differ by a translation along the X axis. This process is called
rectification. The correspondences now lie on raster lines of the two images and
are therefore significantly easier to locate.

Therefore, the next question is how do we find the rotation and translation
for the second camera from the estimated essential matriz?. For this, we first use
SVD decomposition to decompose FE into

E=UxvT (8.48)

Note that U and V are orthogonal matrices and therefore their transpose is equal
to their inverse. Let us also define a matrix W as

0 -1 0
w=[1 0 o0 (8.49)
0 0 1

such that W= = WT.

It can be shown that the U, V, W and ¥ thus defined above can be combined
to create four different sets of solutions for R and T that will satisfy the Equations
8.46 and 8.47. These solutions are enumerated below.

Solution 1: R=UW-WT [T|x =VWZVT (8.50)
Solution 2: R=UWVT [T]x =VW 2y’ (8.51)
Solution 3: R=UWV  [T]x =VIwlxv? (8.52)
Solution 4: R=UW~'V [T]x =VIwxv’ (8.53)

Let us verify one of these by plugging in the values of R and T given by the
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77/\<)< T T
N4 A

(a) (b) () (d)

Figure 8.5. This shows that four solutions provided for the location of the second
(green) camera when considering the rectification to transform it so that the red and
green camera together yield the frontal eye configuration. Each camera is depicted by
a “T” where the bottom of the “T” is the center of projection and the line of the top
is the image plane.

first solution to Equation 8.47.

R[T)x =Uuw vivwzv? (8.54)
=uw-tv-lvwzv? (8.55)
=Uuxv? (8.56)
=E7T (8.57)

which is the essential matrix itself. Similarly, any of the four solutions enumerated
above will satisfy the equations 8.47. We use the equation for ET in this case
since it is the matrix that relates the correspondence from the second camera
(which we plan to rectify) to the line on the first camera.

The normalized second camera depicted by these four solutions is shown in
green with respect to the first camera in red (that is aligned with the world
coordinate system) in Figure 8.5. Interestingly, though all four of these form
valid theoretical solutions, only one of these is practically possible. This is the
one illustrated in Figure 8.5(a) where the imaged point in black is in front of
both the red and green camera. In (b), the point is behind both the cameras.
In (c) and (d), the imaged point is behind one of the cameras. In fact, in (b)
and (c), the imaged point is behind the baseline which is often referred to as
the baseline reversal. Once rectified using the solution thus generated, all the
epipolar lines in the two images are horizontal as illustrated in Figure 8.6.
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Figure 8.6. This image shows the rectification. The left two images are unrectified
and hence the epipolar lines corresponding to the features in the left image are not
horizontal. The middle image is rectified to create the right image and the lines are
now horizontal. The left and the right image together is called an rectified pair of
images.

Fixation

“~._Horopter

Figure 8.7. Left: This shows the horopter — the circle points of which get imaged at
corresponding points in the left and right eye. Right: Points not on the horopter are
imaged at non-corresponding points in the left and right eye.

8.6 Applying Epipolar Geometry

In this section we will see some applications of epipolar geometry. In particular,
when dealing with uncalibrated cameras, epipolar geometry provides some con-
straints which can be used to derive different geometric scene parameters like
depth.

8.6.1 Depth from Disparity

Reconstructing depth from disparity is one of the most significant application of
epipolar geometry. In this section we are going to derive formally the equations
we need to reconstruct depth from disparity.
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Let us consider the two frontal human eyes shown by the two solid circles
in Figure 8.6.1. First, we are going to introduce the concept of corresponding
points that is different than correspondences that we have been discussing so
far in this chapter. Corresponding points are defined as the points that coincide
when two eyes are slipped on top of each other to overlap completely with each
other. Interestingly, 3D points on the scene that lie on a specific circle at a
particular radius from the eye are imaged at corresponding points in the two
eyes. This is illustrated in the left figure of Figure 8.6.1. This circle is called the
horopter.Points which are not on the horopter are imaged at non-corresponding
points on the left and right eye as shown in the right figure of Figure 8.6.1.
Imaging of such points are shown by green and red in this figure. The depth of
these points can be deciphered by the difference of their distance from the image
of the point of fixation given by black. This difference is called disparity.

Let us now take this con-
cept of disparity to recti-

L (-) fied images and see how we

! can reconstruct 3D depth of
the objects seen in an im-

P age using disparity using Fig-
ure 8.8. This figure shows

b two normalized rectified cam-
era whose image planes and
the field-of-view are shown
by gray solid and dotted
0, lines respectively. Since these
are normalized cameras, their
focal lengths are identical,
given by f. The center-of-
f Z projections of these two cam-
eras are given by O and Os

Figure 8.8. This shows two rectified stereo camera respect'ively. The image of the
pair imaging the 3D point P. 3D point P is formed at L
and R respectively in the two

cameras, at coordinates —! and r in the respective image planes, considering the
principle center at the center of the image plane. b is the baseline, i.e. the dis-
tance between O and Os. The triangle PLR and PO105 and similar. Therefore,
we find that

R(r)

b b+r—l

zZ I+ f
Disparity is formally defined as (r — ). Therefore, from the above equation we
can derive that F

E.

(8.58)

Z=b (8.59)
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Figure 8.9. This image shows two rectified images (on left) and the depth reconstructed
from them (on right).

Since b and f are constants, we see that the depths of the different points are
inversely proportional to disparity and can therefore be deciphered from the
image. Note that even when the baseline and focal length are not known, we
can decipher the depth up to a scale factor (or constant of proportionaility).
Therefore, we can recover the relative depth between objects in the scene, as
illustrated in Figure 8.9.

8.6.2 Depth from Optical Flow

The next application we will focus on is depth from optical flow. Consider a single
camera whose principal axis is aligned with the Z axis and which is moving along
Z direction. Consider two different locations of this camera on the Z axes, the
first one being the origin and the second one at distance ¢ from the origin. The
calibration matrices of the camera for these two locations, A; and A, respectively,
are given by

Ay = K[I|0] (8.60)
Ay = K[I|T.)] (8.61)

where T, = (0,0,t)T. Since the intrinsic parameters of the camera do not change
with movement, the intrinsic matrix K remains the same. Let the image of
the same point in these two camera positions be p; = (z1,y1,1)T and py =
(22,92,1)T. Let us consider K as

K = (8.62)

S O
SO O
= O O
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Figure 8.10. This image shows optical flow lines as the camera moves into the corridor
from the left to the right image. Note that the frames on the wall closer to the camera
and the letters on the floor closer to the camera undergo more displacement than more
distant ones.

Therefore, for a 3D point (X,Y, Z)

X
Y
(z1,y1) = K[I]0] 7 (8.63)
1
Similarly
X
Y
1
If we plug in the value of K and expand these equations we will get
—ry= (8.65)
Ty — T2 = ZJJQ .
t
Y1=v2= 7y (8.66)

The above equations define the displacement of the image of the same point
from one camera position to another termed as the optical flow, as illustrated in
Figure 8.10. From the above equations, we will make some nice observations as
follows.
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1. First, when z = oo, then p; = ps. Therefore, the image of a 3D point which
is very far away will remain unchanged in the two images. This point is
called focus of expansion.

2. As Z increases, the displacement of the image of the same point from one
camera position to another decreases. That means, images of distant points
undergo less displacement than images of closer points.

3. As t increases the displacement increases. Therefore, greater movement of
the camera causes larger optical flow.

Now, if we are given images from these two locations and can find the corre-
spondences using epipolar geometry, then we can decipher the optical flow. Now,
if we know the amount of camera movement ¢, we can decipher the depth of the
points Z from this optical flow information. This technique of deciphering depth
by using a moving camera is called structure from motion.

8.7 Conclusion

Epipolar geometry explores the fundamental geometric constraints applicable for
disparity based geometry reconstruction. In most of the treatise in this chapter
we assume some known parameters, for e.g. the displacement t for structure
from motion. It is possible to use all these techniques from uncalibrated situa-
tions where such parameters are often not known. However, those involve much
complex optimization which is beyond the scope of this book. Advanced concepts
of depth reconstruction with more unknowns (e.g. unknown camera parameters)
are discussed in details in [Szeliski 10].

Epipolar geometry has deep mathematical implications, even in higher di-
mensions. In this book, we have strived to keep the treatise much more practical
and therefore simpler by considering 2D cameras and practical calibrated sce-
narios. For readers who would like to study epipolar geometry in much more
depth, a deeply mathematical treatise is available at [Hartley and Zisserman 03].
Epipolar geometry is the cornerstone of the domain of image based rendering in
computer graphics first explored in depth by Leonard Mcmillan in his seminal
paper [Memillan and Bishop 95] followed by a multitude of works in the last two
decades which are summarized in [Shum et al. 07]. The mathematical finesse to
implement the two applications discussed in this chapter (depth from disparity
and optical flow) have been greatly simplified to get the fundamentals across.
For a better treatise on the details of these methods, please consult [Hartley and
Zisserman 03].
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Exercises

1. Why is the epipolar constraint useful for stereo matching (i.e. finding corre-
sponding points between the first and the second images)? What happens
to the epipoles and the epipolar lines in the rectified images after applying
image rectification? What are the advantages of applying image rectifica-
tion before we do stereo matching?

2. Given a point p = (x,y) in image 1, and the fundamental matrix

(a)

(b)

0 1
F=|10 -1 (8.67)
0 1

Derive the equation of the corresponding epipolar line in image 2. Use
your result to compute the equations of the epipolar lines correspond-
ing to the points (2,1) and (-1, —1).

Compute the epipole of image 2 using the equation of the two lines
you derived for the previous question. In general, how can you deter-
mine the epipole from any fundamental matrix F? (Hint: the answer
involves a term from linear algebra.)

The relationship between points in the second image and their corre-
sponding epipolar lines in the first image is described by the transpose
of the fundamental matrix F'7. Use this fact to compute the epipole
in image 1 for the matrix F.

Which of the following points is the epipole of the first camera? (i)
(0.5,0.5); (i) (1,1); (iii) (1,0) and (iv) (—1,0).
Which of the following points is the eipole of the second camera? (i)
(0.5,0.5); (ii) (1,1); (iii) (1,0) and (iv) (—1,0).
Consider the point (0.5,0.5) in the first camera. Find the slope and

offset of the epipolar line in the second camera on which its corre-
spondence will lie.

Let the two cameras have the focal lengths of 1 and 2 respectively
with square pixels, principal center at the center of the image plane
and no skew factor. Find the essential matrix that relates these two
cameras.

3. Consider a pair of camera stereo rig whose rotation and translation with
respect to global coordinate system is Ry, Rs, 71 and T3 respectively. Their
intrinsic matrix is identity. Give an expression of the essential matrix and
the length of the baseline in terms of these matrices.
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Exercises

. Consider a camera attached to the front of the car as it is traversing on a

straight bridge, the end of which is marked with a conspicuous building and
the sides containing landmark paintings hanging from the bridge at equal
intervals which is known. Consider two pictures taken from this camera.
Which 3D scene location would appear at the focus of expansion? Assuming
that you can detect the amount each landmark painting has moved from
one picture to another, how can you find the speed of the car?

. Consider a scene which is constant being observed by a pair of frontal

stereo cameras. If the baseline of the camera is increased, how would the
disparity of the 3D points change in the images captured? Justify your
answer.

. Suppose we would like to determine the size of a cube from a set of k

calibrated cameras whose extrinsics are unknown (but whose intrinsics are
known). Suppose each of the cameras can see the same m corners of the
cube, and suppose there is no correspondence problem. How many cameras
and how many corners do we need to determine the size of the cube?
(Notice: a cube has only 8 corners, hence m < 8). If mulitple solutions
exist, give them all. If no solution exists, explain why.



Part IV

Radiometric Visual
Computing



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Light

In this chapter we will discuss the science of light, more commonly termed as
radiometry. We will discuss different radiometric quantities and how they are
used in the domain of visual computing. Then we will see how radiometry leads
to photometry which is the science of light in the context of the human visual
system and hence human perception.

9.1 Radiometry

In radiometry light is considered to be a traveling form of energy and therefore
the unit used to describe it is the SI unit of energy, joule (J). This energy
is associated with a source of origin, which is usually defined by its position,
a direction of propagation and a wavelength A. This conforms to the particle
theory of light where the smallest unit of light is considered to be a photon or a
quantum of energy. This also conforms to the wave theory of light, which assumes
light to be a waveform traveling in a particular direction. A is expressed by units
of nanometers (nm). Light travels with a speed ¢, in a medium of refractive
index n. An invariant in this context is the frequency f of light is given by

Cn
1=, (9.1)

which does not change unlike ¢, and A. Another invariant is the energy carried
by a photon,

__he
D)

where h = 6.63 x 10734J is the Planck’s constant.

The spectral energy is a density function that gives the density of the quantum
energy at an infinitesimal interval of wavelengths around A with a width of AA.
Note that due to the particle nature of light, spectral energy at a wavelength is a
quantum value (either 0 or non-zero), but its density in an interval of wavelengths
can be defined in a non-quantum fashion. This is similar to population where
population at any point in space is either existent or non-existent, but the density

q (9.2)

201
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of population over an area is always a non-quantum quantity. Just like population
density, it is better to view the spectral energy which is a continuum and does
not become granular even when the area is small. Therefore, spectral energy AQ
is defined as

A
AQ = A—i (9.3)

and has the unit of J(nm)~!.

However, we are more interested in spectral power that is defined as the
spectral energy over infinitesimal time At. It is given by % and has the unit of
W (nm)~!. Imagine a camera that leaves its shutter open for At time and has a
filter of AX. Such a sensor would measure the spectral power.

Irradiance, H, is defined as the spectral power per unit area and is given by

Ag

"= xaamx (94)

where A A can be considered as the finite area of the sensor measuring the spec-
tral power, assuming that the sensor is parallel to the surface being measured.
The unit of irradiance is therefore Wm=2(nm)~! or Js~im=2(nm)~t. Irradi-
ance is usually used to define the amount of spectral power incident or hitting a
unit area. When the same quantity is used in the context of amount of spectral
power leaving or reflected off a unit area, it is often called radiant exitance, E.

Irradiance only tells us about how much light hits a point, but it does not say
much about the direction the light is coming from. Therefore, irrandiance can
be considered to be the quantity measured by the sensor when a conical light
limiter is placed on the sensor to limit the direction of the light it is measuring
to Aco. Therefore, radiance is defined as irradiance per unit direction as

AH Aq

= Re = AAAIAIAG

(9.5)
and is measured by the unit Wm=2(nm)~1(sr)~! or Js~im=2(nm)"*(sr)~!
where sr stands for steridian, the SI unit for a solid angle. It is analogous to
radians used to define planar angles. A useful property of radiance is that it does
not vary along a line in space. Consider the sensor with a conical light limiter of
angle 0 measuring the light hitting a surface from a distance d. Let the circular
area subtended by this cone be AA. If we increase the distance by a factor of k
to kd, the area being measured by the detector will increase by k2 but the light
reaching the detector will be attenuated by the same factor k? (due to distance
attenuation of light being inversely proportional to the distance) thereby keeping
the radiance constant. Here we consider the sensor to be parallel to the surface
whose radiance is being considered. In other words, the normal to the surface
is perpendicular to the sensor. However, the more general situation is when the
sensor is titled by an angle 6. In this case, the area sampled by the detector will
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no longer be a circle but an ellipse with a larger area of AAcos(6). Therefore,
radiance will be defined by

AH Aq

T Ao AAcosOAIANAG
As with irradiance, it is important to distinguish between the radiance incident
from a point on the surface and radiance exiting from a point of the surface. The
former is called field radiance, L¢, and the latter is called surface radiance, L.
Therefore,

(9.6)

AFE

Ly =—— (9.7)
Aocosbt

AH
L= —"" 9.8
I~ Aocosh (9:8)
N ke The reason radiance is considered to be the
Light most fundamental radiometric quantity is that if

o /x .

P A we know Ry of a surface, we can derive all the
X ] ‘ other radiometric quantities from there. For ex-
p i ample, irradiance can be expressed from the field

o

radiance as

Figure 9.1. This figure shows H = L (ki)cosfdo (9.9)
the surface point P with nor- vk

mal n and the incident light where k; is an incident direction that can be ex-
direction k; and viewing direc-  pressed as a (6, ¢) pair in the spherical coordinate
tion ko for the BRDF p(ki, ko) system with respect to the normal at that point
at P. on the surface and is associated with a differen-
tial solid angle do. For example, if Ly is constant across all directions, we can
compute the irradiance by replacing do = sinf df d¢ as

H

27 5

/ / Ly cosf sind df do (9.10)
$=0J0=0

wL

Note the constant 7 will appear in many radiometric calculations and is the
artifact of how we measure solid angles. We consider the area of the unit sphere
to be a multiple of 7 rather than multiple of one. Similarly we can compute the
spectral power incident on a surface by finding fv « H(x)dA where x is a point
of the surface associated with a differential area of dA.

! (9.11)

0.1.1 Bidirectional Reflectance Distribution Function

Bidirectional Reflectance Distribution Function or BRDF is a formal way to
describe what we humans face everyday — objects look different when viewed from
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different directions as they are illuminated from different directions. Painters and
photographers have for centuries explored the appearance of trees and urban
areas under a variety of conditions, accumulating knowledge about “how things
look” — which is nothing but BRDF related knowledge.

So, let us now define BRDF at a surface point P formally. Let us consider a
point on a surface P with a normal n, illuminated from a direction k;. This is
achieved by placing a light source in this direction. Let the irradiance incident
at P be H. Let the radiance going out towards a viewing direction ko be Lg.
This setup is illustrated in Figure 9.1. The BRDF p is defined as the ratio of L,

to H, i.e.

ki ko) = Ls (9.12)

p(ki, ko) = I7 .

Therefore, BRDF gives us the fraction of light exiting towards the viewing di-
rection ko, when illuminated from the incident direction k;. Note that both kg
and k; are directions in 3D and can be represented with two angles in spherical
coordinate. Let k; be given by (6;,¢;) and ko be given by (6,,¢,). Therefore,
BRDF is a four dimensional function p(6;, ¢;, 0., ¢,). Also, note the p is a ratio
of radiance by irradiance. Therefore its unit is (sr)~1.

Directional Hemispherical Reflectance Let us consider a simple question, “What
fraction of the incident light is reflected?”. It is evident that this number should
be between 0 to 1 purely from the standpoint of conservation of energy. Let us
now see if this question can be easily answered using BRDF's. Given an incident
light from the direction k;j, the fraction that is reflected should be the ratio of
outgoing irradiance (or radiance exitance) to the incoming irradiance. Therefore,
the directional hemispherical reflectance for the D(k;) is given by the ratio of
radiance exitance F to irradiance H as

E
D(k;) = —. 9.13
() = (913)
From Equation 9.12 we know that
La(ko) = Hp(ki,Ko) (9.14)
Also, from the definition of radiance in Equation 9.8 we know that
AFE
Lsko) = ——. 9.15
(ko) Ao,cosb, ( )
Therefore,
AFE
Hpki, ko) = ———. 1
plki; ko) Ao, cosb, (9.16)

Rearranging terms we get the contribution of E/h reflected in the direction of
ko as
AFE

T = p(ki, ko) Ao,cos, (9.17)
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Therefore,
E
Dk;) == = / p(ki, ko)cosb,do, (9.18)
H Y ko

An ideal diffuse surface is called Lambertian and is considered to have a con-
stant BRDF at any viewing direction. In other words, the appearance of the
object is view-agnostic or view-independent. Though such surfaces are pratically
non-existent, many objects with matte appearance are often modeled as a Lam-
bertian surface. Let us consider such a Lambertian surface with p = C. Then
the directional hemispherical reflectance of such a surface is given by

D(k;) = /v i CAo,cos0,do, (9.19)
271'0 5
= / / C cosb, sinb, db, do, (9.20)
0=0J6,=0
=rC (9.21)

Therefore, if we consider a perfectly reflecting Lambertian surface where D(k;) =
1, then its BRDF is %

9.1.2 Light Transport Equation

Using the aforementioned equations, we can now write a simple light transport
equation that defines how light is transported via surfaces or objects in the
presence of lights from many different directions. If we consider radiance L;
from the direction k; along a small solid angle Ag;, the irradiance due to this
light is given by L;cos0; Ac; where 6; is the angle between k; and n. Therefore,
the outgoing radiance AL, in the direction k, due to the radiance coming in
from direction k; is given by

AL, = p(ki, ko) Licost; Ac; (9.22)

Therefore, to consider the radiance from all the different directions (all different
values of k;), the total irradiance in the direction of ko is given by

Ls(ko) :/Vk p(ki,ko)Lf(ki)COSQidO'i (923)

This is called the rendering equation or light transport equation and is the cor-
nerstone of building illumination models, simple or complex.

9.2 Photometry and Color

For every radiometric property, there is a corresponding photometric property
that intuitively measures ”how much of it can the human observer make use of”.
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Figure 9.2. This figure shows the visible spectrum of light and its position with respect
to the invisible spectrum.

Therefore, photometric quantities have an aspect of perception associated with
them. Color is a photometric quantity that we use all the time. It is a part and
parcel of our lives, so much so, that we probably cannot appreciate it unless we
lose our perception of color. Mr. I, who lost color perception due to an accident
exclaimed with anguish, “My dog looks gray, tomato juice is black and color TV
is an hodge podge”. Color not only adds beauty to our life, but serves important
signaling functions. The natural world provide us with many signals to identify
and classify objects. Many of these come in terms of color. For e.g. banana turns
yellow when its ripe, the sky turns red when it is dawn and so on.

The color stimuli is the radiometric quantity (usually radiance), that reaches
the human eye from any point in the world. The important parameter in the
context of photometry, and therefore color vision, is the associated wavelength
. The visible light spectrum has wavelength that varies between 400 nm and 700
nm. Figure 9.2 shows the visible spectrum of colors. A illumination or an object
selectively emit or reflect respectively certain wavelengths more than other. Two
things are responsible for our color vision and hence photometry. The first is the
selective reflection of wavelengths by different objects. However, it is only one of
the factors responsible for the color of an object. The second important factor
is the eye’s selective response to different wavelengths. This response, and hence
the perception of color, can be different from species to species, and also shows a
variance across individuals of the same species. That is the reason, color is often
considered as a perception, and not reality!

Let us start from the illumination of a scene. A scene is usually lighted by
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Figure 9.3. Left: The illumination spectrum (I(A)) of a flouroscent (bold line) and
tungsten lamp (dotted line). Right: The reflectance spectrum (R(A)) of a red apple.

some light source. This light source emits light differently at different wavelengths
A. This function, denoted by I()\) gives the illumination spectrum. Similarly, for
an object, its relative reflectance at different wavelengths define its reflectance
spectrum R(A). Since the reflectance or reflectivity of an object is the ratio of
outgoing to incoming power, it is between 0 and 1 for an object that is not a light
source. These spectra for a couple of light sources and a red apple are illustrated
in Figure 9.3.

When an object is illuminated by a light source, the amount of light that is
reflected from that object at different wavelengths is given by the product of I(\)
and R(A). Since this is the spectrum that stimulates the vision, this is called the
color stimuli or color signal, denoted by C(\). Thus,

CO\) = I(\) x R(N) (9.24)

as illustrated in Figure 9.4. The physical quantity we are dealing with
here is power per unit area per unit solid angle per unit wavelength
(W m~1 (nm)~1 (sr)~1). Therefore, we are essentially thinking of radiance when
we are defining the color stimuli.

Color stimuli can be of different types as shown in Figure 9.4. When it has
light of only one wavelength, it is called monochromatic, e.g. a laser beam. When
the relative amount of light from all wavelengths is equal, then it is called achro-
matic. The sunlight is close to achromatic in the day time. Finally, if the stimulus
has different amounts of light from different wavelengths, it is called polychro-
matic. Most of the time we deal with polychromatic light. Most of the manmade
and natural color stimuli are smooth spectra of polychromatic light.
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Figure 9.4. Top: The product of the illumination and the reflectance spectrum generate
the color stimuli. Bottom: This shows different types of color stiumli - from left to right
— monochromatic, achormatic and polychromatic.

9.2.1 CIE XYZ Color Space

Interestingly, the perceived color is different than the color stimuli. Human eye
has three sensors (usually called cones in biology) which have differential sensi-
tivities to different wavelengths. In 1939, the CIE (International Commission on
Nlumination) came up with standard spectral responses of these sensors based
on earlier studies done by color scientists. Let us denote these by Z(A), 5(A), Z(N).
Therefore, multiplying the color stimuli with these sensitivities give us the per-
ceived spectrum as illustrated in Figure 9.5. Now, the strength of each of these
perceived spectrum is the area under the curve and is computed by integrating
each of the three curves. These provide three numbers quantifying the strength
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Figure 9.5. The color stimulus is multiplied by the sensitivities of the three cones of
the CIE standard observer — Z(A) (red), () (green), Z(\) (blue) — to generate the
perceived spectrum. The strength of each of these perceived spectrums is given by the
area under these spectral curves given by their integration. This is also the process to
find the XY Z tristimulus values of a color stimulus which quantifies how the human
brain perceives this stimulus.

of the stimuli in each of the sensors called the XY Z tristimulus values
700

X = / N = 3 C)E0) 9.25)
A A=400
700

Y = / CNFN A= > C(NE(N) (9.26)
A A=400
700

7= /A COENIA = Y CE) (9.27)

A=400

Let us now consider the units of the functions we are dealing with. The eye’s
response is measured as lumens per watt. Lumens (Im) is an estimate of the
light produced. For example, think of a light bulbs. They are usually rated
in terms of the power they consume (i.e. watt) and the useful light energy
they produce (i.e. lumens). Therefore, the higher the Im/W, the more effi-
cient the lamp. Similar is the case for the human response functions, but
they also have a wavelength dependency. Therefore, the unit for X, Y or Z
is (Im/W)(W/(m? sr) = Im/(m? sr). Note that since we integrate over the
wavelength, the nm disappears from the unit. One lumen per steridian of solid
angle is defined as one cd (candela). Therefore, the units of the tristimulus values
is cd/m?.

It has been shown that the human brain usually works with these three
numbers thus generated instead of the spectrum. It also provides us a better
paradigm to study color stimuli and perception than working with the spectra
directly. Note that the XY Z tristimulus values offer us a 3D space to define
colors, just like coordinate systems for geometry. Any color can be plotted as
a point in this 3D space. However, since XY Z values are essentially given by
the area under a curve, there can be two different spectra which can provide
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the same XY Z value. This means that these two spectra will produce the same
sensation in the human eye and hence will be plotted at the same point in the
XY Z space. Multiple such spectra which produce the same XY Z values are
called metamers and the phenomenon, metamerism. Metamerism is a boon in
disguise. During color reproduction from a display, to say print, all we need to do
is to create a metamer of the original color i.e. a color with the same XY Z value
and not necessarily the same spectrum. Therefore, CIE XYZ space is always
considered in the context of human perception and not in the context of the real
color spectra.
¥ Now let us analyze this
XYZ space. First, note that
only the positive octant
(where the values of X, Y
and Z are always positive) of
this space really makes sense
since physically there is no
negative light. Therefore, we
are only concerned with the
first octant of this space. Sec-
ond, some XY7Z tristimulus
% values, even in this octant,
are not valid since they indi-
cate an impossible spectrum.
For example, there cannot be
any spectrum that can result
in XYZ value of (1,0,0) i.e.
evoking response in one of the
sensors and no response in
any other sensors. This is pri-
marily due to the fact that
the sensitivities of the three sensors overlap significantly. These XYZ values
which do not correspond to a physical spectrum are called imaginary colors.
Therefore, a part of the XYZ space are actually imaginary without having any
corresponding real spectra to go with the tristimulus values. Therefore, the real
colors or spectra only span a subset of the positive octant of the XY Z space.
Munsell, the famous color scientist of 20th century, was instrumental in find-
ing the shape of this subset of real colors as a conical volume as shown in
Figure 9.6.

Figure 9.6. This shows the conical volume occupied
by the real colors in the CIE XYZ space.
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Put a Face to the Name

Albert  Henry
Munsell was
an American
| painter and
e e _ teacher of art
e who was the first
plaz to attempt to
create a numer-
ical system to
accurately describe color by designing the Munsell Color System that was
the precursor and inspiration for the development of the first scientific color
order system, CIE XYZ color space. As an artist, Munsell found color names
”foolish” and ”misleading” and therefore strived to create a system that has
meaningful notation of color. In order the achieve this, he invented the first
photometer and also a patented device called the spinning top that helped
him measure colors and how colors change. Munsell color system created
a necessary bridge between art and science providing enough structure to
allow scientists to expand upon and use it, while being simple enough for
artists with no scientific background to use it for selecting and comparing
colors. Munsell’s System essentially created a way of communicating colors.
He also coined the terms chrominance or chroma and lightness. Munsell
also investigated the relationship between the color and the light source
used for illumination to find that the light source used drastically effected
the color perceived thereby leading him to eventually develop the standard
for daylight viewing of colors for accurate color evaluation. Munsell lived
from 1858 to 1918 and wrote three books, all of which considered the most
fundamental readings in color science — A Color Notation (1905), Atlas of the
Munsell Color System (1915) and one published posthumously, A Grammar
of Color: Arrangements of Strathmore Papers in a Variety of Printed Color
Combinations According to The Munsell Color System (1921). In 1971 he
created the Munsell Color Company which is now called the Munsell Color
Labs located in the Rochester Institute of Technology and is the premier
research institution for color science.

9.2.2 Perceptual Organization of CIE XYZ Space

We now have an understanding of how the tristimulus values are derived from a
color stimuli spectra. but we still do not have a sense of how colors are organized
in this space. Where do the grays lie? How does the trajectory of a color move
in this space if only its brightness is increased? Therefore, given the coordinates
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Figure 9.7. This figure illustrates how the properties of color relate to the properties of
their spectra. Left: A and B have the same area (therefore same intensity) has different
dominant wavelength and therefore different hues. Middle: A and B have the same hue
but different intensities. Right: A and B have the same hue but different saturations.

of a color in this space, we cannot predict how this color will look.

In order to find the perceptual organization of color in this XY Z space, we
should first study all the perceptual parameters that we use to describe color and
relate them to mathematical properties of their spectra. We often find ourselves
comparing one color to be more or less bright than the other. What does this
mean? Intuitively, this can be thought of as the total energy of color perceived
by the eye and is given by the area under the curve C()\) after it is weighted
by the sensitivity functions of the eye. Therefore, X +Y + Z is a good measure
of this total energy reaching the eye. Although, there is no good term for this
quantity in the color literature, this term is considered very important in color
perception. So, for lack of a better term, we call this the intensity I of a color
and I = X +Y + Z. The opponent theory of color, something we will not go
into in this book, explains the perception of color in higher level processing in
the brain that indeed adds up the tristimulus values to estimate the total energy
of colors — a quantity that is not independent of the distribution of the energy
across the wavelengths. The tristimulus theory of color, on the other hand, deals
with the perception of color in the eye.

Hue, h, can be thought of as the colorfulness of a color and can be given by
the weighted mean of the wavelengths present in the color spectra weighted by
their relative power. This results in a wavelength, the color of which defines the
dominant sensation the spectra will create in the human eye. Finally, most of
us will agree that, for example, pink is a less vibrant version of red. Vibrancy,
or saturation s, of a color can be thought of as the amount of white (or achro-
matic color) present in a color. The more white in a color, the less vibrant it is.
Therefore, saturation is inversely proportional to the standard deviation of the
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color spectra from the hue. Therefore, monochromatic color, with zero standard
deviation from the hue, has 100% saturation. Keep adding white to this you will
get different levels of reduced saturation. When you get to a completely achro-
matic color, that is the most unsaturated color with saturation of 0%. Figure 9.7

illustrates these concepts using different color spectra.

In the XYZ space, we define the
hue and saturation of a color using
its chromaticity coordinates x and y
as the proportion of X and Y in [
respectively. Therefore,

X X
-4 2
YT T T X+v+2z (9.28)

Y Y
(9.29)

YT T Xtiv+2

Note that z = 1 —  — y is the pro-
portion of Z in I and is redundant
since it can be computed from the
chromaticity coordinates. Therefore,
chromaticity coordinates are a way to
remove one dimension from the XY Z
space to create a 2D space defined
by the chromaticity coordinates. This
2D space is called the chromaticity
chart. Now, you will see when study-
ing geometric transformations in this
book, that Equation 9.29 defines a
perspective projection of a point in
XY Z space on to a plane given by the
equation X +Y + Z = k. This plane
has a normal of (1,1,1). Perspective
projection of a 3D point (X,Y,Z) is
defined as the 2D point where a ray
from origin to the 3D point inter-
sects the plane of projection which is
the plane with normal (1,1,1) in this
case. Note that multiple such planes

Figure 9.8. This shows the chromaticity
chart and the placement of different colors
on it. W is a color with equal proportions
of X, Y and Z resulting in chromaticity
coordinates of (3,%). The hue of color P
is defined by the dominant wavelength is
given by B, the point where the straight line
W P meets the spectral periphery. For an-
other color P’, W P’ meets the non-spectral
periphery. Therefore, the hue of P’ is de-
fined by the complementary wavelength B’,
the point where W P’ extended backwards
meet the spectral periphery. The saturation
is given as the ratio of the distance of the
color from W to the distance from W to its
dominant or complementary wavelength, B
or B’ respectively.

can be defined based on the value of k. But the location of the projection will
be the same since the chromaticity coordinates define a normalized coordinate
system that ranges between 0 to 1. One such plane is shown by the gray bordered
triangle in Figure 9.6.

Now, consider a ray from the origin to a 3D point (X,Y, Z). Any point on this
ray is given by a coordinate (kX, kY, kZ). Note that the chromaticity coordinates
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of (kX, kY, kZ) is identical irrespective of the value of k. Therefore, all points on
this 3D ray project to the same point in the chromaticity chart — and therefore
have the same chroma. However, what changes for each of these colors on this
ray is their intensity I. Therefore, this projection allows removal of this intensity
information providing us only the information about the chroma of the color.
Therefore each ray from the origin is a iso-chroma trajectory in the XY Z space.

