

Smashing	Android	UI
Table	of	Contents

Part	I:	Introduction	to	Android	Design
Chapter	1:	Introduction	to	Usability	and	User	Interface	Design

Considering	Technology	versus	design
Understanding	the	Mental	Model

Forming	a	mental	model
Platform	consistency	and	user	expectations

Designing	for	users

User	Goals
Don’t	talk	about	features
Determining	user	goals
From	goals	to	features

No	App	will	do	everything;	pick	your	battles
You	are	the	expert;	users	are	not	designers
Know	your	users;	design	for	real	people

Using	Personas
Getting	into	your	user’s	head

Summary

Chapter	2:	Don’t	Start	Coding	Just	Yet

Prototyping

Wireframes
High-fidelity	prototypes
Proof	of	Concept

Tools	for	Design

OmniGraffle	and	stencils
WireframeSketcher	and	templates
Balsamiq
Android	Eclipse	plug-in	GUI	builder
Pencil
Additional	Utilities

User	Testing

SelectING	your	participants	carefully
Planning	for	A	user	test
Stay	neutral;	don’t	guide	the	users
Don’t	over-correct;	are	the	findings	real?
Five	users	are	enough
Mobile	user	testing
User	Testing	with	paper	prototypes
Back	to	THE	drawing	board

Summary

Chapter	3:	Considerations	in	Designing	for	Mobile	and	Touch
Devices

Designing	for	Mobile

Use	context	of	mobile	devices
Mobile	multitasking
Device	constraints

Battery	power	is	not	endless
Rapid	innovation
Network	connection	will	drop
Data	is	not	free
Passionate	users	and	opportunities
Native	apps	versus	web	apps
Hybrid	apps	with	HTML	wrappers

Designing	for	Touch	Interfaces

IMPLEMENTING	Gestures
Gesture	discovery
Gesture	confusion
React	to	gestures	immediately
Touch	interface,	not	so	natural	interface

Summary

Chapter	4:	Exploring	the	Android	Platform

Challenges	of	the	android	platform

Hardware
Google’s	control
Tablets
OEM	distributions,	skins,	and	themes
Holo	theme	unifies	Android	app	look
Keyboard	replacements
Third-party	home	screen	replacements

Android	versions

Android	on	tablets
Android	Jelly	Bean,	the	latest	android	release

Nexus	Devices
Updates	to	older	devices
Which	version	should	you	target?

Android	app	distribution

The	app	stores
Application	safety	and	approval	processes
Which	app	store	to	use
Make	users	feel	safe

What	does	open	source	mean?

Access	to	source	code
Android	community
Custom	ROMs

Summary

Part	II:	Android	Platform	Features	and	UI	Components

Chapter	5:	Android	App	Structure	and	Online	Guidelines

Android	app	structure	overview

Android	app	basic	building	blocks
Intents	and	broadcasts
Services
App	Widgets

Android	project	structure	overview

Component	folders
Libraries

Official	Android	guidelines

Android	developer	documentation
Android	design	guidelines
Google	Play	guidelines

Summary

Chapter	6:	Android	Intents

Intents	allow	apps	to	work	together
Using	Social	Networks	and	Sharing
Working	with	Browsers
How	do	Android	intents	work?

Types	of	Intents
Technical	example	of	sending	intents
Intent	Filters:	Actions,	Data,	and	Categories
Technical	example	of	Receiving	intents

Creating	your	own	Actions
Intents	are	everywhere
Intents	Versus	Third-party	APIs
Summary

Chapter	7:	Android	App	Navigation	Structure

Components	of	Android	navigation,	Activities,	and	Intents

Modifying	back	stack	behavior	with	intent	flags
Tasks

Android	Navigation	controls

The	Home	button

The	Back	Button
The	Up	button
User	Confusion
Navigation	Improvements	in	Android	4.1
Multitasking
Where	does	an	app	start?
Exiting	an	app
Making	sure	that	users	know	where	they	are
Navigating	to	another	app
Navigating	from	notification
Non-activity	navigation
Stopping	running	processes	with	the	back	button
Using	Transition	animations

Summary

Chapter	8:	Home	Screen	App	Widgets

Uses	of	Home	Screen	App	Widgets

Displaying	relevant	up-to-date	information	and	being
context	aware
Providing	easy	access	to	simple	functions	and	toggle
controls
Providing	Shortcuts	to	app	functionality
Developing	App	widgets	for	tablets

Updating	app	widget	data

Automated	Updates
Updating	Upon	User	Interaction
Designing	Setup	activity

App	widget	layout	and	functionality

User	Interaction	with	App	Widgets
Understanding	the	Home	Screen	Grid
Defining	Your	App	Widget’s	Minimum	Size
Available	Layouts	and	Components
Resizable	Widgets
App	widget	preview

Implementing	an	app	widget

Configuration	XML
App	widget	layout
App	Manifest	file
App	widget	provider

Summary

Chapter	9:	Notifying	and	Informing	Users

Android	Notification	methods

Inline/embedded	notifications
Toasts
Status	bar	notifications
Pop-up	dialog	boxes

When	to	notify	users

Ongoing	background	tasks
Events
Errors

When	not	to	notify	users
Avoiding	pop-ups
Getting	the	most	from	status	bar	notifications

Notification	content
Stacking	notifications
Be	timely
Ongoing	tasks
Implementing	status	bar	notifications

Summary

Chapter	10:	Designing	for	Hardware	Buttons,	Input	Methods,
and	Sensors

Designing	for	the	Touch	screen

Resistive	touch	screens
Capacitive	touch	screens
The	Future	of	touch	screens

Designing	Phone	hardware	buttons

The	Menu	button	is	dead

Designing	for	the	On-screen	keyboard

Input	methods
Input	type
Action	button	and	IME	options
Third-Party	Keyboards

Designing	for	Hardware	keyboards
Designing	for	D-Pads	and	Trackballs
Designing	for	the	Stylus
Designing	for	Voice	control
Designing	for	External	Keyboards,	mice,	and	touchpads
Designing	for	Connected	smart	accessories

Designing	for	Sensors
Designing	for	a	Second	screen
Summary

Chapter	11:	Designing	Platform	User	Interface	Components

Using	User	interface	widgets

Text	widgets
Buttons
Toggle	Components
Selection	components
Date	and	time	widgets
Progress	bars
Media	widgets
Sliding	drawer
Lists

Customizing	user	interface	widgets

Colors
Selectors

Adjusting	the	Typography

Fonts
Typeface
Text	style
Text	size
Text	color	and	shadow
Formatting	from	HTML
Creating	app-wide	text	styles

Using	Icons

Dealing	with	screen	densities
Icon	types
Platform	icons
Icon	packs

Using	Animations	and	transitions

Activity	transitions
Tween	Animations
Frame	animations
Property	animations
Animation	Interpolators

Summary

Part	III:	Scalable	Android	Design

Chapter	12:	Managing	Android	Resources

Using	Android	resources

Configuration	qualifiers
Combining	Qualifiers
Library	Projects	and	Overriding	Resources
API	Level	Requirements

Designing	for	Screen	density

What	does	screen	density	mean	in	practice?
Why	is	screen	density	important?
Screen	density	in	Android	terms
Automatic	graphics	scaling	vs.	separate	assets
res/drawable/	folder	is	for	XML	only
Preventing	scaling

Screen	densities	that	matter
Density	independent	pixels,	dp

Designing	for	Screen	size	and	form

Generalized	size
Fine	grained	screen	size
Aspect	ratio
Screen	orientation

Designing	for	Language	and	region
Designing	for	Device	controls
Designing	for	Platform	versions
Designing	for	Device	modes
Summary

Chapter	13:	Android	App	Layouts

Android	layout	strategy

Fixed	areas
Resizable	areas
Combining	fixed	and	resizable	areas
Layouts	in	Layouts

Layouts	from	XML	and	code
Layout	managers

Relative	Layout
Linear	Layout
Frame	Layout
Grid	Layout	and	Table	Layout
Tabs

Defining	a	layout	size
Scrolling

Scroll	View

Z	axis,	layout	order
Padding	and	Margin
Import	and	Merge	layout	files
Custom	layouts
Android	Development	Tools	user	interface	builder
Debugging	layouts
Summary

Chapter	14:	Scalable	Graphics

Nine-patching

Nine-patch	structure	in	Android
Using	nine-patch	images	in	code
Nine-patch	tool	in	SDK
Nine-patch	images	from	drawing	tools

Drawable	XML

Shapes
Padding
Gradients
Color
Bitmaps
Composite	drawables	with	layers
Scale	and	Rotate

Drawing	from	code

Drawing	on	Canvas
Paint	object
Shape-drawing	Example

Summary

Chapter	15:	Beyond	Scalable	–	Responsive	Design

More	Android	devices	than	just	phones

Android	tablets
Google	TV

Understanding	Responsive	design

How	to	approach	responsive	Android	design
Don’t	Build	a	Tablet	App:	Design	for	Tablets
Reusable	components	(fragments)
Finding	minimum	and	maximum	size
Cost-benefit	evaluation

Common	ways	to	create	responsive	user	interfaces

Screens	to	columns
Floating	screens
Optional	content
Adjusting	components	one	for	one

Summary

Chapter	16:	Implementing	Responsive	User	Interfaces

Introduction	to	Fragments

Creating	fragments

Fragment	lifecycle
Adding	fragments	to	layouts
FragmentManager	and	FragmentTransaction

Fragment	and	Activity	architecture

Activities	control	the	flow	and	layout
Isolated	fragment	functionality	increases	modularity

Migrating	existing	apps

Moving	slowly:	An	iterative	approach	to	new	design
Get	it	over	with:	Full	redesign	at	once

Looking	at	an	Example	app

App	design
Building	the	phone	user	interface	with	fragments
From	phone	interface	to	two-and	three-column
interfaces
Older	Android	versions

Summary

Part	IV:	Android	UI	Design	Patterns

Chapter	17:	Introduction	to	User	Interface	Design	Patterns

User	interface	design	patterns

Designing	the	design
When	to	use	and	when	not	to	use	design	patterns

Benefits	of	using	UI	design	patterns

Don’t	reinvent	the	wheel
Platform	consistency
Library	support	and	ready	components

Design	Patterns	in	Android	design	guidelines
User	Interface	Design	patterns	found	in	this	book

Phones,	tablets,	and	responsive	design
Example	apps
Example	code
Design	pattern	naming
User	interface	design	pattern	categories

Summary

Chapter	18:	User	Action	Design	Patterns

Using	the	Action	Bar	Pattern

Problems	Addressed
Solutions
Consequences
Additional	features
Large	screen	adaptation
Considerations	and	criticisms
Variations	of	the	Action	Bar	Pattern
Which	actions	to	show?
Technical	implementation

Using	The	Quick	Actions	design	pattern

Problems	Addressed
Solution
Consequences

Long-press
Large	screen	adaptation
Considerations	and	criticism
Technical	implementation

Using	the	Action	Drawer	design	pattern

Problems	Addressed
Solution
Consequences
Large	screen	adaptation
Considerations	and	criticism
Technical	implementation

Using	the	Pull-to-refresh	design	pattern

Problems	addressed
Solution
Consequences
Large	screen	adaptation
Considerations	and	criticism
Technical	implementation

Using	the	Swipe-to-dismiss	gesture

Problems	addressed
Solution
Consequences
Additional	features
Large	screen	adaptation
Considerations	and	criticism
Technical	implementation

Summary

Chapter	19:	Navigation	and	Layout	Design	Patterns

Using	Stacked	Galleries

Problems	addressed
Solution
Consequences
Additional	features
Large	screen	adaptation
Technical	implementation

Using	the	Dashboard

Problems	addressed
Solution
Consequences
Large	screen	adaptation
Considerations	and	criticism
Variations
Technical	implementation

Using	Workspaces

Problems	addressed
Solution
Consequences
Large	screen	adaptation
Considerations	and	criticism
Technical	implementation

Using	Split	view

Problems	addressed
Solution

Consequences
Small	screen	adaptation
Variations
Technical	implementation

Using	the	Expand-in-context	pattern

Problems	addressed
Solution
Consequences
Additional	features
Large	screen	adaptation
Technical	implementation

Using	Side	navigation

Problems	addressed
Solution
Consequences
Additional	features
Large	screen	adaptation
Considerations	and	criticism
Variations
Technical	implementation

Summary

Chapter	20:	Data	Design	Patterns

Using	Dynamic	lists

Problems	that	lists	solve
Solution
Consequences

Large	screen	adaptation
Variations
Technical	implementation

Using	the	Image	placeholder	pattern

Problems	that	the	image	placeholder	pattern	solves
Solution
Consequences
Large	screen	adaptation
Technical	implementation

Using	the	Non-forced	login	Pattern

Problems	that	this	pattern	solves
Solution
Consequences
Large	screen	adaptation
Considerations	and	criticism
Technical	implementation

Using	the	Drag-to-reorder	handle	pattern

Problems	that	this	pattern	solves
Solution
Consequences
Large	screen	adaptation
Variations
Technical	implementation

Summary

Chapter	21:	User	Interface	Design	Anti-Patterns

Avoid	Using	the	Splash	screen

Problem	being	addressed
Why	A	splash	screen	is	a	bad	solution
Better	solution
Exceptions

Avoid	Using	the	Tutorial	screen

Problem	being	addressed
Why	is	this	a	bad	solution?
Better	solution

Avoid	Using	the	Confirmation	Window

Problem	being	addressed
Why	is	this	a	bad	solution?
Better	solution
Exceptions

Avoid	Using	the	On-screen	back	button

Problem	Being	addressed
Why	is	this	a	bad	solution?
Better	solution

Avoid	Using	the	Menu	button

Problem	Being	addressed
Why	is	this	a	bad	solution?
Better	solution

Avoid	Hiding	the	status	bar

Problem	Being	addressed

Why	is	this	a	bad	solution?
Better	solution
Exceptions

Avoid	Using	Swipe	overlay	for	quick	actions

Problem	Being	addressed
Why	is	this	a	bad	solution?
Better	solution

Avoid	Using	Non-Android	Designs

Problem	Being	addressed
Why	is	this	a	bad	solution?
Better	solution
Exceptions

Summary

Smashing	Android	UI:	Responsive
User	Interfaces	and	Design	Patterns
for	Android	Phones	and	Tablets

Juhani	Lehtimäki

This	edition	first	published	2013

©	2013	John	Wiley	&	Sons,	Inc.

Registered	office	John	Wiley	&	Sons	Ltd,	The	Atrium,	Southern
Gate,	Chichester,	West	Sussex,	PO19	8SQ,	United	Kingdom	For
details	of	our	global	editorial	offices,	for	customer	services	and	for
information	about	how	to	apply	for	permission	to	reuse	the
copyright	material	in	this	book	please	see	our	website	at
www.wiley.com.

The	right	of	the	author	to	be	identified	as	the	author	of	this	work
has	been	asserted	in	accordance	with	the	Copyright,	Designs	and
Patents	Act	1988.

All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,
stored	in	a	retrieval	system,	or	transmitted,	in	any	form	or	by	any
means,	electronic,	mechanical,	photocopying,	recording	or
otherwise,	except	as	permitted	by	the	UK	Copyright,	Designs	and
Patents	Act	1988,	without	the	prior	permission	of	the	publisher.

Wiley	also	publishes	its	books	in	a	variety	of	electronic	formats.
Some	content	that	appears	in	print	may	not	be	available	in
electronic	books.

http://www.wiley.com

electronic	books.

Designations	used	by	companies	to	distinguish	their	products	are
often	claimed	as	trademarks.	All	brand	names	and	product	names
used	in	this	book	are	trade	names,	service	marks,	trademarks	or
registered	trademarks	of	their	respective	owners.	The	publisher	is
not	associated	with	any	product	or	vendor	mentioned	in	this	book.
This	publication	is	designed	to	provide	accurate	and	authoritative
information	in	regard	to	the	subject	matter	covered.	It	is	sold	on	the
understanding	that	the	publisher	is	not	engaged	in	rendering
professional	services.	If	professional	advice	or	other	expert
assistance	is	required,	the	services	of	a	competent	professional
should	be	sought.

Trademarks:	Wiley	and	the	Wiley	logo	are	trademarks	or
registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/	or	its
affiliates	in	the	United	States	and/or	other	countries,	and	may	not
be	used	without	written	permission.	All	trademarks	are	the	property
of	their	respective	owners.	John	Wiley	&	Sons,	Inc.	is	not
associated	with	any	product	or	vendor	mentioned	in	the	book.

Neither	the	content	in	this	book	nor	the	author	have	any	direct
affiliation	with	Google	Inc.	Android	and	Google	are	trademarks	of
Google	Inc.

978-1-11838728-3

A	catalogue	record	for	this	book	is	available	from	the	British
Library.

Set	in	10/12	Minion	Pro	Regular	by	Indianapolis	Composition
Services	Printed	in	the	U.S.	by	Command	Web	Missouri
Publisher’s	Acknowledgements

	

Some	of	the	people	who	helped	bring	this	book	to	market	include
the	following:

Editorial	and	Production	VP	Consumer	and	Technology
Publishing	Director:	Michelle	Leete	Associate	Director–Book
Content	Management:	Martin	Tribe	Associate	Publisher:	Chris
Webb

Acquisitions	Editor:	Craig	Smith

Publishing	Assistant:	Ellie	Scott

Development	Editor:	Kezia	Endsley

Copy	Editor:	Kezia	Endsley

Technical	Editor:	Sebastian	Kaspari

Editorial	Manager:	Jodi	Jensen

Senior	Project	Editor:	Sara	Shlaer

Editorial	Assistant:	Leslie	Saxman

	

Marketing

Senior	Marketing	Manager:	Louise	Breinholt	Marketing	Executive:
Kate	Parrett

	

Composition	Services	Compositor:	Christin	Swinford

Proofreader:	Wordsmith	Editorial

Indexer:	Potomac	Indexing,	LLC

About	the	Author	Juhani	Lehtimäki	is
a	developer	with	more	than	10	years	of
experience	in	consulting	and	products
in	various	business	domains	and
technologies.	He’s	been	working	on
projects	varying	from	Eclipse	plug-in
development	to	backend	XML
transformation	to	frontend	web
development	and	user	interface	design.
Recently,	Juhani	has	been	concentrating	on	Android	and	especially	Android
user	interface	design	and	development.	Usability	and	user	interface	design
has	been	his	passion	since	early	university	studies.	His	interest	in	user
interface	design	and	Android	led	to	the	start	of	a	blog	about	Android	user
interface	design	patterns	in	2010.	He	still	actively	writes	about	topical	user
interface	issues	at	http://www.androiduipatterns.com/	as	well	as	participates
in	the	active	discussions	around	Android	in	the	Google+	social	network.

	

Author’s	Acknowledgments
Writing	this	book	was	a	lot	of	work	and	a	lot	of	fun.	It	would	not	have	been
possible	without	the	support	of	my	girlfriend	who	patiently	understood	why	I
had	to	sit	inside	and	type	away	instead	of	enjoying	her	company	for	the	last
few	months.	Thank	you	for	your	understanding!

I	also	want	to	extend	my	gratitude	to	my	employer	and	colleagues	at	Snapp
TV	Ltd.	for	being	flexible	about	work	arrangements	and	letting	me	spend
some	of	my	working	hours	writing	this	book.	A	special	thanks	to	Jasper
Morgan	for	encouraging	me	to	take	the	time	I	needed	for	the	book,	thus

http://www.androiduipatterns.com/

Morgan	for	encouraging	me	to	take	the	time	I	needed	for	the	book,	thus
avoiding	too	much	stress	in	the	process.

Also,	a	big	thank	you	to	the	awesome	Android	community	that	has	formed	in
the	Google+	social	network.	I	enjoy	reading	your	posts	and	comments.
Topical	matters	are	discussed	in	a	very	informative	and	friendly	matter	that
encourages	everyone	to	participate.	A	big	thank	you	to	Google’s	Android
developer	advocates,	especially	Nick	Butcher,	for	the	active	participation	in
those	discussions	as	well	as	the	encouragement	to	write	about	Android.

Thank	you	to	everyone	who	has	read	my	blog	posts	and	commented	on	them.
It	has	encouraged	me	to	keep	writing	and	I	have	learned	a	lot.	Thank	you	to
fellow	Android	bloggers	who	have	helped	to	accumulate	the	amount	of
information	in	the	online	Android	community.

Building	Android	apps	would	be	very	difficult	without	the	community	of
Android	library	contributors.	Thank	you	to	anyone	who	has	built	an	Android
library	and	distributed	it	free	and	Open	Source	for	anyone	to	use.	You	all	are
doing	amazing	work	and	making	everyone’s	life	easier!

I	also	want	to	thank	Google	for	providing	tools	to	build	Android	apps	as	well
as	giving	us	the	Android	operating	system.	Writing	this	book	would	not	have
been	possible	without	the	awesome	Google	Drive	(docs)	that	allowed	me	to
concentrate	on	the	writing	instead	of	figuring	out	the	word	processing
software.	Big	thank	you	also	to	Herzoglich	Bayerisches	Brauhaus	Tegernsee
for	giving	me	energy	in	the	late	nights	of	writing.

Last	but	not	least	a	huge	thank	you	to	Wiley	for	letting	me	write	my	first
book.	Thank	you	to	Kezia	Endsley,	Craig	Smith,	and	Sara	Shlaer	for	guiding
me	in	the	process	and	all	the	help	you’ve	given	me.	A	massive	thanks	to
Sebastian	Kaspari	for	being	the	technical	editor	of	this	book	and	making	sure
that	all	the	code	and	examples	work	and	are	understandable.	Thank	you	to
Kevin	Cannon	for	helping	me	by	providing	a	designer’s	point	of	view	for
many	things.

Introduction
Welcome	to	Smashing	Android	UI.

This	book	will	help	you	take	the	next	step	toward	improving	your	Android
knowledge.	This	book	is	not	meant	to	teach	you	Android	development	from
the	beginning	to	the	end,	but	instead	builds	on	your	existing	knowledge	and
helps	you	understand	how	to	build	a	better	user	experience	for	your	apps.

For	developers	who	might	not	be	familiar	with	user	interface	design,	this
book	gives	you	an	overview	of	the	tools	and	techniques	you	can	use	to
determine	what	your	users	want	and	how	to	evaluate	your	app’s	usability.

For	designers,	reading	this	book	will	give	a	good	overview	of	Android	user
interface	in	general.	You’ll	find	a	comprehensive	list	of	available	default
components	and	come	to	understand	how	developers	use	them.	This	book
helps	you	align	your	knowledge	of	the	Android	platform	with	your
developers	to	make	it	easier	to	work	with	them	to	build	scalable	and
responsive	user	interfaces.

Android	fragmentation	does	not	need	to	be	feared;	you	should	think	of	it	as
an	opportunity	instead.	This	book	explains	how	to	approach	design	and
development	challenges	so	that	you	can	build	apps	that	not	only	run	on
smartphones	but	on	tablets	as	well.	You’ll	learn	how	to	adapt	your	apps	to
different	screen	sizes,	fully	utilizing	the	available	screen	real	estate	and	thus
providing	your	users	the	best	possible	user	experience,	regardless	of	the
device.

What	is	this	book	about?
This	book	explains	what	is	available	for	you	in	the	Android	platform.	I’ll
explain	how	and	when	to	use	the	components	it	provides.	The	Android
platform	and	its	documentation	is	gigantic.	It	is	often	difficult	to	start
searching	for	information	given	the	massive	quantities	of	it.	The	goal	of	this
book	is	to	provide	you	with	a	good	understanding	of	what	information	you
need	and	what	to	look	for.	You	will	understand	what	components	others	have
used	to	build	great	apps	and	learn	how	and	where	to	use	them.

used	to	build	great	apps	and	learn	how	and	where	to	use	them.

The	book	explains	what	you	need	to	do	to	make	your	apps	adapt	to	the	large
number	of	devices	out	there,	starting	from	design	to	implementation.	You
will	come	to	understand	what	responsive	design	means	and	why	it	is	so
powerful	on	the	Android	platform.

The	book	also	talks	about	Android	user	interface	design	patterns	and	anti-
patterns.	These	are	the	do’s	and	don’ts	of	the	Android	user	interface	design.
Design	patterns	let	you	learn	from	others	and	give	you	a	head	start	to	design
and	development.

Part	I
The	first	part	of	this	book	is	dedicated	to	introducing	the	user-centered
methodology	as	well	as	the	Android	platform	as	a	whole.	This	part	of	the
book	is	applicable	to	designers	and	developers.	Developers	might	be	familiar
with	the	Android	platform	but	might	not	have	a	good	understanding	of	the
processes	they	can	use	to	get	users	involved	in	the	early	phases	of	the	app
project.	Involving	users	early	in	your	project	helps	you	define	what	your	app
should	do	and	how	users	are	going	to	use	it.	Getting	that	part	right	helps	you
concentrate	on	the	most	important	features	as	well	as	prevent	so-called
“feature	creep,”	which	can	cause	your	app’s	scope	to	become	ungainly.

Some	designers	and	developers	don’t	have	a	clear	picture	of	the	Android
platform,	with	its	complications	like	the	famous	fragmentation	and	device
variety.	If	that	describes	you,	this	part	of	the	book	will	also	paint	you	a
picture	of	the	Android	platform	in	all	its	glory.

Part	II
Part	II	introduces	the	Android	platform	more	deeply,	explaining	how	Android
apps	are	structured	and	how	they	talk	to	each	other.	It	also	gives	you	a	good
picture	of	available	user	interface	components	and	how	to	use	them.

Part	III
Part	III	dives	into	scalable	Android	design	and	how	to	make	your	apps	work
on	all	devices,	from	small	smartphones	to	large	tablets.

Part	IV
The	last	part	of	this	book	goes	through	the	do’s	and	don’ts	of	Android
platform	user	interface	design,	in	the	form	of	user	interface	design	patterns
and	anti-patterns.

Installing	the	Companion	App
This	book	has	a	companion	app,	which	you	can	install	on	your	Android
device	to	view	the	examples	in	action	when	reading	the	book.	The	app
contains	all	the	examples	included	in	this	book.	Trying	out	the	examples	can
make	the	concepts	easier	to	understand	and	to	envision	how	the	examples
will	work	in	real	life	on	your	own	devices.

	You	can	install	the	app	free	from	the	Google	Play	Store	from	the
following	URL	or	by	scanning	the	following	QR	code.

https://play.google.com/store/apps/details?
id=com.androiduipatterns.smashingandroidui.examples

Examples	that	are	available	in	the	companion	app	have	a	QR	next	to	the
relevant	part	in	this	book.	To	scan	QR	codes	you	need	to	install	a	QR	code
scanner	on	your	phone.	There	are	multiple	free	ones	in	the	Google	Play	Store.
I	am	using	an	app	called	Scan	by	Scan	Inc.,	which	you	can	download	free
from	https://play.google.com/store/apps/details?
id=me.scan.android.client.

Once	you	have	a	QR	code	scanner	app	installed	on	your	device	as	well	as	the
companion	app,	scanning	the	book’s	QR	codes	will	directly	open	the
corresponding	example	on	your	device.	Just	point	your	QR	code	scanner	app
to	the	QR	code	on	the	page.	You	can	also	navigate	the	examples	manually.

https://play.google.com/store/apps/details?id=com.androiduipatterns.smashingandroidui.examples
https://play.google.com/store/apps/details?id=me.scan.android.client

Figure	1:	This	scan	app	allows	you	to	point	at	a	QR	code	in	this	book;	it	will
take	you	to	the	corresponding	example	automatically.

Source:	Scan	Inc.

App	compatibility
Note	that	not	all	examples	are	compatible	with	all	Android	versions.
Although	there	are	ways	to	make	apps	compatible	with	older	Android
devices,	I	have	attempted	to	use	only	the	core	Android	APIs	to	keep	the
examples	clean	and	compatible	across	versions.	If	you	are	using	older
Android	devices,	be	aware	that	you	might	end	up	on	a	screen	telling	you	that
an	example	you’re	trying	to	open	is	not	available.

App	source	code
The	companion	app	is	fully	Open	Source,	and	you	can	download	it	and	see
the	source	side	of	the	examples	on	your	own	computer.	You	can	find	the	app

source	code	from	github	at:
https://github.com/JuhaniLehtimaeki/smashing_android_ui_example_app/

https://github.com/JuhaniLehtimaeki/smashing_android_ui_example_app/

Part	I:	Introduction	to	Android
Design

Chapter	1:	Introduction	to	Usability	and	User	Interface	Design

Chapter	2:	Don’t	Start	Coding	Just	Yet

Chapter	3:	Considerations	in	Designing	for	Mobile	and	Touch	Devices

Chapter	4:	Exploring	the	Android	Platform

Chapter	1:	Introduction	to	Usability
and	User	Interface	Design

Usability	is	the	most	important	quality	of	any	app.	It	doesn’t	matter	how	good	a
feature	is	if	the	users	don’t	know	how	to	get	to	it	or	can’t	figure	out	how	to	use
it.	In	the	cutthroat	environment	of	the	mobile	app	market,	users	almost	always
have	alternatives.	If	an	app	doesn’t	feel	right	or	if	users	can’t	figure	out	how	to
perform	the	main	tasks,	they	will	very	often	uninstall	it	without	giving	it	a
second	chance.

The	user	interface	is	users	use	and	view	your	app.	Everything	that	lies	beyond	is
reflected	in	the	UI.	If	your	killer	feature	provides	the	next	generation	cloud
communication	(or	whatever	the	most	awesome	capability	of	your	app	is)	but
isn’t	intuitive,	you	risk	wasting	hundreds	of	hours	building	something	that	users
won’t	even	try.

Getting	the	user	interface	right	requires	investment	into	design.	This	chapter
introduces	concepts	and	ideas	that	make	it	easier	to	understand	the	importance	of
that	investment.	It	also	explains	key	concepts	of	the	design	process	and	provides
some	ideas	for	making	users	a	more	integral	part	of	your	design	process.

Considering	Technology	versus	design
User	interface	design	is	not	an	exact	science.	It	also	doesn’t	happen
automatically.	It	requires	effort	and	a	budget.	In	my	professional	career	I’ve
mostly	worked	for	tech-driven	companies,	so-called	developer	houses.
Almost	my	whole	career	I	have	had	to	fight	to	include	design	considerations
in	the	application-building	process.	In	almost	all	cases	my	request	for	hiring
or	involving	designers	has	been	either	rejected	or	badly	misunderstood.	In
some	companies	a	designer	is	thought	to	be	a	person	who	draws	icons.	In
some	other	companies	designers	are	seen	as	waste	of	time	and	money.	In
these	companies,	the	engineering	team	or	the	product	management	team	often
created	the	design;	sometimes	it	was	designed	by	accident.	Although	various
projects	lead	to	various	results,	the	design	was	always	lacking.	The	products
we	built	felt	easy	and	intuitive	to	use	to	the	engineering	team,	but	the	team
struggled	to	understand	why	users	weren’t	able	to	get	their	work	done	as	they
expected.	The	technical	team	often	said	something	like	the	following:	“That
button	is	clearly	there.	The	users	should	be	able	to	figure	out	how	to	use	it.
They	must	be	stupid!”

I’ve	also	worked	for	companies	on	the	other	extreme.	Everything	was	design
driven.	Early	customer	meetings	were	attended	only	by	designers,	and
technologies	were	selected	without	properly	consulting	the	technical
knowledge	of	the	team.	The	design	was	often	implemented	in	Adobe
Photoshop	and	InDesign	without	much	consideration	of	the	technical
feasibility,	which	ended	up	driving	the	technology	teams	into	difficult
situations	whereby	they	weren’t	able	to	provide	what	the	design	promised.

Neither	of	these	extremes	work.	In	both	cases	the	result	is	far	from	what	it
could	be.	I	have	also	had	the	fortune	to	work	on	projects	where	everything
was	just	about	right.	Working	with	a	designer	or	a	design	team	that
understands	that	software	engineering	is	not	simply	coding	and	having	a
developer	team	that	appreciates	the	craft	of	user	interaction	design	and	visual
design	can	lead	to	stunning	results.	A	team	where	designers	and	developers
work	together	can	produce	results	that	are	much	more	than	the	sum	of	the
components.

My	message	to	developers—Users	don’t	think	the	same	way	you	do!	There

are	people	who	have	studied	user	interfaces	and	have	created	professional
designs.	Don’t	think	you	won’t	need	them	because	you	do!	Knowing	how	to
use	a	user	interface	that	you’ve	built	doesn’t	prove	anything.	Users	who	can’t
use	the	same	user	interface	are	not	stupid.	They	can’t	use	it	because	the	user
interface	is	badly	designed.	Designers	understand	architecture	of	the	user
interfaces.	They	also	understand	how	to	test	and	verify	that	the	design	is
good.	Trust	your	designers.	They	don’t	propose	changes	to	the	user	interface
design	because	they’re	mean	or	want	to	make	you	work	harder.	They	want	to
change	the	interface	because	the	changes	will	make	the	user	experience
better.

My	message	to	designers—Software	engineering	is	not	just	about	coding.	In
fact,	coding	is	just	a	small	part	of	what	developers	do.	Building	successful
software	requires	careful	planning,	architectural	design,	object	relationship
design,	modular	component	design,	database	design,	planning	for
maintainability,	deployment,	quality	assurance,	and	much	more.	If	you	know
how	to	write	scripts,	that’s	a	good	start.	But	writing	scripts	is	not	software
development.	Building	production-quality	software	based	on	a	Photoshop
user	interface	wireframe	is	not	simple;	it	takes	time,	planning,	and	especially
experience!	Trust	your	developers.	They	are	not	taking	so	long	to	build	a
screen	because	they	are	lazy.	They	take	the	time	to	plan	so	the	application
runs	smoothly	and	is	maintainable.	This	way	the	whole	team	can	keep
tweaking	and	perfecting	the	app’s	user	interface	together,	and	the	changes
won’t	be	overwhelming.

Understanding	the	Mental	Model
It’s	time	to	change	gears	a	little	bit	and	think	about	apps	from	the	users’	point
of	view.	What	is	going	on	in	your	users’	heads	when	they	see	your	app	for	the
first	time	or	when	they	continue	to	use	it?	This	section	introduces	a	very
important	concept	called	the	mental	model.

A	mental	model	is	a	model	that	users	form	of	your	app’s	functionality	inside
their	heads.	In	fact,	people	do	this	with	everything.	When	we	learn	to	drive	a
car	we	form	a	mental	model	of	how	the	car	works.	The	model	doesn’t	have	to
be	technically	correct	for	it	to	benefit	the	driver.	The	fact	that	in	modern	cars,
for	example,	the	steering	wheel	is	not	directly	connected	to	the	front	wheels
doesn’t	matter.	We	can	keep	thinking	that	it	is.	We	can	think	that	when	we
turn	the	steering	wheel	there	are	set	of	gears	that	turn	and	make	the	front
wheels	turn.	Because	this	model,	although	technically	simplified,	helps	us
understand	and	simulate	how	the	car	will	behave	when	we	can	use	it.	Our
mental	model	is	consistent	with	the	real-world	effect	of	turning	the	steering
wheel	and	so	don’t	have	any	problems	with	steering	the	car.	We	think	we
understand	how	it	works,	and	we’re	happy.

People	use	apps	the	same	way.	It	is	important	for	users	that	they	can	simulate
the	app	functionality	in	their	heads	to	predict	what	happens	and	when.	The
mental	model	is	one	of	the	most	important	concepts	of	user	interface	design.
The	user	interface	design	must	support	your	users’	mental	model.	The	app
must	be	consistent	and	predictable.

The	app	is	easy	to	use	if	it	consistently	corresponds	to	the	user’s	mental
model	and	the	app	is	intuitive	if	users	have	an	easy	time	forming	the	mental
model.	Everything	in	the	user	interface	comes	back	to	the	user’s	mental
model,	and	each	problem	users	experience	is	because	of	the	inconsistency
between	the	user’s	mental	model	(the	expectations)	and	how	the	app	really
works.

Forming	a	mental	model
In	the	real	world,	you	can	infer	a	lot	about	the	physical	functionality	of
objects	simply	by	looking	at	them.	You	know	how	much	they	weigh,	which
way	you	can	manipulate	them,	and	which	way	you	probably	can’t.	With
physical	objects	you	can	also	experiment	to	determine	how	they	function.

When	using	software	you’re	stuck	with	pixels.	How	do	you	make	sure	that	all
of	your	users	understand	which	group	of	pixels	can	be	manipulated	in	which
way?	The	answer	is	simple	in	theory	but	difficult	in	practice.	You	need	to
guide	your	users.	The	interface	must	be	logical	and	contain	visual	clues	about
how	things	in	it	work.

You	have	a	lot	of	tools	at	your	disposal.	You	can	use	colors,	shapes,	textures,
3D	effects,	and	animations.	As	with	any	tools,	they	are	helpful	only	when
used	correctly	and	in	the	right	places.	That	is	where	the	user	interface	design
skill	comes	in.

Let’s	look	at	two	examples	of	Android	apps.	Google’s	Play	Books	is	an
ebook	reader	app.	Users	have	a	pretty	strong	image	in	their	heads	about	how
books	work	and	the	app	helps	the	users	to	confirm	their	mental	models	by
using	a	transformation	animation	when	they	start	to	swipe	a	finger	across	a
book	page.	Figures	1-1,	1-2,	and	1-3	display	a	few	frames	of	that	animation.

Figure	1-1:	User	starts	to	swipe	a	finger	across	a	page.

Source:	Google	Inc.

Figure	1-2:	User	continues	the	swipe	gesture.

Source:	Google	Inc.

As	another	example	(see	Figure	1-4),	the	Gigbeat	app	gives	users	subtle
visual	clues	to	help	them	understand	how	the	interface	works	and	so	they	can
form	a	consistent	mental	model.	You	can	see	how,	at	the	Gigbeat	tour	dates
screen,	the	band	profile	page	graphic	is	also	partially	visible.	Displaying
content	partially	next	to	the	selected	content	leads	users	to	think	that	they	can
view	more	by	moving	in	that	direction.	On	a	touch	interface,	the	navigation	is
usually	done	by	swiping	or	tapping.

Platform	consistency	and	user	expectations
An	extra	challenge	comes	from	the	fact	that	every	user	forms	a	mental	model
differently	and	expects	different	things.	Some	users	are	familiar	with	certain
user	interface	concepts	whereas	other	users	have	never	seen	them.	Users
come	from	different	cultures	and	different	backgrounds.	They	have	different
experiences	in	software	and	software	platforms.	A	life-long	Mac	user,	for
example,	is	going	to	expect	the	user	interface	to	work	differently	from	a	life-
long	Windows	user.

Figure	1-3:	User	finishes	the	swipe	gesture.

Source:	Google	Inc.

Figure	1-4:	The	Gigbeat	app	uses	subtle	visual	clues	to	help	users	notice	that
more	content	is	available.

Source:	Gigbeat	Inc.

For	example,	Microsoft	Windows	users	expect	that	double-clicking	a	window
title	bar	will	maximize	the	window.	The	functionality	is	not	intuitive,	but
users	have	learned	it	and	now	depend	on	it.	It	is	therefore	very	important	to
maintain	functional	consistency	between	apps	on	a	platform.

Tip:	Users	expectations	are	an	important	part	of	the	mental	model-forming
process.	If	your	app	follows	all	the	platform	guidelines,	users	are	much	less
likely	to	struggle	with	your	app.

Let’s	look	at	few	examples	of	user	interface	conventions	that	make	it	easier
for	users	to	get	around	in	apps	because	they	are	widely	used	on	the	Android
platform.	Figures	1-5	and	1-6	show	two	tabbed	user	interfaces.	Android	tabs
have	a	distinct	look	and	feel	compared	to	other	platforms.	The	differentiated

look	is	a	good	thing	as	these	tabs	also	function	a	little	bit	differently	than
other	platforms.	On	the	Android	platform,	the	main	navigation	method
between	tabs	is	the	swipe	gesture,	although	simply	tapping	on	a	tab	also
works.	Due	to	platform	consistency	users	know	to	use	this	functionality
without	you	having	to	design	a	way	to	explain	it.

Figure	1-5:	Android	contact	app	has	a	tabbed	user	interface.	The	tabs	can	be
navigated	using	swipe	gestures.

Source:	Android

Figure	1-6:	Android	dialer	app	also	uses	a	similar	tabbed	user	interface	that
allows	use	of	swiping	gesture	as	the	primary	navigation	method.

Source:	Android

Another	example	of	platform	consistency	helping	app	design	is	the	Android’s
menu	functionality.	Apps	that	have	more	menu	options	than	can	fit	on	the
screen	use	the	Android	Action	Bar	overflow	menu.	The	overflow	menu	uses
three	horizontal	dots	(see	Figures	1-7	and	1-8).	Users	know	what	the	icon
means	even	though	it	might	not	be	apparent	to	non-Android	users.	You	will
take	a	much	deeper	look	into	different	Android	user	interface	conventions
and	component	in	the	rest	of	this	book.

Figure	1-7:	Google+	app	uses	the	overflow	menu	to	show	menu	items	that	don’t
otherwise	fit	on	the	screen.

Source:	Google	Inc.

Figure	1-8:	Google	Chrome	browser	has	many	more	menu	items	that	would	fit
on	the	screen	without	using	the	overflow	menu.

Source:	Google	Inc.

Designing	for	users
Building	usable	interfaces	to	support	your	user’s	mental	model	requires	that
the	user	be	placed	in	the	center	of	the	design	process.	The	app	design	must
start	from	the	standpoint	of	the	user’s	needs	and	keep	the	focus	on	the	user
throughout	the	whole	process.	In	the	software	industry,	there	is	a	term—user
centered	design	(UCD)—that	is	being	thrown	about	pretty	often,	but	what
does	it	actually	mean?	How	can	you	put	your	users	in	the	center	of	your
design	efforts?

This	section	introduces	some	overall	concepts	of	user-centered	design	and
goes	though	some	of	the	most	important	terminology.	User-centered	thinking
is	very	important	for	the	success	of	any	project,	and	the	concepts	described
here	can	be	adapted	to	work	in	any	project.	The	subject	of	user-centered
design	is	very	large	and	others	have	written	whole	books	about	it,	so	there	is
no	shortage	of	additional	sources	to	deepen	your	understanding	of	the	subject.
I	hope	I	spark	your	interest	in	the	subject,	and	I	encourage	you	to	seek	more
information	and	alternative	views	from	the	literature	and	from	the	Internet.

User	Goals
Users	don’t	just	want	to	use	your	app.	They	want	to	get	something	done.
They	have	goals	like	“remember	to	buy	milk	on	the	way	home”	or	“buy	an
Android	tablet.”	Users	are	going	to	evaluate	your	app	based	on	how	well	it
supports	them	in	achieving	their	goals.	If	you	identify	the	user	goals	your	app
supports	and	make	your	user	interface	support	them,	your	users	are	going	to
be	happy.

Let’s	take	a	little	bit	deeper	look	at	user	goals.	What	is	a	user	goal	and	what
isn’t?	In	short,	a	user	goal	is	something	the	user	wants	to	do	but	does	not
describe	any	functionality	of	your	application.	For	example,	the	“user	wants
to	save	the	document”	is	not	a	user	goal.	A	user	never	wants	to	save	anything.
Users	want	their	documents	to	be	there	when	they	need	them	again.	This	goal
might	be	supported	by	a	save	function,	but	that’s	not	the	only	option.

For	someone	coming	from	a	more	technical	background	understanding,	user
goals	are	like	use	cases.	A	use	case	describes	an	app’s	single	usage	situation.
A	goal	is	the	description	of	why	the	users	want	to	do	something.

Table	1-1	shows	some	examples	of	how	user	goals	should	be	formalized
using	a	fictitious	college	planning	app.	The	table	includes	badly	formalized
user	goals	and	reasons	why	they	are	bad	as	well	as	correctly	formalized	user
goals	that	match	the	same	situation.	Note	that	the	differences	in	good	and	bad
are	subtle,	but	the	bad	ones	might	cause	designers	and	developers	to	think
about	features	and	certain	user	interface	solutions	ahead	of	time.

Table	1-1	Example	User	Goals	for	Fictitious	College	Planning
App

Not	a	User	Goal

Corresponding	User	Goal

User	wants	to	save	a	document	(implies
functionality). User	wants	to	have	the	same	document	available	when	she	works	on	it	later.

User	wants	to	see	a	notification	when	a	new
email	arrives	(implies	functionality). User	wants	to	know	when	new	emails	arrive.

User	wants	to	open	a	calendar	view	with
lecture	times	(too	specific). User	wants	to	know	what	time	a	certain	lecture	starts.

User	wants	to	see	a	calendar	(too	abstract). Contains	multiple	user	goals.

User	wants	to	use	search	to	find	a	lecture
(describes	functions).

Probably	contains	multiple	goals.	One	of	them	could	be	that	the	user	wants	to
determine	whether	he	knows	somebody	attending	a	certain	lecture.

User	wants	to	add	new	reminder	to	his
calendar	(describes	functions). User	wants	to	remember	an	appointment	before	it	starts.

Don’t	talk	about	features
The	first	thing	to	do	is	to	change	the	language	and	terminology	about	how
you	talk	about	your	software	project.	You	must	stop	talking	about	features
and	start	talking	about	user	needs.	Avoid	designing	the	user	interface	by
accident.	If,	while	still	in	the	concept	phase,	you	start	talking	about	features
and	how	the	software	should	function,	you	need	to	take	a	step	back.	Users’
needs	must	come	first.	Be	careful	to	avoid	sentences	like	“Hey,	I	think	we
should	add	a	Save	button	here!”	A	possible	result	of	that	sentence	might	be	a
user	interface	feature	that	is	useless	or	confusing	to	users.	Think	about	the
user	goals	first!

Determining	user	goals
It	is	easy	to	say	that	you	should	have	a	list	of	goals	in	order	to	start	thinking
about	the	features	and	the	design	of	your	app.	But	where	does	that	list	come
from?

User	goals	should	arise	from	user	research,	domain	expertise,	and	an
understanding	of	the	problem	the	app	is	trying	to	solve.	User	research	is
sometimes	not	possible	or	not	feasible	so	you	might	have	to	rely	on	more
informal	means.	Consider	doing	ad-hoc	user	research	by	having	a	short	chat
with	your	friends	over	Google	talk	or	Facebook.

Writing	down	the	user	goals	you	feel	are	the	most	important	does	act	as	a
very	valuable	discussion	starter.	A	list	of	initial	goals	can	be	an	extremely
valuable	tool	especially	if	you	are	building	an	app	for	a	customer.	A	complete
list	of	user	goals	is	a	non-technical	description	of	the	app’s	functionality.	It	is
something	that	is	extremely	easy	to	discuss	without	any	need	for	technical
knowledge	or	lengthy	documentation.	A	user	goal	is	one	or	two	sentences	and
a	question	like	“is	this	important	to	you?”

To	build	the	user	goal	list,	simply	write	down	what	you	think	is	important
based	on	your	expertise.	Then	talk	to	your	customers,	domain	experts,	users,
and	anyone	else	you	think	can	contribute.	Then	you	need	to	reorganize,
rewrite,	and	prioritize	your	list	of	goals.	By	the	end	of	that	process	you	will
have	something	that	describes	what	users	can	achieve	by	using	your	app,
even	though	not	a	single	feature	has	been	designed.

From	goals	to	features
A	very	important	point	to	understand	about	usability	is	how	app	features
relate	to	user	goals.	Each	feature	of	any	app	should	cater	to	something	users
want	to	do.	Simply	adding	features	without	thinking	about	its	user	goals	is
likely	to	result	in	a	confusing	user	interface	and	a	lot	of	wasted	hours	building
features	that	will	never	be	used.

In	theory,	every	single	feature	of	an	app	should	be	traceable	to	a	user	goal
(see	Figure	1-9).	In	practice	that	is	not	always	possible	but	it	should	be	a
target	for	the	team.	Adding	features	without	thinking	about	the	user	goals
introduces	feature	creep	to	the	app.	More	features	don’t	make	apps	better
especially	when	the	features	aren’t	well	thought	out.	A	good	example	of
feature	creep	is	almost	any	Office	productivity	suite.	The	Office	suite
providers	have	been	piling	features	on	top	of	features	for	years,	and	the	apps
now	require	special	training	to	be	used.

Figure	1-9:	In	the	end	your	app	should	not	have	any	features	that	aren’t
traceable	to	a	user	goal.

No	App	will	do	everything;	pick	your	battles
Don’t	try	to	do	everything.	Start	with	key	user	goals	and	expand	from	there.
An	app	that	fits	perfectly	with	a	smaller	set	of	user	goals	is	much	better	than
an	app	that	tries	to	do	everything	poorly.	At	the	start	of	the	project	write
down	what	your	app	is	going	to	do	and	especially	what	your	app	is	not	going
to	do.

If	you’re	building	a	note-taking	app,	for	example,	decide	what	kind	of	note-

If	you’re	building	a	note-taking	app,	for	example,	decide	what	kind	of	note-
taking	app	it	will	be.	Is	it	also	going	to	be	a	to-do-list	manager	or	a	word
processor?	One	app	can’t	do	all	of	that.	If	you	decide	that	no,	your	app	will
not	be	a	word	processor,	write	that	information	down.	You	won’t	support
users	who	want	to	write	a	book	using	your	app.	Your	app	will	help	people
take	basic	notes.	These	kinds	of	decisions	help	you	concentrate	on	the	key
issues	and	help	you	build	a	more	focused	product	that	supports	your	users’
key	goals.	Create	a	list	similar	to	Figure	1-10	to	make	it	clear	to	the	whole
team	and	other	stakeholders	what	you	are	doing	and	what	you’re	not	doing.

Tip:	Deciding	what	not	to	do	is	as	important	as	deciding	what	to	do.

Figure	1-10:	With	few	written	words	you	can	limit	the	scope	of	the	app	and
help	the	whole	team	understand	what	the	app	is	going	to	do	and	what	it	is	not
going	to	do.

You	are	the	expert;	users	are	not	designers
There	will	always	be	someone	wanting	to	tell	you	which	features	you	should
add	to	your	app.	User	feedback	is	typically	littered	with	feature	requests.
Don’t	assume	they	are	always	correct,	but	don’t	ignore	them	either.	Simply
implementing	user-requested	features	will	make	your	software	cluttered	and
unorganized.	Try	instead	to	find	the	user	goal	behind	each	request.	Determine
if	the	goal	is	something	your	app	should	support,	and,	if	so,	start	designing
the	best	possible	user	interface.	Do	not	let	your	users	design	your	user
interfaces.	You	are	the	expert.

An	overused	quote	attributed	to	Henry	Ford	goes	something	like	this:	“If	I
had	asked	people	what	they	wanted,	they	would	have	said	faster	horses.”	The
sentence	captures	the	whole	essence	of	what	to	expect	from	users	when
asking	them	direct	questions	about	features.	Always	ask	what	users	want	to
do,	not	what	they	want.	In	this	old	example,	the	question	is	“What	do	you
want	to	do?”	and	the	answer	is	something	like	get	from	point	A	to	point	B
faster.	A	visionary	designer	can	take	that	information	and	start	to	look	for
solutions	that	solve	the	issue	in	better	way	(a	mechanical	car)	than	the
obvious	solution	(a	faster	horse).

Know	your	users;	design	for	real	people
You	are	not	your	app’s	user.	Be	wary	of	implementing	features	you	would
like.	Don’t	base	UI	decisions	solely	on	anecdotal	evaluation,	yours	or	your
coworkers.

Figuring	out	for	whom	you	are	writing	the	app	is	very	important.	Different
kinds	of	people	expect	different	functionality	and	need	different	user
interfaces.	In	some	cases	you	already	know	your	target	group,	but	in	other
cases	you	need	to	do	a	lot	of	work	to	figure	this	out.	People	tend	to	answer
that	they	want	everybody	to	use	their	software.	Even	if	you	did	want
everyone	to	use	your	software,	designing	for	everyone	is	impossible.	You
need	to	decide	who	your	main	users	are	and	concentrate	on	their	goals.

Using	Personas
Formalizing	and	communicating	who	your	users	are	isn’t	easy,	but	using
personas	can	help.	A	persona	is	a	made-up	person	who	epitomizes	one	of
your	user	groups.	You	could	say	that	a	persona	is	a	concrete	instance	of	an
abstract	group.	Creating	personas	is	like	creating	characters	for	a	play.	In	this
case	the	play	is	your	app	and	the	character	is	an	example	user	of	your	app.

Your	personas	should	be	based	on	user	research	when	possible.	Writing	down
your	best	guess	and	having	discussions	with	your	customers	and	other
domain	experts	should	get	you	enough	information	to	build	a	good	set	of
personas.

Tip:	Don’t	use	information	from	any	one	real	person.	It	is	much	easier	to	talk
about	fictional	persons	than	about	real	persons.	You	also	don’t	want	to
accidentally	insult	anybody	who	was	nice	enough	to	participate	to	your	user
research.

You	don’t	need	to	create	personas	for	everyone	who	is	going	to	be	using	your
app.	Each	persona	represents	a	group	of	real	users.	An	average	mobile	app
will	probably	have	between	three	to	seven	personas.

Each	persona	should	have	the	following	information	(see	Figure	1-11	for	an
example	persona):

•	A	made-up	name	(look	for	a	random	name	generator	on	the	Internet	if
you	have	problems	coming	up	with	one)
•	A	portrait	photo

•	A	short	description,	including	age,	sex,	education,	and	so	on
•	A	list	of	key	goals	this	persona	has	relating	to	your	app	domain

•	Priority	describing	how	important	it	is	that	this	persona’s	goals	are
supported	in	your	app

Figure	1-11:	An	example	persona.

Source:	http://www.flickr.com/photos/yuri-samoilov/4105603525/copyright	Yuri	Samoilov

Once	you	have	your	personas	laid	out	you	will	have	a	very	good	and	concrete
picture	of	your	target	users.	You	don’t	have	to	think	about	your	users	as
abstract	stereotypes;	you	have	people	with	names	and	personalities	instead.
You	can	use	the	personas	to	simulate	your	app	functionality	as	well	as	decide
who	are	the	important	and	who	are	the	not-so-important	people	for	your
business	goals.

Now	you	have	the	personas	and	user	goals.	Use	them!	If	it	helps,	print	out	the
persona	descriptions	and	hang	them	on	the	office	walls	to	remind	you	and	the
team	that	these	are	the	people	who	are	going	to	use	your	app.

Getting	into	your	user’s	head
Once	you	reach	the	point	whereby	you	have	your	personas	and	user	goals
listed	you’re	pretty	well	positioned	to	start	thinking	about	features	and
design.	You	hopefully	have	a	great	understanding	as	to	what	you	want	the
app	to	do	and	who	the	users	are.	Your	whole	team	and	stakeholders	have	a
good	agreement	about	what	needs	to	be	achieved.	Now	all	you	need	to	do	is
create	the	actual	design.	I’d	like	to	tell	you	that	it	is	the	easy	part	but	I	would
be	lying.	The	design	and	development	is	the	hard	part.

Build	the	information	architecture	and	visual	design	to	cater	to	the	user	goals.
Make	sure	that	all	the	important	goals	are	easy	to	achieve	with	the	design

Make	sure	that	all	the	important	goals	are	easy	to	achieve	with	the	design
you’re	doing.	Keep	testing	your	designs	with	the	mindset	of	the	personas,	and
simulate	the	app	with	the	user	goals	in	mind.	Ask	a	lot	of	questions	like
“Would	persona	X	understand	this?”	and	“How	about	persona	Y	in	this
situation?”	Stay	in	the	mindset	of	your	users	when	thinking	about	using	your
app.	This	way	you	will	avoid	designing	the	app	for	yourself.

There	will	be	moments	in	the	design	process	when	brilliant	feature	ideas	pop
up.	They	might	not	fit	into	the	personas	or	user	goals	but	might	feel	like	great
ideas	nonetheless.	Be	wary	of	those	situations.	Sometimes	the	idea	might	lead
to	real	innovation	and	is	worth	pursuing.	Whenever	a	feature	doesn’t	fit	the
user	goals,	though,	be	extra	critical	of	it	and	evaluate	it	twice.

Summary
The	actual	design	work	requires	skill	and	experience.	The	rest	of	this	book
talks	about	designing	for	Android	and	the	things	you	should	know	about	the
platform.	It	discusses	platform-specific	problems	and	opportunities.	It
explains	what	is	possible	and	what	is	difficult	to	implement.	It	also	talks
about	tools	like	prototyping	and	Android	user	interface	design	patterns	that
can	help	you	get	the	design	details	right.

A	big	part	of	building	a	great	user	experience	is	getting	to	understand	how
users	think.	Once	you	can	think	like	your	users	or	understand	how	they	think
you	are	in	a	good	position	to	design	user	interfaces	for	them.

If	you	invest	time	to	do	the	research	and	design	you	will	save	a	lot	of	time	in
the	long	run.	Do	your	legwork;	bug	your	friends	and	family.	Make	sure	you
understand	who	your	users	are	and	what	they	want	to	do.	Make	sure	that	your
team	knows	which	user	goals	are	the	important	ones	and	which	personas	are
the	high-priority	ones.

	

Chapter	2:	Don’t	Start	Coding	Just
Yet

Once	you	have	a	good	understanding	of	your	users	and	what	they	want,	it	is
tempting	to	start	coding.	You	probably	already	have	an	idea	in	your	head	how
the	app	will	look	and	function.	But	don’t	jump	into	coding	just	yet!	Code	is	rigid
and	difficult	to	change.	It	is	better	to	use	more	flexible	ways	to	think	about	the
design	first.

The	app-building	process	is	a	continuum	from	low-fidelity	ideas	on	paper	to
high-fidelity	designs	and	working	prototypes	toward	the	final	product.	This
chapter	introduces	some	tools	and	ideas	that	will	help	you	on	the	way.