Although the 3D coordinate of a color in the XY Z space defines the color
uniquely (upto metamerism), it does not provide us with an adequately good
image in our mind. For example, even with the information of the 3D coordi-
nates of a color — say, (100, 75,25) — we cannot imagine the chroma of the color.
However, if we use the (Y, z,y) representation of (75,0.5,0.28), we can imme-
diately imagine the chromaticity chart and know that this must be a color in
the red region of the chart. Therefore, most specification sheets for devices will
follow the (Y, z,y) format. However, the (X,Y, Z) and (Y, z,y) representations
are completely interchangeable, i.e. one can be computed from the other.

Let us discuss the expected response of the eyes when seeing an achromatic
color. It is intuitive that the brain makes a decision on color based on relative
difference in the firing of the three cones — therefore the relative difference in the
tristimulus values. If all these values are identical, the brain would interpret it as
equal amounts of all wavelengths and hence would perceive an achromatic color.
In other words, for an achromatic color, X =Y = Z and therefore (z,y) = (%, %)
Thus, all the grays including black at origin (X =Y = Z = 0) to white at
infinity lie on the ray from the origin in the 3D XY Z which all map to the same
chromaticity coordinate of (%, %) that is called the white point in the chromaticity
chart and is denoted by W. Finally, note that we need to limit the space to some
finite values. This is achieved by normalizing the maximum value of Y to be a
well defined white — usually the luminance of a perfectly diffused reflector. This
allows us to limit the space spanned by physical colors to the cone shown in
Figure 9.6.

Similarly, when the chromaticity coordinates of physical colors are plotted on
the chromaticity chart, the result it yields is shown in Figure 9.8 which is rather
intuitive to follow. First, the projection of the conical volume on the triangular
plane shown in Figure 9.6 would lead to a horseshoe shaped as shown in Figure
9.8. Second, note that the higher x means a much larger proportion of X which
in turn means more intensity in the longer wavelengths and hence red. Similarly,
the higher value of y indicates more intensity in middle wavelengths which is
green. If both = and y are small - i.e. z is high — it means that Z is highest
indicating more intensity in the lower wavelengths or blue.
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Fun Facts

This plot shows the actual sensitivities of

LT the S, M and L cones in the human eye

A where S, M and L stand for short, middle

and long wavelengths. Note that the M and

¥ L plots are very close to each other. Fur-

et :~ — e ther, the number of S cones is also much less

ik than the M and L cones. Note that these

plots are significantly different from the standard observer functions shown

in Figure 9.5. This is due to the fact that these plots were physiologically

measured only after mechanisms to do so were available to biological

scientists and happened much later than the design of the standard observer

functions. However, it can be shown that the LMS space can be related to
the XYZ space by a linear transformation.

Note that in the chromaticity chart all the monochromatic colors are at the
periphery. This is called the spectral boundary of the chromaticity chart. It is
almost as if the wavelengths 400 to 700 have been placed around the boundary.
There exists a straight line periphery of the chart that connects the two ends of
the horseshoe. Which wavelengths do they represent?

To answer this question, let us go back to the visible spectrum of light (Figure
9.2). There are no wavelengths corresponding to purple which nevertheless is a
color we perceive quite often. Also the colors change hue smoothly across the
wavelengths i.e. blue changes slowly through cyan to green which then changes
slowly through green-yellow to yellow which then changes through orange to
red. So, cyan, which can be thought of as a combination of blue and green rests
between blue and green. Similarly, orange rests between yellow and red. But,
where are the purples? Shouldn’t there be shades of purples between the high
wavelengths red and lower wavelengths blue completing a circular representation
of the visible colors of light? This is exactly the purples that show up as the
straight line periphery of the chromaticity chart. There is no single wavelength
to represent these colors and hence it is called the non-spectral boundary of the
chromaticity chart.

Let us now consider a color P in this chart as in Figure 9.8. We connect W
and P and extend the line backwards to meet the periphery of the chromaticity
chart at B. The wavelength of the color at B is considered to be the dominant
wavelength of P. Dominant wavelength is the sensation of the monochromatic
wavelength evoked by P and is an estimate of the perceptual property of hue.
Note that instead of P, if we consider a color P’ and try to find its dominant
hue, we will end up in the non-spectral part of the boundary which does not
have a wavelength attached to it. In such cases (for purples), a dominant hue is
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undefined. Instead, we connect W to P’ and extend the line backwards to B’.
This is called the complimentary wavelength, i.e. if a dominant wavelength for
P’ existed, its superposition with the complimentary wavelength will yield the
neutral W.

Saturation of any color in the chromaticity chart is defined as the ratio of the
distance of the color P from the white point to the distance of the line that passes
through P from W to the periphery. In Figure 9.8, saturation is thus given by .
Note that when the P is a monochromatic color, it coincides with B. Therefore
a = b, leads to a saturation of 1 or 100% as is expected for a monochromatic
color. On the other hand, if P = W, then a = 0 and the saturation is 0%, as is
expected for an achromatic color.

Finally, let us consider one more property of color called luminance which
is Y. This is defined as the perceived brightness of a color. For this, consider
the following experiment. Consider two different colors of the same intensity —
a blue and a green. Therefore, blue will have higher Z while green will have
higher Y. Though these two colors have the same intensity, almost all humans
will find the green to be brighter than the blue. This is due to a preferential
importance given to the middle wavelengths, indicated by Y, than the others.
This stems from the evolutionary reasons that man had to be extra sensitive to
green all around him to survive on land. This is why Y is called the luminance
and is often considered to be very important in perceptual tasks. For example,
when compressing images, Y is maintained at full resolution while the other two
channels are heavily sub-sampled.

9.2.3 Perceptually Uniform Color Spaces

CIE XY7Z color space is perfectly suited for color matching applications. For
example, if you want to superimpose two projectors and want to match their
colors — you just have to make sure that they are projecting colors with the
same XY Z values at the two overlapping pixels. However, there are applications
where perceptual distances between colors are more important.

What do we mean by perceptual distance? This means how much distance we
have to move from one color before the difference becomes visible. To understand
the importance of perceptual distance, let us consider an application of image
compression. When an image is compressed, we may want to change the colors
slightly to aid the compression. This would mean moving the colors from their
original location in the color space. But, we would like to move it just enough so
that the change is not visible and the compressed image looks very close to the
original image. The distance between the original and compressed image colors
can give us an idea of how close perceptually these images are and hence use
them to evaluate different compression techniques. In such applications, distance
between colors become very important.

Unfortunately, CIE XYZ color space is perceptually non-uniform. This means
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Figure 9.9. This figure shows the MacAdam ellipses plotted on the CIE 1939 chro-
maticity chart (left) and the CIE 1976 u'v’ chart (right). The colors in each of ellipse
are indistinguishable to the human eye.

that equal distance at different regions of the color space does not signify equal
perceptual difference. A perceptually uniform color space would signify that if
we want to draw a geometric shape around a color P in the chromaticity chart
to show us the set of all colors close to P that are indistinguishable from P, this
shape would be a circle and the size of the circles will be the same irrespective
of the position of P. However, this is not true when considering the chromaticity
chart devised from the CIE 1939 XY Z color space. Scientist MacAdam plotted
this geometric shape for different colors in the chromaticity chart and what
transpired is shown in Figure 9.9. Note that these are all ellipses and the shape
and size of the ellipses change with the position of the color. This shows that
our ability to distinguish between different shades of green is much worse than
our ability to distinguish between purples or yellows. Our ability to distinguish
between blues is probably the best.

Therefore in 1964 and subsequently in 1976 efforts were made to design a
perceptually uniform color space via non-linear transformation of the chromatic-
ity coordinates. There are several such spaces designed like the CIE LUV or CIE
Lab. Figure 9.9 shows one such color space designed in 1976 called the CIELUV
space. Note that the perceptual distances are much more uniform than the chro-
maticity chart of 1939, but still not ideal. The most popular space in this context
is the CIELab space designed much later and is derived from the CIE XYZ space.
The Euclidian distance of 3 in the CIE Lab space is considered to be just no-
ticeable difference. However, if you have color matching applications nothing can
beat the simple old CIE XYZ space and the chromaticity chart devised thereof.
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Fun Facts

Did you know that the concept of perceptual distance is well studied in
the perception literature? People always wondered how much difference in
stimulus we can tolerate without noticing it. For example, if you are carrying
a heavy book and a 20 page thin book is added to your load, you will most
likely not notice it. However, if your load is a thin 20 page book, you will
definitely notice the change. Therefore the more important thing to consider
is not the absolute change in the stimuli, but rather the relative change in
the stimuli. While in the former case your stimuli of weight is changing by
a few percent; in the latter case, it is almost doubling. In fact, Weber’s law,
named after its discoverer, a well-known law in perception literature says
that our ability to perceive a difference (what is more formally called the
difference threshold) is directly proportional to the amount of stimuli. The
constant of this proportionality changes across different perceptions, but 10%
has been found to be a reasonably good approximation empirically. We see
the same thing when perceiving the range of grays. We are more sensitive to
differences at dimmer gray values than at brighter gray values. This is also
another reason why our display v > 1.0. This helps us to provide greater
resolution at the lower channel values than at the higher ones.

9.3 Conclusion

The rendering equation was introduced first in two seminal works in computer
graphics in 1986 — [Immel et al. 86] and [Kajiya 86]. Its use in image synthesis was
popularized by the seminal work of Dr. James Arvo in [Arvo and Kirk 90]. Color
is one of the most confusing topics in the domain of visual computing primarily
due to the long history of color and its wide use in various ways in many diverse
domains starting from art, painting, physics, vision, human perception, video
processing and compression and then lately in image processing, computer vision
and graphics. [Stone 03] is an excellent practical handbook to understand these
diverse viewpoints. [Reinhard et al. 08] provides a detailed formal treatise.
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Exercises

1. The spectra of color C; = (X1,Y7,Z1) and Cy = (Xa,Ya, Z3) are given by
s1(A) and s2(\) respectively. Let the color formed by multiplications of the
spectra s; and sg be s3, i.e. s3(A\) = s1(\) X $2(A). Is it true that the XYZ
coordinate corresponding to ss, denoted by Cs, is (X1Xs,Y1Ya, Z125)7
Justify your answer with calculations.

2. Consider the four spectra in the left image of the above picture, their color
is not related to their visible colors, but used for visualization.

(a) What is the relationship between the dominant wavelengths of all
these colors?
(b) What is the relationship between the saturation of all these colors?

(¢) What is the relationship of the distances of these colors from the white
point on the chromaticity chart?

(d) What is the relationship between the I = X +Y + Z of these colors?
(e) The chromaticity coordinates of all these colors will lie on a single
geometric entity (e.g. circle, parabola). What is that geometric entity?

(f) The CIE XY Z coordinates of all these colors will lie on a single geo-
metric entity (e.g. circle, parabola). What is that geometric entity?

3. Consider the spectra in the right image of the above picture, their color
not related to their visible colors, but used for visualization.

(a) The blue spectra is the most likely complementary color to which
spectra?

(b) The chromaticity coordinates of which of the spectra would lie in the
same line?

(¢) If the chromaticity coordinates of the orange and pink spectra are
(0.1,0.1) and (0.6, 0.3) respectively, what is the most likely chromatic-
ity coordinates of a color formed by their addition?

4. In the figure below match the objects on the right with their most probable
color spectra on the left.
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5. Consider a Lambertian surface. How many dimensions would its BRDF
have? Briefly describe an simple hardware setup and an algorithm that
would allow you to measure the BRDF of a Lambertian surface?

6. You are measuring a surface patch with center P using a spectro-
radiometer. The radius of the patch is 2mm. The light is coming from
a 45 degree angle and has an angular extent of 20 degrees. The measured
energy is 200 Watts per nm. Find the irradiance and radiance at P.

7. When you switch on the projector in the class you see that it is projecting
predominantly blacks and purples. You figure out that one of the wires
connecting to the primaries R, G and B may be malfunctioning. Which
one is it and why?
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Color Reproduction

Maybe after the treatise on color in the previous chapter you are wondering

what is the use of the XYZ color space? To understand this, we have to take
a look at what is called color reproduction. When you think of images created
by any device — for example, a digital camera capturing an image or a projector
projecting an image or a printer printing one — these are all reproduction of colors
from the physical scene (e.g. camera) or from another device (e.g. printer printing
a camera captured image). The quality of a color reproduction is evaluated by
how close the reproduced image is to that of the original image or scene. The
term ‘close’ can be measured both quantitatively and qualitatively.
Color reproduction systems can be of two types — additive and subtractive —
depending on the way two or more colors are mixed to create a new color in
the color reproducing system. When learning painting, children are taught that
the primary colors are red, blue and yellow. Yet in the field of image processing,
we are taught that the primary colors are red, blue and green. So, wherein lies
the contradiction? Apparently, both the art teachers and the image processing
books are right. The difference stems from the fact that there are two ways to
mix colors — additive and subtractive. While red, green and blue are primary
colors of the former, the primary colors for the latter are cyan, magenta and
yellow which are often referred to as blue, red and yellow for simplicity.

In subtractive color mixture, the color of a surface depends on the capacity
of the surface to reflect some wavelengths and absorb others. When a surface
is painted with a pigment or dye, a new reflectance characteristic is developed
based on the capacity of the pigment or dye to reflect and absorb the different
wavelengths of light. Consider a surface painted with yellow pigment which re-
flects wavelengths 570 — 580nm and another surface painted with cyan pigment
which reflects 440 — 540nm. If we mix both the pigments, only the wavelengths
that are not absorbed by either of these pigments will be reflected, thus resulting
in the color green. The yellow absorbs the wavelengths evoking the sensation of
blue while the cyan absorbs the wavelengths evoking the sensation of yellow.
Hence, what is left behind is a sensation of green. This is called subtractive color
miztures since bands of wavelengths are subtracted or canceled by the combina-
tion of light absorbing materials. And the resulting color, as you have probably

223
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noticed, is given by the intersection of the two spectrums. The yellow, cyan and
magenta are termed as the color primaries of the subtractive color mixtures,
because they form the smallest set of pigments required to produce all other
colors. Dyes and inks usually follow subtractive color theory and hence images
generated using these media are the result of subtractive color reproduction.
In additive color mixture systems, colors
""""" -~ are mixed such that bands of wavelengths are
added to each other. This is called additive
mixture of colors. Thus, the spectrum of the
color formed by superposition of multiple col-
ors is given by the addition of their respective
spectra. This is similar to how the human eye
~_ visualizes color. Devices like cameras and pro-
400 Wavelength 700 jectors follow additive color mixture.
Let us look at additive mixing of colors
Figure 10.1. The blue and red g, jittle more formally. Let S; and S5 be the
show two different color spectra  g00tra of two different color stimuli in Fig-
whose additive and subtractive . .
mixtures are shown by the purple ure 10.1 shown in red. and blu.e.respectlvely.
. When they are combined additively, the re-
and green spectra respectively. . o o
sulting spectrum S(A) is given by the addition
of the relative powers of each of S; and S; at each wavelength resulting in the
purple spectrum. Therefore, S(A) = S1(A) + S2(\). However, while representing
a spectrum for subtractive color mixture such as paint, a value of x at a partic-
ular wavelength means =% is reflected by the paint while (1 — 2)% is absorbed.
This curve is a spectral reflectance curve (values between [0,1]) — fraction of
the incident spectral value reflected by the material. Therefore, when two paints
are superimposed, only the part that is not absorbed by either is reflected and
therefore the resulting spectrum becomes the multiplication of the two spectral
reflectances and the incident illumination spectrum creating the green spectrum
in Figure 10.1.

1.0

Relative Power

10.1 Modeling Additive Color Mixtures

Modeling additive color space and color mixtures is easy in the XYZ color
space. When two colors are mixed additively, the XYZ values of the result-
ing color are just the addition of the XYZ values of the individual colors
in the mixture. In other words, the color resulting from an additive mixture
of two colors (X1,Y7,71) and (Xs,Ys,Z5) is given by their vector addition
(Xl + XQ,Yl + YQ, Zl + ZQ) and so forth.

Let us consider two colors Cy = (Y1, 21,y1) and Cy = (Y3, 22, y2). The easiest
way to add these two colors would be to convert each of these to (X,Y,Z2)
format and add providing Cs = (X5, Ys, Zs) = (X1 + X, Y1 + Y2, Z1 + Z5). Now
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converting this back to (Y, z,y) format, we get

Y, =Y, + Y, (10.1)
X1+ X9

— 10.2

T X+ Xo A Vi + Yot Z1 + Zs (102)
Y, + Y-

ye = 1+ 72 (10.3)

X1+ Xo+ Y1 +Yo+ 21+ 2
Let us consider Equation 10.3 of x4

X1+ X ml 2213 6L I

s = = =z +x . 10.4
I + 1o Li+1, L+ "L+ I L+ 1, (104)
Using the same concept to ys, we find that
1 I
Ts,Ys) = (T1, + (22, —_— 10.5
(75, Ys) (1y1)11+12 (2y2)11+12 ( )

Note that the above equation gives you lot more information than the equations
10.3. It says that the chromaticity coordinate of Cy is a convex combination of
those of C; and C5. Therefore the new color C can only lie on the straight line
segment between (x1,y;1) and (z2,y2) in the chromaticity chart. It also says that
the location of Cs on this line will be solely dictated by the proportion of its
intensity. So, if C7 is blue and Cj is red, Cs will be a purple and if I; is much
higher than Io, it will be a bluish purple landing closer to C; on the straight
line between (x1,y1) and (x9,ys2). If I5 is larger, then it will be reddish purple.
Note that this also provides us an alternate way of doing the addition of colors in
the (Y, z,y) representation without going to the (X,Y, Z) representation — add
the luminance and find the convex combination of the chromaticity coordinates
weighted by the proportions of the intensities of each color. When considering
addition of n different colors, the formulae are given by

nzim (10.6)
i=1

I.
(msvys) = (xzayz)nil
; Zi:l I;

Therefore, the chromaticity coordinates of the new color are given by the propor-
tion of the intensities of C7 and Cy and not their luminance. Most color science
literature makes this mistake and says that the chroma needs to be combined
in proportion of their luminance and not the total intensity. This fundamental
mistake makes it impossible to match colors by combining one or more additive
colors in an experimental set up, and you may often think of moving to more
complicated perceptually uniform color spaces. However, we can show with cor-
rect derivation of model parameters as above, that we can do perfect matching
of colors just working with the XYZ color space.

(10.7)
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Figure 10.2. The 3D gamut (left) and the 2D gamut (right) of a linear three-primary de-
vice. In the 3D gamut on left, R = (X,,Y;, Z,), G = (Xg4,Yy, Zy) and B = (X4, Vs, Zs).
The 2D gamut is shown by the black triangle RGB. Any color in the triangle RGB is
reproduced by a convex combination of R, G and B using unique weights given by its
barycentric coordinates with respect to R, G and B. If a fourth primary C is added,
the 2D color gamut is now given by the polygon RGCB, the convex hull of R, G, B
and C. However, note that in this case, the color P inside this gamut RGCB can be
reproduced by non-unique combinations of different primaries — one with G and B and
another with R and C.

10.1.1 Color Gamut of a Device

Equation 10.7 provides an interesting insight. This equation shows that a large
number of colors are generated by a convex combination of a few colors. There-
fore, in order to reproduce a reasonable area of the chromaticity chart we will
need at least three colors, the convex combination of which creates colors with
chromaticity coordinates in the triangle formed by the chromaticity coordinates
of these three colors. These three given colors are called the primaries of the
device and the triangle formed by their chromaticity coordinates is called the 2D
color gamut of the device. Typically, these three primaries lie in the regions of
blue, red and green to cover a reasonably large area of the chromaticity chart.
That is why most devices we see today have red, green, and blue primaries as
shown in Figure 10.2. Nowadays, devices with more than three primaries are also
designed to increase the color gamut.

Let us now consider a device with three primaries, usually red, green and
blue. Let the input value for each channel, given by i,, 74, and 7;, be normalized
and therefore range between 0 and 1. Suppose that the XY Z coordinates of
each of the primaries at maximum intensity is given by R = (X,.,Y,, Z,), G =
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(Xq,Yy, Z,y) and B = (X,,Ys, Z) as illustrated in Figure 10.2. This means if we
change the input of only one of the channels — say red — keeping the other two
at zero, the XY Z values of the reproduced colors will travel along vector OR
starting from O at i, = 0 and reach R at i,, = 1. Also, when we change the inputs
of multiple channels we get a vector addition of the vectors OR, OG and OB
scaled by their respective input values. In other words, the color C' = (X,Y, Z)
produced for input I, = (ir,g4,1%) is computed as

C=(X,Y,Z) =0 +i(R—0)+i,(G—0)+in(B—0) (10.8)
= in(X0, Yo Zp) +ig(Xg. Vg, Zg) +in(X0, Yeu Z) (10.9)

The space spanned by C as i,, iy and 4, changes from 0 to 1 is given by
the parallelepiped shown in Figure 10.2 (left). This is the entire gamut of colors
that the device can reproduce and hence is called the 3D color gamut of the
device. Typically, the tristimulus values of the primaries of practical devices are
well within the visible colors, the parallellopiped formed by these primaries will
usually be strictly inside the visible color gamut. Hence, usually our devices
typically reproduce only a subset of the colors human can see. How big a subset
they can produce depends on the properties of their primaries given by the
coordinates of R, G and B. Note that Equation 10.9 can be written in the form
of a 3 x 3 matrix as

X X, X, X, i
Yy |=| Y v, v ig (10.10)
Z Z, Zy, Zy i

C=MI, (10.11)

When the entire color gamut (or characteristics) of a device can be repre-
sented by such a matrix M, it is called a linear device. Note that the above
matrix M indeed tells us everything about the color characteristics of a device.
Also, if we know the desired color C to be reproduced, we can find the unique
input that would create it by I, = M —1C. Therefore, every color within the
gamut is created by a unique combination of input values.

The intersection of the vectors OR, OG and OB with the chromaticity chart
provides us with the chromaticity coordinates of these three primaries which
will define the set of all chromaticities that the device can reproduce (without
considering the intensity). Since there are three vectors, their intersection in the
chromaticity chart will create a triangle as illustrated in Figure 10.2 by the black
triangle RGB. This is called the 2D color gamut of a device.

From Figure 10.2 it is obvious that adding an additional primary, like C,
outside the current color gamut, would help us cover a larger area of the chro-
maticity chart and thereby increase the 2D gamut to the polygon CBRG. This
is of course true and is often used as a technique to increase color gamut by
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Figure 10.3. This figure shows a few standard and empirically measured color gamuts
of current display devices.

the TV manufacturers. However, there is a downside to it. Consider this four
primary system and the color P. Notice that it can be generated in more than
one way — either by combining G and B or by combining C' and R. Therefore,
unlike a three-primary system which provides a unique way to create a color by
combination of the primaries, here there are multiple ways to create a color.

In Equation 10.9, we assume that O is at the origin (0,0, 0). This means that
the black produced by the device (output for I, = (0,0,0)) indeed generates
zero light. Unfortunately, in some display devices today, especially projectors,
some constant leakage light is always present, even for input (0,0,0), which is
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often called the black offset. If this black offset is characterized by the XY Z
coordinates (X;,Y;, Z;), then the equation 10.9 becomes

(XY, Z2) =0+ (R—0)+1i43(G—0)+ipy(B—-0) (10.12)
= (Xi,Y1,Z1) (10.13)
+i- (X, - X,,Y, -V, Z, — 7)) (10.14)
+ig( Xy — X0, Y, -V, Z, — Z)) (10.15)
+ir(beXl,Yb7Y2,beZl) (1016)
The above equation represented as a matrix becomes
X X, X X,—-X X,—X X b
Y |=| Y\-v Y,-Y Y-Y Y o (10.17)
Z Zo=2) Zy—Z Z—Z 7 !
Fun Facts
i o 1 e Interestingly, not only human
- g } & perception of light, but all
E = ? “kfj“ human perceptions follow a
=5 I ' power law. This is called the
E = “'.'I b_f-"' L _——1 5
L L Steven’s power law based on
j}ﬂg 3 the scientist who first made
£ the observation. This law says

that response R of any hu-
man perception to the input
R TR R R SR T stimuli I follows the equa-

Stimulus IIIEQI'II-|u'.'Iﬁ in ﬂlbl'rarr uEliE tion R = KIFY. If ’Y > 1.0’
perception is expansive. An example is electric shock. If v < 1.0, perception
is compressive. An example is our perception of brightness. 7 is seldom
1.0. The expansive or compressive nature of our perception is shaped by
evolution! The compressive nature of our perception to brightness saves our
eyes from getting burned regularly by sunlight. The expansive nature of our
perception to electric shock helps to put us on guard when the stimulus is
not too large to cause damage.

However, note that the parameters of the matrix are not available to the user
directly from the specification sheet of the devices. In general, they can be derived
from other parameters that are specified. The first of these is a standardized 2D
gamut. The 2D gamut of a device should usually conform to a predefined stan-
dard gamut, like SRBG, HD and NTSC (Figure 10.3). However, the 2D gamut
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does not contain any information about the minimum and maximum luminance
that can be reproduced by the display. It only signifies the hue and saturation of
the primaries, each of which can have different minimum and maximum bright-
ness. So, to complete the description, we need the information about the white
point and the dynamic range(more commonly called contrast). The white point
gives the chromaticity coordinate of the white and the dynamic range is given
by the ratio of the brightest and dimmest gray, i.e. white and black. The white
point is specified as conforming to a predefined standard. Whites can be of dif-
ferent tints — purplish, bluish or reddish. And different cultures have been seen
to prefer different white points. So, such standard whites have been defined like
D65 (z = 0.31271,y = 0.32902) or D85. However, note that dynamic range can
provide you the color gamut only up to a scale factor and hence the display’s
maximum brightness (usually produced at white) is required to get the absolute
color gamut. The intensity of the white is usually specified as a measure of the
brightness of the device. All these parameters together define a 3D color gamut
in the XYZ space and the matrix M.

10.1.2 Tone Mapping Operator

Let us now discuss another important property of a color reproducing device,
the tone mapping operator. As we change the input of one channel from 0 to
1 as the other two remain zero, the output will travel on the vectors OR, OG
or OB (Figure 10.2). Now, the way the resulting output moves on these vectors
may not be linear. In fact, most of the times it is a non-linear function trying to
adjust for the response of human eye. Let us call this function hA. For example,

the human eye has a non-linear re-
sponse to light which is compressive
in nature i.e. if the eye is stimulated
with k£ times the intensity, the per-
ceived intensity is less than k times.
| For example in cameras, this func-
_ ¥ 7] - 1 tion h(i,) is modeled by 4] where
; v < 1.0. In displays, v > 1.0, most
: ) ¢ ) ) commonly v = 2.0 to compensate for
the compressive gamma imparted by
cameras. Although we have assumed

-

Figure 10.4. On the left is a typical display

amma of 2.2. In the middle is the gamma
& . 1 82 the same h for all channels here, these
of a capture device set to 55 to mimic the

human eye. The result of putting this im- functions can be different for different
age on to the display is a linear response of channels. In fact, predefined  was in-
input to output as seen in the right. vogue in the pre-digital age when film

cameras usually had a v = 0.5 which
was compensated by displays with a v = 2.0. Hence, the name gamma function
or gamma, correction. This is illustrated in Figure 10.4.
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Let us consider a more general representation of the gamma function which
need not be a power function in a color reproducing device and can be thought
of as a parameter of a color producing device that can be controlled to change
the appearance of the device. This more general representation is called the tone
mapping operator or transfer function. When color devices were non-existent
and people were used to only black and white devices (a better way to call
them would be gray), transfer function was the only function that dictated the
picture quality. All the terminology for user interfaces to control picture quality
originated at this time and hence they have a direct relationship with the tone
mapping operator.

The basic assumption was that the tone mapping operator would be a smooth
monotonically increasing function. There used to be two controls — usually called
brightness and contrast or picture. Brightness used to act like an offset on the
transfer function moving the function up or down. Contrast or picture used to
change the gain of the transfer function. This is illustrated in Figure 10.6 along
with its effect on an example image.

When color displays came into being, the natural thing
to do was to have an independent transfer function for
each channel. This provided a much greater control on
image appearance. Changing the tone mapping operator
for one of the channels to be different than others cre-
ated different effects like producing unique color tints, as
shown in Figure 10.7. This is often described as changing
the color balance. Changing the tone mapping operator
is the only one way to change the color balance of the
display. The same effect can be achieved by changing the
relative intensities of the different primaries using the off-

Figure 10.5. Notice
the contouring in the
flat colored region
around the portrait.
This is the tell-tale
quantization artifact
due to insufficient
intensity resolution.

set control.

In the displays menu from the control panel on a stan-
dard Windows desktop, all these three transfer functions,
one for each channel, can be seen. Therefore today, v has
become a way for users to have control on the device to
create a different look and feel for images. In any lap-
top, in properties and settings, one can change the h for
different channels differently which need not be even an

exponential function. To get the best reproduction and to take full advantage of
the dynamic range of the medium, the image should have pixels with range of
colors that span throughout the entire tone range.

10.1.3

Intensity resolution ideally means the number of visible intensity steps. However,
this visibility depends on the viewing environment such as ambient light color

Intensity Resolution
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Figure 10.6. This figure shows the effect of brightness and contrast control on the
transfer function. Top Row: Increasing contrast increases the slope of the red curve.
Three different contrasts are shown on the left followed by their effect on the image
produced on the right of the plot of the curves — top, middle and bottom curves from
left to right. Middle Row: On the other hand, the brightness control moves the transfer
function up and down. Increasing the brightness function means saturating higher
values with the same value and vice versa. The effect of all these changes to a picture
is shown on the right of the plot of the curves — top, middle and bottom curves from
left to right. As the brightness is reduced notice the clamping near 0 and as a result
the rightmost image has most of its parts darkened to zero. When the brightness is
increased the higher values are clamped to 1 giving it a washed out appearance as is
seen in the leftmost image. Bottom Row: This shows the effects of changing the tone
mapping operator altogether to have more general functions — the images on the right
show the effect of the top, middle and bottom tone mapping operators from left to right.
For each of these figures, all of the three channels have the same transfer function.

and absolute brightness. So, in order to make it simple, intensity resolution
is defined by the number of digital steps used to define the intensity of each
channel. Thus, for an 8 bit display, intensity resolution is 256. The distribution
of these intensities across different input values depends on the transfer function.
Insufficient intensity resolution introduces quantization artifacts in the form of
contour lines as illustrated in Figure 10.5. In practice, a perceptually uniform
brightness distribution rarely shows contouring with 8 bits per pixel. However,
perceptually uniform distribution indicated non-uniform steps in output value
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Figure 10.7. The figure shows the effect of having different gamma functions for different
channels. The green channel is kept the same in all the pictures (the red curve in the
third row of Figure 10.6) while the red and blue channels are changed similarly for the
left, middle and right picture respectively using respectively the red, green and blue
curves in the third row of Figure 10.6. This results in different color tints in the different
pictures — the right two are much warmer than the left one while the rightmost one is
much more purplish than the other two.

for equal steps in input values. But, if we want to achieve a linear encoding on
such displays, that provide uniform steps in output value for equal steps in input
value, we would need a much larger number of bits — around 10-12 bits per pixel.

10.1.4 Example Displays

Displays are one of the most common devices where the effects of these different
properties of color gamut, tone mapping operators and intensity resolution can
be readily observed. So, let us study a few common display technologies from
this perspective.

Cathode Ray Tube (CRT) Displays: CRT monitors excite phosphors
with rays of electrons from an electron gun. Different types of phosphors are
used to emit red, green and blue light. The phosphor colors match the sRGB
color gamut, but they age easily becoming progressively less bright. In addition,
the blue phosphor often degenerates faster leading to a change in color balance,
giving the monitor a yellowish appearance. Note that though the hue and satu-
ration of the primaries remain the same in the chromaticity diagram, the color
of the display changes just due to deterioration of their brightness.

The CRT’s transfer function is a non-linear power function which is defined
by the physics of the electron gun exciting the phosphors. In the simplest form,
it is approximated as

1=v"

where [ is the measured intensity and V is the input voltage corresponding to
channel inputs. If the intensity produced at V; (black) is non-zero, then this
equation is modified to

I=(V+VW)

Finally, the entire curve can be scaled by a constant k£ to give the most general
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Figure 10.8. The effects of flare light on the chromaticity of the primaries of an LCD
display. The XYZ chromaticity coordinates of each channel are plotted (with red, green
and blue color) as the input values are ramped from 0 to 1 while the other channels
are left at zero. The black plots show the chromaticity coordinates of the grays as they
ramp from 0 to 1. Left: With flare. Right: With flare subtracted. Note that with flare,
each of these plots starts from the black offset chromaticity coordinates and move to
the channel chromaticity value on a straight line as the input value increases thereby
decreasing the effect of the black offset in the additive combination. If the black offset
or flare is removed, the chromaticity coordinates are constant (since only the intensity
changes with the change in input values).

form of the equation
I=k(V + V)"

The brightness and contrast controls in CRTs therefore change k and 7 respec-
tively.

Liquid Crystal Displays (LCD): LCD displays are a spatial array of
red, green and blue segments, each of which is a colored filter over a cell of
liquid crystal material that can be made variably transparent. A backlight shines
through the LCD array so that the resulting color is a function of both the
backlight and the filters. However, colored filters are significantly different than
colored phosphors. The more intensely colored (saturated) the filter is, the less
light it will pass making the display dim. The less saturated the filters, the
brighter the display but it is also a lot less colorful. Thus, to get a highly bright
and colorful display, very bright backlights are needed in addition to saturated
color filters. But a trade-off needs to be made due to the huge power consumption.
When compared to the gamut of the CRT displays, the blues of the LCD displays
are often much less saturated.

The transfer function of LCDs is usually linear. But usually LCDs include
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electronics by which this can be changed to match the traditional CRT displays.
Also, usually LCDs project some light even at input zero due to leaking of the
backlight through the front of the display. Though it is called flare, it is the
same as the black offset. Thus, the chromaticities of the primaries shift towards
the white point for the lower intensities. Even with flare subtracted, the LCDs
deviate measurably from the ideal RGB model since the chromaticity is still not
constant at all brightness levels.

Projection Displays: A digital projector contains a digital imaging element
like an LCD panel or an array of digital micromirrors (DMD) that modulate the
light coming from a high intensity light bulb. Most LCD projectors and the larger
DMD projectors have three imaging elements and a dichroic mirror that splits
the white light from the bulb into its red, green and blue components. These
are recombined and displayed through a single lens. The smaller projectors use
a single imaging element with a wheel of filters, so that the separations are
displayed sequentially in time. Some DLP (digital light processing) projectors
have a fourth filter called the clear filter which are used while projecting the
grays to achieve a higher brightness for grays. However, note that this is not
equivalent to using more than three primaries since the chromaticity coordinate
of the fourth filter lies inside the color gamut formed by the red, green and blue
filters.

10.2 Color Management

So far we have been discussing a single device. Let us now consider multiple
devices. When considering multiple devices, even if they are of the same type
and same brand, the primaries in them can differ significantly. Especially, when
we consider a complete imaging system including acquisition (using cameras),
monitors, displays and printing, we need to make sure that the color in one device
looks similar to that in another. You may have had the situation that your picture
in the camera display looked nice and vibrant, but looked dull when projected
in a slide projector for an event. Or, the printed picture looked washed out while
the same picture looked perfectly fine in your monitor!

Color management entails modifying the input going to each device so that
the output coming from each device matches. Since each device has different
primaries, it is evident that they will need different inputs to create the same
color. Since our goal is to maintain the same color across multiple devices, the
only way to achieve this is to change the input from one device to another. We
will consider two fundamental techniques of color management in this section.
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10.2.1 Gamut Transformation

Let us consider two devices with linear gamma and color gamut defined by two
different matrices M; and Mj. Let us assume that the input (R1, G1, B1) creates
the color (X, Y, Z) in the first device. Our goal is to find the input (Rg, G2, B2) in
the second device that would create the same color. Note that, as per Equation
10.10

X Ry Ry
Y = M, Gy =My | G (10.18)
Z B By

From the above equation, we find that

R2 Rl
Gy | =M'My | &y (10.19)
B2 Bl

Therefore, if we multiply the input
to the first device with the matrix
M{lMl, we will get the appropriate
input to create the same color in the
second device. This is called gamut
transformation.

However, there are some issues
with this technique as illustrated in
Figure 10.9. Here we show the paral-
lelepiped gamut of two devices, one
in black and the other in gray. Let us
now consider the color marked by the
blue dot which is within the gamut
of the first device. Once we apply our
gamut transformation to find the cor-
responding input in the second device
to produce the same color, the values
we get are marked in the orange, magenta and cyan vectors. Note that the re-
quired color is outside the color gamut of the second device, and to reproduce
that color one of the primaries has to be scaled by a value greater than 1.0. This
means that the inputs generated will be out of the range. This indicates that the
color to be generated is out of the device gamut and cannot be generated using
convex combination of the primaries. Such colors are call out-of-gamut colors
and cause a problem in any gamut transformation.

There are multiple ways to deal with out-of-gamut colors and they can be
chosen based on the application. One option is to use an in-gamut color on
the planar boundaries of the gamut that is closest to the out-of-gamut colors.

Figure 10.9. This figure illustrates the prob-
lem caused by out of gamut colors during
gamut transformation.
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This can be achieved by clamping the out-of-bound input to 1 or 0. Such a
clamping creates a local movement of only the out-of-gamut colors retaining the
appearance of all in-gamut colors. This method can yield rather effective results
for GUI applications where flat colors are used for buttons and slides.

However, when dealing with natural images, multiple out-of-gamut colors can
land on the same in-gamut colors creating color blotches. Another option is to
scale the position of all the colors to fit the out-of-gamut colors within the gamut.
This can be achieved by scaling the input by an appropriate factor to move the
out-of-range value to 1. This leads to a global movement of colors yielding better
result for images though vibrancy and brightness of all the colors are sacrificed.

10.2.2 Gamut Matching

Gamut matching is a technique that tries to eliminate out-of-gamut colors alto-
gether. The mainstay of this method is to find a common gamut that all devices
can reproduce. The method is illustrated in Figure 10.10. Let us consider two
devices with gamuts G; and G5 — shown in red and blue respectively. Let the
linear matrices representing these two devices be M7 and M, respectively. First,
we find the intersection of G; and G3. G1 N Gy is shown in green. There is no
guarantee that G; NGy is a parallelepiped. However, in order to express the com-
mon gamut as a matrix, we find the largest parallelepiped, G, inside G N Gs.
We desire to find the largest such parallelepiped to increase the gamut of colors
that can be reproduced by both the devices. Let the matrix that represents this
black gamut be M,.

Next, we consider any input to be an input (R.,G, B.) in this common
gamut G. and find the corresponding input in the ith device from Equation

Figure 10.10. This figure illustrates the process of gamut matching for two devices
whose gamuts are denoted by the red and blue parallelepiped. The intersection of these
two gamut is shown by the green volume (left). The biggest parallelepiped inscribed in
this intersection is shown in black (middle). Finally, the red and blue parallelepipeds
are transformed to the black one via appropriate linear transformations (right).
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10.19 as
Ry R,
G, | =M"'M.| G. (10.20)
B B,

This method can be easily generalized to n devices. However, finding the inter-
section of multiple parallelepipeds and the largest inscribed parallelepiped in it
are time consuming computations.

We have discussed here only two very basic color management techniques
that only apply to linear devices. Non-linear devices (for e.g. ones with more
than three primaries) have more complex shaped gamuts. Complex geometric
entities like Bezier patches or splines may be used to handle such non-linearities.
Further, we also only considered methods that are content-independent (i.e. that
does not depend on the particular content). There are other gamut matching
techniques that take content into consideration. For example, if you are dealing
with fall images where you know you will have predominantly reds, oranges and
yellows, you can do lot better by adapting the method to these colors so that
they are maintained at higher fidelity while larger movements occur for colors
which are sparse in the image.

10.3 Modeling Subtractive Color Mixture

We have discussed additive color mixtures so far. Though this is the system
which we will use mostly, paint based systems (e.g. printers) still use subtractive
color mixtures. We will discuss some of the basic issues about subtractive color
mixtures in this section.

Cyan, magenta and yellow are considered to be the primaries of subtractive
color systems. Cyan absorbs red, magenta absorbs green and yellow absorbs blue.
The ideal response of such paints or filters is shown by the bold lines in Figure
10.11). When we say that yellow has an input of 0.5, it essentially means that
50% of blue is absorbed. Or, a input of 0.75 magenta means 75% of green is
absorbed. Considering this, a very simplistic model of CMY systems can be

(C,M,Y)=(1,1,1) - (R,G, B). (10.21)

Therefore, it is easy to find the RGB inputs of a device given the input to a
subtractive CMY device using the above equation. However, the problem is that
the real CMY filters rarely behave as ideal block filters. They show lot of cross
talk due to ink impurities. This also causes gray imbalance which means that
equal amount of the different primaries do not lead to a neutral gray color.
Therefore, this simplistic model rarely holds.

In addition, when dealing with dyes on paper, several other issues come into
play. For example, it is evident that depositing C, M and Y on top of each
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Figure 10.11. Left: This figure illustrates the transmittance profile of cyan, magenta
and yellow filters in a subtractive color system. The ideal responses are given in bold
lines and the real responses in dotted line. Right: This shows a subtractive 2D color
gamut of a printer (CMYK) when compared to an additive 2D color gamut of a display
(standard RGB - often referred to as sRGB).

other in layers should create a dark black. But due to the cross talk, the black
thus created usually does not provide a good contrast. Sometimes, layering of
so many different primaries causes the paper to get wet and tear off. So, almost
all subtractive color devices use an inexpensive high contrast black dye to avoid
tearing of paper and to reduce cost by reducing the usage of the ink of other
primary colors. This creates a 4-primary CMY K system where K stands for
black (traditionally K stood for key color — this was during the age of text
printing when black was considered a very important dye for printing books;
also since B is used for Blue, the convention is to use K for black). However,
this means that the primaries are no longer independent of each other and hence
each color can be produced in more than one way. Thus, such devices undergo
careful factory calibration to decide what amount of which primaries will be
used to generate a particular color and it is difficult to reverse engineer due to
the non-uniqueness of the process. Figure 10.11 shows the comparison between
a common subtractive gamut of a printer to additive gamuts of displays. Note
that the subtractive gamut is usually much smaller than an additive gamut.
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10.4 Limitations

At this point, it is very important to point out that a single image from a device
cannot really reproduce exactly how the humans perceive the scene. The limita-
tions in any color reproduction mechanism stem from two fundamental reasons
— the range of brightness and the range of colors (chromaticity coordinates) that
a device can capture or reproduce are usually smaller than what is found in
nature. We have already seen this in the context of chromaticity coordinates. It
is evident that no 3-primary device can reproduce the entire color gamut that is
perceived by a human since any triangular 2D color gamut will leave some part
of the chromaticity chart uncovered.

The same phenomenon happens for brightness. Let us consider Figure
10.12(top). The brightness in any scene can range from 10~2 lumens (in shadows
of trees on a moon-lit night) to 10'° (in sky on a bright sunlit day). This is a
huge variation and is hence plotted in log scale. The response of the human eye
to these brightness range is not as shown by the black dotted line. Instead, at
any particular time, the human eye can only perceive a smaller subset of this
large range of brightness — maybe only 3-4 orders of magnitude. This means the
human eye can perceive a contrast ratio or dynamic range of about 1:10,000. In
contrast, the dynamic range that can be reproduced by 8-bit device is usually of
the order of 1:100.

Further, based on the brightness of different parts of the scene our eye can
quickly adapt to the most appropriate range that should be sensed to gather
the maximum information. We have all experienced this, especially when our
eye goes through a drastic adaptation, like when we are blinded for some time
when we come out to brightly lit outdoors from a dark room, only to get adapted
to the new condition quickly. This flexible adaptation capability of the human
eye at different brightness level is illustrated by the different colored curves in
Figure 10.12(top). Each curve is linear only within a range of illumination be-
yond which it saturates. Given a particular illumination level, the curve which
provides a linear response around that range of illumination provides the curve
in which the eye is responding to the scene. Therefore, when given a scene as
Figure 10.12(bottom), the eye adapts to a higher range of brightness to extract
information of the appearance of the sky and then to a lower range of brightness
to extract the information of the objects like houses, roads and cars. Then it
combines all this information to create a mental picture similar to the combina-
tion of these two. In this section, we discuss a few ways by which we address the
limited capability of usual devices when compared to the human eye.

10.4.1 High Dynamic Range Imaging

High dynamic range imaging is a technique by which we mimic the dynamic
range of the human eye and create an image that can have a contrast similar
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to the human eye or even as high as what is present in nature. Here images are
captured at different camera settings so that different amounts of light illumi-
nate the sensor. When more light illuminates the sensor, we capture the darker
parts of the scene while the brighter parts of the scene over-saturate the sensor
creating ‘burned out’ or over-exposed regions. When less light illuminates the
sensor, we capture the brighter part of the scene while the darker parts of the
scene under-saturate the sensor creating under-exposed regions. Therefore, by
capturing different images and allowing different levels of light to impinge on
the sensor, different parts of the scene get captured while others are either un-
der or over exposed. But, by combining the information from all these pictures,
information in all parts of the scene can be gathered creating one high dynamic
range image that has a much higher dynamic range than what is available to us
via any standard 8-bit image capture.

Therefore, the ob-
vious question is, how
do we control the
light that illuminates
the sensor to create
a high dynamic range
image? This can be
done by changing the
exposure of the cam-
era which can, in
turn, be achieved ei-
ther by changing the
aperture size of the
camera or the shutter
speed. Shutter speed
dictates the amount
of time the shutter
is open to expose

Relktive Resporss

Figure 10.12. Top: This figure illustrates the adaptive dy-
namic range of the eye. Each colored curve shows how the
response of the eye spans a range of brightness much smaller
than the total range of brightness available in nature. At any
instant the response of the eye is linear within this small
range. The black dotted lines show the hypothetical response
if there was no adaptation to different ranges of brightness
and the eye had a response that spanned the entire dynamic
range available in nature. Bottom: This shows how the eye
processes information from capturing the different parts of
the scene in an appropriate dynamic range.

sor is not the same as that which reaches the periphery.

the camera sensor to
light. Usually the lat-
ter control is chosen
for a reason that is
completely device de-
pendent. As the aper-
ture of the camera
changes, due to the
complex lens system,
the light that reaches
the center of the sen-

. In fact, the amount of
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light reaching different pixels of the sensor shows a steady fall-off from center to
periphery. This is often called the vignetting effect of a camera. The vignetting
effect in a camera is minimal at low apertures (f/8 or below) when the camera
is closest to the pinhole model. At other aperture settings the vignetting effect
is considerable thereby influencing the accuracy of the light sensed at each pixel.
Therefore, it is better to use the shutter speed (and not change aperture) to
change the exposure to minimize the inaccuracies due to the different vignetting
effects at different aperture settings.

Let us now consider a static scene captured by a camera using n different
shutter speeds. For the jth shutter speed, 1 < j < n, let the time for which the
shutter is open be given by t;, the number of pixels in the image captured by
the camera be m, the gray scale value captured at ith pixel, 1 <i < m, be Z;;,
the scene irradiance at the ith pixel be E;, and the camera transfer function be
f. Therefore, for any 7 and j, we can model the imaging process as

Zi; = f(Eqtj). (10.22)

Assuming that f is monotonic and invertible, we can write the above equation
as
F1(Zy) = Eit;. (10.23)

Assuming a natural logarithm of both sides, we can write this equation as
g(Zij) =Iin E;+1In tj (1024)

where g = In f~!. In this equation, ¢; and Z;; are known and FE; and g are
unknown. For every pixel ¢, for every shutter speed j, we can write one such
equation leading to a system of mn linear equations. g is a function with 256
values for a 8-bit device. Therefore, we will need to solve m + 255 unknowns
from set of mn over-constrained linear equations using linear regression. To con-
strain the g to be monotonic, we can add additional constraints to the system of
equations. We can even add curvature constraints to assure the g is smooth. The
solutions of these equations will provide a high dynamic range image as shown
in Figure 10.13.

However, a high dynamic range image brings forth the obvious question of
how can we display it? Its range of brightness and contrast are many orders of
magnitude beyond what a traditional 8-bit display can do. Seeking the solution
to this problem has created a large body of research literature on designing
complex, often spatially varying, tone mapping operators that can take this huge
range of contrast and successfully compress it within the range (usually 0-255)
that can be reproduced. The basic idea behind the tone mapping operators is to
create the effect of spatially varying exposure such that every region is exposed
the right amount to reveal information (Figure 10.13) without getting under or
over saturated. Though such an image may not look photo-realistic since we are
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Figure 10.13. Top Row: Three different images captured at different shutter speeds.
Bottom Left: The recovered high dynamic range radiance map. Note that this image
cannot be displayed in the regular display since it has a much higher contrast. Therefore
we show a heat map visualization of the radiance, blue indicating low and red indicating
high. Right bottom: This shows the same image being shown on a regular 8-bit display
using a tone-mapping operator.

not used to seeing such photos from a real camera where both very bright and
very dark regions are well-exposed, it nevertheless is perfect for conveying the
information content in every region of the picture.

10.4.2  Multi-Spectral Imaging

Multi-spectral imaging is a technique that addresses the issue of a limited 2D
color gamut of any 3-primary color reproduction system. It is evident that the
triangular 2D gamut formed by 3-primaries can never capture the entire 2D
color gamut of the human eye. In fact, as shown in Figure 10.3, most color
reproduction systems do not have highly saturated primaries thereby restricting
the 2D gamut of 3-primary systems even further. This is due to a fundamental
physical limitation. Saturated primaries are achieved by narrow band primaries
which are light inefficient since they filter out most of the light in a scene retaining
only a very narrow band. Therefore, saturated primaries require addressing this
fundamental trade off between light efficiency and a larger 2D color gamut. An
obvious solution to this problem is to choose more than 3-primaries and various
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RGBCMY

Figure 10.14. Consider a scene captured by a hyperspectral camera that captures the
accurate spectrum at every pixel from which we compute the XYZ values at every
pixel. Left: This image shows the RGB image from a standard camera that the spectra
captured by the hyperspectral camera would produce. Middle: Consider the same scene
being captured by a 6 primary camera (RGBCMY), a standard RGB camera and a
CMY camera - the primaries are shown on the chromaticity chart on the right. The
Euclidian distance between the reconstructed spectrum from these three cameras and
the ground truth spectra captured by the hyperspectral camera are normalized and
represented as a gray scale value at every pixel (brighter means greater distance). As
expected, a 6-primary camera captures a spectra closer to the ground truth than the
3-primary cameras.

systems have been designed over the years using 4-6 primaries. More than six
primaries lead to compromising other properties like spatial resolution to offset
the gain in the 2D color gamut.

Referring to Figure 10.14, consider a scene captured by a hyperspectral cam-
era that captures the accurate spectrum at every pixel. The XYZ tristimulus
value can be computed at every pixel from the captured spectra. Next, the same
scene is captured by a 6 primary camera (RGBCMY), a standard RGB cam-
era and a CMY camera. The inaccurate spectra captured via these primaries
are reconstructed using a linear combination of the sensitivities of the primary
weighted by the values captured. The Euclidian distance between the inaccu-
rately captured spectra from the six or three primary cameras and the ground
truth spectra captured by the hyperspectral camera are normalized and rep-
resented as a gray scale value at every pixel. Brighter values indicate greater
distances and therefore greater errors in capture. Note that, as expected, as the
number of primaries increases, the errors reduce. Also, note that the errors for the
CMY camera is much greater than that from the RGB camera. This is evident
from examining the coverage of these two 2D gamuts in Figure 10.14 where the
area covered by the CMY gamut is clearly much smaller than the area covered
by the RGB gamut.
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This light inefficiency becomes the primary inhibitor for creating spectrally
accurate reproduction of colors in displays. Spectrally accurate displays demand
highly saturated (and therefore narrow band) primaries which are very bright
to create the light efficiency demanded by a display. Creating such super-bright
saturated primaries for displays was practically impossible till date. But, the
promised gamut of the 6-primary laser projectors of the future, shown by the
cyan polygon in Figure 10.3 shows promise to achieve this, hopefully sometime
soon.

Fun Facts

The world of color standards can be a confusing aspect to deal with for
consumers. What do the terms NTSC, HDTV, UHDTV mean and what are
their consequences on the picture quality? The color standard definitions
have their origin in the 1940s when the TV industry felt the need to define
some standards for transmission of the video signals. Since this was the era
of black and white television, the only property that was related to the
transmission was the spatial resolution of the imagery which was 640 x 480
at a 4:3 aspect ratio (ratio of the screen width to height). In 1953, color was
added to the standards after the advent of color televisions. This included
specifying a standard 2D color gamut and white point (as shown in Figure
10.3). This was the main standard until around 2010 when the advent of
digital content led to the development of the HDTV (high-definition TV)
standard. This changed the resolution to 1920 x 1080 and expanded the
color gamut slightly (as shown in Figure 10.3). This also introduced the
concept of widescreen TV with aspect ratio of 16:9. Recently, there is a
new standard called UHDTV (Ultra high-resolution TV) which doubles the
resolution to 3840 x 2160. But we have reached the limits of our ability to
perceive resolution in standard TV size with HDTV. Therefore UHDTYV does
not promise a huge difference in quality in terms of resolution. However, the
color gamut has also expanded significantly promising much more vibrant
displays. Also, UHDTYV standard now allows high dynamic range imagery
which together with the expanded color gamut should improve the color
quality of TVs greatly.

10.5 Conclusion

Color reproduction needs to combine the precision of hard mathematics along
with the limitations and/or imprecision of human perception — often involving
human cognition — making it a very difficult science or application to succeed in.
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Deep knowledge of human perception, as offered in books like [Palmer 99|, can
be very useful in this domain. Texts that focus on engineering aspects of color
reproduction include [Hunt 95, Berns et al. 00]. The involvement of people from
diverse domains, like biology, art, science and engineering, in the development
of color models has been the boon and the curse resulting in color reproduction
being a complex area to explore. Therefore, it is often useful to see color from
an alternate perspective as in [Livingstone and Hubel 02].

Much work was done in high dynamic range images in the late 1990s and
early 2000s. This was stimulated by the initial work on capturing HDR image
in [Debevec and Malik 97]. This led to a plethora of work in appropriate tone
mapping operators to display such images on traditional displays [Tumblin and
Turk 99, Larson et al. 97, Gallo et al. 09]. New HDR cameras were designed
[Yasuma et al. 10]. Displays that can truly display such a high dynamic range
were also designed [Seetzen et al. 04]. Today, such displays are becoming more
mainstream and slowly emerging in the market. HDR imaging continues to be an
active area of research even today [Gupta et al. 13]. A comprehensive reference
for HDR imaging pipeline is Reinhard et al.’s recent book on this topic [Reinhard
et al. 05]. Multi-spectral cameras [Yasuma et al. 10,Susanu 09,Shogenji et al. 04]
and displays [Li et al. 15] have been explored before, but they have not made
their way to the consumer devices yet. The only successful case is that of the
RGBW projector that uses a clear filter in addition to red, green and blue filters
only during the projection of grays to increase the brightness rating. However,
this does not help in increasing the 2D color gamut since the white lies within
the gamut created by R, G and B.
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Exercises

1.

Cy and Cy are colors with chromaticity coordinates (0.33,0.12) and
(0.6,0.3) respectively. In what proportions should these colors be mixed
to generate a color C3 of chromaticity coordinates (0.5,0.24)? If the inten-
sity of C3 is 90, what are the intensities of C; and Cs?

. Consider a linear display whose red, green and blue primaries have chro-

maticity coordinates of (0.5,0.4), (0.2,0.6) and (0.1, 0.2) respectively. The
maximum brightnesses of the red, green and blue channels are 100, 200
and 80cd/m? respectively. Generate the matrix that converts the RGB
coordinates for this device to the XYZ coordinates. What are the XYZ
coordinates of the color generated by the RGB input (0.5,0.75,0.2) on this
device?

. Consider two colors C1 = (X1,Y7,7;) and Cy = (X3,Y2, Z3) in the CIE

XYZ space. Let their chromaticity coordinates be (x1,y1) and (x2,ys) re-
spectively.

(a) If C; is a pure achromatic color, what constraint will hold on its tris-
timulus values and its chromaticity coordinates? In that case, would
black and white lie on the ray connecting the origin to C7 in XYZ
space? Justify.

(b) If Cy = (50,100, 50), then what is the value of (z2,y2)?

(¢) What is the dominant wavelength of Cy?

(d) To create a color of chromaticity coordinates (7/24,10/24), in what
proportions should be €7 and Cs be mixed? What are the intensity
and luminance of C; required for this mixture?

. When we mix blue paint with yellow paint we get green. But when we

project blue light on yellow light, we get brown. How do you explain this
contradiction?

. Consider a grayscale image with linear gamma function. How would you

change the gamma function to make the image have higher contrast?

. Another name for the gamma function is the tone mapping operator. Con-

sider a 8 — bit display (each channel is represnted with 8 — bit integers)
with tone mapping operator of i2 across all channels where i is the chan-
nel input. Consider the properties of brightness, contrast, color resolution,
white point and tint. Which of these properties will change in each of the
following scenarios?

(a) The tone mapping operator is made i across all the channels.
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(b) The tone mapping operator is made i® across the green channel only.
(¢) The number of bits are changed to 10 bits across all channels.

(d) Which property would remain unchanged across all the above
changes?

7. Gamut matching addresses the problems caused by out-of-gamut colors in

gamut transformation. But what do you expect to be the negative effect
of gamut matching?

. Consider a projector with sSRGB color gamut (RGB chromaticity coordi-

nates given by (0.64,0.33), (0.3,0.6) and (0.15,0.06)). The luminance of
the red, green and blue channels is given by 100, 400 and 50 lumens. Since
this is a projector, it has a black offset with chromaticity (0.02,0.02) and
luminance of 10 lumens.

(a) Find the matrix to convert the input values of this projector to the
XYZ space.

(b) Cousider another projector whose all color properties are the same
except the luminance of green which is 200 lumens. Find the same
matrix for this projector.

(¢) Find an input in the first projector that will be out of gamut for the
second projector.

(d) Is there any color in the second projector that will be out of gamut
for the first projector? Justify your answer.

. Consider a display with the following specs. The 2D gamut of the display,

given by the chromaticity coordinates of its blue, green and red primaries
respectively, are (0.1,0.1), (0.2,0.6) and (0.6,0.2). The intensity of the
white is 1000 lumens. The white point is (0.35,0.35). Find the matrix M
that defines the color property of this display.



11
Photometric Processing

In the previous chapter, we learned about different ways to represent color.
Though device dependent, RGB representation is still the most common repre-
sentation of color images. In this chapter, we will learn about some fundamental
image processing techniques that deal with processing the colors of the image.
There are two ways to process color images. (a) In the first approach, the pro-
cessing techniques are applied similarly to the red, green and blue color channels
assuming each of them to be an independent 2D image. (b) In the second ap-
proach, RGB images are converted to 1D luminance (Y) and 2D chrominance
(via some linear or non-linear color space transformation), which are processed
separately and the processed image is subsequently transformed back to RGB.
example of the second ap-

I]:l]"] ﬁ When applying tone map-
h(i) h(i) h(i)
1.0 1.0 1.0

proach is contrast enhance-

ping operators, the first ap-
proach is commonly used
00} : ment where the contrast of
the luminance but not of

since this does not change
the chrominance is enhanced.

the relative differences be-
tween the colors. But, a good

Figure 11.1. This figure shows different images (top

row) and their corresponding histograms (bottom
row). Since these are single channel gray scale im-
ages, the gray values ¢ range from 0 to 255. The
probability of their occurance, h(i) ranges from 0 to
1. Note that the left and middle image have same
histogram though they are very different in appear-
ance.

As opposed to enhancing the
contrast of each of the red,
blue and green channel in-
dependently, enhancing only
the luminance while keeping
the chrominance unchanged
helps to preserve the hue

which can be important in many applications. Similarly, in other applications like
image compression, changing to a luminance and chrominance representation is
justified since human perception gives more importance to luminance which can
be leveraged by compressing the chrominance channels more aggressively than

251
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the luminance. Which of the two methods is used to process color images often
depends on several criteria like application, network bandwidth and processing
power. We will discuss different techniques in this chapter assuming they will be
applied to a single channel of an image, be it be luminance or red or green or
blue channel. It is left to the application developer to decompose an image to
appropriate channels.

11.1 Histogram Processing

Histogram is defined as the |
probability density function J
of the values in an image. Let =

us consider a single channel of T

an image of size m x n provid- T g
ing a total of N = m x n pix- |
els. The value at each pixel ¢ B
can take p discrete values nor- [ f L 7| ]‘Lﬁ
malized between zero (black) ; e : =
to one (white). p is given by
the number of bits used for
representing the grays. Let
us consider 8-bit gray values Figure 11.2. This figure shows how the exposure (the
leading to p = 256. There- measure of how much light is let into the camera
fore, ¢ can take k different val- to capture the picture) affects the histogram of an
ues, i, 1 < k < 256. Let the image. When the image is underexposed (left) the
number of pixels in the image histogram h shifts left with higher values of A for
with value i, be Nj. There- lower values of i. When the image is overexposed
(right) the histogram h shifts right. For correctly
exposed image, the values of h at 0 and 255 are not
outliers.

nder Exposad

fore, the histogram h(ig) is
defined as

h(ir) = % (11.1)

i.e. the probability of a pixel to have a value ig. Since h(ix) is a probability,
0 < h(ix) <1, and therefore h is a probability density function.

Figure 11.1 shows some example of histogram of images. Note that two images
can have entirely different appearances but have very similar histograms. Figure
11.2 shows the effect of the exposure on the histogram of an image. Exposure
decides how much light comes into the camera when capturing the image. If too
little light is let in, darker regions of the image are underexposed having the value
0 therefore creating a high value for h(0). If too much light is let in, brighter
regions of the image are overexposed having the value of 1 thereby creating a
spike at h(1). Figure 11.3 shows the effect of contrast on the histogram of an
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image. Low contrast images usually do not have the near black and near white
grays. Therefore, h(iy) is non-zero only in a small middle ranges of values of i.

One common application of his-
togram processing is to enhance the
contrast of the image, using a process
called histogram stretching. As we saw
earlier, the range of values for which
h(ix) # 0 is small for a low contrast
image. The goal of histogram stretch-
ing is to map every input value iy to
a new input jj such that the range of
the new histogram h(ji) has positive
values for all values of k.

The first step of histogram stretch-
ing is to find the cumulative probabil-
ity distribution function, H, where

(i) h(i)

1.0 1.0

0.5 0.5

0.0 0.0
0

i 255 0 i 255

Figure 11.3. This figure shows the effect of
change of contrast on the histogram of an
image. Note that low contrast image (left)
means very dark grays and very bright grays
are both absent and therefore the range of
values for which h(ix) is positive is small
and in the middle range.

k
H(ix) =Y hlix) = H(ix—1)+h(ix).
0

(11.2)
H(ir) is a monotonically non-
decreasing function that goes from H(0) = 0 to H(1) = 1. Let us examine
the function H for a low contrast image (Figure 11.4). Let the range of values
with non-zero values in h be from d to u where d < u, d >> 0 and u << 255.
Therefore, H = 0 from 0 < i < dand H =1 for all u < i, < 1.

In order to stretch the his- <

togram to increase the contrast of ‘ ‘
the image iy is mapped to ji =
H (iy). Therefore, j, = 0 for all
0 <ip <dand jp =1 for u <
7, < 1. All the values in between
d and u are mapped between the 00
entire range of 0 and 1. There-

10| 1.0

fore the range of the values in the
new image now spans the entire
range 0 to 1 instead of d to u re-
sulting in an improved contrast.
However, j; depends entirely on
the slope of H at ix. Also, since
Jr can only have u — d + 1 values

Figure 11.4. This figure shows a histogram h(z)
on the left and the cumulative probability distri-
bution ¢(¢) corresponding to h(i) on the right.
Note that the cumulative probability distribu-
tion function is a monotonically increasing func-
tion ranging between 0 to 1.

between 0 to 1, the histogram of the contrast enhanced image will be non-zero
only at w — d + 1 input values and not all p values between 0 and 1. Figure
11.5 shows the results of this contrast enhancement via histogram stretching.
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However, the mapping function used to map i to ji in histogram stretching
is spatially invariant across the image. Therefore, this method is called global
histogram stretching. Histogram stretching is often also called histogram equal-

ization.

Applying the same map-
ping at every pixel, as is done
in global histogram stretch-
ing, inherently assumes that
the contrast is similar across
the entire image. Therefore
when the image has spatially

varying contrast, global his-
togram stretching leads to an
artifact of burn and dodge.
In other words, some parts
of the image get over-exposed
while other parts are under-
exposed. This is illustrated in
Figure 11.6. To avoid this ar-
tifact, a variant of the global
method, called adaptive his-
togram stretching, is used.
Let us consider an image whose contrast
is varying spatially. In such cases, a global
histogram stretching technique should be ap-
plied in a local P x P neighborhood window
around a particular pixel (u,v) to compute
the mapping of the input value at (u,v). Ap-
plying this technique at every pixel results in
adaptive histogram stretching where the map-
ping at every pixel is different and is guided
by the local contrast given by the local his-
togram in its P x P neighborhood. However,
in this case, the same value i; will get mapped
to different values at different pixel locations
in the image based on the local contrast.
Therefore, even if the original image had only
u — d 4+ 1 gray values in the range d to u,
they could be mapped to more than v —d+1

55 U] =t
Irdsrmity

Figure 11.5. This figure shows contrast enhance-
ment of the image on the left using global histogram
stretching to produce the image on the right. The
bottom row shows the corresponding histograms of
these two images.

Figure 11.6. This left image is one
with spatially varying contrast —
note that the top right part of
the image has much better contrast
than the rest of it while the left
bottom part has much worse con-
trast than the rest of the image.
The right image shows the result
after global histogram equalization
which shows that the former region
is now over-exposed while the lat-
ter is under-exposed.

gray values after adaptive histogram stretching. Therefore, the histogram of the
enhanced image will not be sparse as in global histogram stretching.

As is evident, the quality of the result from this adaptive histogram stretching
will depend on the value of P. This is illustrated in Figure 11.7. If P is too small,
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Figure 11.7. The original image is shown in (a) and the result of global histogram
stretching in (b). The result of adaptive histogram stretching with P = 12,60, 100, 250
is shown in (c), (d), (e), (f) respectively. Note that the noise is much more than (b) in
(¢), (d) and (e). However, the window size in (f) is optimal and it provides a much better
contrast enhancement than (b), especially in the horizon at the back whose contrast
is significantly lower than that of the city. Also note that each buildings contrast is
differently enhanced in (f). However, in some places in (f), burning still occurs due to

over exposure.

the contrast is evaluated at a small granularity leading to a tremendous amount
of noise. As the window size increases, the noise reduces. But if P is too high,
local burns and dodges will start to appear. Therefore, choosing an optimal
window size is important for adaptive histogram stretching.

11.1.1 Handling Color Images

To apply histogram processing to color images, the treatment differs based on
the application. One option is to apply the same method to the three channels
independently. But this does not ensure that the hue is preserved. Therefore,
most of the time, the RGB image is first converted to luminance and chromi-
nance using standard RGB to XYZ linear transformation followed by finding the
chromaticity coordinates computation. Then, contrast enhancement is applied
only to Y while the chromaticity coordinates are left unchanged. Following the
enhancement in Y, the image is transformed back to RGB format using inverse
transformations. What results is called hue preserving contrast enhancement.
This is illustrated in Figure 11.8. When hue is not preserved, blotches of pink
and green show up in different parts of the scene during contrast enhancement.
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Figure 11.8. The left three images on the top shows two different ways to handle color
during adaptive histogram stretching. Left: Original image; Middle: Adaptive histogram
stretching of each of the channels independently. Therefore hue is not preserved as is
shown by the shift towards green on the door on top of the stairs and the shift to purple
on the left side of the shadow and on the wall. Also notice that the shawl of the lady
now has more saturated pink. Right: Adaptive histogram stretching applied only on
the luminance channel resulting in a hue preserving contrast enhancement. However,
whether it is more realistic or pleasant to look at may still be an arguable issue. For
some, the more saturated pink and the higher contrast between sunlight and shadows
may make the second picture aesthetically more appealing. The bottom figure shows
the process of histogram matching. On the right,the histogram of I, is matched with
that of I, creating I; that has the same look and feel as Ij,.