Prototyping
Draw	your	design	ideas	on	paper	first.	Getting	ideas	from	your	head	to	paper
will	make	them	concrete	and	much	easier	to	discuss	with	the	rest	of	the	team.
This	phase	of	app	building	is	called	prototyping.	Prototyping	is	an	essential
part	of	the	design	process.	It	provides	a	way	to	test	ideas	without	having	to
implement	them,	therefore	giving	the	team	greater	creative	freedom.

The	purpose	of	a	prototype	is	to	simulate	the	functionality	of	the	app	you	are
building.	The	simulated	functionality	will	let	you	experiment	and	expose
problems	that	you	and	your	team	might	not	have	thought	about.	A	prototype
can	be	a	low-fidelity	paper	drawing	that	doesn’t	have	any	real	functionality	or
a	high-fidelity	functional	prototype	that	can	actually	be	used	and	experienced
—or	anything	in	between.

Tip:	The	best	place	to	start	prototyping	is	on	paper.	Paper	is	virtually	free
and	paper	prototypes	can	be	modified	with	an	eraser	and	a	pencil.	Paper	and
pencil	prototypes	also	aren’t	limited	by	the	technology.	Go	crazy!	Don’t	let
the	technical	limitations	get	in	your	way.	Sketch	out	your	ideas	and	discuss
them	with	the	team.

Wireframes
App	structure	is	the	big	picture	of	the	design.	Thinking	about	what	kind	of
screens	are	needed	and	how	they	relate	to	each	other	is	a	good	place	to	start.
Ignore	interface	details	first.	You	don’t	want	to	be	spending	time	designing
visual	details	or	thinking	about	exact	wording	of	controls	before	you	can	be
sure	that	those	details	will	be	needed.

Drawing	wireframes	is	a	good	way	to	get	the	app	structure	on	paper.	A
wireframe	is	a	blueprint	of	your	app.	On	a	wireframe	you	describe	how	your
app’s	screens	are	composed	and	how	they	relate	to	each	other	without	many
details	about	visuals	or	content.	A	wireframe	is	usually	a	black-and-white	line
drawing	that	contains	rough	component	descriptions,	symbols	for	images,	and
filler	text	for	text	blocks.	Figure	2-1	shows	an	example	of	a	very	simple
wireframe	that	has	a	list	of	items	on	one	screen	and	an	item	details	screen.

Wireframes	are	very	fast	to	build	and	painless	to	modify.	They	are	not	meant
to	fully	specify	the	app	user	interface.	They	do,	however,	make	ideas	more
concrete	and	testable.	They	also	make	it	easier	to	discuss	ideas	with	other
team	members.	You	have	something	concrete	you	can	show	instead	of	trying
to	explain	abstract	ideas	verbally.

Figure	2-1:	An	example	of	a	wireframe	sketch	for	an	app	with	two	screens,	a
list	of	items	and	an	item	detail	screen.

list	of	items	and	an	item	detail	screen.

The	effortlessness	of	wireframe	drawing	also	makes	it	easy	to	test	your	ideas.
If	you	have	a	crazy	idea	that	just	might	work	you	probably	won’t	be	able	to
convince	others	that	it	should	be	used	in	code	without	any	proof.	Building	a
wireframe	is	worth	the	time	and	effort.	You	can	wireframe	and	demonstrate
your	ideas	in	a	relatively	short	amount	of	time.

High-fidelity	prototypes
Not	everything	can	be	prototyped	using	simple	wireframes.	Can	you	be	sure
that	the	screen	transition	you’ve	been	thinking	about	will	work	the	way	you
want	it	to?	Once	you	are	certain	that	this	transition	is	needed	it	is	time	to	get
coding	involved.	Building	a	functional	prototype	of	part	of	the	app	makes
sense	when	a	concept	is	complex,	and	there	is	uncertainty	as	to	whether	it
will	work	in	practice.

A	high-fidelity	prototype	might	not	be	a	throw-away	prototype.	Sometimes	it
is	possible	to	build	the	prototype	using	reusable	components	and
implementing	functionality	that	can	be	utilized	in	the	final	product.	The
reusable	components	might	even	save	you	some	time	in	the	implementation
phase,	but	that	should	not	be	the	priority	at	this	point	of	the	project.	The
priority	should	remain	strictly	in	producing	the	best	possible	user	interface	in
the	final	product,	and	that	should	guide	the	decision.

Proof	of	Concept
Sometimes	the	technical	feasibility	of	a	new	design	is	uncertain.	This	might
be	because	designers	want	to	use	existing	components	in	a	way	they	have	not
been	used	before	or	maybe	even	use	a	new	component.	In	this	kind	of
scenario	a	proof	of	concept	should	be	built.	A	proof	of	concept	is	a	piece	of
working	software	implemented	with	enough	details	that	it	can	be	verified	to
work	in	practice.	A	proof	of	concept	gives	the	team	confidence	that	the
design	they	are	proposing	will	work	in	practice	or	clarifies	that	the	approach
is	not	feasible	and	should	be	redesigned.	A	proof	of	concept	doesn’t	need	to
be	a	fully	functional	app	but	instead	concentrate	on	a	single	design	idea	like	a
novel	interaction	method	on	a	list	or	even	just	to	test	the	effectiveness	of
certain	graphics.

Tools	for	Design
Paper	prototyping	is	all	well	and	good,	but	at	some	point	in	the	process	it	is
useful	to	start	using	digital	tools.	Once	the	big	picture	design	is	clear,	digital
tools	can	really	help	you	fine-tune	it.	Other	obvious	benefits	of	using	digital
tools	include	easy	distribution	even	when	team	members	are	not	located	in
the	same	physical	space.

Whenever	people	talk	about	design	software,	Adobe’s	name	pops	up.	They
produce	multiple	tools	that	are	very	widely	used	but	are	also	very	expensive.
This	section	introduces	a	few	tools	that	are	maybe	less	known	but	also	much
cheaper.	Each	of	these	tools	has	good	support	for	the	Android	platform	and
can	be	very	useful	for	drawing	Android	app	wireframes.

OmniGraffle	and	stencils
The	OmniGraffle	wireframing	tool	(see	Figure	2-2)	is	my	personal	favorite.
With	a	great	user	interface,	great	Android	support,	and	reasonable	price	I	do
wholeheartedly	recommend	OmniGraffle	to	anyone	who	is	using	a	Mac.
Unfortunately	it	is	not	available	for	Linux	or	Windows.

OmniGraffle	is	also	one	of	the	few	applications	that	Google	has	released	the
official	Android	design	stencil	of	(downloadable	from	Android	design
guidelines	web	page).	The	stencil	is	very	helpful	for	drawing	more	detailed
user	interface	designs.	It	contains	all	standard	Android	user	interface
components	and	many	helpful	composite	controls	like	action	bar	and
keyboards.

WireframeSketcher	and	templates
WireframeSketcher	(see	Figure	2-3)	is	a	multi-platform	wireframing	tool	that
can	be	installed	to	Eclipse	or	as	a	standalone	installation.	It	is	available	for
Linux,	Mac,	and	Windows.	It	also	has	multiple	community-provided	Android
stencils	that	can	be	helpful	during	the	wireframing	process.	This	tool,
however,	is	not	well	suited	for	detailed	user	interface	design.

Figure	2-2:	The	OmniGraffle	wireframing	tool	is	a	great	Mac	tool.

Source:	The	Omni	Group

Figure	2-3:	WireframeSketcher	is	a	multi-platform	wireframing	tool.

Source:	WireframeSketcher.com

Balsamiq
Balsamiq	(see	Figure	2-4)	is	a	multi-platform	wireframing	tool	that	can	run
on	a	browser	or	as	a	standalone	app	on	Linux,	Mac,	or	Windows.	It	also	has
community-provided	stencils	for	the	Android	platform.

Figure	2-4:	Balsamiq	is	another	great	wireframing	tool.

Source:	Balsamiq	Studios,	LLC

What	Is	Eclipse?
For	those	of	you	with	your	heads	in	the	sand,	Eclipse	is	an	Open	Source	IDE	that	runs	on	OS	X,	Linux,
and	Windows.	It	is	currently	the	most	popular	tool	for	building	Java	applications.	It	also	has	a	very
good	support	for	third-party	plug-ins.	It’s	no	surprise	that	Google	chose	Eclipse	as	the	platform	for
Android	tools.

Read	more	and	download	it	at	http://eclipse.org/.

Android	Eclipse	plug-in	GUI	builder
Android	SDK	ships	with	a	user	interface	builder.	Although	its	primary
purpose	is	user	interface	development	it	can	also	be	used	for	prototyping.	The
interface	builder	is	constantly	getting	updated,	and	it	is	likely	that	Figure	2-5

http://eclipse.org/
http://eclipse.org/
http://eclipse.org/
http://eclipse.org/
http://eclipse.org/
http://eclipse.org/

will	be	outdated	by	the	time	you	are	reading	this.	Check	out
http://tools.android.com/	to	see	what’s	new	in	the	Android	tools.

Using	a	development	tool	for	design	brings	extra	challenges,	and	I	would	not
recommend	this	approach	unless	you	are	already	very	comfortable	with	the
tool.	The	obvious	benefit	of	using	such	a	plug-in	is,	of	course,	that	the
resulting	prototype	can	be	run	on	real	devices.

Figure	2-5:	The	Android	Eclipse	plug-in.

Source:	Android	SDK

Pencil
Pencil	(see	Figure	2-6)	is	a	free	standalone	app	or	an	add-on	to	the	Mozilla
Firefox	browser.	Although	some	features	are	missing,	the	app	is	free	so	trying
out	Pencil	is	risk	free.	Community-provided	Android	stencils	are	available	for
Pencil.

Figure	2-6:	Pencil	helps	you	quickly	draw	wireframes.

Source:	Evolus

Additional	Utilities
Android	Design	Preview	is	a	handy	little	utility	that	allows	you	to	display	part
of	your	desktop	on	any	connected	Android	phone	or	on	the	emulator.	You
can	test	out	designs	directly	from	your	computer	drawing	app	on	a	real	device
without	having	to	copy	anything	over	to	the	phone.	You	can	download	the
Android	Design	Preview	from	http://code.google.com/p/android-ui-
utils/.

Android	Asset	Studio	is	a	handy	web	app	that	can	help	you	generate	different
icons	for	launcher,	menu,	action	bar,	tabs,	and	notifications.	You	can	use
graphics	or	text	as	the	basis,	and	the	web	app	will	generate	icons	for	all
required	densities	and	different	Android	versions.	You	can	download
Android	Asset	Studio	from	http://android-ui-
utils.googlecode.com/hg/asset-studio/dist/index.html.

http://code.google.com/p/android-ui-utils/

User	Testing
As	mentioned	in	the	previous	chapter,	you	are	not	your	app’s	users.	A	typical
developer	is	very	bad	at	guessing	how	their	users	will	understand	the	user
interface	and	how	they	will	use	it.	That’s	why	actual	users	should	test	the
design.

In	a	user	test	you	put	your	design	in	front	of	real	users.	In	a	formal	user	test
the	users	are	typically	invited	to	visit	the	testing	facility—maybe	your	office
or	some	other	neutral	place,	although	remote	user	testing	technologies	also
exist.	They	are	then	presented	with	the	prototype	or	functional	app	and	asked
to	perform	simulated	real-world	scenarios.	The	users	are	asked	to	think	aloud
while	performing	the	tasks	to	get	a	better	understanding	of	their	thought
processes.	The	test	is	usually	videotaped	for	further	review	and	then	observed
by	a	few	people.

Although	a	formal	user	test	is	the	best	tool	you	have	for	uncovering	usability
problems	it	is	not	always	possible,	either	due	to	financial	or	time	limitations.
In	that	case	try	to	find	alternative	methods	for	getting	feedback	about	your
design.	Your	coworkers	probably	aren’t	the	best	source	for	representative
feedback,	so	it	is	better	to	go	outside	the	office.	Even	testing	the	design	with
your	family	and	friends	is	valuable.	Performing	a	formal	testing	can	be
difficult,	but	asking	questions	like	“How	would	you	send	this	document	via
email?”	or	“What	do	you	think	this	button	does?”	can	provide	you	with
valuable	insight	to	your	design.

User	testing	has	the	same	philosophy	as	any	other	testing.	A	user	test	is
successful	if	it	uncovers	problems.	Be	aware	of	the	normal	tendency	of
falling	in	love	with	your	own	creations.	If	you	spend	a	lot	of	time	building
something,	you	want	to	see	it	succeed.	If	the	app	has	problems,	they	will	pop
up	at	some	point—either	in	testing	or	when	the	app	is	published.	The	sooner
the	better.

SelectING	your	participants	carefully
Remember	the	personas	discussed	in	Chapter	1?	You	should	have	already
chosen	whom	you	are	writing	your	app	for.	Those	are	the	people	who	you
should	try	to	use	during	user	testing.	Of	course,	you	can	do	dry	runs	and	even
additional	testing	with	your	friends	and	coworkers,	but	you	should	always
give	more	weight	to	tests	with	users	from	your	target	group.	Use	the	personas
you	created	in	Chapter	1,	and	seek	out	people	fitting	your	high-priority
personas.

Planning	for	A	user	test
Remember	what	you	designed	your	app	to	do.	Try	to	formalize	the	bulk	of
the	user	test	scenarios	based	on	the	core	functionality	of	your	app.	Go
through	your	user	goal	definitions	and	make	sure	that	the	high-priority	user
goals	are	covered.	Follow	the	same	rules	when	writing	the	user	test	scenarios
that	you	did	when	writing	user	goals.	Do	not	include	technical	features	in
your	scenarios,	and	let	users	figure	out	which	features	they	want	to	use.	A
bad	user	test	scenario	would	be	something	like	“Open	a	document	and	press
Save	and	add	it	as	an	attachment	to	email,”	while	a	good	scenario	could
sound	something	like	“You	remember	writing	a	document	about	your	friends
before.	You	want	to	refresh	your	memory	about	the	content	of	the	document
and	send	it	to	your	friend	via	email.”

Tip:	Try	to	use	real	data	as	much	as	possible.	If	your	app	has,	for	example,
contact	lists,	you	should	populate	them	with	real-looking	data.	Don’t	use
clearly	fake	data	like	“contact	1,”	“contact	2,”	but	instead	create	names	that
look	real.	Avoid	situations	where	users	have	to	imagine	pieces	of	the	app	if
possible.

It	can	be	a	good	idea	to	write	scenarios	to	test	features	you’re	not	sure	are
going	to	work.	If	your	team	is	planning	to	build	something	that	isn’t	typically
supplied	on	the	Android	platform,	for	example,	you	certainly	want	to	test	that
feature.	If	none	of	the	test	subjects	touches	on	the	features	you	wanted	to	test,
you	can	add	questions	to	the	end	of	the	user	test	to	ask	the	users	how	they
think	the	specific	features	work.

Stay	neutral;	don’t	guide	the	users
People	are	naturally	reluctant	to	criticize	work	done	by	others	they	don’t
know.	The	test	participants	might	think	that	they	are	offending	you	and	your
work.	It	is	some	times	a	good	idea	to	present	the	app	as	something	that	was
done	by	someone	else	to	get	more	honest	feedback.

Be	neutral	during	the	testing,	and	don’t	argue	with	the	test	subjects.	If	they
don’t	understand	some	user	interface	paradigm,	or	they	criticize	parts	of	the
user	interface,	don’t	try	to	justify	or	defend	the	design.	The	test	subject	is
always	right.

Try	also	not	to	lead	the	users.	If	the	users	are	lost	and	are	unable	to	perform	a
scenario	move	to	next	one.	Explaining	how	the	user	interface	works	in	this
situation	is	not	useful.	Try	to	figure	out	why	this	happened	instead.

Don’t	over-correct;	are	the	findings	real?
Pay	careful	attention	to	all	usability	problems	the	test	subjects	bring	up,	but
note	that	not	all	of	them	require	action.	Look	for	patterns	and	problems	that
seem	to	be	present	with	more	than	one	test	subject.	Not	every	issue	a	single
test	subject	encounters	is	real.	The	situation	in	which	your	app	is	tested
doesn’t	correspond	fully	with	reality.	The	test	subjects	are	under	pressure	and
might	encounter	problems	they	wouldn’t	if	they	were	trying	the	app	alone.

Five	users	are	enough
Then	there	is	the	question	of	how	many	users	should	participate	in	a	usability
test	before	any	findings	can	be	seen	as	meaningful.	The	fact	is	that	each
individual	user	test	is	expensive.	The	optimal	number	of	user	test	subjects	has
been	studied	a	lot.	Findings	from	different	studies	are	not	unanimous.
Probably	a	safe	bet	is	to	test	with	five	people	at	a	time.	After	five	tests	the
number	of	new	usability	problems	uncovered	starts	to	drop	and	the
investment	is	no	longer	justified.	On	the	other	hand	fewer	than	five	test
subjects	is	too	small	a	set	to	tell	if	the	individual	problems	are	problems	that
will	affect	a	large	number	of	people	or	just	issues	that	a	single	user
encounters.

Mobile	user	testing
As	this	book	is	about	Android	and	mostly	about	apps	that	are	used	on	the	go,
it	is	worth	mentioning	that	use	context	(the	environment	in	which	the	users
are	using	your	app)	matters.	If	you	test	an	app	in	a	quiet	office	meeting	room,
the	problems	you	encounter	might	be	very	different	from	the	real	use	context.
This	is	not	an	easy	problem	to	solve,	but	it	is	something	you	should	keep	in
mind	when	interpreting	the	test	results.

User	Testing	with	paper	prototypes
As	already	established,	paper	is	the	best	medium	to	work	in	during	the	early
stages	of	the	design	process.	As	it	turns	out	paper	prototypes	also	function
very	well	in	user	testing.	Although	it	might	sound	crazy	at	first,	running
paper-based	user	tests	is	easy,	valuable,	and	fun.

Building	a	paper	prototype	that	can	be	used	in	a	user	test	requires	a	bit	more
preparation.	You	need	to	be	able	to	simulate	app	functionality	on	paper.	In
practice	this	requires	use	of	paper,	scissors,	glue,	and	imagination.	Back	to
kindergarten!

Once	you	have	set	the	scenarios	you	want	to	be	tested,	think	how	they	would
be	performed	with	your	design.	Print	out	or	draw	the	screens	those	scenarios
cover.	You	might	also	need	to	create	individual	components	and	component
states	that	can	be	used	to	simulate	the	user	interface	functionality.

In	the	testing	situation	one	person	will	act	as	the	computer	and	update	the
paper	prototype	user	interface	based	on	user	actions.	The	users	will	use	the
paper	prototype	the	way	they	would	use	a	real	device.	After	the	initial	laugh
while	explaining	this	to	the	test	subject,	the	test	usually	works	very	well.

Back	to	THE	drawing	board
Finding	usability	problems	won’t	help	your	design	unless	something	is	done
to	fix	them.	You	must	schedule	time	to	react	to	the	findings	after	each	user
testing	round.	Be	prepared	to	change	the	user	interface.	Sometimes,
especially	in	the	early	phases,	the	problems	are	so	apparent	that	even	after	a
few	tests	it	is	clear	that	the	user	interface	must	be	changed.	If	you	are
working	with	a	paper	prototype	and	sometimes	even	with	a	functional	app
you	can	decide	to	make	changes	between	tests	to	try	out	something	new.

Summary
It	is	very	important	to	try	out	designs	before	coding.	Do	not	lock	yourself	into
a	design	before	you	are	sure	that	the	design	works.	Work	your	way	up	from
low-fidelity	paper	prototypes	to	a	concrete	design	and	finished	app.

Remember	that	you	are	not	your	app’s	user,	and	acknowledge	that	developers
are	generally	very	bad	at	guessing	how	users	see	the	user	interface.	Put	your
design	in	front	of	real	users.	Aim	to	do	formal	user	testing,	but	if	that	is	not
possible,	ask	your	friends	and	family	to	help	you	evaluate	the	design.	Getting
outside	views	and	opinions	is	very	valuable.

	

Chapter	3:	Considerations	in
Designing	for	Mobile	and	Touch

Devices

Mobile	devices	are	very	different	from	desktop	or	laptop	computers.	They	differ
in	both	the	way	they	are	used	as	well	as	where	they	are	used.	Phones	and	tablets
are	mostly	used	to	consume	information,	whereas	computers	are	also	used	to
create	information.

Modern	smartphones	contain	some	of	the	most	advanced	technology	available
for	consumers,	including	very	high-density	displays	and	sensitive	multi-touch
capable	touch	screens.	On	the	other	hand,	the	devices	still	fall	short	in	many
other	aspects	like	available	memory	and	CPU	power.	The	device	capabilities
bring	both	opportunities	and	challenges	when	it	comes	to	user	interface	design.

It’s	not	all	about	technology,	either.	Mobile	devices	serve	a	different	purpose	in
their	users’	lives.	They	are	also	used	in	very	different	surroundings	than	the
more	traditional	computing	devices.	Without	understanding	the	limitations	and
opportunities	of	both	the	technology	and	the	use	context,	creating	good	user
interfaces	is	difficult.

Designing	for	Mobile
Not	all	Android	devices	are	mobile	phones,	but	the	vast	majority	is.	It	is	safe
to	assume	that	if	you	are	building	an	Android	app	it	will	be	running	on	a
phone.	In	order	to	successfully	target	phones,	it	is	necessary	to	look	into	the
limitations	that	mobility	brings	into	the	game.

Use	context	of	mobile	devices
Mobile	devices	are	used,	as	the	name	suggests,	on	the	move.	The
environment	is	noisy	and	users	are	interrupted	all	the	time.	Often,	an	app	on	a
mobile	device	is	one	of	many	stimuli	fighting	for	the	user’s	attention.	They
might	be	walking	in	a	busy	city	pedestrian	area,	driving	a	car,	or	listening	to	a
school	lecture.	In	most	cases	the	mobile	app	design	cannot	demand	the	user’s
full	attention.

To	support	users	without	forcing	them	to	concentrate	requires	a	good	user
interface.	The	interface	must	be	intuitive,	and	all	the	controls	must	be	clearly
visible.	Navigating	a	complex	menu	structure	won’t	be	possible	when	you’re
distracted.

When	you’re	designing	your	app’s	user	interface,	do	not	overestimate	the
importance	of	your	app	to	the	users.	Think	about	your	app	as	the	secondary
function,	and	keep	asking	yourself	if	the	app’s	interface	is	usable	even	if	the
users	only	glance	at	the	screen.

Mobile	multitasking
Sometimes	users	will	interrupt	the	use	session	just	to	pick	it	up	few	minutes
later.	Think	about	a	scenario	where	a	user	is	reading	a	newsfeed	from	a
mobile	app	in	public	transportation	and	must	transfer	from	one	vehicle	to
another.	The	user	is	likely	going	to	be	in	the	middle	of	reading	something
when	she	arrives	to	her	stop	and	places	her	phone	into	her	pocket	or	purse.
She	is	likely	to	pick	the	phone	up	again	once	the	transfer	is	complete.	The
app	must	remember	where	the	user	was	and	allow	her	to	continue	as	if	there
were	no	pause.

A	similar	situation	is	when	a	user	receives	a	phone	call.	Imagine	if	you	had	to
start	a	game	from	the	beginning	just	because	your	gaming	session	was
interrupted	by	an	incoming	phone	call.	It	would	not	be	acceptable.	Apps	must
remember	their	state	and	prepare	for	interruptions.	Again,	don’t	think	that
your	app	is	the	only	one	the	user	is	going	to	be	using	or	even	the	most
important	one.

Device	constraints
Mobile	devices	suffer	from	many	constraints.	They	have	small	screens	and
limited	controls.	The	devices	don’t	have	much	processing	power	or	a	lot	of
memory.	Even	on	the	latest	generation	smartphones	with	more	powerful
CPUs	and	more	memory,	running	apps	is	very	different	from	doing	so	on	a
desktop	or	laptop.

In	a	low-memory	CPU	environment	a	badly	designed	app	will	stand	out	and
not	in	a	good	way.	An	app	performing	CPU-heavy	operations	in	the
background	will	cause	other	applications	to	become	non-responsive.

It	is	worth	taking	the	time	at	the	beginning	of	the	project	to	think	about	your
app’s	hardware	requirements.	Could	you,	for	example,	move	some	tasks	to	a
server	and	use	the	mobile	app	only	for	displaying	the	results?

Battery	power	is	not	endless
Mobile	devices	run	on	batteries,	and	that	battery	power	is	limited.	People	rely
on	their	phones,	and	the	phone	must	have	power	when	it	is	needed.	In	some
cases	not	having	sufficient	battery	power	can	lead	users	into	serious	or	even
life-threatening	trouble.

Apps	must	be	optimized	to	conserve	battery	life.	Any	app	that	drains	the
battery	will	quickly	be	thrown	out	and	very	likely	receive	harsh	ratings	in	the
app	market.	And	don’t	think	that	users	are	not	going	to	notice;	they	are.	The
Android	operating	system	provides	a	very	handy	way	for	users	to	check	what
is	going	on	if	they	suspect	that	something	is	draining	the	battery	faster	than	it
should	be	(see	Figure	3-1).	You	can	find	this	screen	on	any	Android	phone
running	4.0	or	newer.

Figure	3-1:	Android	battery	status	screen,	including	battery	consumption	per
app.

Source:	Android

Different	apps	consume	battery	differently.	When	starting	to	design	an	app
take	a	moment	to	think	about	what	kinds	of	tasks	your	app	is	going	to
perform	in	order	to	satisfy	the	user’s	goals.	Table	3-1	shows	an	overview	of
the	relative	battery	consumption	of	different	operations.	I’m	leaving	games
and	gaming	technology	out	from	this	consideration,	as	they	are	totally
different	beasts	when	it	comes	to	battery	consumption.

Tip:	For	more	information	about	gaming	and	other	more	power-hungry	apps,
look	at	the	Android	NDK	documentation	online	at
http://developer.android.com/tools/sdk/ndk/index.html.

Table	3-1	Different	Operations	and	Their	Estimated	Effect	on
Battery	Consumption

http://developer.android.com/tools/sdk/ndk/index.html

Operation

Battery	Consumption

Using	a	network	when	connected	to	WiFi

Medium

Using	a	network	when	on	a	good	coverage	cellular	network

Medium

Using	a	network	when	on	a	bad	coverage	cellular	network

High

Using	a	Bluetooth

Medium

Using	a	GPS

Medium

Using	a	cellular	location

Low

Using	an	NFC	(near-field	communication)

Low

Preventing	the	screen	from	turning	off

High

Using	a	microphone

Low

Using	the	camera

Medium

Waking	up	the	phone	when	in	sleep	to	perform	any	operation High	(not	including	operation	cost)

Rapid	innovation
Even	with	these	limitations,	the	smartphones	and	tablets	on	the	market	today
represent	some	of	the	latest	and	best	innovation	available	to	consumers.
Mobile	technology	is	also	one	of	the	fastest	moving	technology	fields.	Nokia
N95,	a	popular	smartphone	released	in	2007,	had	a	2.6-inch	display	with	a
320x240	pixel	display.	Samsung	Galaxy	Nexus,	released	in	2011,	has	an
impressive	4.65-inch	HD	display	with	1280x720	pixels.	The	Nokia	N95
shipped	with	a	332MHz	processor	while	the	Galaxy	Nexus	ships	with	a
1.2GHz	dual-core	CPU	accompanied	by	a	304MHz	GPU.

It	is	a	full-time	job	to	keep	up	with	all	the	new	technology	introduced	into
mobile	devices.	A	mobile	app	project	starting	now	and	shipping	in	six	months
might	need	more	than	one	change	on	the	way	to	support	new	operating
system	versions	or	even	new	technologies.

Tip:	The	mobile	market	is	a	land	of	opportunities.	All	the	change	might	feel
intimidating,	but	the	fact	is	that	you	don’t	need	to	worry	about	building
support	for	many	of	these	new	technologies	right	away,	and	the	user	device
base	is	replaced	relatively	slowly.	It	is	worth	it,	however,	to	keep	your	eyes
open	and	follow	the	news.	Some	new	innovation	might	solve	the	problem	you
have	been	struggling	with.

Network	connection	will	drop
Most	mobile	devices	have	one	or	more	ways	to	connect	to	the	Internet.	Many
modern	phones	also	support	multiple	generations	of	cellular	data	connections.
Although	the	newer	networks	provide	faster	data	speeds	they	often	offer
smaller	coverage	while	the	networks	are	still	being	built.	By	default	phones
usually	try	to	use	the	most	modern	technology	they	support	and	drop	back	to
the	older	networks	if	the	coverage	gets	too	weak.

To	an	app	a	change	of	network	appears	as	a	short	connection	drop.	Mobile
network	coverage	is	inherently	unstable	due	to	varying	traffic	load	and
connection	drops	and	your	app	must	be	prepared	to	handle	them.

Think	of	the	different	ways	you	can	help	users	with	connection	problems
without	requiring	actions	from	them.	If	your	user	wants	to	download	a	large
file,	for	example,	make	sure	the	app	will	automatically	try	again	later	in	case
of	a	network	connection	drop	and	will	continue	the	download	instead	of
restarting	it.

If	your	app	deals	with	any	kind	of	media,	this	connectivity	problem	is
emphasized.	Take	care	to	design	your	buffering	algorithms	and	caching	to
support	an	optimal	user	experience.

Data	is	not	free
An	important	point	to	keep	in	mind	when	designing	mobile	apps	is	that	data
transfer	is	not	free.	Many,	if	not	most,	users	have	limited	data	plans.	Going
over	the	data	limits	either	lowers	the	users’	data	speed	or	ends	up	costing
dearly.	Your	app	should	try	to	limit	data	transfer	only	to	necessary
operations.	Because	the	data-carrier	plans	have	become	more	and	more
complicated	and	the	risk	of	getting	massive	bills	is	getting	higher,	users	are
becoming	more	aware	of	app	data	usage.	Google	has	reacted	to	this	by
providing	users	a	way	to	view	and	control	their	data	usage	per	app	(see
Figure	3-2).	If	your	app	appears	on	this	list	without	an	obvious	reason,	it	is
likely	that	users	will	uninstall	it	and	rate	it	poorly	in	the	Google	Play.

For	any	long-running	data	downloads	you	must	provide	the	users	with	a	way
to	cancel	them.	Users	must	feel	like	they	are	in	control.	You	will	learn	about
managing	background	tasks	in	Chapter	9.

Many,	in	practice	almost	all,	phones	have	support	for	a	WiFi	connection.	A
WiFi	connection	is	more	stable,	cheaper,	and	faster	than	a	cellular
connection.	If	your	app	does	data-heavy	operations	you	should	let	users
decide	if	they’re	performed	on	WiFi	only	or	also	on	the	cellular	networks.	It
is	possible	to	detect	when	a	user	enters	or	leaves	a	WiFi	network,	and	start
and	stop	operations	accordingly.

Figure	3-2:	Users	can	view	data	usage	per	app	and	restrict	the	apps	using
Android	tools.

Source:	Android

Even	on	WiFi,	you	should	use	data	operations	carefully.	Remember	that	data
transfer	bandwidth	is	shared	between	all	apps.	Whenever	your	app	is	using
part	of	it,	other	apps	won’t	be	able	to	utilize	it	fully.

Passionate	users	and	opportunities
Techies	have	always	been	passionate	about	their	particular	choice	of
technology.	It	has	always	been	Amiga	vs.	PC,	Windows	vs.	OS	X,	Xbox	vs.
Playstation,	and	so	on.	Mobile	ecosystems	are	no	different.	Mobile	fans	are
even	louder	and	more	active.	They	love	to	show	off	their	device	of	choice	and
the	coolest	apps	they	have.	People	wear	clothes	with	operating	system	logos
and	line	up	outside	stores	for	days	to	be	the	first	ones	to	get	their	hands	on	the
latest	release.	I	am	one	of	those	people.	I	have	an	Android	logo	on	my	laptop
cover.

This	user	passion	creates	great	opportunities	for	app	designers	and
developers.	Create	a	unique	app	with	an	exceptional	UI	and	the	users	will	do
a	big	part	of	the	marketing	for	you.	Popular	apps	spread	like	viral	videos	on
the	Internet.	Mobile	news	blogs	are	hungry	for	topics,	and	one	of	the	great
topics	is	a	new	app	that	is	worth	talking	about.

On	the	other	hand,	users	are	very	demanding.	They	know	what	they	want,
and	they’re	not	happy	with	badly	built	apps.	If	your	app’s	design	doesn’t	fit
on	the	Android	platform,	users	are	going	to	reject	it.	Users	will	frown	upon
an	iOS	design	on	an	Android	app.

Mobile	operating	system	blogs	have	thousands	of	followers,	and	they	are	all
hungry	for	big	headlines.	The	best	blog	posts,	from	the	blog’s	profit	point	of
view,	always	puts	at	least	two	mobile	operating	systems	head	to	head.
Anything	with	“Android	vs.	iOS”	in	the	headline	is	guaranteed	to	bring	in	a
lot	of	viewers	and	inbound	links.	Understanding	the	user	passion	and
everything	that	relates	to	it	is	vital.

Native	apps	versus	web	apps
Writing	a	platform-specific	app	is	not	the	only	way	to	reach	mobile	users.
Although	this	book	covers	native	Android	apps	(native	meaning	that	they	are
built	using	Android	SDK	or	NDK),	another	very	good	approach	is	to	build	a
mobile	web	app.	A	web	app	runs	in	the	user’s	browser	and	is,	therefore,	much
less	tied	to	the	platform.	iOS	and	Android	use	the	same	WebKit-based
browsers,	so	building	a	web	app	that	works	well	on	both	of	the	largest	mobile
platforms	isn’t	impossible.

The	mobile	web	app	sounds	great!	Why	not	simply	forget	the	native	app	idea
and	write	web	apps	and	target	all	platforms	at	once?

The	choice	between	native	and	web	is	a	very	important	and	should	be
carefully	considered	at	the	beginning	of	any	project.	The	answer	to	this
question	depends	a	lot	on	the	type	of	project.	There	is	a	place	for	each
solution.	As	a	rule	of	thumb	an	app	that	is	used	fairly	irregularly	is	best
implemented	as	a	web	app,	and	any	app	that	is	going	to	be	used	very
frequently	will	be	better	as	a	native	app.

A	regularly	used	service	that	has	two	competing	service	providers,	only	one
of	which	provides	a	native	app,	is	most	likely	going	to	see	the	most	Android
users	moving	toward	the	service	provider	that	has	taken	the	time	to
implement	a	platform-specific	Android	app.

There	are	also	technical	issues	that	can	affect	the	decision.	A	web	app	won’t
have	access	to	all	the	platform	APIs	and,	therefore,	won’t	be	able	to	utilize	all
device	capabilities.	Although	HTML5	APIs	are	catching	up,	they	still	lag
behind.	A	web	app	won’t	be	able	to	use	Android	notifications	and	will	have
limited	offline	capabilities.

Hybrid	apps	with	HTML	wrappers
PhoneGap,	Titanium	Appcelerator,	and	few	other	frameworks	provide	a	way
to	build	something	that	is	between	a	web	app	and	a	native	app.	They	let
developers	write	the	app	code	using	web	technologies	like	HTML	and
JavaScript.	Some	frameworks	then	try	to	compile	the	code	into	a	native	app
code	and	some	other	frameworks	simply	wrap	the	web	app	into	a	web
browser	container,	in	essence	turning	the	web	app	into	an	app	that	looks	like
it	is	running	natively.

Although	there’s	a	promise	of	a	platform-independent	solution	I	advise	a
careful	evaluation	of	this	kind	of	framework.	Even	if	the	code	runs	on	iOS,
Android,	and	other	platforms,	it	doesn’t	mean	that	the	apps	are	good.	User
experience	guidelines	of	each	platform	differ	greatly.	You’d	still	have	to
design	and	implement	the	app	for	each	of	the	target	platforms	separately	to
reach	an	acceptable	result.

I	advise	caution	with	these	multi-platform	frameworks.	Delivering	acceptable
application	quality	might	be	more	difficult	than	you	expect.

Designing	for	Touch	Interfaces
Users	have	been	using	their	computers	with	a	mouse	and	keyboard	for	a	long
time	now	and	have	became	very	good	at	it.	Users	have	learned	that	double-
clicking	icons	launches	apps,	right-clicking	things	pops	up	menus,	and
holding	the	mouse	button	allows	them	to	select	areas	or	drag	things	around.
Power	users	have	learned	to	use	keyboard	shortcuts	to	operate	without	having
to	move	their	hand	off	the	keyboard.

Things	have	been	changing	lately.	Mouse	and	keyboard	interaction	is	nearing
the	end	of	the	road.	A	new	primary	control	paradigm	has	taken	the
smartphone	industry	by	storm.	Nearly	all	smartphones	now	ship	with	touch
screens	as	the	main	user	interface.	A	touch	screen	is	a	much	more	immediate
control	mechanism.	On	a	touch	screen,	you	no	longer	have	a	disconnect
between	the	physical	controls	and	the	UI	itself.	On	a	touch	interface,	you	can
directly	touch	the	items	you	want	to	manipulate.	That’s	why	touch	interfaces
are	sometimes	also	referred	to	as	natural	interfaces.

IMPLEMENTING	Gestures
Users	control	touch-based	interfaces	with	gestures.	A	gesture	is	like	a
drawing	on	the	screen	that	the	operating	system	or	the	app	interprets	as	a
command	to	perform	an	action.	Gestures	vary	from	very	simple	one-finger
gestures	to	complex	multi-finger	gestures.	Simple	gestures	include	tapping	a
user	interface	control	and	panning	or	scrolling	a	screen	by	dragging	a	finger
on	a	control	surface.	More	complex	gestures	including	tapping	and	holding	or
drawing	by	dragging	letters.	Multi-touch	gestures	include	a	two	or	more
finger	swipe	or	multi-finger	pinch	or	spread.

Table	3-2	describes	the	basic	gestures	supported	by	the	Android	platform.
The	icons	in	this	table	are	used	in	later	chapters	to	refer	to	these	touch
gestures.

Gesture	discovery
A	touch-based	interface	creates	a	new	set	of	usability	problems.	How	do
users	discover	gestures	that	you	put	into	your	apps?	Basically,	there	are	only
two	naturally	discoverable	actions	on	a	touch	UI.	Users	tend	to	tap	on	things
that	look	like	buttons	or	links,	and	they	drag	UI	components	so	make	them
pan	or	scroll.	Everything	beyond	these	two	must	be	learned.

Take	pinch-to-zoom	as	an	example.	It	feels	natural	now	as	you	have	seen	and
used	it,	and	you	have	started	to	understand	that	you	probably	can	use	the
gesture	to	zoom	maps	or	large	documents	in	and	out.	But	how	do	you	know
that	this	is	possible	without	trying	it	first?	Imagine	having	a	new	app	that	you
have	never	tried	before	in	front	of	you.	The	app	has	a	map	component	as	part
of	a	screen.	Will	you	be	able	to	use	the	pinch-to-zoom	gesture,	or	will	you
have	to	use	some	other	method?	Lack	of	visual	clues	makes	it	difficult	to
understand	what	your	options	are.

Pinch-to-zoom	wasn’t	always	the	way	developers	controlled	zoom	on	touch
devices.	Before	multi-touch	capable	devices,	users	did	something	else.	Sony
Ericsson	used	a	novel	zoom	control	on	their	devices	before	Android	gained
multi-touch	support.	On	the	Sony	Ericsson	device	a	user	first	had	to	long
press	the	image	he	wanted	to	zoom	and	then	without	lifting	the	finger	move	it
up	to	zoom	in	and	down	to	zoom	out.	On	Nokia’s	Maemo,	the	operating
system	zooming	was	also	done	with	one	finger.	In	their	approach	zoom	was
done	by	moving	a	finger	in	a	spiral	pattern	either	clockwise	to	zoom	in	or
counter-clockwise	to	zoom	out.

I	bet	that	both	of	these	methods	made	perfect	sense	to	the	team	who	came	up
with	the	idea	and	implemented	it.	Neither	of	them	felt	natural,	and	they	didn’t
catch	on.	Pinch-to-zoom,	on	the	other	hand,	feels	natural,	and	that	is	now	the
de-facto	standard	for	the	zoom	gesture.

What	will	happen	if	you	take	the	gesture	interface	even	further	and	keep
inventing	new	ways	to	use	gestures?	What	if	someone	decides	to	implement
pinch-to-zoom	on	a	list	component?	How	would	users	find	out	how	to	use	it
without	the	developer	having	to	tell	them?

Probably	the	best	way	to	get	users	to	understand	available	gestures	is	by
convention.	Although	new	conventions	arise	slowly,	it’s	better	to	use	existing

convention.	Although	new	conventions	arise	slowly,	it’s	better	to	use	existing
and	established	conventions	when	possible.	For	example,	maps	should	always
allow	pinch-to-zoom.	Tabbed	user	interfaces	should	let	users	navigate
between	tabs	by	swiping.	You’ll	learn	more	about	Android-specific	user
interface	paradigms	in	Chapter	11.

Gesture	confusion
As	designers	keep	inventing	new	and	more	creative	ways	to	use	gestures	in
apps,	developers	run	into	another	problem.	How	does	the	app	detect	the
correct	gesture?	Some	gestures	are	very	similar.	The	best	example	of	two
gestures	that	can	cause	confusion	when	used	on	the	same	app	are	swiping	and
panning.

Consider	an	ebook	reader	app	as	an	example.	The	app	supports	two	gestures
that	are	relevant	in	this	example.	One	gesture	is	the	horizontal	swipe	to
change	to	the	next	or	previous	page.	The	other	gesture	involves	panning	by
dragging	when	a	page	doesn’t	fully	fit	on	the	screen.

Let’s	assume	that	a	user	is	reading	a	page	and	zooms	in.	Now,	a	full	page	of
the	book	doesn’t	fit	on	the	screen,	and	the	panning	gesture	can	be	used	to
reveal	different	parts	of	the	page.	What	happens	if	the	user	uses	a	swipe
gesture	instead?	The	swipe	gesture	and	panning	gesture	are	identical	at	the
start.	Only	after	the	user	has	performed	the	gesture	beyond	the	start	can	the
gestures	be	differentiated	using	velocity	and	direction.	How	can	the	app
differentiate	between	the	user’s	intention	to	pan	the	page	and	swiping	to
change	the	page?

The	short	answer	is	that	you	should	try	to	avoid	using	conflicting	gestures	in
same	component.	Take	gestures	into	account	early	in	the	design	process	and
prototype	them.

React	to	gestures	immediately
Your	interface	must	react	to	its	users’	gestures	immediately.	The	users	must
have	immediate	visual	feedback	that	the	gesture	is	working.	It	will	make	the
user	interface	feel	more	responsive	but	also	helps	both	with	gesture	discovery
and	avoid	gesture	confusion.

A	bad,	and	unfortunately	common,	example	of	implementing	gestures	is
waiting	until	the	user	finishes	a	swipe	gesture	before	performing	the	action.
In	other	words,	consider	an	ebook	reader	app	whereby	the	users	must	finish
swiping	horizontally	before	the	app	shows	the	page	change	animation.	Users
will	have	hard	time	finding	the	gesture	and	learning	how	to	use	it.	A	better
and	correct	way	to	implement	the	same	gesture	would	be	that	the	page	change
animation	follows	the	user’s	finger	from	the	start	of	the	gesture	to	the	end.	In
other	words,	when	the	user	starts	moving	his	or	her	finger	on	the	page,	the
page	starts	changing.	The	page	moves	with	the	same	pace	as	the	user	is
moving	his	finger.	This	way	there’s	no	room	for	misunderstanding;	your
users	are	more	likely	to	figure	out	this	gesture	on	their	own.

Touch	interface,	not	so	natural	interface
As	discussed	in	the	previous	sections,	providing	a	touch	interface	doesn’t
mean	that	users	will	have	any	easier	a	time	figuring	out	how	to	use	it.	Calling
it	a	natural	interface	is	a	bit	misleading.	Human	beings	are	used	to
manipulating	three-dimensional	objects	that	have	different	weights,	sizes,
textures,	and	many	more	properties	they	can	sense.	Touch	screens	still	lack
most	of	these	properties,	and	users	struggle	to	understand	different
metaphors.	Touch	interfaces	do	require	the	same	amount	of	design	work	as
any	other	interaction	method.	Be	careful	not	to	think	of	the	touch	interface	as
a	shortcut.

Summary
Mobile	devices	are	used	differently	and	in	different	settings	than	computers
and	laptops.	When	designing	a	mobile	app,	you	must	always	remember	that
your	users	probably	won’t	give	your	app	their	full	attention.

Mobile	devices	also	have	limitations	that	computers	don’t	have.	Limited
computing	power	and	battery	life,	as	well	as	connectivity	problems,	all	bring
challenges	to	the	design	process.

The	main	control	interface	of	most	mobile	devices	is	the	touch	screen.	The
touch	screen	creates	a	new	set	of	challenges,	but	also	provides	many	design
opportunities.	Touch-based	user	interfaces	can	be	very	powerful	as	long	as
you	take	their	limitations	into	account	from	the	beginning.

Chapter	4:	Exploring	the	Android	Platform
Android	is	a	platform	of	opportunities.	It	has	a	massive	user	and	fan	base.	It	is
the	worldwide	leading	smartphone	platform,	and	there’s	no	end	in	sight	for	its
growth.	Android	can	be	found	running	on	hundreds	of	different	devices	and
many	different	device	categories.	With	massive	success	comes	lots	of
challenges.	How	do	you	write	apps	that	run	on	all	of	these	devices?	How
different	are	these	devices?

This	chapter	explains	what	you	can	expect	from	the	Android	devices.	It	explains
what	Android	fragmentation	means	and	puts	this	idea	in	context.	The	chapter
also	talks	about	the	opportunities	created	by	the	open	Android	ecosystem	and
Open	Source	community.

Challenges	of	the	android	platform
You	must	have	heard	about	Android	fragmentation.	It	seems	to	be	a
buzzword	of	bloggers	and	journalists	trying	to	get	more	interest	in	their
articles.	This	term	is	often	thrown	around	without	any	true	understanding	of
what	it	means	and	how	it	affects	developers	and	users.	People	often	say
fragmentation	when	they	actually	mean	the	variation	in	devices	that	Android
runs	on.

There’s	no	need	to	panic.	The	Android	platform	was	built	from	the	ground	up
to	give	developers	good	tools	to	support	multiple	different	devices.	Utilizing
the	platform	tools	correctly	will	help	you	to	support	most,	if	not	all,	the
devices	out	there.	That	is	not	to	say	that	supporting	all	these	devices	is	free.	It
requires	work	and	planning	but	can	be	done	with	reasonable	effort,	if	you
approach	it	correctly.

But	what	does	fragmentation	mean	in	practice,	and	where	does	it	come	from?
If	you	walk	into	a	mobile	carrier	store	and	look	around,	it	is	nearly	impossible
to	recognize	which	of	the	phones	on	the	shelves	are	Android	phones	and
which	aren’t	unless	you’re	an	expert.	Android	phones	are	not	built	by	a	single
manufacturer,	and	Android	also	doesn’t	have	strict	limitations	about	the
hardware	it	runs	on.	This	means	that	almost	all	manufacturers	have	created
their	own	design	language	for	the	software	and	hardware.

their	own	design	language	for	the	software	and	hardware.

The	Android	platform	is	also	very	open	for	customization	by	its	users.	Users
don’t	need	to	hack	or	jail-break	their	phones	to	replace	the	home	screen,	app
launcher,	or	keyboard.	Replacements	for	al	of	these	features	can	be
downloaded	from	Google	Play.	They	are	just	apps	that	connect	different
platform	intents	(more	about	intents	in	Chapter	6).

This	chapter	covers	how	Android	devices	differ	from	each	other—in	terms	of
hardware	and	software—and	seeks	to	give	you	an	understanding	of	what	a
true	Android	device	is.

Hardware
It	all	starts	with	the	hardware.	There	is	no	such	thing	as	standard	Android
hardware.	Android	is	Open	Source,	and	nobody	can	stop	anyone	from	putting
Android	on	anything	they	like.	I	have	seen	Android	running	on	washing
machines,	ski	goggles,	and	wristwatches.	These	are	the	extremes,	though.
Although	a	correctly	written	Android	app	will	probably	be	usable	on	a
wristwatch,	it	probably	won’t	be	very	good.	I	think	that	in	this	context	it	is
pretty	safe	to	exclude	the	extremes	and	concentrate	on	the	more	normal
devices.

Even	if	you	talk	about	mass-produced	devices,	the	variation	in	hardware	is
massive.	Android	runs	on	very	low-end	smartphones	with	small	displays,
barely	any	memory,	and	cheap	(and	slow)	CPUs.	It	also	runs	on	the	latest
super	phones	with	high-density	displays,	high-end	multi-core	GPUs,	CPUs,
and	large	memories.	But	it	doesn’t	stop	there.	Android	also	runs	on	tablets
and	even	on	TVs.

There	you	have	it.	It	is	surely	impossible	to	build	software	for	the	Android
platform.	There’s	no	way	the	same	app	could	run	on	a	2-inch	cheap	phone
screen,	on	a	10-inch	tablet	screen,	and	on	a	55-inch	TV	screen.	Fortunately
things	aren’t	as	bad	as	all	that.	The	variety	of	devices	does	present	a
challenge.	However,	with	a	right	approach,	it	is	possible	to	support	most,	if
not	all,	of	the	devices.

Open	Source	Software

Open	Source	software	is	distributed	under	various	Open	Source	licenses.	These	licenses	vary	from
strict	licenses	that	require	any	derived	software	to	be	distributed	under	the	same	license	to	more
permissive	licenses	that	allow	the	license	terms	to	be	changed	when	derived	software	is	distributed.
GPL,	which	is	used	in	the	Linux	kernel,	is	a	common	example	of	a	stricter	Open	Source	license.
Everyone	distributing	software	based	on	the	Linux	kernel	must	distribute	their	work	under	GPL.	The
Apache	license,	on	the	other	hand,	allows	people	to	take	Apache-licensed	software	and	distribute
derived	work	under	any	other	license.	The	Android	project	is	distributed	under	the	Apache	license.	All
Open	Source	licenses	allow	users	to	modify	and	redistribute	the	code.	Read	more	at
http://opensource.org/.

Google’s	control
As	mentioned	earlier,	Android	is	Open	Source,	so	the	license	permits	anyone
putting	it	on	any	device	they	want.	Google	doesn’t	force	any	control	on
Android	devices.	They	do,	however,	have	something	called	the	Android
Compatibility	Program.	The	program	defines	a	large	number	of	hardware	and
software	requirements.	A	device	will	ship	with	Google	apps	and	especially
Google	Play,	if	has	passed	the	compatibility	requirements.

Tablets
Tablets	seem	to	be	the	latest	boom	in	the	mobile	market.	Every	manufacturer
is	building	its	own	tablet	devices.	How	can	you	prepare	for	tablets	in	Android
design?

Let’s	draw	an	analogy	from	iOS.	Those	guys	have	it	easy.	They	either	target
the	iPad	or	the	iPhone	and	that’s	it.	Can	you	do	the	same?	The	answer	is	no.
Android	devices	cannot	be	categorized	to	tablets	and	phones	so	easily.	Where
does	a	tablet	start	and	phone	end?	If	you	have	a	phone	with	a	5-inch	display,
will	a	phone	user	interface	be	better	for	it	than	a	tablet	user	interface?	What
about	a	7-inch	tablet	and	a	13-inch	tablet?	Is	there	a	tablet	design	that	works
on	both?

Android	devices	are	a	continuum	instead	of	a	clear	separation	between	two
device	categories.	You	should	try	to	avoid	talking	about	designing	for	tablet
or	designing	for	phones.	Android	apps	should	not	have	a	separate	tablet-user
interface.	This	doesn’t	mean	that	a	user	interface	designed	for	phone	screens
will	work	perfectly	on	a	larger	screen.	Due	to	the	lack	of	clear	separation
between	device	categories	and	big	difference	in	devices	in	each	category,	it	is
important	that	Android	user	interfaces	are	scalable.	This	situation	is	very
familiar	to	any	web	designer	or	developer.	Web	designers	have	solved	the

http://opensource.org/
http://opensource.org/
http://opensource.org/
http://opensource.org/
http://opensource.org/
http://opensource.org/

familiar	to	any	web	designer	or	developer.	Web	designers	have	solved	the
same	problem	using	something	called	responsive	design.	Responsive	web
pages	rearrange	their	components	when	necessary	to	create	optimal
performance	for	any	screen	resolution.

OEM	distributions,	skins,	and	themes
Android	devices	are	manufactured	by	hundreds	of	different	manufacturers.
These	devices	are	then	marketed	by	dozens	of	carriers	all	around	the	world.
Both	the	manufacturers	and	carriers	often	want	to	make	their	own
modifications	to	the	operating	system.	Many	of	the	larger	manufacturers	have
created	fully	themed	Android	distributions	featuring	original	equipment
manufacturer	(OEM)	skins.	Probably	the	best	known	examples	of	these	are
HTC	Sense	and	Samsung	TouchWiz.	The	OEM	skins	add	their	own	features
and	functionality	on	top	of	the	default	Android	experience.	The	main	home
page	of	phones	is	often	altered	drastically	to	make	the	phone’s	branding	stand
out.	See	Figure	4-1	for	examples	of	three	manufacturer	home	screens.

Figure	4-1:	Home	screens	from	left	to	right	by	HTC,	Samsung,	and	Sony	on
their	Android	2.3	devices.

Sources:	HTC	Corporation,	SAMSUNG,	and	Sony	Mobile	Communications	AB

Although	the	OEM	skins	rarely	break	compatibility,	they	can	make	detailed
visual	design	more	difficult.	A	typical	change	the	manufacturers	tend	to	make
is	to	change	the	system	default	colors.	For	example	in	Android	2.3,	the
default	highlight	color	for	buttons	and	text	fields	is	orange,	but	on	HTC

default	highlight	color	for	buttons	and	text	fields	is	orange,	but	on	HTC
devices	it	is	green,	and	Sony	devices	use	blue.	In	Figure	4-2,	you	can	see	how
much	the	manufacturers	have	changed	the	default	component	look	and	feel;	it
shows	a	window	from	three	different	manufacturers.	Buttons	on	the	top	part
are	in	their	default	states	and	in	the	bottom	part	the	OK	button	is	in	its
pressed	state.	All	of	these	screenshots	are	from	Android	2.3.	This
demonstrates	how	much	Android	visuals	can	vary	even	inside	one	Android
version.	Especially	noteworthy	is	that	on	Sony	device	the	window	has	a
header	part	whereas	on	other	devices	it	does	not.

Figure	4-2:	A	window	and	buttons	with	default	themes	from	HTC,	Samsung,
and	Sony.

Sources:	HTC	Corporation,	SAMSUNG,	and	Sony	Mobile	Communications	AB

In	addition	to	visual	changes,	manufacturers	tend	to	bundle	their	own
versions	of	Android	default	apps.	Often,	the	dialer,	messenger,	or	contact	app
is	replaced.	Although	they	do	good	work	ensuring	compatibility	by	making
the	intent	interface	the	same	(intents	are	explained	in	more	detail	in	Chapter
6),	there	can	be	some	nasty	surprises	on	some	devices	when	they	are
depending	on	the	default	Android	apps.	In	Figure	4-3	you	can	see	the	dialer
apps	manufacturers	have	used	to	replace	Android’s	default	dialer.

Figure	4-3:	Manufacturer	dialer	app	replacements	from	left	to	right:	HTC,
Samsung,	and	Sony.	All	screenshots	are	from	Android	2.3.

Sources:	HTC	Corporation,	SAMSUNG,	and	Sony	Mobile	Communications	AB

Holo	theme	unifies	Android	app	look
Starting	with	Android	4.0,	all	manufacturers	are	required	to	include	Android
Holo	themes	in	their	Android	distribution	to	fulfill	the	Android	compatibility
requirements.	In	practice	this	means	that	developers	and	designers	can
depend	on	the	default	themes	and	define	their	user	interfaces	by	using	the
default	themes	or	extending	them.	The	apps	will	look	the	same	on	all	Android
4.0	or	newer	devices.	Figures	4-4	and	4-5	show	two	example	apps	using	the
two	default	themes—one	light	and	one	dark.	Note	that	developers	must	set
their	app’s	target	SDK	level	to	Android	4.0	or	newer	for	the	apps	to	utilize
this	new	look.

Figure	4-4:	Tasks	app	using	the	Android	Holo	light	theme.

Source:	Tasks	app

	

Figure	4-5:	Tasks	app	using	the	Android	Holo	dark	theme.

Source:	Tasks	app

	

Keyboard	replacements
All	Android	released	APIs	are	open	to	every	application.	Everything	Google
is	doing	in	their	apps	can	be	done	in	any	other	app.	The	open	APIs	leave	the
door	open	to	third-party	replacements	for	everything,	including	the	keyboard.

As	a	designer	you	cannot	assume	that	the	user	is	using	the	default	keyboard.
It	is	possible	that	the	user	has	replaced	the	keyboard	that	was	shipped	with
their	phone	with	something	they	got	from	the	Android	Market.	The	third-
party	keyboards	can	differ	radically	from	the	default	keyboards.	The	user
might	not	be	typing	in	one	key	at	time	but	instead	using	a	cluster	of	keys.	So
don’t	rely	on	individual	key	presses	on	any	design.	In	fact,	the	users	might
not	be	pressing	any	keys	at	all.	Figures	4-6,	4-7,	and	4-8	show	different

not	be	pressing	any	keys	at	all.	Figures	4-6,	4-7,	and	4-8	show	different
keyboards.