However, in some cases hue-preservation may not be applicable. One such
example is that of histogram matching. Histogram matching is a technique that
allows us to impart the look and feel of one image onto another which is only
possible by modification of both hue and luminance. Consider two images I},
and I, with two different histograms h and g respectively. The goal of histogram
matching is to make these two histograms identical. To achieve this, we first
find the corresponding cumulative distribution functions H and G respectively.
Next, for an input z; in I,, we map it to an input z; such that G(z;) = H(z;).
Following this mapping h becomes identical to g and I, !’] looks similar to Ij,. These
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are illustrated in Figure 11.8. Here the color tone of a sunset scene is imparted
into an oceanside scene via histogram matching.

11.2 Image Composition

Compositing images is another important application of color image process-
ing. In this section we will discuss a number of methods to achieve this. Image
composition is quite commonly used in the entertainment industry where often
virtual objects or characters from past or artistic effects have to be worked in
the images/videos captured.

The simplest technique for image composition is by using sprites — currently
available in Photoshop as a feature called intelligent scissors. Sprites are parts
cut out from an image I given by S x I where S is a binary image called the
sprite mask with 1 for the pixels included in the sprite, and x indicates pixel-wise
multiplication. A sprite is defined for each image to be used in the composition.
These sprites are then appropriately translated and scaled and placed in layers
on top of each other in a specific order. Figure 11.9 shows an example where I3
is a picture of downtown Seattle and I5 is a picture of Bill Gates. Two sprites S;
and Sy are defined each scissoring out the foreground from I; and I5 respectively.
Therefore, three layers I7, I, and Ij are defined as

I =1 x5 (11.3)
Ié = IQ X SQ (114)
IL=1 xS (11.5)

The combined image I is created by overlaying translated and scaled I7, I} and
I4. I} provides the first layer of the background made by the sky in I. This is then
overlaid by the the image of Bill Gates formed by I, which is in turn overlaid
by the image of the city Ij. Note that overlaying means replacing the pixels in
I’ wherever the sprite is 1. However, such overlaying of pixels hardly work. For
example in Figure 11.10, I; multiplied with sprite Sy is overlaid on I to create
I. Mathematically, the operation can be expressed as I = I1.S1 + I2(1 — S7). But
the pawn does not look like it is placed on the chess board, rather it looks pasted
on the chess board. This problem is addressed by the image blending operation.

11.2.1 Image Blending

Sprite is binary and only allows for complete retention or removal of a pixel
of the source image in the composited image. So the sprites do not work while
compositing images with transluscent objects where the background is partially
visible through the foreground, or when compositing images with furry objects
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S S,

Figure 11.9. This figure shows the layer based composition of two images I1 and I3 to
form the new image I using sprites S1 and S2 respectively.
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Figure 11.10. I; multiplied with binary sprite S; is overlaid on I3 to create I mathe-
matically expressed as I = I1.S1 + I2(1 — S1) . When S; is modified to an alpha mask
a, the same operation of I = I1a + I2(1 — «) results in a nice result where the pawn
looks as if it is sitting on the chess board due to the more realistic shadow.

for which generating a precise binary mask separating the foreground from the
background is extremely hard.

This brings us to the concept of a more general sprite mask that does not
need to be binary. In fact, as a more general concept, a sprite mask can have any
fractional value between 0 to 1 and therefore can be used to attenuate colors of
different parts of the image differently on multiplication. Such a sprite is termed
as an alpha mask (Figure 11.10). Using the same operation Iy + Ir(1 — «)
with the alpha mask now creates the image I, where the shadow of the pawn is
weighted by a smaller value than 1.0, resulting in an image I;, where the pawn
looks like it is placed on the chessboard and not pasted on it due to a more
realistic shadow. This process is called alpha blending.

Now, let us explore some application of such alpha masks. Figure 11.11 shows
the compositing of two images I; and I (a and b) which have a horizontal
common region. In the first image I7, most of the bottom part of the image is
dark (a) while in the second one, I3, most of the top part is dark (b). These are
composited using different alpha masks using the equation Iy + I2(1 — «). The



11.2. Image Composition 259

first alpha mask (c) is a binary mask, similar to a sprite mask, that uses a central
seam and assigns all the pixels on one side of it to I; and all the pixels on the
other side to I resulting in the image in (d) that shows a clear seam along the
central line of division. In the second alpha mask (e), all the pixels in the non-
overlapping region below the central seam are assigned to one image and those
above the seam to the other image and all the pixels in the overlapping region
are allowed to have equal contribution from I, and I, by assigning a weight of
0.5. The result is an image (f) where the seam is smooth but still visible. Finally,
in the third mask (g), the assigned alpha value is dependent on the distance from
the two boundaries created by the overlapping region of I; and I, with each of
I; and I5 respectively. In order to see how this distance can contribute to the
alpha value, let us consider a pixel in the overlap region between I; and I5. Let
the distance of this pixel from the boundary of this overlap with Iy and I5 be d;
and dsy respectively. Note that as d; increases ds decreases and vice-versa. The
weight assigned to this pixel in the alpha mask is a = dl‘i? 5 Therefore, when d;
is 0, i.e. the pixel is close to the boundary with I;, a = 1 and therefore all the
contribution is from I. (1 — «) is zero signifying no contribution from I5. But, as
dy = 0 near the boundary with I, a = 0 signifying no contribution from I; but
(1 — «) = 1 signifying complete contribution from I5. For pixels in between, the
« is in between 0 and 1 based on the relative distances from the boundaries with
I and I. Note that the resulting image with this alpha mask (h) based blending
is truly seamless.Blending of images using such an alpha mask will result in a
smooth change in the contribution of the individual images in the final image
and will appear seamless.

The same process of al-
pha blending can be used to
blend two images placed ad-
jacent to each other. This is
a common process in appli-
cations like panoramic image
generation and image synthe-
sis. We show such an exam-
ple in Figure 11.12. The goal
is to composite I; and I to

. ) . ) create an image whose left
Figure 11.11. This shows the compositing of two im- and right half will look like

ages in (a) and (b) using three different alpha masks

shown in (c), (e) and (g) with the resulting images f and I respe?t}vel}{ with
shown in (d), () and (b). a seamless transition in be-

tween. For this, we will resort
to alpha blending using the function Iy + I5(1 — o) where « is the mask. Con-
sider a step function o which is black (0) in the left half and white (1) in the
right half. Let Iy and I5(1 — &) result in I; and I, respectively. I; + I, does not
show a smooth transition between I; and I5 at the center due to a step blending
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Figure 11.12. This figure shows blending or feathering technique being used to com-
posite two images. The goal is to composite I; and I2 to create an image whose left and
right half will look like 11 and I> respectively with a seamless transition in between.
On the bottom we show a step blending function (to compute alpha mask) which steps
down from 1 to 0 exactly at the middle giving I;. The complementary blending func-
tion, given by (1 — a), steps up from 0 to 1 in the middle providing I, which is then
added to I; to create the composite image on bottom right. The step function creates
a drastic seam. On the top we show how the blending function is changed to transition
in a smooth manner from 0 to 1 across the width w to create a much more seamless
composite image on the top right.

function. A better way to achieve a smooth transition would be to choose a width
w around the central line of the image and smoothly transition the alpha mask
from 0 to 1 through the w pixels as shown in I] and I].. This process is called
feathering and creates a much smoother blending.

Note that for such blending operations the most appropriate way to handle
color images would be to apply the same blending functions across the three
channels independently. Using a luminance and chrominance does not make much
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sense since the same pixel from two images in the overlap region may not have
the exact same luminance and chrominance to start with.

Feathering effects
depend on two pa-
rameters: the blend-
ing width and the
blending function, as
shown in Figure 11.13.
Too large blending
width results in ghost-
ing while too small
blending width re-
sults in a visible seam.
The optimal blend-
ing width is depen-
dent on the size of the Figure 11.13. This figure shows the effect of blending width
features in the blend- (top) and blending function (bottom) on feathering.
ing region. In fact, if
this problem is cast into the fourier domain, it can be shown that if the size of
the features span one octave (should be between 2¢ and 2¢+! pixels), an optimal
blending width of 2+! will not show any ghosting artifacts, but will result in a
smooth seam between the two images. In terms of the blending function, so far
we have only seen functions that ramp down or up linearly. But such functions
lead to a gradient discontinuity when they transition from the flat part to the
linear part which results in visible artifacts called Mach bands.

Mach bands, as illustrated in Figure 11.14, are caused by the phenomenon
of lateral inhibition in the human eye which is the perception of any gradient
discontinuity as higher than the actual value at one end and lower than the actual
value at the other. Figure 11.14(a) shows a figure created by a step function of
different gray levels. Yet at the boundary, instead of being perceived as a clean
step, it is perceived as a gradual change of gray that goes higher and then lower
before achieving the next gray level. This phenomenon is just an illusion called
Mach bands that is broken in (b) when one of the bands is removed. This is
explained by how our human perception distorts the perception of a gradient
discontinuity. In the context of blending, the same problem arises at the gradient
discontinuities of a linear ramp as shown in (d). The human perception distortion
is illustrated in (e). A more conducive function for blending, therefore, is one
whose gradient is continuous like a cosine function or a spline function, as shown
in Figure 11.13. Since these functions do not show any gradient discontinuity,
they do not lead to Mach bands.
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Figure 11.14. Mach band effect: Note that close to the boundary between bands the
gray scale values are perceived to be darker or lighter than at pixels slightly farther
than the boundary making it look almost like a ‘curtain’. However, the actual values
of the bands are defined by step functions that move from one gray level to another
as shown in (b)-left. The ’curtain’ illusion occurs due to the phenomenon of lateral
inhibition in the human eye that makes our perception of a gradient discontinuity as
shown in (b)-right and therefore the ‘curtain’ illusion is removed when we remove one
of the bands in (a) as shown in (c). The same effect is also shown even with the presence
of a smaller gradient discontinuity as in (d) whose effect on perception is illustrated in

(e).

Fun Facts

The largest non-digital photographs in the world are made by stitching
smaller images together. The largest single non-digital photograph captured
in the world is of a control tower and runways at the US Marine Corps Air
Station in El Toro, Orange County, California. It measures 32 feet high and
11 feet wide. It was taken in a decommissioned jet hangar, which was turned
into a giant pinhole camera. The film was a 32’ x 111’ piece of white fabric
covered in 20 gallons of light-sensitive emulsion. The fabric was exposed to
the outside image for 35 minutes. Print washing the image was done with
fire hoses connected to two fire hydrants.

The longest photographic negative in the world is 129 feet and was
created by Esteban Pastorino Diaz in March, 2015. The negative is of a
panorama of major streets in Buenos Aires, Argentina. The images were
captured by the slit camera (a camera that captures 1 pixel wide columns
at a time while panning from left to right), which was mounted to the roof
of a moving car.



11.2. Image Composition 263

Combining the constraints on feature size and smoothness of blending func-
tion, the ideal way to blend images is to blend the image in multiple resolutions.
Such a multi-resolution decomposition is created by the Laplacian pyramid where
each level of the pyramid provides a different resolution and the levels can be
combined to create the image back. Let us consider two images I; and I, each
of size 2V x 2V, to be blended to create the new image I. Let the respective
Laplacian pyramids be denoted by L; and Ly — each with In(N) levels. Using k
as an index to the levels of the pyramid, each level of the Laplacian pyramids of
I, and I, are given by L¥ and L5 respectively, where 0 < k < In(N). To achieve
a smooth blending, a different blending function b, with width wy should be
used for each level k. Most commonly, by is a spline that provides a smooth
function whose resolution (i.e. how fast it ramps down or up) can be changed
to provide the different wy. Recall that size of the image at each level of the
Laplacian pyramid is different, the size of the image at level k being 2(N — k).
The blended images at each level create a new Laplacian pyramid L. The images
in L are then combined to provide the blended image I. To learn more about
this, refer to the seminal work by Burt and Adelson [Burt and Adelson 83]. An
illustration is presented in Figure 11.15.

Blending is a common technique used in an application called panoramic
image generation, illustrated in Figure 11.16. The goal here is to capture mul-
tiple narrow field of view images from consumer camera to create a single wide
field of view panoramic image. Multiple contiguous images of a location are cap-
tured with adequate overlap between spatially adjacent images. Since the camera
moves between two adjacent images, the first step is to register adjacent images
geometrically. This is achieved applying a geometric transformation to the image
(e.g. scaling, translation or rotation) so that the overlapping areas can be spa-
tially overlapped to match exactly. We will learn more about such geometrical
transformations in the next chapter of the book. The overlapping area of two
adjacent images are blended together to create a seamless transition between the
images. This results in a panorama or an image that covers a much wider angle
of view.

11.2.2 Image Cuts

Blending is not always the best way to achieve a nice transition between two
images. This is especially true if there are moving objects in the common or
overlapping areas of the image. In these cases, a blending operation will blend
between two time instances of the same scene creating a ghosting artifact, almost
similar to what we see in motion blur. In such cases, instead of blending, we apply
a cut operation. This is a complementary operation to blending. In blending, a
pixel in the composite image can have contributions from multiple source images.
But, in an image cut, every pixel in the composite image comes from only one of
the source images. Therefore, when stitching two adjacent images as in Figure
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Figure 11.15. This figure shows the effect blending of two image via their laplacian
pyramid. The left two rows shows the different levels of the Laplacian pyramid blended
using different spline functions achieving the effect of a wider blending region of lower
resolution levels and narrower blending regions of higher resolution levels. The images
are composited to create the image on the right to create each level of the laplacian
pyramid of the composited image. These are then composited to create the image of
the apple-orange on top right.

11.17, the contribution should switch from the blue image to the red image as we
move from left to right. If this switch is done at a point where the pixel to the
left coming from the blue image has very similar color to the pixel on the right
coming from the red image, then the composition will be seamless. The problem
is formulated as a minimal error boundary cut problem. The goal is to find a cut
through the overlapping area such that the neighboring pixels at any point has
the minimum energy transition across the cut. To learn more about this, please
refer to the work from Efros and Freeman [Efros and Freeman 01].
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Figure 11.16. Multiple contiguous images of a location are captured (top) with adequate
overlap between adjacent images (shown by similarly colored rectangles). These images
are then registered geometrically (bottom left) placing the overlap region exactly on top
of each other. Finally, the regions coming from two adjacent images are blended using
a blending function and the image cropped to form a rectangular panorama (bottom
right).

B1| .| B2

Figure 11.17. On the left you see two images (shown by red and blue rectangle) with a
large overlap in between that are composited using blending. Since the people and the
truck moved between the capture of these two images, this results in severe ghosting of
the moving objects. On the right, the same two images are composited using an image
cut operation resulting in a artifact free composition.

11.3 Photometric Stereo

The final photometric processing application that we are going to discuss in this
chapter is of computing shape of objects from illumination changes in images.
Illumination contributes to the photometric properties of an object. Photometric
stereo is a different kind of photometric processing that uses some knowledge on
geometric processing you have been exposed to earlier in this book. We use a very
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Figure 11.18. This figure shows the recovery of shape from illumination under the as-
sumption that the object is Lambertian. The top row shows the five input images taken
by changing only the light position. The bottom row shows the recovered reflectance
function (left), the normals (middle) and the reconstructed shape (right).

simple illumination model considering a point light source from the direction L
illuminating an object point P with normal N. More light is incident per unit area
of the object if L and N are coincident i.e. the light is illuminating P head-on.
As the angle between L and N increases, the amount of incident light decreases.
It can be shown that the fall off of incident light per unit area is proportional
to cosf where 6 is the angle between N and L. Therefore, the illumination at P
is given by N - L. To compute the amount of the illumination that is reflected
from P, we assume the object to be Lambertian i.e. reflects light equally in all
directions. Let fraction of light reflected be p. Therefore, the amount of reflected
light is given by p- N - L.

Now, for photometric stereo, let us consider a set up where a Lambertian
object is being seen by a camera. The locations of both the object and the
camera do not change. However, it is lighted by n lights located at different
locations surrounding the object. These light directions are known and given by
Ly, Lo, ..., Ly, where L; is a vector given by (L¥, LY, L?). Let the light intensities
be unity. Let the point P with normal N = (n*,n¥, n*) and reflectance p on the
object be seen at a camera location (p, ¢). Let the reflected illumination recorded
by the camera at (p,q) with only light L; illuminating the surface be R;(p,q).
Therefore at each pixel (p, q)



11.3. Photometric Stereo 267

Expanding this, we get the following equation at each pixel (p,q) for each
light L;.

Ny
R, — p( Ly LY L% ) N, | =0 (11.7)
N,
Taking into account all the n lights we get
Ry Ly LY L%
Ry Ly LY L3 N
R N, | =0 (11.8)
| .. N,
R, Ly Ly Ly
Rearranging the terms, we get
2 Y 12\ [ R
Ly LYy I3 Ry N
' =p| N, (11.9)
. NZ
Ly LY LZ R,
or LT'R = pN (11.10)

where L~ is the pseudo-inverse of the non-square matrix L. Note that, at every
pixel (p, q) the light directions and the intensity recorded are known. Each term
in the left hand side of the Equation 11.10 is known. Therefore, we compute the
right hand side of the equation and the vector obtained is the normal vector
at the point on the object scaled by p. The magnitude of this vector provide
reflectance p at (p,q) and the corresponding unit vector provide the normal N.
This is illustrated in Figure 11.18.

The above process gives us the surface normal at any pixel (p,q) and its
reflectance, but not its depth. So, in the next step we need to find the depth of
the surface with respect to the camera. Let us consider the camera’s coordinate
system and the surface as shown in Figure 11.19. Let the depth of points at (p, q),
(p,qg+ 1), and (p+1,q) given by 2,4, 2p+1,q4 and zp 441 respectively. Note that
the tangent plane to the normal N = (N,, N,, N, ) recovered by the photometric
stereo can be approximated by the vectors Vi and Vs, assuming a smoothly
varying normal, and is given by

‘/1 = (p + 17Qa Zp-&-l,q) - (pa q, ZZLQ) = (1’ 07 Zp+1,q — ZP7Q) (1111)
Va=(p,q+1,2p+1) = (94 2p,q) = (0,1, 2,911 — 2p,q) (11.12)
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Figure 11.19. Left: This figure shows the depth of points at (p, ¢), (p,¢+1), and (p+1,q)
given by zp.q, #p+1,¢ and zp q+1 respectively. The normal N = (N, Ny, Ny) recovered
by the photometric stereo is shown as well. Right: This figure shows the assumptions on
the light and camera set up for photometric stereo given by three or more non-coplanar

lights and camera distant to the surface.

Note that since V; and V5 are both perpendicular to N. Therefore, we can find

two constraints, first of which is as follows.

0=N-V
= (NraNyaNZ) : (LO&ZP-%L(I - vaq)
= Nz + N.(2pt1,4 — 2p,q)

Similarly, the second constraint is given by

0=N -V,
= (Nuy Ny, N2) - (0,1, 2p g1 — 2p.q)
=N, + N.(2pg+1 = 2p,q)

There the two constraints can be summarized as

= Zp,q ~ Zp+lq

& =l

= Zp,q — Zp,q+1

where the depth values are the only unknown.

(11.13)
(11.14)
(11.15)

(11.16)
(11.17)
(11.18)

(11.19)

(11.20)

Every pixel thus contributes to constraints involving the depths of its neigh-
boring pixels. Considering the camera image of P x @) size, let us assume that
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Figure 11.20. From left: One of the input images; the recovered surface normals en-
coded by a RGB vector; the surface albedo; the reconstucted depth where depth is
inversely proportional to the gray value; the same object relighted from a different
virtual direction.

the total number of all such constraints is C. The value of C' would have been
2P but for the pixels in the boundary for whom only one such constraint can
be designed. Therefore, C' < 2P(Q but still sufficiently larger than PQ to create
an over-constrained system of equations given by

MZ =B (11.21)

where M is a C' x PQ matrix whose entries can be either 1 or —1, Z is a PQ x 1
column vector containing the unknown depth and B is a same sized column
vector of known scalar values. Therefore, Z can now be solved using a linear
regression or singular value decomposition. The reconstructed depth is shown in
Figure 11.18.

There are a few things to note from the above equations. We need to solve
for three unknowns. Therefore, we need at least three lights (i.e. n = 3) to
find the shape of the object. However, if the light directions are coplanar, L is
rank-deficient and hence cannot be solved. Hence, we need at least three non-
coplanar light directions. Other assumptions include that the camera image plane
is parallel to the XY plane in the global coordinate system and the camera and
the lights are distant from the object. Figure 11.19 shows that photometric stereo
can give accurate surface normals but the recovered depth is inaccurate if the
camera or the lights are placed very close to the object. Note that we do not
need to find any correspondence unlike most stereo methods we have studied
in Chapter 8 since the camera location does not change. Before processing the
images in photometric stereo you have to undo the effect of the camera transfer
function. Finally, once the surface normals and reflectance are computed, the
object can be relighted from a light direction that was not available originally,
as shown in Figure 11.20
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Figure 11.21. This figure shows the specular highlight on the chrome sphere in the
scene when lighted from four different light directions.
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Figure 11.22. This figure shows the results of photometric stereo on color images in
the presence of shadows. On the left we see the input images and on the right the
reconstructed face geometry is shown from different views.

11.3.1 Handling Shadows

One limitation of photometric stereo stems from the shadows. If any pixel (p, q)
is in shadow in the image i, its importance should be undermined. To achieve
a formulation where such confidence can be imparted to the accuracy of the
recorded illumination, we can weight each equation in Equation 11.8 by the
pixel intensity recorded. The pixels in shadow will therefore be given less weight
due to their lower intensity. This gives us the equations

I LI LIV ILL?
I LL: LLY LLj N,
—p N, | =0 (11.22)
. N
I, I,LT I,LY I,LZ

that can be solved as before for more accurate normals.

11.3.2 Computing lllumination Directions

Photometric stereo computes the light directions also in addition to the surface
geometry. To achieve this easily, one option is to put a chrome sphere of known
radius r in the scene. This sphere will show specular highlights at different places
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in different images from which the light directions can be computed. An example
of the chrome sphere in the scene when lighted by the same lights are shown in
Figure 11.21.

Let us assume that we can detect the center of
the highlight at (h,, hy) and the center of the sphere
(which appears in the same place in all camera im-
ages) as (cp, ¢q). Let us assume that the depth of the
center is 0 and the depth of the center of the highlight
is h,. Therefore, we can find h, using

h, = \/ﬁ —(hy— )2 — (hg —cg)?  (11.23) (€,C0.0)
Now we know the 3D location of the highlight Figure 11.23. This fig-
(hg, hy, h,) and the center (¢, ¢y, 0). ure illustrates the compu-

From this, we can compute the normal N to the tation of light directions
sphere at the highlight. The view direction is given by from the specular high-
V = (0,0,1). The light vector L; was reflected about ~ light on a chrome sphere
N and then seen along the view direction to create introduced in the scene.
the highlight. Therefore, reflecting V' about NV will give the light direction. This
is illustrated in Figure 11.23. Note that N is given by the sum of V' and L which
are equal sized vectors. Their projection along N is given by N.V. Therefore L;
is given by the vector addition

Li+V =2(N.V)N (11.24)

Therefore, we can easily compute the light direction from the above equation for
each of the images.

11.3.3 Handling Color

There are two ways to handle color in photometric stereo. The first option is to
generate three sets of equations, one for each channel.

L 'Ig = prN (11.25)
L 'Ig = pgN (11.26)
L Ig = pgN (11.27)

In this case, first IV can be solved using only one of the channels. Then it can
be substituted in the above set of equations to find pgr, pg and pg. The other
option is to combine the three channels assuming a channel-independent p where
I =+/Igr+ Ig + Ip. Figure 11.22 shows an example which takes the latter route
in the presence of shadows in the input images.
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11.4 Conclusion

In this chapter we learned a large number of techniques that start from one
or more color images and combine them to create a new image or generate
new information about the scene. Here are some pointers to follow advanced
topics. To learn more on contrast enhancement, you can check out [Majumder
and Irani 07]. Instead of generating all the levels of Laplacian pyramid during
blending, [Brown and Lowe 03] shows a way to do a two band blending that
achieves comparable results more efficiently. Blending inherently assumes that
the colors of the input images are similar. Therefore blending does not yield
a good result if the colors of the objects in the images are vastly different —
e.g. oceans with differently colored waters. In such cases, better composition is
achieved by blending the gradients of the images instead of their values. To learn
more about gradient domain blending, refer to [Pérez et al. 03]. To learn more
about complex image cutting for texture synthesis, refer to the use of graph
cuts in [Kwatra et al. 03]. To learn more about human perception phenomena
and Mach bands, please refer to [Goldstein 10]. In case of photometric stereo, the
two big limitations are the assumptions of known light vectors and a Lambertian
object. [Basri et al. 07] presents a method for photometric stereo where the light
directions are also unknown. [Wu et al. 11] presents a method that can achieve
surface reconstruction from photometric stereo even in the presence of specular
reflections.
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Exercises

1.

An image has a linear histogram p(r) = r. We want to transform this image
so that its histogram becomes quadratic, p(z) = z2. Assume continuous
images and find out the equation for this transformation.

Two projectors overlap partially to create a
bright overlap region as shown in Figure 2.
(a) We would like to reduce the brightness
in the overlap region using a blending oper-
ation. What should be width of the blend-

= 7= ing function? (b) Consider a linear blending
function. Draw the blending function of the projector 1 (in blue) and pro-
jector 2 (in red). (¢) Are linear blending functions continuous in terms of
gradient? Justify your answer. (d) What are the artifacts caused by lin-
ear blending functions? What property should a blending function have
to alleviate these artifacts? Name one or two blending functions that will
alleviate these artifacts.

Probecior 1 Frojschr T

. Consider the 16 pixel 1D image I = {4,2,3,6,2,3,4,5,2,3,4,5,5,1,5}.

Assume for padding the last element of the 1D image are repeated on both
sides.
(a) Represent its histogram.

(b) Show the array for the output of the low pass filtering of this image
with the filter [1/31/31/3].

(¢) Show the array for the output of the high pass filtering of this image
with the filter [-101].

(d) Show the output of applying a 1x3 median filter to this image.

. Consider a 10 x 10 checker board image whose checkers are white and gray

(value = 128) instead of white and black. Each checker is 10 x 10 pixels
in size. Draw the histogram of this image. Can you think of another image
that will have the same histogram? Justify your answer.

. Let us consider two images with histograms A and C shown in the above

figure. Which of A and C has a lower contrast? If we apply a global his-
togram stretching to A which of the histograms shown will be the most
likely resulting histogram? If we take a cumulative sum of A, which will
be the most likely histogram? What kind of artifacts can global histogram
stretching result in? What is the cause of these artifacts? What method
can be used to alleviate this artifact?
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6. Consider two flat square images each of size 1000 x 1000 with gray values
200 and 100.

(a)
(b)

Consider a blending width of 10 pixels. What will be the resulting
size of the blended image?

Consider a linear blending which causes Mach bands. One solution to
this problem would be to use cosine blending. Can the same problem
be alleviated by using a blending region of 300 pixels? Justify your
answer.

When using this wider blending region, what is the resulting size of
the image?

Which solution - the linear ramp of 300 pixels or cosine ramp of 10
pixels - would yield better blending? Justify your answer.

Do you anticipate choosing the lower blending width for any other
reason than blending quality?

7. Both image blending and image cuts work best if applied on images with
similar color temperature. In the absence of such a precondition, what
technique should you apply to the images before compositing to assure a
better quality result?

8. One way to handle shadows in photometric stereo is to use weighted light
vector. What inaccuracies in the depth reconstruction do you expect if this
is not done? Justify your answer.
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12

The Diverse Domain

So far we have explored concepts where we start with inputs captured from
devices and systems and try to reverse engineer the properties of the scene.
For example, spectral analysis techniques allow us to analyze information about
the color at any point on a surface from a camera captured image. Or; feature
detection techniques allow us to detect lines and corners in an image which
can be used subsequently for object detection or image segmentation. Epipolar
geometry helps us to find correspondences between stereo pair of images from
which we can find the 3D geometry of an object. Therefore, these can be thought
of as image/scene analysis techniques.

In the next section of this book, we are going to explore the inverse problem
of generating a digital image similar to one generated by a device (e.g. camera)
with the 3D scene of the world as the input. This process is that of image/scene
synthesis. Synthesis therefore takes as input (a) a scene described as a collection
of objects, lights, materials and textures represented using precise formal digital
representation; (b) a view set up specifying the constraints on the eye/viewer
that is viewing the scene; and outputs a 2D image similar to one captured by a
device (e.g. camera, photometer) or seen by a viewer. Synthesis can be broken
down into three steps: modeling, processing and rendering. Modeling deals with
computer representation of objects and associated processes. Processing involves
computation on the models for some specified outcomes and goals. Rendering
involves drawing an image to convey the appearance of the model/processes to
a human user.

12.1 Modeling

Modeling is the process of digitally representing an object or a phenomena so
that it can be interpreted and processed by the computer. For example, there
can be multiple ways to model an object — a dense collection of points, or a large
number of planar triangles each of which approximates a small almost planar re-
gion of the object, or a number of curved patches to represent the object. All the
above surface representations are used to represent only the surface properties

279
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Figure 12.1. This figure shows multiple ways to model an object. From left to right:
We show a teapot modeled by a set of points, a mesh of quadrilateral polygons, a set
of surface patches (each patch shown in a different color) and finally we show a volume
representation of an object with tissue density values at every volume location which
can be used to visualize the tissue density as transparency values (mapping least dense
to transparent and most dense to opaque).

Figure 12.2. This figure shows modeling of different phenomena. (a) creates beautiful
cloth rendering by micro-scale simulation of how every fibre of the cloth interacts
with light.(b) and (c) show the physically based modeling of sub-surface scattering for
accurate appearance modeling of translucent objects. (d) show the effects of modeling
illumination accurately.

of the object (e.g. geometric appearance given by gradients or curvature, color
appearance given by textures or RGB colors). Alternatively, we may want a rep-
resentation for the volume occupied by the object and its associated properties
(e.g. density of the material in a human body part). Therefore, the primitives we
choose for modeling inherently depends on what we would like to model (e.g. 3D
volume or 2D surface) and the operations we would like to perform. For example,
in aeronautical simulations, representation using surface patches may provide a
more accurate simulation of fluid/air on the surface than triangular mesh. There-
fore, one may want to use patch based representation for running mathematical
simulation while using mesh based representation for rendering using an inter-
active graphics renderer. Figure 12.1 illustrates different representations for the
same object.

Modeling need not be of objects alone. We can even model different natural
phenomena as illustrated in Figure 12.2. For example, we can model the phe-
nomenon of subsurface scattering that can be used to render translucent objects
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Figure 12.3. (a) shows model simplification and how the appearance is acceptable from
larger distances even when the model is rendered at lower level of details. (b) shows
the stripification of a small simple model. (c) shows stripification of a complex model.
Same colored triangles belong to the same strip.

(Figure 12.2b and c), or light transport from the emitter through reflector, ab-
sorbers and refractors resulting in the realistic lighting of a scene (Figure 12.2d).
We can model how every micro-fibre of a fabric interacts with the environment
to create beautiful cloth renderings (Figure 12.2a). In fact, modeling need not
be physically accurate also. At times, the objectives that drive the modeling can
be entirely different. For example, modeling of movements of ocean water in the
animation movies typically are not physically realistic or accurate — but it is
artistically appealing for the purpose of story telling, as in rendering of water in
the movie ‘Finding Nemo’.

12.2  Processing

Processing refers to methods or techniques that are used on models of objects
or phenomena usually driven by objectives like accuracy, performance (usually
faster rendering) or application dependent efficiencies. Examples of such pro-
cessing includes model simplification or stripification. Model simplification is the
process where an object is stored at different levels of details that use different
number of primitives to represent the same object. Objects need larger number of
primitives when represented at higher level of details and fewer primitives when
represented at lower level of details. When rendering, the right level of detail
to be rendered is chosen based on how far the object is from the viewer. When
the object is farther away, a lower level of detail would suffice for acceptable
appearance but can be rendered much more efficiently in much less time due to
fewer primitives. This is illustrated in Figure 12.3.

Similarly, let us take the example of streaming a 3D mesh, a popular applica-
tion today for e-commerce. The goal here is to stream the 3D mesh to a remote
location for rendering. Streaming would entail sending three vertices per triangle
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Figure 12.4. This figure shows several non-photorealistic rendering that can imitate
painterly rendering or charcoal sketches, mechanical illustrations, and newsprint.

of the mesh to send the geometry information and then send the connectivity
information (refer to Chapter 1). However, if we can stream one triangle after
another such that every triangle is adjacent to the previous one streamed, we
will need to send three vertices for the first triangle and one vertex per triangle
for every subsequent triangle, thereby reducing the amount of data to be sent by
almost 66%. Such a set of triangles is said to form a triangle strip. Therefore, a
common kind of processing, called stripification, is to take a triangle mesh and
represent it as multiple triangle strips (Figure 12.3).

Unlike processing such as compression and strip generation that may change
the object models, processes such as collision detection just use objects to gen-
erate other application specific results. A collision detection operation computes
the locations of the moving objects and detect if any of the triangles in the
object intersect with any triangle of another object thereby causing a collision.
Processing can also be motivated via higher performance as in organizing the
model in a special data structure, like octree or BSP trees, that would enable
fast access and retrieval of objects using a spatial index. Such data structures
are useful in ray-tracing, culling of objects that are outside the observer’s field
of view, collision detection, etc.

12.3 Rendering

Rendering is the process of taking as input a 3D scene, a view set up and creating
the 2D image of the 3D scene that will be seen from the particular viewpoint.
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The two main aspects of rendering are the quality of appearance of the 2D image
generated and the time it takes.

Quality: Tt is easy to assume that quality means accuracy of rendering. In-
stead, quality is an application dependent notion. Quality is determined by what
is acceptable based on the goal of the application. For example, when playing a
game where players are moving fast and are focused on specific tasks (e.g. picking
up treasures or killing adversaries), they may not notice if the scene is lighted
very realistically. On the other hand, when watching an animation movie, unre-
alistic lighting would most likely get noticed. When rendering fluid simulation
results to evaluate and improve the design of a car before it is built, accuracy is
probably of the highest priority, irrespective of the appearance. But, when cre-
ating special effects for movie, quality is guided by how close the digital content
matches the real. Further, the style of the appearance need not always be photo-
realistic (i.e. like a photo) though it has been the focus of mainstream computer
graphics historically. More recently, we have discovered an immense opportunity
in creating non-photorealistic renderings. For example, a student of mechanical
engineering would not like to see the photo of a greasy part of a motor to learn
about it. He would rather want an illustration of the 3D parts which abstracts
the different components and their functionality better. A student of medicine
would not want to study the human digestive system from its photo. He would
rather want a colored highlighted illustration of the same to learn more about
the anatomy. Such renderings that are specifically designed to be not like photos
are called non-photorealistic renderings, a few examples of which are shown in
Figure 12.4. These kind of effects were also used in animation movies. For ex-
ample, specific artistic effects of fur and grass was extensively used in animation
movies like Monsters Incorporated or Lorazx.