Figure	4-6:	When	using	the	8pen	keyboard,	users	drag	their	fingers	in	circles
to	select	letters	and	form	words.

Source:	Dasur	Ltd.

	

Figure	4-7:	Siine	Keyboard	provides	icons	that	can	be	used	to	form	sentences
with	a	few	taps.	Each	tap	will	add	one	or	more	words	to	the	text	field.

Source:	Siine	Ltd.

	

Figure	4-8:	This	is	the	standard	Android	voice	input	mode.	It	is	used	instead
of	a	keyboard.

Source:	Android

Given	the	changes	in	this	field	in	the	past	few	years,	it’s	hard	to	even	imagine
what	kind	of	keyboards	there	will	be	in	the	future.

Third-party	home	screen	replacements
Users	can	replace	the	Android	home	screen	(OEM	or	Google).	Replacing	the
home	screen	and	the	app	launcher	is	literally	as	simple	as	installing	an	app
from	Google	Play.

The	home	screen	is	a	central	app	of	the	phone,	and	replacing	it	can	change
the	phone’s	behavior	and	feel	radically.	The	home	screen	or	app	launcher
changes	are	not	visible	to	normal	apps	though.	Once	an	app	is	launched,	its
behavior	stays	unchanged	no	matter	which	home	screen	or	launcher	you	used
to	start	it.

to	start	it.

Although	most	of	the	home	screen	replacements	support	standard	Android
home	screen	widgets,	they	often	provide	extra	APIs	that	developers	can	use
to	build	home	screen	widgets	for	that	home	screen	replacement.	Some
popular	launchers	have	managed	to	gain	enough	momentum	to	create	mini
ecosystems	of	people	building	and	distributing	apps	and	themes	that	work
only	on	that	home	screen	replacement.

Go	Launcher	(see	Figure	4-9)	is	probably	the	most	popular	home	screen
replacement	ecosystem	in	current	circulation.	The	core	app	itself	has	more
than	10	million	downloads	from	Google	Play.	There	are	hundreds	of	themes,
widgets,	and	plug-ins	for	the	Go	Launcher.	Users	can	use	them	to	make	their
home	screen	much	more	interactive	than	the	default	Android	APIs	allow.

Other	popular	and	noteworthy	home	screen	replacement	is	the	ADW
Launcher	(see	Figure	4-10).	ADW	Launcher	is	noteworthy	because	of	its
popularity,	but	also	because	it	is	the	default	home	screen	on	the	most	popular
third-party	ROM,	CyanogenMod	(more	about	ROMs	later	in	this	chapter).

Figure	4-9:	The	Go	Launcher	home	screen	with	some	Go	widgets.

Source:	Go	Launcher

Figure	4-10:	ADW	Launcher	home	screen	replacement.

Source:	ADW	Launcher

	
Home	screen	replacements	don’t	end	here.	At	the	time	of	this	writing,	there
are	nearly	150	home	screen	replacement	apps	available	for	Android	phones.

Android	versions
An	Android	OS	version	has	a	name	and	version	number.	Google	uses	dessert
names	in	alphabetical	order.	Not	every	new	release	receives	a	new	name
though.	For	example,	both	2.0	and	2.1	are	release	Eclair	and	3.0,	3.1,	and	3.2
are	Honeycomb.	Versions	without	a	new	name	can	be	seen	as	minor	updates,

are	Honeycomb.	Versions	without	a	new	name	can	be	seen	as	minor	updates,
and	it	is	fairly	safe	to	assume	that	all	devices	will	get	updates	to	the	largest
version	number	of	a	named	release.	The	Android	update	cycle	is	about	six
months.

Technically	Android	versions	are	differentiated	with	number	code	called	the
API	level.	API	levels	run	sequentially	from	API	level	1	upward.	Whenever
there’s	a	change	in	Android	API	the	number	is	increased.

Every	Android	version	has	a	name,	version	number,	and	API	level.	Table	4-1
shows	a	list	of	Android	versions	released	so	far.	As	you	see,	there	are	some
missing	versions	like	Android	2.0.	That	is	a	version	that	was	updated	to
Android	2.1	so	soon	that	no	devices	have	it	anymore,	so	there	is	no	point
listing	it.	Android	3.0	–	3.2	Honeycomb	is	likely	to	have	the	same	fate.	I
believe	that	all	Honeycomb	devices	will	be	updated	to	Ice	Cream	Sandwich
or	above	very	soon.

Table	4-1	Android	Versions,	Their	Names,	and	the	API	Level
Code

Android	Version Name API	Level
Android	1.5 Cupcake 3

Android	1.6 Donut 4

Android	2.1 Eclair 7

Android	2.2 Froyo 8

Android	2.3	–	2.3.2 Gingerbread 9

Android	2.3.3	–	2.3.7 Gingerbread 10

Android	3.0 Honeycomb 11

Android	3.1 Honeycomb 12

Android	3.2 Honeycomb 13

Android	4.0	–	4.0.2 Ice	Cream	Sandwich 14

Android	4.0.3 Ice	Cream	Sandwich 15

Android	4.1	–	4.1.1 Jelly	Bean 16

Google	releases	accurate	numbers	of	Android	version	distribution	on	devices
on	the	Android	developer	website.	The	numbers	are	updated	relatively	often
and	are	usually	very	current.	The	version	distribution	numbers	are	based	on

Android	devices	that	access	Google	Play	within	a	14-day	period.	The	version
distribution	chart	can	be	found	here:
http://developer.android.com/resources/dashboard/platform-

versions.html.

Android	on	tablets
Android	Honeycomb	was	an	exception	to	the	normal	release	cycle.	It	was	a
tablet-only	Android	version.	It	was	only	ever	released	to	selected
manufacturers	to	be	put	on	tablet	devices,	and	the	source	code	was	never
released.	It	is	safe	to	assume	that	a	large	majority	of	devices	that	shipped	with
Honeycomb	will	be	updated	to	Android	4.0	Ice	Cream	Sandwich	or	newer.	I
recommend	ignoring	Honeycomb	and	targeting	the	Ice	Cream	Sandwich
instead.

Android	Jelly	Bean,	the	latest	android	release
At	the	Google	I/O	2012	conference	Google	announced	the	Android	4.1	Jelly
Bean.	At	the	time	of	writing	this	it	is	the	latest	Android	version.	The	Jelly
Bean	release	follows	the	visual	guidelines	set	in	the	previous	Android	4.0	Ice
Cream	Sandwich	release.	The	Android	4.1	added	only	few	new	features,	but
it	improved	a	lot	on	some	existing	features,	like	adding	expandable
notifications	and	offline	voice	input.	The	latest	version	greatly	improved
Android	user	interface	speed	and	responsiveness.	In	the	last	two	releases
Android	has	truly	matured	as	an	operating	system.

Nexus	Devices
Usually,	Google	releases	an	updated	Android	version	in	cooperation	with	a
device	manufacturer.	This	device	acts	as	a	reference	implementation	of	the
new	OS	version.	This	line	of	devices	is	called	the	Nexus	devices.

A	Nexus	phone	always	ships	with	vanilla	Android	(which	means	no
manufacturer	skins	or	any	other	third-party	customizations).	Some	carriers
still	put	their	own	apps	on	them,	though.	Nexus	devices	are	also	updated
directly	by	Google,	which	in	practice	means	that	they	get	new	Android
version	updates	before	other	devices.	This	makes	them	ideal	developer
devices.

Previous	Nexus	devices	have	been	Nexus	One	built	by	HTC,	Nexus	S,	and

http://developer.android.com/resources/dashboard/platform-versions.html

Previous	Nexus	devices	have	been	Nexus	One	built	by	HTC,	Nexus	S,	and
Galaxy	Nexus	built	by	Samsung.	Other	devices	that	basically	belong	to	this
same	series	but	don’t	carry	the	Nexus	name	are	the	very	first	Android	phone
HTC	G1,	Motorola	Droid,	and	Motorola	Xoom	tablet.	They	also	were	used	to
release	a	new	Android	version	and	shipped	without	any	manufacturer
customization.

Updates	to	older	devices
Android	has	become	infamous	for	not	updating	old	devices	to	newer	OS
versions.	Some	manufacturers	do	a	better	job	than	others	maintaining	their
older	devices,	but	many	of	them	simply	ignore	all	devices	that	are	older	than
one	year.

Manufacturer	unwillingness	to	support	old	devices	hinders	Android	version
propagation.	Historically,	it	has	taken	at	least	a	year	from	a	new	version
release	for	it	to	gain	significant	enough	market	share	to	be	viable	target	to	be
developed	for.	It	is	safe	to	assume	that	this	trend	will	continue.

Which	version	should	you	target?
Selecting	the	minimum	Android	version	to	support	is	tricky,	but	here	are	few
guidelines.	As	a	rule	of	thumb	you	should	try	to	support	all	Android	versions.
In	practice	this	is	not	always	possible.	New	versions	bring	new	APIs	and	new
features	that	are	often	very	desirable.	If	you	find	that	you	need	some	of	the
newer	features,	you	might	have	to	start	raising	the	minimum	supported
Android	version	of	your	app.

First,	take	a	look	at	the	latest	Android	version	distribution	numbers	from	the
Developer	Dashboard	mentioned	previously.	At	the	time	of	this	writing,	it	is
clear	that	Android	versions	1.5	and	1.6	can	be	ignored	without	much	thought,
as	their	distributions	are	0.4%	and	0.8%,	respectively.

Secondly,	determine	whether	the	features	you	need	are	optional	or
mandatory.	Features	that	only	improve	your	app’s	functionality	are	optional,
for	example.	You	can	use	simple	coding	tricks	to	enable	them	on	devices	that
support	them	and	leave	them	out	of	older	versions.

A	good	example	of	this	kind	of	functionality	is	multi-touch	gesture	support
like	pinch-to-zoom.	On	an	Android	web	view	pinch-to-zoom	works,	but	users
can	also	zoom	using	the	standard	on-screen	controls.	Using	multi-touch

can	also	zoom	using	the	standard	on-screen	controls.	Using	multi-touch
gestures	on	Android	2.1	requires	a	lot	more	work	than	on	2.2,	so	adding
multi-touch	gesture	support	to	your	app	only	when	it	is	running	on	2.2	or	a
newer	Android	version	is	possible.	This	way	you	still	allow	users	with
Android	2.1	devices	to	install	your	app	but	enable	users	with	newer	devices
to	fully	enjoy	their	device	capabilities.

Only	when	the	user	experience	is	unacceptable	without	a	newer	Android
version	should	you	raise	the	minimum	supported	version.	You	will	have
smaller	target	group	of	users	but	the	ones	who	do	use	your	app	will	be	getting
the	most	out	of	it.

Android	app	distribution
Some	other	mobile	operating	systems	have	become	famous	about	their	so-
called	walled	garden	approach	to	software	installations,	whereby	any
software	must	be	installed	only	from	official	software	distribution	channels.
Android	is	very	different	in	this	sense.	Google	doesn’t	force	any	limitations
to	the	operating	system.

Some	carriers	have	enforced	stricter	app	installation	policies	by	preventing
app	installation	from	sources	they	have	not	approved.	Fortunately,	this	has
happened	only	in	very	rare	cases.	In	general	users	can	install	apps	from
different	app	stores	or	directly	by	downloading	the	app	package	(APK)	from
the	Internet.	Installing	apps	directly	is	called	side	loading.	Side	loading	isn’t
enabled	by	default,	but	any	user	can	enable	that	function	in	the	Android
Security	settings	(see	Figure	4-11).

Figure	4-11:	To	side	load	an	app,	users	must	first	enable	it	from	the	Android
settings.

Source:	Android

The	app	stores
As	already	mentioned,	there	are	multiple	ways	users	can	download	apps	to
their	devices.	Besides	side	loading	users	have	a	choice	of	multiple	app	stores.
The	most	prominent	app	store	is	the	Google’s	Play	Store.	By	far	the	most
Android	devices	ship	from	the	Play	Store,	and	many	users	are	happy	with	it
and	don’t	search	for	alternatives.

Another	very	popular	app	store	is	the	Amazon	Android	App	Store.	Amazon’s
entry	to	tablet	market	has	sparked	an	interesting	situation	in	the	Android
ecosystem.	Although	Amazon	bundles	its	own	app	store	with	its	own	devices,
it	is	also	available	with	any	other	device.

In	addition	to	these	two	big	app	stores,	there	are	many	smaller	ones.	Barnes

In	addition	to	these	two	big	app	stores,	there	are	many	smaller	ones.	Barnes
&	Noble	has	its	own	store	that	serves	apps	only	to	their	own	devices.	GetJar
is	a	popular	multi-platform	app	store	as	well.

Application	safety	and	approval	processes
Different	app	stores	have	different	approaches	to	app	security.	Google’s	Play
Store	doesn’t	require	developers	to	put	their	apps	through	any	kind	of
approval	process	to	get	their	apps	into	the	store.	But	that	doesn’t	mean	that
anything	is	allowed	into	the	store.	There	are	guidelines	the	developer	must
agree	to	before	uploading	the	app.	Apps	breaking	the	guidelines	are	removed
from	the	store	and	violating	developers	might	end	up	losing	their	account.
Google	Play	developer	program	policies	can	be	found	at
http://www.android.com/us/developer-content-policy.html.

The	lack	of	approval	process	has	caused	controversy	and	malware	found	from
Google	Store	has	been	visible	in	news	and	blogs.	To	help	to	prevent	malware
getting	into	Google	Play,	Google	has	implemented	an	automatic	virus
scanning	system	called	Bouncer,	which	scans	all	uploaded	apps	for	known
viruses.

Lack	of	an	approval	process	does	have	positive	implications	to	app	quality	on
the	market.	Developers	are	free	to	upload	patches	to	their	apps	without
having	to	go	through	complex	processes.	Android	apps	generally	receive
small	patches	fairly	regularly	on	Google’s	Play	Store	and	therefore	detected
bugs	get	squashed	faster	than	on	app	stores	that	require	approval	processes.

Which	app	store	to	use
Selecting	the	app	store	to	use	is	an	important	decision.	Uploading	your	app	to
all	app	stores	might	sound	like	the	obvious	choice	but	could	end	up	not	being
the	best	approach	after	all.	There	are	so	many	apps	on	all	the	app	stores
nowadays	that	gaining	visibility	can	be	very	difficult.

App	store	ranking	algorithms	are	closely	guarded	secrets	to	prevent	people
from	gaming	the	system.	Some	things	that	affect	the	app	rankings	are	clear,
though.	One	of	them	is	the	download	number	and	the	number	of	active	users.
Concentrating	all	downloads	to	a	single	store	might	be	smart.	If	your	app	is
available	from	multiple	sources,	the	users	are	also	spread	between	them.
Instead	of	having	6,000	downloads	in	two	stores,	you	have	12,000	downloads

http://www.android.com/us/developer-content-policy.html

in	one	store,	which	might	make	the	app	much	more	visible	in	that	store	and
cause	an	exponential	trend	in	downloads.

Make	users	feel	safe
Especially	in	Google	Play,	malicious	imitation	apps	pop	up	all	the	time.
Popular	iOS	app	knockoffs	that	are	not	yet	available	on	Android	are	used	to
lure	unsuspecting	users	to	install	the	app	and	then	give	their	login	credentials,
personal	information,	or	email	addresses	to	the	malicious	app	developer.

Incidents	like	those	cause	users	to	mistrust	such	app	stores.	Users	are	starting
to	understand	that	mobile	app	stores	are	very	similar	to	the	Internet,	and	not
everything	is	always	the	way	it	seems.	The	users	start	to	look	for	signs	of
legitimacy	before	installing	an	app.	Make	sure	that	all	the	marketing	graphics
you	have	provided	to	the	App	Store	are	high	quality	and	correspond	to	your
app’s	general	theme	to	create	a	more	polished	impression.

What	can	you	do	to	make	your	users	trust	the	app	you	upload?	Although	this
isn’t	much	you	can	do	that	hasn’t	been	done	by	malicious	app	developers,
one	way	to	assure	users	is	to	provide	a	legitimate	website.	On	Google	Play,
developers	always	must	provide	a	link	to	their	website.	Make	sure	that	the
website	you	provide	is	the	official	site	of	your	company.	Also	make	sure	that
the	website	links	back	to	your	app	on	the	market.	Users	have	already	learned
how	to	recognize	a	trustworthy	website	and	link	between	the	site	and	the	app
will	make	the	users	feel	safer.	Never	use	a	Google+	site	or	a	Facebook	page
as	your	developer	website.

What	does	open	source	mean?
Android	is	Open	Source.	But	what	does	that	mean	to	developers	and
designers?	First,	it	is	good	to	understand	what	Open	Source	software	is	and
what	it	isn’t.	This	topic	could	fill	multiple	books,	so	I’ll	try	to	simplify	things
here.	Basically,	Android	consists	of	two	distinct	components.	The	core	of	the
operating	system	is	the	Linux	kernel.	The	kernel	is	built	by	a	massive	Open
Source	community	and	distributed	under	the	General	Public	License	(GPL).
The	GPL	says	that	anyone	can	take	the	Linux	code	and	redistribute	it,	modify
it,	and	even	sell	it	as	long	as	any	derived	products	are	also	distributed	under
GPL	and	the	source	code	of	the	new	product	is	distributed	alongside	any
binary	distributions.	The	second	part	of	Android	is	the	Android	framework

binary	distributions.	The	second	part	of	Android	is	the	Android	framework
itself.	This	part	is	built	by	Google	and	distributed	under	the	Apache	license.
The	Apache	license	isn’t	as	strict	as	the	GPL.	It	allows	distribution	of
binaries	without	releasing	source	code.

Access	to	source	code
Although	Google	doesn’t	allow	feature	contributions	to	their	code	base
directly,	they	do	allow	developers	to	download	the	full	Android	code	base.
You	can	see	how	Android	internals	work	and,	in	some	cases,	even	fix	or
tweak	functionality	you	need	on	your	applications.	This	approach	should	be
left	as	the	last	resort,	but	sometimes	it	can	save	a	feature	that	is	too	difficult	to
build	otherwise.	You	can,	for	example,	make	a	copy	of	Android’s	Button
class,	change	the	internal	functionality	of	it,	and	then	use	it	to	implement
some	or	all	of	your	buttons	in	your	application.

Android	community
Although	the	Android	project	is	not	a	community-driven	project,	there	are
multiple	community-driven	library	projects	that	support	Android
development.	A	search	in	GitHub	reveals	more	than	15,000	repositories	with
the	word	Android.	Not	all	of	them	are	useful	projects,	but	many	of	them	are.
Some	libraries	provide	useful	front-end	functionality	like	pull-to-refresh	or	a
back-ported	Action	Bar,	some	provide	easy	access	to	third-party	systems	like
Facebook	or	Twitter,	and	others	are	helpful	in	other	ways.

The	best	place	to	reach	the	Android	developer	and	hacking	community	is	the
XDA	Developers	website	and	the	related	forums.	The	site	has	a	massive
registered	community	of	people	who	are	building	apps,	creating	custom
ROMs,	unlocking	and	rooting	phones,	and	much	more.	It	is	a	very	good	and
mostly	reliable	source	for	anything	technical	about	Android.

The	Android	community	isn’t	just	for	coding.	There	are	many	forums
dedicated	to	helping	Android	users	with	their	problems	of	everyday	use.
Presence	on	some	of	the	larger	ones	can	be	very	helpful	for	promoting	your
apps.

Custom	ROMs

Anyone	can	take	the	full	Android	stack,	build	it,	and	redistribute	it.	This	has
spawned	multiple	custom	ROM	projects.	A	custom	ROM	is	a	full
replacement	for	the	operating	system	that	was	shipped	with	the	device.
Installing	(or	flashing)	a	custom	ROM	to	a	device	is	the	equivalent	of
reinstalling	an	operating	system	to	a	computer.	Probably	the	best	known
ROM	project	is	the	CyanogenMod	(www.cyanogenmod.com).

Although	custom	ROMs	are	not	going	to	gain	popularity	with	average
Android	users,	they	are	a	small	but	meaningful	part	of	the	Android
ecosystem.	Projects	like	CyanogenMod	often	bring	newer	Android	versions
to	devices	that	are	no	longer	supported	by	the	manufacturers	or	enable	users
to	remove	manufacturer	customizations	from	their	devices.

Summary
The	Android	platform,	with	all	its	openness	and	flexibility,	might	feel
overwhelming	at	first	glance.	The	truth	is	that	it	is	manageable.
Understanding	the	limits	and	challenges	early	in	the	project	planning	will
help	you	overcome	them.

The	same	flexibility	that	creates	challenges	provides	opportunities.	In	an	open
ecosystem	the	opportunities	are	limitless.	If	you	don’t	like	something	you	can
change	it	and	so	can	your	users.

Don’t	be	afraid	of	the	Android	fragmentation.	It	is	manageable	if	tackled
correctly.	It	is	as	much	an	opportunity	as	a	challenge.	Make	sure	you
understand	the	platform	before	building	apps	for	it.	Otherwise,	you	might	end
up	in	a	difficult	place	and	might	have	to	work	much	harder	to	reach	the
Android	masses	than	you’d	hope	for.

	

Part	II:	Android	Platform	Features
and	UI	Components	Chapter	5:

Android	App	Structure	and	Online
Guidelines	Chapter	6:	Android

Intents

Chapter	7:	Android	App	Navigation	Structure	Chapter	8:	Home	Screen	App
Widgets

Chapter	9:	Notifying	and	Informing	Users	Chapter	10:	Designing	for	Hardware
Buttons,	Input	Methods,	and	Sensors	Chapter	11:	Designing	Platform	User
Interface	Components

Chapter	5:	Android	App	Structure
and	Online	Guidelines

This	chapter	introduces	terms	and	technical	concepts	used	later	in	this	book.
This	chapter	gives	you	an	overview	of	the	Android	app	structure,	general
components	used	to	build	an	app,	overview	of	the	development	processes,	and
available	online	documentation.	The	goal	of	this	chapter	is	to	make	sure	that	you
understand	the	terms	used	in	the	following	chapters	but	not	to	teach	you	Android
development	from	the	ground	up.

If	you	are	familiar	with	the	Android	platform	already	you	can	skip	this	chapter
or	skim	through	it.

Android	app	structure	overview
This	section	gives	you	an	overview	of	how	Android	apps	are	structured.
Understanding	some	of	the	concepts	discussed	later	requires	you	to
understand	the	technical	concepts	at	some	level.	The	level	of	required
understanding	depends	on	whether	you	are	a	designer	wanting	to	learn	about
designing	for	the	platform	or	you	are	a	developer	implementing	designs.	For
a	designer,	the	level	of	understanding	that	this	section	provides	is	most	likely
enough.	Developers	should	also	look	at	more	technical	books	for	a	deeper
understanding	of	each	of	these	topics.

The	Android	app	structure	is	well	defined,	and	the	app	framework	supports
developers	very	well	as	long	as	they	build	the	apps	as	intended.	The	Android
platform	is	much	stricter	about	the	way	components	should	be	used	than
many	older	platforms.

Android	app	basic	building	blocks
The	Android	app	is	assembled	from	a	set	of	ready	components	and	custom
made	components.	It’s	helpful	to	look	at	the	components	that	are	used	to
build	user	interfaces	from	largest	to	smallest.	Figure	5-1	shows	an	abstract
representation	of	Android	components	and	their	relationships.

Figure	5-1:	An	abstract	diagram	of	the	Android	user	interface	structure.

Activity
Activity	is	the	core	component	of	Android	apps.	An	activity	often	represents
one	screen.	Although	it	is	possible	to	add	more	screens	than	just	one	to	an
activity	(or	some	activities	don’t	have	a	user	interface),	thinking	about
activities	as	single	screens	and	related	functionality	is	the	easiest	way	to
understand	the	app	structure.

Activity	is	the	controlling	instance	that	handles	what	is	visible	on	the	screen
at	any	time.	The	activity	can	be	used	to	remove	and	add	new	components	as
well	as	trigger	intents	to	start	new	activities.

Activities	form	the	core	of	the	Android	app	navigation	structure	called	the
back	stack.	Whenever	a	new	activity	is	brought	to	the	front,	the	previous	one
is	placed	to	the	back	stack.	When	users	then	press	the	Android	Back	button,
the	current	activity	ends	and	the	topmost	activity	from	the	back	stack	is
brought	to	the	front.

You’ll	read	more	about	activities	and	the	back	stack	in	the	following
chapters.

Fragments
A	fragment	is	a	newer	user	feature	that	was	introduced	in	Android	3.0
Honeycomb	to	make	applications	more	scalable	between	smartphones	and
tablets.	You	can	think	of	fragments	as	sub-activities.	A	fragment	is	an
independent	part	of	a	screen	that	can	be	placed	on-screen	either	alone	or	with
other	fragments.

Let’s	look	at	an	example	to	get	a	quick	understanding	of	what	fragments	are
and	how	they	relate	to	activities.	The	Gmail	app	is	a	very	well	implemented
app	that	scales	perfectly	from	smartphone	screens	to	tablet	screens.	The	app
on	tablets	and	smartphones	is	the	same	one.	Figures	5-2	and	5-3	show	the
Gmail	app	running	on	a	smartphone.	In	both	screens,	the	app	is	running	a
separate	activity,	which	both	have	a	single	fragment	visible	on	them.	Figure
5-4	shows	the	same	app	running	on	a	tablet.	In	this	case	there	is	now	a	single
activity	that	displays	two	fragments.	The	fragments	that	are	visible	are	the
same	ones	that	are	used	on	the	smartphone	in	two	separate	screens.

Figure	5-2:	The	Gmail	app	label	list	on	a	smartphone	display.

Figure	5-2:	The	Gmail	app	label	list	on	a	smartphone	display.

Source:	Google	Inc.

Figure	5-3:	The	Gmail	app	email	list	on	a	smartphone	display.

Source:	Google	Inc.

Figure	5-4:	The	Gmail	app	on	a	tablet	combining	both	label	list	and	email	list
into	a	single	screen.

Source:	Google	Inc.

You’ll	learn	much	more	about	fragments	in	Chapter	15.

Layouts
Layouts	are	collections	of	user	interface	widgets.	An	activity	or	fragment	has
one	layout	as	the	root	container	that	is	used	to	fill	in	the	rest	of	the	content
into	the	activity	screen	or	fragment.	Layouts	can	also	contain	other	layouts
forming	hierarchical	structures.	The	Android	framework	provides	multiple
layouts	and	are	all	that	most	apps	need.	In	a	case	where	the	platform	layouts
aren’t	enough,	developers	can	implement	their	own.	Layouts	are	also	handled
in	much	more	detail	in	Chapter	13.

User	Interface	Widgets
User	interface	widgets	are	individual	components	like	buttons	and	text	fields
that	are	used	in	Android	user	interfaces	to	represent	functionality.	The
Android	platform	provides	a	large	selection	of	user	interface	widgets	that	can
be	used	but	it	is	also	possible	for	developers	to	implement	their	own.

The	user	interface	components	vary	from	simple	text	labels	to	complex
gallery	widgets,	list	widgets,	and	tab	containers.	Most	of	the	components	are
very	flexible	and	can	be	customized	by	simply	changing	their	parameters.
Most	of	them	can	also	be	skinned	and	themed	almost	limitlessly.

Interface	widgets	are	discussed	in	more	detail	Chapter	11.

Intents	and	broadcasts
Intents	are	the	glue	that	binds	Android	apps	together	internally	as	well	as
externally.	Activities	are	started	by	triggering	intents.

Intents	can	either	be	implicit	or	explicit.	With	implicit	intents	the	intent
defines	which	component	should	handle	it.	With	explicit	intents	the	operating
system	picks	the	best	suited	one	or	presents	the	users	with	an	option	to	select
which	app	should	handle	it.

Intents	are	also	used	by	the	operating	system	to	notify	apps	about	changing
the	environment	and	other	events	in	the	device.	Apps	can	subscribe	to	receive
these	events.	These	kinds	of	messages	are	called	intent	broadcasts.	This
broadcast	mechanism	is	not	only	reserved	for	operating	system	broadcasts	but
can	also	be	used	by	apps.

Intents	are	fairly	complicated	but	also	a	very	powerful	and	important
mechanism.	You’ll	learn	much	more	about	intents	in	Chapter	6.

Services
Services	are	tasks	that	are	running	in	the	background.	They	can	be	long
running	or	short-lived.	A	service	never	has	a	user	interface.	They	take	care	of
tasks	like	fetching	new	information	from	the	server,	polling	to	check	for	new
information,	and	so	on.	This	book	doesn’t	cover	much	about	services,	but	it	is
good	to	know	that	they	exist.

App	Widgets
Android	app	widgets	are	small	layouts	that	users	can	place	on	their	home
screens.	The	app	widgets	provide	limited	app	functionality	by,	for	example,
displaying	some	relevant	data	or	providing	direct	access	to	some	of	the	most
important	app	functionality.

Home	screen	app	widgets	are	one	of	the	identifying	features	of	the	Android
powered	devices.	They	can	be	very	powerful	when	used	right	in	the	right
kind	of	apps.	Not	all	apps	need	to	implement	an	app	widget.

Android	project	structure	overview
The	Android	project	structure	is	well	defined.	The	Android	SDK	expects
certain	things	to	be	in	set	places.	The	structure	of	the	project	allows	the	SDK
to	build	apps	in	a	way	so	that	they	function	well	in	many	different	devices.
Although	developers	need	to	be	very	aware	of	the	project	structure,	designers
don’t	need	deep	knowledge	of	the	subject.	This	section	gives	a	very	short
overview	of	the	subject,	which	can	lead	to	a	better	understanding	of	some
terms	introduced	later	in	this	book,	even	for	the	less	technical	readers.

Component	folders
An	Android	project	consists	of	source	code,	resource	XML	files	(layout
definitions,	text	files,	and	so	on),	resource	graphics,	and	libraries.	Each	of
these	file	types	must	be	placed	in	the	right	folders	under	the	project	structure,
or	they	won’t	be	detected	by	the	Android	SDK	and	will	not	be	included	in	the
app.	See	Figure	5-5	for	an	example	project	folder	structure.

Figure	5-5:	An	example	project	structure.

Source:	Eclipse

Code	files	on	the	project	are	placed	into	the	src	folder.	The	Android	SDK
generates	a	lot	of	source	code	and	all	that	generated	code	is	placed	in	the
gen-src	folder.

For	all	resource	files,	the	folder	structure	is	a	bit	more	complicated.	Each	of
the	folders	can	have	extra	attributes	in	their	names	to	tell	the	SDK	what	kind
of	device	or	execution	environment	the	files	inside	that	folder	are	meant	for.
You’ll	learn	much	more	about	the	folder	structure	in	the	sections	about
scalable	design,	as	the	folder	structure	is	the	key	for	supporting	different
screen	sizes	and	densities.	The	same	approach	also	allows	developers	to
specify	separate	language	files	for	devices	with	different	locale	settings.

Libraries
Android	projects	can	take	advantage	of	multiple	community	maintained	and
commercial	libraries.	Many	third-party	Java	libraries	are	compatible	with
Android	projects	and	can	be	used	to	implement	functionality	that	doesn’t
have	a	user	interface,	such	as	streaming	or	encryption	libraries.

Android	also	supports	special	Android	library	projects	that	allow	developers
to	organize	functionality	and	use	third-party	libraries	that	do	implement	user
interface	functionality.	Probably	the	best-known	third-party	library	is	the
ActionBarSherlock	that	provides	back-port	of	the	Action	Bar	user	interface
pattern	to	older	devices	(see	http://actionbarsherlock.com/).

Official	Android	guidelines
Android	has	a	lot	of	great	online	resources	that	can	be	used	to	dive	deeper
into	the	platform’s	secrets.	Google	is	constantly	improving	their
documentation	and	it	is	worth	taking	a	look.	You	can	often	find	solutions	to
technical	problems	directly	from	the	developer	documentation,	including
working	examples.

Google	has	also	released	documentation	for	official	design	guidelines.	At	the
time	of	this	writing,	the	documentation	is	pretty	thin	but	is	likely	to	grow	over
time.

Android	developer	documentation
The	Android	developer	documentation	should	be	the	first	place	to	look	when
you	run	into	problems.	This	is	also	where	to	go	to	get	your	development
environment	to	set	up.	You	can	find	the	official	Android	developer
documentation	at	http://developer.android.com.

Dev	Guide,	Training,	and	Videos
The	developer	documentation	consists	of	different	guides	like	managing
virtual	devices,	handling	USB	connections,	and	hundreds	more.	Google	has
also	set	up	multiple	online	training	courses	with	topics	varying	from	simple
to	advanced.

Google	has	also	gathered	all	of	the	Google	I|O	conference	(the	yearly
conference	for	different	Google	technologies,	including	Android)	Android
presentation	videos	into	this	site.	Although	the	older	ones	might	not	be	up	to
date,	the	newer	ones	are	very	informative	and	a	very	good	source	for
additional	information.

http://developer.android.com/

Reference	Documentation
The	most	important	part	of	the	developer	documentation	is	the	Android
reference	documentation	that	specifies	every	single	Android	framework
interface	that	is	available	to	Android	developers.	Every	class,	method,	and
parameter	is	defined	here.

Android	Developers	Blog
If	you	haven’t	done	so	already	you	should	subscribe	to	the	Android
Developers	blog.	This	is	a	place	where	Google’s	own	staff	posts	topical	and
informative	posts	about	Android	development.	Most	of	the	posts	are	very
technical,	but	design	topics	are	also	often	discussed.	You	can	find	the	blog	at
http://android-developers.blogspot.com/.

http://android-developers.blogspot.de/

Android	design	guidelines
The	Android	Design	web	page	is	a	great	place	to	get	an	overview	of	the
Android	user	interface	design.	It	does	lack	details	in	many	places.	It	is	also
targeted	only	for	Android	4.0	Ice	Cream	Sandwich	or	newer.	You	can	find
the	Android	Design	page	at	http://developer.android.com/design.

http://developer.android.com/design

Google	Play	guidelines
The	Android	Developer	page	also	has	guidelines	for	publishing	your	apps	to
Google	Play.	Although	the	guidelines	are	good	to	read,	the	best	way	to	see
what	you	actually	need	to	do	is	to	go	to	Google	Play’s	developer	console.
You	can	access	the	developer	console	at
https://play.google.com/apps/publish.

To	access	the	developer	console,	you	need	to	create	a	Google	developer
account.	The	account	creation	is	not	free	but	it’s	inexpensive.	At	the	time	of
this	writing,	the	account	creation	requires	a	one-time	payment	of	$75.

https://play.google.com/apps/publish

Summary
Android	apps	are	constructed	using	sets	of	building	blocks	provided	by	the
platform.	This	book	does	not	require	you	to	understand	every	component,	but
you	should	have	an	overview	of	the	kinds	of	components	that	exist	and	how
they	relate	to	each	other.

This	chapter	explained	Android	component	hierarchy	from	a	user	interface
point	of	view.	You	should	now	understand	how	activities	relate	to	layouts	and
how	layouts	relate	to	user	interface	widgets.

This	chapter	also	took	a	quick	look	at	the	available	Android	online
documentation	and	resources.	The	official	documentation	is	always	a	great
place	to	learn	more	about	the	platform.

	

Chapter	6:	Android	Intents
Android’s	intent	system	is	probably	the	most	powerful	platform	feature	that	the
Android	has.	The	intents	tie	apps	together	internally	and	externally.	The	intent
system	makes	it	possible	for	developers	to	call	functionality	from	the	Android
platform	and	from	any	other	installed	apps.	It	also	allows	your	app	to	provide
functionality	to	other	apps.

This	chapter	explains	what	Android	intents	are	and	where	they	are	used.	The
goal	of	this	chapter	is	to	give	you	a	good	understanding	of	how	the	intent
mechanism	affects	Android	user	interface	design.	This	chapter	explains	some
examples	but	does	not	cover	the	full	intent	specification	and	all	use	cases.	I
encourage	you	to	see	Android	documentation	for	deeper	technical	information
(see
http://developer.android.com/reference/android/content/Intent.html).

Intents	allow	apps	to	work	together
In	short,	an	intent	is	a	technical	and	formally	defined	message	sent	to	an
application	component.	The	message	can	be	internal	in	one	app	or	sent
between	different	apps	or	even	between	the	operating	system	and	apps.	An
app	can,	for	example,	message	the	operating	system	that	it	wants	to	dial	a
phone	number.

The	most	powerful	implication	of	the	intent	mechanism	is	that	the	apps	are	all
capable	of	working	together	and	sharing	each	other’s	functionality	in	a	very
easy	and	seamless	way.	Any	app	can	ask	the	platform	to	identify	other	apps
that	provide	certain	functionality,	and	then	use	one	of	them	or	let	the	user
pick	one.

One	of	the	most	common	use	cases	for	intents	is	an	app	wanting	to	share
something,	an	image	for	example.	Regardless	of	whether	your	app	is	a	photo
editor,	a	camera	app,	a	drawing	app,	or	anything	else,	it	can	let	the	Android
system	know	that	it	has	an	image	to	share.	The	operating	system	knows
which	other	installed	apps	can	help	your	app	with	this	request.

Let’s	look	at	an	example.	The	following	sequence	of	figures	illustrates	a

http://developer.android.com/reference/android/content/Intent.html

Let’s	look	at	an	example.	The	following	sequence	of	figures	illustrates	a
series	of	actions	by	a	user,	utilizing	the	functionality	of	four	different	apps	to
produce	a	picture	and	then	share	it	to	a	social	network.	In	Figure	6-1	the	user
takes	a	photo	with	the	Android	camera	app.	Next	the	user	shares	the	photo	to
an	editor	app,	Skitch,	where	he	adds	a	text	overlay	to	the	photo	(see	Figure	6-
2).	Finally,	the	user	shares	the	completed	picture	to	Twitter	(see	Figure	6-3).

Figure	6-1:	User	taking	a	photo	with	the	Android	camera	app.

Source:	Android

Figure	6-2:	User	adding	text	overlay	to	the	shared	picture	with	Skitch	app.

Source:	Skitch,	copyright	2012	Evernote	Corporation	

Figure	6-3:	User	sharing	the	completed	picture	to	Twitter.

Source:	Twitter

Noteworthy	in	this	sequence	is	that	the	user	at	no	point	has	to	save	the	picture
to	a	gallery	or	file	system	to	continue	to	work	with	it.	The	image	file	is
moved	seamlessly	by	the	Android	operating	system	without	the	user	having
to	know	about	it.	The	last	step,	Twitter	sharing,	is	performed	by	the	Twitter
app	and,	therefore,	the	user	doesn’t	have	to	perform	a	separate	login	to	ensure
that	everything	is	ready	for	sharing.

Using	Social	Networks	and	Sharing
Mobile	apps	and	social	networks	go	hand	in	hand.	People	love	their	phones,
and	they	love	to	share	everything	they	see,	hear,	and	eat	to	their	social
network	of	choice.	On	some	platforms	Facebook	and	Twitter	integration	has
risen	to	be	a	sales	pitch	and	a	marketing	tool.	On	an	Android	device,	you	can
share	from	all	apps	to	any	social	network	that	had	an	Android	app	from	the
start,	including	Google+,	LinkedIn,	Orkut,	and	of	course	Facebook	and
Twitter.	A	new	social	network	only	has	to	provide	an	Android	version	of
their	app	using	the	correct	intent	filters	(explained	later	in	this	chapter),	and
they	are	done.	After	installing	the	app,	users	can	share	directly	from	a	gallery,
all	correctly	implemented	photo	apps,	postcard	apps,	drawing	tools,	or	text
editors	to	the	new	social	network.	For	the	same	reason,	users	aren’t	tied	down
to	only	to	the	official	client	app.	In	Figure	6-4	you	see	an	example	of	a	user
wanting	to	share	an	image.	Note	that	Seesmic,	Plume,	Tweet	Lanes,

wanting	to	share	an	image.	Note	that	Seesmic,	Plume,	Tweet	Lanes,
TweetDeck,	and	Twitter	are	all	Twitter	clients	and	the	user	is	free	to	use	any
of	them	for	sharing	to	Twitter.

When	building	an	Android	app	you	don’t	have	to	worry	about	social	network
integration—the	platform	takes	care	of	it	for	you.	You	don’t	have	to	pick	the
apps	you	think	should	be	supported	or	build	any	functionality	for	sharing	to	a
specific	social	network.	The	only	thing	you	need	to	do	is	to	implement	your
sharing	intents	according	to	the	specification.	Note	that	the	list	of	apps	shown
in	Figure	6-4	is	automatically	provided	by	the	operating	system,	so	you	don’t
have	to	build	anything	even	for	that.	The	operating	system	takes	care	of
everything.	Also	noteworthy	in	Figure	6-4	is	that	it	only	shows	apps	that	are
able	to	handle	image	sharing.	The	user	will	never	see	apps	in	the	list	that	will
not	know	what	do	with	the	type	of	data	that	is	shared.

Now	take	a	look	at	Figure	6-5.	In	this	figure	the	user	has	triggered	a	similar
sharing	intent,	but	this	time	she	is	sharing	not	an	image	but	a	URL	from	her
browser.	Android’s	intent	resolution	system	automatically	figures	out	which
apps	it	should	provide	in	the	list.	You	will	take	a	better	look	at	intent
resolution	later	in	this	chapter.

Working	with	Browsers
Browsers	are	an	essential	part	of	smartphones	and	tablets.	They	probably	are
the	one	of	the	most	used	apps	of	any	Android	device.	The	intent	system
allows	your	app	to	hook	into	them	too.	Android	browsers,	at	least	the	ones
implemented	correctly,	use	intents	to	open	each	link	as	the	user	taps	it.
Typically	the	intent	is	handled	by	the	browser	itself,	but	sometimes	the	target
URL	could	viewed	better	by	another	app.	An	app	can	tell	the	operating
system	that	it	can	handle	URLs	with	certain	patterns,	for	example	a	domain
name.	When	a	user	taps	a	link	that	matches	the	pattern,	the	operating	system
presents	the	user	with	the	familiar	choice.	In	Figure	6-6	you	see	an	example
of	what	happens	when	a	user	taps	an	ordinary	HTML	link	that	points	to
Google	Play.	The	Android	operating	system	recognizes	that	the	link	is	a
special	case	and	that	a	Google	Play	app	could	also	handle	this	request,	so	the
operating	system	lets	the	user	choose	the	app	she	prefers	to	use.	In	addition	to
the	two	browsers	the	user	has	installed,	the	Google	Play	app	is	also	presented
as	an	option	to	complete	the	action.

Figure	6-4:	The	user	has	selected	to	share	a	file	from	within	the	Android
gallery	app.	The	Android	OS	then	asks	the	user	to	pick	which	app	she	wants
to	use	to	complete	the	operation.

Source:	Android

Figure	6-5:	The	user	has	selected	to	share	a	URL.	The	Android	OS	no	longer
shows	image	manipulation	apps,	but	only	apps	that	know	what	to	do	with	a
URL.

Source:	Android

Figure	6-6:	The	user	clicked	a	link	that	points	to	the	Android	Market	in	an
Android	browser.	The	operating	system	recognizes	that	there	is	another	app
that	can	handle	the	URL	and	presents	the	user	with	an	option	to	select	which
of	the	apps	should	handle	the	request.

Source:	Android

What	makes	this	particularly	powerful	is	that	there’s	no	special	syntax
required	on	the	website’s	side.	The	website	contains	a	perfectly	normal	link
that	would	take	the	user	to	the	Android	Market	website	if	the	user	were	using
a	normal	desktop	browser	or	didn’t	have	the	Google	Play	app	installed	on
their	device.

Tip:	If	your	app	is	an	alternative	for	viewing	content	that	is	also	available
online,	you	should	make	sure	that	it	subscribes	to	URLs	that	fit	the
corresponding	domain	pattern.	There	really	is	no	reason	not	to	do	it.	The	app
is	supposed	to	be	a	superior	way	to	browse	and	interact	with	the	content.	If	it
isn’t	you	should	either	rethink	your	app	strategy	or	improve	your	app.

Note	that	URL	intents	do	contain	the	full	URL	including	all	parameters.	This
means	that	your	app	can	directly	open	the	right	content.	In	the	preceding
example,	selecting	the	Google	Play	app	would	lead	the	user	directly	into	the
correct	app	page	inside	the	Google	Play	app.	Similarly,	a	YouTube	link
opened	using	the	YouTube	app	will	directly	play	the	correct	video.

How	do	Android	intents	work?
Let’s	take	a	look	under	the	hood	and	see	how	Android	intents	work.	Even	if
you	are	not	interested	in	the	deep	technical	details,	it	is	useful	to	get	an
overview	to	better	understand	what	is	possible	and	what	isn’t.	There’s	also
some	terminology	that	can	be	useful	to	know.	The	examples	in	this	chapter
are	very	basic;	if	you’re	not	a	developer,	you	can	just	jump	over	them.

Types	of	Intents
There	are	two	kinds	of	intents:	activity	intents	and	broadcast	intents.

•	Activity	intents:	Activity	intents	always	have	exactly	one	sender	app	and
one	handler	app.	The	handler	app	can	be	an	activity	or	a	service.	Activity
intents	are	divided	into	two	further	categories:	explicit	and	implicit	intents.
•	Explicit	intents:	If	an	app	knows	exactly	which	activity	or	service	class
it	wants	to	handle	the	intent,	it	can	trigger	an	explicit	intent.	The	intent
will	be	directly	handled	by	the	given	activity	or	service	and	that’s	it.	This
is	how	apps	typically	communicate	internally.	While	a	very	important
construct,	explicit	intents	aren’t	very	interesting	when	considering	user
interfaces.
•	Implicit	intents:	Implicit	intents	are	used	when	the	triggering	app
doesn’t	know	which	app	will	handle	the	request.	The	triggering	app
creates	an	intent	describing	what	kind	of	action	it	wants	to	be	performed
and	includes	data	with	the	intent	and	sends	it	to	the	operating	system.

This	implicit	intent	mechanism	creates	a	loosely	coupled	relationship
between	the	calling	app	and	the	responding	app.	The	interface	between
them	is	specified	but	neither	of	the	apps	need	to	know	anything	about
each	other.	Keeping	components	loosely	coupled	will	make	your	app
much	easier	to	maintain	as	changes	in	other	components	or	other	apps
won’t	break	anything	as	long	as	the	interface	stays	unchanged.	Also
being	agnostic	about	the	other	apps	means	that	apps	you	didn’t	even

being	agnostic	about	the	other	apps	means	that	apps	you	didn’t	even
think	about	during	your	app’s	development	might	later	provide	shared
functionality	to	your	app.
Implicit	intents	are	very	interesting	and	relevant	from	a	user	interface
design	point	of	view.	Understanding	how	to	work	with	them	is	a	must	if
you	want	to	build	great	apps	for	Android.

•	Broadcast	intents:	Broadcast	intents	are,	as	the	name	suggests,	sent	by
one	app	but	can	be	received	and	handled	by	many.	Activity	intents	always
have	only	one	app	sending	the	intent	and	only	one	handling	it.	But
sometimes	one-to-one	communication	isn’t	suitable	solution.	Some	events,
such	as	a	device’s	battery	running	low	on	power,	might	interest	more	than
a	single	app.	For	such	situations	you	need	broadcasts.	Broadcasts	use	the
same	intent	mechanisms	as	explicit	intents	but	broadcasts	are	handled	not
by	activities	or	services,	but	by	broadcast	receivers.

Technical	example	of	sending	intents
In	this	example,	you’ll	see	how	to	make	the	example	app	allow	users	do	more
with	a	postal	address.	This	functionality	is	widely	used	in	the	Android	default
apps	like	Android	calendar	and	Google	Maps.	It	is	a	good	example	of	the
power	of	the	intent	system.	Let’s	say	that	your	application	has	postal	address
information.	It	can	be	a	good	idea	to	provide	your	users	with	a	map	view	or
even	with	a	navigation	option	to	the	address.	Note	that	you	don’t	have	to
know	what	the	users	will	do	with	the	address	information.	It	is	up	to	them	to
pick	the	app	they	want.

The	great	benefit	of	using	intents	here	is	that	you	don’t	have	to	write	any	of
the	map	or	navigation	code	into	your	app,	but	you	can	let	other	apps	handle	it.
Sending	this	intent	is	very	simple.	Take	a	look	at	the	following	code	sample.
This	code	can	be	anywhere,	but	in	this	example	it	is	in	an	activity	class.	The
intent	is	triggered	when	users	tap	the	UI	button.

sendIntent.setOnClickListener(new	View.OnClickListener()	{

		@Override

		public	void	onClick(View	v)	{

				Uri	geoUri	=	Uri.parse(„geo:0,0?q=“+	addressField.getText().toString());

Intent	mapCall	=	new	Intent(Intent.ACTION_VIEW,	geoUri);

startActivity(mapCall);

}

});

When	the	intent	is	sent,	the	users	will	be	shown	the	already	familiar	app
selection	dialog	box,	as	shown	in	Figure	6-7.	If	the	user	selects,	for	example,
Google	Maps,	the	app	will	open	and	directly	display	the	correct	address,	as
seen	in	Figure	6-8.

Intent	Filters:	Actions,	Data,	and	Categories	How
does	the	operating	system	know	which	activity,
service,	or	broadcast	receiver	should	receive	the
intent?	How	do	you	know	that	an	intent	you	send	will
be	handled	only	by	activities	that	can	perform	exactly
what	you	want.	You	are	giving	control	out	from	your
own	app	to	some	other	application.	You	must	be	able
to	rely	on	the	operating	system	to	take	care	that	you
don’t	lead	your	users	into	trouble.

Figure	6-7:	The	app	selection	dialog	box	after	the	app	sends	the	intent.

Source:	Android

Figure	6-8:	Google	Maps	opens	the	sent	address.

Source:	Google	Inc.

Here	is	where	you	need	to	peek	under	the	hood	and	understand	how	Androids
intent	resolution	works.	There	are	two	main	components	in	the	system.	Any
activity,	service,	or	broadcast	receiver	can	have	a	set	of	intent	filters
associated	with	them	in	the	application’s	manifest	file	or	dynamically	in
runtime	code.	The	intent	then	contains	an	action	definition	and	data	field,	and
possibly	categories	and	some	extra	data.	When	the	operating	system	receives
an	intent,	it	compares	the	action,	data,	and	categories	with	the	intent	filters	of
all	apps	and	picks	the	ones	that	match.

Actions	and	categories	are	simply	names.	Nothing	more	complicated	there.
Data	and	extra	data	are	a	bit	more	complex.	Data	is	defined	either	as	a	URI	or
a	mime	type.	A	URI	is	composed	of	two	parts	separated	by	a	colon.	The	first
part	defines	the	data	type	or	scheme.	The	second	part	identifies	the	data.	For

example,	the	URI	tel:123456789	means	that	the	data	type	is	tel	and	the	data
is	123456789.	In	intent	resolution	the	meaningful	part	is	the	data	type.

Android	APIs	define	a	number	of	standard	actions,	categories,	and	extra	data
keys.	These	standard	intent	definitions	are	used	throughout	the	Android
platform.	Some	are	triggered	by	the	operating	system	while	others	are	used
by	the	default	apps	that	ship	with	the	Android	system.	The	standard	actions
include	send	(or	share),	dial	a	number,	call	a	number,	view,	and	many	more.

Table	6-1	shows	a	list	of	standard	activity	actions,	and	Table	6-2	shows	the
standard	broadcast	actions.	For	a	full	list	of	actions	used	in	the	Android	SDK,
see	the	intent	documentation	at
http://developer.android.com/reference/android/content/Intent.html

Table	6-1	Android	Standard	Activity	Actions
Action	Name Action	Description
ACTION_ANSWER Handle	an	incoming	phone	call.

ACTION_ATTACH_DATA Indicate	that	some	piece	of	data	should	be	attached	to	some	other	place.

ACTION_CALL Perform	a	call	to	someone	specified	by	the	data.

ACTION_CHOOSER Display	an	activity	chooser,	allowing	the	user	to	pick	what	they	want	to	before	proceeding.

ACTION_DELETE Delete	the	given	data	from	its	container.

ACTION_DIAL Dial	a	number	as	specified	by	the	data.

ACTION_EDIT Provide	explicit	editable	access	to	the	given	data.

ACTION_FACTORY_TEST Main	entry	point	for	factory	tests.

ACTION_GET_CONTENT Allow	the	user	to	select	a	particular	kind	of	data	and	return	it.

ACTION_INSERT Insert	an	empty	item	into	the	given	container.

ACTION_MAIN Start	as	a	main	entry	point,	does	not	expect	to	receive	data.

ACTION_PICK Pick	an	item	from	the	data,	returning	what	was	selected.

ACTION_PICK_ACTIVITY Pick	an	activity	given	an	intent,	returning	the	class	selected.

ACTION_RUN Run	the	data,	whatever	that	means.

ACTION_SEARCH Perform	a	search.

ACTION_SEND Deliver	some	data	to	someone	else.

ACTION_SENDTO Send	a	message	to	someone	specified	by	the	data.

ACTION_SYNC Perform	a	data	synchronization.

Display	the	data	to	the	users.

ACTION_VIEW
Display	the	data	to	the	users.

Table	6-2	Android	Standard	Broadcast	Actions
Action	Name Action	Description

ACTION_BATTERY_CHANGED
This	is	a	sticky	broadcast	containing	the	charging	state,	level,	and	other	information
about	the	battery.

ACTION_BOOT_COMPLETED This	is	broadcast	once,	after	the	system	has	finished	booting.

ACTION_PACKAGE_ADDED A	new	application	package	has	been	installed	on	the	device.

ACTION_PACKAGE_DATA_CLEARED The	user	has	cleared	the	data	of	a	package.

ACTION_PACKAGE_REMOVED An	existing	application	package	has	been	removed	from	the	device.

ACTION_PACKAGE_RESTARTED The	user	has	restarted	a	package,	and	all	of	its	processes	have	been	killed.

ACTION_POWER_CONNECTED External	power	has	been	connected	to	the	device.

ACTION_POWER_DISCONNECTED External	power	has	been	removed	from	the	device.

ACTION_SHUTDOWN Device	is	shutting	down.

ACTION_TIME_CHANGED The	timezone	has	changed.

ACTION_TIMEZONE_CHANGED The	time	was	set.

ACTION_TIME_TICK The	current	time	has	changed.

ACTION_UID_REMOVED A	user	ID	has	been	removed	from	the	system.

In	addition	to	data	type	and	action,	the	operating	system	looks	into	category
of	the	intent	and	the	intent	filter.	In	most	cases,	the	only	relevant	category	is
the	default	category.	Whenever	intents	are	sent	from	your	code,	the	operating
system	automatically	adds	the	default	category	to	the	intent.	For	the	same
reason	you	should	always	add	a	default	category	to	your	intent	filter.

Intent	categories	become	relevant	only	when	you	want	to	replace	the	home
screen	activity,	car	dock,	or	table	dock	activities.	One	exception	is	category
launcher.	All	activities	that	have	an	intent	filter	with	launcher	category	will
be	displayed	in	the	application	launcher.

Intents	can	also	transmit	more	data	than	just	the	URI.	Each	intent	can	have
extra	data	fields	that	are	not	formally	specified	and	are	not	part	of	the	intent
resolution.	The	extra	fields	are	related	to	different	actions.	Activities	handling
certain	types	of	actions	expect	extra	data	with	certain	keywords.	Some
examples	of	standard	extra	keys	are	email,	title,	text,	subject,	stream	(used	in
image	sharing)	and	many	more.	A	complete	list	of	standard	extras	can	be
found	in	the	Android	documentation	at

http://developer.android.com/reference/android/content/Intent.html

Technical	example	of	Receiving	intents
Receiving	intents	isn’t	technically	much	more	complex	than	sending	them.
Let’s	use	the	same	example	but	from	the	receiving	end.	Imagine	that	your	app
can	provide	some	useful	service	to	users	when	they	want	to	view	an	address.
This	service	could,	for	example,	be	anything	from	special	navigation
instructions,	like	biking	or	public	transportation,	to	a	novel	way	of	displaying
the	address	information.

Receiving	intents	need	two	components.	First,	you	need	to	add	an	activity	to
your	manifest	file.	In	the	activity	entry	you	must	also	define	the	intent	filter	to
let	the	Android	system	know	what	kind	of	intents	your	activity	can	handle.	In
the	following	code	sample	you	see	how	you	can	define	an	intent	filter	to
handle	actions	to	view	an	URI	with	geo	scheme.	The	geo	URI	scheme	is	a
formal	specification	for	describing	geolocations.

<activity

		android:name=”.intents.ReceiveIntentExampleActivity”

		android:label=”Smashing	Android	UI”	>

			<intent-filter>

					<action	android:name=”android.intent.action.VIEW”	/>	<category

android:name=”android.intent.category.DEFAULT”	/>	<data

android:scheme=”geo”	/>

			</intent-filter>

</activity>

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.	Of	course,	make	sure	you	have	the
Smashing	Android	UI	companion	app	installed	on	your	phone	first.	See	the
Introduction	for	more	information.

In	the	activity	code	you	can	read	the	attached	geolocation	from	the	intent.	In
the	following	example	the	geolocation	URI	is	read	from	the	intent	data	and
simply	displayed	as	such.	In	a	real	app	you	would	have	to	parse	the	URI
content	to	perform	something	meaningful	with	it.

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

		super.onCreate(savedInstanceState);

		setTitle(“Receive	Intent	Example”);

		setContentView(R.layout.receive_intent_example);	TextView	addressText	=

http://developer.android.com/reference/android/content/Intent.html

(TextView)	findViewById(R.id.example_address_field);	addressText.setText(“”

+	getIntent().getData());	}

Creating	your	own	Actions
You	don’t	have	to	settle	for	the	predefined	standard	actions.	Nothing	prevents
you	from	creating	your	own.	Maybe	you	provide	a	service	in	your	app	that
could	be	useful	for	other	developers,	or	maybe	you	have	multiple	apps	and
you	don’t	want	to	build	a	tight	coupling	between	them.