Speed: The speed of rendering a scene is always dependent on how much com-
plexity is modeled and rendered. The most fundamental parameter that dictates
speed is the number of primitives since it is inversely proportional to the speed
of rendering. Complex phenomena like caustic effects or realistic illumination
effects can make the rendering very slow. In popular terms, if the rendering can
be achieved at a video rate, i.e. 30 frames per second (fps), it is called an inter-
active rendering. But, it should be kept in mind that the term interactive is also
application dependent. For example, a game application may need to be ren-
dered at 30 fps to be termed as interactive, but a sketch application can respond
at 10 fps and the user may still feel that the system is responding appropri-
ately to the sketch strokes. However, more often than not, rendering a frame
for minutes or hours is termed as non-interactive. Most complex phenomena like
subsurface scattering or cloth appearance modeling are usually associated with
non-interactive rendering. Therefore, almost all the renderings in Figure 12.2
have taken multiple machines and many hours to render a single frame.

Quality vs Interactivity Trade-off: In the domain of image synthesis, there
is an omnipresent issue of the tradeoff between quality and interactivity. The
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choice is often purely based on an application. A game application favors speed
over quality while an animation movie favors quality over speed. The available
computing resource, whether it is a mobile device or a farm of powerful machines,
is allocated to the appropriate need, namely to enhance speed or quality.

The next question is how much can the
quality be compromised when speed is of con-
cern. It is imperative that if the quality goes

~  down beyond a certain ‘acceptable’ level, it
../ will affect the user experience even if ren-
dering speed is at its best. Therefore, in in-
teractive graphics we see several techniques,
which can be thought of ‘tricks’ that try to
mimic complex visual phenomenon so that
they do not stand out to be jarringly wrong.
For example, the technique of texture map-
ping pastes images on geometric primitives
such as triangles to provide visual complexity
to the scene without increasing the number
of primitives. Similarly, bump mapping simu-
lates the effects of small bumps by perturbing
normals thereby creating lighting effects vis-
ible in bumps, again without increasing the
number of primitives (Figure 12.5). Environ-
ment mapping pastes an image of the environ-
ment on the object to simulate a shiny object
in the scene.

The aforementioned discussion may bring
forth an idea that realism is always good and
you cannot go wrong with non-interactive re-
Figure 12.5. This shows that a alistic image synthesis. This impression is also
plain 3D model can be used in con-  not accurate. Note that the complexity of a
junction with a richer image to cre-  realistic image is phenomenal and it is not
ate texture mapped objects (left) ;e that a rendering as close to realistic as
and bump mapped objects (right). possible is always desired. The phenomenon
of ‘uncanny valley’ is well-known among artists. If the realistic replication is
very close but not absolutely correct, it can create discomfort in users despite
being very realistic. In fact, more often than not it creates a disturbing expe-
rience. In fact, the uncanny valley has been attributed to the failure of very
expensively made animation movies like The Polar Express or robots like Cubo
girl (Figure 12.6).
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12.4  Application

The domain of visual content synthesis is literally innumerable and diverse. In
this section we will discuss some popular applications, specifically focusing to-
wards 3D content synthesis.

The rise of the field of computer
graphics was motivated from its inception
by a concept that is well-defined today as
virtual reality or VR. The goal here was
to simulate environments and experiences
that are virtual and yet so real that peo-
ple can use them for training. Examples
of such environments are flight simula-
tors for pilots, training environments for
Army, Navy and Airforce. The name ‘vir-
tual reality’ stems from the fact that the
virtual environment would be the reality
for the users for some time and at some
space. The basic concept of virtual reality lies in having an immersive display on
which a computer generated scene is presented to create a sense of immersion in
a virtual environment. In addition, users can have different interactive devices
(e.g. joystick) for navigating the 3D world or interacting with it. The immersive
display can be instrumented by a surround seamless large area display made of
multiple projectors. The perception of depth can be achieved by active stereo
glasses that switch synchronously with the projectors time multiplexing between
the views for the two different eyes. It can also be achieved via passive stereo
glasses where superimposed projectors of different polarity are used to project
the views of two eyes. The glasses are equipped with identical polarizers the
allow the different projections to reach two eyes. The display can also be a head
mounted display (HMD) where two different views of the scene are generated
in real time and presented to the two eyes synchronously (e.g. Occulus Rift,
Google cardboard). The head of the user is usually tracked (e.g. using cameras)
which is used to determine the viewpoint from which the scene will be rendered.
Today, we are seeing the advent of retinal displays where light is shone into
the retina for the user to experience the same images as projected on a HMD.
Virtual reality, even today, is one of biggest consumer for computer graphics.
These are now routinely being used for 3D gaming experiences. Further, with
the advent of high-speed networking, it is now also being used for applications
like teleconferencing. Some of such applications are shown in Figure 12.7.
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Figure 12.6. This shows the user eval-
uated empathy towards several digital
characters in animation movies.
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Figure 12.7. This figure shows some use of computer generated scenes in virtual reality
environments - a military training simulator (left) and a flight simulator (middle). More

recently real content is being streamed on such systems for immersive teleconferencing
(right).

Fun Facts
- — Though it may seem that con-
-wr cepts of VR and AR are very fu-
turistic, these concepts were envi-
s sioned by visionaries more than 50
| years ago. Morton Hellig built the

first VR environment in 1962 to en-
able his vision of the “experience theatre” or “cinema of the future”. This
was called the sensorama (left), a VR environment, fully equipped with 3D
wide-vision moving color images along with stereo sound, aromas, wind and
vibrations — much of which is not available today in our 3D cinema ex-
perience. In 1968, Ivan Sutherland, a professor at the University of Utah,
built the first head-tracked head-mounted display which he called “Sword
of Damocles”. Later on, he founded the first computer graphics company in
the US, Evans and Sutherland, with his colleague David Evans. They were
the only name in flight simulators in the early days and are still in business
building projection environments for planetariums.

In the past decade, we have seen merging of the virtual and real world in what
is called augmented reality (AR). Figure 12.8 shows an example of augmented
reality using both tablets or see through displays. In the former, the real world
is captured in the tablet and augmented with the virtual world. Therefore the
augmentation happens in the virtual space. In the latter, the augmented world
is presented on see through displays and is automatically merged with the real
world when seen through (e.g. Microsoft Hololens). Note that in this case, it
is not a mere composition of images. The 3D virtual models are merged with
the 3D real world which is much more challenging than the image composition.
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Figure 12.8. This figure shows some tablet based and other see-through-display based
augmented reality systems.

For example, light from the real world should interact with the virtual objects
to make the experience believable. Also, it is worth appreciating that AR is a
domain which sees a hand-in-hand functioning of computer vision and image
synthesis. The real world needs to be reconstructed at some level to decide the
location where virtual objects should be placed or merged.

Currently, we are seeing the advent of
spatially augmented reality where real ob-
jects are augmented with projected light
to change their appearance without en-
cumbering the human being with a de-
vice. For example, a white model of Taj
Mahal can be augmented with projected
light to show the intricately detailed art-
work in different illumination conditions
starting from rosy dawn to white moon-
light. Similarly, other cultural heritage
artifacts can be restored to their origi-
nal appearance using projected light, and
movements or bumps can be simulated

Physical Object Augmented Object 011 Static models using projected illumi-
nation (Figure 12.9).
Figure 12.9. Real objects (left) aug- VR, AR and spatially augmented re-

mented with light projected from three ality all have many applications in many
different projectors to create spatially  different domains. Augmenting a patient
augmented reality objects (right). with previously captured 2D or 3D images
that registered accurately with his body can make surgeries minimally obtrusive
(e.g. extraction of tissue for biopsy). Inexpensive VR training environments for
law enforcement departments can provide extensive training for officers before
they face tough real situations. Visualization of large 3D data like seismic data
or weather data is extremely crucial to predict and prepare for natural disasters.
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Animation and special effects offer many applications of visual content syn-
thesis. The animation industry strives to discover methods to render different
styles and feelings to their characters, provide realistic body motions, provide
realistic draping of clothes and dresses consistent with the animation movements
etc. Special effects, on the other hand, strive to match the realism of the virtual
world with that of the real world similar to augmented reality. For example,
in a special effect scene with both virtual and real characters, the real lights
should affect the virtual scene accurately and vice versa — a great challenge in
the industry.

Geometric modeling and processing has been the keystone for computer aided
design and modeling (CAD, CAM) for a long time. With the advent of 3D
printing, this domain of computer graphics is again coming back to the limelight
via varied applications in the domain of 3D manufacturing. How do we print 3D
objects with minimum material wastage? Can we design a geometric model this
is printable, stable and functional and yet stackable? Can we design objects in
pieces in such a manner so that their assembly instructions will have simpler or
a reduced number of steps?

Designing novel graphics hardware is also a very vibrant area related to com-
puter graphics. Until the mid-1990s, interactive graphics rendering was only pos-
sible on super-expensive mammoth machines (e.g. SGI Onyx, SGI infinite reality)
which used to be hosted in large rooms under very controlled environment. Even
then, rendering a few million triangles at 30fps was a major achievement. Radical
changes in the graphics architecture borrowing heavily from parallel processing
architectures has resulted in todays inexpensive graphics processing units or
GPUs which can be put in any laptop or desktop and can perform a few orders
of magnitude better than the mammoth machines of yesteryear. GPUs today
are so powerful that they are being used as resources for even general purpose
computing and scientific computing. Therefore GPU design and programming is
also a very attractive domain of computer graphics.

Fun Facts

Toy Story was a big milestone for computer graphics being the first ever
feature length computer animated movie. It was produced by Pixar Anima-
tion Studios and released by Walt Disney Pictures. Pixar was approached by
Disney to make toy story following their success of the short film ‘Tin Toy’
in 1988. Pixar used to make such short films from time to time to promote
their computers. They started as part of the graphics group in the computer
division of Lucasfilm in 1979. They spun out a corporation in 1986 when
they were funded by Steve Jobs. Though produced under some financial
constraints, Toy Story was the top grossing film on its opening weekend and
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went on to earn over $361 million worldwide. It is still widely considered by
many critics as the best animated film ever made. In 2005 it won the Spe-
cial Achievement Academy Award and was inducted in the National Film
Registry as being “cuturally, historically or aesthetically significant”.

12.5 Conclusion

The material covered in this book is not comprehensive by any measure. The goal
of this book is to provide you with fundamentals to get you interested in exploring
one or more of these domains in depth. For this purpose we will be focusing
primarily on interactive graphics techniques which will provide you with all the
fundamentals needed to move from 3D to 2D, the main objective of any image
synthesis pipeline. We will be providing you pointers for more advanced readings
on non-interactive, often physically-based, rendering. We will cover a number
of processing and modeling techniques in the context of interactive rendering.
The sections are organized based on the well-known graphics pipeline. We will
refrain from limiting the content to a particular GPU hardware or a particular
programming language. This section of the book will introduce you to the basic
mathematical concepts of visual content synthesis which can be implemented
on any GPUs using any programming language once you learn each of them
respectively.

To learn more details of non-interactive processes, please refer to [Shirley
and Marschner 09, Foley et al. 90]. OpenGL is still the most flexible and popu-
lar cross-language corss-platform API for graphics programming and interacting
with GPUs. To learn more of how to implement graphics techniques in OpenGL,
refer to [Angel 08, Hearn and Baker 10]. For extensive details on CUDA pro-
gramming for GPUs, refer to [Cook 12, Cheng et al. 14]. To understand how to
use GPUs as general purpose computing for massively parallelizing your general
purpose application (e.g. massive sparse matrix multiplications), refer to [Kirk
and mei W. Hwu 12].
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13
Interactive Graphics Pipeline

The goal of the visual content synthesis pipeline is to take a 3D scene and a view
point setup as input and generate a 2D image. We assume that this 3D scene is
represented as a triangular mesh, as discussed in Chapter 1. Therefore the input
data is given as a set of triangles whose vertices are defined with their position,
at least one attribute (e.g. normal vectors, RGB color) and their connectivity.
Let us consider Figure 13.1 in which the 3D scene consists of a very simple
model of a pyramid defined by the vertices A, B, C' and D. At every vertex,
at least one attribute, namely its 3D location is defined. Other attributes can
be color, normal and so on. The connectivity or topological information is given
via four triangles ABC, DBC, DAC and ABD that define the way the vertices
are connected by edges. The eye or view point or the position of the camera is
defined by E and the image plane (or screen) by I. Let us describe the steps in
the graphics pipeline that would draw a given object from the point of view of
the eye E on the image plane [.

1. Geometric Transformation of Vertices: The first aspect of the image syn-
thesis pipeline is to find the 2D location of the vertices in the 3D scene on
the image plane after transforming the vertices based on their perspective
projection from the eye E. These 2D locations are shown by the vertices
a, b, ¢ and d found by perspectively projecting the 3D object on I. This
entails connecting the vertices A, B, C and D to the eye E via straight
line rays and finding their intersections with the plane I.

2. Clipping and Vertex Interpolation of Attributes: Due the finite extent of I,
all the vertices may not fall within the image plane I. We are only concerned
with drawing the part of the scene that is inside I. Therefore, the projected
triangles should be clipped by the boundaries of the image introducing new
vertices at the intersection point of the image boundary and the triangle
edges. Let us describe the steps in the graphics pipeline that would draw a
given object from the point of view of the eye on the screen. For example, in
Figure 13.1, new vertices f, e, h and g are introduced to clip the projected
triangles shown in orange. The required attributes at the new vertices are

201
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Figure 13.1. This figure shows the different steps of the graphics pipeline when render-
ing a simple 3D model of a pyramid defined by the vertices A, B, C' and D.

computed via bilinear interpolation (see Chapter 2) from the other vertices
of the clipped triangle. This is called the vertex interpolation of attributes.

3. Rasterization and Pizel Interpolation of Attributes: Finally, we have to
paint the polygons formed by the clipped and/or unclipped vertices. This
is done by computing all the discrete pixel locations on the screen that is
covered by the rendered polygon, and computing the color of these pixels.
First the pixels representing the edges of the polygon are computed, and
the colors at these pixels are computed by linear interpolation of the colors
at the end vertices representing the edge. Then each row of pixels is scanned
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to compute the range of pixels in that row that are inside the polygon. The
colors at these pixels are interpolated from the colors at either extreme of
the range. This process of painting the triangles traversing the pixels in
scanline order is called rasterization (shown by green pixels in Figure 13.1)
and computing the attributes at the pixels is called pixel interpolation of
the attributes.

13.1 Geometric Transformation of Vertices

The geometric pipeline consists of a sequence of transformations applied to every
vertex of every triangle to find its corresponding 2D coordinate in the final image
output. Chapter 6 discusses various geometric transformations that would be
used in the current chapter.

The first step is the model transformation. This is the transformation of the
objects from the object specific 3D coordinates to the single reference world
coordinates. Second, the view setup describes the position of the eye and the
orientation of the head which are used to apply a wview transformation that
represents a scene in a canonical view coordinate system. Third, in the perspective
projection step 2D projections of the 3D vertices are computed. This step also
includes making preparations to resolve occlusions. The final step in this process
is the window coordinate transformation which maps all the vertices on to the
exact window on the display in which the 3D scene will be rendered.

13.1.1 Model Transformation

The model transformation aids significantly in scene building. Consider every ob-
ject defined in its own object specific coordinate system. When geometric models
of various objects are downloaded from different places to populate a scene, it is
rather natural that each of these will be defined in a different coordinate system.
The goal of model transformation is to place these objects in different places
in the scene in different forms (maybe scaled differently or oriented differently).
Therefore, model transformation is the transformation M from the object coor-
dinate system to one global world coordinate system of the entire scene where
all the objects are placed.

The model transformation step also allows multiple instantiation of the same
object in different position, orientation and scale. For example, if we are trying
to create a 3D scene of a classroom, instead of storing the model of 100 chairs in
the classroom, we can store one instance of the 3D chair in an object coordinate
system and then instantiate 100 of them at different positions when building the
scene. Figure 13.2 shows an example. Here there are three objects — a pyramid,
a cylinder and a cube — defined in their own object coordinate system X,Y,Z,.
These are then converted to the global world coordinate system XY, Z, to
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Figure 13.2. This figure shows the model transformation. Every object (e.g. cylinder,
pyramid and cube) is defined in its own object coordinate system i.e. each of their
vertices is defined in its own coordinate system. Then using model transformation they
are instantiated multiple times and transformed differently to form the completely
scene.

create the scene. For example, the pyramid has been translated, while the cube
has been scaled and translated. The cylinder has been instantiated three times,
each time with a different scaling, rotation and translation. Therefore, for the
pyramid M, = T, while for the cube M. = T.S. and for the cylinders there
are three different transformations given by M; = T1R1S1, Ms = T5R252 and
M3 = T3R3S3. One important point to note here is that all the matrices — M), M.,
My, Ms and M3 — are of size 4 x 4 since we are transforming 4D homogeneous
coordinates.

13.1.2 View Transformation

The input defining the view setup allows the rendering of the 3D scene for the
defined view. The view setup is defined by the 3D location of the eye E, an



13.1. Geometric Transformation of Vertices 295

image plane usually defined by a normal vector to the image plane N — also
called the principle axis, and a view-up vector V which provides the up direction
of the head. Ideally N and V should be perpendicular to each other. But when
providing a view-up vector, it is often difficult on the part of the application
programmer to provide a vector that is exactly orthogonal to IN. Therefore,
most graphics application programming interfaces (APIs) allow defining V' as a
vector close to the view-up vector from which the actual view-up vector that is
perpendicular to N is computed.

The output of the graphics pipeline is a 2D image rendered from the 3D scene,
that needs to be updated every time the view setup or part of the 3D scene is
changed. Note that a change of the view set-up can be expressed as a change in
the entire 3D scene. For example, if the eye moves to the right, it is equivalent
to the scene moving to the left. The advantage of this approach is two fold: (a)
All the transformations due to view point change can be applied to the model,
and so the model transformation which is already applied to the models can be
combined with the view transformation and this composition of transformation
can be applied once to the model/scene; (b) since the view set-up and hence the
image plane does not change, the perspective projection transformation remains
the same. Therefore, most graphics APIs define a default view so that the scene is
transformed in such a way that the view set-up remains at the default view. The
most common default view is to have the eye at origin, the normal to the image
plane to be the Z-axis and the view-up vector to be the Y-axis. Therefore, the
default view setup can be defined as E = (0,0,0), V = (0,1,0) and N = (0,0, 1).
This is illustrated in Figure 13.3.

The goal of view transformation is to convert an arbitrary view setup given by
an arbitrary E, N and V to the default view. There are two steps to achieve this.
First, the eye should be moved to the origin which is achieved by a translation
T(—FE). Second, N should be aligned with the Z axis which is achieved by a
rotation R. The rotation matrix R can be computed by defining a view coordinate
system and aligning the view coordinate system with the standard coordinate
system (X,Y,Z axes). Let the unit vectors defining the coordinate axes of the
view coordinate system be u,, u,, and u, given by

N

Uy = —— 13.1)
I (
NxV

= T 13.2

NEEN 152

Uy = Uy X Ug (13.3)
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Figure 13.3. This shows the default view setup with eye at the origin, the Z axis
perpendicular to the image plane (often called near plane in the computer graphics

context), and the Y axis as the view-up vector.

Therefore R is given by

Uy 0

_ Uy 0
R= . 0 (13.4)

0 0 0 1

Since R is a function of N and V, we often denote it as R(N, V). Thus, the final
view transformation is given by R(N, V)T (—FE). Combining the model and view
trnasformation, the transformation applied to a model vertex P via matrix pre-
multiplication is given by R(N, V)T (—E)M. This 4 x4 matrix R(N, V)T (-E)M
is identical to the 3 x 3 extrinsic parameter matrix of the cameras discussed in
Chapter 7 except for the last row which is (0,0, 0,1) that is used to maintain the
transformed 3D point to be in 4 x 1 homogeneous coordinates.
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13.1.3 Perspective Projection Transformation

The perspective transformation matrix does the final transformation from the
3D scene to the 2D projection on the image plane. We now define the parameters
to limit the extent of 2D image plane in order to define a field-of-view (FOV).
The geometry on which the perspective projection transformation is defined is
shown in Figure 13.3.

The eye or camera is viewing in the direction of the Z axis after the view
transformation. In order to limit the data that is being processed, two planes,
the near plane and the far plane, parallel to XY planes, are defined along the Z
axes. Objects that are closer than the near plane and those that are farther than
the far plane are not projected and drawn. These two planes are defined by their
Z coordinates n and f, n < f. The near plane also serves as the image plane on
which the 3D objects are projected. The axis-aligned rectangular window on the
near plane through which we see the 3D scene from the eye point (origin) is called
the viewport. Viewport is defined by the = coordinates of left and right vertical
edges, and y coordinates of top and bottom horizontal edges. A rectangular
viewport in graphics is more to mimic the rectangular sensor in the camera than
to mimic the circular retinal image of the human eye. The four edges of the
viewport —x =1,z =7,y =t and y = b — along with the origin (eye) define four
planes. The truncated pyramidal structure formed by these four planes, the near
plane and far plane is called the view frustum and the volume enclosed by the
view frustum is called the view volume. Only the objects inside the view volume
are rendered on the image plane. In the context of the human eye, the depth
between n and f is usually termed as the depth of field and defines the range of
depth in which objects form a focused and sharp image on the retina.

However, the viewport need not be centered around the Z axis. While F,
V and N of the view set up describes the head position and orientation, the
viewport describes the gaze or the orientation of the eye, when the head is fixed.
The ray from the eye (0,0,0) to the center of the viewport in the near plane
(H'TT7 %m) is called the gaze direction. This effect of moving the gaze is very
different from moving the entire head. Try the following experiment. Stand in
front of a tiled wall. With head fixed look at and observe the tiles 30-45 degrees
above or below. Then just rotate your head (but not change the position) to
observe the same tiles straight ahead. The former effect keeps the image plane
the same but changes gaze. The latter effect is created by the tilting of the image
plane since the normal to the image plane changes with the rotation of the your
head. Notice the effect of these two perspectives is very different from each other.
When changing the gaze, the tiles will look stretched, but when rotating your
head they will be not.

The primary function of the perspective projection is to project the 3D scene
in the view volume onto the viewport. In addition, to simplify further compu-
tations of window coordinates and resolve occlusions, we need the perspective
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projection transformation to also convert the truncated pyramidal view frustum

into a cuboid that extends in each of the X, Y, and Z direction from —1 to

+1. This is illustrated in Figure 13.4. In order to illustrate this transformation,

consider the point P, = R(N,V)T(—E)MP = (X,Y,Z)T where P, denotes the
vertex after model and view transformation.

The first step is to coin-

cide the general gaze direc-

tion to the default gaze direc-

tion that coincides with the

/‘ normal to the image plane

when the viewport is such

—> ‘/ that [ = —r and b = —t. This

is achieved by a shear that
brings the point (457, &2 n)
to (0,0,n). Since the z co-
ordinate remains unchanged,
this transformation is a Z
shear. Let the parameters of

this shear be (a,b). There-

Figure 13.4. This shows the transformation from the
truncated conical frustum to the cuboid shaped frus-
tum as part of the perspective projection.

fore,
0 1 0 a0 br
0 01 b0 Etb
= 2
n 0010 n (13.5)
1 0 0 01 1
From this we can find the parameters a and b of shear to be
l+7r
= — 13-6
a o™ (13.6)
t+b
=—— 13.7
o™ (13.7)
Therefore, the first matrix for perspective projection of P, is Shz(—l;'—nT, —%)

and it provides the transformation to account for the off-axis viewport.

The next step is to transform the view frustum from a truncated pyramid to
a cuboid. Let us assume, for the moment, that the z coordinate does not matter
since after projecting to the image plane, all the vertices will have the depth n.
We will revisit the depth issue later. Therefore, if z coordinate is ignored, the goal
is to map the viewport which extends from [ to r in the x direction to —1 to +1 in
the x direction, and from ¢ to b in the y direction to —1 to +1 in y direction. This
means that lengths of r — [ horizontally and ¢ — b vertically should be mapped to
2. Since the center is already at (0, 0) following the shear, this can be achieved by
a scaling transformation S (%, %, 1). Therefore, the complete transformation

until this step for a vertex P, is given by Py = S(-25, %, 1)Shz(—l2+—n’“7 —%)PU.
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Now, finally let us consider the perspective projection. We know from our
camera calibration model in Chapter 7 that the perspective projection (zp,yp)
of 3D point (X,Y, Z) is given by

Xn
=— 13.
2y = (13.8)
Yn
Yo = 7~ (13.9)
which can be expressed as
Tp n 0 0 O X
Yy | ] 0 n 0 O Y
n =l oomnol||z (13.10)
1 0 0 1 0 1
X
—Dm)| (13.11)
1

In our case, the 3D point is what we achieve after cuboid transformation. There-
fore, the complete transformation is given by D(n)S (527, :25,1)Sh. (— 52, —LkD)
P,. Since this matrix depends only on the view frustum parameters — r, [, t, b,

n and f — let us call this L(n,r,[, t,b). Therefore,

2 2 I+ _t+b

i | _ i
r—1"t—="b’ )Sh( 2n 7 2n

L(n,r1,t,b) = D(n)S( ), (13.12)

and let LP, = P,.

13.1.4 Occlusion Resolution

The z coordinate P; will be n always. This is expected since all the vertices are
projected on the image plane at a depth of n. However, during image synthesis,
the information about the depth of the projected vertex from the image plane
or eye is very important to resolve occlusion and visibility.

Consider the triangles 77 and T5 in Figure 13.5 that intersect in 3D and when
viewed from the view direction different parts of these two triangles are visible.
Therefore, during scan conversion at each pixel only one of 77 and T3 should
be drawn accurately based on this visibility from the view direction. Therefore,
the depth information at the vertices of the triangles is retained as an attribute
of the projected vertex to be used later on to interpolate the depth of interior
pixels.

Let us consider this case of z-interpolation illustrated in Figure 13.6 in the
projection of a 2D line between the points A = (Xo,Zp) and B = (X1, 721)
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where Zy and Z; are the depths of A and B respectively from the view point.
The image plane is represented by the red line. The projection of the line on this
image plane would be given by 1D coordinates so and s;. These are called the
screen space coordinates of the 3D primitive. Let us assume that we have stored
the depth of these two projected vertices - Zy and 7.

Let us now consider the future stage
of scan conversion where we are interpo-
lating the attributes of a point half-way

. between sy and s; in screen coordinates,
View . So+s .
Direction i.e. 20721 Therefore, we will compute the
depth of this point using the same inter-
polation coordinates as % However,
the depth of the object point C' that is

projected at the screen coordinate %
t ZotZi
2

is no . The green curve in the ob-
ject space in Figure 13.6 plots the depth
Figure 13.5. The shows two inter- computed through linear interpolation in
secting triangles viewed from a the the screen space. e shows the difference
shown view direction. The orange re- between the actual depth and the linearly
gions shows the visible parts of each interpolated depth in the screen space. Of
triangle from this view direction which  course, the shape of the green curve and
should be rendered after occlusion res-  the amount of error will change based on
olution. the exact positions of A and B.

Therefore, the question is what kind of interpolation would yield the correct
result? For this, let us consider the point (X;, Z;) between A and B defined by
the interpolation coefficient ¢ in 3D. Therefore,

X, = Xo + (X1 — Xo) (13.13)
Zy = Zy+ t(Zl — ZO) (1314)

Let their projection on the image plane be between sy and s; defined by the 2D
interpolation coefficient u, s,. Therefore,

X X X
Su = 80+ u(sy — sg) = Z—g +u (le - Z(())) (13.15)

Since s, is the image of (X, Z;), we can derive the following.

Xy
Y=t 13.16
u=, (13.16)
X X, XO) Xo + (X1 — Xo)
Or, 224220 = 13.17
Zo <21 Zo Zo + t(Z, — Zo) (13.17)



13.1. Geometric Transformation of Vertices 301

Figure 13.6. This figure illustrates the error that occurs if depth (z) is interpolated in
screen space to find the depth of points internal to the triangles from the depth of the
vertices.

Solving the above equation, we can find u as

Z1t
U= . 13.18
Zo +t(Z1 — Zo) ( )
Rearranging terms in the above equation, we can find ¢ as
Z,
t kel (13.19)

o Zl —U(Zl — Zo)
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Using the above equations, we can now compute Z;, the accurate 3D depth of
the point as

Zy = Zo +t(Zy — Zo) (13.20)
UZO
=7 Z1— 7, 13.21
0+Z17u(Zleo)( ! 0) ( )
ZoZ4
= 13.22
Zl — U(Zl — Zo) ( )
1
— . (13.23)

1 1 1
7o+u(71_70)

The above derivation shows that

! ! + ! ! (13.24)

- = U R — s .

Zy  Zy Zy Zy
i.e. the reciprocal of Z; can be linearly interpolated from the reciprocal of depth
at A and B using the screen space interpolation parameter u. Hence, linearly
interpolating the reciprocal of Z instead of Z would yield the correct answer.

Therefore, the depth of a point C half-way in 3D between A and B, Z. can

be computed as
1 1 1

7.~ 27y 27,

Therefore, when retaining the depth in the third coordinate after applying L, we
should retain % instead of Z so that we can readily apply linear interpolation of
depth during scan conversion. Intuitively, this is due to the fact that perspective
projection is not directly proportional to the depth but inversely proportional to

depth.

(13.25)

Next, we will deduce the transformations required to retain % as the
third coordinate. From equation 13.12, L(n,r,l,¢,b) = D(n)S(%, =5, 1)Sh.
(=L, Ly and LP, = P,. Let P, = (X,,Y,, Z,). Replacing L with multipli-
cation of the matrices in Equation 13.12 we get

2X, (+r)Z, 2X,n I+r
Xy T  n(r-0) Z,(r=0) — 11
Y, 2Y, (t+b)Z, 2Y,n _ _ t+b
P=LP,=1L Yol = t=b " ‘a(-b) =| ZG-b b (13.26)
v Z,
v Z’u n
1 Zy 1

In the above equation, the third coordinate of P, is n. To retain the depth in this
coordinates, we want the third coordinate of P, to be % Not only so, we need

the third coordinate to be normalized between —1 and +1 as % goes between

% to % to transform the truncated pyramid to a cuboid as shown in Figure 13.4.
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To achieve this, we have to map % to —1, % to +1, and the center of the range
L, %] to 0. The center is given by

1 1
AT
2 onf

(13.27)

This movement of the center is achieved by a translation by f];:—}l. Then, the

extent between % to % is scaled to 2 via a scale factor of

2 2
2 ) (13.28)
Fowo oS
Therefore the final expression for the third coordinate of P, is given by
Zy 2nf Jn—f (m—f)Z, f-n Zy '
Therefore, P, that we would like to achieve is given by
2X,n _ l4r 2Xon _ vz,
Zy (r—1) r—l 27i/_n g“_‘:b
2Y,n t+b L A
Z,-5) t=b | = | gnf ,f;;‘eZ (13.30)
jﬁff—%zul n—f n—f°v
Z, Zy

This can be achieved by making D(n) into a matrix that depends on both n and
f and is given by

n 0 0 0
0 n 0 0
0 0 1 0
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Therefore, the entire perspective projection matrix L, now dependent on f also,
is given by

2 2 _l-i-r _t+b

D(n, f)S —=_ 1)Sh.  — 13.32
(n. f) (rfl’t—b’ ) ( 2n 2n) ( )
n 0 0 0 2 0 00 1 0 -5t o0
om0 0 0 Z oo |[o1 - o
I B 0 0 10 00 1 0
00 1 0 0 0 01 00 0 1
(13.33)
20 0 0 10 -zt o
0 & 0 0 01 -t
] Nl O (13.34)
0 0 10 00 0 1
2n r+l
A S
0 2 b g
— t—b t—b
- n+f 2nf (1335)
0 0 -2 2ef
0 0 1 0

This matrix L(n, f,r,1,t,b) is often called the frustum transformation matrix
since it is dependent on the parameters that define the view frustum.

The top-left 3 x 3 submatrix of Equation 13.35 looks exactly like the intrinsic
parameter matrix in Equation 7.10 where the focal length is n, the horizontal and
vertical scale factor are % and % respectively and the horizontal and vertical
offsets are —H'TT and —% respectively. In other words, while the view transfor-
mation is essentially the extrinsic parameter matrix, the frustum transformation
matrix L is essentially the intrinsic parameter matrix. The camera model in the
synthesis pipeline is essentially the same as the pinhole camera model, but we
arrive at the same equations from different directions and use it differently.

13.1.5 Window Coordinate Transformation

The perspective transformation normalizes each of the three coordinates to be
between —1 to +1. However, the final drawing in any image synthesis has to
be done on a window on the display screen which is usually defined by integer
coordinates of the top left and bottom right corner of the window. Therefore, this
is exactly similar to providing the viewport. Let the coordinates of these top, left,
right and bottom window boundaries be t,,, l,,, b,, and r,, respectively. Therefore,
the center of the window is given by (tetre fwtbe) and the length and height of
the window is given by r,, — [l,, and t,, — b,, respectively. The transformation to
the window coordinates involve a translation by (lw%, %) and a scaling by
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b

T“’;l“’ and t; « in horizontal and vertical directions respectively while keeping
the z-coordinate unaffected. This is achieved by the transformation

Tw—lw wFTw
Beghe 00 hepre
e 13.36
W(twalwvbwarw) — 0 0 1 0 ( . )
0 0 0 1
13.1.6  The Final Transformation
Therefore the complete transformation G of a point P is given by
G = W(lw, Tw, tw, bu)L(n, f,r,1,t,))R(N, V)T (—E)M (13.37)

The above transformation projects the point from the object coordinate system
to the window coordinates. This is exactly how the vertices a, b, ¢ and d are
generated in Figure 13.1 from the 3D vertices A, B, C' and D.