Your	own	actions	are	simply	names	for	actions	that	you’ve	defined.	As	a
general	guideline	it	is	good	to	always	prefix	your	actions	with	your	app’s
package	name	to	keep	them	from	getting	mixed	up	with	actions	defined	by
others.

The	following	example	of	an	intent	filter	definition	is	for	a	custom	action	that
was	defined	by	me.	If	I	now	would	publish	this	action	name
—com.androiduipatterns.smashingandroidui.examples.EXAMPLE_ACTION

—on	my	app’s	website,	other	developers	could	use	it	to	integrate	their	apps
specifically	with	this	activity.

<activity

android:name=”.intents.ReceiveCustomIntentExampleActivity”

android:label=”Smashing	Android	UI”	>

		<intent-filter>

				<action

android:name=”com.androiduipatterns							.smashingandroidui.examples.EXAMPLE_ACTION”

/>	<category	android:name=”android.intent.category.DEFAULT”	/>	</intent-

filter>

</activity>

Intents	are	everywhere
Almost	everything	on	Android	is	triggered	using	intents.	Whenever	you	start
an	app	from	a	launcher,	you	have	used	an	intent	that	was	triggered	by	the
launcher	or	home	screen.	In	fact,	you	start	the	home	screen	by	triggering	an
intent.	If	you	want	to	replace	your	home	screen	all	you	need	to	do	is	to	make
another	suitable	app	handle	the	home	screen	intent.	The	Android	home	screen
and	app	tray	is	just	an	app	with	specific	intent	filter.

Even	the	default	phone	application	is	started	with	an	intent,	and	a	phone	call
is	dialed	with	an	intent.	Both	of	them	can	also	be	implemented	by	an	app.	If
you	want	to	write	an	app	that	replaces	the	dialer	you	can	do	so.

you	want	to	write	an	app	that	replaces	the	dialer	you	can	do	so.

On	Android	there’s	no	such	thing	as	the	Android	browser.	Well,	strictly
speaking	there	is	an	app	that	is	called	Android	Browser,	but	what	I	mean	is
that	Android	includes	multiple	browsers	on	the	platform,	and	you	cannot
know	which	one	a	user	is	using.	Any	app	that	handles	URLs	can	become	the
user’s	default	browser	by	simply	implementing	an	activity	with	a
corresponding	intent	filter.

The	flexibility	of	the	Android	platform	opens	a	lot	of	opportunities	for	your
app,	but	it	also	creates	challenges	like	not	being	able	to	rely	on	the	user	using
the	default	address	book,	home	screen,	dialer,	or	browser.

Intents	Versus	Third-party	APIs
When	it	comes	to	sharing,	using	intents	is	not	the	only	option	you	have.
Many	social	networks	and	other	services	provide	APIs	you	can	use	to
integrate	their	functionality	directly	into	your	app.	While	in	some	cases	this	is
a	good	way	to	go,	you	should	evaluate	it	carefully.	In	many	cases	you	will
have	to	implement	many	features	that	you	could	otherwise	get	for	free	by
using	the	intents.	Also,	whenever	any	of	the	social	networks	add	more
functionality,	your	app	will	fall	behind	until	you	add	them	to	your
implementation.	If	you	are	using	the	intents	you	will	get	the	new	features
automatically	when	the	client	app	is	updated.

Another	big	downside	of	using	tight	integration	is	that	if	the	part	of	the	API
you’re	using	requires	user	authentication	you	must	implement	it	into	your
app.	You	must	either	ask	users	for	their	credentials	or	open	an	embedded	web
view	that	does	the	authentication.	Either	way	the	user	must	trust	your	app.
They	either	give	their	login	credentials	to	you	or	authorize	your	app	to
perform	operations	with	their	account.	Would	you	want	to	give	a	random	app
your	Facebook	login	credentials	or	authorize	it	to	post	to	your	Facebook
wall?

Summary
I	hope	I	have	convinced	you	about	the	power	and	flexibility	of	the	intent
mechanism.	When	thinking	about	your	app’s	design,	take	a	minute	to	think
how	your	app	could	be	a	more	integral	part	of	your	user’s	device.	Is	there

how	your	app	could	be	a	more	integral	part	of	your	user’s	device.	Is	there
some	functionality	you	could	share	with	other	apps	as	an	intent?	Could	you
use	functionality	offered	by	other	apps	instead	of	writing	them	yourself?

This	chapter	wasn’t	intended	to	teach	you	the	full	technical	side	of	intents.
For	more	details	about	that	side	of	things	I	recommend	checking	out	Reto
Meier’s	Professional	Android	4	Application	Development	book	(Wiley,	2012)
or	Google’s	Android	developer	documentation	at
http://developer.android.com/reference/android/content/Intent.html

For	intents	provided	by	third-party	apps,	take	a	look	at	the	Open	Intents
website	at	www.openintents.org/	and	especially	at	the	intent	registry	they
maintain.

	

http://developer.android.com/reference/android/content/Intent.html
http://www.openintents.org/en/

Chapter	7:	Android	App	Navigation
Structure
Navigation	structure	is	a	critical	aspect	of	an	app’s	usability.	Get	the	navigation
wrong,	and	the	app	is	useless.	Getting	the	navigation	structure	right	requires
careful	planning	and	a	good	understanding	of	the	platform.	I	have	seen	examples
whereby	developers	ported	an	app	designed	for	another	platform	over	to
Android,	unchanged.	Results	are	mostly	disastrous	in	these	cases.	Navigation
must	work	consistently	in	all	apps	on	Android	platforms.	Users	learn	to	use
Android	apps	a	certain	way	and	expect	the	same	behavior.

Navigation	structure	is	all	about	presenting	your	content	in	a	meaningful	and
intuitive	way.	Users	must	be	able	to	determine	where	to	find	the	content	they	are
looking	for	and	how	to	navigate	the	app	without	getting	lost.	It	is	important	to	let
the	users	feel	like	they	are	in	control	all	the	time.	Making	users	feel	lost	in	your
app	is	a	sure	way	to	get	your	app	uninstalled.

Navigation	is	not	just	about	your	app’s	internal	structure.	On	Android	your	app
is	part	of	the	platform.	You	must	plan	how	your	app	integrates	with	other	apps
and	understand	the	different	ways	your	users	can	enter	and	leave	your	app.

This	chapter	explains	what	you	need	to	take	into	account	and	know	to	be	able	to
design	and	implement	good	Android	app	navigation.

Components	of	Android	navigation,
Activities,	and	Intents

To	understand	how	Android	navigation	works,	you	need	a	good
understanding	of	what’s	going	on	under	the	hood,	so	to	speak.	This	section
explains	some	of	the	most	important	technical	navigation	concepts.

The	two	main	components	of	Android	navigation	are	intents	and	activities.
An	activity	is	the	core	component	of	the	Android	app	user	interface.	An
activity	very	often	corresponds	one-to-one	to	a	screen.	Although	this	is	not
always	true	and	there	are	many	situations	where	this	isn’t	true,	you	can	think

about	activities	this	way	for	now.	The	way	activities	are	called	and	closed
form	the	bulk	of	the	navigation	structure	of	an	app.

As	explained	in	the	previous	chapter,	activities	are	started	by	triggering
intents.	By	default,	each	intent	creates	a	new	activity,	which	is	then	activated.
If	another	activity	is	already	active	it	is	moved	to	a	structure	called	the	back
stack.

Users	can	then	navigate	backward	by	closing	the	active	activity,	for	example
by	pressing	the	Back	button.	Whenever	the	active	activity	is	closed,	the
topmost	activity	from	the	back	stack	is	brought	to	the	front	and	activated.	If
no	activities	are	found	from	the	back	stack,	the	user	is	brought	back	to	the
home	screen.

Modifying	back	stack	behavior	with	intent	flags
In	most	cases	the	default	behavior	of	back	stack	is	enough,	but	sometimes
using	the	default	behavior	would	lead	to	situations	where	the	back	stack
structure	doesn’t	make	sense.	It	is	possible	to	tell	the	operating	system	to
handle	the	activity	stack	differently	by	adding	control	flags	to	the	triggered
intent.

There	are	more	than	20	intent	flags	that	can	be	used	to	launch	activities.	Most
of	them	are	useful	only	in	very	rare	cases.	Three	of	the	intent	flags	are
important	and	used	very	often,	and	are	listed	here:

•	FLAG_ACTIVITY_NEW_TASK—An	activity	started	with	this	flag	will	start	a
new	task.	Later	in	this	chapter,	you’ll	see	an	example	of	this	flag	in
practice.
•	FLAG_ACTIVITY_CLEAR_TOP—If	an	instance	of	the	new	activity	is	already
running	in	the	back	stack,	the	instance	is	brought	to	the	front	and	all	the
activities	on	top	of	it	are	cleared.	This	intent	flag	is	especially	useful	with
notifications.	You’ll	find	an	example	of	this	later	in	the	chapter.
•	FLAG_ACTIVITY_SINGLE_TOP—If	the	topmost	activity	in	the	back	stack	is
an	instance	of	the	activity	that	is	being	launched,	that	activity	is	brought	to
the	front	and	no	new	activities	are	launched.	This	intent	flag	is	very	useful
for	preventing	the	same	activity	from	getting	started	over	and	over	again
when	it	is	not	needed.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	a	functional	example.	Of	course,	make	sure	you	have	the
Smashing	Android	UI	companion	app	installed	on	your	phone	first.	See	the
Introduction	for	more	information.

Tasks
Whenever	an	app	is	launched	from	the	home	screen	it	has	its	own	back	stack
and	does	not	interfere	with	other	apps’	back	stacks.	Two	apps	that	are
launched	from	the	home	screen	can,	therefore,	be	thought	of	as	separate	tasks.
Tasks	are	collections	of	activities	in	the	back	stack.	You	can	manually	start	a
new	task	inside	your	app	by	using	intent	flags.	This	feature	is	not	needed	that
often	when	navigating	within	one	app,	but	sometimes	you	can	make	better
use	of	the	other	intent	flags	if	you	use	tasks	to	group	activities	in	your	app.
Tasks	are	an	important	concept	when	you	are	launching	other	apps	from	your
app.

Android	Navigation	controls
Android	provides	a	set	of	standard	navigation	controls	to	the	users.	The	Back
and	Home	buttons	have	become	identifying	hardware	features	of	all	Android
phones.	On	top	of	these	two	navigation	keys	is	the	Up	button,	which	is
sometimes	used	to	help	users	navigate	in	the	screen	hierarchy.	Users	can	also
directly	switch	between	apps	by	using	a	dedicated	multi-tasking	button	on
newer	phones	or	holding	down	the	Home	key	on	older	phones.	All	of	these
controls	have	dedicated	roles	and	all	app	designers	must	understand	them.

The	Home	button
All	Android	phones	have	a	Home	button.	Older	ones	have	a	physical	one	and
newer	ones	often	have	a	software-rendered	one.	The	Home	button	serves	a
critical	purpose,	and	the	Android	platform	prevents	you	from	overriding	its
functionality.	Pressing	the	Home	button	will	always	trigger	an	intent	that
opens	the	user’s	home	screen.	Any	running	app	moves	to	the	background.
The	current	activity	doesn’t	end,	so	the	user	can	return	to	the	app	using
Android’s	multi-tasking	controls.	Always	keep	in	mind	that	the	user	might
choose	to	press	the	Home	key	at	any	time.

choose	to	press	the	Home	key	at	any	time.

The	Back	Button
Users	navigate	backward	in	the	navigation	hierarchy	by	pressing	the	Android
Back	button.	In	older	devices	the	Back	button	is	a	physical	button,	and	in
newer	generation	devices	it	often	is	a	software	key	rendered	by	the	operating
system.	Developers	can	trust	that	the	Back	key	is	always	available.

Tip:	By	default,	pressing	the	Back	button	will	end	the	active	activity	and
return	users	to	the	previous	activity.	In	the	vast	majority	of	cases,	this	is
exactly	what	should	happen	and	what	users	expect.	As	a	rule	of	thumb,	do	not
override	the	Back	button’s	functionality	unless	you	have	a	very	good	reason
for	doing	so!

For	developers,	having	the	Back	button	terminate	the	current	activity	makes
sense.	It	is	easy	to	understand	and	logical.	For	users,	Back	button
functionality	can	be	more	confusing.	They	don’t	understand	or	care	what
activities	are,	what	their	lifecycle	is,	and	what	happens	under	the	hood.	If	you
use	more	complex	activity	structures,	always	make	sure	that	the	Back	button
functionality	looks	correct	to	the	users	regardless	of	the	underlying
implementation.

Although	the	Back	button	typically	exits	the	active	activity,	its	functionality
has	been	overridden	in	many	places.	All	of	the	following	examples	might
look	different	to	phone	users,	although	to	a	technical	person	they	all	make
sense.	More	importantly,	the	behavior	under	the	hood	is	consistent.

•	Go	back	to	the	previous	screen	(activity).
•	Exit	the	running	app	when	on	the	last	activity.

•	Return	to	the	previous	app	when	on	the	last	activity	and	when	the	app
was	launched	through	an	intent	from	another	app.
•	Dismiss	a	pop-up.
•	Terminate	a	long-running	process.

•	Close	the	on-screen	keyboard.
•	Go	to	the	previous	page	on	a	browser.

You	must	keep	in	mind	that	the	Back	button	is	probably	the	most	popular

You	must	keep	in	mind	that	the	Back	button	is	probably	the	most	popular
user	control	on	the	Android	platform.	Users	use	it	without	thinking.	It	should
always	be	clear	to	the	users	what	is	going	to	happen	when	they	press	it.	If
users	have	to	think	about	what	is	going	to	happen	even	a	bit,	it	will	make	the
app	feel	cumbersome	and	difficult	to	use.

The	Up	button
With	the	release	of	Android	3.0	Honeycomb,	Google	introduced	a	new
navigation	concept,	the	Up	button.	The	Up	button	is	derived	from	a	concept
that	is	very	common	on	the	web.	On	many	web	pages,	the	top-left	corner
contains	the	website	logo.	Users	can	click	the	logo	to	go	to	the	front	page	of
the	website.	Before	the	3.0	Android	release,	an	emerging	pattern	on	Android
apps	was	to	place	the	app	logo	in	the	top-left	corner,	which	always	took	users
to	the	app	front	page.

Unfortunately,	Google	decided	to	change	this	concept	and	replaced	the
functionality	of	the	top-left	button.	The	top-left	button,	which	is	part	of	the
Action	Bar	pattern	(more	about	the	Action	Bar	in	Chapter	18),	is	now	the	Up
button.	Although	developers	don’t	have	to	use	this	feature	in	their	apps,	it	is
encouraged	as	it	has	become	a	pervasive	feature	and	users	are	starting	to
expect	it.

Visually,	the	Up	button	is	the	application	icon	with	a	left	caret	when	it	is
active.	Figure	7-1	shows	an	example	of	the	Up	button	from	the	TED	talks
app.

Figure	7-1:	The	Up	button	is	a	left-pointing	caret.

Source:	TED	CONFERENCES,	LLC

In	theory,	at	least,	the	purpose	of	the	Up	button	is	simple.	Whereas	the	Back
button	takes	the	users	back	to	the	previous	screen,	the	Up	button	takes	the
users	to	the	screen	that	is	one	step	higher	in	the	hierarchy.	Figure	7-2	shows	a
simple	example	demonstrating	the	difference	between	the	Up	and	Back
buttons.	In	the	example,	screen	A,	a	list	screen,	is	higher	in	navigation
structure	than	screens	B	and	C,	which	are	item	details	screens.	The	user	first
navigates	from	the	list	screen	to	the	first	item	details	screen	B,	and	then	to
another	item	details	screen	C.	If	she	is	on	the	item	details	screen	C,	pressing
the	Back	button	would	take	her	back	to	the	previous	item	details	screen	B,
whereas	pressing	the	Up	button	would	take	her	to	list	screen	A.

Figure	7-2:	Navigation	diagram	demonstrating	the	difference	between	the	Up
and	Back	buttons.

User	Confusion
The	Up	button	can	easily	confuse	users.	For	technical	people	it	is	easy	to
understand	and	once	the	difference	between	the	Back	button	and	the	Up
button	is	explained,	it’s	usually	clear.	Unfortunately,	nobody	is	going	to	be
explaining	the	difference	to	most	users.	Users	historically	have	a	hard	time
understanding	the	difference	between	Up	and	Back.	Google’s	unfortunate
choice	to	use	the	left-pointing	caret	as	the	Up	symbol	doesn’t	help.	The	Back
button	icon	also	points	left.

The	iOS	Back	button	is	often	placed	very	similarly	as	the	Android	Up	button.
This	is	guaranteed	to	cause	even	more	confusion	for	people	using	both
platforms.

Due	to	the	possible	confusion	it	is	very	important	to	follow	the	guidelines
carefully.	Consistent	functionality	in	all	Android	apps	is	the	only	way	to
combat	user	confusion.

Up	Button	Rules	of	Thumb

Clearly,	the	functionality	of	the	Up	button	versus	the	Back	button	can	cause	some	confusion	for	users
as	well	as	developers.	Here	are	some	rules	of	thumb	you	should	follow	when	using	the	Up	button
(unless	you	have	a	very	good	reason	to	break	them).

♦	The	Up	button	should	never	lead	the	user	to	the	home	screen.

♦	The	Up	button	should	never	lead	the	user	to	another	app.

♦	Disable	the	Up	button	when	there	are	no	more	levels	for	the	user	to	go	up.	The	left	caret	must	not	be
visible	when	the	Up	button	is	disabled.
♦	The	Up	button	should	always	lead	to	the	same	screen	from	one	screen	regardless	of	how	the	user
navigated	to	the	screen	(in-app	navigation,	from	notification,	and	so	on).	A	screen	can	exist	only	in	one
place	in	the	screen	hierarchy.

You	should	familiarize	yourself	with	the	latest	navigation	guidelines	in	the	Android	Design	guidelines
online	at	http://developer.android.com/design/patterns/navigation.html.

Navigation	Improvements	in	Android	4.1
In	the	Android	4.1	Jelly	Bean,	Google	has	added	many	features	that	help
developers	build	the	back	stack	and	Up	button	functionality	more	easily.
Probably	the	biggest	improvement	is	the	addition	of	the
android:parentActivityName	attribute	for	the	activity	tag	in	the	Android
app	manifest	file.	You	can	now	define	the	parent	activity	of	any	of	your
activities	there	and	the	operating	system	will	take	care	of	the	navigation	for
you.

They	also	added	convenience	classes	to	help	you	manage	your	back	stack	and
activities.	Take	a	look	at	the	online	documentation	of	the	TaskStackBuilder
class	at
http://developer.android.com/reference/android/app/TaskStackBuilder.html

Multi-tasking
Android	is	a	true	multi-tasking	operating	system.	Users	can	switch	between
apps	seamlessly	at	any	time	by	tapping	the	multi-tasking	button	on	newer
generation	phones	or	holding	the	Home	button	on	older	phones.	Figure	7-3
shows	an	example	of	the	multi-tasking	menu	on	Android	4.0.

http://developer.android.com/design/patterns/navigation.html

Figure	7-3:	Android	4.0,	ICS,	multi-tasking	menu.

Source:	Android

A	true	multi-tasking	environment	is	challenging	to	its	developers.	The
Android	operating	system	can	kill	any	activities	and	apps	that	are	not	active
at	any	time.	The	operating	system	does	this	to	clear	up	memory	that	is	needed
for	other	operations.	Android	APIs	provide	developers	ways	to	save	the
activity	state	before	it	is	killed	by	the	operating	system.	You	should	make
sure	that	your	app’s	state	persists,	especially	when	your	activity	holds	data
that	is	difficult	to	fetch	again.	This	kind	of	data	could	be,	for	example,
retrieved	from	a	server	or	data	that	required	heavy	calculation	to	obtain.
Write	this	kind	of	data	to	long-term	memory	whenever	the	operating	system
is	killing	the	activity.	Read	more	about	activity	lifecycle	from	the	Android
documentation	at
http://developer.android.com/reference/android/app/Activity.html.

Where	does	an	app	start?

http://developer.android.com/reference/android/app/Activity.html

Where	does	an	app	start?
Although	using	an	application	icon	is	a	common	place	to	start	an	app,	it	isn’t
by	far	the	only	option.	In	fact,	many	apps	are	rarely	launched	from	the
launcher	icon.	Some	apps	are	more	commonly	opened	using	intents	from
other	apps	or	from	status	bar	notifications.

In	either	of	these	cases,	it	is	likely	that	the	app	should	not	be	opened	from	its
landing	screen.	Tapping	notification	should	always	take	the	users	directly	to
the	corresponding	info	and	an	intent	from	another	app	should	initialize	the
app	with	all	the	data	from	the	intent.	Should	the	back	stack	be	empty	in	these
cases?	What	does	the	user	expect	to	happen	when	he	or	she	presses	Back?

This	begs	a	question	or	two.	Where	does	an	app	start?	Or,	what	is	the	app’s
starting	screen?	Consider	an	email	app	as	an	example.	The	app	has	a	launcher
icon,	but	when	is	it	used?	Let’s	look	at	the	following	three	use	cases:

•	A	user	wants	to	be	notified	when	a	new	email	arrives	and	read	it	if	he	so
decides.
•	A	user	wants	to	write	a	new	email.
•	A	user	wants	to	send	a	photo	she	just	took	to	someone	using	email.

When	a	user	wants	to	be	notified	when	a	new	email	arrives,	the	app	is	most
likely	going	to	use	a	status	bar	notification	to	let	him	know	that	there’s	a	new
email.	The	user	can	then	tap	the	notification,	and	the	app	should	take	him
directly	to	the	corresponding	email	screen,	where	he	can	read	the	message	if
he	chooses.

When	the	user	wants	to	compose	an	email,	the	app	is	triggered	by	the	user
and	he	is	likely	to	use	the	launcher	icon	to	start	the	app.	Most	email	apps
open	to	a	message	list,	which	also	has	an	action	link	for	composing	a	new
email.

When	the	user	wants	to	send	a	photo	she	just	took	to	someone	using	email,
the	user	will	start	the	app	from	another	app	using	Android	intents.	The	email
app	should	open	in	the	email	compose	screen	and	attach	the	image
automatically.

In	all	three	examples,	the	app	opens	from	a	different	screen	and	from	a
different	place	within	the	app.	The	app	must	function	logically	in	each	of

different	place	within	the	app.	The	app	must	function	logically	in	each	of
these	cases,	and	the	user	must	easily	be	able	to	navigate	within	the	app.
Android	apps	have	multiple	entry	points.

Exiting	an	app
As	explained	previously,	pressing	the	Back	button	in	normal	cases	terminates
the	active	activity.	When	there	are	no	more	activities	left	in	the	app’s	back
stack,	the	app	exists.	The	user	will	return	to	the	device’s	home	screen.	Or,	if
the	app	was	launched	from	another	app	using	intents,	the	user	will	return	to
the	previous	app.

But	what	is	the	difference	between	the	Android	Home	button	and	pressing
Back	on	the	last	activity?	To	users	the	functionality	looks	exactly	the	same
and	they	won’t	be	able	to	tell	the	difference.	What	is	happening	under	the
hood	is	vastly	different,	though.	The	Back	button	terminates	the	app,	but	the
Home	button	leaves	it	running.

As	the	users	won’t	be	able	to	tell	the	difference,	you	must	make	sure	that	they
don’t	have	to.	An	app	must	save	all	the	data	and	be	able	to	continue	where	the
user	left	off.

Making	sure	that	users	know	where	they	are
The	user	must	always	know	where	they	are	in	the	app	screen	hierarchy	by
glancing	to	the	screen.	You	must	not	require	users	to	remember	how	they
navigated	to	the	screen	to	know	where	they	are.	Each	screen	should	have
clear	labeling	or	other	methods	helping	users	to	remember.	Users	won’t
always	remember	what	they	did	last	time	they	were	using	the	app.

Navigating	to	another	app
A	well	designed	app	takes	advantage	of	services	provided	by	other	apps	by
using	intents	to	call	functionality	from	them	(see	the	previous	chapter).	If	you
simply	trigger	an	intent	to,	for	example,	view	a	web	page,	the	browser
activity	is	placed	on	your	app’s	activity	stack.	This	will	be	confusing	to	your
users,	and	multi-tasking	won’t	work	the	way	they	are	expecting.	They	won’t
be	able	to	navigate	back	to	your	app	in	any	other	way	than	pressing	the	Back
button	in	the	browser	to	close	it.	Or	if	they	leave	the	app	at	this	point	and
return	to	your	app	using	the	multi-tasking	menu,	they	will	be	presented	with
the	browser	page.

the	browser	page.

The	solution	is	to	start	a	new	task.	Telling	the	operating	system	that	viewing
the	web	page	is	a	new	task	will	place	the	browser	activity	in	a	different
activity	stack.	Your	user	can	now	return	to	your	app	with	the	multi-tasking
menu.	Then,	if	they	return	to	the	app	after	viewing	the	website,	they	will	be
presented	with	the	last	screen	of	your	app	that	was	visible	when	the	browser
was	launched.

See	the	following	code	example	for	how	to	trigger	an	URL	view	intent	as	a
new	task.

Intent	browserIntent	=	new	Intent(Intent.ACTION_VIEW,

				Uri.parse(“http://twitter.com/lehtimaeki”));

browserIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

startActivity(browserIntent);

Consider	an	example.	An	example	app	lets	users	tap	a	button	to	open	a	tweet
in	a	Twitter	application.	Figure	7-4	shows	how	I	have	modified	the	code	and
removed	the	intent	flag.	After	tapping	the	button	and	opening	the	Twitter	app,
I	press	the	Home	button	and	open	the	multi-tasking	menu.	As	you	can	see,
there’s	only	one	active	app.	The	open	app	has	the	name	and	icon	of	the
example	app,	but	the	screen	capture	is	from	the	Twitter	app.	Selecting	that
app	would	open	the	Twitter	app.

Figure	7-4:	An	example	of	multi-tasking	menu	after	opening	an	app	from
another	app	without	the	new	task	intent	flag.

Source:	Android

Figure	7-5	shows	how	I	have	fixed	the	problem	by	adding	the	new	task	flag
to	the	intent	and	performing	the	exact	same	actions.	Now	you	can	see	that
there	are	two	separate	apps	in	the	multi-tasking	menu.	Users	won’t	be
confused	when	they	return	to	the	original	app.

Figure	7-5:	App	opened	correctly	from	another	app.	The	two	applications	are
separate.

Source:	Android

Navigating	from	notification
If	your	app	uses	notifications,	you	need	to	make	sure	that	the	back	stack	is
correct	when	the	user	enters	your	app	by	tapping	the	notification.	Even	with
very	simple	apps	it	is	easy	to	get	this	wrong.	Consider	for	example	an	app
that	has	only	two	screens—a	list	of	items	and	an	item	details	screen.	The	app
notifies	the	users	using	the	Android	notifications	whenever	new	items	are
added	to	the	list	and	the	notification	will	trigger	an	intent	to	open	the	list
activity.	What	happens	when	the	user	taps	the	notification?	Every	time	a	new
list	activity	is	created,	the	old	one	is	placed	in	the	back	stack.

To	users	this	will	seem	right	until	they	press	Back	and	end	up	in	the	same
activity	as	before.	It	is	possible	to	create	a	situation	whereby	you	have	many
of	the	same	activities	in	the	back	stack,	causing	users	to	have	to	press	Back

of	the	same	activities	in	the	back	stack,	causing	users	to	have	to	press	Back
multiple	times	to	exit	the	app.

For	notifications,	it	usually	makes	sense	to	use	the
FLAG_ACTIVITY_CLEAR_TOP	intent	flag	to	make	sure	that	the	activity	is	not
recreated.	This	also	takes	care	of	situations	where	users	have	the	item	detail
page	open,	as	in	the	previous	example,	and	then	tap	the	notification.	The
operating	system	will	activate	the	list	activity	from	the	back	stack	and	close
all	activities	on	top	of	it,	including	any	item	details	activities.	Now	the	Back
button	behaves	as	users	expect.

See	the	following	code	for	an	example	of	creating	a	notification	with	the	clear
top	activity	flag.

Intent	notificationIntent	=	new	Intent(this.context,

BlogTrackAddictActivity.class);

notificationIntent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

PendingIntent	contentIntent	=	PendingIntent.getActivity(this.context,

				NOTIFICATION_ID_GOOGLEPLUS,	notificationIntent,	0);

Non-activity	navigation
Not	all	on-screen	user	interactions	cause	new	activities	to	be	created.
Probably	the	best	example	is	the	tabbed	user	interface.	All	tabs	are	on	the
same	activity.	From	the	user’s	point	of	view,	this	can	cause	problems.	Using
the	Back	button	is	an	unconscious	action	for	most	users.	If	your	app’s	root
activity	has	a	tabbed	view,	users	who	tap	the	Back	button	because	they’re
trying	to	return	to	the	previous	tab	will	exit	the	app	instead.

Users	are	not	going	to	use	the	Back	button	to	move	back	in	navigation	when
they	use	gestures	to	move	between	content	of	same	level.	There	are	no	easy
answers	for	this	conundrum.	One	way	to	think	about	user	expectations	is	that
if	your	navigation	is	something	users	can	do	by	accident,	they	are	probably
going	to	use	the	Back	button	to	remedy	their	error	without	thinking	about	it.

Stopping	running	processes	with	the	back	button
An	important	special	function	of	the	Back	button	is	to	terminate	ongoing
operations.	Knowing	when	the	Back	button	should	stop	the	operation	and
when	it	should	navigate	to	the	previous	screen	is	important.

The	Back	button	should	not	terminate	the	running	process	when	the
corresponding	user	interface	component	is	not	the	dominant	component	of

corresponding	user	interface	component	is	not	the	dominant	component	of
the	screen.	If	the	process	indicator	is	part	of	the	screen	design,	the	Back
button	should	take	the	users	to	the	previous	screen	and	leave	the	process
running	in	the	background.	Figures	7-6	and	7-7	show	examples	of	processes
that	should	not	end	when	the	Back	button	is	pressed.

Figure	7-6:	Google	Play	displays	an	installation	progress	bar	as	a	small	part
of	the	user	interface.	Users	won’t	expect	the	Back	button	to	terminate	the
progress,	but	to	navigate	to	the	previous	page	instead.

Source:	Google	Inc.

Figure	7-7:	The	Twitter	feeds	process	indicator	in	the	Twitter	app	is	just	a
small	part	of	the	screen	and	should	therefore	not	be	terminated	by	the	Back
button.

Source:	Twitter

When	the	process	indicator	dominates	the	user	interface,	users	will	expect	the
Back	button	to	end	the	process.	Especially	when	there’s	a	pop-up	dialog	box
indicating	the	running	process,	the	Back	button	should	dismiss	the	pop-up
and	end	the	process.	Figure	7-8	shows	an	example	of	a	pop-up	dialog	box
progress	indicator.

Figure	7-8:	A	pop-up	progress	indicator	is	used	to	log	in	to	the	Twitter	app.
The	Back	button	should	terminate	the	process	and	dismiss	the	pop-up
window.

A	bit	more	on	the	fine	line	are	progress	indicators	that	are	on	the	screen	but
are	a	dominating	feature	of	the	screen.	This	can	be	a	confusing	situation	to
users	and	should	be	carefully	considered.	The	best	approach	in	general	is	not
to	end	the	process	and	navigate	to	previous	screen.	If	the	process	is
something	that	consumes	a	lot	of	data	or	time,	you	should	add	a	notification
that	users	can	use	to	get	back	to	the	screen	where	they	can	terminate	the
process.	Figure	7-9	shows	an	example	of	a	screen	that	is	dominated	by	the
progress	indicator.	In	this	case,	users	are	likely	to	expect	the	Back	button	to
terminate	the	process.

Figure	7-9:	An	example	app	downloading	a	large	file.	The	dominating
component	on	the	screen	is	the	progress	indicator.	Users	are	likely	going	to
expect	the	Back	button	to	terminate	this	process.

Using	Transition	animations
The	Android	operating	system	has	a	built-in	mechanism	to	enhance	users’
mental	models	and	make	it	easier	to	understand	how	screens	relate	to	each
other.	When	new	activities	are	launched,	they	are	not	simply	placed	on	the
screen,	but	an	animation	is	played.	The	function	of	the	animation	is	not	just	to
make	the	app	look	and	feel	nice	but	also	to	give	subtle	clues	to	users	as	what
is	happening.	The	default	transition	animation	for	animations	is	defined	by
the	system.	Different	Android	versions	and	different	manufacturer	phones
have	different	animations.	Early	Android	versions	had	a	simple	sliding
animation	from	right	to	left	when	a	new	activity	was	started	and	vice	versa
when	Back	button	was	pressed.

Developers	can	replace	the	transition	animations,	but	doing	so	breaks	the
platform	consistency.	Even	if	users	don’t	pay	attention	to	the	transition
animations	they	probably	associate	them	unconsciously	to	navigation	actions.
They	know	that	if	the	correct	transition	animation	plays,	it	is	likely	that	the
Back	button	will	take	them	back	to	the	previous	screen.

Tip:	In	Android	4.1	Jelly	Bean,	the	activity	transition	animations	can	now	be
made	to	easily	appear	to	start	from	a	source	view.	For	example,	selecting	an
app	from	the	multi-tasking	menu	animates	the	app	in	a	way	that	it	appears	to
zoom	in	from	the	selected	app	preview.	The	same	applies	to	starting	apps
from	shortcuts	from	the	home	screen	or	app	launcher.	You	can	utilize	this
same	improvement	on	your	apps	when	running	on	Android	4.1	or	newer.	See

the	Android	documentation	for	more	details	at
http://developer.android.com/reference/android/app/ActivityOptions.html

Use	animations	carefully.	Always	think	about	what	you	want	to	convey	with
the	animation.	Do	not	add	animations	just	to	make	the	user	interface	look
“cool.”	Excessive	use	of	animations	can	make	the	app	perform	poorly	and
consume	more	battery	due	to	added	CPU	consumption	as	well	as	make	it	look
restless	and	unnecessarily	flashy	or	even	confusing.

Summary
On	the	simplest	level,	Android	navigation	involves	starting	activities.
Although	many	apps	can	get	by	with	that	level	of	simplicity,	more	complex
apps	need	more	careful	navigation	design.	You	must	understand	all	the
different	entry	points	and	know	how	to	properly	handle	communication	with
other	apps.	The	Android	platform	provides	a	lot	of	tools.	When	you	use	these
tools	correctly,	your	apps	will	be	easy	and	intuitive	to	use.

The	Back	button	forms	a	core	of	navigation	controls	in	any	Android	app,
whereas	the	newer	Up	button	tries	to	improve	the	distinction	between	in-app
navigation	and	navigating	between	different	apps.	The	complex	interaction
between	activities	in	one	app	and	externally	with	other	apps	can	create
difficult-to-navigate	hierarchies	as	well	as	confusion	with	users.	It	is
important	to	design	the	navigation	carefully	and	follow	the	platform
guidelines	to	make	apps	behave	consistently.	Consistent	use	of	navigation
controls	will	make	it	easier	for	your	users	to	understand	how	to	reach	their
goals.

	

http://developer.android.com/reference/android/app/ActivityOptions.html

Chapter	8:	Home	Screen	App	Widgets
App	widgets	are	small	apps	that	can	run	inside	another	app,	called	the	widget
host.	Although	developers	can	create	widget	host	apps,	the	most	common	use	for
app	widgets	is	on	the	home	screen.

App	widgets	on	home	screens	have	become	one	of	the	key	differentiating
features	of	the	Android	platform,	separating	it	from	the	other	mobile	operating
systems.	App	widgets	make	Android	home	screens	more	than	just	a	collection	of
app	icons.

This	chapter	explains	how	to	make	useful	and	scalable	home	screen	app	widgets.
It	doesn’t	cover	other	types	of	widget	hosts,	as	they	are	very	rarely	used.

Uses	of	Home	Screen	App	Widgets
A	typical	app	widget	is	usually	an	extension	to	an	app	that	provides	users
with	more	direct	access	to	the	app	functionality	or	information.	Users	don’t
have	to	start	the	application	to	interact	with	the	app	widgets.	These	types	of
widgets	are	called	companion	widgets.	Another	type	of	widgets	is	the	app
whose	main	functionality	is	the	widget	itself.	These	could	be,	as	examples,
clocks	and	settings	toggles.

Weather	widgets	are	currently	the	most	popular	type	of	widget.	The	best
example	of	such	a	widget	is	Beautiful	Widgets	by	LevelUp	Studio	(see
Figure	8-1).	It	also	was	the	first	paid	app	on	Android	that	reached	one	million
downloads.	That	happened	in	December	of	2011.

Device	manufacturers	use	app	widgets	heavily	on	their	marketing	and
branding.	The	HTC	sense	clock	is	an	iconic	mark	of	their	brand	and	makes
HTC	sense	user	interface	instantly	recognizable	in	any	HTC	marketing
material.

The	potential	for	app	widgets	is	huge,	but	the	field	where	they	are	useful	is
pretty	narrow.	Users	do	use	widgets	but	only	in	fairly	limited	situations.	Not
all	apps	benefit	from	having	companion	widgets.

Launching	an	app	on	Android	is	simple	and	most	well	built	apps	launch	in	no
time.	The	decision	to	build	an	app	widget	should	be	carefully	considered,	as
in	many	cases	it	can	be	just	wasted	development	time	that	could	be	used
elsewhere.

The	following	sections	look	at	some	features	that	can	make	building	a	widget
worthwhile.

Displaying	relevant	up-to-date	information	and	being
context	aware	Some	information	is	so	valuable	to
users	that	they	either	look	at	it	multiple	times	a	day	or
need	to	have	access	to	it,	when	needed,	as	fast	as
possible.	A	good	example	of	this	kind	of	app	widget	is
the	weather	widget	described	previously	and	app
widgets	like	Öffi,	which	is	a	timetable	app.	The	Öffi
app	widget	(see	Figure	8-2)	is	context	aware	and
always	shows	public	transportation	departures	from
the	closest	favorite	station.

When	it	comes	to	displaying	data	on	an	app	widget,	the	most	important	things
to	remember	are	the	following:	•	Be	context	aware.	Display	information	that
is	relevant	to	the	user’s	current	location,	current	time,	locale,	and	so	on.

•	Think	about	ways	to	reduce	the	amount	of	information	is	in	the	app
widget	to	include	only	the	most	relevant	bits.
•	Make	sure	that	the	information	is	always	up	to	date.	If	that	is	not	possible
due	to	app	widget	limitations,	an	app	widget	might	not	be	a	good	idea.
You’ll	read	more	about	app	widget	limitations	later	in	this	chapter.

Figure	8-1:	Beautiful	Widgets	by	LevelUp	Studio	is	the	best-known	widget
app	on	Android.

Source:	LevelUp	Studio

Figure	8-2:	Öffi	app	widget	shows	next	departures	from	the	closest	favorite
station.

Source:	Öffi.

Providing	easy	access	to	simple	functions	and	toggle
controls	Some	apps	have	functions	that	users	want	to
access	directly	and	that	don’t	require	the	app	to	be
opened	in	order	to	be	completed.	The	best	example	of
this	kind	of	app	widget	is	Google	Play	Music	controls
widget	(see	Figure	8-3).	Playing,	pausing,	and
skipping	songs	are	functions	that	users	are	likely	to
perform	often.	Having	to	open	the	music	player	app	to
pause	a	song	makes	the	app	seem	cumbersome.	Figure
8-4	shows	examples	of	app	widgets	that	let	users

8-4	shows	examples	of	app	widgets	that	let	users
toggle	device	features	like	WiFi,	Bluetooth,	and	more.
These	are	valuable	shortcuts,	as	opening	an	app	to	do
the	same	thing	would	introduce	a	lot	of	overhead.

When	it	comes	to	designing	these	simple-function	app	widgets,	the	most
important	things	to	remember	are	the	following:	•	Functions	that	can	be
completed	with	a	single	tap	and	that	do	not	require	the	app	to	be	opened	make
good	candidates	for	app	widgets.

•	Keep	the	app	widget	simple	and	small	so	users	can	easily	fit	it	on	their
home	screens.

Figure	8-3:	Google	Play	Music	controls	app	widget	provides	users	with	direct
access	to	the	basic	player	controls.

Source:	Google	Inc.

Figure	8-4:	App	widget	that	allow	users	to	toggle	functionality	like	WiFi	and
Bluetooth,	on	and	off.

Source:	Android

Providing	Shortcuts	to	app	functionality
App	widgets	can	also	act	as	app	navigation	aides	by	providing	shortcuts	to
app	functionality.	Some	apps	have	functions	that	users	use	more	often	than
others,	and	so	it	can	be	a	good	idea	to	provide	users	with	direct	access	to	that
functionality.	A	good	example	of	this	is	an	email	app,	whereby	the	compose
email	functionality	becomes	an	app	widget.	Due	to	the	app	widget	limitations
composing	emails	inside	an	app	widget	is	impossible.	Users	must	open	the
app	to	do	that.	The	Gmail	app	widget	has	a	list	of	emails	and	also	a	button
that	opens	up	the	message	compose	screen	directly.	The	saves	users	time	by
allowing	them	to	navigate	directly	to	the	desired	functionality	without	first
having	to	open	the	app	and	then	tap	the	compose	email	link	(see	Figure	8-5).

Figure	8-5:	The	Gmail	app	widget	provides	a	shortcut	to	the	compose	email
functionality.

Source:	Google	Inc.

Developing	App	widgets	for	tablets
Many	home	screen	widgets	that	aren’t	useful	on	a	small	smartphone	display
can	be	very	useful	on	a	larger	tablet	screen.	A	tablet	display	allows	much
more	room	for	app	widgets,	and	you	can	use	the	larger	size	to	display	richer
information.	Figure	8-6	shows	a	few	examples	of	widgets	that	work	very	well
on	a	large	tablet	display.

Figure	8-6:	The	Android	calendar	and	the	Google	RSS	reader	are	examples	of
widgets	that	work	very	well	on	a	large	tablet	screen.

Source:	Google	Inc.

Updating	app	widget	data
In	many	cases	the	app	widget	shows	some	current	data	like	weather,	latest
news,	and	so	on.	Information	like	that	is	not	very	helpful	unless	it’s	up	to
date.	As	with	everything	on	a	mobile	device,	you	need	to	consider	battery	life
impact	with	every	action.	Anything	that	is	on	the	home	screen	has	an
especially	high	risk	of	impacting	the	battery	life,	as	it	is	potentially	visible	all
the	time.

On	runtime,	Android	app	widgets	are	technically	part	of	the	home	screen
process	and	not	your	app’s	process.	This	has	some	implications	as	to	the	way
the	app	widgets	can	interact	with	the	rest	of	your	app.	The	normal	memory
management	of	the	operating	system	does	not	apply	to	the	app	widgets,	as
they	are	not	part	of	your	app	and	cannot	be	stopped	if	resources	are	running
low.	That	is	why	the	operating	system	limits	the	updates	any	app	widget	can
do	and	the	way	they	can	trigger	user	interface	updates.

Automated	Updates
A	home	screen	app	widget	can	initialize	an	update	only	every	30	minutes	or
more.	This	limitation	is	set	to	limit	the	amount	of	battery	drain	caused	by	the
home	screen	widgets.	You	can	define	the	update	interval	in	your	app	widget
configuration	file.	Any	value	less	than	30	minutes	(180,000	in	milliseconds)
is	converted	to	30	minutes.

There	are	ways	to	get	around	this	restriction,	but	it’s	not	a	good	idea	to	do	so.
In	addition	to	the	battery	drain	concern,	badly	implemented	app	widgets	can
cause	the	device’s	home	screen	to	become	unresponsive.

Tip:	Update	your	widgets	more	frequently	only	if	they	are	useless	without	the
update.	For	example,	an	email	widget	reacting	to	new	email	would	need
frequent	updating.

When	the	app	widget	triggers	the	update,	a	broadcast	intent	is	sent	that	your
app	can	react	to.	You	can	then	update	any	of	the	user	interface	widgets	on
your	app	widget.

Updating	Upon	User	Interaction
Due	to	the	automatic	update	limitation,	many	widgets	offer	a	manual	Refresh
button	to	its	users.	You	can	always	react	to	user’s	interaction	and	call	updates
to	your	widget	regardless	of	the	automated	time	interval.

Updates	triggered	by	clicking	a	button	on	your	app	widget	are	handled
through	the	Android	intent	system.	Your	app	provider	will	receive	an	intent
asking	you	to	update	the	widget.	The	best	way	to	handle	it	is	to	start	a	service
to	do	the	work.	Note	that	the	service	must	complete	its	task	within	five
seconds	or	the	operating	system	deems	it	to	be	too	slow	and	it	might	be	killed
off	by	the	system.

Note	that	the	user	interaction	is	sent	to	your	app	but	it	is	not	always
immediate.	There	can	be	a	short	delay	between	the	user	interaction	and	your
app	receiving	the	intent.	In	normal	circumstances,	the	delay	should	not	be
noticeable.

Designing	Setup	activity

With	some	apps	it	is	not	clear	what	data	users	want	to	have	in	the	app	widget.
Fortunately	there’s	a	ready	mechanism	you	can	use	to	let	users	define	that
data	when	the	app	widget	is	added	to	a	home	screen.	A	good	example	of	this
is	adding	the	Gmail	app	widget	to	a	home	screen.	The	Gmail	app	launches	an
activity	and	asks	the	user	which	label	he	wants	to	have	in	the	app	widget	(see
Figure	8-7).

Figure	8-7:	The	Gmail	app	widget	setup	activity	asks	the	user	which	label	to
include	in	the	app	widget.

Source:	Google	Inc.

App	widget	layout	and	functionality
So	what	can	the	app	widget	actually	do?	As	mentioned,	the	app	widget’s
functionality	is	more	limited	than	an	app.	Due	to	the	limited	tools	it	is	even
more	important	to	use	the	tools	correctly.

User	Interaction	with	App	Widgets

User	Interaction	with	App	Widgets
Most	of	the	rich	gesture	support	and	interactions	are	not	available	with	app
widgets.	Users	cannot	do	more	than	scroll	scrollable	containers	and	tap
buttons.	That	is	all.	No	swiping,	pinching,	or	long	pressing.	As	a	developer,
the	only	thing	you	can	react	to	is	a	user	tapping	on	a	view	(most	of	the	time	a
button).

Understanding	the	Home	Screen	Grid
Android	home	screens	are	grids.	Your	app	widget	will	occupy	a	number	of
grids	instead	of	any	number	of	pixels,	unlike	layouts	in	your	app.	Even
though	you	define	the	minimum	width	and	height	in	pixels	(density
independent	pixels),	the	home	screen	lays	out	your	app	widget	into	the	grid
and	uses	the	grid	sizes.

Most	smartphones	give	app	widgets	a	grid	of	4×4	and	tablets	can	go	as	high
as	8×7	(a	10-inch	range	tablet)	or	even	higher	for	a	larger	tablet.	Users	will	be
aware	of	this	grid.	When	moving	or	resizing	app	widgets,	users	will	be	shown
a	help	grid	like	the	one	in	Figure	8-8.

Figure	8-8:	When	moving	an	app	widget	on	Android	4.0,	the	user	is	shown	a
shadow	grid	to	help	position	the	app	widget.

Source:	Android

Defining	Your	App	Widget’s	Minimum	Size
Take	time	to	figure	out	what	the	best	minimum	size	of	your	app	widget	is.
The	minimum	width	and	height	you	set	defines	what	size	your	app	widget
will	default	to	when	added	to	a	home	screen.	Too	small	size	make	it	unusable
and	too	large	will	take	too	much	room	on	the	home	screen.	So	be	considerate
and	don’t	take	more	space	than	you	actually	need!

There	is	an	easy	formula	to	calculate	the	space	you	have	per	grid	cell.
Available	size	for	your	app	widget	is	always	70	×	n	−	30	density	independent
pixels	(dp),	where	n	is	the	number	of	cells.	The	same	formula	applies	to
height	and	width,	as	the	grid	cells	are	square.	For	example,	a	1×1	cell	app
widget	is	going	to	have	40dp	×	40dp	of	available	space.	A	2×2	cell	app

widget	will	have	110dp	×	110dp	of	available	space,	and	so	on.

Note	that	app	widgets	are	resizable	only	in	Android	3.1	and	newer.	In	older
versions,	your	app	widget	will	be	the	minimum	size	and	users	can’t	change	it.

Available	Layouts	and	Components
You	only	have	a	limited	set	of	layouts	and	components	you	can	use	to
implement	app	widgets.	Figure	8-9	gives	you	a	good	overview	of	what	kind
of	app	widgets	are	possible	to	build	with	the	limited	tools.	The	layouts	are
introduced	in	detail	in	Chapter	13	and	the	components	are	discussed	in
Chapter	11.

The	available	layouts	are:

•	FrameLayout
•	GridLayout	(only	Android	4.1+)	•	LinearLayout
•	RelativeLayout

Dealing	with	Margins

The	way	margins	are	handled	changed	in	Android	4.0.	The	operating	system	automatically	adds	a
small	margin	to	app	widgets	from	apps	that	target	the	Android	4.0.	You	should	not	manually	add	any
margins	to	your	layouts.	For	older	Android	versions,	you	should	include	margins.

Due	to	the	difference	in	the	way	margins	are	handled,	you	should	provide	two	different	layout	files.
You	can	use	include	tags	to	make	sure	that	you	don’t	duplicate	the	actual	layout	code.

I’ll	talk	a	lot	about	how	to	provide	different	layouts	for	different	versions	later	in	this	book	as	well	as
using	the	include	tags	in	layouts.

You	can	use	following	components:

•	AnalogClock
•	Button
•	Chronometer

•	ImageButton

•	ImageView
•	ProgressBar

•	TextView
•	GridView	(only	Android	3.0+)

•	ListView	(only	Android	3.0+)
•	StackView	(only	Android	3.0+)	•	ViewFlipper	(only	Android	3.0+)	•
ViewStub	(only	Android	4.1+)
•	AdapterViewFlipper	(only	Android	3.0+)	

Figure	8-9:	Examples	of	very	different	looking	widgets.	The	widgets	are
Books	on	Google	Play,	Calendar,	Power	control,	and	Bookmarks.

Source:	Google	Inc.

Tip:	Google	has	made	a	template	set	available	online	that	contains	graphics
you	can	utilize	when	building	your	app	widget.	You	can	download	all	the
graphics	from	the	Android	developer	website	at:
http://www.developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates

Resizable	Widgets

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates

The	Android	release	for	tablets	3.0	Honeycomb	brought	with	it	richer	app
widget	functionality.	As	you	already	saw	in	the	component	list,	the	new
version	added	new	components	to	the	mix.

The	new	version	also	allowed	users	to	resize	the	widgets.	In	order	to	enable
the	resize	feature,	you	simply	have	to	add	the	resizeMode	attribute	to	the
XML	configuration	file.	You	can	make	the	app	widgets	resizable	only
horizontally,	only	vertically,	or	both.	Consider	which	ones	make	sense	in
your	case.	In	some	cases,	making	the	app	widget	resizable	doesn’t	make
sense.

App	widget	preview
On	Android	3.0	or	newer,	the	user	is	presented	with	a	preview	of	the	app
widget	in	the	app	widget	list.	Having	a	good-looking	app	widget	preview	is
important.	You	want	your	app	widget	to	look	tempting	and	be	noticed.	Figure
8-10	shows	how	the	app	widget	previews	are	shown	to	the	users.	You	can
also	see	how	an	app	widget	without	a	preview	image	is	shown.	If	you	don’t
provide	a	preview,	the	operating	system	will	use	your	app	icon.	In	Figure	8-
10,	the	app	widget	in	the	bottom-left	corner	doesn’t	have	a	preview.

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#templates

Figure	8-10:	App	widget	preview	view	on	Android	4.1.

Source:	Android

To	add	an	app	widget	preview	picture,	you	add	the	previewImage	attribute	to
your	app	widget	configuration	XML.

The	preview	image	should	be	a	representative	picture	of	how	the	app	widget
will	look	once	it	is	added	to	the	home	screen.

Implementing	an	app	widget
To	make	everything	more	concrete,	let’s	look	at	an	example	of	the	different
components	that	must	be	created	to	include	an	app	widget	in	your	app.

To	create	an	app	widget,	you	need	to	provide	your	app	configuration	file,	add
the	required	broadcast	receivers	to	your	app’s	manifest	file,	create	an	app
widget	provider	implementation,	and	create	the	actual	layout	of	the	app
widget.

widget.

Configuration	XML
The	app	widget	configuration	XML	defines	many	of	the	features	discussed	in
this	chapter.	It	adds	a	preview	image,	sets	the	minimum	width	and	height,	and
points	to	the	initial	layout	file	that	is	used	to	create	the	app	widget	user
interface.	You	must	place	this	file	in	the	res/xml/	project	folder.

<?xml	version=”1.0”	encoding=”utf-8”?>

<appwidget-provider

							xmlns:android=”http://schemas.android.com/apk/res/android”

				android:initialLayout=”@layout/example_app_widget_layout”

				android:minHeight=”70dp”

				android:minWidth=”70dp”

				android:updatePeriodMillis=”300000”

				android:previewImage=”@drawable/example_preview”

				android:resizeMode=”horizontal|vertical”>

</appwidget-provider>

App	widget	layout
Your	app	widget’s	layout	is	handled	the	same	as	any	other	layout.	You	can
only	use	user	interface	components	and	layouts	that	are	allowed	in	app
widgets.	These	layouts	and	components	were	listed	earlier	in	this	chapter.

<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:id=”@+id/layout”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”

				android:background=”@drawable/example_app_widget_shape”	>

				<TextView

								android:id=”@+id/update”

								style=”@android:style/TextAppearance.Medium”

								android:layout_width=”match_parent”

								android:layout_height=”match_parent”

								android:layout_gravity=”center”

								android:gravity=”center_horizontal|center_vertical”

								android:layout_margin=”4dip”

								android:text=”Some	Text”	>

				</TextView>

	
</LinearLayout>

App	Manifest	file
You	must	also	add	a	broadcast	receiver	definition	to	your	app’s	manifest	file.
The	broadcast	receiver	needs	to	register	to	listen	for
android.appwidget.action.APPWIDGET_UPDATE	broadcasts.

								<receiver	android:name=”.appwidget.ExampleAppWidgetProvider”	>

<intent-filter>

																<action

android:name=”android.appwidget.action.APPWIDGET_UPDATE”	/>	</intent-

filter>

	
												<meta-data

																android:name=”android.appwidget.provider”

																android:resource=”@xml/example_widget_info”	/>	</receiver>

App	widget	provider
The	app	widget	provider	is	the	implementation	of	your	app	widget’s	logic
and	functionality.	This	is	the	place	where	you	must	write	code	to	fill	in	the
actual	data	to	your	app	widget’s	user	interface.

public	class	ExampleAppWidgetProvider	extends	AppWidgetProvider	{

	
				@Override

				public	void	onUpdate(Context	context,	AppWidgetManager	appWidgetManager,

int[]	appWidgetIds)	{

	
								//	update	widget	here

								RemoteViews	remoteViews	=	new	RemoteViews(context.getPackageName(),

R.layout.example_app_widget_layout);

								//	Set	the	text

						remoteViews.setTextViewText(R.id.update,

								String.valueOf(System.currentTimeMillis()));

}

}

Summary
Adding	an	app	widget	is	a	good	way	to	make	your	app	more	appealing	to
users.	If	your	app	has	a	great	app	widget	that	the	users	add	to	their	home
screen,	they	will	see	it	every	day.	You	can	use	app	widgets	to	retain	user
interest	and	make	your	users	to	come	back	to	your	app.

App	widgets	aren’t	for	every	app,	though.	In	fact,	most	apps	don’t	benefit
from	having	one.	Consider	carefully	if	an	app	widget	brings	any	benefits	to
your	users.	If	not,	you’re	probably	better	off	spending	your	efforts	on
something	else.

The	app	widget	functionality	is	very	limited	and	they	cannot	be	updated
automatically	more	often	than	every	30	minutes.	You	can	also	only	use	a	very

automatically	more	often	than	every	30	minutes.	You	can	also	only	use	a	very
limited	set	of	user	interface	tools	to	build	your	app	widget.	For	these	reasons,
be	sure	an	app	widget	fits	what	you	are	trying	to	do	and	meets	the	user’s
expectations	before	you	waste	your	time	building	one.

	

Chapter	9:	Notifying	and	Informing	Users
Sometimes	the	user’s	attention	needs	to	be	directed	away	from	the	task	she’s
currently	occupied	with.	Different	situations	need	different	notification	methods.
Few	things	demand	user’s	attention	immediately	and	most	can	be	brought	to	the
user’s	attention	more	subtlety.

This	chapter	covers	notifications	in	a	wider	sense.	It	covers	more	than	just	the
Android	status	bar	notifications,	which	are	the	most	common	association	people
make	when	talking	about	Android	notifications.	Android	SDK	provides
developers	with	multiple	ways	to	notify	and	inform	users.

All	notifications	are	interruptive	by	nature.	Using	the	right	kind	of	notification
method	in	the	right	circumstance	is	important	for	creating	a	good	user
experience.	This	chapter	explains	when	notifications	should	be	used	and	which
method	is	best	in	which	situation.