13.2 Clipping and Vertex Interpolation of Attributes

Clipping is usually done in the graphics hardware and the application program-
mer does not need to worry about. Yet, we provide a very short overview here.
Clipping is done in 2D following the projection of points. We will discuss some
3D clipping methods in later chapters. Any 2D clipping algorithm fundamentally
depends on finding intersections of primitive (lines or polygons) with the edges
of the window. Therefore, the mathematics behind these algorithms are straight
forward. However, what makes it challenging in the context of the interactive
graphics pipeline is its efficiency. Every primitive or triangle needs to go through
the process of clipping and when the scene consists of millions of triangles effi-
ciency of the algorithm becomes important even if it is done in the hardware.
Following are some of the ways to increase the efficiency; they are most likely to
be deployed one after the other in sequence.
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Fun Facts

In computer graphics you will come across the

< ”3 F revered Utah teapot model which has become syn-

AP onymous to CG innovation ever since Martin Newall,

a graduate student at the University of Utah,

\\‘ __,./ modeled and introduced the object to the com-

s puter graphics community. The actual teapot that

Newall used to create the digital model resides at the Computer History

Museum in Mountain View, California. So why a teapot? It is said that

Newall’s wife suggested the object while the two were having tea. But her

idea was perfect technically due to a large number of reasons cited over

the years. It is round, has saddle points, has a non-zero genus due to the

hole in the handle, can project a shadow on itself, can have a self-reflection,

and looks reasonably aesthetic even when rendered without a texture. It is

amagzing that such a simple object provided computer graphics researchers

with so much complexity so as to become the benchmark geometric model.

In 2006, Professor Peter Shirley of the University of Utah paid homage to

this model through his Siggraph Talk “The Teapot Through the Ages”.

Each year at SIGGRAPH (the biggest conference for computer graphics

academicians, industry and enthusiasts) Pixar hands out hundreds of tiny
wind-up teapot to collectors.

Performing a number of floating point intersection operations for every prim-
itive is definitely not the most efficient way to achieve clipping, especially when a
large majority of triangles can fall either completely outside the window or com-
pletely inside it and only a few will actually intersect the window boundaries.
One way to improve performance is to make sure that intersection computations
are only performed when there is a high probability that the primitive actually
intersects the window boundaries. Therefore, a fast acceptance or rejection test
for primitives completely inside or outside the window is critical. Such tests can
be achieved in multiple ways.

Using Bounding Boxes: We can compute the axis aligned bounding box of
each triangle and see if it lies completely inside or outside the window. An axis
aligned bounding box is the smallest box enclosing the primitive, with sides
parallel to the axes of the window. If this bounding box is completely outside,
the primitive is rejected. If it is completely inside, it is accepted. An axis-aligned
bounding box for each primitive can be computed by just finding the minimum
and maximum extent of the vertices in the horizontal and vertical direction.
Testing of this bounding box is also easily achieved without any intersection
computation by checking for intersection between the extents of the bounding
box and window. Only primitives whose bounding box intersects the window go
through the intersection computation. In Figure 13.7, both the horizontal and
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vertical ranges of the bounding box of A are completely within the respective
ranges of the window. So A is inside the window. In case of D, while the vertical
range of the bounding box intersects that of the window, the horizontal range
of the bounding box is completely outside that of the window. So D lies outside
the window. For the other two cases, both the horizontal and vertical ranges of
the bounding box and that of the window partially intersect leading to possible
intersection of the primitive with the window. The primitive B intersects the
window and will be clipped via intersection computation. However, there can be
cases like C where the bounding box intersects though the triangle does not. The
actual intersection computation in such cases will yield negative results.
! Using Logic Operations: Another
i technique to expedite acceptance/re-
: jection tests is to divide the 2D image
I plane into regions and assign binary
codes to the regions. For example, we
can have four bits, by babsb, associated
with each projected vertex (x,y) such
thatb1:y<tw,b2:y>bw,
bs = x > ry, and by = = < .
-------- The four-bit code divides the image
plane into nine different regions, each
with an unique code (shown by green
codes in Figure 13.7). Consider the
four bit codes of two end points of
Figure 13.7. This figure illustrates some of & line segment. If the bitwise AND
the efficiency improvements in clipping al- of these two codes is not zero, then
gorithms using bounding boxes or binary both end points are outside the same
codes. window boundary and the line is com-
pletely outside the window and therefore rejected. If each of the two codes is zero
then the line segment is inside the window and therefore accepted. If at least one
of the two codes is not zero, but the AND operation of the two codes is zero, then
the line intersects with the boundary of the window and therefore an accurate
intersection test has to be performed. Such logic operations can be extended to
triangles also to efficiently clip them. An acceptance or rejection test using logic
operations is equivalent to, yet simpler than, the test using a bounding box.
Using Integer Operations: Intersection of the lines and triangles that are not
trivially accepted/rejected with the window boundaries have to be computed.
For this we first find the window boundary that intersects the primitive and
then find the exact intersection. For both of these steps, it is far more efficient
if they can be achieved primarily via integer computation rather than floating
point computation. Let us consider the red and green lines shown in Figure
13.8. The green line intersects the left window boundary before the top. This
indicates that the line is entering the window at the left boundary. But, the
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red line meets the top boundary before left that can only happen when the line
is completely outside the window and should be rejected. Therefore, to figure
out which boundary intersection computation needs to be performed, it may
be useful to find the parametric value « of the line intersection with different
window boundaries. Denoting the alpha boundaries by «;, «;, a; and «p for
the left, right, top and bottom boundary and simply ordering these parametric
values we can find the portion of the line that is inside the window. However,
computing these parametric values involve floating point operation. So, the next
question is how can we make this operations more efficient?

Consider a line given by two
points defined by integers (x1,y1) and
(z2,y2) where 1 < z9 and y1 < yo
(assuming the bottom left corner of
the screen to be origin). We know

t—
ap = — 2 (13.38)
Y2—U
Figure 13.8. This figure shows the compu- o = I —xy (13.39)
tation of which boundaries to intersect with To — I
using integer computations. .
If oy < oy, i.e.
t— l—x
N L (13.40)
Y2 — 4 T2 — X1

the line should be rejected. Instead of carrying this test on the floating point
numbers a; and oy, the same results can be obtained if we derive the decision
factor from Equation 13.40 to be

(I =21)(y2 —y1) < (t —y1) (w2 — 71). (13.41)

The advantage of Equation 13.41 is that it is completely in integers and does
not involve any floating point computation. The methods of clipping are fraught
with such techniques to avoid floating point computation thereby making the
pipeline extremely efficient.
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Put a Face to the Name

Z-buffer (also called depth buffer) is considered
one of the milestone concepts of interactive com-
puter graphics. Prior to that primitives had to be
sorted in 3D and rendered from back to front to
resolve occlusion and there was no easy way to
handle intersecting primitives other than to split
them. Edwin Catmull, president of Pixar and Dis-
ney Animation Studios, was the first to invent this
concept though it was invented independently by &
Wolfgang Straber. Catmull was also the inventor of :
the concept of texture mapping which brought in
an unforeseen realism in interactive graphics. Born in 1945 in West Virginia,
he was raised in a Mormon family in Utah. Though from very early in life he
dreamed of becoming a feature animator, instead of pursuing a career in the
movie industry he pursued his talent in math and science to study physics
and computer science at the University of Utah where he returned as a
graduate student in the 1970s to pursue his PhD under Ivan Sutherland. His
discoveries of texture mapping, bicubic patches (also called Clark-Catmull
patches), subdivision surfaces and anti-aliasing methods changed the face of
graphics forever. His first contribution to the movie industry was in 1972 via
an animated version of his left hand which was picked up by a Hollywood
producer to be used in the 1976 movie Futureworld and its sequel Westworld
which were the first films to use 3D computer graphics. This sequence, sim-
ply known as the Computer Animated Hand was chosen for preservation
by the National Film Registry in 2011. He started the computer graphics
division in Lucasfilm in 1979 which was later bought by Steve Jobs in 1986
to be called Pixar. Popular among peers as Ed Catmull, he developed the
first complete rendering system to be used in movies, Renderman, while at
Pixar for which he received the Academy Award in 1993. Since Disney’s ac-
quisition of Pixar in 2006, Ed Catmull has been the president of both Pixar
and Disney Animation studios. He has won many awards since then for his
pioneering contributions to modeling animation, and rendering including an-
other Academy Award in 1996, the IEEE John von Neumann Medal in 2006,
and the Gordon E. Sawyer Award in 2008.

Using Pipelining: Finally, one more technique that is often used for efficiency
is pipelining. For example, once we have detected that intersection computations
need to be done, the polygon, represented as a list of vertices, can pass through
the four stages of clipping against left, top, right and bottom edges of the window,
in a pipelined fashion. Clipping against an edge of the window clips out the part
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Figure 13.9. This figure shows the Sutherland Hodgeman algorithm for clipping at-
tained via clipping the orange polygon against the top, left, bottom and right edges of
the blue window successively. The list of vertices input to each of these steps is also
shown above the red arrows.

of the polygon that lies in the half plane formed by the edge that does not
contain the window. This half plane is denoted by OUT while the other one that
contains the window is denoted by IN. In the Sutherland-Hodgeman method
(Figure 13.9), a polygon clipping is attained by such successive clipping of the
polygon against the top, left, bottom and right edges of the window. The input
to each of these steps is a cyclic list of vertices (i.e. starting and ending with the
same vertex) defining the polygon.

Let us first consider the list of vertices of the polygon ABCDFEA in Figure
13.9 going through clipping against the top edge of the window. The clipping
algorithm parses this list of vertices in sequence from left to right and outputs one
existing or a new vertex per parsed vertex based on transitions in the locations
of the vertices in terms of the IN and OUT half planes as follows.

1. If first vertex is IN output the same, or else nothing;
2. Loop through the rest of the vertices testing transitions.

(a) If IN-TO-OUT, output intersection with edge;

(b) If IN-TO-IN, output the vertex;

(c) If OUT-TO-IN, output intersection with edge and the vertex ;
(d) If OUT-TO-OUT, output nothing;
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We will now execute the top clip with the cyclic list ABCDFEA. The first vertex
A is OUT resulting in no output. The next vertex is B and the transition from A
to B is that of OUT-TO-IN resulting in the output of the intersection of edge AB
with the top edge, A’ and B. The next transitions from B to C, C to D, and D to
FE are all IN-TO-IN leading to the output for the vertices C, D and FE respectively.
Finally, the transition from F to A is IN-TO-OUT resulting in the output of the
intersection of EA with the top edge, A”. Therefore, the output vertex list is
A’'BCDEA" which is made into a cyclic list by repeating the first vertex at
the end resulting in the list A’ BCDEA"” A’ which acts as an input for clipping
against the next window edge. This process continues for all four edges as shown
in Figure 13.9 finally creating the clipped polygon A'B’B"C'D'E'E" A" A'.

The pipelining is possible due to the fact that each stage of the clipping
against a window edge can output a vertex as soon as it reads vertex without
waiting for the entire list of vertices to be parsed. Further, the output vertex
can be pushed as input to the next stage before the entire input list is created
from the previous step. This improves throughput tremendously since each step
hands over partial results to the next which can work with it.

There are several clipping method that use one or more of the above tech-
niques. The Cohen-Sutherland method use logic operations, the Liang-Barsky
method uses integer operations and the Sutherland-Hodgeman method uses
pipelining. However, they can be combined in multiple ways to create more
efficient methods, some variant of which is probably being implemented by the
current graphics hardware.

13.3 Rasterization and Pixel Interpolation of Attributes

Rasterization is the last step of the interactive graphics pipeline where all the
pixels inside the clipped polygons (triangles may not remain triangles after clip-
ping) have to be computed, and colors and other attributes interpolated from the
those of the vertices of the polygon. During the clipping operation, the attributes
at the edge-window intersection points are themselves computed using interpo-
lation of colors at the vertices of the given triangle. The process of rasterization
is performed in the graphics hardware. We only provide very basic methods and
some key insights of how such methods are made efficient. The buffer in which
we draw the color is called the framebuffer and the buffer in which we handle
the depth is called the z-buffer or depth buffer. Both of these buffers are the
size of the window defined by the API. We start with a clear framebuffer (all
pixels initialized to black) and the depth-buffer set to 0. Since we will deal with
reciprocal of depth in the Z-buffer, initializing it to 0 means the depth is at co.

The rasterization process is applied to each primitive and it proceeds line
by line from top left of the window to the bottom right. For every scanline, the
intersection of the scanline is computed with all the edges of the polygon and the
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Figure 13.10. This figure illustrates the process of polygon rasterization (left) and
shows a rasterized triangle with interpolated gray scale values (right).

intersections sorted in the increasing order of their x (note all of them have the
same y since we are dealing with a horizontal scanline). Consider the two triangles
in Figure 13.10 and the black scanline. The intersection points when ordered will
be pg, p1, p2, p3. Next, the pixels within pairs of their intersections are filled up.
Therefore, pg to p; and p to ps3 is filled up. When filling up these pixels, their
color and depth are also interpolated. For every pixel on a scanline that has been
detected to be inside the triangle, first its reciprocal of depth is interpolated from
the reciprocal of the depths stored at the intersection points of the scanline and
the edges. If the interpolated value is larger than the existing value at that pixel
in the Z-buffer (i.e. depth is smaller), only then the framebuffer is updated at
that pixel with the interpolated color. Otherwise, this pixel is occluded and is
not drawn in the framebuffer.

The polygon rasterization is also made efficient by several measures like in-
crementally updating the intersection of a polygon edge with a scan line by using
the results with the previous scanline and the slope of the edge thereby avoiding
computation of the intersections anew for every scanline. Several data structures
are used to reduce computation. For example, the extent of the scanlines that
a triangle spans (showed using red and orange dotted lines in Figure 13.10) can
be maintained so that only the triangles whose span include the scanline under
consideration are included in the processing for that scan line. Other more com-
plicated data structure like edge table (that is a bucket sort of edges bucketed
by scanlines) are used. Several improvements are also achieved by using integer
computation for as much of the process as possible. Details of such processes
are available in most traditional computer graphics books. The final rasterized
polygon painted with interpolated color or gray values is shown in Figure 13.10.
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13.4 Conclusion

We learnt about the interactive graphics pipeline in this chapter. We have de-
liberately kept this treatise API independent and given you the fundamental
concepts. We hope that following this you can adapt API specific aspects into
the pipeline easily. For example, OpenGL assumes the normal to the image plane
in the view set-up to be negative Z. This means the view transformation and
the perspective transformation will change slightly and we hope you can work
through it. In this chapter we have not given you details about clipping and
rasterization methods assuming they will be done in the graphics hardware. To
learn more about such techniques, please look up [Foley et al. 90, Shirley and
Marschner 09, Watt 99].
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Exercises

1. Consider a 2D square on the XY plane with side 2 units, the center at the
origin and four sides parallel or perpendicular to the coordinate axes.

(a) Draw the picture of the transformed square after performing the fol-
lowing sequence operations: rotation of 45 degrees counter clockwise
about Z-axis, translation by (v/2,0,0), and again a rotation of 45
degrees counter clockwise about Z-axis. Can you reduce the transfor-
mations thus giving the new sequence of transformation to achieve
the same result?

(b) Draw the picture of the transformed square after performing the
following sequence of operations: translation by (2,2,0), scaling by
(3,2,1).

(¢) Draw the picture of the square if these two operations in the previous
question were swapped.

(d) We would like to achieve the result of the transformations of the
previous questions where scaling is followed by translation by applying
a translation followed by scaling. How would the parameters of the
translation and the scaling change?

2. A viewer is defined by the following. (a) Eye position: (0,0,0), (b) View
up vector: (0,2,0), (c) Equation of the image plane: z + y + z = 6. Find
the view transformation matrix generated for this view-setup. Let the left,
right, top and bottom planes be at -2, 42, 4, and 8 respectively. Let the
far plane be at 10. Find the perspective projection matrix given by L.
Find what would be projected coordinates of a point P = (10,4, 6) for this
viewer.

3. The model transformation for a scene is a rotation R about the Y axis in
the counter clockwise direction by 90 degrees, followed by a translation 7" in
the positive X direction by 20 units. What is the resulting transformation?

4. Consider a default view with the near plane (or image plane) at a distance
5. The gaze direction is at (2,1) and the size of the window in X and Y
direction in which it is centered are 10 and 6 respectively.

(a) Provide the r, [, ¢, b for the view frustum?

(b) Provide the transformation that would make the gaze direction coin-
cident with the normal to the image plane?

(¢) Following this, find the transformation to normalize X and Y coordi-
nates between —1 to +1.
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5. Provide the window coordinate transformation for a window whose center
is located at (200,400) and whose width and height are given by 800 and
600 respectively?

6. We say that interpolation of Z in screen space is mathematically wrong
and we should interpolate the reciprocal of Z to correct for the effect Yet,
we interpolate colors using the same screen space interpolation. Is this
mathematically correct? Justify your answer.



14

Realism and Performance

In the last chapter, we discussed the geometric fundamentals of the interactive
graphics pipeline. However, a scene rendered using this basic pipeline with no
lighting effects (e.g. specular highlights or shadows) or finer details or some
patterns or bumps on objects would not look realistic. In this chapter, we will
study a number of techniques that will allow us to render more realism in the
scene. However, these do not come for free, rather with a risk of degrading
performance (e.g. frame rate). Therefore, we will also discuss some techniques to
enhance realism without compromising performance.

14.1 lllumination

Computing illumination of a scene is an extremely complex problem. The total
amount of illumination at any surface point is due to both direct and indirect
illumination. Direct illumination accounts for the light coming directly from a
light source and reaching a surface point on the object. In addition, light reflected
off, transmitted through or refracted by other surfaces can also reach the same
surface point after multiple bounces and is called the indirect illumination. Thus,
in order to compute that total amount of illumination at any surface point on
an object we need to compute all the indirect illumination resulting from multi-
ple bounces across multiple surfaces in addition to the direct illumination from
the light source, as summarized in Equation 9.23 of Chapter 9. Such compute-
intensive complex light models can be extremely time-consuming and therefore
not suitable for interactive graphics. Therefore, much simpler illumination mod-
els are used to meet the interactive rates performance criterion.

The first simplification comes from assuming point light sources where we
will start our discussion. Second, only the direct illumination (i.e. the light that
comes at a point on the object directly from the point light source) is modeled
while all the indirect illumination (i.e. light that reaches a point after bouncing
multiple times from multiple objects) is combined under a single term called
ambient illumination.

Let us consider a single light source illuminating a surface point P with nor-
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mal N from the direction L and the eye looking at this point from the direction
V as in Figure 14.1. Let R be the vector formed by reflecting L about the normal
N. Note the similarity between the figures 14.1 and 9.1. Let the intensity of the
light be I. The ambient illumination I, is modeled very simplistically as

I, = ol (14.1)

where ¢, is called the coefficient for ambient illumination.

The direct illumination is mod-
eled in two parts — the view-
independent component (that re-
mains constant with change in view
point and direction) called the dif-
fused component and the view-
) ! dependent component (that changes
with change in view point and direc-
tion) called the specular component.
Figure 14.1. This illustrates the parameters Different illumination models differ in
for the simple ambient, diffused and specu- the way they compute the specular
lar illumination models at P. component. We will discuss the most

commonly used Phong Illumination
model named after Bui Tong Phong. But more complicated models (e.g. Cook
Torrance model) can also be employed for this purpose at the cost of performance.

The view-independent diffused illumina- 1

tion I is given by

Ii=cqI(N - L) =cqlcost (14.2)
Coss(d)
where ¢4 is called the coefficient of diffused re-
flection. Note the similarity of this equation
with Equation 9.22 in Chapter 9. ¢4 in Equa-
tion 14.2 is equivalent to p in Equation 9.22.
However, since the amount of light reflected
in the direction of the viewer is independent Figure 14.2. This figure shows the
of his location, ¢4 does not have any depen- function cos®(¢) for different val-
dency on V. ues of s.
A specular component of the Phong illumination model is given by

Iy = cslcos(R.V)® = csI (cos(¢))® (14.3)

where ¢, is the coefficient for specular reflection and s is a parameter that con-
trols the size of the view-dependent specular highlight. Figure 14.2 shows how
the cosine fall off becomes steeper as s increases to achieve this effect. Since R
depends on the incident direction L with respect to the normal vector IV, and
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p P P P
(a) (b) (c) (d) (e)

Figure 14.3. This illustrates effect of the parameters cq and cs of the simple illumination
model. (a) and (b) show diffused illumination where ¢4 for latter is smaller than that
of the former. (c), (d) and (e) show the specular illumination where (c¢) and (d) has
smaller s than (e) while (d) has smaller ¢; than (c) and (e).

the measurement of light is done in the outgoing direction V', the term c,(R.V)
in Equation 14.3 is equivalent to p(k;, k,) in Equation 9.22.

Figure 14.3 shows the effect of these parameters on the illumination. Assum-
ing that light direction, intensity and distance from the surface point remians
that same (given by L), we consider a sampling of the light vectors, indicating
the amount of light seen in that direction, in red. (a) and (b) shows diffused
reflection where equal amount of light is reflected in all directions illustrated by
the equal length of the red vectors. Therefore, the amount of light received by
the viewer V is the same irrespective of the angle between R and V. However,
(b) has a smaller ¢, illustrated by the fact that the vectors in (b) are shorter
than those in (a). (¢), (d) and (e) all show specular reflection where the length
of the reflected vectors, indicating the amount of light seen in that direction,
change based on how much the vector V' deviate from the reflected vector R.
If V is aligned with R, the light reaching V' would be the maximum and would
diminish as the angle between R and V reduce. Hence, specular illumination is
view-dependent. (d) has smaller ¢4 than (c) while the directions in which they are
reflected remain the same. However, (e) has a sharper view dependency shown by
a sharper lobe in the outgoing light direction. Therefore, s controls the sharpness
of the view-dependency as shown in Figure 14.2.

Figure 14.4 shows the effect of different parameters of the aforementioned
Phong illumination model. Note that with the increase in c,, the entire object
looks brighter and shows no dependence on the direction of light, as is expected.
On the contrary, when ¢y is increased the shadow effect becomes more prominent
since the directionality of the lighting plays a role. You can also see the effect
of ¢s and s on specular lighting. While ¢4 changes the amount of light reflected
without changing the size of the highlight, changing s changes the size of the
highlight.

Finally, Figure 14.5 shows the combined effect of the ambient, diffused and
specular illumination under a point light source. Athough the Phong model is



320 14. Realism and Performance

-

Increasing c,
Increasing c

Increasing ¢4 Increasing s

Figure 14.4. This figure shows the effect of our simple ambient, diffused and specular
illumination on an object.

Ambient Ambient + Diffuse Ambient + Diffuse + Specular

Figure 14.5. This figure shows the effect of our simple ambient, diffused and specular
illumination on an object from two different viewpoints.

restrictive and may not be able to provide the visual effect of a large number of

materials, it is quite effective in interactive applications due to its simplicity.
For both diffused and specular lighting, often an attenuation parameter is

used to model the attenuation of intensity of light as the distance from the source

increases. Therefore, instead of I we use % where f is a function dependent on

the distance d of the point light source from the surface point. Physically, f oc d?.
But in order to provide more control parameters to the application, f is defined
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Figure 14.6. This figure shows the effect of the same lights with flat (left), Gouraud
(middle) and Phong shading (right). Note how Gouraud shading misses the specular
highlight on the pyramid captured by the Phong shading.

as f = ad? + bd + ¢ where a, b and ¢ are parameters that can be set by the
application.

Recall that the aforementioned model assumed point light sources. Other
kinds of light sources are directional or area light sources. Directional light
sources are lights that shine in a single uniform direction, i.e. all the rays origi-
nating from the source are parallel to each other. Area light sources are more like
light panels instead of a point of light. Directional light sources are commonly
used in computer graphics to mimic strong distant light sources like the sun. Di-
rectional light sources can be modeled by point light sources that are infinitely
far away. Therefore, only the light direction vector L is used and the attenuation
factor is ignored (by assigning it to 1). Area or extended light sources are mod-
eled by a set of closely place point light sources. Another kind of light source
that is often useful in computer graphics is a spotlight. This is modeled as a light
source whose angular extent is restricted. The angle is given by the angle of the
cone defined by the point light source and circle on the surface that defines the
spot to be lighted by the spotlight.

14.2 Shading

Once we have computed the illumination at every vertex, we need to compute
the illumination of a point inside the triangle during rasterization. This process
of painting the interior of the triangle based on the illumination at the vertices is
called shading. There are three shading algorithms used in interactive graphics.

Flat Shading: Here we compute the illumination once for each triangle. This
can be done by averaging the normal vectors at the three vertices of the triangle.
Then, we can compute the color using an illumination model once for the entire
triangle and apply the same color to every pixel of the triangle during raster-
ization. The advantage of flat shading is its simplicity. However, an edge can
get two vastly different colors from the two triangles incident on it. Therefore,
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it creates a gradient discontinuity in the shading of the surface creating visible
artifacts, such as Mach bands.

Gouraud Shading: This technique is named after its inventor, Henri Gouraud.
Here, the RGB color is computed at each of the vertices using an illumination
model. The color inside the triangle is computed from the color at its vertices
using screen space interpolation. Therefore, an edge will always get the same
color from multiple incident triangles. This makes the shading continuous, but
cannot still guarantee gradient continuity. Hence, the Mach band artifacts are
less than in flat shading, but still exist.

A bigger problem of the Gouraud shading is diffusion or missing of specular
highlights. For a piecewise linear interpolation of a smooth surface, the interior
of the triangle represents a small smooth surface patch with smoothly varying
normal. One way to compensate for the shading artifacts in the piecewise linear
(or triangular) approximation of curved surfaces is to use accurate normals at the
vertices. Gouraud shading computes the illumination only at the vertices of the
triangle then using then normal at the vertices, and interpolates the color in the
interior of the triangle, without reconstructing the normals in the interior of the
triangles. Gouraud shading, therefore, cannot capture a specular highlight that
exists in the interior of the triangle but not at its vertices. This is essentially
the problem of not sampling the normals adequately when reconstructing the
shading function.

Phong Shading: To alleviate this problem, Phong proposed a shading model
in which the normal is interpolated across the triangle using screen space inter-
polation of its normals at its vertices during rasterization and then the color is
computed at each pixel using an illumination model. Note that this does address
the issue of inadequate sampling — per pixel sampling is the best one can do.
However, this still does not guarantee that the shading will have no gradient dis-
continuities. So, though Mach bands are greatly reduced, they are not entirely
non-existant with Phong shading. The differences among these three shading
techniques are illustrated in Figure 14.6. Also, note that Phong illumination is
a model for illumination, while Phong shading is an entirely different technique
for shading. Therefore, be careful not to confuse these two, just because they are
invented by the same person.

14.3 Shadows

Though we have discussed illumination models, we have not yet discussed ren-
dering shadows. However, shadows can completely change our perception of a
scene as shown in Figure 14.7. Note that the location of the spheres with respect
to the checkered ground is exactly the same in the image, but only with the
shadows can we perceive their correct height with respect to the ground.
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In the context of interactive rendering, we use a very simple definition of
shadows. If a point is not visible from the light source, it is in shadow with
respect to that light source. Also, we would not attempt to compute the exact
attenuation of each pixel in shadow for its accurate physical representation in the
form of umbra or penumbra. Instead we will focus on a relative attenuation of
the pixel color that would help provide the missing cues that location of shadows
provide (e.g. depth).

The primary concept behind shad-

ows is to detect if a particular screen

e a pixel is visible from the light or not. A

g a pixel is in shadow if the depth of the
3D point corresponding to that pixel

from the light is more than the value

in the z-buffer of the corresponding

reprojected rendering from the light.

The shadow pixels thus detected are

o o marked and stored as an image. This
0 means some other object with smaller
e e O - depth is in front of the 3D point in

front of the visible pixel as seen from
the light and therefore the 3D point
is in shadow. It is evident that to
make this decision, we have to render
the scene multiple times, once from
the light position and another time

Figure 14.7. This figure shows the percep-
tual effect of shadows on our perception of

depth. The position of the spheres with re- " he vi " Such N
spect to the checkered ground is identical rom the viewer position. Such meth-

in both images, but the height thereof only ods. are often Calle.d multi—.pass ren-
becomes clear with the presence of shadows. dering methods which we will explore
next in greater detail.

Let the first pass render the scene from the light’s viewpoint. Let Z; denote
the depth of a closest 3D point at a pixel, which is taken from the depth buffer
from the first rendering pass. Therefore, any 3D point that projects on the same
pixel from the light and has greater depth than Z; at that point will be in
shadow. The depth map consisting Z; for all pixels is called the shadow map
and is stored to be used in the later rendering pass. The 3D to 2D projection
matrix post view transformation, M, is stored and used in this pass. There will
be one shadow map associated with each light. Since we will only consider the
depth buffer in this stage, we do not need to render illumination or shading or
any other complexities during this first rendering pass.
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Put a Face to the Name

Bui Tuong Phong is considered one of the stalwart
figures in the advancement of interactive computer
graphics due to his work on a computationally in-
expensive simple illumination model that enabled
lighting at video rates of 30 frames per sec. He is
known for his famous quote “We do not expect to
be able to display the object exactly as it would ap-
pear in reality, with texture, overcast shadows, etc.
We hope only to display an image that approximates
the real object closely enough to provide a certain
degree of realism” which summarizes the philoso-
phy behind interactive graphics. Bui Tuong Phong
was born in 1942 in Hanoi, part of French Indo China. He later moved
to Saigon and then to France where he received his Licences Sciences
from Grenoble Institute of Technology in 1966 and his Diplome d’Ingnieur
from the ENSEEIHT Toulouse, in 1968. In 1968, he joined the Institut de
Recherche en Informatique et en Automatique (then INRIA) as a researcher
in Computer Science, working in the development of operating systems for
digital computers. He went to the University of Utah College of Engineering
in September 1971 for his Ph.D. and graduated in 1973 thereafter joining
Stanford as a professor. Phong knew that he was terminally ill with leukemia
while he was a student and died not long after finishing his dissertation.
Though he lived for only 33 years, he has left a long lasting impression in
the domain of interactive computer graphics.

Let us now consider the second pass of the rendering from the viewer. The
depth buffer, Z,, created in this process records the depths of only the 3D points
visible to the viewer. The rest of the 3D points are irrelevant in our context of
deciding whether it is in shadow or not. For these visible points from the viewer,
we need to find their depth from the light. Let us consider a 3D point P =
(X,Y, Z,) that is the final rendered point at (x,,y,) after 3D to 2D projection
(post view transformation) using matrix M, and occlusion resolution. We know
that .

1Ty
M =y (14.4)



14.4. Texture Mapping 325

Figure 14.8. This figure shows pipeline for rendering shadows. From left to right: The
3D scene rendered without shadows, the shadow map after the first rendering pass,
the points in the framebuffer which are in shadow denoted by non-green values, these
non-green pixel colors are attenuated to create the effect of shadow. Note that balls
cast shadow on each other also.

The depth of the same point from the light, Z!, can therefore be found using

xy X Lo
w =M v |=mpmt| R (14.5)
1 VA Zo
Zf) v 1

Multiplication by a 4 x 4 matrix M;M, ! matrix yields the projection and the
depth of the same point P from the light. If Z;(2;,;) < Z!, then the point P is
in shadow and the framebuffer at (z,,y,) is attenuated by a factor less than 1.0
to create the effect of shadow. The whole process is illustrated in Figure 14.8.

14.4 Texture Mapping

Texture mapping is the process of pasting a 2D image on an object in order
to increase the richness and visual detail of a digital scene. Texture mapping
uses three coordinate systems: 2D texture space, 3D object space, and 2D screen
space. Texture image’s 2D coordinates are defined in the 2D texture space. The
3D coordinates of the vertices of the object in the scene are defined in the 3D 0b-
ject space. Finally, the pixel coordinates of the interior of the projected primitives
of the object are defined in the 2D screen space. Each 3D vertex coordinate in the
object space is assigned a texture coordinate in the texture space. Screen space
is used during rasterization to map the image to the interior of the primitives of
the projected object during the texture mapping process.

14.4.1 Texture to Object Space Mapping

In this step a rectangular 2D image gets mapped onto an arbitrary 3D shape.
Informally, this is akin to gift wrapping a complex 3D object (e.g. vase, fruit
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bowl, a tray). The more complex the shape, the more difficult is this mapping

(e.g. a book is easy to gift wrap while a globe is not). Therefore, when mapping

2D images on complex shapes, different amounts of stretching or wrinkles in

different places can be seen which are completely dependent on the underlying

local geometry and how we choose to wrap the texture around it locally. Let us

define the texture space with two coordinates s and ¢ where 0 < s,t < 1. Let

(z,y, z) represent the 3D coordinate of the vertex in object space for which we

need to assign the 2D texture coordinate. In this section we will describe ways

to compute the 2D texture coordinates for 3D object coordinates. There are two
ways to compute such a mapping.

7 Parametric  Shapes:

A There are shapes that

have 2D parametric rep-

resentations, such as a

sphere or a cylinder. In

such cases, we will map

X the two coordinates of

v the texture space to the

/ two parameters used for

the parametric surface

Y . .
U representation. Consider

an example of a cylinder.
Figure 14.9. This figure shows the parametric representa- A 3D point (z,y, z) on a
tion of the object or surface to be texture mapped using cylinder of radius r can
two parameters for a cylinder (left) and sphere (right).