Android	Notification	methods
Let’s	first	take	a	look	at	what	kind	of	notification	methods	Android	offers.
Each	of	the	methods	is	suited	for	a	different	situation.	Some	of	them	are	more
interruptive	than	others	and	must	therefore	be	used	more	carefully.	On	the
other	hand,	the	less	interruptive	notifications	go	unnoticed	more	easily	and,
therefore,	aren’t	a	great	choice	for	important	notifications.

The	following	sections	cover	these	techniques	in	order	from	the	least
interruptive	to	the	most	interruptive.

Inline/embedded	notifications
Inline	or	embedded	notifications	include	information	about	tasks	and	events
and	are	shown	as	part	of	the	user	interface.	This	kind	of	notification	doesn’t
interrupt	the	users,	but	also	goes	unnoticed	very	easily.	Evernote’s
notification	messages,	which	appear	at	the	bottom	of	its	landing	screen,	are	a
good	example	of	an	embedded	message.	See	Figure	9-1.

In	general,	use	these	kinds	of	notifications	to	indicate	something	that	adds

In	general,	use	these	kinds	of	notifications	to	indicate	something	that	adds
value	to	the	user’s	experience	but	isn’t	something	that	users	have	to	worry
about	or	react	to.

Toasts
A	toast	is	a	simple	text	message	that	appears	on-screen	for	a	short	time	and
then	disappears	automatically.	Users	cannot	interact	with	toasts.

Toasts	are	rendered	on	top	of	the	user	interface,	so	they	are	likely	to	draw	the
user’s	attention.	Therefore	they	are	slightly	more	interruptive	than	inline
notifications.	Because	the	toasts	get	dismissed	automatically,	they	are
unlikely	to	irritate	users	if	used	moderately.	They	can	also	be	easily	missed
by	users	who	are	distracted.	Therefore	toasts	cannot	be	used	to	indicate
anything	that	is	important	enough	not	to	be	missed.	You	would	not	want	to
use	toasts	to	notify	users	about	new	emails,	for	example.

A	very	good	use	for	toasts	is	to	confirm	operations	and	operation	success.	For
example,	the	Gmail	client	shows	a	toast	message	when	a	message	the	user
has	composed	is	being	sent	(see	Figure	9-2).	If	the	user	misses	this	message,
it’s	not	a	big	deal.	The	toast	also	does	not	prevent	or	delay	the	user	from
moving	to	a	new	task.

Status	bar	notifications
Whenever	Android	notifications	are	mentioned	they	generally	refer	to
Android	status	bar	notifications.	Status	bar	notifications	are	subtle	but
informative.	They	also	have	a	very	low	risk	of	being	unnoticed	by	users.	Also
Android	APIs	provide	developers	very	easy	ways	to	implement	them.

Figure	9-1:	Evernote	uses	very	subtle	notifications	on	the	bottom	of	the
application’s	side	navigation.

Source:	Evernote	Corporation

Figure	9-2:	A	toast	message	notifies	the	user	about	a	task	that	is	being
performed	and	was	triggered	by	user	(in	this	case,	the	message	is	being	sent).

Source:	Android

By	far	the	biggest	problem	plaguing	Android	applications	related	to	status	bar
notifications	is	overuse.	Consider	the	following	criteria	before	creating	a
status	bar	notification.	Each	notification	should	fill	all	of	these	criteria.

•	There	is	a	single	screen	where	the	tapping	the	notification	will	naturally
take	the	user,	or	tapping	the	notification	directly	terminates	the	ongoing
task.
•	The	user	can	do	something	about	the	information	and	react	to	it.
•	The	user	needs	or	wants	that	information.	I	mean	the	user!	It	is	not
enough	for	you	to	want	the	user	to	see	it.

Tip:	A	good	example	of	a	status	bar	notification	is	a	new	email	notification.

Users	are	likely	going	to	react	to	a	new	email	or	at	least	want	to	be	informed
about	it.	A	bad	status	bar	notification	would	be	a	notification	about	a
background	task,	such	as	an	email	being	sent	successfully.

Pop-up	dialog	boxes
There	are	very	few	situations	when	pop-up	windows	are	justified.	A	pop-up
always	interrupts	the	user’s	task	and	thought	process.	They	are	likely	to
irritate	users	and	make	the	app	feel	cumbersome.

Use	a	pop-up	dialog	box	to	alert	users	about	something	critical	that	simply
cannot	be	ignored.	A	good	example	of	a	justified	pop-up	is	the	Android
system	pop-up	telling	the	user	that	the	device	battery	is	nearly	empty	(see
Figure	9-3).

Figure	9-3:	The	Android	system	battery	low	window	is	an	example	of
justified	pop-up	usage.

Source:	Android

When	to	notify	users
Users	don’t	need	to	know	everything	that’s	going	on	in	the	system.	Never
bother	users	if	you	don’t	absolutely	have	to.	Unnecessary	notifications	will
only	irritate	your	users	and	make	your	app	look	bad.

The	following	sections	take	a	look	at	few	situations	where	a	notification	is
needed	and	justified.

Ongoing	background	tasks
When	your	app	is	doing	something	in	the	background	that	consumes	a	lot	of
resources	or	uses	a	network	connection,	you	should	let	the	users	know	that	is
going	on.	This	doesn’t	apply	to	short	network	usages	like	checking	if	a	server
has	updates	or	sending	short	burst	of	information	over	the	network.	This
applies	to	downloading	large	data	files	or	maintaining	a	continuous
connection	to	a	server,	for	example	during	an	IP	phone	call.

Using	status	bar	notifications	in	these	cases	is	the	right	choice.	If	you	can
estimate	how	long	the	process	will	take,	you	should	use	a	progress	bar	to	give
users	a	better	understanding	as	to	what	is	going	on	and	how	long	they	can
expect	the	task	to	continue.	The	progress	bar	also	gives	the	users	an	idea	as	to
how	fast	the	task	is	going.	Google	Play	uses	the	on-screen	progress	indicator
(see	Figure	9-4)	and	the	status	bar	notification	(see	Figure	9-5)	when	users
are	installing	an	app.	The	on-screen	notification	allows	users	to	cancel	the
process.	The	status	bar	notification,	if	tapped,	takes	the	users	to	the	app
installation	page	where	they	can	cancel	the	process.

Figure	9-4:	Google	Play	uses	on-screen	notifications	when	installing	apps.

Source:	Google	Inc.

Figure	9-5:	In	addition	to	the	on-screen	progress	bar,	Google	Play	uses	a
status	bar	notification	so	users	know	that	a	background	operation	is	running
even	if	they	leave	the	Google	Play	app.

Source:	Google	Inc.

It	is	very	important	that	users	feel	like	they	are	in	control	of	everything	that	is
happening	on	their	phones.	This	is	especially	important	with	background
tasks.

Events
Updates	can	be	sent	to	users	via	event	notifications.	These	kinds	of	events
might	be	a	new	email,	an	incoming	message,	a	calendar	event	notification,
and	even	a	completed	background	task.	These	are	by	far	the	most	common
cases	for	using	event	notifications.

Figure	9-6	demonstrates	three	event	notifications.	Each	one	takes	the	user
directly	to	the	logical	app	and	screen	if	tapped.	The	screenshot	notification

directly	to	the	logical	app	and	screen	if	tapped.	The	screenshot	notification
opens	the	Android	gallery,	allowing	the	user	to	view	and	share	the	image
very	easily.	The	notification	opens	the	email	app	directly	from	the	email,
which	is	being	previewed	in	the	notification.	The	Google	Play	notification
opens	the	newly	installed	app.	Note	that	the	Google	Play	notification	actually
opens	a	different	app	that	has	triggered	the	notification.	Nothing	prevents	you
from	doing	that	if	it	makes	sense.

Figure	9-6:	Three	event	notifications	using	status	bar	notifications.

Source:	Android

Tip:	Do	not	use	status	bar	notifications	if	the	event	is	happening	on	the
screen	the	user	is	currently	viewing.	Use	user	interface	components,	and
embedded	notifications	to	keep	the	information	in	context.

Errors
When	an	app	encounters	an	error	that	it	cannot	correct	automatically,	it	must
usually	be	brought	to	the	user’s	attention.	Depending	on	how	critical	the	error

usually	be	brought	to	the	user’s	attention.	Depending	on	how	critical	the	error
is	and	if	it	happens	on	a	foreground	or	on	a	background	task,	the	means	of
notification	can	be	very	different.

A	good	error	notification	should	always	do	the	following:

•	Try	to	fix	itself	automatically	without	notifying	the	user.	Only	after	you
have	tried	this	first	should	you	show	an	error!
•	Explain	what	happened,	concisely	and	using	laymen’s	terms.	Avoid	long
explanations	and	technical	terms.

•	Provide	the	user	a	direct	and	simple	way	to	react	and	fix	the	problem.
•	Stay	out	of	the	way.
•	Be	displayed	in	the	context	where	the	error	happened.

Errors	in	Foreground	Tasks
When	there’s	an	error	in	the	foreground	task,	the	one	the	user	is	trying	to
perform,	it	usually	stops	the	workflow.	These	errors	also	have	the	biggest
probability	to	irritate	the	users.	When	users	are	already	dealing	with	an	error,
you	should	make	sure	that	the	user	interface	that	displays	the	error	is	as
helpful	as	possible.

Consider	an	example	of	a	common	error-handling	situation,	an	app	login.
Many	apps	require	users	to	log	in	to	the	app	system	in	order	to	fully	benefit
from	the	app.	A	user	is	normally	provided	a	login	screen	with	two	text	fields
—a	username	and	password.

If	the	user	types	in	the	wrong	password	or	username,	the	app	will	fail	to	log
the	user	in.	There	isn’t	much	the	app	can	do	to	automatically	recover	from	the
problem,	so	an	error	notification	is	needed.

What	is	the	best	notification	method	to	use	in	this	case?	A	status	bar
notification	would	not	make	sense	as	the	error	happens	in	the	foreground
task.	You	have	to	select	among	a	pop-up	window,	a	toast,	and	an	inline
notification.	Compare	the	following	three	screenshots.	Figure	9-7	shows	an
example	of	an	app	using	a	pop-up	window;	Figure	9-8	shows	an	example	of	a
toast;	and	Figure	9-9	shows	an	example	of	using	an	inline	message.

Figure	9-7:	An	app	using	a	pop-up	window	to	tell	the	user	that	the	password
is	wrong.

Source:	Evernote	Corporation

Figure	9-8:	An	app	that	uses	a	toast	to	tell	the	user	that	the	password	is
wrong.

Source:	Twitter

A	short	analysis	of	the	three	options	clearly	points	to	the	inline	error
notification.	Its	benefits	are	many.	It	is	displayed	right	in	the	context,	users
cannot	miss	it,	and	it	does	not	prevent	users	from	continuing.	The	same
approach	applies	to	many	problems.	The	pop-up	will	always	prevent	the	user
from	trying	again	directly.	The	toast	is	too	subtle	and	can	be	missed	easily	by
the	user,	especially	when	you	consider	the	hectic	environments	in	which
many	people	use	their	phones.

Make	sure	your	errors	stay	out	of	the	way,	and	don’t	prevent	users	from
trying	to	solve	the	issue.

Figure	9-9:	An	example	app	that	uses	an	inline	message	to	tell	the	user	that
the	password	is	wrong.

Errors	in	Background	Tasks
When	something	goes	wrong	with	an	automated	background	task,	you	must
use	more	subtle	ways	to	notify	the	user.	A	failing	background	task	rarely
needs	the	user’s	attention	right	away.	Figure	9-10	shows	an	example	of	an
app	using	a	subtle	embedded	notification	to	tell	the	user	that	a	background
task,	syncing	in	this	case,	did	not	work	due	to	a	connection	problem.	A	failure
in	the	sync	process	does	not	prevent	users	from	using	the	app,	so	there’s	no
reason	to	make	the	notification	more	obtrusive.	The	same	thing	applies	if
your	app	is	loading	new	information	like	emails,	tweets,	or	news	stories.	Let
the	users	continue	to	use	the	app	without	interrupting	them.

Figure	9-10:	Evernote	uses	an	embedded	notification	to	tell	the	user	that
background	sync	did	not	work.

Source:	Evernote	Corporation

Sometimes	there	is	an	error	in	a	background	task	that	the	user	started.	This
could	be,	for	example,	when	installing	an	app	to	the	device.	Because	the	user
started	the	task	and	the	error	is	preventing	the	task	from	being	completed,	this
error	needs	to	be	brought	to	the	user’s	attention.	Creating	a	status	bar
notification	is	the	best	option.	Make	sure	that	tapping	the	notification	takes
the	user	directly	to	the	screen	where	the	user	can	do	something	about	it	or	at
least	see	more	information	about	the	problem.

When	not	to	notify	users
As	mentioned,	users	don’t	have	to	and	don’t	want	to	know	everything	that	is
going	on	in	their	phone.	Apps	launch	processes	and	check	data	on	servers	all
the	time.	You	can	use	an	embedded	notification	in	the	form	of	an	animated

progress	bar	or	something	similar	to	tell	the	user	that	the	current	app	is	doing
something.	You	should	never	use	a	status	bar	notification	to	simply	point	out
that	your	app	is	checking	for	new	messages	or	something	similar.

Many	apps	download	data	in	the	background.	Not	all	of	the	data,	like	social
network	messages,	are	directly	aimed	at	the	user.	Think	carefully	when	using
notification	in	cases	like	that.	Flooding	users	with	notifications	is	probably
going	to	annoy	them	and	likely	lead	to	a	bad	review	and	users	uninstalling
your	app.

Note	that	giving	a	user	an	option	to	disable	notifications	is	not	an	excuse	to
overuse	them.	Your	default	notifications	settings	must	be	good.	You	can	give
users	options	to	add	more	notifications	through	the	app	settings,	but	pick	a
conservative	default	to	begin	with.

Avoiding	pop-ups
There	is	a	good	reason	why	most	desktop	Internet	browsers	ship	with	pop-up
blockers	enabled	by	default.	At	some	point	the	Internet	was	overwhelmed
with	unnecessary	pop-up	windows.	Many	users	still	associate	pop-up
windows	with	bad	Internet	websites.	You	don’t	want	your	app	to	be	one	of
them!

Here	are	some	things	you	should	never	use	pop-up	windows	for:

•	Ask	users	to	rate	your	app.	A	much	better	alternative	is	to	use	embedded
notifications	to	do	this.
•	Advertise	anything.

•	Ask	users	to	subscribe	to	additional	services	or	mailing	lists.
•	Notify	users	about	a	completion,	progress,	or	failure	of	a	task	that	is	not
in	the	foreground.

As	a	rule	of	thumb,	never	use	pop-ups.	Break	this	rule	only	when	you’re	sure
that	the	pop-up	is	the	only	possible	way	to	notify	your	users.	Only	when	the
app	is	simply	unable	to	continue	without	user	input	should	a	pop-up	be	used.
You	might	think	that	having	to	press	the	OK	button	is	just	one	tap	and	it
should	not	matter,	but	it	does.	Figures	9-11	and	9-12	show	two	examples	of
apps	handling	the	same	error,	a	loss	of	network	connection.	The	first	app	uses

apps	handling	the	same	error,	a	loss	of	network	connection.	The	first	app	uses
a	pop-up,	which	forces	users	to	stop	and	press	the	button.	The	second	app
simply	replaces	the	content	with	the	error	message.	The	second	app	is	much
more	fluent	and	pleasant	to	use.

You	might	be	tempted	to	think	that	using	pop-ups	is	okay	if	you	time	the	pop-
up	trigger	to	open	the	pop-up	between	user	tasks.	Although	on	paper	it
appears	as	if	user	tasks	have	natural	points	where	users	seem	idle	and	not
concentrating	on	anything,	in	practice	this	is	not	usually	true.	Users	are	likely
already	occupied	by	the	next	task,	and	a	pop-up	will	interrupt	them.

Figure	9-11:	An	example	of	an	app	using	a	pop-up	to	notify	the	user	about	a
connection	problem.

Source:	TED	Conferences

Figure	9-12:	An	example	of	an	app	that	avoids	using	pop-ups	by	embedding
the	message	about	connection	problems	in	the	UI.	This	makes	the	user
experience	more	fluent.

Source:	TED	Conferences

Getting	the	most	from	status	bar	notifications
As	mentioned,	status	bar	notifications	are	very	useful	in	many	situations.	The
Android	notification	system	is	also	very	flexible	and	easy	to	use	for	both
developers	and	users.	This	section	looks	into	using	the	status	bar	notifications
and	related	design	guidelines.	Using	the	status	bar	notifications	correctly	will
make	your	app	that	much	better.

The	Android	Design	guidelines	have	a	lot	more	information	about	status	bar
notifications	at:
http://developer.android.com/design/patterns/notifications.html.

http://developer.android.com/design/patterns/notifications.html

Note	that	in	the	design	guidelines	when	they	refer	to	notifications,	they
generally	mean	only	status	bar	notifications.

Notification	content
A	status	bar	notification	is	composed	of	multiple	parts.	Note	that	not	all	of
these	are	available	in	older	Android	versions.

The	status	bar	notification	icon	is	the	most	important	part	of	the	notification.
Once	the	operating	system	has	rotated	the	text,	users	can	see	the	icon	only
until	they	pull	the	notification	bar	down	(see	Figure	9-13,	F).

Figure	9-13:	Components	of	a	status	bar	notification.

Source:	Android

Pulling	down	the	notification	bar	expands	the	status	bar	and	displays	more
information	about	the	notifications.	Table	9-1	describes	the	components
outlined	in	Figure	9-13.

Table	9-1	Notification	components	shown	in	Figure	9-13.
Symbol Description
A Large	icon	or	image.	If	this	is	not	provided,	the	operating	system	will	use	the	notification	icon.

B Notification	title.	This	should	be	short	but	descriptive.

C Notification	text.	This	describes	what	the	notification	is	about	in	more	detail	or	tells	users	what	actions	they	can
take.

D Notification	timestamp.	The	time	of	the	event.

E Notification	secondary	icon.	This	is	the	same	icon	used	on	the	status	bar.	If	no	large	icon	or	image	is	provided,	this
area	will	be	empty.

F Status	bar	notification	icon.

The	notification	bar	icons	are	covered	in	more	detail	in	Chapter	11	with	rest
of	the	platform	icons.

Stacking	notifications
Events	often	occur	multiple	times	before	the	user	reacts	to	them.	For
example,	maybe	the	user	receives	multiple	emails,	or	maybe	there	are
multiple	instant	messages.	You	have	two	options	to	handle	situations	like
this.	Either	you	create	a	new	notification,	or	amend	the	one	that	is	already
visible.	The	right	method	depends	on	the	situation.	When	the	notifications	are
very	similar	in	nature	and	come	from	the	same	source—for	example	multiple
instant	messages	from	the	same	person—stacking	them	into	a	single
notification	makes	sense.	But	when	the	user	receives	emails	from	different
accounts,	it	probably	makes	sense	to	create	a	separate	notification	for	each
account.

For	stacked	notifications,	you	can	add	a	number	that	indicates	the	number	of
notifications	pending	next	to	the	secondary	notification	icon.

Be	timely
Events	happen	at	certain	times.	Remember	to	track	the	time	correctly.	The
timestamp	on	your	notification	can	tell	the	user	a	lot	about	the	notification	if
it	is	correct.	If	you,	for	example,	poll	a	server	for	new	information	every	hour
and	notice	new	messages,	you	should	use	the	time	information	in	the
messages	to	set	the	notification	timestamp.	The	information	as	to	when	the
message	was	received	is	more	valuable	to	the	users	than	when	your	app
decided	to	poll	the	server.

decided	to	poll	the	server.

In	some	cases	notifications	are	meaningful	only	for	a	limited	period	of	time.
You	should	consider	if	your	app’s	notifications	are	like	that.	If	it	is	clear	that
a	notification	is	no	longer	useful	to	your	users,	consider	removing	it
automatically.

Ongoing	tasks
There	is	a	special	notification	type	for	ongoing	tasks	like	music	playing,
background	downloads	or	other	ongoing	background	tasks,	and	so	on.	If	you
set	the	ongoing	flag	on	your	notification,	it	cannot	be	removed	from	the	status
bar.	Even	when	a	user	clears	all	notifications,	all	the	ongoing	notifications
will	remain.

For	any	ongoing	notifications,	make	sure	that	you	provide	an	easy	way	for
users	to	terminate	the	operations.	Also	remember	to	handle	all	errors
correctly.	Few	things	are	more	annoying	to	users	than	ongoing	notifications
that	are	left	behind	due	to	an	error	in	the	process.

To	cancel	an	ongoing	notification,	you	can	either	open	a	page	where	the	user
can	cancel	it	or	you	can	cancel	the	task	directly	when	the	user	taps	the
notification.	In	the	later	case,	you	must	add	text	informing	users	about	that.
Add	something	like	“tap	to	cancel	download”	as	the	notification	text.

Implementing	status	bar	notifications
To	create	a	status	bar	notification,	you	use	a	NotificationManager	class.
You	get	an	instance	of	the	class	from	a	context	object	with	the	following	call.

(NotificationManager)	context.getSystemService(Context.NOTIFICATION_SERVICE);

To	create	the	notification	itself,	you	create	a	new	notification	object	and	set
the	parameters	and	flags	you	need.	Note	in	Android	3.0	or	newer	that	you	can
use	a	helper	class	Notification.Builder	to	create	the	notification.

Notification	notification	=	new	Notification(icon,	tickerText,	when);

	

notification.setLatestEventInfo(context,	title,	text,	pendingIntent);

notification.flags	|=	Notification.FLAG_AUTO_CANCEL;

notificationManager.notify(NOTIFICATION_ID,	notification);

To	make	the	example	an	ongoing	notification,	you	simply	add	an	ongoing
flag	to	the	notification,	as	the	following	line	of	code	demonstrates.

notification.flags	|=	Notification.FLAG_ONGOING_EVENT

For	the	full	specification,	see	the	Android	developer	documentation	at
http://developer.android.com/reference/android/app/Notification.html

and
http://developer.android.com/reference/android/app/Notification.Builder.html

What	actually	happens	when	a	user	taps	the	notification?	Well,	the
notifications	are	integrated	into	the	rest	of	the	system	using	the	Android
intent	system.	When	you	create	a	notification,	you	give	the	operating	system
a	pending	intent	that	is	triggered	when	the	user	taps	your	notification.	As
discussed	in	Chapter	6,	the	intent	mechanism	is	very	powerful	and	flexible.
You	can	use	what	you’ve	learned	about	intents	when	building	your
notifications.

The	pending	intent	is	given	as	a	parameter	to	the	notification	(see	the
previous	code	snippet).	To	create	the	pending	intent,	you	first	create	the
intent	you	want	to	be	triggered	and	wrap	it	into	a	PendingIntent	object.	You
can	use	everything	you’ve	learned	about	intents	here.	All	flags	and	so	on	are
available	to	you.

Intent	notificationIntent	=	new

Intent(this.context,TargetActivityActivity.class);

notificationIntent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

PendingIntent	pendingIntent	=	PendingIntent.getActivity(this.context,

			NOTIFICATION_ID,	notificationIntent,	0);

Status	Bar	Notifications	in	Android	4.1	Jelly	Bean
One	of	the	best	features	of	Android	4.1	Jelly	Bean	is	its	much	improved
notification	system.	The	new	notification	system	allows	developers	to	build
much	richer	notifications	that	can	contain	graphics	and	action	buttons	for
users	to	perform	actions	lime	posting	a	Google+	post	directly	from	the
notification.	Figure	9-14	shows	two	examples	of	the	new	notifications	on
Android	4.1.

http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/Notification.Builder.html

Figure	9-14:	Two	examples	of	the	Android	4.1	notifications.

Source:	Android

To	create	these	new	notifications,	you	can	utilize	a	helper	class	called
Notification.Builder.	You	can	easily	build	notification	with	larger	images,
more	text,	as	well	as	new	inbox	style	notifications.	You	can	find	the	full
definition	of	all	of	the	new	notification	types	from	the	Android	online
documentation	at
http://developer.android.com/reference/android/app/Notification.BigPictureStyle.html

http://developer.android.com/reference/android/app/Notification.BigTextStyle.html

and
http://developer.android.com/reference/android/app/Notification.InboxStyle.html

The	following	example	shows	how	to	use	the	Notification.Builder	helper
class	to	build	the	second	notification	in	the	Figure	9-14:

								Notification.Builder	builder	=	new	Notification.Builder(this)

																.setContentTitle(“Inbox	Style”)

http://developer.android.com/reference/android/app/Notification.BigPictureStyle.html
http://developer.android.com/reference/android/app/Notification.BigTextStyle.html
http://developer.android.com/reference/android/app/Notification.InboxStyle.html

																.setContentText(“This	is	a	inbox	Style	notification”)

																.setSmallIcon(R.drawable.ic_launcher)

																.addAction(android.R.drawable.ic_dialog_dialer,	“first

action”,

																								pendingIntentFirst)

																.addAction(android.R.drawable.ic_delete,	“second	action”,

																								pendingIntentSecond);

	

								Notification	notification	=	new	Notification.InboxStyle(builder)

																.addLine(“First	message”).addLine(“Second	message”)

																.addLine(“Thrid	message”).setSummaryText(“+5	more	messages”)

																.build();

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Notification	Priority
Android	4.1	also	added	notification	priorities.	This	is	a	welcome	change	as	it
allows	developers	to	define	how	important	each	notification	is.	There	are	five
notification	priority	levels.	They	are	defined	as	constants	in	the
Notification	class	(see
http://developer.android.com/reference/android/app/Notification.html

The	notification	priority	affects	the	way	the	operating	system	shows	each
notification.	Low-priority	notifications	might	be	shown	only	when	a	user
opens	the	notification	tray.	High-priority	notifications	might	be	shown	more
often	expanded.

Tip:	When	defining	your	app’s	notification	priorities,	be	conservative.	Use
the	lowest	priority	that	is	appropriate.	That	way	your	app	will	feel	like	it
knows	how	to	behave.	Setting	all	notifications	to	the	maximum	priority	will
likely	only	annoy	your	users.

Backward	Compatibility	of	Notifications
The	new	notifications	will	not	be	back-ported	to	the	older	operating	system
versions.	Notifications	are	such	an	integral	part	of	the	system	that	they	cannot
be	changed	without	updating	the	whole	system.	This	doesn’t	mean	that	you
should	not	use	the	new	notifications	in	your	apps.	You	should!	You	just	need
to	make	sure	that	doing	so	won’t	break	the	compatibility	with	older	Android
versions.

http://developer.android.com/reference/android/app/Notification.html

versions.

Google	has	hinted	that	the	new	notification	builder	helper	will	be	added	to	the
support	package,	and	developers	can	use	it	to	build	notifications.	They	are
automatically	adapted	to	the	runtime	Android	version.	At	the	time	of	this
writing,	Google	has	not	yet	made	this	addition.	There	are,	however,
community-maintained	projects	that	have	the	same	functionality.	One	of
them	is	Jake	Wharton’s	NotificationCompat2	project.	You	can	find	it	from
github	at	https://github.com/JakeWharton/NotificationCompat2.

Summary
Informing	users	is	a	delicate	task.	Picking	the	wrong	mechanism	to	inform
them	can	lead	to	compromised	usability.	You	must	carefully	consider	which
method	you	should	use	in	each	case.	Your	notifications	should	be	as	discrete
as	possible,	but	also	noticeable.	Different	types	of	events	require	different
methods.	Correctly	selecting	among	inline	notifications,	toasts,	pop-ups,	and
status	bar	notifications	is	important.

The	Android	status	bar	notification	system	is	a	very	powerful	tool	in	your
toolbox.	Status	bar	notification	can	be	used	in	many	different	cases.	Be
careful	not	to	overuse	these	notifications,	though.	Overuse	can	annoy	the
users	and	your	app	can	seem	to	behave	arrogantly.

	

Chapter	10:	Designing	for	Hardware
Buttons,	Input	Methods,	and	Sensors

The	ways	users	control	their	Android	devices	are	many.	Hundreds	of	different
Android	devices	ship	with	different	hardware	configurations.	Android	devices	in
different	categories	are	used	in	different	ways.	The	way	users	use	their	Android
smartphones	and	tablets	is	very	different	from	the	way	they	use	their	Android-
powered	TVs.

The	differences	don’t	stop	there.	Nearly	all	Android	devices	can	connect	into
external	devices	that	add	more	control	and	input	mechanisms.	Different
keyboards,	mice,	trackpads,	and	other	devices	add	even	more	variety	to	the
controller	selection	of	Android.

However,	don’t	fret.	Not	every	app	needs	to	build	support	for	every	control
mechanism	out	there.	The	typical	app	doesn’t	benefit	from	most	of	them.	Many
of	them	are	also	supported	pretty	much	automatically	and	are	transparent	to	the
apps.	It	is,	however,	good	to	know	about	these	devices	and	understand	the
opportunities	they	provide.

Designing	for	the	Touch	screen
All	Android	phones	and	tablets	have	touch	screens	as	their	primary	control
mechanism.	There	are	two	different	prominent	touch	screen	technologies	that
are	being	used	in	devices	right	now—capacitive	touch	screens	and	resistive
touch	screens.	The	difference	is	in	the	technology	but	this	also	has
implications	for	users.

Most	of	this	book	concentrates	on	the	touch	screen	part	of	the	user	interface
and	how	to	work	with	the	touch	screen	in	the	right	way.	This	section	covers
the	different	types	of	touch	screens	technologies	and	explains	how	they	affect
the	way	users	interact	with	their	devices.

Resistive	touch	screens
Resistive	touch	screens	require	users	to	physically	press	the	screen	to	make	it
react.	Resistive	touch	screen	technology	is	older	and	cheaper	than	the
capacitive	one.	These	kinds	of	screens	are	generally	going	away	and	are	seen
only	on	cheaper	and	older	devices.	However,	there	is	still	a	notable	selection
of	very	low-end	Android	tablets	that	are	built	with	resistive	screens.

From	the	user	interface	point	of	view,	the	resistive	touch	screen	has	two
notable	effects.	For	one,	performing	gestures	can	be	more	difficult.	For
example,	performing	a	bezel	swipe	(a	swipe	gesture	starting	from	outside	the
screen)	is	practically	impossible,	and	relying	on	that	gesture	as	the	only	way
to	navigate	is	inherently	a	bad	idea.

Resistive	touch	screens	also	don’t	support	any	multi-touch	features.	Users
with	these	devices	must	rely	on	single	touch.	It	is	good	to	remember	that
these	older	kind	of	devices	are	out	there.	Always	build	an	alternative	way	to
achieve	what	multi-touch	gestures	do.

Capacitive	touch	screens
Capacitive	touch	screens	are	the	newer	generation	technology	and	now	the
prominent	one.	Capacitive	screens	do	not	require	any	pressure	to	register
touch	events.	The	lightest	contact	is	enough.	This	technology	also	allows	for
multi-touch	gestures.	Many	newer	capacitive	touch	screens	recognize	as
many	as	10	different	touch	points	simultaneously.	Although	more	than	two
finger	gestures	are	rarely	used	or	useful,	some	specialist	apps	might	benefit
from	this	enhanced	touch-recognition	technology.

The	Future	of	touch	screens
As	touch	screens	are	becoming	more	prominent	in	user	devices,	more	and
more	technology	companies	are	investing	in	research	in	this	field.	You	are
likely	going	to	see	new	innovation	in	the	touch	screen	technology	in	the	near
future.

Two	branches	of	screen	technology	research	that	have	already	popped	up	in
concept	forms	are	flexible	displays	and	touch	screens	that	don’t	require
touching.	Flexible	displays	are	going	to	change	the	design	of	the	phone
hardware	by	releasing	the	phone	manufacturers	from	the	flat	surface
constraint.	Companies	will	likely	introduce	devices	with	screens	that	change
size	and	can	be	moved	around	while	using.

Some	manufacturers	have	prototyped	touch	screens	that	detect	the	user’s
finger	before	it	touches	the	screen.	This	technology	will	bring	a	whole	new
interaction	to	touch	screen	devices,	albeit	one	that	people	have	been	using	for
years	on	other	devices—the	mouse	hover	gesture.	Suddenly	users	will	be	able
to	hover	over	a	user	interface	control	and	get	more	information	about	it
without	having	to	click.

Both	of	these	features	are	still	some	time	away	from	the	mass	market,	but
they’re	coming.	It	is	good	to	keep	your	eyes	open	and	follow	what	new
innovation	the	OEMs	are	bringing	to	the	technology.

Designing	Phone	hardware	buttons
Until	recently	all	Android	phones	were	required	to	have	at	least	three
hardware	buttons.	All	phones	shipped	with	Menu,	Home,	and	Back	buttons.
Some	phones	also	had	a	hardware	Search	button,	but	that	was	an	optional
choice	left	to	the	hardware	manufacturers.

The	requirement	for	hardware	buttons	was	lifted	when	Android	3.0
Honeycomb	was	released.	The	hardware	buttons	became	optional	and	were
usually	replaced	by	software	buttons.

There	are	still	millions	of	older	devices	in	use	and	will	be	for	many	years.
This	is	a	legacy	burden	for	designers	and	developers	alike.	Users	with	old
devices	must	still	be	able	to	fully	utilize	their	device	capabilities.

The	Menu	button	is	dead
One	of	the	hardware	buttons,	the	Menu	button,	was	a	user	interface	design
blunder.	Although	having	a	Menu	button	was	sometimes	convenient,	there
was	no	way	for	users	to	tell	if	an	app	had	a	Menu	button	or	not	without	first
trying	it.	It	took	some	time	for	Google	to	fix	this	design	problem,	but	they
finally	did	so.	Menus	can	now	be	considered	deprecated	and	should	not	be
used	the	same	way	anymore.

The	menu	system	has	been	replaced	by	the	Action	Bar	design	pattern	(the
Action	Bar	design	pattern	is	introduced	in	detail	in	Chapter	18).	Although	use
of	the	old	menu	structure	is	discouraged	it	is	still	part	of	the	operating	system
as	a	fall-back	mechanism	for	apps	that	have	not	been	updated	to	the	new
system.	Figure	10-1	shows	how	the	old	menu	looks	on	a	newer	device.

Figure	10-1:	An	app	using	the	deprecated	menu	system.	The	three	dots	in	the
bottom	bar	indicate	availability	of	the	old	menu	to	the	users.

Source:	Twitter

Designing	for	the	On-screen	keyboard
The	Android	operating	system	ships	with	a	powerful	on-screen	keyboard.
Although	the	exact	keyboard	layout	differs	among	Android	versions,
different	manufacturer	skins,	and	different	device	sizes,	the	principles	are	the
same.	A	portion	of	the	screen	is	dedicated	to	the	on-screen	keyboard	when	it
is	needed.

The	on-screen	keyboard	is	rendered	by	the	software	and,	therefore,	very
flexible.	Developers	and	designers	can	help	users	by	utilizing	the	Android
keyboard	correctly.	The	following	sections	discuss	a	few	of	the	most
important	keyboard	features	of	the	Android	platform.

Input	methods
You	can	define	the	way	on-screen	keyboard	affects	the	user	interface	layout
and	whether	or	not	the	keyboard	is	visible	automatically.	These	are	called	soft
input	modes.	They	are	defined	per	activity	by	adding	the	SoftInputMode
attribute	to	the	activity’s	definition	in	the	Android	app	manifest	file.

								<activity

												android:name=”.keyboard.InputModeResizeActivity”

												android:windowSoftInputMode=”adjustResize”	>

								</activity>

The	most	important	parameters	are	adjustResize	and	adjustPan.	If	the
former	is	set,	the	operating	system	will	resize	the	activity’s	window	to
accommodate	the	on-screen	keyboard,	and	the	latter	attribute	will	place	the
on-screen	keyboard	on	top	of	the	user	interface	and	pan	the	user	interface	so
that	the	active	input	field	is	visible.	The	following	figures	and	code	example
demonstrate	the	difference.	Let’s	first	look	at	the	layout	code	that	follows.	It
is	a	simple	layout	that	defines	a	ScrollView	containing	many	EditText
elements.	Figure	10-2	shows	how	the	layout	is	rendered	before	the	on-screen
keyboard	is	activated.

<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”

				android:orientation=”vertical”	>

	
				<ScrollView

								android:layout_width=”fill_parent”

								android:layout_height=”fill_parent”

								android:layout_weight=”1”

								android:fillViewport=”true”	>

	
								<LinearLayout

												android:layout_width=”fill_parent”

												android:layout_height=”fill_parent”

												android:orientation=”vertical”	>

	
												<EditText

																android:layout_width=”fill_parent”

																android:layout_height=”wrap_content”

																android:text=””	/>

	
			//	…	many	more	EditText	elements	here	…

	
												<EditText

																android:layout_width=”fill_parent”

																android:layout_height=”wrap_content”

																android:text=””	/>

								</LinearLayout>

				</ScrollView>

	
				<Button

								android:layout_width=”fill_parent”

								android:layout_height=”wrap_content”

								android:text=”example	button”	/>

	

</LinearLayout>

Figure	10-2:	The	example	layout	before	the	on-screen	keyboard	is	activated.

Now,	let’s	look	at	two	activities	that	use	the	exact	same	layout	but	have	a
different	input	mode	definition.	In	Figure	10-3	the	activity	uses	the
adjustResize	mode.	When	a	text	field	is	activated	and	the	keyboard	appears,
the	operating	system	changes	the	layout	size	and	then	draws	the	layout	again.
Therefore,	in	this	example,	the	example	button	remains	visible.

In	Figure	10-4,	the	activity	uses	the	adjustPan	mode.	In	this	case,	the

example	button	will	not	be	visible.	In	fact,	users	cannot	focus	the	button
without	closing	the	on-screen	keyboard	first.

It	is	advisable	to	always	use	the	adjustResize	mode	if	there	is	no	good
reason	not	to.	You	can	control	the	resulting	user	interface	much	better	by
placing	ScrollViews	wisely	in	the	right	places	and	making	the	interface
scalable.

Input	type

	 	Scan	these	QR	codes	with	your	Android	phone	to	open	the
companion	app	and	try	out	a	functional	example.

Figure	10-3:	Activity	rendered	using	the	adjustResize	input	mode.

Figure	10-4:	Activity	rendered	using	the	adjustPan	input	mode.

An	input	type	is	a	definition	a	developer	can	assign	to	a	text	field	to	instruct
the	operating	system	as	to	what	kind	of	information	the	user	is	expected	to
type	into	it.	The	operating	system	uses	that	information	to	show	the	user	a
best	possible	keyboard	layout	configuration.	Making	sure	that	all	of	your	text
fields	have	the	correct	type	definition	is	probably	the	most	effortless	way	to
improve	your	app’s	user	experience.	For	example,	when	typing	an	email
address,	users	are	going	to	need	the	@	sign.	By	setting	the	input	type	to	the
correct	text	field	(textEmailAddress),	you	force	the	operating	system	to
show	the	users	an	@	sign	(see	Figure	10-5).	Another	good	example	of	how
you	can	make	your	user’s	life	easier	is	to	enable	the	number	pad	for	typing
numbers	(see	Figure	10-6).	If	you	have	a	field	that	accepts	only	numbers,	you
will	not	only	help	users	type	the	numbers	more	easily	but	also	help	avoid
confusion	about	accepted	values.

Figure	10-5:	A	selected	text	field	with	the	input	type	set	to	an	email	address
makes	it	easier	for	users	to	access	special	characters	that	are	likely	to	be	needed
when	typing	an	email	address.

Figure	10-6:	A	number	pad	is	much	easier	for	typing	a	number	field	than	using
the	default	keyboard.

There	are	more	than	20	input	types.	You	should	refer	to	the	Android
documentation	for	the	full	list	at
http://www.developer.android.com/reference/android/R.styleable.html#TextView_inputType

Here	are	the	most	important	input	types:

•	text—Just	plain	old	text
•	textCapCharacters—Capitalization	of	all	characters
•	textAutoCorrect—Auto-correction	of	text	being	input

•	textAutoComplete—This	field	will	be	doing	its	own	auto-completion
•	textMultiLine—Multiple	lines	of	text	in	the	field
•	textNoSuggestions—Should	not	show	any	dictionary-based	word
suggestions

http://developer.android.com/reference/android/R.styleable.html#TextView_inputType
http://developer.android.com/reference/android/R.styleable.html#TextView_inputType
http://developer.android.com/reference/android/R.styleable.html#TextView_inputType
http://developer.android.com/reference/android/R.styleable.html#TextView_inputType
http://developer.android.com/reference/android/R.styleable.html#TextView_inputType

•	textUri—Text	that	will	be	used	as	a	URI
•	textEmailAddress—Text	that	will	be	used	as	an	email	address

•	textShortMessage—Text	that	is	the	content	of	a	short	message
•	textPersonName—Text	that	is	the	name	of	a	person

•	textPassword—Text	that	is	a	password
•	number—A	numeric	only	field
•	phone—Text	for	entering	a	phone	number

•	datetime—Text	for	entering	a	date	and	time
•	date—Text	for	entering	a	date

•	time—Text	for	entering	a	time

(Portions	of	this	page	are	reproduced	from	work	created	and	shared	by	the
Android	Open	Source	Project	and	used	according	to	terms	described	in	the
Creative	Commons	2.5	Attribution	License.)

A	single	text	field	can	have	more	than	one	input	type	assigned	to	it.	Not	all
combinations	make	sense,	but	for	example	a	multi-line	no-auto-correct	field
might	be	useful	in	some	context.

http://developer.android.com/reference/android/R.styleable.html#TextView_inputType
http://developer.android.com/reference/android/R.styleable.html#TextView_inputType
http://developer.android.com/reference/android/R.styleable.html#TextView_inputType
http://code.google.com/policies.html
http://creativecommons.org/licenses/by/2.5/

Action	button	and	IME	options

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

An	action	button	is	a	button	on	the	on-screen	keyboard	that	changes	based	on
context	to	perform	different	actions.	By	default,	any	single-line	text	field	will
have	an	action	button	that’s	called	Next	if	there	is	a	logically	following	field
on-screen.	Tapping	the	Next	button	focuses	the	following	field.	If	the
operating	system	cannot	find	a	suitable	field	to	follow,	the	action	button	is
labeled	with	Done	instead.	Tapping	that	button	will	simply	close	the	on-
screen	keyboard.

Developers	can	override	the	action	button	label	by	selecting	from	a
predefined	list	of	supported	options	for	each	text	field	and	then	setting	the
imeOptions	attribute.	The	most	important	available	options	are	the	following:

•	normal—There	are	no	special	semantics	associated	with	this	editor.
•	actionUnspecified—There	is	no	specific	action	associated	with	this
editor;	let	the	editor	come	up	with	its	own	if	it	can.

•	actionNone—This	editor	has	no	action	associated	with	it.
•	actionGo—The	action	key	performs	a	go	operation	to	take	the	user	to	the
target	of	the	text	they	typed.

•	actionSearch	(see	Figure	10-7)—The	action	key	performs	a	search
operation,	taking	the	users	to	the	results	of	searching	for	the	text	they	have
typed.
•	actionSend	(see	Figure	10-8)—The	action	key	performs	a	send
operation,	delivering	the	text	to	its	target.
•	actionNext—The	action	key	performs	a	next	operation,	taking	the	user
to	the	next	field	that	will	accept	text.

•	actionDone—The	action	key	performs	a	done	operation,	closing	the	soft
input	method.
•	actionPrevious—The	action	key	performs	a	previous	operation,	taking

the	user	to	the	previous	field	that	will	accept	text.
(Portions	of	this	list	are	reproduced	from	work	created	and	shared	by	the
Android	Open	Source	Project	and	used	according	to	terms	described	in	the
Creative	Commons	2.5	Attribution	License.)

The	actions	can	be	detected	from	code	by	setting	an
onEditorActionListener	to	the	corresponding	text	field.

The	same	attribute	also	controls	parts	of	how	the	on-screen	keyboard	is	used
in	the	user	interface.	By	default	when	a	text	field	is	focused	in	landscape
mode,	the	app	user	interface	is	replaced	with	full-screen	text-editing	mode
(see	Figure	10-9).	This	functionality	can	be	overridden	by	setting	the
imeOptions	attribute	to	flagNoFullscreen	(see	Figure	10-10).	These	flags
can	be	combined	with	other	imeOption	attributes	by	using	the	pipe	symbol	(|)
to	separate	multiple	values	in	a	single	attribute	like	in	the	following	example.

android:imeOptions=”actionSend|flagNoFullscreen”

Figure	10-7:	A	text	field	with	the	imeOption	actionSearch	set.

http://code.google.com/policies.html
http://creativecommons.org/licenses/by/2.5/

Figure	10-7:	A	text	field	with	the	imeOption	actionSearch	set.

Figure	10-8:	A	text	field	with	the	imeOption	actionSend	set.

Figure	10-9:	A	text	field	in	the	default	full-screen	edit	mode.

Figure	10-10:	A	text	field	in	landscape	edit	mode	when	the	flagNoFullscreen
flag	is	set.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Third-Party	Keyboards
Not	all	Android	phones	have	the	same	keyboard.	Device	manufacturers	often
replace	the	default	keyboard	with	their	own	custom	keyboards,	and	users
might	replace	them	with	downloadable	apps.	This	means	that	while	defining
the	keyboard	configurations	is	always	a	good	idea,	you	cannot	trust	every
device	to	function	the	same	way.	Some	keyboards	might	provide	different
configurations	with	the	same	type.

Designing	for	Hardware	keyboards
Some	Android	devices	ship	with	hardware	keyboards.	Probably	the	best
known	examples	of	this	are	the	very	first	Android	device,	G1,	and	the
original	Droid.	Both	of	them	shipped	with	a	slide-out	hardware	keyboard.

The	Android	operating	system	is	fully	capable	of	handling	hardware
keyboard	events	automatically,	but	they	present	few	design	implications.	The
first	one	is	an	important	one:	Never	disable	landscape	mode	in	your	app!
Most	of	the	hardware	keyboards	are	meant	to	be	used	in	landscape	mode.	If
you	force	your	app	to	be	in	portrait	mode,	all	the	users	with	these	keyboards
are	going	to	be	annoyed	with	your	app.

The	second	implication	to	design	is	that	you	cannot	depend	on	your	app’s
user	interface	window	to	shrink	when	the	user	enters	input	mode,	because	if
they	are	using	a	hardware	keyboard,	it	won’t	take	any	space	on-screen.

Designing	for	D-Pads	and	Trackballs
Fewer	and	fewer	phones	seem	to	be	shipping	with	trackballs	or	D-pad
controls,	but	some	phones	still	do	and	some	large-volume	older	phones	are
still	in	heavy	use.

D-pads	(and	trackballs)	are	used	to	change	focus	between	user	interface
components.	Although	the	feature	is	not	critical	to	use,	it	sometimes	is
convenient	and	some	users	have	learned	to	depend	on	them.	You	should	aim
to	support	D-pad	navigation	in	your	app.

You	often	don’t	need	to	go	to	any	additional	effort	to	support	D-pads	in	your
apps.	The	Android	operating	system	is	pretty	good	at	figuring	out	which
component	should	be	the	next	one	to	receive	focus.

Tip:	D-pads	are	the	main	navigation	method	of	Android	TV	users.	If	you	want
your	app	to	be	capable	of	running	on	a	TV,	it	must	support	directional
navigation	as	its	main	navigation	method.

In	some	cases	the	default	logic	fails.	In	these	cases,	you	can	easily	override

the	default	functionality	by	manually	defining	which	user	interface
component	should	be	focused	next	in	each	direction.	You	do	this	simply	by
adding	the	nextFocusDown/Up/Left/Right	attribute	to	any	user	interface
component	definition.	In	the	following	example,	these	two	FrameLayouts	are
part	of	a	larger	grid.	Both	of	them	have	focus	order	definitions	to	ensure
correct	focus	order.

<FrameLayout

								android:id=”@+id/grid_1_selected”

								android:focusable=”true”

								android:nextFocusDown=”@+id/grid_5_selected”

								android:nextFocusRight=”@+id/grid_2_selected”

								android:clickable=”true”/>

	
<FrameLayout

								android:id=”@id/grid_2_selected”

								android:focusable=”true”

								android:nextFocusDown=”@+id/grid_6_selected”

								android:nextFocusLeft=”@id/grid_1_selected”

								android:nextFocusRight=”@+id/grid_3_selected”

								android:clickable=”true”/>

Designing	for	the	Stylus
A	stylus	is	a	pen	that’s	used	with	a	touch	screen	device.	Styli	were	popular
with	older	resistive	touch	screen	devices	due	to	their	pressure	points,	but	the
capacitive	touch	screen	revolution	has	made	them	all	but	disappear.	It	seems
more	recently	that	thy	might	be	making	a	comeback.	Samsung,	HTC,	and
Asus	have	been	incorporating	styli	into	their	phones	and	tablets,	and	many
third-party	manufacturers	sell	them	as	accessories	that	are	compatible	with	all
capacitive	devices.	Unlike	the	previous	generation	styli,	this	new	generation
is	based	on	capacitive	technology	and	act	more	as	secondary	input	devices.

A	stylus	enables	users	to	interact	with	the	device	much	more	precisely.
Accessories	like	the	stylus	will	enable	new	possibilities	to	app	developers.
Activities	that	previously	weren’t	feasible,	such	as	drawing,	become	possible.
Although	the	Android	operating	system	has	APIs	to	support	many	stylus
interactions,	the	manufacturers	have	released	their	own	extended	SDKs	to
add	to	the	functionality.

Tip:	Using	a	stylus	will	naturally	limit	the	devices	the	apps	can	run	on,	but
sometimes	it	might	be	a	compromise	worth	making.

Designing	for	Voice	control
Voice	control	is	widely	integrated	into	the	Android	operating	system.	Users
can	switch	to	voice	input	on	any	app	by	enabling	voice	input	from	the
Android	keyboard	(see	Figure	10-11).	Using	this	feature	on	devices	running
Android	versions	older	than	4.1	requires	a	fast	data	connection,	because	the
voice	analysis	is	done	on	Google’s	servers.	Starting	from	Android	4.1	voice
typing	is	available	also	offline.

In	addition	to	the	voice	typing,	users	can	control	their	phone	with	voice
commands.	After	opening	the	voice	command	prompt,	users	can	give
predefined	voice	commands	to	the	phone.	For	example,	the	command
“navigate	to	London”	will	open	a	navigation	app	and	set	the	destination	to
London	(see	Figure	10-12).

The	quality	of	voice	recognition	and	of	the	voice	commands	depends	heavily
on	the	Android	operating	system	version.	Later	versions	have	greatly
improved	the	voice	interface.	For	example,	on	an	Android	4.0	phone	users
can	see	continuous	feedback	of	the	text	they	are	speaking	near	real	time.	In
older	phones,	users	have	to	speak	a	full	sentence	and	then	wait	for	the	results
to	appear.

Figure	10-11:	Android	voice	typing	is	always	available	to	users	without
developers	having	to	do	anything.

Source:	Android

Figure	10-12:	You	can	direct	your	phone	to	complete	certain	tasks	simply	by
speaking	the	task	into	the	phone.

Source:	Android

Designing	for	External	Keyboards,	mice,	and
touchpads

Android	has	great	support	for	external	Bluetooth	and	USB	devices,	starting
with	version	3.0.	External	Bluetooth	touch	pads	like	the	Apple’s	Magic
Trackpad	are	fully	supported,	including	its	multi-touch	gestures.	When	the
operating	system	detects	multiple	touch	points,	it	displays	multiple	cursors	on
the	screen.	Figure	10-13	shows	an	example	of	five	cursors	on-screen	at	once.

Figure	10-13:	An	Android	tablet	controlled	by	an	external	touch	pad.	Five
cursors	are	shown	on-screen,	corresponding	to	a	five-finger	touch.

Source:	Android

Designing	for	Connected	smart	accessories
With	the	popularity	of	Android	devices	increasing,	the	number	of	connected
accessories	has	been	growing	fast.	They	range	from	big-name	manufacturers
like	Motorola	and	Sony	to	small	startups.	Many	of	these	smart	accessories	are
like	wristwatches	with	a	display.	They	usually	connect	to	an	Android	device
via	Bluetooth	and	allow	users	to	control	and	extend	the	device’s
functionality.	Most	common	features	are	controlling	music	playback,
showing	caller	IDs,	and	displaying	exercise-related	information.

Designing	for	Sensors
The	Android	operating	system	has	very	good	support	for	a	wide	range	of
sensors.	Sensors	can	be	very	different	in	nature	and	their	possible	uses	vary	a
lot.	Categories	of	supported	sensors	are	motion	sensors,	position	sensors,	and
environmental	sensors.

•	Motion	sensors	measure	device	movements	like	acceleration	and	rotation.
•	Environmental	sensors	measure	conditions	outside	the	device.	These
kinds	of	sensors	can	be,	for	example,	light	sensors	and	thermometers.

•	Position	sensors	measure	the	physical	location	of	the	device.	Sensors	in
this	category	can	be,	for	example,	magnetometers	and	orientation	sensors.

Designing	for	a	Second	screen
Sometimes	a	phone	or	tablet	controls	other	devices	or	extends	the
functionality	of	other	devices.	A	common	example	of	this	is	when	users	use
their	smartphones	or	tablets	together	with	a	connected	TV	device.	An
Android	device	is	a	natural	companion	device,	especially	for	a	Google	TV.
Scenarios	and	opportunities	for	apps	like	this	are	going	to	be	limitless	once
the	connected	TV	market	picks	up	the	speed.	You	can	already	find	many
great	remote	control	apps	like	the	Able	Remote	for	Google	TV,	shown	in
Figure	10-14.

Figure	10-14:	The	Able	Remote	is	a	smartphone	app	that	allows	users	to
control	their	Google	TV	device.

Source:	Able	Remote	app

Summary
The	diversity	of	Android	devices	manifests	itself	in	the	hundreds	of	different
control	mechanisms	in	both	hardware	and	software.	When	building	your	app,
you	cannot	rely	on	the	devices	you	have	to	be	the	norm.	Remember	that	some
devices	are	used	in	different	ways.

The	software	controls	on	Android	are	flexible	and	if	you	use	them	correctly,
they	can	be	very	helpful	to	your	users.	When	building	an	app,	think	about	the
ways	your	user	will	be	filling	in	forms	and	using	the	buttons.	Remember	to
design	natural	ways	for	data	types	and	keyboard	action	buttons	to	make	data
entry	as	effortless	as	possible.

Also	think	about	the	opportunities	that	the	large	accessory	ecosystem	brings.
Maybe	your	app	would	benefit	from	adding	better	stylus	support	or	a
connection	to	an	external	smartwatch?

With	the	diversity	and	growth	of	the	Android	ecosystem,	the	opportunity	for
designers	and	developers	to	create	something	novel	and	useful	is	growing	by
leaps	and	bounds.

	

Chapter	11:	Designing	Platform	User
Interface	Components

The	Android	platform	provides	a	large	variety	of	user	interface	widgets,
typography	options,	icons,	and	animations.	Writing	your	own	components	is
very	seldom	necessary.	The	platform	components	are	flexible	and	easily
customizable	by	changing	parameters.

This	chapter	introduces	the	bulk	of	the	default	components	for	building	Android
user	interfaces.	User	interface	layouts	are	covered	in	Chapter	13.

Using	User	interface	widgets
User	interface	widgets	form	the	core	of	the	Android	user	interface.	They	are
the	buttons,	text	fields,	and	images	that	your	users	interact	with.	User
interface	widgets	are	not	to	be	confused	with	app	widgets,	which	were
covered	in	Chapter	8.

The	following	sections	give	you	a	brief	overview	of	the	user	interface
widgets	that	are	available	out	of	the	box.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Text	widgets
Text	widgets	are	the	simplest	components	on	your	app’s	user	interface.	You
can	use	the	TextView	component	to	show	text	and	the	EditText	component
to	display	an	editable	field.	Figure	11-1	shows	examples	of	the	default
Android	text	components.

Figure	11-1:	Example	text	components.

Text	View
A	TextView	component	displays	texts	on-screen.	By	default,	a	TextView
component	does	not	register	taps	or	gain	focus,	but	you	can	override	both
settings	by	adding	corresponding	attributes	to	your	layout	definitions.

Changing	the	text	appearance	is	possible.	You	can	learn	more	about
customizing	the	text	appearance	in	the	typography	section	of	this	chapter.

Text	Field	(Edit	Text)
EditText	is	the	basic	text	field	input	component.	Users	can	use	it	to	type	in
text	or	numbers.	EditText	components	by	default	show	only	a	single	line,	but
you	can	make	it	appear	as	a	multi-line	text	field	by	adding	the	lines	attribute.
It	is	important	to	define	the	correct	input	type	for	every	EditText	component
in	order	to	make	it	easier	for	users	to	type	the	data.	Input	types	are	covered	in
Chapter	10.

Buttons

Buttons
Buttons	are	the	basic	action	components	of	any	user	interface.	Users	know
how	to	interact	with	buttons.	Android	buttons	have	all	the	states	and	visuals
to	represent	them	out	of	the	box.	The	default	button	visually	represents	both
focused	and	pressed	states.

For	any	button	you	can	define	drawables	to	any	direction	of	the	button	label.
(A	drawable	is	a	graphical	element	defined	in	XML	or	as	a	bitmap—more
about	drawables	in	Chapter	14.)	You	can,	for	example,	simply	add	icons	to
your	buttons	by	setting	the	drawableLeft	attribute	like	so:

android:drawableLeft=”@drawable/drawable_example”

	
See	Figure	11-2	for	examples	of	this	and	other	buttons.

Image	Buttons
The	image	button	is	an	extension	of	the	default	button.	It	allows	you	to	use	an
image	as	a	button.	You	can	even	combine	images	to	create	custom	buttons.

Toggle	Components
Toggle	components	like	checkboxes	and	radio	buttons	are	familiar
components	from	other	platforms.	Android	adds	a	few	new	components	to
that	list.	See	Figure	11-3	for	examples.