Y

be described using two
parameters: u, —180 < u < 180, defining the angle around the axis and v,
0 < v < 1, defining the height of the cylinder (Figure 14.9). Therefore, a 3D
point (x,y, z) on the surface can be expressed by the two parameters (u,v) as
follows.

x = rcos(u); (14.6)
y = rsin(u); (14.7)
z=0. (14.8)

By solving the above equations, we can compute the 2D parameters (u,v) asso-
ciated with any vertex (z,y, z) on the cylinder. Next, we can relate the (u,v) to
the normalized texture coordinates (s,t) as
u + 180
s=—0 14.9
360 ( )
t=nu. (14.10)

Similarly, a sphere can be parametrized by two angles u, —180 < u < 180,
and v, —90 < u < 90 (Figure 14.9). Again, we can define the 2D parametrization
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Figure 14.10. This shows the effect of parametrization on texture mapping. The two
different parametrization for the same triangle is shown along with the mapped (s, t)
coordinates at each vertex. Note that the appearance changes dramatically with two
different parametrization.

for a point (z,y,z) on the sphere as follows.

x = reos(v)cos(u); (14.11)
y = rcos(v)sin(u); (14.12)
z = rsin(v). (14.13)

The (u,v) coordinates related to a 3D point (x,y,z) can then be mapped to
texture coordinates (s,t) as

1
- LSO; (14.14)
360
v+ 90
t= . 14.15
180 ( )

The mappings from the (s,t) to (z,y,2) coordinates thus achieved in the
above two cases are called cylindrical and spherical mapping respectively. Once
the texture coordinates have been defined as above for every 3D vertex, the vertex
is colored based on the color at the mapped texture image coordinate (s, t). Note
that color is defined only at integer values of (s,t), often called texels. However,
after mapping, there is no guarantee that (s,t¢) will be integers. Therefore, if
(s,t) falls between integer values, the color value can be interpolated from the
nearest texels either by picking the color of the nearest texel or interpolating the
colors from the a few nearest texels in the texture.

An important point to note in the context of texture mapping is that the
appearance of the textured objects depends completely on the parametrization.
Let us consider a black and white checker texture on a triangle to illustrate
the importance of parametrization as shown in Figure 14.10. A planar trian-
gle is parameterized differently to create two different mappings of the texture
coordinates at its vertices creating two different appearances.

More Complex Shapes: For more complex shapes, it is difficult to find an easy
2D parametrization. In such cases, we enclose or project the complex shape to a
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prav

Figure 14.11. This figure shows a complex shape being texture mapped using a spherical
(top) and an orthogonal (bottom) mapping. The spherical mapping uses the normals
(left) or rays going out from the center of the object to pick the texture coordinates.

Figure 14.12. This figure shows orthogonal (left) and cylindrical (right) mapping on a
vase and a cylindrical mapping (top) and a spherical mapping (bottom) on a teapot.

simpler shape that can be easily parametrized and for which texture coordinates
can be assigned using the above method. Then we find a way to map vertices
of the complex shape to the vertices of the simple shape and assign the texture
coordinates to the corresponding vertex in the complex shape. Many methods
can be designed to achieve this mapping from the complex to the simpler shape
and we consider a few examples here.

The object can be enclosed in a simple geometry like a sphere (Figure 14.11).
At any vertex of the complex shape, the normal can be extended and the texture
coordinates at the point where this extended normal meets the enclosing simpler
geometry can be used as the texture coordinates at the vertex. Or, a ray can be
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drawn from the center of the complex object through the vertex at which the
texture coordinate needs to be assigned. The texture coordinate at the inter-
section of this ray with the enclosing simple geometry can be used to define the
texture coordinate at the vertex of the complex geometry. Similarly, a cylindrical
mapping can use a cylinder as an intermediate geometry. Far simpler mappings
can also be done. For example, the texture coordinates can be assigned by an or-
thogonal projection of the vertices on a textured plane. This is called orthogonal
mapping. Perspective projection mapping can also be used where the texture is
treated as the image plane in perspective projection. The texture coordinate at a
3D point is defined by the intersection of a ray that connects the single center of
projection to the 3D point. This is also called projective textures. Such textures
are often used to simulate the effect of projections in large theaters or virtual
reality environments.

However, the closer the geometry of
the object to the enclosing geometry, the
better the results achieved. Figure 14.12
illustrates this. The vase is closer to a
cylinder in shape and therefore the or-
thogonal mapping shows severe and unre-
alistic distortion than in cylindrical map-
ping. Even in cylindrical mapping dis-

Figure 14.13. A texture mapped poly-
gon with depth going from the front
to back. The texture coordinate as-
signment on the left does not account
for perspective projection and there-
fore the shrinkage of the checkerboard
squares is only in the horizontal direc-
tion due to the trapezoidal shape of
the polygon. The size squares of the
checkerboard on the right change based
on the depth due to the perspectively
correct texture coordinate assignment.

tortions are high only in places that de-
viate from the cylindrical structure like
the neck and the base of the vase. How-
ever, for some objects like the teapot, it
maybe hard to choose an enclosing geom-
etry since it is close to both a sphere and
a cylinder. In such cases, note that the
distortions do not differ too much other
than the colors that land in specific re-
gions of the object and it is entirely up
to the user’s discretion to choose the one
that is best for their applications.

14.4.2 Object to Screen Space Mapping

After assigning texture coordinates to vertices, it is treated like any other at-
tribute such as color. The texture coordinates in the interior of the triangle
are interpolated and computed from those at the vertices. This interpolation is
computed during rasterization.

We have learned in the last chapter that correct interpolation of depth in
screen space is achieved by interpolating the reciprocal of the depth. Let us
consider two points P; and P, in 3D with depth Z; and Z5. Let us consider
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the depth Z; of a point P, on the line connecting these two points given by the
parameter ¢, 0 < ¢ <1 as

Zy =71+ q(Zy — Zv). (14.16)

We know from Chapter 13 that if the screen space parameter for the same point
is given by p, 0 < ¢ < 1, then

1 1 1 1

N - = 14.17

Z, Zl+p<22 Zl> (14.17)
From the above two equations we can find the relationship between p and ¢ as

j 24!

= 14.18
9 pZ1+ (1 —p)Zy ( )

When interpolating the texture coordinates we would like to achieve the correct
coordinate based on their correct depth. Therefore, if the mapping from the
texture space to object space assigns texture coordinates 77 and T, to P; and
P, respectively, then the texture coordinate at F, is given by

Ty=Ti+q(T>2 - T1) = (% ’ (12 - %)) (14.19)

Zq

Figure 14.13 shows the effect of perspectively correct texture coordinate assign-
ment.
Instead of coloring a vertex from

the object color, texture coordinates

provide a color that is picked up from

a texture. Therefore, texture mapped
(a) (b) (c) (d)

objects can be illuminated just as a
colored object is illuminated. One can
Figure 14.14. This figure shows the spher- compute a diffused or phong illumina-
ical mapping of the texture (a) on the 3D  tion based on the color picked from
sphere (b) and 3D cylinder (c). The texture  the texture to have an illuminated
mapped sphere in (b) is now illuminated in  {oytyred object as shown in Figure

(d). 14.14.

14.4.3 Mipmapping

The final rendered primitive gets assigned a texture coordinate at every pixel in
it. Therefore, one can think of the pixels in a triangle as samples of the texture
image. For example, if one side of a triangle is rasterized to have 5 pixels and
is mapped along one side of the texture image that is 180 texels in size, we
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are expecting these 5 pixels to sample a function of 180 pixels and provide an
accurate representation. As we know from the Nyquist sampling criterion that
this leads to undersampling and therefore incorrect reconstruction of the signal.
This problem is illustrated in Figure 14.15. Let us consider the rasterized tri-
angle on the right shown by the gray pixels. The center of these pixels are shown
with different colored dots and the corresponding interpolated texture coordi-
nates during rasterization are shown with similar colored dots on the texture.
Note that since these coordinates sample the texture at much lower frequency
than is desired to capture the stripes, though the triangle is supposed to get
an appearance of green and white striping via texture mapping, it will end up
appearing a flat green. This is the artifact of aliasing due to insufficient sampling
of the texture via the pixels of the rendered triangle.
t The best way to avoid this prob-
i lem is to keep a Gaussian pyramid
of textures where the texture is fil-
tered to have different frequency cut
offs. Based on the number of pixels in
@il e the rendered triangle an appropriate
level of the Gaussian pyramid is cho-
sen such that the pixels are more than
> double the size of the texture at that
level and can therefore capture all the
different frequencies in it adequately.

Figure 14.15. The colors picked by the pix-

els of a rasterized triangle (right) from the L ider th be of
texture (left). Note that though the texture et us consider the texture to be o

. N N . . .
is that of green stripes, the triangle will only ~ S14€ 2% x 27 organized in a Gaussian
get painted a flat green. pyramid with in(N) levels where the

image at level i, 1 < In(N), is of size
. Mipmapping offers a compact way to store this Gaussian pyra-
mid. The size of the mipmapped RGB texture is 4 x 2V x 2V bytes. The image
is divided into four quadrants, each of size 2%V x 2. Three of these are used to
store the R, G and B channels of the first level of the Gaussian pyramid while
the fourth one is used to store the next level RGB image of size 2V ~1z2V-1,
The fourth quadrant is recursively divided into four quandrants as before to
store the R, G, and B components separately, and the fourth quadrant is again
used to store the next level of the RGB image of size 2V =222V =2, This continues
until the original image is filtered down to a single pixel image. The sequence
of images is also called a Gaussian pyramid representation. During run-time the
appropriate level of the pyramid is accessed based on the instruction provided
in the application program. Figure 14.16 shows the mipmap organization and a
scene rendered with and without mipmapping.

2N77L+1 X 2N7i+1
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. 2 x 2N .
T.(R) T,(6)
° TR)| T,(6)
T,(8)
‘ T,(8)

Figure 14.16. This figure shows the Gaussian pyramid organized in a mipmap (left)
and rendering a ground scene viewed from an oblique perspective texture mapped with
a checkerboard without (middle) and with (right) mipmapping being used. Note the
strong aliasing artifacts without mipmapping is removed once mipmapping is applied.
The gray that is visible at the distance area of the ground is exactly how our brain will
perceive this scene.

14.5 Bump Mapping

Bump mapping is a technique by which we can simulate the effects of small
bumps on the surface of an object without changing the number of primitives,
as shown in Figure 14.17. The two tori in this figure have the same number
of triangles. But one looks much richer geometrically than the other due to
the bumps. Note that both objects are also texture mapped with a blue and
yellow texture. The bumps are simulated by perturbing the normal vectors in a
predefined way so that the lighting changes in a manner that is consistent with
the presence of the bump. This makes us perceive the bumps even if they are
absent in the mesh.

Let us consider a surface parametrized
with two parameters (u,v). This is akin to
what we did for texture mapping. Let us con-
sider the point P(u,v) with normal N. Let P,
and P, denote the tangents at P in v and v
direction respectively. In bump mapping, we
Figure 14.17. The same object want to perturb the normals at the vertices
rendered without bump mapping  hased on a scalar bump function B(u,v). Con-
(left) and with bump mapping gider B to be a gray scale image where white
(right). indicates the maximum bump and black the
minimum. Therefore, we would like to move the point P(u,v) to P’(u,v) in the
direction of its normal such that

P'(u,v) = P(u,v) + B(u,v)N. (14.20)
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(a) (b) (c)

Figure 14.18. This figure shows the bump image B(u,v) (a), its derivative in u, B,
direction found by subtracting every pixel from its right neighbor (b), its derivative in
v direction, B,, found by subtracting every pixel from its bottom neighbor (c), and the
normal map (d).

Note that the above addition is a vector addition. Given this displacement, we
would like to find the perturbed normal so that we can use this normal in illumi-
nation computation instead of N. For this, we find the tangent vectors P, and

P! in u and v direction respectively at the displaced point P’(u,v). These are
given by partial derivatives of Equation 14.20 in u and v directions as
P! = P, + BuN + BN, = P, + B,N, (14.21)
P/ = P, + B,N + BN, = P, + B,N, (14.22)

where B, and B, are the partial derivatives of the bump function in the horizon-
tal and vertical derivation. Although N,, and N, represent directional curvatures
along u and v, assuming a locally planar surface we consider them to be zero, i.e.
N, = N, = 0. Figure 14.18 shows an example bump image and its derivative,
B, and B,, obtained by subtracting the value at a pixel from its right (or left)
and bottom (or top) neighbor respectively.

Therefore, the perturbed normal N’ at P’ is given by

N' =P, xP (14.23)
= P, x Py + By(Py x N) + By(P, x N) + B,By(N x N) (14.24)
=N+ B,(P, x N)+ B,(P, x N) (14.25)

since N x N = 0. Note that N, P, x N and P, x N are unit vectors that are
orthogonal to each other. Therefore, they define a local coordinate system at
P with P, x N, P, x N and N denoting the X, Y and Z coordinates respec-
tively. Therefore, the coordinates of N’ in this coordinate system are given by
(Bu, By, 1). Therefore, we can store these perturbed normals as an image whose
RGB value at location (u,v) is (By, By, 1) and denotes the perturbed normal at
(u, v). This image will be bluish in color and is called a normal map, denoted by
n(u,v) (Figure 14.18).



334 14. Realism and Performance

Figure 14.19. This figure shows some results of bump mapping: Original object on the
left, the bump image in the middle and the bump mapped object on the right.

We can now use this normal map to achieve the bump mapping using the
following steps.

1. Define a local coordinate system at parameter (u,v) on a surface using its
normal and tangent vectors.

2. Find the transformation from the global coordinate system to this local
coordinate system.

3. Transform the light and view vectors to this local coordinate system.

4. Find the perturbed normal n(u,v).

5. Compute the lighting using the perturbed normal and the transformed
light and view vectors.

Figure 14.19 shows some re-
sults. Can you see what is miss-
ing? First, note that no bumps
show up at the silhouette. This is
because there is no real displace-
ment of pixels and the silhouette
where geometry is most easily vis-
ible fails to fool the eye. Also,
since geometry is not changed,
Figure 14.20. This shows an example of dis- self shadowing effects are not vis-
placement map of a sphere. ible giving the trick away.

Another technique, more commonly called a displacement map actually per-
turbs the geometry from P to P’ guided by an image. In this case, microgeom-
etry needs to be created and rendered, something that the bump-map avoids.
With displacement map, therefore, we can see the bumps at the silhouettes,
self-occlusions and self-shadowing. Figure 14.20 shows an example.
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14.6 Environment Mapping

In the real world, we often see objects that are extremely shiny (Figure 14.21).
Environment mapping, also referred to as reflection mapping, is a technique used
in computer graphics to render such shiny objects interactively. The key feature
of a very shiny object is that you can find the entire environment reflected off it.
Sometimes the environment in which people are (e.g. home, cafe) are not inside
the field of view of rendering, but can be deduced from the reflection of this
environment off the rendered shiny object. However, to create such an effect can
be quite expensive via accurate tracing of light rays between the object and the
environment. Such accurate rendering will also show the effects of self-reflection
(e.g. the handle of the teapot reflected off its main body as in Figure 14.21). As
we already know, this is rather complicated to achieve in interactive graphics.
We can achieve a rudi-
mentary approximation of the
accurate reflection of the en-
vironment off a shiny object
by first creating, what we call
an environment map. This
is a simple geometry (e.g. a
cube or a sphere) on which
the environment is mapped. In real world, this can be achieved by taking an
image using a fish eye lens. This image has 180 and 90 degrees horizontal and
vertical field of view respectively. Two such images (left and right or top and bot-
tom hemispheres) can create a spherical environment map. For a digital scene,
one can employ a multi-pass rendering of a digital scene, where each pass gener-
ates a face of a cube of a cubic environment map. Six passes will be required to
capture the entire field of view from a viewpoint placed at an appropriate loca-

Figure 14.21. Examples of real world shiny objects.

Figure 14.22. This shows a cubic and spherical environment map. The cubic map is
shown unfolded (middle) and is generated by using a 6-pass rendering each rendering
a face of a cube (left) seen from the center of the cube. The spherical map (right) is
generated from images of a cafe taken using a fish-eye lens camera.
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tion, maybe the center of the object on which the environment will be mapped.
Alternatively, a spherical environment map can also be created by a ray tracing
process where rays are traced from the center of the sphere out to the environ-
ment. The color of the point in the environment where the ray hits first is used to
color the point where the ray meets the sphere. Figure 14.22 shows an example
of a cubic and spherical environment map.

Fun Facts

Reflection mapping have been used in movies for a long time, especially on
robots in science fiction movies, even before it became a common computer
graphics technique. The technique was developed independently by Gene
Miller working with Ken Perlin, and also by Michael Chou working with
Lance Williams, around 1982 or 1983. The first two instances in which re-
flection mapping was used to place objects into scenes were of a synthetic
shiny robot standing next to Michael Chou in a garden, and of a reflective
blobby dog floating over a parking lot. In 1985, Lance Williams was part of a
team at the New York Institute of Technology who used reflection mapping
in a moving scene with an animated CG element in a piece called “Interface”
that featured a young woman kissing a shiny robot. In reality, she was filmed
kissing a 10-inch shiny ball, and the reflection map was taken from the re-
flection of the ball. The first feature film to use the technique was Randal
Kleiser’s Flight of the Navigator in 1986 to render a shiny morphing space-
ship flying over and reflecting fields, cities, and oceans. Its ground breaking
appearance as an instrument concept exhibited through a movie was in films
by James Cameron, The Abyss and Terminator 2.

Once the environment map is generated, it is mapped onto an arbitrary
shaped object in a fashion which is very similar to texture mapping on complex
surfaces, but is guided by the location of the viewer with respect to the object. In
Figure 14.23, let us consider the arbitrary blue shape to be environment mapped.
Let us consider a spherical map enclosing it. Let P be a vertex on the object
whose environment map coordinates (i.e. the coordinates on the spherical map
whose color will be picked to color P) we would like to compute. Let V' be the
view vector usually achieved by connecting the viewpoint to P. Let N be the
normal at P. Reflecting V' about N creates the vector R. Note that if the blue
shape were mirror like shiny object, the 3D point where R hits the environment
will be the color seen by the viewer after getting reflected off P. This point is
captured by the point ) where a ray R’ parallel to R passing through the center
of the spherical map intersects the environment map. Therefore, the point @ will
be mapped on to P thereby imparting its color to P.
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Figure 14.23. Left: The figure illustrates the environment mapping process for mapping
the blue geometry enclosed in the spherical environment map. @ is the point mapped
at P on the object. Middle: This shows a torus mapped using the cubic environment
map in Figure 14.22. Right: A wine glass mapped using the spherical map in Figure
14.22.

However, since we do not do an accurate environment map computation
we do miss out on some effects. For example, we cannot see self-reflections, a
very common phenomenon in reflective objects as in the reflection of a spout
or a handle of a teapot off the surface of the teapot. So, environment mapping
creates a compelling realism via only a rudimentary approximation of the real
phenomena. But such anomalies may go unnoticed to a few, such as a gamer in
interactive gaming applications.

14.7 Transparency

So far, we have only considered rendering opaque objects. However, we encounter
a large number of materials in the real world which are transparent or translus-
cent (e.g. glass, liquids). In order to achieve interactive rendering of such objects,
we introduce the concept of alpha blending. For this, we introduce a new channel
of attributes in addition to the 3-channel RGB color. This is called the alpha
channel, A. The alpha value A allows a rendering application to have a fractional
contribution of the color from a source pixel S (i.e. the color of the pixel that
is being rendered) blended with a fractional contribution from the destination
pixel D (i.e. the color already existing in the framebuffer at that pixel). Let the
color at S and D be (s, Sq, 5p, Sa) and (d,, dg, dy, d,) respectively where s, and
d, are values of the alpha channel. Note that prior to the introduction of the
alpha channel, we assumed that the new value at the destination pixel D’ = S,
i.e. the new source color replaces the destination color.

However, in alpha blending, we adopt a more general way to achieve D’ as a
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combination of D and S given by
D, = fs(saada)s+fd(8a’da)D (1426)

where f; and fy provide fractional values between 0 and 1. Note that the above
equation is general and can be used to achieve a large variety of effects by different
choices of f; and f;. For the particular case of transparency or translucency, the
functions we use are

D' = 5,54 (1 —s4)D. (14.27)

Therefore, if the pixel being ren-
dered is transparent, s, = 0 achiev-
ing D' = D, ie. the destination
pixel will not change color at all since
the source pixel is transparent. If the
source pixel is opaque, as we have

been assuming so long, then s, = 1.

Therefore. D' = S. ie. the desti- Figure 14.24. This figure shows the effect
’ of alpha channel blending. Left: Chicken=1,
Egg=0; Middle: Chicken = Egg = 0.5;
Right: Chicken=0, Egg=1.

nation pixel gets overwritten by the
color of the source pixel. If s, is any
other fraction between 0 and 1, we
would get a combination of the source and destination colors to create the effect
of translucency. Figure 14.7 shows the concept. Assume the egg to be the source
and chicken to be the destination. The images from left to right are achieved
with the above functions for transparency using s, = 0, 0.5 and 1 respectively. It
should also be noted that the order in which the translucent objects are drawn
also determines the final color. Let O; and Os be two objects with alpha values s;
and sy respectively. Let B be the background color to start with. If Oy is drawn
first and then Og, then the final color will be Ogs9 + (1 — $2)(0O181 + (1 — s1)B).
If the order is reversed, then the final color using the same blending function
will be O151 + (1 — 51)(O282 + (1 — s2)B). Obviously, these two might result in
different colors.

However, to achieve translucency correctly, there is depth to be considered.
Only alpha channel manipulation will not work. Let us consider the following
scenarios in Figure 14.25 to illustrate this. Consider the image plane shown by
the horizontal line and the line of sight shown by the vertical dashed line. Three
objects are shown. A is opaque while B and C are translucent. Their order of
rendering is shown by the numbers on the right. In the first case (left), B will be
rendered first and then its color will get attenuated by the alpha value of C| s..
However, next the attenuated color will be completely replaced by the color of
opaque A. However, physically since B and C are in front of A, we should see a
combination of colors of all of A, B and C. Therefore, the result is wrong. In the
second case (right), A will be rendered. Following this, during rendering of C,
the framebuffer will be attenuated based on the alpha of C, s., and then again
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attenuated by the alpha value of B, s;. Therefore, the final color will be the
color of A attenuated by sps.. However, note that since B is behind opaque A,
physically s, should not attenuate the color of A in the final rendering. Therefore,
this result is also wrong.

These examples are designed to B

drive the point that the depth of A A 3
o . . ——— 3 —

a primitive is very important for

transparency or translucency and we Be——1

need to account for that. In order C ———2 C———=2

to achieve that without compromis-

ing performance, we assume that the Image Plane

number of transparent objects in the

scene is relatively small. Therefore, Figure 14.25. This shows different scenarios
first all the opaque objects are ren- of depth order arrangement of translucent
dered which resolves occlusion via the ~and opaque objects to evaluate their ren-
depth buffer. The depth buffer is then ~ dering based on alpha blending.

set to read-only which allows it to retain the depth of the rendered opaque ob-
jects. Then the pixel of a translucent object is rendered only if the pixel passes the
z-buffer test, i.e. if no opaque object is in front of it. Further, the translucent/-
transparent objects are drawn from back to front in order to get the composition
of the colors correct. 14.26 shows some renderings using this technique.

14.8 Accumulation Buffer

An accumulation buffer is a higher precision frame buffer that is used to accumu-
late multiple images in real time rendering. The higher precision of the accumu-
lation buffer allows higher precision sum, multiplication or division of images. It
can be used to achieve several effects like blending, depth of field (simulating the

Figure 14.26. The figure shows rendering of transparency using alpha blending. Addi-
tional effects of lighting, shadows and texture mapping are included in the renderings.
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Image Plane Image Plane

Figure 14.27. The figure shows rendering anti-aliasing via jittering view settings using
an example in 2D. The red and blue show the two different view frustums along with the
rays they sample. Left: The view frustum is jittered. Right: The view point is jittered.

effect of human eye where only objects at a certain depth appear focused while
others are blurred) or anti-aliasing. Here we will see how an accumulation buffer
can be used for anti-aliasing. One way to achieve anti-aliasing is to sample each
pixel more than once and then average the samples. This achieves the effect of
rendering the image at a higher resolution and then low-pass filtering it.

The process starts by clearing the accumulation buffer. One way to sample
multiple values for the same pixels is to jitter the view settings so that the
center of the rendering pixels moves slightly but remains within the pixel. This
can be easily achieved by moving the image plane slightly. The scene is then
rendered multiple times, each time with different jittered view settings given by
a slightly moved image plane or slightly moving the view frustum or the viewer
position (Figure 14.27). Each of these renderings is weighted by a fraction and
accumulated in the accumulation buffer to achieve a low pass filtering. The final
anti-aliased result is moved to the frame-buffer for rendering.

14.9 Back Face Culling

When we render closed abjects, there are certain parts of the object which are
back facing and therefore occluded by its front facing parts. Consider a sphere.
Anytime we look at it from any conceivable view direction, only a hemisphere
can be seen while the other one will be at the back occluded by this visible
hemisphere. We can improve the rendering performance considerably if we can



14.9. Back Face Culling 341

prevent the back facing primitives from going through the rendering pipeline.
Back face culling is a technique by which we detect such back facing polygons
and remove them from using up computational resources to go through the
model, view and projection transformations.

Put a Face to the Name

Jim Blinn, a retired scientist, educator and in-
dustrial legend, is considered as one of the father
figures of computer graphics (CG), in particular
in light-matter interaction. He is the first person
to introduce concepts of bump and reflection map-
ping which provided a very powerful tool to early
computer graphics animators. Though the shading
model using normal interpolation goes by Phong
shading model, it should be more accurately called Blinn-Phong shading
model since Blinn worked together with Phong on this model. Blinn was
born in 1949 and received his bachelors degree from University of Michigan
in 1970. He received his PhD from University of Utah in 1978. He first be-
came widely known for his work as a computer graphics expert at NASA’s Jet
Propulsion Laboratory (JPL), particularly for his work on computer graph-
ics animations for various space missions to Jupiter, Saturn and Uranus,
especially the Voyager project. These animations were shown on many news
broadcasts as part of the press coverage of the missions and were the first
exposure to computer animation for many people in the industry today. He
is also known in the computer graphics community for his enthusiastic and
inspirational role as an educator, mentor and a visionary. His columns ” Jim
Blinn’s Corner” (today published as a book by Morgan Kaufman) has in-
spired many to take computer graphics as their calling. These were articles,
covering math, graphics pipelines and a wealth of tips and tricks which al-
ways kept graduate students motivated to work on the next big thing. He is
well known for creating animation for three television education series: Carl
Sagan’s Cosmos: A Personal Voyage; Project MATHEMATICS!; and the pi-
oneering instructional graphics in The Mechanical Universe. His talks in CG
venues are still very popular due to his reputation of throwing a challenge
to the community. In 1998, in a keynote talk in SIGGRAPH (the premier
CG conference) he asked the CG community ”to figure out to drop a piece
of spaghetti onto the plate and how it squiggles up and model the sauce on
there for the frictional coefficients and so forth”. This led to a large amount
of research finally resulting in accurate CG simulations of protein foldings.
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Figure 14.28. The figure shows back face culling in action in wire frame rendering of
a cylinder (left) and torus (right). For each, you see the model rendering without back
face culling on the left and with back face culling from the same or different viewpoint
on the right.

To achieve this we can apply a very simple test. Note that any front facing
primitive will have a normal vector whose angle with the view direction (from
the vertex to the view point) will be within —90 to +90 degrees i.e. its cosine
is positive. The sign of the cosine can be computed using N.V where N is the
normal to the plane of the triangle and V' is the view direction. Therefore, if this
dot product is greater than 0, then these primitives should be rendered, otherwise
they are discarded. This process is called back-face culling. Obviously, back-face
culling cannot be used with transparent and translucent objects. Figure 14.28
illustrates the process of back face culling.

14.10 Visibility Culling

When we navigate a scene, usually the view frustum has a limited horizontal and
vertical field of view. Therefore, objects which are not within this view frustum
(e.g. objects behind us) are invisible and we should not spend resources to render
those objects. Therefore, instead of making these objects go through the entire
pipeline and be culled away in the last stage of clipping, the performance can
be improved tremendously if objects which are not inside the view frustum are
culled away very early in the pipeline. This process is called view frustum culling
and is illustrated in Figure 14.29. Only the objects within the frustum or which
intersect the frustum are rendered. The purple torus intersects the view frustum
though it is only partially inside the frustum. Such objects are special cases and
are handled appropriately. In the next few sections, we will introduce methods
for achieving view-frustum culling with wireframe objects that shows exactly the
triangles that are rendered and those that are culled.

14.10.1 Bounding Volumes

The first method consists of defining a simple bounding volume around each
object in the scene - e.g. a cube or a sphere. This bounding volume should be
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Figure 14.29. The figure shows the view frustum and all the objects in the scene (left)
and then shows the objects which has been culled away by the view frustum culling by
(right) using no color on them.

the smallest possible volume that encloses the object. Then, instead of checking
if every triangle of the object is inside the view frustum, we can first check if
the bounding primitive is completely inside or outside the view frustum. If it is
completely inside, the whole object has to be rendered. If it is completely outside,
the whole object is culled. These two are the most common cases and lead to
quick culling of all the objects that are clearly outside the view frustum. The
small cases of objects whose bounding volume intersect the view frustum needs
to be treated differently. The easiest way to deal with them is to retain them for
rendering and let the screen space clipping of the rendering pipeline clip away
the part outside the view frustum. A more complex approach is to subdivide
the object into multiple smaller objects and test their bounding volumes against
the view frustum and go down the hierarchy of only those smaller objects whose
bounding volume intersects the view frustum. The choice of the geometry used as
bounding volumes are typically simple ones such as spheres and cuboids, whose
intersection with the view volume can be efficiently computed. Bounding volumes
should also bound the given object tight in order to reduce false positives during
intersection computations.

Bounding Box: The first bounding volume that comes to mind is often a
bounding box. A simpler bounding box is an axis-aligned bounding box that can
be computed using the minimum and maximum extents in the X, Y and Z values
of the vertices of the object. The box thus defined is the smallest box enclosing
the object such that the the edges of the box are parallel to the X, Y, Z axis
of the world coordinate system. Note that if the model is rotated, this box may
not be axis aligned anymore and hence a new axis aligned bounding box has to
be computed for the transformed object.

Each plane of the view frustum divides the 3D space into two half-spaces —
one that is inside the frustum and the other which is outside the frustum.
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The bounding box is tested against each of these planes to see if it is inside,
outside or intersecting the plane. If the bounding box is outside any one of the
planes, the object is outside the view frustum and no further testing with planes
is required. If the object is inside all the six planes, only then is it completely in-
side the view frustum. If the object is intersecting one or more of the planes and
is not outside of any of the six planes, then it is intersecting the view frustum.
Figure 14.30 shows the axis aligned bounding boxes for the different objects in
dotted blue lines. Therefore, the next step is how to compute the intersection of
a bounding box with a plane that comprises testing all the eight points of the
bounding box. If they are all outside or all inside, the object is completely out-
side or on the same side of the frustum respectively. If not, then it is intersecting
the frustum.
n Note that more often than not, an
Pt :'-fj;/-: axis-aligned bounding box has a large
™y amount of empty space and therefore
is a rather inaccurate approximation
of the volume occupied by the object.
A more accurate approximation can
be achieved via an oriented bound-
ing box (OBB), as shown in solid blue
lines in Figure 14.30. The three direc-
tions of the OBB are computed via a
principal component analysis of the
vertices of the objects and then find-
ing the maximum extent of the ob-
ject in those directions. The advan-
tage of the OBB is that the OBB need
not be recomputed with transforma-
tions — rotations, scaling and trans-
lations. The same transformation ap-
plied to the object when applied to
the OBB generates the OBB for the

Figure 14.30. This shows the axis aligned
bounding box (in dotted blue) and axis

aligned bounding box (in solid blue) for .
different objects and the trapezoidal view transformed object. To learn about

frustum (in solid blue) during view frustum OBBs in detail, refer to [Gottschalk
culling. The ball is culled out, the teddy is ©t al. 96].

accepted for rendering while the pyramid is However, the intersection compu-
considered to be intersecting with the view tation of an oriented bounding box
frustum during the process. with a plane of the view frustum is

more complicated. In this case, first the two diagonals that pass through the
center of the oriented bounding box are computed. Next, one of these two di-
agonals which has a closer alignment with the normal of the plane is chosen.
The endpoints of this diagonal form the closest and farthest points in the OBB
from the plane. If both the endpoints of this diagonal are inside or outside the
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plane, the object is completely inside or outside the plane respectively. If not, it
is intersecting the plane. This is illustrated in Figure 14.30. Let us consider the
bounding box for the red ball. When considering the far plane of the frustum,
AB is the diagonal which is closer in alignment to the normal to the far lane.
Therefore, the inclusion test has to be run on the nearest and farthest point, A
and B, respectively. However, when considering the left plane, the closest and
the farthest points are C and D respectively.

Bounding Sphere: Bounding spheres can also be used as bounding volumes. In
this case, the intersection computation becomes even simpler. First it is detected
whether the center of the sphere is inside or outside the plane. Next the distance
of the center of the sphere from the plane is computed. If this is smaller than
the radius, then the object is intersecting with the view frustum. If the distance
is bigger than the radius, then the object is accepted or culled based on its
center being inside or outside the plane respectively. Bounding spheres are not
affected by the rotation of the enclosed object, and if the object is translated, the
bounding sphere is also translated by the same amount. So it is easy to update
the bounding sphere with rigid transformations of the enclosed object.

14.10.2 Spatial Subdivision

Object space subdivision using bounding volumes as seen in the previous section
can adapt to unique shapes of the objects and are effective in applications such
as collision detection and view frustum culling. However, in applications that
requires computation of relative positioning of objects, for example, from a view
point in a particular direction, spatial subdivision of the scene becomes more
useful than object level subdivision. A few spatial subdivision techniques in 3D
include octree, k-d tree, and binary space partitioning. We will discuss octree
subdivision in this section. For an in-depth treatise on other kinds of spatial
partitioning techniques, refer to [Jimenez et al. 01].

The octree is a tree data structure where each node has eight children nodes.
The root node corresponds to the axis-aligned bounding box of the entire scene
defined by minimum and maximum coordinates in the X, Y and Z directions.
This bounding box is subdivided into half in each of the X, Y and Z directions
to partition the space into eight equal sized bounding boxes, each associated
with a child node of the parent. Therefore, the space associate with each child
is completely contained in the space associated with its parent and the union of
the spaces of all the children creates the space of its parent. This continues in a
hierarchical manner for each child thus creating a tree in which every node has
eight children, as shown in Figure 14.31. Note that there is no need to associate a
bounding box with every node since the bounding box at the root node provides
a predefined subdivision that defines the extent of every box in the tree which
can be computed very easily during the tree traversal.