Figure	11-2:	Examples	of	Android	and	image	buttons.

Figure	11-3:	Examples	of	Android’s	toggle	components.

Toggle	Button
The	toggle	button	is	exactly	as	the	name	implies;	it’s	a	button	that	can	be	on
or	off.

Switch
A	switch	is	functionally	very	similar	to	the	toggle	button	but	differs	visually.
It	is	designed	to	fit	visually	with	lists	of	preferences	and	settings,	but	can	be
used	elsewhere.	The	switch	component	was	added	to	Android	in	version	4.0
so	it	cannot	be	used	on	devices	running	older	versions	of	the	operating
system.	If	you	plan	to	support	older	versions,	which	you	should	in	most
cases,	you	need	to	define	different	layout	files	for	older	versions.	A	toggle
button	or	a	checkbox	is	a	good	substitute	for	a	switch.

Checkbox
The	checkbox	is	this	same	familiar	component	that	users	have	seen	on	other

platforms.	It	functions	on	Android	as	you	would	expect.	The	label	of	the
checkbox	is	defined	in	the	same	component	definition	by	adding	the	text
attribute.	The	label	is	automatically	part	of	the	area	that	changes	the
checkbox’s	selected	state.

Radio	Button	and	Radio	Group
Radio	buttons	function	very	similarly	to	checkboxes.	You	can	group	radio
buttons	by	surrounding	them	with	a	RadioGroup	element	in	your	layout
definition.	Only	one	radio	button	in	a	group	can	be	selected	at	a	time.

Selection	components
If	you	have	a	list	of	options	that	the	users	must	select	from,	it	is	better	to
present	the	users	with	the	options	than	make	them	type	the	options	into	a	text
field.	Android	has	few	different	components	you	can	use	depending	on	your
needs.	See	Figure	11-4	for	some	examples.

Figure	11-4:	Examples	of	Android	selection	components.

Dropdown	Spinner

Dropdown	Spinner
A	dropdown	component	is	called	a	spinner	on	the	Android	platform.	It	has
two	operating	modes.	There	is	a	dropdown	mode	where	the	options	appear
below	the	menu	(or	above	if	there’s	no	room	below),	and	there	is	pop-up
mode	where	the	options	appear	in	a	pop-up	window	for	the	users	to	select
from.

Number	Picker
A	number	picker	can	be	used	to	select	a	number	from	a	predefined	range.
This	component	was	added	in	Android	version	3.0	and	is	not	available	in	the
older	versions.

A	number	picker	component	supports	multiple	gestures.	Users	can	drag	the
number	up	and	down	and	even	fling	to	rapidly	move	between	a	large
selection	of	choices	(fling	can	be	disabled	using	an	attribute).	Another	way	to
use	this	component	is	to	tap	the	small	up	and	down	arrows	to	move	the
selection	one	by	one.

Note	that	the	number	picker	is	implemented	as	a	scrolling	container.	It	cannot
be	placed	inside	another	scrollable	container.

Date	and	time	widgets
Android	offers	you	a	set	of	components	that	allow	you	to	easily	handle	dates
and	times.

Calendar	View
The	calendar	view	shows	the	traditional	calendar	grid	representation.	Users
can	scroll	through	months	by	swiping	up	or	down.	Figure	11-5	displays	the
default	calendar	view.	Calendar	view	is	available	only	on	Android	3.0	or
newer.

Date	Picker
The	date	picker	presents	users	with	a	calendar	view	and	controls	to	pick	a
date.	The	date	selector	and	calendar	view	controls	are	both	interactive	and	the
component	is	automatically	kept	in	sync.	The	date	selector	is	based	on
number	pickers.	Figure	11-6	shows	an	example	of	how	the	date	picker	looks
out	of	the	box.

out	of	the	box.

Time	Picker
The	time	picker	is	a	combination	of	number	pickers	that	are	formatted	in	a
time	format.	Figure	11-6	shows	the	time	picker.

Figure	11-5:	Android	calendar	view.

Figure	11-6:	Android	date	picker	and	time	picker.

Progress	bars
Progress	bars	are	used	to	indicate	ongoing	processes.	The	Android	framework
provides	components	with	multiple	styles	to	do	this.

Progress	bars	have	also	been	adapted	to	functionally	that’s	very	similar—
although	from	the	user’s	point	of	view	they	might	seem	like	very	different
tasks.	Figure	11-7	shows	examples	of	different	progress	bars	and	progress	bar
adaptations.

Figure	11-7:	Progress	bar,	seek	bar,	and	rating	bar.

Progress	Bar
There	are	two	main	styles	for	displaying	running	background	processes	using
the	default	Android	progress	bar.	You	can	use	the	horizontal	bar,	which	is
often	used	to	display	running	tasks	that	are	finite	and	have	an	estimated	task
duration.	The	second	style	is	the	round	spinning	animation.	It	usually
indicates	that,	while	the	background	task	is	running,	it	is	not	possible	to	know
when	it	is	going	to	be	finished.

To	change	the	progress	bar	appearance,	you	can	use	styles	provided	by	the
platform.	For	example,	setting	the	progress	bar	element	attribute	as	follows
shows	the	progress	bar	as	a	horizontal	bar	instead	of	using	the	spinning
animation:

style=”@android:style/Widget.ProgressBar.Horizontal”

If	you	chose	the	horizontal	progress	bar	presentation	you	can	an	endless
animation	or	use	it	as	a	finite	progress	indicator.	Setting	the	attribute

android:indeterminate=”true”	will	cause	the	progress	bar	to	animate
endlessly.	Setting	it	to	false	means	you	must	bind	the	progress	bar	to	the
ongoing	process	in	your	code.

Seek	Bar
The	seek	bar	is	an	adaptation	of	the	progress	bar	that	lets	the	users	select	the
value	by	dragging	the	thumb	icon.	The	seek	bar	is	used	in	the	standard	media
controller	to	display	the	video	position.

Rating	Bar
A	rating	bar	has	a	very	specific	purpose.	The	users	can	select	how	many	stars
are	activated	by	dragging	or	tapping	the	stars.

Media	widgets
Android	allows	you	to	build	media-rich	apps	easily.	There	are	many
components	that	help	you	on	the	way	and	provide	you	with	rich	functionality
out	of	the	box.

Image	View
Image	view	is	a	component	for	displaying	images	on-screen.	There	are	few
tricks	for	getting	your	images	right	when	using	the	ImageView	component.

If	you	are	using	graphics	you	include	in	your	app	remember	to	provide
images	for	each	supported	screen	density.	Android’s	automatic	scaling
algorithm	sometimes	does	good	work	scaling	images	but	most	graphics	look
much	better	when	you	scale	them	manually.	Screen	density	is	covered	in
Chapter	12.

When	you	use	an	ImageView	to	display	images	that	you	load	dynamically	it	is
not	always	possible	to	provide	different	assets	for	different	densities.	It	is	also
sometimes	difficult	to	know	the	image	size	beforehand.	To	maintain	control
of	your	layout,	you	can	make	your	ImageView	a	fixed	size	and	tell	the
operating	system	how	scaling	should	be	handled.

To	define	how	the	image	should	be	handled	you	can	set	the	scaleType
attribute	of	the	ImageView.	Table	11-1	shows	the	different	scaleType	options.

Table	11-1	ImageView	ScaleType	Options	as	Defined	in	the
Android	Documentation

ScaleType
Value Scaling	Method

CENTER Center	the	image	in	the	view,	but	perform	no	scaling.

CENTER_CROP
Scale	the	image	uniformly	(maintain	the	image’s	aspect	ratio)	so	that	both	dimensions	(width	and	height)
of	the	image	will	be	equal	to	or	larger	than	the	corresponding	dimension	of	the	view	(minus	padding).

CENTER_INSIDE
Scale	the	image	uniformly	(maintain	the	image’s	aspect	ratio)	so	that	both	dimensions	(width	and	height)
of	the	image	will	be	equal	to	or	less	than	the	corresponding	dimension	of	the	view	(minus	padding).

FIT_CENTER
Compute	a	scale	that	will	maintain	the	original	aspect	ratio,	but	will	also	ensure	that	original	fits	entirely
inside	target.	At	least	one	axis	(X	or	Y)	will	fit	exactly.	The	result	is	centered	inside	target.

FIT_END

Compute	a	scale	that	will	maintain	the	original	aspect	ratio,	but	will	also	ensure	that	original	fits	entirely
inside	target.	At	least	one	axis	(X	or	Y)	will	fit	exactly.	END	aligns	the	result	to	the	right	and	bottom	edges
of	target.

FIT_START

Compute	a	scale	that	will	maintain	the	original	aspect	ratio,	but	will	also	ensure	that	original	fits	entirely
inside	target.	At	least	one	axis	(X	or	Y)	will	fit	exactly.	START	aligns	the	result	to	the	left	and	top	edges	of
target.

FIT_XY
Scale	in	X	and	Y	independently,	so	that	original	matches	target	exactly.	This	may	change	the	aspect	ratio
of	the	original.

(Source:
http://developer.android.com/reference/android/widgit/ImageView.ScaleType.html

Note	that	the	image	view	can	also	have	a	background	image.	This	allows	you
to	create,	for	example,	shadow	effects	on	your	images.

Zoom	Controls
The	zoom	controls	are	two	buttons	(zoom	in	and	zoom	out).	They	can	be	used
to	add	the	standard	controls	for	zooming	in	any	app.	It	is	always	good	to
remember	that	not	all	devices	support	multi-touch	gestures	and	pinch-to-
zoom	is	not	always	available.	Figure	11-8	shows	an	example	of	how	zoom
controls	look	in	an	app.

You	need	to	manually	connect	the	zoom	controls	into	the	zooming	logic	in
your	code.

Video	View
VideoView	makes	it	very	easy	to	play	video	content	in	your	app.	You	can	use
VideoView	to	play	local	videos	and	stream	remote	content.	To	learn	how	to
use	and	set	up	the	video	view	see	the	Android	documentation	at

http://developer.android.com/reference/android/widgit/ImageView.ScaleType.html

http://developer.android.com/reference/android/widget/VideoView.html

Figure	11-8:	This	app	uses	zoom	controls	to	let	users	zoom	in	and	out	without
using	pinch-to-zoom.

Media	Controller
In	combination	with	the	VideoView	you	can	use	media	controller	to	add
standard	video	controls	to	the	user	interface.	The	media	controller	provides
Play/Pause,	Fast	Forward,	and	Rewind	buttons	as	well	as	a	seekbar	for
jumping	to	any	part	of	the	video.	It	also	shows	the	elapsed	time	and	total	time
of	the	video	being	played	(see	Figure	11-9).

http://developer.android.com/reference/android/widget/VideoView.html

Figure	11-9:	An	example	of	a	video	view	with	the	standard	media	controller.

Source:	Android

Sliding	drawer
The	sliding	drawer	component	allows	you	to	create	a	drawer	that	the	user	can
make	visible	by	dragging	from	a	handle.	This	component	can	be	very	useful
for	secondary	screen	actions.

There	is	no	default	drawer	handle	graphics,	so	you	must	define	it	manually.
You	can	use	any	view	as	the	handle,	for	example	ImageView,	which	makes
the	sliding	drawer	visually	very	flexible.

The	sliding	drawer	component	should	be	placed	as	an	overlay	to	the	layout
you	use.	The	best	way	to	achieve	it	is	to	use	it	inside	a	FrameLayout	on	the
same	level	as	its	sibling	view.	That	way	you	will	achieve	the	correct	drawer
effect,	and	it	will	slide	on	top	of	the	other	components	at	the	view.	In	Figures
11-10	(sliding	drawer	closed)	and	11-11	(sliding	drawer	opened),	you	can	see
an	example	of	this	component	in	practice.

Figure	11-10:	Sliding	drawer	closed.

Figure	11-11:	Sliding	drawer	open.

Lists
Lists	are	one	of	the	most	useful	components	of	the	Android	platforms.	They
are	very	flexible	and	provide	tons	of	functionality	out	of	the	box.	As	a
tradeoff	they	are	fairly	complicated	to	program	correctly.	List	is	what	is
called	an	adapter	view.	It	means	that	you	must	provide	a	special	class	that
handles	assigning	list	items	to	the	list.

List	Performance
Lists	can	be	critical	components	when	it	comes	to	performance.	Users	can
scroll	through	a	large	number	of	list	items	in	a	short	time.	You	need	to	be
considerate	of	the	complexity	of	each	list	item	if	your	lists	are	long.	Although
Android	can	handle	reasonably	complex	lists,	you	can	run	into	the	risk	of
your	application’s	user	interface	not	being	fluent	on	some	older	generation
devices.

Tip:	Building	the	list	adapters	is	outside	of	this	book’s	scope.	There	are	good
resources	for	getting	a	deeper	understanding	of	how	to	build	memory-
effective	lists—check	out	Professional	Android	Application	Development	by
Reto	Meier	for	one.	Probably	the	best	online	reference	is	a	set	of	tutorials
written	by	Mark	Allison	on	his	website	at
http://blog.stylingandroid.com/archives/605.

List	Items
You	have	free	hands	in	defining	the	layouts	and	user	interface	widgets	you
use	to	build	the	list	items.	A	list	item	is	simply	a	layout.	You	can	use	any
non-scrolling	components	in	it.	You	should	keep	in	mind	the	way	that	users
use	lists.	If	you	plan	to	add	any	clickable	components	inside	your	list	items
you	need	to	make	sure	that	the	components	don’t	conflict	with	the	row
selection.

It	is	very	common	for	list	items	to	have	a	checkbox	on	the	left	side	and	often
a	secondary	selection	component	on	the	right	side	while	still	allowing	users
easily	select	the	items.	When	adding	clickable	items	to	a	list	item	only	add
them	to	the	far	left	or	far	right.	You	also	should	extend	the	item	hit	area,
making	it	larger	than	it	is	by	default.	This	is	due	to	the	fact	that	the	list	item	is
clickable.	There	are	no	safety	margins	between	the	additional	clickable
components	on	your	list	item	and	the	list	item	itself.	Figure	11-12	shows	a
diagram	explaining	how	list	items	should	be	laid	out.

Figure	11-12:	List	items	should	have	a	maximum	of	two	clickable	components.
These	components	should	be	placed	only	at	the	ends	of	the	list	item	and	the	hit
areas	should	be	extended	to	prevent	users	from	making	accidental	list	row
selections.

Gallery	List
A	gallery	is	a	list	that	is	scrolled	horizontally	while	the	selected	item	stays	in
the	middle	position.	A	gallery	component	is	implemented	the	same	way	as	a

http://blog.stylingandroid.com/archives/605

the	middle	position.	A	gallery	component	is	implemented	the	same	way	as	a
list.	It	is	also	an	adapter	view	and	you	can	define	the	items	in	it	freely.	The
name	“gallery”	is,	therefore,	a	bit	misleading.	You	can	use	the	gallery	to
create	many	styles	of	horizontally	scrolling	lists.

The	gallery	component	has	some	default	behaviors	that	are	not	present	in	the
vertical	list	component.	The	selected	item	stays	horizontally	centered	and
there	is	a	snapping	effect	when	users	drag	the	selection	and	let	go.

Customizing	user	interface	widgets
The	Android	default	components	offer	a	lot	of	possibilities	to	customize	their
look	and	feel.	You	can	easily	modify	the	colors	directly	or	by	using	the
selector	mechanism.	You	can	also	extend	these	components	by	subclassing
them	in	code;	this	is	a	way	to	add	completely	new	functionality.

Colors
Android	has	multiple	ways	to	define	colors.	You	can	set	colors	in	your	layout
files	as	well	as	in	code.	In	the	layout	file	you	can	set	any	color	value	by
defining	a	hexadecimal	color	code.	The	color	code	can	also	contain	alpha
(transparency)	value,	but	it	doesn’t	have	to.

The	following	syntaxes	are	allowed	in	the	layout	definitions.	A	=	alpha,	R	=
red,	G	=	green,	and	B	=	blue.

•	#AARRGGBB
•	#RRGGBB

•	ARGB
•	#RGB

To	define	colors	that	are	easier	to	maintain	and	reuse,	you	can	define	colors
as	resources.	Add	a	file,	for	example	colors.xml,	in	your	res/values/
project	folder.	In	that	file	you	can	add	color	resources	like	in	the	following
example	code.

<?xml	version=”1.0”	encoding=”utf-8”?>

<resources>

<color	name=”background_color”>#FFFFF0</color>

</resources>

By	doing	this	you	can	refer	to	these	colors	whenever	you	need	to	define	a
color	in	your	layout	or	code.	Using	color	files	has	two	great	benefits:

•	You	can	easily	change	your	colors	uniformly	by	changing	the	code	in	one
place	only.
•	You	can	also	easily	change	the	whole	theme	of	your	app	if	you’re
creating	multiple	versions	by	simply	replacing	the	color	file	in	a	build
script	or	overriding	it	in	a	project	where	you	use	the	original	project	as	a
library	project.

Selectors
A	selector	is	a	great	concept	that	can	help	you	with	any	components	that	have
different	states,	such	as	a	button’s	down	and	focused	states.

A	selector	is	a	XML	file	added	in	the	res/drawable	project	folder.	It	defines
a	set	of	items	that	have	state	parameters	and	tells	the	operating	system	which
of	the	items	should	be	used	and	when.	You	can	put	anything	inside	the	item
element	that	you	can	use	to	draw	from	XML.	I’ll	talk	about	drawing	from
XML	more	in	Chapter	14.

The	following	example	is	probably	the	simplest	selector	possible.	If	you	put
this	example	code	into	your	project’s	res/drawable/example_selector.xml
file,	you	can	use	it	as	a	background	for	almost	any	component	by	setting	the
background	attribute	to	point	to	it	like	this
android:background=”@drawable/example_selector”.

If	the	component	you’re	using	with	it	has	a	pressed	state	(such	as	a	button),
the	operating	system	will	take	care	of	changing	the	button	color	whenever	the
user	presses	and	releases	the	button.

<selector	xmlns:android=”http://schemas.android.com/apk/res/android”>

				<item	android:state_pressed=”true”>

								<color	android:color=”#FFFF0000”	/>

				</item>

				<item>

								<color	android:color=”#55FF0000”	/>

				</item>

</selector>

If	you	want	to	add	custom	visuals	to	any	component	that	has	different	visual
states,	you	should	always	use	selectors.	The	state	parameters	can	be
combined	to	create	complex	conditional	statements.	You	can	for	example

combined	to	create	complex	conditional	statements.	You	can	for	example
specify	a	background	when	a	button	is	focused	and	pressed.

The	available	state	parameters	are	as	follows:

•	state_pressed	—True	if	this	item	should	be	used	when	the	object	is
pressed

•	state_focused—True	if	this	item	should	be	used	when	the	object	is
focused
•	state_selected—True	if	this	item	should	be	used	when	the	object	is
selected

•	state_checkable—True	if	this	item	should	be	used	when	the	object	is
checkable
•	state_checked—True	if	this	item	should	be	used	when	the	object	is
checked
•	state_enabled—True	if	this	item	should	be	used	when	the	object	is
enabled

•	state_window_focused—True	if	this	item	should	be	used	when	the
application	window	has	focus

See	the	Android	documentation	for	the	full	specification	at
http://developer.android.com/guide/topics/resources/color-list-

resource.html.

Tip:	These	states	can	be	complex,	so	it’s	wise	to	create	them	so	that	multiple
states	are	applicable	at	once.	The	operating	system	uses	a	very	simple
resolution	method.	It	always	picks	the	first	state	that	matches	the	current
state.	For	this	reason,	you	can	always	add	a	last	item	without	any	state
attributes	as	the	default.

Selectors	are	particularly	powerful	tools	in	combination	with	9-patch	images.
I’ll	introduce	the	9-patch	images	in	Chapter	14.

Adjusting	the	Typography
Using	text	wisely	is	important	to	draw	attention	to	the	right	places	and	to	help
you	users	get	the	information	they	need.	Android	has	very	powerful	and
flexible	tools	for	altering	the	look	of	your	text.

http://developer.android.com/guide/topics/resources/color-list-resource.html

flexible	tools	for	altering	the	look	of	your	text.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Fonts
Android	default	font	is	something	that	at	least	for	now	any	device
manufacturers	have	not	replaced	in	their	devices.	Android	devices	with
version	4.0	or	newer	have	the	newer	font,	called	Roboto,	as	their	default	font,
and	older	devices	still	use	the	older	Droid	font.

Roboto
The	Roboto	font	was	redesigned	to	make	fonts	look	good	on	the	new	high-
resolution	screens	that	are	becoming	more	common.	The	Roboto	font	is	the
default	font	in	Android	4.0	and	newer	operating	system	versions.	If	you	don’t
change	the	font,	your	app	will	use	this	font.

You	can	download	the	font	as	well	as	a	specimen	book	from
http://developer.android.com/design/style/typography.html.

Droid
Droid	was	the	default	font	for	devices	all	the	way	up	to	Android	3.2.

Adding	Your	Own	Fonts
You	don’t	have	to	stick	with	the	default	fonts.	You	can	also	include	fonts
with	your	app	and	use	them.	To	install	any	fonts	in	your	app,	simply	copy	the
font	file	to	your	app’s	assets/fonts	folder.	You	can	then	create	a	new
typeface	and	set	it	to	any	text	component.	See	the	following	example	code	for
how	to	do	that.

Creating	Your	Own	Class
If	everything	else	fails	you	can	always	override	any	functionality	of	any	component	by	creating	your
own	class.	You	should	pick	the	component	that	is	closest	to	what	you	need,	and	create	a	subclass	that
overrides	only	the	necessary	methods.	This	way	you	keep	most	of	the	tested	and	designed	code	of	the
framework	and	add	your	own	functionality.	Only	in	very	extreme	cases	should	you	create	subclasses	to

http://developer.android.com/design/style/typography.html

the	View	class.

Typeface	tf	=	Typeface.createFromAsset(getAssets(),”fonts/Gamaliel.otf”);

TextView	customFontTextView	=	(TextView)

findViewById(R.id.CustomFontExampleText);

customFontTextView.setTypeface(tf);

Most	custom	fonts	work	in	Android	apps	without	any	problems.	Figure	11-13
shows	some	examples	of	a	few	fonts.

Typeface
You	can	change	your	font’s	typeface	for	any	text	component	simply	by
setting	the	android:typeface	attribute	of	the	component.	You	can	select
sans,	serif,	and	monospace.	Figure	11-14	shows	some	examples	of	the
different	typefaces	with	the	Roboto	font.

Figure	11-13:	Example	fonts	rendered	in	text	components.

Figure	11-14:	Example	typefaces	with	Roboto	font.

Text	style
Text	style	can	be	used	to	highlight	text	components.	You	can	set	text	styles	to
bold,	italic,	normal,	or	bold	and	italic.	Figure	11-15	shows	some	different	text
styles.	Text	styles	can	be	changed	by	setting	the	textStyle	attribute	to	the
text	component.	For	example,	android:textStyle=”bold”.

Figure	11-15:	Examples	of	the	available	text	styles.

Text	size
Text	size	can	be	changed	by	setting	the	textSize	attribute.	To	make	sure	that
your	app	scales	correctly	and	fits	with	the	rest	of	the	platform,	make	sure	that
you	use	scalability	features	and	default	sizes	correctly	when	possible.

Text	Size	and	Scalability
Normally	text	sizes	are	defined	in	pixel	size.	As	with	everything	else	size-
related	on	Android	you	must	take	screen	densities	into	account.	That	is	why
text	size	should	always	be	defined	in	scale-independent	pixels	(sp).	One
scale-independent	pixel	corresponds	to	one	pixel	on	a	160dpi	screen.	Using
scale-independent	pixels	ensures	that	when	your	user	interface	is	scaled	to
other	screen	densities,	your	text	size	stays	in	correct	proportions.

Default	Text	Sizes
You	can	use	any	size	you	want	in	your	app.	There	are	few	preset	values	that
are	used	elsewhere	in	the	operating	system.	It’s	best	to	use	those	values	if	you

are	used	elsewhere	in	the	operating	system.	It’s	best	to	use	those	values	if	you
don’t	have	a	good	reason	not	to.	It	will	make	your	app	look	and	feel	more	a
part	of	the	platform.	Table	11-2	lists	the	recommended	default	text	sizes	from
the	Android	design	guidelines.

Table	11-2	Recommended	Text	Sizes
Size	Label Font	Size	in	Scale-Independent	Pixels	(sp)

Micro 12sp

Small 14sp

Medium 16sp

Large 18sp

Accessibility
When	designing	the	text	portions	of	your	app	you	should	also	keep	in	mind
the	accessibility	factor.	Some	people	prefer	or	need	to	have	larger	text	to	see
the	text	properly.	In	Android	settings	users	can	choose	to	have	larger	text.	If
you	have	defined	your	app’s	text	sizes	in	scale-independent	pixels,	that
setting	will	automatically	scale	all	your	app’s	fonts	to	a	larger	size.	You	can
see	how	this	shows	in	practice	in	Figures	11-16	and	11-17.	Both	figures	show
the	same	activity	and	the	same	layout.	In	Figure	11-16	the	accessibility
setting	is	off	and	in	Figure	11-17	the	accessibility	large	font	setting	is
enabled.

Text	color	and	shadow
Naturally,	you	can	also	change	the	text	colors.	As	with	other	color
definitions,	text	color	can	also	be	set	to	translucent	by	changing	the	color
alpha	channel.

Figure	11-16:	Default	font	sizes	with	normal	settings.

Figure	11-17:	Default	font	sizes	with	large	fonts	setting	enabled.

The	operating	system	also	defines	a	few	default	colors	that	are	used
throughout	the	default	apps.	These	colors	can	be	a	good	starting	point	for
your	design	unless	you	can	spend	time	to	define	your	own	colors.	The	default
colors	are	defined	for	primary	text	color	and	secondary	text	color	for	both
dark	and	light	theme.	To	set	the	default	colors	of	your	text,	refer	to	the
Android	attributes	by	setting	your	text	color	to	for	example
@android:color/primary_text_light.

Tip:	You	can	also	set	a	shadow	to	your	text.	Avoid	overusing	this	feature,
though.	Adding	shadows	can	make	your	user	interface	look	corny.	Android
user	interfaces	are	generally	flat	in	style,	and	shadows	don’t	fit	the	picture.

See	Figure	11-18	for	examples	of	different	text	color	settings,	including
examples	of	the	default	colors	and	shadow.

Figure	11-18:	Example	color	settings,	including	a	shadow	setting.

Formatting	from	HTML
Sometimes	you	want	to	emphasize	only	a	few	words	inside	one	text
component	or	add	other	more	complex	formatting	that	can	be	applied	only	to
parts	of	the	content	instead	of	all	the	text	in	one	text	field.	In	cases	like	this
you	can	use	HTML	styling	to	get	the	effect	you	want.	It	is	possible	to	load
HTML	markup	inside	a	text	component;	the	operating	system	will	format	it
correctly.	It	is	worth	noting	that	you	cannot	use	everything	that	is	defined	in
the	HTML	specification	but	the	supported	subset	is	often	enough.	Note	that
you	can	also	make	links	in	your	text	component	clickable	and	make	them
open	in	a	browser.

To	load	HTML	content	into	a	text	component,	you	need	to	invoke	HTML
helper	in	code.	See	the	following	code	example	for	how	to	do	that.

TextView	textView	=	(TextView)	findViewById(R.id.text_from_html);

textView.setText(Html.fromHtml

		(“Example	HTML	text	with	a	link”));

Creating	app-wide	text	styles
Setting	text	styles	separately	to	each	text	component	doesn’t	make	sense	in
the	long	run.	Fortunately,	Android	offers	you	a	way	to	define	styles	that	you
can	then	assign	to	any	component.	The	benefit	of	doing	this	is	that	your	text
styles	are	unified	across	the	whole	application.	You	can	also	easily	change
them	later	and	can	benefit	from	the	Android’s	runtime	asset	selection
mechanism	by	placing	your	style	files	into	language/screen	size/screen
density	specific	folder.

To	define	your	own	style,	you	need	to	add	a	XML	file	to	your	app	project’s
res/values/	folder.	In	that	file	you	can	define	style	elements	that	you	can
then	refer	to	with	the	name	you	define.	In	the	style	element’s	child	elements
you	can	define	any	of	the	text	component’s	attributes.	These	will	be	applied
to	each	element	you	add	this	style.

<style	name=”ExampleStyleText”	parent=”@android:style/TextAppearance.Medium”>

		<item	name=”android:textSize”>20sp</item>

		<item	name=”android:textStyle”>bold</item>

		<item	name=”android:textColor”>#CC0000FF</item>

</style>

To	add	this	style	to	a	text	component	you	simply	refer	to	it	in	the	style
attribute	like	this:

style=”@style/ExampleStyleText”

Tip:	Note	that	when	defining	styles	you	should	define	a	parent	from	the	styles
provided	by	the	platform.	That	way	you	ensure	that	all	the	attributes	you
don’t	define	are	correct	and	consistent	with	rest	of	the	content.

Using	Icons
Icons	are	abstract	images	that	represent	functions,	display	status,	and	guide
users.	Icons	can	be	used	on	many	user	interface	components	and	they	can
often	replace	text	and	save	screen	real	estate.

Getting	icons	right	requires	careful	planning	and	design.	An	icon	must	be
representative	and	easily	understood.	Icons	whose	meaning	is	not
immediately	clear	to	users	are	going	to	make	the	app	user	interface	difficult
to	use.	Users	should	be	able	to	just	glance	at	the	icon	and	understand	the
meaning	of	it.	On	touch	screen	devices,	users	cannot	hover	the	cursor	over	an

meaning	of	it.	On	touch	screen	devices,	users	cannot	hover	the	cursor	over	an
icon	to	invoke	a	tooltip	that	defines	it	like	they	can	on	desktop	environments.

Each	platform	also	has	established	icons	for	many	actions.	Android	is	no
exception.	Study	carefully	how	other	apps	use	icons,	and	avoid	bringing	icons
over	from	other	platforms.	Always	follow	the	platform	icon	guidelines.

Tip:	Special	attention	must	be	paid	to	icons	that	perform	actions	that	cannot
be	undone,	such	as	permanent	deletion	or	send	actions.	Make	sure	that	your
users	won’t	confuse	these	icons	with	other	functionality.

Dealing	with	screen	densities
Icons	are	extremely	vulnerable	to	automatic	scaling	algorithms.	Many	icons
are	very	small,	and	even	slight	automated	scaling	is	likely	to	distort	them	and
make	them	look	bad.	The	Android	framework	allows	you	to	draw	icons
separately	for	each	available	screen	density	to	prevent	automated	scaling.
You	should	always	provide	icons	for	each	supported	screen	density	and	not
rely	on	automated	scaling.

More	about	screen	densities	and	how	to	actually	provide	assets	for	different
densities	in	Chapter	12.

Icon	types
Different	icons	have	different	roles	and	should	be	treated	differently.	It	is
important	that	icons	that	belong	to	same	group	have	the	same	look	and	feel.
They	must	look	like	they	belong	together.	This	is	why	Google	has	provided
exact	guidelines	for	each	of	these	icon	groups.

A	free	online	tool,	Android	Asset	Studio,	can	be	used	to	generate	many	of	the
icons	from	text	and	clipart.	Although	not	all	of	the	generated	icons	are	good
enough	for	production,	this	tool	is	a	great	way	to	get	placeholder	graphics	to
your	app.	The	tool	can	be	found	at	http://android-ui-
utils.googlecode.com/hg/asset-studio/dist/index.html.

Launcher	Icons
The	launcher	icon	is	the	only	icon	that	is	visible	to	users	outside	your	app.	It
is	also	used	in	multiple	places	(in	launcher	and	in	multi-tasking	menu).
Following	launcher	icon	guidelines	is	doubly	important.	You	don’t	want	your
app	to	stand	out	in	a	bad	way.

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html

app	to	stand	out	in	a	bad	way.

It	is	also	good	to	remember	that	for	many	users	your	launcher	icon	is	one	of
the	very	first	contact	places	to	your	app.	A	high-quality	launcher	icon	helps
users	get	a	better	first	impression	of	your	app.

The	design	of	the	launcher	icon	is	difficult	also	in	the	sense	that	you	have	no
control	of	the	background	in	which	the	icon	is	going	to	be	displayed.	Users
might	be	using	anything	as	their	home	screen	background.	You	must	make
sure	that	your	icon	will	look	good	on	any	background.	Using	one-color	icons
is	generally	a	bad	idea	for	this	reason.	What	if	the	user	happens	to	have
exactly	that	color	home	screen?

Here	are	few	tips	for	designing	good	launcher	icons:

•	Not	all	launcher	icons	are	square.	Use	transparency	correctly	to	create	a
unique	shape.
•	The	icon	should	reflect	your	brand.

•	Avoid	having	text	on	your	icon.	Text	doesn’t	scale	well,	and	your	app’s
name	is	always	visible	next	to	your	icon	anyway.
•	Use	3D	effects	and	gradients	carefully.	Android	style	is	often	flat.
•	Too	many	small	details	will	make	the	icon	look	blurry.

•	The	icon	must	work	on	all	backgrounds.
•	Use	launcher	lighting:	top-lit.

•	Don’t	make	your	icon	too	heavy	or	too	light.	Try	to	match	the	average
weight	of	other	icons.
•	Provide	an	icon	for	all	screen	densities	that	your	app	supports.

Study	the	icons	used	by	other	apps.	In	Figure	11-19	you	can	see	a	selection	of
Android	app	launcher	icons	for	Android	default	apps	and	apps	by	Google.

Figure	11-19:	A	selection	of	Android	app	launcher	icons	for	Android	default
apps	and	apps	by	Google.

Source:	Google	Inc.

Menu	Icons
Android	menu	is	a	deprecated	concept	and	should	be	avoided.	The	menu	has
been	replaced	by	Action	Bar	overflow	menu	(I	talk	about	Action	Bar	in
Chapter	18).

If	you	still	decide	to	use	the	menu,	following	the	guidelines	is	very	important.
It	is	very	likely	that	your	icons	will	be	displayed	next	to	icons	that	are
provided	by	the	platform.	Having	icons	with	different	styles	would	be	a
disaster.

For	more	about	menu	icon	design	and	strict	guidelines,	see	the	Android
documentation	at
http://developer.android.com/guide/practices/ui_guidelines/icon_design_menu.html

http://developer.android.com/guide/practices/ui_guidelines/icon_design_menu.html

Action	Bar	Icons
Action	Bar	is	a	user	interface	pattern	that	has	been	around	in	Android	for	a
while,	but	was	added	as	part	of	the	core	platform	in	Android	3.0	Honeycomb.
I	talk	more	about	Action	Bar	in	Chapter	18.

Icons	on	the	Action	Bar	represent	the	most	important	function	on	any	given
screen.	Although	it	is	possible	to	include	text	with	the	action,	it	is	very	rarely
used	as	it	takes	too	much	room.	The	Action	Bar	icons	must	be	clear	to	the
users	so	they	have	the	confidence	to	use	them	as	intended.

Action	Bar	icons	are	grayscale,	flat,	and	appear	face	on.	The	icons	must	not
have	a	background	and	use	transparent	background	instead.	To	ensure
consistency	between	apps,	Google	has	specified	the	exact	palette	for	Action
Bar	icons.	Depending	on	the	theme	you	are	using	as	the	basis	of	your	app
theming	(Holo	dark	or	Holo	light),	you	should	make	sure	that	your	Action
Bar	icons	follow	the	guidelines.

For	Holo	dark	theme	the	Action	Bar	icons	should	use	fill	color	#ffffff,	80%
opacity.	For	the	Holo	light	theme,	use	fill	color	#333333,	60%	opacity.

Status	Bar	Icons
Status	bar	icons	are	used	to	represent	events	that	the	user	is	being	notified
about.	Although	the	status	bar	notification	itself	can	contain	text,	users	often
only	see	the	icon.	The	icon	must	be	descriptive	and	users	must	be	able	to
recognize	its	meaning.

It	is	also	important	that	users	understand	which	app	is	triggering	the
notification,	as	notifications	from	all	apps	are	shown	exactly	the	same	way	in
the	status	bar.	If	your	app	has	only	one	event	that	it	uses	status	bar
notifications	for,	the	best	icon	to	use	is	often	an	abstract	version	of	your	app
icon.

In	short,	status	bar	notification	icons	are	grayscale	icons.	The	size	of	the	icons
is	relatively	small,	so	the	simpler	the	better.	Using	text	in	the	icons	usually
doesn’t	work.

Status	bar	notification	icon	guidelines	are	very	different	on	different	Android
versions.	Older	than	2.2	Android	versions	require	icons	to	have	a
background,	whereas	2.3	and	newer	don’t.	Android	3.0	versions	added

background,	whereas	2.3	and	newer	don’t.	Android	3.0	versions	added
secondary	icons	to	the	notifications.	Supporting	all	Android	versions	is	going
to	take	a	lot	of	work.	You	need	to	provide	multiple	versions	of	your
notification	icons	that	match	each	version	of	the	guidelines	and	multiple
screen	density	versions	of	each.

See	the	full	status	bar	icon	guidelines	online,	including	color	palettes	and	size
requirements,	at
http://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html

Tab	Icons
On	a	tabbed	interface,	the	text	on	the	tabs	is	sometimes	replaced	by	icons.
Tab	icons	are	also	grayscale	images	with	transparent	backgrounds.	Tab	icons
are	a	bit	larger	than	Action	Bar	icons	or	status	bar	icons.

Tab	icons	aren’t	generally	as	critical	as	Action	Bar	icons.	If	the	user	taps	a
wrong	icon	(tab),	it’s	easy	to	simply	press	another	one.	Changing	tabs	never
causes	irreversible	damage.	Users	can	therefore	easily	determine	what	an	icon
means	by	simply	tapping	it	without	risk.

Tab	icon	guidelines	were	changed	after	Android	1.6.	Market	share	of	1.6	and
older	Android	versions	is	now	so	small	that	they	can	safely	be	ignored.	You
can	find	the	full	guidelines	at
http://developer.android.com/guide/practices/ui_guidelines/icon_design_tab.html

Dialog	Icons
Dialog	boxes	should	generally	be	avoided,	as	discussed	in	Chapter	9.	There
are	some	situations	where	they	are	the	only	way	to	get	the	user’s	attention.
An	Android	dialog	box	can	have	an	icon,	but	it	doesn’t	have	to	have	one.	As
a	general	guideline,	an	icon	is	a	good	idea	when	a	dialog	box	is	required.

Make	sure	that	the	icon	reflects	the	situation’s	severity	correctly.	If	you	use	a
pop-up	dialog	box	to	tell	user	that	something	is	really	wrong,	using	an
exclamation	mark	icon	is	appropriate.

List	View	Icons
List	icons	are	used	in	lists	to	identify	individual	list	items.	In	custom	list
items	these	icons	aren’t	strictly	defined.	There	are,	however,	guidelines	for
standard	list	icons	like	the	ones	in	the	Android	settings	app.	The	guidelines

http://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_tab.html

standard	list	icons	like	the	ones	in	the	Android	settings	app.	The	guidelines
are	often	broken	down	by	device	manufacturers,	rendering	them	somewhat
useless.

Platform	icons
The	Android	platform	has	tons	of	ready	icons	and	graphics.	All	of	these
assets	are	distributed	under	the	Apache	2.0	Open	Source	license.	This	means
that	they	are	all	available	for	you	to	be	used	in	your	apps	regardless	of
whether	you	are	working	on	a	commercial	or	non-commercial	project.

Direct	Reference	Use	vs.	Making	Copies	to	Your	App
Some	of	the	icons	are	available	using	Android’s	internal	reference	structure,
but	many	of	them	are	not	public,	which	means	that	you	cannot	use	them
directly.

Google	has	recommended	that	developers	not	use	the	icons	in	the	framework
using	the	direct	reference.	A	better	way	to	use	them	is	to	copy	them	into	your
app.	The	reason	they’ve	made	this	recommendation	is	that	many	Android
device	manufacturers	replace	many	of	the	icons	with	their	own.	The	icons	are
also	different	between	different	platform	versions.

Copying	the	assets	to	your	project	has	drawbacks.	You	need	to	support	users
on	multiple	different	devices,	and	if	you	pick	one	icon	for	sharing	and
sending,	those	icons	will	be	used	on	all	devices	regardless	of	the	Android
version	or	manufacturer	skin.

The	decision	you	should	make	is	whether	to	use	all	of	your	icons	in	one
context	directly	from	the	platform	or	copy	all	of	them	into	your	app.	The
worst	possible	solution	is	to	mix	these	two	options.	In	that	case	your	app	will
always	look	wrong—part	of	the	icons	are	derived	from	the	runtime
environment,	and	part	of	them	from	your	app.	So	pick	one	option	and	follow
it	throughout	your	app.

Accessing	the	Platform	Graphics
Once	you	have	the	Android	SDK	installed,	you	can	easily	access	all	included
graphical	components.	You	can	browse	icons	of	different	Android	versions
and	different	screen	densities.	To	find	icons	of,	for	example,	Android	4.0.3

(API	level	15)	and	extra	high-density	screens,	go	to	the	folder	<your	Android
SDK	installation>/platforms/android-15/data/res/drawable-xhdpi.

Icon	packs
To	help	developers	and	designers	Google	has	provided	a	downloadable	icon
pack	containing	multiple	icons	that	can	be	used	for	many	purposes.	These	can
be	especially	useful	for	implementing	Action	Bar	actions,	but	you	might	find
use	for	them	elsewhere,	too.	The	icons	in	the	icon	pack	come	in	multiple
screen	density	versions	as	well	as	Photoshop	files.	You	can	download	the
Google’s	icon	pack	from
http://developer.android.com/design/downloads/.

There	are	also	many	more	places	where	you	can	find	icons	for	your	app.
Some	of	them	are	free,	and	some	of	them	are	not.	A	quick	Internet	search
before	starting	to	implement	your	own	icons	can	save	you	a	lot	of	your	time.

Using	Animations	and	transitions
Animations	can	make	your	app	look	and	feel	polished.	Correctly	used
animations	can	also	be	used	to	help	your	users	understand	how	your
application	works.

Overusing	animations	can	cause	negative	effects.	The	human	eye	is
automatically	drawn	toward	any	motion.	Animations	can,	therefore,	be	very
distracting.	The	screen	should	always	be	fully	static	when	the	users	are
reading	something,	for	example.

Animations	should	always	serve	a	purpose.	If,	for	example,	your	app’s	layout
changes,	using	animation	to	highlight	the	layout	change	might	make	sense.
This	might	make	it	easier	for	the	users	to	follow	where	individual
components	move.

Transitions	between	screens	should	always	enforce	the	user’s	sense	of
location	within	the	app.	If	a	button	takes	your	users	deeper	into	the	app,	the
transition	should	indicate	that.	When	the	user	presses	Back,	the	same
animation	should	play	backward,	thus	reinforcing	user’s	understanding	of	the
app	navigation.

http://developer.android.com/design/downloads/

Activity	transitions
Whenever	a	new	activity	starts,	the	operating	system	plays	a	subtle	animation
by	default.	Although	the	animation	can	vary	between	devices	of	different
manufacturers	and	Android	versions,	it	is	always	carefully	selected	to	make
the	navigation	feel	natural.	Whenever	users	press	the	Back	button,	the	same
animation	is	played	backward.

You	can	override	activity	transitions.	In	most	cases	it	is	not	necessary	and
often	it’s	even	a	bad	idea.	Users	are	familiar	with	the	default	transition
animation.	The	default	transitions	enforce	users’	understanding	when	they
dive	deeper	into	the	app.	They	usually	know	that	they	can	use	the	Back
button	to	navigate	back.

No	Transitions
Sometimes	playing	animations	between	activities	doesn’t	make	sense.	Maybe
you	want	two	activities	to	feel	like	one	to	the	users.	In	this	case,	you	can
prevent	the	transition	animation	altogether	by	setting	the	intent	flag
Intent.FLAG_ACTIVITY_NO_ANIMATION	to	the	triggered	intent.

Overriding	Activity	Transitions
If	you	have	a	good	reason	to	override	the	transition	animation,	you	can	do	so
when	you	trigger	the	intent	to	start	the	next	activity.	Immediately	after	you
call	startActivity	you	must	call	the	overridePendingTransition()	method
from	the	activity	class.	See	the	following	example	code:

startActivity(new	Intent(ExampleActivity.this,	AnotherActivity.class));

overridePendingTransition(R.anim.custom_animation_in,

R.anim.custom_animation_out);

The	overridePendingTransition	method	takes	two	parameters.	The	first
parameter	is	the	ID	of	the	animation	that	is	played	for	the	incoming	activity
and	the	second	parameter	is	the	ID	of	the	outgoing	activity	animation.	You
can	set	either	of	these	parameters	to	0	so	as	not	to	play	animation.	Both
parameters	refer	to	animation	defined	in	XML.	See	the	next	section	for
information	about	how	to	do	that.

The	Android	platform	provides	a	couple	of	defined	animations.	You	call
them	using	the	android.R.anim	class.	For	example,	you	can	use

android.R.anim.slide_in_left	to	have	an	animation	slide	in	from	the	left
side	of	the	screen.	Other	options	are	slide_out_right,	fade_out,	and
fade_in.

Tween	Animations
The	Android	view	animations	can	be	used	to	animate	a	view	and	its	content,
for	example,	by	moving,	rotating,	or	zooming.	Each	animation	can	consist	of
a	single	animation	or	can	be	a	set	of	animations	that	are	played	together.	The
animations	are	usually	defined	in	the	XML	files	but	can	also	be	built-in	code.

The	following	example	code	illustrates	a	very	simple	tween	animation.	This
animation	scales	the	view	of	the	X	and	Y	values.	Tween	animation	files	must
be	placed	in	the	res/anim/	project	folder.

<?xml	version=”1.0”	encoding=”utf-8”?>

<set	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:fillAfter=”true”

				android:shareInterpolator=”false”	>

	
				<scale

								android:duration=”700”

								android:fromXScale=”1.0”

								android:fromYScale=”1.0”

								android:interpolator=”@android:anim/accelerate_decelerate_interpolator”

								android:pivotX=”50%”

								android:pivotY=”50%”

								android:toXScale=”2.4”

								android:toYScale=”0.6”	/>

	

</set>

Tween	animations	allow	you	to	animate	view	scale,	alpha	position,	rotation,
or	location	(translate).	For	the	full	XML	definition,	see	the	Android
documentation	at
http://www.developer.android.com/guide/topics/resources/animation-

resource.html#Tween.com/.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Problems	with	Tween	Animations

http://developer.android.com/guide/topics/resources/animation-resource.html#Tween
http://developer.android.com/guide/topics/resources/animation-resource.html#Tween
http://developer.android.com/guide/topics/resources/animation-resource.html#Tween
http://developer.android.com/guide/topics/resources/animation-resource.html#Tween
http://developer.android.com/guide/topics/resources/animation-resource.html#Tween
http://developer.android.com/guide/topics/resources/animation-resource.html#Tween
http://developer.android.com/guide/topics/resources/animation-resource.html#Tween
http://developer.android.com/guide/topics/resources/animation-resource.html#Tween

Tween	animations	are	applied	to	the	view	elements	only	superficially.	This
means	that	the	position	of	a	view	element	does	not	actually	change	in	the
app’s	user	interface.	Although	you	can	force	the	animation	not	to	reset	once	it
is	complete	(using	android:fillAfter=”true”),	doing	so	will	cause
problems	if	any	of	the	animated	components	are	interactive.	For	example,	a
button	whose	location	is	animated	will	not	respond	to	user	interactions
properly.	The	touch	events	are	still	recognized	in	the	old	location.

Tween	animations	have	their	place,	but	they	are	mostly	being	replaced	by	the
newer	API,	property	animations.	I	talk	about	property	animations	later	in	this
chapter.

Frame	animations
Frame	animation	is	the	simplest	kind	of	animation.	A	frame	animation	is
simply	a	sequence	of	images	displayed	one	after	another	in	a	set	order.	Frame
animations	are	drawable	resources	and	can	be	used	anywhere	drawable
resources	are	allowed.	You	can	set	a	frame	animation	as	a	background	image,
for	example.

The	following	example	code	shows	a	simple	frame	animation	definition	that
defines	a	three-image	sequence	that	is	played	in	a	loop	until	it	is	stopped.
This	file	must	be	placed	in	the	res/drawable/	project	folder.

<?xml	version=”1.0”	encoding=”utf-8”?>

<animation-list	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:oneshot=”false”>

				<item	android:drawable=”@drawable/animation_a”	android:duration=”200”	/>

				<item	android:drawable=”@drawable/animation_b”	android:duration=”200”	/>

				<item	android:drawable=”@drawable/animation_c”	android:duration=”200”	/>

</animation-list>

It	is	not	enough	to	just	place	the	frame	animation	as,	for	example,	a
background	of	a	component.	It	must	be	started	from	code.	It’s	a	very	simple
command.	See	the	following	code	for	an	example.

ImageView	animatedImage	=	(ImageView)	findViewById(R.id.animated_image);

animatedImage.setBackgroundResource(R.drawable.example_frame_animation);

AnimationDrawable	exampleAnimation	=	(AnimationDrawable)

animatedImage.getBackground();

exampleAnimation.start();

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion

app	and	try	out	a	functional	example.

Property	animations
A	property	animation	is	a	new	animation	framework	introduced	in	Android
3.0	Honeycomb.	The	property	animation	framework	is	superior	to	the	old
tween	animations,	as	it	can	be	used	to	animate	any	view	properties	as	well	as
any	other	object	properties.	The	framework	also	has	very	flexible	definitions
of	each	animation	set.

Property	animations	differ	from	tween	animations	fundamentally	as	property
animations	apply	the	animation	properties	to	the	user	interface	components.
This	means	that	the	same	problems	with	hit	areas	do	not	exist	with	property
animations.	If	you,	for	example,	move	a	part	of	the	user	interface	that	has	the
buttons	in	it,	the	buttons	correctly	reach	to	your	touch	events	the	way	users
expect.	This	is	true	even	when	the	buttons	are	pressed	during	the	animation	or
after	it’s	complete.	The	animated	properties	are	not	reset	at	the	end.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Property	Animations	to	Older	Devices
Still	at	the	time	of	this	writing,	older	android	versions	like	Android	2.3
Gingerbread	are	so	prominent	that	supporting	them	is	wise.	Fortunately	there
is	a	community-maintained	project	lead	by	Jake	Wharton	that	has	back-
ported	most	of	the	new	framework’s	functionality	to	older	devices.	The
library	is	Open	Source	and	free	to	be	used	in	any	project.	You	can	find	and
download	it	from	the	project’s	website	at	http://nineoldandroids.com/.

Creating	Property	Animations
Property	animations	can	be	simple	value	animations	that	calculate	values
from	start	to	beginning,	object	animations	that	change	an	object	property
value,	or	animation	sets	that	combine	these	features.

Object	animations	are	created	by	defining	objects	that	tell	the	system	which
property	should	be	animated.	These	objects	are	called	object	animators	and

http://nineoldandroids.com/

are	implemented	by	the	ObjectAnimator	class.	You	can	set	animators	easily
with	a	simple	call	like	this:

ObjectAnimator.ofFloat(exampleView,

“rotationY”,	0,	180)

	

This	call	creates	an	animator	object	that	can	be	run	alone	or	be	grouped
together	with	other	animator	objects	to	create	more	complex	animations.

To	start	an	animation,	simply	make	this	call:

<your	animator	object	or	animator

set>.setDuration(3000).start();

Keyframes
Not	all	animations	should	run	at	a	constant	speed.	You	can	define	keyframes
in	your	animations	to	make	them	irregular.	Note	that	easing	effects	are	not
implemented	with	keyframes	but	using	interpolators.	I’ll	explain	use	of
interpolators	later	in	this	chapter.

With	keyframes	you	can,	for	example,	make	a	component	move	across	the
screen,	stay	in	place	for	a	while,	and	then	continue	moving	again	in	a	single
animation.

For	more	about	using	keyframes,	see	the	Android	developer	documentation	at
http://www.developer.android.com/guide/topics/graphics/prop-

animation.html#keyframes.com/.

Layout	Animations

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

You	can	use	property	animations	to	automatically	trigger	when	components
are	added	or	removed	from	view	or	when	component	layout	changes.	The
layout	animations	are	defined	the	same	way	as	any	other	property	animation.

http://developer.android.com/guide/topics/graphics/prop-animation.html#keyframes
http://developer.android.com/guide/topics/graphics/prop-animation.html#keyframes
http://developer.android.com/guide/topics/graphics/prop-animation.html#keyframes
http://developer.android.com/guide/topics/graphics/prop-animation.html#keyframes
http://developer.android.com/guide/topics/graphics/prop-animation.html#keyframes
http://developer.android.com/guide/topics/graphics/prop-animation.html#keyframes
http://developer.android.com/guide/topics/graphics/prop-animation.html#keyframes
http://developer.android.com/guide/topics/graphics/prop-animation.html#keyframes

The	platform	also	offers	default	layout	animations	that	don’t	require	any
code.	You	can	enable	the	default	layout	animations	by	setting
android:animateLayoutChanges=”true”	on	any	layout	in	your	app.	Any
layout	that	has	animateLayoutChanges	set	to	true	will	automatically	call	the
default	layout	animations	whenever	the	content	of	the	view	is	changed.

Animation	Interpolators
Both	tweening	animations	and	property	animations	can	use	interpolators	to
tweak	animation	timing	to	make	the	animations	feel	and	look	better.	A
straightforward	animation	where	values	are	adjusted	at	a	constant	rate	from
the	animation	start	to	the	end	does	not	look	right.	No	objects	in	the	real	world
behave	like	that,	and	that	is	why	our	brains	automatically	make	us	dislike
animations	like	that.	An	interpolator	can,	for	example,	make	the	animation
first	accelerate	and	then	decelerate	at	the	end.	That	mimics	the	way	objects
move	in	the	real	world.

The	Android	platform	provides	multiple	interpolators	for	you.	The	platform
interpolators	are	going	to	be	enough	for	most	cases,	but	it	is	also	possible	to
create	your	own.	Figures	11-20	through	11-28	show	all	the	interpolators	that
are	part	of	the	Android	platform.

Figure	11-20:	AccelerateDecelerateInterpolator.	Animation	speed	is	slower	at
the	end	and	at	the	start	of	the	animation.

Figure	11-21:	AccelerateInterpolator.	Animation	speed	is	slower	at	the	start
of	the	animation.

Figure	11-22:	AnticipateInterpolator.	Animation	is	reversed	at	the	start	of	the
animation.

Figure	11-23:	AnticipateOvershootInterpolator.	Animation	overshoots	the
final	value	at	the	end	of	the	animation	and	the	playing	is	reversed	at	the
beginning.

Figure	11-24:	BounceInterpolator.	Animation	is	reversed	a	couple	of	times	at
the	end	of	the	animation	to	create	a	bounce-like	effect.

Figure	11-25:	CycleInterpolator.	Animation	is	repeated	multiple	times.

Figure	11-26:	DecelerateInterpolator.	Animation	speed	is	slower	at	the	end	of
the	animation.

Figure	11-27:	LinearInterpolator.	Animation	speed	is	constant.

Figure	11-28:	OvershootInterpolator.	Animation	overshoots	the	final	value	at
the	end	of	the	animation.

Summary
The	Android	platform	offers	a	rich	toolset	for	building	user	interfaces.	User
interface	components	are	flexible	and	customizable.	Most	apps	can	be	built
using	ready	components,	and	you	typically	need	to	tweak	only	some	of	the
parameters.

The	platform	typography	options	let	you	tweak	the	look	of	any	of	your	text
components	almost	limitlessly.	You	need	to	remember	to	implement	the	text
components	using	scalable	measures	like	scale-independent	pixels,	and	be
prepared	for	users	who	use	the	large	text	accessibility	option.

prepared	for	users	who	use	the	large	text	accessibility	option.

Animations	can	add	polish	and	smoothness	to	your	app	if	used	correctly.	By
avoiding	overuse	and	keeping	in	mind	the	purpose	of	each	animation,	you	can
utilize	different	animation	frameworks	to	create	almost	any	effect	you	want.

	

Part	III:	Scalable	Android	Design

Chapter	12:	Managing	Android	Resources

Chapter	13:	Android	App	Layouts

Chapter	14:	Scalable	Graphics

Chapter	15:	Beyond	Scalable	–	Responsive	Design

Chapter	16:	Implementing	Responsive	User	Interfaces

Chapter	12:	Managing	Android
Resources

Android	devices	come	in	many	different	forms	and	sizes.	You’ve	read	in	several
places	in	this	book	that	the	Android	SDK	provides	developers	with	great	tools
for	building	software	that	scales	nicely	to	all	devices.	Now	it	is	time	to	take	a
look	at	those	tools.

This	chapter	talks	about	the	Android	resource	management	framework.	It	allows
developers	and	designers	to	provide	multiple	alternative	resources	for	an	app	and
let	the	operating	system	use	the	correct	ones	for	each	device.	After	the	resource
manager	overview,	this	chapter	dives	into	the	individual	device	properties,	or
qualifiers,	that	you	can	use.

Using	Android	resources
The	Android	operating	system	allows	you	to	add	multiple	alternative
resources	to	your	app.	The	operating	system	picks	the	correct	resource	during
runtime	based	on	the	runtime	environment.	This	way,	you	can	provide	correct
density	graphics,	the	right	kind	of	layouts	for	larger	screens,	correct	language
translations,	and	even	alternative	attributes	for	non-touch	devices.