For spatial subdivision in graphics applications, each node stores a list of
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indices of primitives contained in its corresponding bounding box. If any box
has only one primitive in it, that node will not be subdivided any further and it
becomes a leaf node. If a primitive intersects more than one sibling node, it can
be handled in two different ways. It can be split across the boundary to have
different parts of it contained in the different boxes. Or, it can be repeated in all
the boxes in which it partially belongs. Octree construction involves populating
the tree nodes with an index list and is performed as a pre-processing step.
Let us discuss the use of octree
. in view frustum culling application.
(root) During runtime, the view frustum
will be cutting through the bounding
box defined at the root. The scene is
rendered by the following algorithm
n_njn_ﬂ starting at the root. If the bounding
(1 levely box at the node is completely inside
the view frustum render the triangles
associated with it. If the bounding
box at the node is completely out-
side the view frustum reject it (do
nothing). If the bounding box at the
node intersects with the view frustum
apply the process recursively to all
its children. This algorithm achieves
a depth first traversal of the octree
and a cut of the tree for each view
frustum that is rendered. This is il-
lustrated using a quadtree for a 2D
curve in Figure 14.32. In the 2D case, each box will be subdivided into four
equal sized bounding boxes.

(2 Levelsh

Figure 14.31. This figure illustrates how the
octree is build by hierarchical spatial sub-
division.

14.10.3 Other Uses

Bounding volumes and spatial subdivision techniques are used in many appli-
cations other than view frustum culling. One common application is collision
detection widely used in games and scientific simulations. Examples are a digital
pool game or a simulation of pistons in an engine. In such applications, objects
move based on some rules and if they collide, it should be detected and an ap-
propriate action should be taken. For example, in pool if two balls collide they
should be reflected in opposite directions. A collision is detected when one or
more of the triangles in an object intersect with one or more of the triangles in
another object or with itself in case of self intersections in non-rigid objects. The
brute force way to compute this is to intersect every triangle in one object with
every primitive in the other. As is evident, this leads to a tremendous amount
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Figure 14.32. Left: We consider a quadtree for a 2D curve (instead of octree for 3D
surface) to illustrate the concept. The tree created has four children listed from left
to right as the top-left, top-right, bottom-left and bottom-right boxes contained in the
node. The red dotted line shows 2D the view frustum and the corresponding cut in the
quadtree. Right: We show the spatial subdivision of a 3D bunny model into an octree.

of computation. For example, for objects with around 1 million traingles, it will
lead to 102 intersection computations that can hardly be achieved in interactive
rates, a mandatory requirement in such applications. Therefore, bounding vol-
umes are used for fast rejection of non-collision and spatial subdivision is used
for fast detection of candidate collisions.

Each object maintains a bounding volume data structure using hierarchical
spatial subdivision by modifying the octree-based spatial subdivision slightly.
This is called hierarchical bounding volumes where, unlike octree-based spatial
subdivision, the bounding box at each node is not a pre-determined half-way
subdivision of the parent bounding box. Instead, it is the smallest bounding
box that fits all the triangles in the bounding volume created by the half-way
subdivision of the parent bounding box. But, the list of triangles associated with
each node of the hierarchical bounding volumes is identical to the octree-based
spatial subdivision. Therefore, unlike octree-based spatial subdivision where the
bounding box at each node need not be stored but can be easily derived from the
bounding volume at the root of the tree, the bounding volume has to be explicitly
stored at each node of the hierarchical bounding volumes. Figure 14.33 illustrates
this difference using an example in 2D. The green, red and magenta show these
tightest fitting bounding boxes at levels 0(root), 1 and 2 of the tree respectively.

To detect collision between two objects, bounding volume intersection tests
are first performed at the level 0 of the hierarchical bounding volume repre-
sentation of the objects. No collision between the bounding volumes implies no
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collision between the enclosed objects. If the bounding volumes collide, there is a
possibility that the enclosed objects will collide. Note that the bounding volumes
can collide in the empty regions of its volume. Therefore, a collision of bounding
volumes does not always imply a collision of objects. If the bounding volumes in-
tersect, pairwise intersection tests between the bounding volumes of the children
nodes are performed. Therefore, the above process is repeated on the bounding
volumes of the children nodes recursively. The trees are thus traversed in depth
first search and a collision is detected when one primitive remains in each bound-
ing volume and their intersection computation is essentially a triangle-triangle
intersection computation to detect the point of collision.

We have discussed the use of
bounding boxes for collision detection
and how hierarchical methods can be
used for fast collision detection. How-
ever, it is important to note that dif-
ferent types of bounding volumes can
be used for collision detection like
spheres or a spherical shell. In fact,
three criteria dictate the choice of the
type of bounding volumes to be used
during collision detection. First, how
tightly does the bounding volume hug
the object so that the empty space in
the bounding volume is minimized?
For example, when considering con-
temporary objects (e.g. table, chair,

Figure 14.33. This shows the hierarchical
bounding volumes for a 2D object. Unlike
octree-based spatial subdivision, at every

node the tightest bounding box enclosing

the part of the object subdivided bounding rOOI.n’ house etc) Whic_h have man.y
box is stored. straight edges, a box-like volume is

probably most appropriate. However,
when dealing with cellular, biological or astronomical simulations where objects
have closed curved contours, a spherical volume is probably more conducive.
A tightly fit bounding volume will reduce false positives in collision detection
and will minimize going down the hierarchy for collision resolution. The second
criterion is the complexity of computing and updating the bounding box. This
criterion would dictate if the system can be used for collision detection in dy-
namic environments. An axis aligned bounding box is easy to construct but more
expense to update under a few transformations such as rotation of the enclosed
object. An oriented bounding box is more difficult to construct, but easier to
update. Even for static scenes, since the collision computations have to be done
many times down the hierarchy, the third criterion is the complexity of com-
puting the collision test between two bounding volumes. The simplest collision
test is between two spheres - if the distance between the centers of the sphere is
more than the sum of the radii, then the spheres do not collide, otherwise, they
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Figure 14.34. The figure illustrates the concepts of bounding volume of an object (in
blue) in 2D. From left to right: axis aligned bounding box, oriented bounding box, a
sphere, and a spherical shell.

collide. More complex to compute an axis aligned bounding box. If at least one
of the X, Y, or Z ranges of the bounding boxes do not overlap, then the boxes
do not intersect, otherwise, they intersect. Finally, intersection computation of
an oriented bounding box requires us to find a separating plane and is more
complex than for the other two primitives [Gottschalk et al. 96]. There are other
bounding volumes such as spherical shell [Krishnan et al. 98] which is the region
enclosed between two concentric spheres and a cone. Spherical shells can provide
a tight fit for higher order surfaces. They are relatively more complex to com-
pute, easier to update, and require moderate computation for detecting collision
between two spherical shells. An illustration of all these bounding volumes is
shown in Figure 14.34.

14.11 Conclusion

In this chapter we introduced you to the most common ways to enhance realism
in interactive computer graphics through rudimentary approximations of reality.
Again, in this chapter concepts are explained in an API independent manner.
We hope these fundamental concepts help the readers to code up using any
suitable API. We should also acknowledge that enhancing realism does not come
free — and almost all the time trades off with performance. For example, bump
maps come at no cost with respect to increased geometry but require Phong
illumination computation during rasterization and cannot show realism at the
silhouettes. While a displacement map can alleviate this problem, it comes at
the cost of lower rendering speed due to the significant increase in geometry. The
challenge is to make the right choices that are suitable for specific applications.
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Exercises

1.

Consider a gray world with no ambient and specular lighting (only diffuse
lighting). The light is at infinity and its direction and color are (1,1,1) and
1.0 respectively. The coefficient of diffuse reflection is 1/2. The normals at
points Py, P, and Ps, are Ny = (0,0,1), N = (1,0,0) and N3 = (0,1,0)
respectively. Find the illumination at the points P, P, and Ps.

L#u 2.0) (5.2,0) 'E

Ny

- A P
(2,0,0) (3,0,0)

. In the above figure, the light and the eye are denoted by L and E respec-

tively. On the surface AC the normals at A and C' are Ny = (—1,1,0) and
Ne = (1,1, 0) respectively. Everything is drawn to scale. Use the illumina-
tion model given by I = Ik, + I kq(N.L) + I ks (R.V)™ where R denotes
the reflected light vector at the surface point, I, = 0.8, I, = 1.0, k, = 0.2,
kg =0.9, ks = 0.5, n = 2. Find the illumination at A and B. (Hint: Treat
negative dot products as 0.)

. You are rendering a black and white checkered tiled floor using a single

texture mapped polygon. The view is simulating a person standing on the
floor and looking at a point far away from him on the floor. (1)Artifacts at
the distant end of the floor can be seen. How would you remove these arti-
facts? (2) How can you explain why this method works using the sampling
theorem?

. One artifact of Gouraud shading is that it can miss specular highlights

in the interior of the triangles. How can this be explained as an aliasing
artifact?

. Consider five objects in the line of sight from the eye. Object i is behind

Object i —1. Object 1, 3 and 5 are opaque while the others are translucent.
In what order would you render the objects to get the correct effect of
translucency? Justify your answer.

. Consider the above 2D gray world and the primitive AB in it (shown by the

red line). The blue vectors show the normal at A and B. L and E are the
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A ¢ B

position of the light and the eye respectively. Let the coeflicient of diffused
illumination be 0.5 respectively. Let the intensity of light be 0.5.

(a) What are the coefficients of A and B respectively for bilinear interpo-
lation of C?

What are the normals at A, B and C?

Find the diffused illumination at A and B.

Find the diffused illumination at C using Gouraud shading.

(b
(c
(d
(e

o o T

Find the diffused illumination at C using Phong shading.

7. Consider the above striped texture on the left and the triangle ABC which
we would like to texture map using this texture. Consider the bottom
left corner of the texture to be (0,0) and the top right to be (1,1). Find
the texture coordinates assigned to A, B and C respectively to create the
appearance of stripes in each of the following directions: (a) horizontal,
(b) vertical, (c¢) diagonal in the same orientation as the texture, and (d)
diagonal in the perpendicular orientation to the texture.
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8. You are seeing an object which is either texture mapped, bump mapped or
displacement mapped but you don’t know which one. However, You have
the liberty to move the light and the viewpoint of an object and see it from
different angles and for different positions of the light. How will you figure
out which technique was used?

fe01

(300, 100)

L]

B

Consider the framebuffer of size 300 x
100. ABCD is a rectangle in 3D space
which has been projected as a trapez-
ium in the 2D. AB is projected on
the bottom scanline. CD is projected
on a scanline (shown in brown) that
i % way above and has a projection
length % of AB. The depth of side AB
and CD are 60 and 30 respectively.
Consider a 512 x 512 checkerboard
texture 7' that will be used to tex-
ture map ABCD. T is stored in dif-

ferent resolutions using mipmapping.

(a) On which scanline is CD projected?

(b) Consider a scanline S that is half way in screen space between AB
and CD. Find the depth of S. What level of the T" will be used to
texture map AB and CD respectively?

Find the length of S' contained in the trapezium. What level of T" will
be used to texture map S?

~

178 % 128

G4 x4

12w 352

16X 16
[

1024 pixels
B
] . -
3
= 16 pisels
£ B
)y T
o

Fempective Imege Criginal Texture Map

10. Consider the figure above. Suppose we have a brick wall that forms the
left hand side of a corridor in a maze game as shown. The image is drawn
to scale. This wall is defined in world coordinates by points ABCD, the
projection of which are shown in the image. Assume that the brick wall is
16 bricks high.

(a) If we assume the brick wall to be 16 bricks high, how many times do
we have to repeat the texture in the vertical direction?
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(b) What level of mipmapped image pyramid on the right will be used
for texture mapping the near end CD?

(¢) What is the minimum number of pixels each texel should cover to

avoid aliasing?

11.

D

;

ve
| B

Let us consider the building of a vir-
tual reality environment. Its top view is
shown in the above figure. D is the cylin-
drical display whose digital representa-
tion (shape and position) is known. The
scene will be projected from the projec-
tor P. The digital objects are placed be-
hind the screen. The user will be tracked.
The view seen from the location V' should
be projected on D from P. How can
you use projected texture to generate
the image that P should project? How
many passes would this rendering take?

12. How can you create the effect of mirror in a scene using some of the tech-
niques you have learnt in this chapter? How many rendering passes would

it take?

13. Consider a scene in 2D. The scene comprises a parallelogram whose four
vertices are (1,0), (-1,0), (0,-1) and (0,1).

(a) What would be four vertices of the 2D axis aligned bounding box for

this parallelogram?

(b) If we want to translate this parallelogram by (2,2), how would you use
the transformation parameters to find the new axis-aligned bounding

box?

(c) Would you be able to use a similar approach if we have to rotate the
parallelogram by 45 degree (instead of translation)?

(d) Can you think of any other bounding shape that would allow you to
recompute of the bounding shape for all different kinds of rigid body
transformations in the same manner as you did in (b)?

14. Silhouette edges are the edges in the manifold that have one back-facing
polygon AND one front facing polygon incident on it.

(a) How do you compute the silhouette edges of a manifold?
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(b)

In OpenGL you can draw only back-facing polygons, or only front
facing polygons. If you render the manifold (front facing polygons),
then clear the frame-buffer but not the depth buffer, then again render
only the back facing polygons. What do expect to see?

Assume that the thickness of a line is an attribute of a line. Thickness
of three means that the line would be drawn three pixels thick. If the
thickness of the line was one and now is increased to three only for
the second rendering (rendering of back faces), what do you expect
to see?
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Graphics Programming

Graphics programming requires navigating through several APIs and libraries
while using specialized graphics hardware. We first present the history and de-
velopment of the modern graphics processing unit (GPU) that provides a per-
spective on its existing form and functionalities in the context of the different
interactive techniques discussed in the previous chapters. Next, the fundamental
aspects of the modern graphics hardware and existing APIs and libraries that
facilitate programming it for both graphics and general purpose computation is
presented.

15.1 Development of Graphics Processing Unit

The graphics processing unit (GPU) is a specialized hardware unit designed
to off-load and accelerate 2D or 3D processing from the central processing unit
(CPU) to assure interactive performance. Today, almost all desktops, laptops and
mobile devices come equipped with some kind of GPU. GPUs have undergone
revolutionary transformations in recent years and it is important to know how
the GPU aids in the computations of the effects we render in the interactive
graphics pipeline.

Graphics hardware first came to use in 1980s, though they were called GPUs
much later. GPU is a term introduced by nVidia in 1999. However, we will refer
to such hardware as GPU in the rest of this chapter for the sake of consistency.
The early GPUs were essentially integrated framebuffers that could only achieve
line rasterizations, also termed as wireframe rasterizations, thereby off-loading to
the GPU, the rendering of the edges of the polygonal primitives. The first hard-
ware dedicated to the graphics pipeline was the IBM professional graphics con-
troller (PGA) that used a microprocessor hardware to off-load the simple tasks
of rendering, like drawing and coloring filled polygons, from the CPU opening up
CPU cycles for other general purpose processing while the graphics processing
was done in parallel on the PGA card. A separate PGA card onboard marked
an important step in the evolution of a separate GPU. By 1987 more features
were added to the GPUs including shaded solids, vertex lighting, rasterization
of filled polygons, depth buffer, and alpha blending. However, there was still a
huge reliance on the CPUs where most of the computations used to happen and
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the data transfer from the CPU to the GPU was a major bottleneck.

FRT— T s The GPU evolution got a boost from

the release of the graphics industry’s most
Application specific ~ CPU CPU  CPU widely used application programming inter-
i face (APT) of SGI-GL by SGI (Silicon Graph-
object level culing) ics Inc.) in 1989, which later gained popular-
fransformation e ity as OpenGL. In 1993, SGI released its first
- graphics cards for workstations while the first
Lighting CPU CPU GPU .

3D consumer graphics hardware was offered
Clipping v ETBEET by companies like Matrox, nVidia, 3DFX and

ATI. However, the distinction between GPU
Rasterization GPU  GPU  GPU and CPU was not that clear in this hard-

ware. While much of the later stages of the
graphics pipeline were instrumented in the
Figure 15.1. Evolution of early GPU hardware, there was still a significant
graphics pipeline leading to a fixed  reliance on the CPU, especially for the first
function pipeline in 1999. part of the pipeline involving transformations.
Games like Quake and Doom drove the fast adoption of the graphics cards in the
gaming industry.

The first graphics processing unit close to its current form was introduced in
1996 by 3DFX and was called the Voodoo card. The CPU still did the vertex
transformation and lighting while Voodoo provided shading, texture mapping, z-
buffering and rasterization. It was still not possible to evaluate the lighting model
at every pixel and therefore effects of Phong shading or bump mapping were still
not possible at interactive rates. In 1999, the first present-day GPU hardware
became a reality via the introduction of nVidia’s Geforce 256 and ATI’s Radeon
7500 (Figure 15.1) where the vertex transformation and lighting computations
were also moved to the GPU. Four parallel pipelines aided faster rendering with
new features of multi-texturing and bump-mapping. A faster communication
channel between CPU and GPU allowed even higher performance. However, this
hardware still followed a fized function pipeline since once the data was sent to the
GPU pipeline, it could not be modified. Fixed functions were achieved via feature
sets defined by APIs like OpenGL and DirectX. Therefore, if newer features
were added to the graphics API, the fixed function hardware could not take
advantage of them. Figure 15.2 shows the different stages of such a fixed pipeline.
The vertex control receives the triangle data from the CPU. The VS/T & L
(Vertex Shader/Texture and Lighting) stage transforms the vertices and assigns
attributes to each vertex (e.g. color, texture coordinates, tangents). Lighting
computation can also take place in the VS/T & L stage to assign colors to the
vertices. Clipping and interpolation of attributes at the clipped vertices occur in
the next stage. Following this, rasterization happens to mark pixels covered by
the clipped triangles. The shader achieves the interpolation of attributes (e.g.
texture coordinates, colors, normals) for every pixel touched by the traingle.
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Figure 15.2. A fixed graphics hardware pipeline.

Finally, the raster operations are performed to blend colors for anti-aliasing or
translucency effects. Depth buffer tests are performed to resolve occlusion. The
frame buffer interface manages the reads and writes out of the framebuffer.

In 2001, we saw the advent of the first programmable graphics pipeline via
ATI Radeon 8500 and Microsoft X-box, where unlike ever before, parts of the
GPU could be programmed. Instead of sending all the data to the GPU and
simply letting it flow through the fixed pipeline, programmers could now send
this data along with vertex programs (commonly called shaders) that would be
operating on the data while it was passing through the GPU. These shaders
were small kernels written in assembly-like specific shader language giving a
limited amount of programmability in the vertex processing stage of the pipeline.
The programmable graphics pipeline was followed by the advent of the first
fully programmable GPU in 2002 via nVidia GeForce FX and Radeon 9700.
These graphics card allowed for per-pixel operations with dedicated hardware
for programming both the vertex and the pixel(fragment) shaders. By 2003, full
floating point support and advanced texture processing started to appear in the
cards enabling the first wave of applications that started using GPUs for non-
graphics computing as well.

By 2006, the graphics hardware started to capitalize on the tremendous data
independence provided by the graphics pipeline. The goal was to push the flexi-
bility to the shader programs. Early high level shader languages started to appear
to provide easier programming interface. The GeForce 6 was the first GPU that
streamlined the data independence to create a pipeline that has multiple par-
allel multi-core stages with fixed stages in between. The first parallel stage is
that of a vertex shader that reads a vertex position and computes its position
on the framebuffer. Multiple threads process different vertices independently. A
fragment shader processed the floating point RGBA color contributing to every
pixel. Similarly, multiple threads process different pixels independently as well.



360 15. Graphics Programming

= ]
[ e Y | T
oo [ CEE)D e | T
1 m m m

—

Iﬂ.
Tt
Ty Prucmar

M-“'nll

= JJJJ;"JJJ'JL";"J;LL IIII I I
S8s Some

(a) (b)

Figure 15.3. This shows the programmable GPU via the abstraction of the GeForce 6
card (a) and GeForce 8 card (b).

In between these two parallel stages is the fixed stage of clipping, and rasteriza-
tion. Similarly, the operations of blending and processing the depth buffer can
also be performed in parallel in units called raster operations processors (ROP).
In between the parallel fragment shaders and the ROP processors, there is a
fixed operation that assembles the fragments from the different threads together.
Therefore, such alternating parallel and fixed stages turn the GPUs into mas-
sively parallel and programmable processors. Figure 15.3 shows an abstraction of
such a pipeline in nVidia GeForce 6. Note that the vertex shader has 6 threads,
the pixel shaders have 4 threads and the ROP opertaions have 16 threads in this
case. Also, the partitioning of the framebuffer memory allows much higher reso-
lution graphics without reducing the frame-rate. Therefore, from this time GPUs
have been viewed as a powerful programmable floating point computational and
storage unit that can be exploited for compute intensive applications that need
not have anything to do with graphics.

At this stage, the graphics hardware still had specialized shaders for ver-
tices, pixels and ROP operations. The GeForce 8 changed that by unifying the
shaders and making them into a fully programmable unified processors which are
called streamlined processors or SP (Figure 15.3). With this change, the graph-
ics pipeline model became a purely software abstraction. To harness the GPU
power, new programming languages were devised. CUDA is such a language pro-
vided by nVidia for nVidia cards. Similarly, there is ATT Stream for ATI cards
and DirectX 10 for either cards.
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15.2 Development of Graphics APls and Libraries

Computer graphics has become very popular, especially in the video games and
simulation community. Therefore, there are several specialized API to ease pro-
gramming of different stages of the graphics pipeline and application require-
ments. These APIs provide a way to access the hardware in an abstract manner
while taking advantage of the special hardware capabilities of a specific graphics
card. However, since even a few years back a fixed pipeline was in vogue, several
APIs, especially those which evolved in the age of the fixed graphics pipeline,
have evolved to adapt to the programmable pipeline.

OpenGL is one of the oldest cross-language cross-platform interfaces for 3D
graphics rendering providing a way to interact with GPUs. GLUT is the OpenGL
Utility toolkit for writing OpenGL programs independent of the window system
used for rendering the scene. It implements a simple windowing API for OpenGL
making it much easier to learn OpenGL. GLUT also provides a portable API
across multiple OS and PCs. OpenGL is defined as a set of functions which
can be called by the client program. The functions are similar superficially to
C, but are language independent. OpenGL’s popularity is primarily due to its
quality of official documentation which are known by the colors of their covers
(the red, orange, green and blue books are the first to fourth edition of the
OpenGL Programming Guide). Often accompanying libraries like GLU, GLEE or
GLEW bind with OpenGL to support useful features that may not be supported
in contemporary hardware like mipmapping or tessellation. OpenGL Shading
language (GLSL) is a high level shading language based on the syntax of C,
first designed to allow OpenGL to access the programmable GPUs with using
assembly level or hardware specific languages. OpenGL ES is an extension of
OpenGL API for programming for embedded devices. WebGL is a Javascript
APT for rendering 3D graphics. Direct3D is a similar API offered by Microsoft
which promises better performance on Windows OS while Metal is an API that
debuted for Apple’s iOS8.

Vulkan is a more recent cross-platform API. It was initially referred to as
a “next generation openGL initiative”. It was build upon AMD’s API called
Mantle. In addition to optimizing performance on GPUs like OpenGL, Vulkan
is also optimized to reduce CPU use and distribute whatever is needed from the
CPU across multiple cores. It works for both high end-graphics cards and mobile
devices. Unlike OpenGL, it provides a unified management of compute kernels
and graphics shaders removing the need to use a shader API in conjunction with
a graphics API.

The modern GPU offers tremendous potential to solve largely parallelizable
general purpose problems using the GPU. However, this means that the pro-
grammer must know the graphics APl and GPU hardware well to map general
purpose problems onto the vertex, textures and shader programs. To alleviate
this problem, nVidia has developed CUDA, a programming language that offers



362 15. Graphics Programming

a parallel computing platform and API for programmers to use a CUDA enabled
nVidia GPU for general purpose computing. CUDA gives direct access to GPU’s
instruction set and parallel computing elements to general purpose programmers.

Fun Facts

Today’s generation won’t know much
about SGI (Silicon Graphics Inc),
the company which pioneered graphics
workstations in the early days of com-
puter graphics and to whom we owe
much of the advancement of the graph-
ics hardware. SGI introduced the con-
cept of the geometry engine resulting
in the first very large scale integra-
tion (VLSI) of the graphics pipeline
with specialized hardware to acceler-
ate the geometric computations needed
to display three dimensional imagery.
SGI was founded by yet another father
figure of computer graphics who also
got his PhD from the University of Utah, Jim Clark (top left). Jim Clark was
born in Texas and had a difficult childhood and dropped out of high school
after being suspended. However, his life turned with his 4 year tenure in
the Navy where he was introduced to electronics and fell in love with it. He
worked hard with night courses at Tulane University which opened up the
doors of the University of New Orleans for a B.S. and M.S. in physics. After
his PhD from University of Utah in 1974 Jim Clark was a faculty member
at UC-Santa Cruz before moving to Stanford University in 1979. Jim Clark
founded SGI in 1982 with seven of his graduate students, one of whom, Kurt
Akeley, played a major role in recent years in bringing the light field camera,
Lytro, to the market. SGI spearheaded the development of several graphics
workstations including the indigo, prism, onyx, crimson and finally the high
performance computing multi-core room-size machine called infinite reality
engine (from top right in counter clockwise order). SGI's core market was
impacted adversely by the advent of the consumer graphics card (e.g. nVidia,
ATT) and the company moved its thrust area to high performance computing
in 1999.
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15.3 The Modern GPU and CUDA

Modern GPUs are no longer tied to their graphics ancestry but have proven
themselves to be the most successful desktop supercomputing architecture for
general purpose computing. Once thought to be for video games, today’s GPUs
find their place in solving varied problems in varied areas from astrophysics and
arts to seismology and surgery [Luebke 09]. In this chapter we will describe
the modern GPU architecture in brief. More details are available in [Azad 16].
We specifically focus on nVidia’s GPU architecture and CUDA programming
language.

15.3.1 GPU Architecture

The CUDA programming model is a parallel programming model that provides
an abstract view of how the processes can be run on underlying GPU architec-
tures. The evolution of GPU architecture and the CUDA programming language
have been quite parallel and interdependent. While the CUDA programming
model has stabilized over time, the architecture is still evolving in its capabil-
ities and functionality. GPU architecture has also grown in terms of number
of transistors, and number of computing units over years, while yet support-
ing the CUDA programming model. The CUDA programming model has been
used to implement many other algorithms and applications other than graph-
ics and this explosion of use and permeability of CUDA in hitherto unknown
applications has catapulted the GPU’s near ubiquitous use in many domains of
science and technology. Since then all the GPUs designed are CUDA capable. It
should be noted that before CUDA was released, there were attempts to create
high level languges and template libraries such as Glift [Lefohn et al. 06] and
Scout [McCormick et al. 07]. But such efforts tapered down with the introduction
of CUDA, and more effort was spent on refining CUDA and building libraries
using its constructs.

One of the conceptual differences between CPU and GPU is that CPU is
defined for minimum latency so that context switch time is minimum, while GPU
is primarily designed for maximum throughput through fine grain pipelining (and
hence more latency than CPU). In other words, in the CPU design, there is plenty
of cache memory and control logic that would reduce the time taken to bring
the data to the ALU and thus reduce the wait and latency. On the other hand,
GPU has a lot of ALUs and may wait for the data to be fetched from external
DRAM to its local cache. The fundamental optimization of GPU programming
hence focusses on hiding this latency by providing enough work for the ALUs
while the data is fetched from DRAM.

The two main components of the GPU board that go into the PCI express
bus in the PC are the global memory (around 12 GB currently) and the actual
streaming multiprocessor chip along with associated circuitry. The basic GPU
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processing flow consists of three steps: (1) moving data from the host’s (main
CPU, memory, etc.) main memory to the device’s (GPU board) global memory,
(2) the CPU issuing instructions to the GPU while the data for this computation
is taken from the GPU’s global memory and the results are put back in that
global memory, and finally (3) the results transferring from the GPU’s global
memory back to the host’s main memory through the PCI express bus.

In latest GPU architectures starting from Kepler, it is possible to communi-
cate between multiple GPUs directly from one GPU’s global memory to another’s
through MPT calls, without going through the intermediate host’s memory. Fur-
ther, not all jobs that the GPU is doing need to be instructed by the CPU — the
GPUs can launch their own jobs. The latter feature is also called CUDA dynamic
parallelism and can be useful in several ways: It would reduce the communica-
tion required between GPU and CPU through the slow PCI bus; it can be used
to program recursive parallel algorithms and dynamic load balancing; features
like adaptive hierarchical spatial subdivision and computational fluid dynamic
grid simulation can effectively be done for efficient and accurate simulation. Con-
ceptually, dynamic parallelism moves the GPU from being a co-processor to an
autonomous, dynamic parallel processor.

Each multiprocessing chip has many processors. Each processor can handle
thousands of threads of processes. Each basic hardware unit that handles one
thread is called a core, also called a CUDA core. For example, the Kepler stream-
ing multiprocessor chip has 15 processors, and each processor can manage 2048
threads — it has 2048 CUDA cores. Each of these 15 processors have plenty of
registers (over 64K 32-bit registers) and also shared memory (around 48KB) that
are accessible to all the threads running in a processor. The threads running in
the same processor can cooperate and share data using the registers and shared
memory.

15.3.2 CUDA Programming Model

CUDA is basically an extension of C++. The goal of CUDA design is to let the
programmer focus on parallel algorithms rather than the underlying multipro-
cessor architecture. It is both a programming model as well as a memory model.
A typical CUDA application has a mixture of serial code and parallel code. The
serial segments of the code run on the host (CPU) while the parallel code, also
called kernels, run on the device (GPU) across multiple processing elements.
While the parallel code is run on the GPU, the serial code can continue to work
on the CPU.

A kernel is a piece of code for one thread. Many instances of the kernel are
executed in parallel with potentially different data for each thread under the
Single Instruction Multiple Data (SIMD) model. All the threads that run in the
same processor are grouped together and are called a block. Each block is run
on different processor in the multiprocessor chip, and potentially at different
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times. A group of these blocks is called a grid. In other words, a grid consists of
all the instances of the kernel partitioned as thread blocks. The hardware takes
care of scheduling these thread blocks on each of the cores in the processor and
there is no cost associated with switching between threads. When the number
of blocks exceed the number of available processors, multiple thread blocks may
be scheduled to the same streaming processor and in any arbitrary order. Hence
there is no simple way to communicate between threads in different blocks as
they may be separated both in space (different processors) and time. The goal of
efficient CUDA code is to make sure that the task is partitioned into sufficiently
fine grained threads such that the latency of data transfer from the DRAM to
the multiprocessor chip is well hidden through overlap of computation tasks of
the threads.

Each block has a unique id, and each thread within a block also has a unique
id. They are referred using the built-in variables threadldx and blockIdx. These
ids can be one, two or three dimensional entities. The number of threads within
a block can be read back from the variable blockDim and the number of blocks
in a grid is stored in the variable gridDim. The linear id of a thread among
all the threads spawned by the kernel is given by blockDim.x * blockldx.x +
threadldx.x. The .x refers to the first dimension of the three dimensions assum-
ing that the other two dimensions have values 1 each, thus representing just a
linear array of one dimensional threads. (Note that the maximum number of the
block index value is 64K. So if you need more than 64K blocks, you may need to
fold that vector into two dimensional array of blocks in which the index of each
dimension can go upto 64K.) The 3D representation of block and thread indices
is just to give flexibility in representation that might implicitly align with the
problem description. For example, a kernel operating on each element of a dense
matrix might need to refer to each thread using a 2D index. Linearization of the
index of a thread in a 2D array of threads is done as follows:
int iy = blockDim.y*bloxkIdx.y + threadldx.y;
int ix = blockDim.x*blockIdx.x + threadldx.x;
int idx = iy*w + ix;

Kepler architecture can keep track of 2048 threads or 64 warps (number of
threads that can run in lock-step at the same time in a processor), or 16 blocks
per stream processor. In other words, each block should have at least 128 threads
to keep the GPU compute-busy. It is good to have a number of threads per block
that is a multiple of 32 since that is the warp size. For each device there are 14
stream processors. So we need to have at least 224 blocks to keep the GPU busy,
and typically will have 1000 or more blocks in a grid. This will also make the
code future GPU ready.
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15.3.3 CUDA Memory Model

There is a memory hierarchy used by CUDA and supported by the streaming
multiprocessor and GPU architectures. Within each processor inside the chip,
we noted that there are registers that are accessible per thread and this space is
valid until that thread is alive. If a thread uses more registers than are available,
the system automatically uses “Local memory” which is actually the off-chip
memory on the GPU card (device). So, although the data can be transparently
fetched from the local memory as if it is in the register, the latency of this data
fetch is as high as the data fetched from the global memory, for a simple reason
that “local” memory is just a part of allocated global memory. The “shared”
memory is an on-chip memory like registers, but is allocated per-block, and the
data in the shared memory is valid until the block is being executed by the
processor. Global memory, as mentioned earlier, is off-chip, but on the GPU
card. This memory is accessible by all threads of all kernels, as well as the host
(CPU). Data sharing between threads in different blocks of the same kernel
or even different kernels can be done using the global memory. The host (CPU)
memory, which is the slowest from the GPU perspective is not directly accessible
by CUDA threads, but the data has to be explicitly transferred from the host
memory to the device memory (global memory). However, CUDA 6 introduces
unified memory using which the data in the host memory can be directly indexed
from the GPU side without explicitly transfering data between the host and the
device. Finally, communication between different GPUs have to go through the
PCI express bus and through the host memory. This is clearly the most expensive
communication. However, the latest NVLink a power-efficient high-speed bus
between the CPU and GPU, and between multiple GPUs, allows much higher
transfer speeds than those achievable by using PCI Express.

15.4 Conclusion

This chapter gives you a very brief overview of the graphics hardware and API
to bootstrap your process of learning a graphics API for programming. Sev-
eral books exist that teach graphics using APIs, mostly using OpenGL [An-
gel 02,Hill and Kelly 06,Hearn and Baker 03] or WebGL [Angel and Shreiner 14].
These can be a great starting point for graphics programming. The famous
redbook [Kessenich et al. 16] is a great handbook for any questions about the
OpenGL API. Several books exist to get an in depth knowledge about CUDA
programming [Sanders 10, Cheng and Grossman 14] which can help you get the
maximum mileage out of your GPU.
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