There	are	multiple	types	of	resources	that	can	be	used	in	any	Android	app.
The	Resource	Manager	manages	them,	and	the	same	rules	apply	to	them.
They	need	to	be	placed	into	the	correct	resource	folder	in	your	app	project
structure	under	the	res/	folder:

•	Animation	definitions.	(res/anim/	and	res/animator/)

•	Color	state	list	definitions.	(res/color/)
•	Drawables.	These	can	be	bitmaps	or	XML	drawable	definitions.	More
about	these	in	Chapter	14.	(res/drawable/)

•	Layout	definitions.	(res/layout/)
•	Menu	definitions.	(res/menu/)

•	Simple	value	definitions.	These	can	be	strings,	colors,	and	integers.
res/values/

•	XML	files.	(res/xml/)

•	Raw	data.	(res/raw/)

Don’t	let	the	res/xml	folder	fool	you	into	thinking	that	it	is	the	only	place	for
XML	files.	In	fact,	most	of	Android	resource	files	are	XML.

Configuration	qualifiers
The	operating	system	cannot	automatically	determine	which	alternative
resource	is	for	which	device	type.	You	must	tell	the	system	which	resources
you	want	to	be	used	in	which	kind	of	environment.

The	Android	platform	has	a	set	of	predefined	qualifiers	that	you	can	provide
as	extensions	to	your	resource	folder	names.	Based	on	these	qualifiers	the
operating	system	determines	which	resources	should	be	used	on	a	particular
device.	The	qualifiers	are	added	to	the	end	of	the	resource	folder	name,
separated	by	dash	(-).	For	example,	res/drawable-hdpi/	is	the	drawable
folder	that	should	be	used	when	the	app	is	running	on	a	device	that	has	a
high-density	screen	(screen	density	is	explained	later	in	this	chapter).

Tip:	You	don’t	always	have	to	provide	all	resources	in	all	of	the	folders.	In
many	cases	you’ll	have	a	large	set	of	resources	that	don’t	need	any
qualifiers,	in	which	case	you	can	leave	them	in	the	default	folder	and	only
add	folders	with	qualifiers	to	the	resources	that	need	to	have	alternatives.

The	operating	system	uses	smart	resolution	when	it	tries	to	determine	which
resource	should	be	used.	A	simplified	way	of	thinking	about	how	the
operating	system	looks	for	the	best	match	is	to	think	about	it	as	a	game	of
elimination.	The	operating	system	eliminates	all	folders	with	qualifiers	that
do	not	match	the	current	system	configuration.	Often,	that	is	not	enough,	as
multiple	folders	might	remain	after	the	elimination	process	(for	example,
res/values-en	and	res/values/).	The	second	step	in	the	resolution	is	to
look	for	qualifiers	that	match	the	current	configuration.	If	a	matching
qualifier	is	found,	the	operating	system	then	eliminates	all	folders	that	do	not
have	the	qualifier.

Most	of	the	time	you	can	simply	trust	the	operating	system	to	find	the	best
match.	Complex	cases	are	pretty	rare.	If	you	ever	find	yourself	confused	as	to
why	wrong	resources	are	being	used,	you	can	find	the	exact	algorithm	the
operating	system	uses	described	in	detail	in	the	Android	documentation.	You
can	read	it	at
http://www.developer.android.com/guide/topics/resources/providing-

resources.html#BestMatch.com/.

The	available	qualifiers	are	covered	in	the	following	sections	in	this	chapter.

Combining	Qualifiers
In	many	occasions	using	the	right	resources	requires	using	more	specific
definitions	than	just	a	single	qualifier.	The	Android	platform	allows	you	to
combine	the	qualifiers	in	any	way	you	like.	Some	of	the	combinations	don’t
make	sense	but	some	are	very	important.	For	example,	graphics	sometimes
contain	text.	In	that	case	the	graphical	asset	must	be	localized	as	well	as
provided	for	multiple	densities.	You	could	have	the	folders	res/drawable-
en-hdpi/	and	res/drawable-en-mdpi/,	as	well	as	res/drawable-de-hdpi/
and	res/drawable-de-mdpi/.

Library	Projects	and	Overriding	Resources
Library	projects	are	a	very	important	part	of	the	Android	project	structure	and
organization.	When	you’re	using	library	projects,	the	main	project	resources
always	override	resources	with	the	same	name	and	same	qualifiers	as	the
library	project.	This	can	be	a	very	powerful	technique	to	use	for	creating
different	apps	from	the	same	source	or	from	Android	library	projects	that
provide	components.

API	Level	Requirements
Some	qualifiers	have	been	added	in	later	phases	of	the	Android	platform
development.	Fortunately,	the	Android	platform	runtime	is	smart	about	them.
It	simply	ignores	folders	with	qualifiers	it	doesn’t	understand.	Using	newer
qualifiers	won’t	cause	problems	on	older	devices	as	long	as	you	also	provide
resources	in	folders	with	qualifiers	that	the	runtime	Android	version
understands.

Designing	for	Screen	density

http://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch
http://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch
http://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch
http://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch
http://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch
http://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch
http://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch
http://developer.android.com/guide/topics/resources/providing-resources.html#BestMatch

Designing	for	Screen	density
Screen	density	is	probably	the	most	important	and	most	used	qualifier	in	any
Android	project.	Without	understanding	how	to	handle	screen	densities
correctly,	it	is	nearly	impossible	to	create	apps	that	look	good	on	all	devices.

What	does	screen	density	mean	in	practice?
If	you	have	a	dual	monitor	setup	for	your	computer,	for	example	a	laptop	and
an	external	display,	you	probably	have	two	separate	density	displays.
Consider	the	following	example.	Your	laptop	has	a	15-inch	full	HD	display
(1920×1080	resolution),	and	your	external	connected	display	is	a	larger	30-
inch	display	with	the	same	full	HD	resolution.	If	you	drag	a	window	from
your	laptop’s	display	to	your	external	display,	its	physical	size	grows.	The
window	still	has	exactly	the	same	pixels,	but	each	pixel	is	larger.	If	you	want
to	prevent	this	from	happening	you	need	to	lower	the	resolution	of	your
laptop	display	until	the	pixels	on	that	screen	are	physically	the	same	size	as
on	the	larger	external	display.	Once	you	get	the	resolutions	right	the	windows
will	stay	the	same	physical	size	when	you	drag	them	between	your	displays.
So	these	two	displays	have	different	display	densities.

Consider	another	example.	Let’s	say	that	you	have	two	smartphones,	A	and
B,	that	both	have	4-inch	screens.	Phone	A	has	a	320×240	pixel	resolution,
and	phone	B	has	a	640×480	pixel	resolution.	An	image	using	the	same
number	of	pixels	on	these	two	devices	will	be	a	very	different	physical	size
on	each.	See	Figure	12-1	for	an	abstract	example	of	this.

Figure	12-1:	An	abstract	example	of	a	picture	displayed	on	a	low-density

Figure	12-1:	An	abstract	example	of	a	picture	displayed	on	a	low-density
screen	(A)	and	a	high-density	screen	(B).

Why	is	screen	density	important?
Why	does	this	matter	so	much	that	I’ve	dedicated	multiple	pages	to	it	in	this
book?	On	a	desktop	screen,	density	isn’t	a	big	deal,	and	you	very	rarely	care
about	the	physical	size	of	the	user	interface	on	your	computer	displays.
Physical	size	of	user	interface	components	matter	much	more	on	touch	screen
devices.	Users	interact	with	them	with	their	fingers.	User	interface
components	that	are	the	correct	size	on	a	320×240	pixel	4-inch	screen	would
be	unusable	on	a	640×480	pixel	4-inch	screen.	Buttons	would	be	too	small	to
tap,	and	user	interface	components	would	be	too	close	to	each	other.	Users
would	not	be	able	distinguish	between	their	touch	areas,	causing	them
continuously	tap	the	wrong	components.

To	fix	this	problem	you	must	make	sure	that	everything	in	the	user	interface
is	defined	in	a	way	so	they	end	up	being	the	same	physical	size	no	matter
what	screen	density	is.	In	case	of	images	it	requires	the	images	either	to	be
scaled	automatically	or	for	you	to	provide	separate	assets	for	different	screen
densities.	Figure	12-2	shows	an	example	of	separate	assets	being	displayed
on	the	lower-density	screen	(A)	and	the	higher-density	screen	(B).	These	two
images	will	end	up	looking	the	same	size	for	users	due	to	the	screen	density
difference.

Figure	12-2:	An	abstract	example	of	how	the	images	should	be	displayed	on
two	different	density	screens.

Screen	density	in	Android	terms

Screen	density	in	Android	terms
Dots	per	inch	(DPI)	is	the	metric	used	to	describe	screen	density.	The	term	is
derived	from	its	former	use	from	print	media	and	printers	describing	the	same
thing	in	that	media.	You	might	see	pixels	per	inch	(PPI)	used	sometimes.	It	is
the	same	thing.

It	is	not	feasible	to	support	all	possible	screen	densities	separately.	That	is
why	the	Android	SDK	groups	them	in	categories	with	fixed	range	of
densities.	In	practice	it	means	that	on	devices	that	have	close	to	each	other’s
screen	density	but	not	exactly	the	same	your	user	interface	will	be	a	slightly
different	size.	The	categories	have	been	selected	in	a	way	that	these	variations
are	minimal	and	don’t	cause	problems	for	user.	Android	documentation	calls
these	groups	generalized	densities.

There	are	four	screen	density	groups	that	can	be	used	on	Android	devices
plus	one	extra	for	TVs	with	720p	resolution	(TVs	are	a	different	matter	in	this
density	case).	Table	12-1	shows	the	Android	supported	density	categories	and
corresponding	resource	qualifiers.	Each	device	will	fall	into	one	of	these
categories.	The	manufacturer	decides	which	generalized	density	a	device	has,
but	you	can	trust	that	any	device	is	grouped	appropriately.	There	have	been
exceptions	in	the	past,	most	notably	the	first	Galaxy	Tab,	but	the	exceptions
are	rare,	and	there	really	is	no	need	to	prepare	for	them.

Automatic	graphics	scaling	vs.	separate	assets
If	you	don’t	provide	separate	graphical	assets	for	different	screen	densities
the	operating	system	performs	an	automatic	scaling	operation.	The	operating
system	uses	the	asset	that	is	the	closest	fit	to	the	target	density.

In	some	cases	the	automatic	scaling	is	good	enough,	but	more	often	than	not
the	result	of	the	automatic	scaling	is	not	good	enough.	In	the	best	case	the
scaled	picture	is	blurry,	and	in	the	worst	case	it	can	be	distorted	badly.

On	the	other	hand,	producing	assets	takes	time.	It	is	always	a	matter	of	a
compromise.	You	need	to	make	the	decision	on	case-by-case	basis.	Larger
images	often	scale	down	nicely	but	upwards	badly.	Small	icons	rarely	scale
well	in	either	direction.

res/drawable/	folder	is	for	XML	only
Always	place	your	graphical	assets	into	folders	with	the	density	qualifier.
Never	leave	any	GIFs,	PNGs,	or	JPGs	in	the	res/drawable/	folder.	Although
graphical	assets	from	that	folder	do	technically	work,	it	can	cause	confusion.
XML	drawables	on	the	other	hand	are	density	independent	and	should	be	in
the	default	folder.	You’ll	learn	more	about	XML	drawables	in	Chapter	14.

Preventing	scaling
Although	it’s	rare,	you	might	sometimes	need	to	provide	assets	that	are	not
going	to	be	scaled	on	any	density	screens.	You	can	use	the	special	density
qualifier	nodpi.	If	a	graphical	asset	is	found	only	from	this	folder,	the
operating	system	will	draw	it	on	the	screen	without	performing	any	density
scaling.

Screen	densities	that	matter
There	are	devices	out	there	with	every	kind	of	the	screen	density	type,	but	the
distribution	is	not	even.	As	with	picking	the	Android	version	to	support,	you
should	base	your	decision	as	to	which	screen	densities	to	support	on	the
device	distribution.	The	optimum	solution	is,	of	course,	to	support	all	of	them
but	that	is	not	always	possible.

Google	publishes	up-to-date	data	about	the	current	screen	density	and	size
distribution	on	the	Android	developer	website	at
http://www.developer.android.com/resources/dashboard/screens.html.

It’s	worth	taking	a	look	at	this	chart	when	making	your	decision.

At	the	time	of	this	writing,	about	3	percent	of	Android	devices	have	LDPI
screens.	By	far,	the	massive	majority	of	devices	have	MDPI	or	HDPI	screens

http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html

screens.	By	far,	the	massive	majority	of	devices	have	MDPI	or	HDPI	screens
and	only	few	have	XHDPI	screens.	My	advice	is	to	always	provide	assets	for
HDPI	and	MDPI.	LDPI	can	probably	be	safely	ignored	as	it’s	not	being	used
as	much	in	new	devices.	XHDPI,	on	the	other	hand,	should	not	be	ignored,
even	though	it	has	a	relatively	small	market	share.	Most	new	flagship	phones
are	going	to	ship	with	gorgeous	XHDPI	screens.	These	devices	are	also
perfect	ways	to	demo	your	app.

Density	independent	pixels,	dp
Although	this	topic	isn’t	directly	related	to	the	Android	Resource	Manager,	it
is	such	an	important	part	of	creating	content	that’s	independent	of	screen
density	that	it	cannot	be	ignored	here.

When	creating	layouts	and	defining	component	sizes	you	often	need	to	give
the	operating	system	a	desired	size	for	the	component.	Although	you	can	give
a	pixel	size	for	a	button,	for	example,	doing	that	would	lead	to	the	same
problem	described	previously.	The	button	would	be	the	wrong	size	on	every
density	device	other	than	the	one	you	designed	it	for.

The	Android	SDK	has	a	solution	to	this.	You	can	define	any	size	in	density-
independent	pixels	(dp	or	dip).	In	fact,	you	should	always	use	dp	definitions!
Breaking	this	rule	will	break	your	app	on	a	large	amount	of	devices.

Density-independent	pixel	definitions	are	automatically	handled	by	the
operating	system,	which	converts	them	to	correct	pixel	sizes	during	the	app
runtime,	depending	on	the	pixel	density	of	the	device	the	app	is	running	on.
You	can	think	of	dp	as	an	abstract	pixel.	If	you	design	and	define	your	whole
user	interface	using	dps,	all	your	components	will	be	the	same	physical	size
on	all	devices.	You	don’t	have	to	do	anything	else.	The	operating	system
takes	care	the	rest.

The	concept	of	density	independent	pixels	can	be	difficult	concept	to	get	your
head	around	at	first.	The	easiest	way	to	think	about	density	independent
pixels	is	to	think	of	them	as	pixels	on	a	medium	density	screen.	In	fact,	the
definition	goes	like	this	1dp	=	1px	on	MDPI	screen.	Table	12-2	shows	some
dp	to	px	conversions.

Table	12-2	Example	of	a	100dp	to	Pixel	Conversion
Screen	Density 100dps	in	Pixels

http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html

ldpi 75.00px

mdpi 100.00px

hdpi 150.00px

xhdpi 200.00px

You	rarely	need	to	think	about	these	conversions	with	user	interface
components,	but	you	need	to	know	them	when	creating	graphical	assets.	An
icon	that	is	50×50px	on	a	MDPI	screen	must	be	75×75px	on	an	HDPI	screen,
and	so	on.	The	between	each	screen	density	is	1.5.	The	fraction	can	make
conversion	difficult.	One-pixel	lines,	for	example,	can	cause	trouble.	You
can’t	make	anything	1.5	pixels	in	size.

DPs	from	Code
When	writing	your	app’s	layout	XML	files	you	can	always	use	the	dp	size
definitions.	But	what	if	you	need	to	set	a	component	size	in	the	code?	All
Android	API	size	definition	methods	expect	to	get	pixel	size	as	the	parameter.

Unfortunately,	you	need	to	do	the	conversion	yourself.	The	following	code
example	does	the	conversion.	It	asks	the	operating	system	for	the	current
screen	density	multiplier	and	applies	it.	Note	the	added	0.5	on	the	last	line
ensures	that	any	conversion	never	ends	to	value	0.	According	to	Romain	Guy
(an	Android	engineer	working	at	Google),	this	is	also	how	the	operating
system	performs	the	conversion:

//	you	must	have	a	context	object

DisplayMetrics	metrics	=	context.getResources().getDisplayMetrics();

float	dp	=	20f;	//this	is	the	dp	size	you	want	to	have

int	pixels	=

			(int)	(metrics.density	*	dp	+	0.5f);	//	this	results	to	correct	pixel	size

Density	Independent	Text	Size

Density	Independent	Text	Size
Text	and	typography	were	discussed	in	Chapter	11.	In	that	chapter,	I
instructed	you	to	use	the	sp	(scale-independent	pixels)	size	definitions	for
text.	This	corresponds	to	the	dp	definitions	for	other	sizes.

Designing	for	Screen	size	and	form
Screen	size	is	another	relevant	issue	when	it	comes	to	building	Android	apps.
Android	devices	ship	with	screens	as	small	as	three	inches	all	the	way	up	to
13-inch	tables.	Most	likely	you	are	going	to	use	screen	size	related	qualifiers
to	provide	different	layouts	for	tablets	and	phones.	I’ll	talk	much	more	about
that	in	Chapter	15.

Generalized	size
Just	as	screen	densities	are	grouped	into	generalized	density	categories,
screen	sizes	have	four	size	categories	that	can	be	used	as	qualifiers	to	provide
alternative	resources.	Table	12-3	includes	more	detail	about	these	four
qualifiers.

Table	12-3	Android	Generalized	Screen	Size	Qualifiers
Qualifier Appropriate	Screen	Size

small 320×426dp	units

normal 320×470dp

large 480×640dp

xlarge 720×960dp

These	qualifiers	are	good	enough	for	most	phone	screens,	but	when	it	comes
to	tablets	these	categories	might	be	too	vague.	An	xlarge	screen	is	about
seven	inches	or	larger.	Note	that	the	xlarge	qualifier	was	added	in	Android
API	level	9.

The	resource	system	will	never	use	resources	from	a	folder	with	a	qualifier
that	defines	a	larger	size	than	the	runtime	environment	has.	If	you	don’t
provide	resources	in	a	suitable	folder	it	will	cause	a	runtime	crash.

Fine	grained	screen	size
The	first	Android	versions	didn’t	really	take	tablets	into	account	but	that
changed	with	the	release	of	Android	3.2	Honeycomb.	The	Honeycomb

changed	with	the	release	of	Android	3.2	Honeycomb.	The	Honeycomb
release	added	new	qualifiers	that	can	be	used	to	support	more	fine-grained
screen	sizes.	These	three	new	qualifiers	allow	you	to	define	an	exact	density
independent	pixel	size	for	your	resource	folders.

As	the	qualifiers	can	contain	any	value,	knowing	which	one	to	use	isn’t	as
simple	as	with	generalized	size	qualifiers.	In	the	case	of	these	three	qualifiers,
the	system	always	uses	the	one	that’s	closest	to	the	device	configuration
without	exceeding	it.

Smallest	Width
The	Smallest	Width	qualifier	allows	you	to	define	resources	based	on	the
device’s	screen	size.	This	qualifier	replaces	the	old	categorized	screen	sizes.
The	Smallest	Width	qualifier	is	the	smallest	width	of	the	device	available	to
your	app.	This	width	is	not	dependent	on	the	device	orientation	and	also	takes
into	account	any	additional	space	used	by	operating	system	components.

The	syntax	for	defining	this	qualifier	is	as	follows:

sw<N>dp

As	an	example,	res/layout-sw720dp/	is	used	for	a	10-inch	MDPI	720x1280
tablet.

Available	Width	and	Height
Unlike	the	smallest	width	available	width	and	height	are	affected	by	the
device	orientation.	These	values	refer	to	the	currently	available	value.	The
syntax	is	w<N>dp	for	available	width	and	h<N>dp	for	available	height.

Aspect	ratio
You	might	never	use	this	one,	but	it	can	be	quite	useful	in	some	cases.	The
two	available	qualifiers	are	long	and	notlong.	These	qualifiers	are	not
dependent	on	the	screen	orientation.

The	long	screen	form	factor	is	slightly	different	from	notlong.	For	example,
the	Nexus	One	is	a	notlong	screen	with	480×800	resolution,	whereas	the
Motorola	Droid	with	the	480×854	resolution	is	a	long	device.	It	has	54	more
pixels	on	its	long	edge.	The	difference	isn’t	much	and	can	often	be	ignored.

Long	screens	include	WQVGA,	WVGA,	FWVGA,	and	notlong	screens
include	as	QVGA,	HVGA,	and	VGA.

Screen	orientation
Screen	orientation	is	simple	and	powerful.	You	can	define	different	layouts
when	the	device	is	on	portrait	mode	and	when	it	is	in	landscape	mode.	The
qualifier	values	are	port	and	land.

Designing	for	Language	and	region
The	language	and	region	qualifier	is	very	useful	when	you	have	multiple
languages	on	your	app.	All	you	need	to	do	is	to	provide	the	language	files	in
the	right	resource	folders	and	the	operating	system	takes	care	of	the	rest.

The	syntax	for	the	language	and	region	qualifier	is	<language	code>-
r<region	code>.	The	language	code	is	a	two-letter	ISO	639-1	language	code
and	the	region	code	is	two-letter	ISO	3166-1-alpha-2	region	code.	The	region
code	is	optional	and	cannot	be	given	alone.	The	qualifier	is	not	case-sensitive.

You	can	also	use	mobile	country	code	and	mobile	network	code	as	a	resource
qualifier.	The	syntax	for	this	is	mcc<code>-mnc<code>.	The	first	code	is	the
mobile	country	code,	and	the	second	one	is	the	mobile	network	code.	The
mobile	country	code	can	also	be	used	alone.

Designing	for	Device	controls
The	platform	has	many	qualifiers	defining	availability	of	control
mechanisms.	You	might	provide	different	functionality	for	devices	with	a
stylus	and	for	devices	with	a	D-pad.	Take	a	look	at	Table	12-4	for	a	list	of
these	qualifiers	and	their	corresponding	explanations.

Table	12-4	Device	Control	Resource	Qualifiers
Qualifier Explanation
notouch Device	does	not	have	a	touch	screen.

stylus Device	has	a	resistive	touch	screen.

finger Device	has	a	touch	screen.

nokeys Device	doesn’t	have	a	hardware	keyboard.

qwerty
Device	has	a	hardware	QWERTY	keyboard.	This	category	includes	other	QWERTY-like	keyboards
regardless	of	the	actual	layout	like	the	German	QWERTZ	keyboard	as	well.

12key Device	has	a	hardware	12-key	keyboard.

navexposed Navigation	keys	are	currently	exposed.

navhidden Navigation	keys	are	currently	hidden.

nonav Device	doesn’t	have	separate	navigation	keys.

dpad Device	has	a	D-pad.

trackball Device	has	a	trackball.

wheel Device	has	a	directional	wheel.

In	the	case	of	the	keyboards,	these	qualifiers	are	not	dependent	on	whether
the	keyboard	is	currently	being	used.

Designing	for	Platform	versions
You	can	also	provide	different	resources	for	devices	running	different
operating	system	versions.	This	can	be	very	useful	when	you	want	to	utilize
some	components	that	aren’t	available	on	older	platforms	but	still	support	the
older	devices.	You	can,	for	example,	provide	alternative	layouts	using	the
latest	user	interface	components.

The	qualifier	syntax	is	-v<minimum	API	level>.	Read	more	about	API	levels
from	the	Android	documentation	at
http://www.developer.android.com/guide/appendix/api-

levels.html.com/.

Designing	for	Device	modes
Far	fewer	qualifiers	are	available	to	you	if	you	plan	to	support	device	modes
like	docks	or	night	mode.	These	were	added	in	Android	API	level	8	and	are
not	available	on	older	devices.

For	night	mode,	you	can	use	the	qualifiers	night	and	notnight.	These	can
change	while	your	app	is	running.

You	can	also	use	two	dock	mode	qualifiers—car	and	desk—to	provide
separate	resources	when	the	device	is	docked.

http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html

Summary
As	you	can	see,	Android	is	designed	to	run	on	a	wide	range	of	devices.	The
Resource	Manager	combined	with	the	flexible	layouts	(introduce	in	the	next
chapter)	are	powerful	tools	that	allow	you	to	build	apps	that	support	all	or
most	Android	devices.	By	using	these	tools,	you	can	turn	the	infamous
Android	fragmentation	from	a	problem	into	a	platform	feature.

You	need	to	choose	where	you	invest	your	time,	though.	Providing	different
graphics	for	different	screen	densities	is	very	important,	but	you	probably
won’t	want	to	support	all	of	them	from	the	get-go.

	

Chapter	13:	Android	App	Layouts
Android	layouts	are	the	best	tools	in	your	toolkit	for	creating	scalable
applications.	Because	the	Android	platform	was	designed	to	support	multiple
device	sizes	and	forms,	it	has	a	great	set	of	layouts	that	you	can	utilize	out	of	the
box	to	support	the	widest	possible	selection	of	devices.

Android	layout	strategy
You	should	never	define	your	Android	user	interfaces	by	setting	absolute
pixel	positions	to	your	components	like	you	might	do	on	other	platforms.	A
user	interface	with	an	absolutely	defined	layout	would	look	right	on	only	one
device.	Instead	of	the	absolute	layout	strategy	Android	user	interfaces	are
built	by	defining	how	components	relate	to	each	other.	In	this	sense	designing
layouts	for	Android	is	much	closer	to	web	design	than	to	iOS	design.

To	make	a	layout	scalable	you	must	tell	the	operating	system	how	the	layout
is	to	be	scaled.	Not	all	areas	in	the	user	interface	should	be	resized.	Android’s
layouts	let	you	define	fixed	areas	and	resizable	areas.	When	used	properly,
these	two	types	of	areas	will	make	your	user	interface	scalable	but	maintain
certain	constraints	for	good	results	when	scaling.

Fixed	areas
A	fixed	area	is	a	part	of	the	user	interface	that	cannot	be	resized.	A	typical
example	of	this	kind	of	area	is	a	user	interface	icon.	Icons	are	often	a	fixed
size,	and	resizing	them	makes	them	look	distorted.

Sometimes	a	fixed	area	is	only	fixed	in	one	direction	and	resizable	in	the
other.	For	example,	a	button	bar	often	has	a	fixed	height	but	is	resizable
horizontally	to	fill	the	whole	screen.

Resizable	areas
Resizable	areas	are	the	opposite	of	fixed	areas.	They	can	be	resized	to	fill	in	a
space	in	the	user	interface.	Even	resizable	areas	have	their	limitations.	They
often	have	a	minimum	size	that	is	required	to	show	all	the	content	and

often	have	a	minimum	size	that	is	required	to	show	all	the	content	and
sometimes	also	a	maximum	size	as	well.	When	it	comes	to	these	constraints,
you	can	start	to	utilize	responsive	design	principles	to	avoid	too	small	or	too
large	resizable	areas.	You’ll	read	much	more	responsive	design	in	Chapter
15.

Resizable	areas	often	utilize	scrollable	containers	to	make	sure	that	the
content	will	be	fully	accessible,	even	on	very	small	devices.

Combining	fixed	and	resizable	areas	Making	your
user	interface	scalable	requires	you	to	utilize	both
fixed	and	resizable	areas	correctly.	There	is	one
simple	rule	you	can	use	to	check	if	your	design	is	on
the	right	track.	If	all	the	components	on	your	user
interface	are	fixed	in	one	dimension	(height	or	width),
your	interface	is	not	scalable,	and	the	operating
system	will	not	be	able	to	adjust	your	interface	to
multiple	screen	sizes.
Tip:	This	is	a	good	point	to	create	a	screen	design	for	your	app.	Think	about
the	resizable	sections	and	the	fixed	sections,	and	make	sure	that	your	screen
design	has	enough	places	for	resizing.

Consider	the	example	shown	in	Figure	13-1.	The	example	screen	design	has
three	composite	components—the	top	Action	Bar,	a	list,	and	a	bottom	button
bar.	In	this	fairly	typical	Android	screen	design,	the	top	Action	Bar	and	the
bottom	button	bar	are	a	fixed	height.	The	list	component	in	the	middle	is
resizable.	I’m	certain	that	you’ve	seen	layouts	like	this	in	many	apps	you’ve
used.	No	matter	what	the	screen	size,	this	layout	always	works	and	displays
the	data	correctly.	On	a	smaller	screen	the	list	area	will	simply	be	smaller	and
fewer	list	items	will	be	displayed	at	a	time.

Figure	13-1:	A	simple	example	screen	design	demonstrating	resizable	and
fixed	areas.

Layouts	in	Layouts
Android	layouts	can	be	composed	from	other	layouts.	In	fact,	layouts	inside
layouts	are	very	common.	Take	another	look	at	Figure	13-1	but	this	time	in
the	horizontal	dimension.	For	example,	the	Action	Bar	is	a	resizable
component,	but	it	contains	two	fixed	areas.	In	this	case	the	left	app	icon	and
the	right	menu	item	are	fixed,	leaving	the	middle	title	part	to	be	resizable.
The	bottom	bar	on	the	other	hand	contains	only	two	user	interface
components,	and	they	are	designed	to	fill	in	the	area	together.	They	are	both
resizable.

Layouts	from	XML	and	code

The	most	common	way	you	will	define	layouts	is	to	use	Android’s	resource
system	discussed	in	Chapter	12.	Most	applications	can	define	all	layouts	in
the	Android	XML	files	placed	in	the	res/layout/	folder	or	any	of	the	related
layout	folders	with	a	qualifier.

Most	of	the	examples	in	this	chapter	are	explained	using	XML	layouts.	For
any	and	all	layouts	or	layout	structures	you	can	also	always	use	code	to	create
the	corresponding	layout	objects	and	their	attributes.	Using	XML	will	save
you	a	lot	of	time	as	well	as	make	the	project	structure	easier	to	maintain	and
better	organized.	Layout	XML	files	can	also	benefit	from	the	Android
resource	management	system	as	well	as	be	built	by	using	various	graphical
development	tools	like	the	Android	Eclipse	plug-in’s	visual	user	interface
builder.

Layout	managers
Now	that	you	have	established	a	basis	for	your	Android	layout	strategy,
you’re	ready	to	take	a	look	at	the	actual	layouts	the	Android	platform
provides	for	developers.	These	layouts,	when	used	correctly,	allows
developers	to	implement	almost	any	screen	design.

Relative	Layout
Relative	layout	is	by	far	the	most	powerful	layout	manager	on	Android.
Whether	you	are	an	Android	developer	or	designer,	you	should	take	some
time	to	learn	how	this	layout	works	in	detail.	Relative	layout	is	the
cornerstone	of	any	Android	app	design.	If	designers	understand	its
flexibilities	and	limitations,	they	can	more	easily	specify	user	interfaces	that
the	developers	can	implement	the	way	they	wanted.	It	is	scalable	and
massively	flexible.	With	that	flexibility	inevitably	comes	some	complexity.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

As	the	name	suggests,	relative	layout	is	based	on	the	idea	of	defining
component	locations	based	on	their	relation	to	other	components.	You	can
think	about	a	relative	layout	as	a	set	of	anchor	points	to	which	you	can	anchor
your	user	interface	components.	Each	added	user	interface	component

your	user	interface	components.	Each	added	user	interface	component
becomes	an	anchor	point	once	it’s	added	to	the	layout.

First,	take	a	look	at	the	anchor	points	available	to	you	related	to	the	parent
component	(the	layout).	Whenever	you	add	a	user	interface	component	to	the
relative	layout,	you	can	set	any	of	these	anchor	points.	These	points	define
where	the	component	will	be	placed.	Table	13-1	lists	all	of	these	anchor
points.	These	values	are	all	set	to	true	or	false	as	they	are	only	related	to	the
parent	component.

Table	13-1	Relative	Layout	Anchor	Points	Related	to	the	Layout
Itself

Anchor	Point
Name Explanation XML	Parameter

Parent	bottom Aligns	the	child’s	bottom	edge	with	the	parent’s	bottom	edge. android:layout_alignParentBottom

Parent	left Aligns	the	child’s	left	edge	with	the	parent’s	left	edge. android:layout_alignParentLeft

Parent	right Aligns	the	child’s	right	edge	with	the	parent’s	right	edge. android:layout_alignParentRight

Parent	top Aligns	the	child’s	top	edge	with	the	parent’s	top	edge. android:layout_alignParentTop

Center
horizontally

Centers	the	child	horizontally	with	respect	to	the	bounds	of
the	parent.

android:layout_centerHorizontal

Center	vertically Centers	the	child	vertically	with	respect	to	the	bounds	of	the
parent.

android:layout_centerVertical

Center Centers	the	child	with	respect	to	the	bounds	of	the	parent. android:layout_centerInParent

Take	a	look	at	the	example	in	Figure	13-2.	The	large	rectangle	represents	the
relative	layout,	which	might	or	might	not	be	the	whole	user	interface	of	an
app	screen.	There	are	three	components	that	are	placed	in	the	layout.
Component	A	has	a	parent	top	and	parent	left	layout	attributes	set.
Component	B	has	a	center	layout	attribute	set,	and	component	C	has	a	center
horizontally	and	parent	bottom	layout	attributes	set.

Figure	13-2:	An	example	of	relative	layout	used	to	place	user	interface
components	related	to	the	parent.

Setting	component	locations	based	on	their	parent	is	very	helpful,	but	that
alone	is	not	enough.	Relative	layout	also	allows	you	to	set	component
location	relative	to	the	other	components	in	the	same	layout.	Table	13-2
describes	the	anchor	points	you	can	use	to	place	components	relative	to	their
sibling	components.	Each	of	these	attributes	requires	you	to	define	another
component	as	the	anchor	point.

Table	13-2	Relative	Layout	Anchor	Points	Related	to	Sibling
Components

Anchor	Point	Name Explanation XML	Parameter

Above Aligns	bottom	edge	with	another	child’s	top	edge. android:layout_above

Below Aligns	top	edge	with	another	child’s	bottom	edge. android:layout_below

Left	of Aligns	right	edge	with	another	child’s	left	edge. android:layout_toLeftOf

Right	of Aligns	left	edge	with	another	child’s	right	edge. android:layout_toRightOf

Align	baseline Aligns	baseline	with	another	child’s	baseline. android:layout_alignBaseline

Align	bottom Aligns	bottom	edge	with	another	child’s	bottom	edge. android:layout_alignBottom

Align	left Aligns	left	edge	with	another	child’s	left	edge. android:layout_alignLeft

Align	right Aligns	right	edge	with	another	child’s	right	edge. android:layout_alignRight

Align	top Aligns	top	edge	with	another	child’s	top	edge. android:layout_alignTop

Let’s	look	at	another	example	in	Figure	13-3.	In	this	example,	component	B
is	the	same	as	in	the	previous	example.	It	is	placed	in	the	center	of	the	layout.
Component	D	combines	the	bottom	layout	attribute	and	the	center
horizontally	layout	attribute.	It	is	laid	out	below	component	B.	Component	E

horizontally	layout	attribute.	It	is	laid	out	below	component	B.	Component	E
is	set	to	be	laid	out	below	the	component	D	as	well	as	set	to	align	right	of	the
component	D.	Now,	no	matter	what	the	layout	size	in	total	is	these
components	always	stick	together.

Figure	13-3:	An	example	of	relative	layout	components	placed	relative	to
each	other.

The	following	source	code	shows	you	how	the	components	from	Figures	13-2
and	13-3	can	be	defined	in	Android	layout	XML.	Figure	13-4	shows	the
resulting	user	interface.

<?xml	version=”1.0”	encoding=”utf-8”?>	<RelativeLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”

				android:orientation=”vertical”	>

	
				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_alignParentLeft=”true”

								android:layout_alignParentTop=”true”

								android:text=”button	a”	/>

	
				<Button

								android:id=”@+id/button_b”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_centerInParent=”true”

								android:text=”button	b”	/>

	
				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_alignParentBottom=”true”

								android:layout_centerHorizontal=”true”

								android:text=”button	c”	/>

	
				<Button

								android:id=”@+id/button_d”

								android:layout_width=”150dp”

								android:layout_height=”wrap_content”

								android:layout_below=”@id/button_b”

								android:layout_centerHorizontal=”true”

								android:text=”button	d”	/>

	
				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_alignRight=”@id/button_d”

								android:layout_below=”@id/button_d”

								android:text=”button	e”	/>

	

</RelativeLayout>

Figure	13-4:	Screenshot	of	the	user	interface	produced	from	the	relative
layout	example	code.

Linear	Layout

Linear	layout	is	a	much	more	simple	than	the	relative	layout	manager.	In	a
linear	layout	all	components	are	placed	one	below	the	other,	or	side-by-side.
It	is	worth	noting	that	unlike	some	similar	layouts	on	other	platforms,	linear
layout	does	not	support	automatic	flow	of	elements.	It	always	places	the
elements	in	exactly	one	row	or	exactly	one	line.

You	can	set	the	direction	of	a	linear	layout	by	setting	the
android:orientation	attribute	value	to	horizontal	or	vertical.

You	can	also	add	a	layout	weight	attribute	to	any	child	components	you	place
inside	a	linear	layout.	This	attribute	defines	how	much	extra	spacing	is	added
to	the	child	component.	By	default,	the	child	components	are	not	stretched
and	their	weight	values	are	0.	Any	value	higher	than	0	will	make	the	child
component	use	more	of	the	available	space	related	to	its	siblings.

The	following	code	example	and	Figure	13-5	demonstrate	the	linear	layout
and	layout	weight	in	practice.	Note	that	button	A	takes	only	the	vertical	space
it	needs,	whereas	the	other	two	buttons	are	stretched	to	fill	the	space	of	the
parent	layout.	Button	B	is	twice	the	size	of	button	C	as	it	has	double	the
layout	weight.

Figure	13-5:	Screenshot	of	the	user	interface	produced	from	the	linear	layout
example	code.

Note	that	the	values	of	the	weight	attribute	do	not	have	to	be	between	0	and
1.	Values	5	and	10	have	exactly	the	same	effect	as	0.5	and	1.	It	is	also	worth
noting	that	components	that	have	the	same	weight	are	not	necessarily	the
same	size	in	the	resulting	screen.	The	weight	attribute	affects	only	the
division	of	the	empty	extra	space	between	the	components.

<?xml	version=”1.0”	encoding=”utf-8”?>	<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”

				android:orientation=”vertical”	>

	
				<Button

								android:layout_width=”fill_parent”

								android:layout_height=”wrap_content”

								android:text=”button	a”	/>

	
				<Button

								android:layout_width=”fill_parent”

								android:layout_height=”wrap_content”

								android:layout_weight=”1”

								android:text=”button	b”	/>

	
				<Button

								android:layout_width=”fill_parent”

								android:layout_height=”wrap_content”

								android:text=”button	c”

								android:layout_weight=”0.5”/>

</LinearLayout>

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Frame	Layout
Frame	layout	is	the	simplest	layout	of	all,	but	it	can	still	be	very	useful.	A
frame	layout	is	simply	a	container	for	elements.	Usually	a	frame	layout
contains	only	one	child	element,	but	in	some	cases	you	might	want	to	add
more	elements	to	it.	The	only	control	you	have	over	where	the	child	element
is	placed	is	using	the	layout	gravity	setting,	which	is	explained	in	the	next
section.	Otherwise,	all	the	components	you	add	to	a	frame	layout	are	placed
on	top	of	each	other.	The	z-order,	or	the	order	in	which	the	components	are
drawn,	is	defined	by	the	order	you	add	components	to	the	layout.
Components	added	early	are	drawn	first	and	components	added	later	are
drawn	on	top	of	them.	In	the	following	code,	the	button	labeled	button	b	will
be	drawn	on	top	of	the	button	labeled	button	a,	covering	it.

<?xml	version=”1.0”	encoding=”utf-8”?>

<FrameLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”	>

	

				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:text=”button	a”	/>

	

				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:text=”button	b”	/>

	

</FrameLayout>

A	common	use	for	frame	layouts	is	when	a	component	is	shown	only
temporary,	such	as	when	showing	a	loading	indicator.	You	might	place	your
main	user	interface	layout	and	the	loading	indicator	as	a	child	of	the	same
frame	layout.	This	makes	sure	that	the	loading	indicator	is	in	the	center	of
your	user	interface.	Once	the	process	is	finished,	you	simply	set	the	loading
indicator	visibility	to	gone	and	you’re	done.

Layout	Gravity
Layout	gravity	defines	where	in	the	parent	layout	the	child	components	are
placed.	Not	all	layouts	support	layout	gravity	and	it	is	more	important	on	a
frame	layout	than	on	other	layouts.	For	any	component,	you	can	set	an
android:layout_gravity	attribute,	which	tells	the	layout	where	the
component	should	be	placed	related	to	the	layout.

The	following	example	code	and	Figure	13-6	show	how	the	frame	layout	and
gravity	attribute	works.

<?xml	version=”1.0”	encoding=”utf-8”?>	<FrameLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”	>

				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_gravity=”top|right”

								android:text=”button	a”	/>

	
				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_gravity=”center”

								android:text=”button	b”	/>

	

				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_gravity=”bottom|center_horizontal”

								android:text=”button	c”	/>

	

</FrameLayout>

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Figure	13-6:	Screenshot	of	the	user	interface	produced	from	the	frame	layout
example	code.

Grid	Layout	and	Table	Layout
Grid	layout	is	a	very	flexible	but	rarely	useful	layout.	As	its	name	suggests,
it’s	a	layout	you	can	use	to	create	grids	of	user	interface	items.	The	layout	has

a	wide	variety	of	attributes	you	can	use	to	specify	how	the	child	components
are	laid	out.	For	the	full	set	of	available	options,	see	the	Android
documentation	at
http://developer.android.com/reference/android/widget/GridLayout.html

Note	that	the	grid	layout	is	available	only	with	API	level	13	(Android	4.0)	or
newer.

The	following	example	code	creates	a	very	simple	grid	layout.	Figure	13-7
shows	how	it	looks	on	a	phone.

<?xml	version=”1.0”	encoding=”utf-8”?>	<GridLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”wrap_content”

				android:layout_height=”wrap_content”

				android:columnCount=”2”	>

	
				<TextView

								android:layout_margin=”5dp”

								android:background=”#AA222222”

								android:padding=”10dp”

								android:text=”col1	row1”	/>

	
				<TextView

								android:layout_margin=”5dp”

								android:background=”#AA222222”

								android:padding=”10dp”

								android:text=”col2	row1”	/>

	
				<TextView

								android:layout_columnSpan=”2”

								android:layout_gravity=”fill_horizontal”

								android:layout_margin=”5dp”

								android:background=”#AA222222”

								android:padding=”10dp”

								android:text=”col1,2	row2”	/>

	

</GridLayout>

http://developer.android.com/reference/android/widget/GridLayout.html

Figure	13-7:	Screenshot	of	the	user	interface	produced	from	the	grid	layout
example	code.

Table	layout	is	somewhat	similar	to	the	newer	grid	layout	but	it	is	available
from	the	API	level	1.	The	table	layout	has	some	problems,	though.	It	is
nowhere	near	as	flexible	as	the	grid	layout.	Table	layout	has	a	very	limited	set
of	uses	and	most	of	them	can	be	handled	better	by	a	relative	layout.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Tabs
Tabbed	user	interfaces	are	very	powerful	and	useful	concepts.	You’ll	learn
more	about	tabbed	user	interfaces	in	Chapter	19.

Defining	a	layout	size

Every	Android	user	interface	component	must	have	both	width	and	height
set.	Not	providing	these	attributes	will	cause	a	runtime	crash.	In	an	XML
layout	definition,	these	values	are	provided	by	adding	the
android:layout_width	and	android:layout_height	attributes	to	all	user
interface	components,	including	the	all	layouts.

In	order	to	define	the	component’s	size	you	can	give	any	of	the	following
values	to	the	attributes.

•	wrap_content—Setting	a	component	width	or	height	to	wrap_content
makes	the	component	use	only	as	much	space	as	it	needs.	The	actual	size
of	the	component	depends	on	its	child	component	sizes.
•	match_parent	(formerly	fill_parent)—The	dimension	of	the
component	will	fill	all	available	space.	The	match_parent	value	was
previously	called	fill_parent.	The	name	change	was	made	in	Android
API	level	8.	The	values	are	synonyms;	there	is	no	difference.

•	Dimension	value	in	density	independent	pixels—Recall	that	the	concept
of	density	independent	pixels	was	explained	in	Chapter	12.	Never	use
pixels	to	define	any	size;	always	use	density	independent	pixels	instead.

Scrolling
Scrolling	containers	or	scroll	views	are	familiar	tools	from	other	platforms
and	have	been	around	for	a	long	time.	A	scrollable	container	allows	you	to
have	larger	user	interface	structures	than	the	screen	can	hold.	Users	can	then
scroll	the	viewport	(the	area	that	is	visible)	to	see	the	entire	area.

Scroll	views	work	a	bit	differently	on	touch	screen	devices	than	they	do	on
computers	that	are	operated	with	a	mouse.	On	a	mouse-controlled	system,	the
viewport	moves	by	moving	scroll	bar	controls	up	and	down	and	left	and	right.
On	a	touch-based	device,	users	move	the	viewport	by	dragging	it.

The	difference	in	interaction	methods	causes	some	problems	on	touch	devices
that	are	not	present	on	other	devices.	On	touch	devices	it	is	not	possible	to
have	two	scrollable	components	inside	each	other	if	both	of	the	components
can	be	scrolled	in	same	direction	(horizontal	or	vertical).	This	limitation	also
extends	limiting	use	of	any	swipe	gestures	inside	scroll	views	that	have	same
direction	as	the	scroll	view.

direction	as	the	scroll	view.

Scroll	View
Android	ScrollView	is	the	component	providing	scrolling	functionality.	It
has	fairly	limited	functionality	but	it	is	sufficient	for	the	large	majority	of
cases.

A	scroll	view	can	have	only	one	child	component,	usually	a	layout.	It	also
supports	only	vertical	scrolling.

An	important	attribute	to	know	for	scroll	views	is	android:fillViewport.
Setting	this	attribute	to	true	will	cause	the	scroll	view’s	child	component	to
expand	to	fill	the	view	port	in	case	it	is	smaller	than	the	available	space.	This
is	usually	the	functionality	that	users	expect.	Setting	the	child	component
height	to	fill_parent	alone	is	not	enough.

Z	axis,	layout	order
Sometimes	it	is	necessary	to	place	components	on	top	of	each	other.	In	that
case	it	is	important	to	define	the	component	z-order	correctly.	The	z-order	is
the	order	that	components	are	drawn.	Components	that	are	drawn	later	appear
to	be	on	top	of	the	ones	drawn	before.

In	Android	layouts,	the	z-order	is	defined	simply	by	the	component	definition
order	on	the	layout	file	or	the	order	the	components	are	added	to	a	layout
from	code.	Any	components	that	are	added	to	the	layout	earlier	(on	top	of	a
layout	file)	are	drawn	first.

Padding	and	Margin
Getting	the	component	spacing	right	makes	your	user	interface	look	much
nicer.	Android	provides	you	two	sets	of	controls	to	influence	the	component
spacing	on	any	user	interface.

Margin	defines	how	much	empty	space	should	be	left	outside	the	component.
Components	should	almost	always	have	set	margins.	Placing	components	too
close	to	each	other	will	make	your	user	interface	look	too	busy.	More
importantly,	because	Android	user	interfaces	are	touch	interfaces,	leaving

margins	between	different	controls	helps	users	press	their	intended	target.
Margins	between	two	touch	controls	should	be	at	least	2mm,	which	in
Android	is	about	13-15dp.

Padding	on	the	other	hand	defines	how	much	space	should	be	left	inside	the
component	border	but	outside	the	component	content.	Figure	13-8	shows	a
helpful	illustration	of	padding	and	margin.

Figure	13-8:	An	abstract	illustration	of	padding	and	margin	related	to	a	user
interface	component.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Import	and	Merge	layout	files
It	is	always	good	to	avoid	copying	any	code;	this	will	make	maintaining	and
debugging	the	code	easier.	Due	to	the	folder	structure	and	the	resource
qualifier	use,	you	might	end	up	in	situations	where	you	need	the	same	code
either	partially	or	fully	in	multiple	places.	You	might	also	have	some	reusable
layouts	you	want	to	use	as	part	of	multiple	different	screens.

Fortunately,	there’s	a	good	way	to	reuse	the	same	code	in	multiple	places.
You	can	use	the	include	element	to	import	a	layout	file	to	another	file.	You
simply	give	the	element	a	parameter	that	tells	the	system	which	file	you	want
to	include.	See	the	following	example:	<?xml	version=”1.0”	encoding=”utf-

8”?>	<FrameLayout
xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”	>

					<include	layout=”@layout/merge_example”/>	</FrameLayout>

Using	include	might	lead	to	a	situations	where	unnecessary	layouts	are
created.	For	example,	in	the	previous	code	example,	if	the	included	layout	has
another	root	layout	the	frame	layout	element	is	unnecessary.	This	is	where	the
merge	element	enters	the	picture.

You	can	use	the	merge	element	as	the	root	element	of	any	of	your	layout
XML	files.	When	a	layout	like	the	following	example	code	is	induced	in
another	layout,	the	system	simply	ignores	the	merge	element	and	adds	its
child	elements	to	the	layout.

<?xml	version=”1.0”	encoding=”utf-8”?>	<merge

xmlns:android=”http://schemas.android.com/apk/res/android”	>

				<Button

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_gravity=”top|right”

								android:text=”A	button	from	merged	layout”	/>

</merge>

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Custom	layouts
As	with	any	other	user	interface	component	you	can	also	create	your	own
layouts.	Although	this	is	very	seldom	needed,	it	can	sometimes	be	a	lifesaver.
All	layouts	derive	from	the	ViewGroup	class	and	any	custom	layout	class	must
do	the	same.	Often	the	best	way	to	reach	your	goals	is	to	utilize	one	of	the
ready	layout	classes	and	then	slightly	modify	its	functionality	instead	of	fully
creating	a	new	layout	class	from	scratch.

Android	Development	Tools	user	interface
builder	The	Android	Eclipse	plug-in—
Android	Development	Tools	(ADT)—

Android	Development	Tools	(ADT)—
provides	a	graphical	user	interface	builder
that	you	can	use	to	compose	your	user
interface	definitions	by	dragging	and
dropping	components.	The	Eclipse	plug-in	is
under	active	development	by	the	Google’s
Android	tools	team,	and	it	is	likely	that	by	the
time	you	are	reading	this,	the	user	interface
builder	will	have	multiple	improvements.
Therefore,	this	section	doesn’t	fully	explore
all	of	its	features.	Instead,	I	encourage	you	to
look	into	the	tools	and	experiment	with	them.

Even	when	the	graphical	tools	get	better,	it	is	always	good	to	make	sure	that
the	generated	XML	code	is	exactly	the	way	you	meant	it	to	be.	The	graphical
tools	can	be	used	to	create	user	interfaces	faster	than	manually	writing	them.
You	can	save	a	lot	of	time—while	prototyping	for	example—by	leveraging
the	graphical	tools.	The	graphical	user	interface	builder	can	be	very	helpful
for	learning	the	more	complex	layouts	like	the	relative	layout.	Figure	13-9
shows	an	example	screenshot	of	the	tool	helping	users	understand	how	the
selected	component	will	be	anchored	in	a	relative	layout.

Figure	13-9:	Android	ADT	plug-in	user	interface	builder.

Source:	Android	SDK

Debugging	layouts
It	is	sometime	very	difficult	to	understand	the	complex	dynamic	layout
structures	that	are	generated	in	the	app	runtime.	These	dynamic	layouts	are
very	difficult	to	debug	when	something	goes	wrong,	such	as	when	a	view	that
should	be	visible	isn’t.	The	Android	SDK	provides	you	with	one	more,	great
tool	for	debugging	your	views—the	Hierarchy	Viewer.	You	can	find	this	tool
in	your	Android	SDK’s	installation	folder	under	the	tools	folder.

The	Hierarchy	Viewer	connects	to	a	runtime	process	and	creates	a	graphical
presentation	of	the	layout	tree.	You	can	then	inspect	individual	elements	to
better	understand	what’s	going	on.	You	can,	for	example,	see	elements	that
have	zero	width	or	zero	height	in	the	tree,	and,	therefore,	do	not	show	up.
This	tool	can	be	a	lifesaver.	I	encourage	you	to	explore	it.	Figure	13-10
shows	an	example	screenshot	of	this	tool	in	action.	Note	that	the	Hierarchy
Viewer	can	be	used	only	with	the	Android	emulator	or	with	developer
devices.	It	cannot	load	the	layout	hierarchy	from	non-developer	devices.

devices.	It	cannot	load	the	layout	hierarchy	from	non-developer	devices.

Figure	13-10:	The	Android	Hierarchy	Viewer	shows	detailed	information	of
the	runtime	layout.

Source:	Android	SDK

Summary
Android	layout	managers	are	very	powerful	tools	that	you	can	use	to	create
flexible	and	scalable	user	interfaces.	Take	time	to	learn	the	layouts	to
understand	where	they	are	best	utilized	and	to	know	their	limitations.	The
best	and	most	flexible	of	all	Android	layout	is	the	relative	layout.	Make	sure
you	have	mastered	it.	If	you	are	a	designer,	the	relative	layout	will	be	the	key
to	drawing	user	interface	specifications	that	your	developers	can	easily
implement.

	

Chapter	14:	Scalable	Graphics
Graphical	components	are	the	most	difficult	ones	to	scale	correctly	of	all	of	the
different	screen	sizes	and	densities	that	Android	devices	have.	There	are	many
types	of	graphics	that	cannot	be	stretched	or	resized	without	destroying	the	look.
Anything	with	gradients,	diagonal	lines,	or	text	will	look	weird	when	stretched
or	scaled	even	a	little	bit.

Take	a	look	at	the	example	background	in	Figure	14-1.	Having	diagonal	lines
combined	with	a	circular	gradient	would	be	a	nightmare	scenario	if	you	could
only	use	bitmap	graphics.	How	would	you	create	that	bitmap?	The	aspect	ratio
must	be	the	same	because	even	a	small	distortion	will	make	the	circular	form
seem	wrong.	Scaling	the	image	will	not	work	either,	because	the	spacing
between	the	lines	would	then	be	wrong.	You	could	provide	one	very	large
bitmap	that	would	fit	to	the	largest	display.	However,	in	addition	to	this	looking
bad	on	the	smaller	screens,	the	large	bitmap	would	cause	performance	problems
in	your	app	due	to	its	larger	memory	consumption.

Figure	14-1:	The	round	gradient	with	its	diagonal	lines	is	an	example	of	a
graphic	situation	that	would	be	impossible	to	provide	as	a	single	file	in	a
scalable	manner.

Fortunately,	there	are	a	lot	of	useful	tools	and	techniques	that	allow	you	to
create	complex	graphics	that	are	scalable.	This	chapter	explains	how	and
when	to	use	them.

Nine-patching
Nine-patching	is	probably	the	most	powerful	tool	that	the	Android	platform
provides	when	it	comes	to	handling	scalable	graphical	assets.

The	idea	of	nine-patching	is	not	new	or	unique	to	Android.	It	has	been	in	use
in	web	graphics	for	some	time.	The	theory	of	nine-patch	images	is	very
simple.	An	image,	for	example	a	button	background,	is	divided	into	nine
images.	Each	of	the	corners	is	a	separate	image,	the	bits	between	these	corner
images	are	separate	images,	and	then	the	part	that	is	left	in	the	middle	is	an
image	(see	Figure	14-2).	As	a	result	of	this	splitting,	the	image	can	be	scaled

image	(see	Figure	14-2).	As	a	result	of	this	splitting,	the	image	can	be	scaled
without	ruining	its	rounded	corners	and	borders.	When	content	is	placed	in	a
nine-patch	image,	the	corners	remain	their	original	sizes,	but	the	parts
between	them	and	the	center	part	are	scaled	to	accommodate	the	content.

Figure	14-2:	An	example	of	button	background	divided	into	a	nine-patch
image.

Nine-patch	structure	in	Android
Although	nothing	prevents	you	from	building	nine-patch	images	the	same
way	they	are	used	in	the	web,	it	can	be	done	much	more	simply.	Android
provides	with	you	a	shortcut	that	can	save	a	lot	of	time	and	effort	as	well	as
making	the	nine-patching	on	Android	more	flexible	than	the	original	idea.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

On	Android	nine-patch	images	are	defined	by	adding	a	one-pixel	border	to
the	full	image.	On	that	one-pixel	border,	you	can	define	where	the	image	is
going	to	be	stretched	and	where	the	content	will	be	placed	by	placing	black
pixels	in	the	border.	The	operating	system	automatically	strips	the	one-pixel
border	out	of	the	resulting	graphics	and	uses	the	information	to	correctly
scale	the	image	and	place	the	content.	The	top	and	right	parts	of	the	border

scale	the	image	and	place	the	content.	The	top	and	right	parts	of	the	border
define	which	parts	of	the	image	are	stretched	and	the	bottom,	and	right	parts
of	the	border	define	where	the	content	is	placed	(the	padding).

Nine-patch	images	must	have	a	special	identifier	in	their	filename	for	the
Android	operating	system	to	recognize	them	as	such.	All	nine-patch	images
must	be	named	<imagename>.9.png.

The	following	example	will	make	it	easier	for	you	to	understand	how	nine-
patching	works	in	practice.	Figure	14-3	shows	a	Polaroid-style	picture	border.
Say	that	you	want	to	use	that	as	a	border	for	your	images	but	the	images	vary
in	sizes.	The	image	contains	text.	Having	text	is	always	problematic	when
scaling,	as	different	aspect	ratios	will	always	make	the	text	look	bad.	Scaling
text	is	also	not	very	desirable;	the	result	is	likely	to	be	pixilated.

Figure	14-3:	An	example	background	image	imitating	a	Polaroid-style	picture
border.

Let’s	see	how	the	example	image	can	be	used	in	a	scalable	way	by	utilizing
the	Android	nine-patching.	For	this	image	to	work,	it’s	important	that	the
background	is	stretched	from	places	where	it	will	not	cause	the	text	to	be
distorted	as	well	as	to	keep	the	borders	the	correct	size.

Figure	14-4	shows	how	this	example	is	defined	to	be	scalable.	To	keep	the

Figure	14-4	shows	how	this	example	is	defined	to	be	scalable.	To	keep	the
text	from	stretching,	I’ve	set	two	pixels	on	both	sides	of	the	text	to	be	the
scaling	pixels	on	the	top	border.	Now,	I’ve	only	added	one	pixel	to	be	scaled
because	the	background	is	a	constant	color.	If	you	have	color	patterns	or
other	effects,	you	need	to	carefully	consider	how	the	stretching	is	going	to	be
done.	Note	that	I	also	added	exactly	one	pixel	on	both	sides	of	the	text	so	the
image	is	scaled	in	the	same	proportions	on	both	sides	and	the	text	stays	in	the
middle.

For	height	I’ve	added	only	one	pixel	to	be	scaled.	In	this	case	it	doesn’t
matter	much	where	this	pixel	is	placed	as	long	as	it	is	above	the	bottom-white
part	and	below	the	top-white	part.	Note	that	the	stretching	area	does	not	have
to	be	only	one	pixel.	It	can	be	any	size	you	like.

Content	placement	of	the	padding	definition	is	very	simple.	The	content
image	is	placed	in	the	gray	area.	Figure	14-5	shows	a	few	examples	of
different	size	content	images	placed	as	content	for	this	nine-patch	example.

Figure	14-4:	Example	of	nine-patch	definition.

Figure	14-5:	Resulting	rendering	of	the	example	image	border	when	nine-
patching	is	utilized	correctly.

Tip:	When	using	nine-patch	images,	it’s	important	to	understand	that	the
operating	system	never	scales	nine-patch	images	smaller	than	the	original
size.	This	means	that	you	should	aim	to	optimize	your	graphics	to	be	as	small
as	possible	to	accommodate	all	possible	content.	Making	the	images	small
also	makes	your	app	smaller	and	conserves	runtime	memory.

Figure	14-6	shows	how	the	Polaroid-style	example	can	be	optimized.	Using
this	image	will	yield	exactly	same	results	as	the	image	in	Figure	14-5.

Figure	14-6:	Rendering	of	the	example	image	border	when	nine-patching	is
utilized	correctly.

Using	nine-patch	images	in	code
Nine-patch	images	are	most	useful	when	used	as	background	images.	Using
them	is	very	simple,	as	the	content	placement	is	included	in	the	image	itself.

The	following	code	example	demonstrates	the	use	of	nine-patch	images	as	an
ImageView	background	(you	can	use	it	on	any	other	component	background
too).	The	reference	to	@drawable/example_nine_patch	points	to
example_nine_patch.9.png.	Note	that	you	don’t	use	the	.9	in	the	drawable
reference.

				<ImageView

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:background=”@drawable/example_nine_patch”

								android:src=”@drawable/example_content_high”

								android:layout_margin=”10dp”/>

Nine-patch	tool	in	SDK
The	easiest	way	to	build	nine-patch	files	is	to	use	a	free	utility	tool	called
Draw	9-patch,	which	is	provided	with	the	Android	SDK	(see	Figure	14-7).
You’ll	find	this	tool	in	your	Android	SDK	installation	folder	under	the	tools
subfolder.

This	tool	allows	you	to	take	your	original	image	and	define	the	one-pixel

This	tool	allows	you	to	take	your	original	image	and	define	the	one-pixel
borders	easily.	Any	image	you	upload	to	the	tool	will	have	the	border
automatically	added	unless	the	image	is	already	in	the	nine-patch	format.

The	tool	also	provides	a	handy	preview	of	your	image	in	different	sizes	so
you	can	see	immediately	how	it	will	be	scaled.	To	see	how	the	content	will	be
placed	when	the	nine-patch	image	is	used	as	a	background,	you	enable	the
Show	Content	checkbox.	A	content	overlay	will	be	drawn	on	the	preview
images.

Nine-patch	images	from	drawing	tools
The	Draw	9-patch	tool	isn’t	the	most	flexible	tool	in	the	world.	Designers
who	are	already	familiar	with	the	everyday	tools	will	likely	prefer	to	use	them
instead.	Using	Photoshop	or	any	other	similar	tool	is	possible	and	easy	too.
You	just	manually	add	the	one-pixel	border.	The	border	must	be	fully
transparent	other	than	where	the	control	pixels	are.	The	control	pixels	must	be
full	black	without	any	transparency.	It’s	good	idea	to	open	the	nine-patch
images	on	the	Draw	9-patch	tool	to	check	that	everything	works	as	intended.
Using	the	wrong	pixels	on	the	border	will	cause	a	runtime	crash	when	the
image	is	used.

Figure	14-7:	Android	SDK’s	Draw	9-patch	tool.

Figure	14-7:	Android	SDK’s	Draw	9-patch	tool.

Source:	Android	SDK

Drawable	XML
Recall	that	the	start	of	this	chapter	mentioned	gradients	and	other	graphics
that	are	impossible	to	scale	even	when	using	the	nine-patch	method.
Fortunately,	the	Android	platform	is	not	out	of	tricks	yet.	The	platform
supports	creating	simple	graphical	forms	using	XML-based	definitions.	You
can	create	simple	shapes,	colors,	gradients,	and	even	bitmap	effects	by	simply
defining	XML	files.	These	XML	files	are	placed	in	your	project’s	resources
folder	in	the	drawables	folder.	They	can	be	used	in	the	same	way	as	any
other	drawables	and	can	also	benefit	from	Android’s	excellent	Resource
Manager.

Shapes
You	can	draw	simple	shapes	by	defining	them	in	XML.	The	shapes	available
to	you	are	rectangle,	oval,	line,	and	ring.	My	opinion	is	that	these	shapes	are
not	very	helpful	alone	but	can	be	used	in	combination	with	other	drawables	to
create	visual	effects	very	efficiently.	Figure	14-8	shows	some	examples	of
rectangle	and	oval	drawables.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Figure	14-8:	Examples	of	rectangle	and	oval	drawables	from	the	XML
definitions.

The	way	you	define	these	drawables	is	to	use	a	shape	element	and	its
android:shape	attribute	to	describe	which	shape	you	want	drawn.	You	can
then	add	child	elements	to	the	shape	element	to	change	its	properties.	See	the
following	code	example.	It	is	the	top	shape	in	Figure	14-8—the	rectangle.
The	rectangle	also	has	a	gradient	(more	about	gradients	shortly)	defined	as
the	fill	color,	with	rounded	corners	and	a	stroke	color.

<?xml	version=”1.0”	encoding=”utf-8”?>

<shape	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:shape=”rectangle”	>

	
				<gradient

								android:endColor=”#66FF0000”

								android:startColor=”#FF00FF00”

								android:type=”sweep”	/>

	
				<corners	android:radius=”5dp”	/>

	
				<stroke

								android:width=”3dp”

								android:color=”#FF0000FF”	/>

	

</shape>

The	following	source	code	shows	a	different	example.	This	code	defines	the
other	shape	from	Figure	14-8—the	oval.	The	oval	also	has	a	fill	color
defined,	this	time	it’s	a	solid	color	and	a	stroke	color.

<?xml	version=”1.0”	encoding=”utf-8”?>

<shape	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:shape=”oval”	>

	
				<solid	android:color=”#44FF0000”	/>

	
				<stroke

								android:width=”3dp”

								android:color=”#FF00FFFF”	/>

	

</shape>

As	you	see	these	shapes	are	fairly	simple	but	also	very	flexible.	It	is	worth
keeping	these	in	mind	when	creating	your	graphical	design.	Using	a	shape
instead	of	a	bitmap	will	be	much	more	memory	efficient	as	well	as	more
scalable.

Padding
You	can	add	padding	to	your	shape’s	drawables	by	adding	a	padding	element.
However,	you	might	not	need	to	define	the	padding	here,	because	you	can
define	it	in	the	layout	XML.	In	some	cases	the	padding	element	can	be	very
useful.	It	can	be	especially	important	when	defining	layered	drawables.	You
learn	more	about	composite	layered	drawables	later	in	this	chapter.

Gradients
Gradients	are	nearly	impossible	to	implement	in	a	scalable	way	when	you
have	a	bitmaps	whose	size	is	not	well	defined.	Fortunately	you	can	create
gradients	as	fill	colors	for	any	shape.	These	gradients	can	then	be	used	as
backgrounds	on	your	components	or	as	part	of	a	layered	composite	drawable.
You’ll	learn	about	these	composites	shortly.

You’ll	learn	about	these	composites	shortly.

Android	provides	three	gradient	types	for	you:

•	Linear—Gradient	is	drawn	in	one	direction.
•	Radial—Gradient	starts	from	a	single	point	and	expands	out	in	a	radial
manner.
•	Sweep—Gradient	direction	follows	a	circular	line.

The	first	two	are	very	useful,	and	many	designers	use	them	in	their	designs.
The	sweep	is	much	more	rare,	but	at	least	there’s	the	option	if	you	ever	run
into	a	situation	where	it	is	needed.

For	any	gradient	you	need	to	define	a	start	and	end	color.	You	can	also	define
an	optional	third	middle	color.	Other	attributes	vary	between	the	gradient
styles.	For	a	linear	gradient	you	can	define	an	angle	that	tells	the	system
which	way	the	linear	gradient	is	drawn.	For	the	radial	gradient,	you	need	to
define	the	radius	and	optionally	set	offset	coordinates	for	the	gradient’s
center.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Color
A	color	drawable	fills	the	available	space	with	the	selected	color.	This	simple
drawable	can	help	make	composite	drawables	easily	customizable	and
maintainable.	Note	that	(as	in	any	other	drawable)	here	too	you	can	use	the
color	resources	to	set	the	color.	The	following	code	example	shows	how
simple	it	is	to	define	a	color	drawable.

<?xml	version=”1.0”	encoding=”utf-8”?>

<color	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:color=”#FFFF0000”	>

</color>

Bitmaps
You	can	also	have	a	drawable	XML	for	a	bitmap.	There	is	one	very	important
use	for	this—tiling.	If	you	want	to	have	a	background	of	an	unspecified	size
component	or	have	your	app’s	background	use	a	graphical	pattern,	this	is

component	or	have	your	app’s	background	use	a	graphical	pattern,	this	is
pretty	much	the	only	option	you	have	to	implement	it	so	it	can	scale	and	not
suck	massive	amounts	of	memory.

The	Android	platform	supports	three	tiling	modes.	Two	of	them	are	very
useful.	You	can	change	the	tiling	mode	by	setting	the	android:tileMode
attribute	in	the	bitmap	element	to	one	of	the	following	values	(note	that	the
default	is	no	tiling):	•	Repeat—Repeats	the	bitmap	in	both	directions.

•	Mirror—Repeats	the	shader’s	image	horizontally	and	vertically,
alternating	mirror	images	so	that	adjacent	images	always	seam.

•	Clamp—Replicates	the	edge	color.

Repeat	is	the	simple	mode	where	the	available	space	is	filled	with	the	bitmap
by	repeating	it	as	it	is.	Mirror	does	the	same	thing,	but	alternates	with
mirrored	and	normal	bitmap	for	every	other	row.	Clamp	is	a	special	mode
that	isn’t	tiling	as	such.	It	forces	the	bitmap’s	border	color	to	be	used	to	fill	in
the	remaining	space.	Figure	14-9	shows	examples	of	the	repeat	and	mirror
modes.

The	following	example	code	demonstrates	the	use	of	the	tile	mode	in	a
bitmap	XML	element.	The	bitmap	used	is	a	simple	single	triangle.	The	same
bitmap	is	used	with	both	examples.

<bitmap	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:dither=”true”

				android:src=”@drawable/example_triangle”

				android:tileMode=”repeat”	/>

Figure	14-9:	Examples	of	tiling	bitmaps	using	repeat	(above)	and	mirror
(below)	mode.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Composite	drawables	with	layers
Android	also	allows	you	to	create	drawables	by	combining	multiple
drawables	into	one	layer.	This	method	can	be	very	handy	especially	when
combining	bitmaps	with	simple	shapes	or	colors.	You	might,	for	example,
have	some	kind	of	chrome	effect	that	is	created	as	a	nine-patch	image	and
used	in	combination	of	a	dynamic	choice	of	color.	You	can	create	a	simple
composite	drawable	with	a	color	layer	combined	with	the	bitmap.

For	layered	drawable	you	need	to	use	the	layer-list	element.	The	layer-list	can
be	placed	into	a	drawable	XML	and	used	the	same	way	any	other	drawable
can.	In	the	layer-list	you	define	any	number	of	child	item	elements.	Each	item

can.	In	the	layer-list	you	define	any	number	of	child	item	elements.	Each	item
can	either	refer	to	another	drawable	or	can	contain	any	of	the	drawable
definitions	described	previously.

Take	a	look	at	the	following	example	code	and	the	resulting	drawable	shown
in	the	Figure	14-10.	In	this	example	code	you	can	see	how	the	items	can	even
be	nine-patch	images	as	well	as	any	other	drawables.	Note	that	in	case	of	a
nine-patch	image,	the	system	automatically	applies	the	padding	values	from
the	nine-patch.	Padding	values	from	other	drawables	are	also	automatically
applied.	The	system	considers	elements	that	are	defined	later	as	child
elements	of	the	earlier	defined	elements.

Figure	14-10:	An	example	layer-list	drawable	used	to	draw	multiple	layers.

<?xml	version=”1.0”	encoding=”utf-8”?>

<layer-list	xmlns:android=”http://schemas.android.com/apk/res/android”	>

				<item>

								<nine-patch	android:src=”@drawable/example_nine_patch”	/>	</item>

				<item	android:drawable=”@drawable/example_circular_gradient”/>	<item>

								<color	android:color=”#3300FF00”	/>	</item>

				<item	android:drawable=”@drawable/tiled_background”/>

</layer-list>

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Scale	and	Rotate
You	can	also	scale	and	rotate	drawables	using	the	drawable	definitions.	Scale
and	rotate	elements	allow	you	to	apply	scaling	or	rotation	to	any	drawable.

See	the	following	source	code	and	Figure	14-11	for	an	example	of	rotation
applied	to	the	layered	drawable	created	in	the	previous	section.

<?xml	version=”1.0”	encoding=”utf-8”?>

<rotate	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:drawable=”@drawable/example_layer_drawable”

				android:fromDegrees=”45”

				android:pivotX=”50%”

				android:pivotY=”50%”	/>

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Reminder	About	Selectors
Selectors	are	an	important	part	of	the	drawable	options.	They	allow	you	to	define	different	drawables
based	on	the	user	interface	component	state.	The	operating	system	then	automatically	handles	the
process	of	changing	the	graphics.	Selectors	were	covered	in	Chapter	11	and	so	aren’t	repeated	here.

Figure	14-11:	An	example	layer-list	drawable	used	to	draw	multiple	layers.

Drawing	from	code
Of	course,	using	XML	definitions	to	create	graphics	isn’t	always	detailed
enough.	The	Android	platform	also	provides	great	tools	for	creating	visual
presentations	of	components	in	the	Android	code.	On	the	code	level,	you	can
change	almost	everything	but	it	is	also	noticeably	more	complex	and	requires
more	effort.	My	recommendation	is	to	carefully	research	the	available
components	and	their	functionality	before	implementing	your	own.

To	draw	your	own	graphics,	you	need	to	create	your	own	class	that	inherits
from	the	View	class	or	one	of	its	descendants.	I	encourage	you	to	find	the
class	that	most	closely	resembles	the	functionality	you	need	and	make	that
your	class’s	superclass.	That	way,	you	will	likely	need	to	customize	only	part
of	the	class	and	can	use	the	bulk	of	it	as	is.	If,	for	example,	you	want	to
change	the	way	some	buttons	work	or	look,	you	should	start	with	the	Button
class	and	replace	the	functionality	only	when	you	must.

To	define	how	your	new	component	is	going	to	be	drawn,	you	must	override
the	onDraw(Canvas)	method.	Depending	on	the	situation	you	might	not	want
to	call	.	If	you	want	to	maintain	the	original	component’s	visuals	and	simply
add	to	it,	you	should	call	the	super	method.	If	you	want	to	fully	override	the
component’s	visuals,	you	can	ignore	it.

When	you’re	writing	code	for	the	onDraw	method	pay	extra	attention	to	your
code’s	performance.	It	is	possible	that	this	code	will	be	called	very	often	and
all	unnecessary	object	creation	should	be	avoided	here.	It’s	likely	that
keeping	objects	that	are	needed	on	each	drawing	pass	in	memory	will	be
better	for	performance.

Drawing	on	Canvas
The	tool	for	drawing	is	the	canvas	object	you	receive	as	a	parameter	to	the
onDraw	method.	The	canvas	class	provides	multiple	helpful	methods	for	you
to	draw	different	forms	and	bitmaps.	A	few	of	them	are	listed	here,	but	for	a
full	list	of	available	methods	and	the	full	documentation,	see	the	class
documentation	on	Android	developers	website	at
http://developer.android.com/reference/android/graphics/Canvas.html

•	drawArc—Draws	the	specified	arc,	which	will	be	scaled	to	fit	inside	the
specified	oval.
•	drawBitmap—Draws	a	bitmap.
•	drawCircle—Draws	the	specified	circle	using	the	specified	paint.

•	drawColor—Fills	the	entire	canvas’s	bitmap	(restricted	to	the	current
clip)	with	the	specified	color.
•	drawLines—Draws	a	series	of	lines.

•	drawRect—Draws	the	specified	Rect	using	the	specified	paint.
•	drawText—Draws	the	text	using	the	specified	paint.

Paint	object
The	paint	object	is	often	a	required	parameter	for	drawing	on	the	canvas.
The	paint	object	acts	as	the	style	definition	for	the	object	that	is	being	drawn.
It	stores	values	like	the	colors,	stroke	style,	transparency,	and	font	style.	Not

http://developer.android.com/reference/android/graphics/Canvas.html

all	of	these	attributes	apply	to	all	shapes.

Plan	the	paints	you	use	and	create	them	outside	the	onDraw	method	if
possible.	Creating	a	paint	object	in	the	onDraw	method	will	accumulate
unnecessary	garbage	objects.

Shape-drawing	Example
Let’s	look	at	an	example	of	dynamically	drawing	a	shape	on-screen.	In	the
following	source	code	you	see	a	custom	view.	The	only	method	that	has	been
overridden	is	onDraw.	The	onDraw	method	draws	a	simple	semi-transparent
square.	The	location	of	the	square	is	dynamic	and	decided	by	the	coordinate
variables.	The	coordinate	variables	on	the	other	hand	are	controlled	by	the	on
touch	listener.	Note	the	invalidate()	call	at	the	touch	event	handler.	That
call	causes	the	view	to	be	redrawn	whenever	a	user	is	moving	his	finger	on
the	screen	and	the	square	follows	that	motion.	Figure	14-12	shows	the	code
rendered	on	a	phone.

Note	also	the	paint	object	created	in	the	constructor.	Because	it	is	used	on
every	draw	iteration,	recreating	it	every	time	would	cause	unnecessary
garbage.

package	com.androiduipatterns.smashingandroidui.examples.graphics;

import	android.content.Context;

import	android.graphics.Canvas;

import	android.graphics.Paint;

import	android.util.AttributeSet;

import	android.view.MotionEvent;

import	android.view.View;

	

public	class	ExampleCustomView	extends	View	{

	

				private	Paint	paint;

	

				private	int	x	=	0;

				private	int	y	=	0;

	

				private	int	width	=	200;

				private	int	height	=	200;

	

				public	ExampleCustomView(Context	context,	AttributeSet	attrs)	{

								super(context,	attrs);

								

								//	this	Paint	object	is	needed	every	time	onDraw	is	called	//

therefore	I	create	it	here	and	keep	it.

								paint	=	new	Paint();

								paint.setColor(0x44FF0000);

	

								//	To	demonstrate	dynamic	drawing	I’ve	added	a	touch	listener	//	that

allows	user	to	drag	the	drawn	rectangle	on	screen:

this.setOnTouchListener(new	OnTouchListener()	{

												int	x_start	=	0;

												int	y_start	=	0;

	

												int	x_drag_start	=	0;

												int	y_drag_start	=	0;

	
												@Override

												public	boolean	onTouch(View	v,	MotionEvent	event)	{

																if	(event.getAction()	==	MotionEvent.ACTION_DOWN)	{

																				x_drag_start	=	(int)	event.getX();	y_drag_start	=	(int)

event.getY();	x_start	=	x;

																				y_start	=	y;

																}	else	if	(event.getAction()	==	MotionEvent.ACTION_MOVE)	{

																				int	delta_x	=	(int)	event.getX()	-	x_drag_start;	int

delta_y	=	(int)	event.getY()	-	y_drag_start;	x	=	x_start	+	delta_x;

																				y	=	y_start	+	delta_y;

																				

																				//calling	invalidate	causes	the	component	to	draw	itself

invalidate();

}

																return	true;

}

});

}

		

/**

					*	Draws	a	rectangle	on	screen	where	the	user	has	dragged	it.

*/

				@Override

				protected	void	onDraw(Canvas	canvas)	{

								canvas.drawRect(x,	y,	x	+	width,	y	+	height,	paint);	}

}

This	component	is	placed	into	a	layout	by	simply	using	the	class’s	fully
qualified	name.	See	the	following	example	code:
<com.androiduipatterns.smashingandroidui.examples.graphics.ExampleCustomView
android:layout_width=”fill_parent”

								android:layout_height=”fill_parent”

								android:layout_margin=”10dp”	/>

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Figure	14-12:	Example	of	how	the	code	looks	when	rendered.	Users	can	drag
the	square	to	move	it	on	the	screen.

Summary
With	the	various	graphical	drawing	tools	of	the	Android	platform	you	can
create	infinitively	scalable	complex	graphics	like	gradients	and	tiling
backgrounds.	Using	these	methods	can	save	time	and	make	your	app	work
faster	and	more	table.	Although	it	is	not	necessary	to	memorize	these
techniques,	it	is	a	good	idea	to	be	aware	of	which	drawing	tools	are	out	there.

	

Chapter	15:	Beyond	Scalable	–
Responsive	Design

Until	this	point,	the	book	has	covered	scalable	Android	user	interfaces	in	the
context	of	small	variation	of	screen	sizes.	By	utilizing	layouts	and	other
resources	correctly,	your	app	will	scale	nicely	to	phones	with	large	4.5-inch
screens	as	well	as	to	3.5-inch	screens.	But	what	do	you	do	when	you	want	to	go
beyond	these	constraints?

A	design	approach	called	responsive	design	has	become	popular	in	web	design
when	facing	this	same	problem.	Websites	nowadays	have	to	work	on
smartphones,	tablets,	laptops,	desktops,	and	even	on	connected	TVs.	Simply
stretching	the	layout	from	smaller	screens	to	larger	screens	isn’t	enough
anymore.	The	idea	is	to	dynamically	change	the	order	of	components	that	are
visible	by	rearranging	the	page	structure.	This	usually	means	reducing	the
number	of	visible	columns.

This	chapter	introduces	you	to	responsive	design	on	the	Android.

More	Android	devices	than	just	phones
Let’s	look	at	the	reasoning	why	more	heavyweight	methods	are	needed	than
just	the	layout	managers.	Android	is	a	platform	of	diversity.	As	you	read	in
the	introductory	chapters,	there	are	hundreds	of	different	devices	out	there.
Many	of	them	have	much	larger	screens	than	the	average	smartphone	device.
The	large	screens	require	developers	and	designers	to	change	their	design
approach.	The	smartphone	design	simply	stretched	to	a	larger	screen	doesn’t
utilize	the	screen	effectively	and	makes	for	a	subpar	user	experience.	Take	a
look	at	Figures	15-1	and	15-2.

Figure	15-1:	Twitter’s	tweet	list	on	a	10.1-inch	tablet	screen.

Source:	Twitter

These	two	screenshots	from	the	official	Android	Twitter	client	illustrate	very
vividly	why	using	scalable	layouts	is	not	enough	(I’m	hoping	that	by	the	time
you’re	reading	this	Twitter	has	already	released	a	better	version	of	their
client).	A	lot	of	screen	space	is	wasted,	and	the	layout	does	not	look	good.
But	it’s	much	more	than	just	looking	bad	and	not	using	all	the	screen	space.
In	both	screens,	part	of	the	information	loses	its	context.	In	Figure	15-1,	the
tweet	time	is	moved	very	far	from	the	tweet	text	and	in	Figure	15-2,	the
retweet	and	favorite	numbers	are	on	the	opposite	side	of	the	screen	from	their
labels.

Figure	15-2:	Twitter’s	tweet	view	on	a	10.1-inch	tablet	screen.

Source:	Twitter

Android	tablets
Android	tablet	is	a	fuzzy	term.	Tablets	have	as	much	or	more	variation	than
smartphones.	In	some	cases	it’s	not	easy	to	tell	if	a	device	is	a	tablet	or	not.	Is
the	Samsung	Galaxy	Note	with	its	5.3-inch	display	a	tablet?	Will	the	same
interface	that	works	on	a	7-inch	display	work	on	a	13-inch	tablet?	And	what
if	the	tablet	has	a	full	size	external	keyboard?	Should	you	also	consider
Android	netbooks?

Fortunately,	there’s	no	real	technical	difference	between	an	Android
smartphone	and	an	Android	tablet,	other	than	the	screen	size.	Therefore,	you
can	use	the	same	techniques	to	make	changes	to	the	user	interfaces	on	larger
tablet	devices.

Google	TV
Android	also	runs	on	TVs.	Although	there	is	an	official	Google	TV,	it	is	not
the	only	way	to	run	Android	apps	on	TVs.	There	are	multiple	devices	that	can
be	connected	to	large	TV	screens.	The	official	Google	TV	is	a	separate
version	of	Android	that	runs	the	same	apps	and	provides	the	same	APIs.	The
Google	TVs	have	different	controls	and	some	added	APIs.	They,	of	course,
don’t	have	touch	screens,	which	are	the	dominant	control	mechanism	on	the
smartphones.

It	should	be	pretty	clear	that	the	same	user	interface	won’t	work	on	a	TV
screen	controlled	by	a	D-pad	or	touchpad	that	works	on	a	smartphone	or	a
tablet.	But	I	think	that	the	biggest	difference	with	TVs,	compared	to	the
smartphone	and	tablet,	are	the	different	user	goals.	User	goals	are	the
foundation	and	requirements	for	an	interface.	TV	apps	must	be	different	than
just	an	adapted	user	interface.	I	strongly	advise	you	to	carefully	evaluate	your
app’s	user	goals	and	determine	how	they	align	with	TV	experience	before
jumping	into	adapting	your	app	to	the	TV.

Also	worth	noting	is	that	a	TV	is	usually	a	shared	device,	unlike	smartphones
and	tablets.	Users	are	unlikely	to	log	in	to	TV	devices	with	their	personal
accounts.	That	is	also	why	Google	has	not	provided	versions	of	Gmail	or
Google+	apps	for	Google	TV.	These	kinds	of	apps	work	much	better	on
personal	devices	than	on	TVs.

Understanding	Responsive	design
Responsive	design	has	its	roots	in	web	design.	The	web	has	always	lacked
strict	size	guidelines,	and	websites	have	to	support	many	different
resolutions.	It’s	no	surprise	that	designing	for	the	Android	platform	requires	a
similar	mindset	and	similar	tools.

The	starting	point	for	designing	Android	apps	is	different	than	when
designing	websites.	Websites	must	work	perfectly	on	all	computer	screens,	so
that’s	where	the	interface	design	usually	starts.

Let’s	look	at	an	abstract	example	of	a	generic	website	design	(see	Figure	15-
3).	In	this	example	the	website	has	a	three-column	layout.	The	column	A	is
the	navigation,	column	B	is	the	main	content,	and	column	C	is	additional	or
secondary	content.	All	the	columns	resize	nicely	when	the	available	space
changes.

Figure	15-3:	An	abstract	three-column	design	for	a	website.

If	the	available	space	becomes	much	smaller—the	user	resizes	the	browser
window	or	maybe	opens	the	page	on	a	tablet—the	content	might	not	fit
within	the	screen	anymore.	Each	of	the	scalable	sections	has	a	natural
minimum	size	at	which	they	look	good	and	are	functional.	When	all	of	the
sections	reach	that	minimum	size,	you	need	a	more	drastic	layout	change.

Figure	15-4	shows	how	the	layout	could	be	rearranged.	In	this	case	the
secondary	content	(C)	moves	below	the	main	content	(B),	freeing	more	space

secondary	content	(C)	moves	below	the	main	content	(B),	freeing	more	space
for	the	main	content	and	navigation	(A).

Figure	15-4:	An	example	how	the	web	design	could	be	rearranged	for	a	tablet
device.

If	the	same	website	is	viewed	on	an	even	smaller	screen—a	smartphone
screen—the	user	interface	must	be	rearranged	again.	Figure	15-5	shows	an
example	of	the	same	interface	adapted	to	a	smartphone	screen.	Note	that	the
navigation	section	(A)	is	also	rearranged	internally	due	to	the	different	shape
of	the	container.	This	brings	you	into	an	important	point	of	responsive	design.
Not	only	do	the	large	component	containers	(A,	B,	C)	rearrange,	but	each	of
them	adapt	internally	as	well.

Figure	15-5:	An	example	how	the	web	design	could	be	rearranged	for	a

Figure	15-5:	An	example	how	the	web	design	could	be	rearranged	for	a
smartphone.

Tip:	An	important	feature	of	responsive	design	is	that	the	components	that
are	rearranged	are	not	reimplemented	for	every	different	position	they	can
have.	Doing	that	would	be	way	too	costly	in	the	development	phase.	The	key
to	responsive	design	is	to	keep	using	the	same	components	you	already	have
built	to	support	all	the	different	layouts	you	have.

How	to	approach	responsive	Android	design
After	that	short	overview	of	the	theory	of	responsive	design,	this	section
returns	to	Android	apps	and	covers	how	the	same	techniques	can	be	utilized
there.	As	android	apps	are	built	using	a	very	similar	design	approach,	the
same	responsive	design	approach	works	very	well	on	the	Android	platform.

That	said,	the	technology	used	to	implement	responsive	design	on	the
Android	platform	is	different	from	the	web.	The	Android	user	interface	APIs
are	much	more	flexible	than	their	web	counterparts,	which	means	you	can
build	even	better	and	more	flexible	apps	on	the	Android	than	you	can	on	the
web.

This	section	introduces	the	thought	process	and	approach	to	responsive
design	for	Android.	This	chapter	covers	the	overview,	and	Chapter	16	covers
the	technical	implementations	of	this	approach.	The	technologies	you’ll	use
include	the	following:

•	Android	resource	managers
•	Android	layout	managers
•	Fragments	(A	technical	term	for	a	reusable	section	of	user	interface.
Fragments	are	explained	in	detail	in	Chapter	16.)

•	Automatically	adapting	user	interface	components

Starting	from	a	Phone
Responsive	design	on	the	web	typically	begins	with	the	largest	screen	and
then	is	modified	to	fit	on	smaller	screens.	On	Android	it	is	very	likely	that
process	will	start	from	the	other	end.	You	are	likely	to	start	with	an	app	that
works	on	a	smartphone	and	need	to	adapt	it	to	a	tablet.	Even	if	you	don’t	have
an	app	yet,	it’s	more	likely	that	you’ll	start	from	the	phone	design,	as	the
smartphone	market	is	currently	so	much	larger	than	the	tablet	market.	(It
makes	sense	to	target	the	largest	target	group	first.)

If	you	created	an	information	architecture	diagram	during	your	design,	you
should	get	it	out	and	look	at	it	again.	If	you	didn’t	draw	one,	now	is	the	time
to	do	it!	This	diagram	will	help	you	to	visualize	the	relationships	of	each
screen	in	your	app.

A	Simple	Example
Consider	this	simple	example—a	list	of	items	with	an	item	detail	screen	and
new	item	screen.	For	example,	Gmail	is	a	complicated	version	of	this	same
structure.	Figure	15-6	shows	the	information	architecture	diagram	of	this
simple	example	app.

Figure	15-6:	Information	architecture	of	the	abstract	example	app.

The	structure	of	the	information	in	this	app	is	clear.	The	item	list	screen	is	a
parent	screen	of	the	item	details	screen.	The	new	items	screen	doesn’t	have	a
place	in	the	hierarchy.	It	is	more	like	a	utility	screen	that	can	be	invoked	from
multiple	places.

First	consider	what	you	can	do	with	the	item	list	screen	(see	Figure	15-7)	and
the	item	details	screen	(see	Figure	15-8).	It	should	be	apparent	that	simply

the	item	details	screen	(see	Figure	15-8).	It	should	be	apparent	that	simply
stretching	these	screens	won’t	be	good	enough.	You	need	to	rearrange	the
layout.

Figure	15-7:	Item	list	screen	on	a	phone.

Figure	15-8:	Item	details	screen	on	a	phone.

On	the	Android,	not	all	the	content	that	is	subject	to	the	rearrange	will	always
be	on	the	same	screen.	You	could	bring	the	two	item	related	screens	into	one
large	screen.	Figure	15-9	shows	an	example	of	this	approach.	In	this	example
I	have	placed	the	item	list	to	the	left	and	item	details	to	the	right.	The	screen
functionality	of	these	components	is	the	same.	When	the	user	taps	on	any	of
the	items	on	the	list,	the	right	side	of	the	screen	will	update	that	item.

Figure	15-9:	Item	list	and	item	details	screen	unified	into	one	screen	on	a
tablet.

But	what	about	the	Create	New	Item	screen	(see	Figure	15-10)?	Because	this
screen	is	not	part	of	the	screen	hierarchy	in	an	obvious	way	and	combining	it
with	any	of	the	information	in	the	other	screens	would	probably	not	make	it
any	better,	you	can	keep	it	separate.	In	this	example	(see	Figure	15-11),	I’m
using	an	overlay	for	the	Create	New	Item	screen	on	the	tablet.	That	will	help
keep	the	width	of	the	component	smaller,	thus	making	it	look	better.	I’ve	also
added	a	text	component	on	the	left	side	of	the	form.	This	can	include	some
help	text	of	similar	content.

Figure	15-10:	Create	New	Item	screen	on	a	phone.

This	example	shows	a	very	general	approach	to	responsive	design	on	the
Android	platform.	In	practice,	each	app	has	its	nuances.	The	rest	of	this
chapter	introduces	techniques	you	can	use	to	expand	your	toolkit	in	this	field.

Figure	15-11:	Create	New	Item	screen	on	a	tablet.

A	Real	Example
This	section	takes	a	look	at	a	real	example.	This	app	is	one	of	my	favorites	on
the	Android.	It	implements	responsive	design	between	phones	and	tablets
nicely.	You	can	see	the	app	in	the	Figure	15-12.	The	structure	of	the	app	is
very	similar	to	the	previous	example.

Figure	15-12:	The	Tasks	app	works	great	on	phones	and	tablets.

Source:	Tasks	app

Don’t	Build	a	Tablet	App:	Design	for	Tablets

The	goal	of	this	process	should	not	be	to	build	a	separate	tablet	version	of
your	app.	Your	tablet	app	and	phone	app	should	be	the	same	in	Google	Play
or	in	any	other	store.

Think	about	your	app	as	one	app	with	different	user	interface	configurations.

Reusable	components	(fragments)
When	designing	your	app,	your	goal	is	to	define	user	interface	sections,
technically	called	fragments,	that	you	can	use	and	combine	with	any	layout
configuration	to	create	the	optimal	user	experience	for	each.	In	the	previous
examples,	these	sections	or	fragments	were	the	list	view,	details	view,	and
create	new	item	view.	All	of	these	fragments	can	be	implemented	once	and
wrapped	into	different	parent	layouts	to	create	different	user	interfaces	to
tablets	and	to	phones	without	having	to	duplicate	any	of	the	functionality.

The	Google	Play	Android	app	is	an	excellent	example	of	the	clever	reuse	of
fragments	in	phone	and	tablet	layout	even	when	the	layout	is	very	different.
The	fragments	in	the	Google	Play	app	are	relatively	small,	but	they	also	are
independent	and,	therefore,	very	easily	redistributed	in	the	user	interface.
Figures	15-13	and	15-14	show	the	similarities	in	the	app’s	item	screen	on	the
phone	and	tablet	platforms,	even	though	the	layout	as	a	whole	is	very
different.	For	example,	the	components	marked	1	and	2	in	both	figures	are	the
same,	with	only	very	small	tweaks	that	can	be	implemented	easily.	I
encourage	you	to	carefully	study	the	Google	Play	app	to	see	this	reuse	of
components	throughout	the	app.

Figure	15-13:	Google	Play	app’s	item	screen	on	a	phone.

Source:	Google

	

Figure	15-14:	Google	Play	app’s	item	screen	on	a	tablet.

Source:	Google

Chapter	16	explains	creating	fragments	and	using	them	in	activities	and
layouts	in	detail.

Finding	minimum	and	maximum	size
Although	practicality	might	sometimes	dictate	that	you	design	simply,	you
should	keep	flexibility	in	mind.	There’s	no	reason	why	the	tablet	user
interface	should	not	be	used	on	devices	that	are	technically	phones	if	it	is
more	suitable	to	them	than	the	phone	interface.

The	key	to	flexibility	is	to	find	the	minimum	and	maximum	sizes	of	your	user
interfaces	and	the	user	interface	fragments.	For	example,	in	the	two-column
layout	I	talked	about	previously,	there	is	a	certain	point	when	the	screen	gets
larger	at	which	you	can’t	use	only	one	list	screen.	On	the	other	hand,	having
two	columns	becomes	impossible	at	some	point	when	the	screen	gets	too
small.	I	encourage	you	to	study	your	interface	on	different	screen	sizes.
Create	the	layout	points	based	on	your	observations	instead	of	simply	making
a	phone	and	a	tablet	user	interface.

Tip:	You	don’t	have	to	create	devices	for	all	screen	sizes.	You	can	easily	set
up	multiple	emulators	using	the	Android	SDK.

Cost-benefit	evaluation
Creating	responsive	user	interfaces	takes	more	effort	than	building	a	single
user	interface	for	one	device	group.	This	is	true	especially	when	the	app	was
initially	designed	and	built	to	run	only	on	smartphones.	As	with	everything
you	should	always	carefully	evaluate	whether	your	time	is	best	spent	doing
this	or	something	else.

The	cost	of	responsive	user	interface	can	be	minimized	with	careful	planning.
Reusing	user	interface	components	and	fragments	efficiently	can	save	a	lot	of
time.	Even	if	you	don’t	plan	to	support	larger	screens	in	the	initial	launch	of
your	app,	I	recommend	that	you	take	time	to	plan	and	design	for	such
possibilities	from	the	start.	Implement	your	interface	for	phone	screens	using
the	fragment	APIs,	and	plan	for	reusable	components.	This	will	save	you	a	lot
of	time	later	and	won’t	make	the	initial	implementation	any	slower.

Common	ways	to	create	responsive	user
interfaces

This	section	looks	at	some	common	ways	you	can	adapt	user	interfaces	from
smaller	to	larger	screens.	You’ll	often	need	to	combine	these	solutions	in
order	to	create	great	results.

Screens	to	columns
As	you	already	saw	in	the	previous	example,	you	can	combine	multiple	small
screens	into	one	larger	one	(see	Figure	15-15).	This	requires	that	the	screens
that	you	want	to	combine	relate	to	each	other.

Figure	15-15:	Overview	of	a	screen-to-columns	design.

I	like	to	call	this	approach	responsive	design	in	3D	due	to	the	added
dimension	of	rearranging	the	activity	stack	to	a	flattened	hierarchy.

Floating	screens
Utility	screens	(such	as	a	Settings	screen)	often	don’t	have	a	fixed	place	in
the	screen	hierarchy	and	can	be	accessed	from	multiple	screens	directly,
hence	the	term	floating	screen.	Incorporating	screens	like	this	to	a	larger
screen	can	be	difficult.	Often,	they	need	to	be	shown	alone	without	any
helpful	context,	so	the	columns-to-screens	design	does	not	work.

Stretching	the	screen	to	a	larger	display	isn’t	a	great	option,	because	doing	so
often	makes	the	screen	look	bad	and	sometimes	even	difficult	to	use.

In	this	situation,	consider	laying	these	types	of	floating	screens	on	top	of
other	screens	(see	Figure	15-16).	Doing	so	allows	you	to	limit	the	layout
width	so	that	the	screen	looks	and	functions	correctly.	This	overlay	technique
also	helps	the	users	understand	that	the	screen	is	not	part	of	the	navigation
structure	but	is	instead	a	side	step	to	get	a	short	task	done.

Figure	15-16:	Screen	to	floating	screen	solution.

Optional	content
What	do	you	do	if	all	the	relevant	information	is	shown	on-screen,	but	you
have	leftover	whitespace?	Note	that	empty	space	isn’t	necessarily	a	bad	thing,
but	it’s	still	worth	evaluating	whether	you	have	any	content	you	can	place
there.	Sometimes	you	might	want	to	show	content	on	a	larger	screen	that	isn’t
part	of	your	phone	design	or	is	hidden	in	a	menu	(see	Figure	15-17).	Help
info	or	advertisements	are	good	examples	of	optional	information	you	might
consider	including.

Figure	15-17:	Optional	content	shown	only	on	screens	that	have	room	for	it.

Adjusting	components	one	for	one
Responsive	design	on	the	web	often	involves	a	one-to-one	adjustment	of	all
the	existing	components.	The	same	technique	can	be	used	on	the	Android
platform	in	many	cases.	You	can	rearrange	all	the	components	from	your
phone’s	user	interface	to	the	tablet	layout	so	that	the	user	can	access	the	same
information	easily.	Usually	this	means	that	you	adjust	the	user	interface
fragments	that	are	laid	out	vertically	on	the	phone	to	a	wider	layout	on	the
tablet	(see	Figure	15-18).

Figure	15-18:	Abstract	example	from	the	phone	to	the	tablet.

Replacing	Components
Not	all	components	work	on	a	larger	screen	as	desired.	Sometimes	you
simply	must	create	another	component	for	the	larger	screen	to	utilize	the
increased	screen	real	estate.	A	good	example	of	a	component	that	doesn’t
work	that	well	on	a	large	screen	is	the	list	view.	Lists	can,	of	course,	be	made
to	work	on	larger	screens	by	making	them	much	smaller,	but	sometimes	that
is	not	possible	or	desirable.	In	those	situations	you	might	consider	replacing
the	list	with	a	grid	view	(see	Figure	15-19).	A	grid	view	utilizes	the	available
horizontal	space	better	because	it	fills	in	components	horizontally.

Figure	15-19:	An	abstract	example	of	replacing	a	list	component	with	a	grid
view	when	moving	from	a	phone	to	a	tablet.

Automatically	Adapting	Components
Some	of	the	components	provided	by	the	Android	APIs	automatically	adapt
to	larger	screen	sizes.	One	good	example	of	this	is	the	Action	Bar.	It
automatically	resizes	when	shown	on	a	tablet	screen.

Tabbed	user	interfaces	also	adapt	automatically	when	more	screen	real	estate
is	available	by	moving	into	Action	Bar.	You	can	see	more	about	tabbed	user
interfaces	in	Chapter	19.

Summary
Don’t	create	a	separate	tablet	version	of	your	phone	app.	Instead,	make	your
app’s	user	interface	responsive.	There	is	no	one	Android	tablet	but	a
continuum	of	devices	with	various	screen	sizes.	Supporting	all	of	their	screen
sizes	requires	you	to	provide	a	continuum	of	scalable	user	interface
configurations.	Following	responsive	design	principles	will	help	you	reach	a
good	solution.

Chapter	16:	Implementing	Responsive	User
Interfaces
The	previous	chapter	introduced	the	theory	behind	using	responsive	design	to
support	multiple	screen	sizes.	This	chapter	dives	into	the	technical	side	of	the
same	concept.	You’ll	learn	all	about	fragments,	including	how	to	use	them	to
create	responsive	user	interfaces.	After	introducing	the	concept	of	fragments,	the
chapter	goes	through	a	full	example	of	a	responsive	layout	and	also	talks	about
migrating	existing	apps.

Introduction	to	Fragments

Fragments	are	the	key	to	implementing	responsive	user	interfaces	on
Android.	A	fragment	is	an	independent	user	interface	section	that	can	be
added	to	a	layout.	Probably	the	best	way	to	think	about	fragments	is	to	think
of	them	as	sub-activities.	Fragments	are	always	controlled	by	an	activity	and
their	lifecycle	is	bound	to	the	activity’s	lifecycle	unless	you	manually	change
this	aspect.

You	implement	fragments	in	a	very	similar	way	that	you	create	activities.
You	create	the	implementing	class	and	set	a	layout	to	draw	the	fragment’s
user	interface.	Fragments	aren’t	required	to	have	a	user	interface,	but	the
fragments	discussed	in	the	scope	of	this	book	do	all	have	fragments.

Creating	fragments
To	create	a	fragment,	you	extend	the	Fragment	class	or	one	of	its	subclasses
(DialogFragment,	ListFragment,	PreferenceFragment,	or
WebViewFragment).

Most	of	your	knowledge	of	working	with	activities	is	applicable	to	working
with	fragments,	with	a	few	notable	exceptions.	First,	many	of	the	utility
methods	you	might	want	to	use	are	not	provided	by	the	fragment	superclass,
and	fragment	is	not	a	Context	object.	To	get	a	Context	object,	call	the
getActivity()	method.	It	will	return	the	activity	that	your	fragment	is

currently	attached	to.	You	can	use	that	to	call	the	method	you	need	from	a
Context	object.	Note	that	the	method	can	return	null	if	the	fragment	instance
isn’t	currently	attached	to	any	activity.

The	second	big	difference	is	that	you	cannot	call	the	setContentView()
method	to	set	the	fragment’s	user	interface.	Instead,	the	fragment’s	user
interface	is	created	using	the	onCreateView()	method.	You	must	override	the
method	and	return	the	user	interface	view	from	that	method.

Fragment	lifecycle
Fragments	have	similar	lifecycle	methods	to	activities.	You	can	use	them	to
stop	and	start	functionality	the	same	way	you	do	with	activities.	For	the	full
lifecycle	method	specification,	you	should	take	a	look	at	the	Android
documentation	at
http://developer.android.com/guide/topics/fundamentals/fragments.html

The	important	lifecycle	methods	within	the	scope	of	this	book	are
onCreateView(),whereby	you	create	your	fragment’s	user	interface	and	the
onActivityCreated(),	which	is	called	after	the	onCreateView()	when	the
parent	activity	is	created.	That	is	a	good	place	to	initialize	components	that
require	a	Context	object.

Adding	fragments	to	layouts
Fragments	alone	are	not	very	useful.	You	must	add	them	to	layouts.	There	are
two	ways	to	do	this.	The	simplest	way	to	place	fragments	on	a	user	interface
is	to	use	an	XML	element	in	a	layout	file.	The	fragment	element	can	be
placed	anywhere	in	any	layout	file	where	you	would	place	any	other	user
interface	components.	Its	size	and	location	is	defined	the	same	way	as	other
user	interface	components.	You	define	the	fully	qualified	class	name	of	the
implementing	fragment	class	and	that’s	all.	Whenever	the	layout	is	displayed
by	any	activity,	the	fragment	is	automatically	initialized	and	the	user	interface
is	placed	on	the	screen.	Your	fragment	must	implement	a	constructor	without
any	parameters	for	this	to	work	properly.

The	following	code	example	shows	you	how	to	define	a	fragment	element:
<fragment

http://developer.android.com/guide/topics/fundamentals/fragments.html

		android:id=”@+id/<id	goes	here>”

		android:layout_width=”match_parent”

		android:layout_height=”match_parent”												

		class=”<fully	qualified	class	name	of	the	fragment	class>”	/>	You	can	also

add	fragments	dynamically	to	layouts	from	your	code	by	using	the

FragmentManager	class.

FragmentManager	and	FragmentTransaction
FragmentManager	and	FragmentTransaction	are	the	helper	classes	you	can
use	to	add,	remove,	and	replace	fragments	in	your	activities.	To	acquire	a
FragmentManager	instance,	you	call	the	getFragmentManager()	method	in
your	activity.

You	can	change	the	fragments	in	the	user	interface	by	using	transactions.	A
transaction	is	an	atomic	group	of	operations	that	are	executed	together.	With
fragment	transactions,	you	can	define	multiple	operations—such	as	replace
multiple	fragments—that	are	executed	simultaneously.	To	create	a	fragment
transaction,	you	must	begin	the	transaction	and	then	define	all	the	actions.
Calling	commit	on	the	transaction	will	execute	it.

Usually	when	replacing	or	adding	fragments	to/from	code	it	makes	sense	to
add	a	dedicated	frame	layout	into	your	layout	XML	as	a	placeholder	for	the
fragments.	This	makes	it	easier	to	define	the	size	and	location	of	the
fragment.

The	following	source	code	shows	a	very	simple	example	of	replacing	a
fragment	in	a	container:	FragmentTransaction	ft	=
getFragmentManager().beginTransaction();	ft.replace(R.id.<container	id>,
<fragment	object>);	ft.commit();

Tip:	Replacing	fragments	isn’t	the	only	option	you	have.	The	fragment
transaction	also	allows	you	to	add,	remove,	show,	and	hide	fragments.	For
the	full	specification	of	the	fragment	transaction,	see	the	Android
documentation	at
http://developer.android.com/reference/android/app/FragmentTransaction.html

Fragment	Transitions
As	with	activities,	when	fragments	are	replaced	they	can	also	display
transition	animations.	The	animation	is	set	to	the	fragment	transactions.	You
can	set	fully	custom	animations	using	the	setCustomAnimations()	method	to

http://developer.android.com/reference/android/app/FragmentTransaction.html

define	enter	and	exit	animations	in	the	same	way	you	would	define	activity
transition	animations.	You	can	also	use	setTransition()	to	set	one	of	the
default	transition	animations.

Fragments	and	the	Back	Stack
By	default	fragment	transactions	don’t	affect	the	back	stack.	You	can,
however,	easily	add	any	transaction	to	the	back	stack	by	calling
addToBackStack()with	the	fragment	transaction.	The	operating	system	takes
care	of	the	rest.	When	the	user	presses	the	Back	button	a	reverse	operation
automatically	executes.

Tip:	To	ensure	maximum	flexibility	of	your	fragments,	take	care	to	build	each
fragment	in	a	scalable	manner.	Use	the	layouts	and	best	practices	introduced
earlier	in	this	book.	If	each	of	your	fragments	is	scalable	alone	it	means	that
the	user	interfaces	built	using	the	fragments	are	scalable	and	will	easily
adapt	to	layout	changes.

Fragment	and	Activity	architecture
The	way	you	build	interaction	between	your	activities	and	fragments	defines
how	flexible	the	user	interface	will	be.	Fragments	are	modules	of	the	user
interface,	but	they	should	also	be	modular	in	your	code.	The	less	the
fragments	have	to	know	about	other	fragments	and	even	about	their	parent
activities,	the	more	flexibly	you	can	use	them	in	different	user	interface
configurations.

The	most	important	rule	to	follow	is	that	fragments	should	never
communicate	directly	with	each	other.	All	communication	should	always	go
through	the	activities.	If	they	must	communicate	directly,	you	will	be	forced
to	always	display	them	at	the	same	time,	which	forces	undesired	coupling	in
your	architecture.

To	be	most	flexible	you	can	create	an	interface	that	defined	communication
from	your	fragment	to	the	activity.	By	doing	this	you	can	use	the	fragment	in
any	activity	that	implements	the	interface,	and	you’re	not	tied	into	just	one
activity.

Activities	control	the	flow	and	layout

Activities	control	the	flow	and	layout
Activities	have	been	controlling	your	app	flow	before	fragments	appeared
and	should	remain	controlling	them.	Whenever	a	control	in	a	fragment	needs
to	update	other	parts	of	the	user	interface,	the	fragment	should	call	the	parent
activity.	Figure	16-1	shows	an	example	control	flow.	In	this	example,	the	user
presses	a	button	in	fragment	A	that	affects	the	user	interface	beyond	the
fragment	itself.	The	control	is	sent	to	the	parent	activity,	which	decides	based
on	the	current	layout	whether	a	new	activity	needs	to	be	launched	or	an
existing	fragment	needs	to	be	replaced	or	updated.	A	structure	like	this
guarantees	that	you	can	use	fragments	A	and	B	in	the	same	activity	or	in
separate	activities.

Figure	16-1:	Example	control	flow	architecture	from	one	fragment	to	another,
using	a	parent.

Using	Fragments	on	Older	Devices
Fragments	were	introduced	to	the	Android	platform	in	the	Android	3.0	Honeycomb	release	(API	level
11).	Using	them	on	projects	that	target	older	platform	versions	is	possible	but	requires	few	small	code
changes.	You	also	need	to	import	the	Android	support	package	to	the	project.	Read	more	about	support
package	in	the	Android	documentation	at	http://developer.android.com/sdk/compatibility-library.html.

First,	all	the	activities	that	handle	fragments	must	extend	the	FragmentActivity	class	from	the	support
package	instead	of	the	activity	class.	Second,	you	need	to	make	sure	that	you	refer	to	classes	in	the
support	package	instead	of	the	Android	package	whenever	using	any	fragment	related	classes.

http://developer.android.com/sdk/compatibility-library.html

It	is	very	easy	to	accidentally	refer	to	a	class	from	a	wrong	package	when	writing	the	code.	The	Lint
tool,	which	is	integrated	to	the	Android	Eclipse	plug-in,	will	warn	you	if	you	are	using	classes	that	are
not	available	on	all	devices	your	app	is	targeted	to.	These	warnings	are	worth	paying	attention	to	as
they	can	prevent	runtime	crashes	on	older	devices.

Isolated	fragment	functionality	increases	modularity
To	keep	your	code	clean	and	modular,	you	should
keep	the	fragments’	internal	control	managed	by	the
fragments	themselves.	There’s	no	need	to	give	control
back	to	the	activity	class	when	updates	are	made
internally	in	the	fragment	and	do	not	affect	the	rest	of
the	user	interface.	Fragments	that	populate	their	own
data	and	handle	their	own	user	interface	updates	are
much	easier	to	place	in	the	user	interface.	The
activities	managing	them	need	only	to	create	them	and
place	them	into	a	layout	and	everything	is	done.

Migrating	existing	apps
Hundreds	of	Android	apps	were	built	before	any	Android	tablets	were
announced.	Android	versions	2.3	and	older	didn’t	really	support	building
truly	responsive	user	interfaces	anyway.	It	is	very	likely	that	you	have	old
apps	on	Google	Play	or	in	some	other	stores	that	do	not	yet	have	a	tablet
layout	and	have	not	been	build	using	the	fragments.	The	question	is	what	to
do	with	these	applications.	Should	you	try	to	update	their	user	interfaces
slowly	toward	a	more	responsive	approach	to	support	tablets	or	fully	redesign
the	user	interface	from	scratch?

Moving	slowly:	An	iterative	approach	to	new	design	If
you	work	for	a	company	that	has	commercial
software	in	the	market,	it	is	likely	that	the	product
management	team	is	unwilling	to	invest	in	a	full

management	team	is	unwilling	to	invest	in	a	full
redesign	and	reimplementation	of	your	app.	Full
redesign	and	implementation	takes	time	and	resources
away	from	maintaining	the	software.	In	this	kind	of
situation	I	recommend	working	slowly	towards	the
responsive	user	interface.	You	can	start	by	identifying
the	possible	fragments	in	the	old	user	interface,	and
sketch	a	possible	large	screen	layout	based	on	them.
Doing	the	design	and	validating	it	with	user	testing
can	show	whether	the	old	interface	can	be	turned	into
a	responsive	approach.	If	the	results	are	negative	it
might	not	be	worth	spending	the	time	needed	for	a
gradual	transformation,	as	it	will	probably	be	in	vain.

Once	you	have	identified	the	possible	fragments,	you	can	start	turning	them
into	fragments	one	by	one.	You	can	simply	replace	your	activity’s	layout	with
a	fragment	where	possible.	Also	move	the	independent	functionality	to	the
fragment	to	make	reusing	it	easier	later.

You	can	do	the	slow	one-by-one	replacement	of	the	fragments	while	updating
the	user	interface	and	fixing	any	bugs.	The	user	interface	won’t	change	at	all
during	this	phase.	Also,	because	there	are	no	visible	changes	in	your	user
interface	all	automated	user	interface	testing	should	still	work;	you	can	easily
verify	that	you	haven’t	accidentally	broken	anything.	You	will	most	likely
have	to	reimplement	your	unit	tests	however.

At	some	point	your	app	is	either	fully	or	nearly	fully	transformed	into	the
new	fragment	technology.	You	can	now	start	experimenting	with	different
layouts	and	creating	activities	that	manage	the	responsive	user	interface.	At
this	point	it	is	probably	also	easier	to	take	the	last	steps	toward	supporting
larger	screens,	as	the	investment	is	considerably	smaller	and	safer.

Get	it	over	with:	Full	redesign	at	once
Of	course,	if	your	app	design	isn’t	good	enough	for	making	a	slow
transformation,	you	might	need	to	do	a	one-off	redesign.	Before	you	jump

transformation,	you	might	need	to	do	a	one-off	redesign.	Before	you	jump
into	doing	that,	remember	to	utilize	your	old	app	in	usability	testing	to	find
out	what	the	users	really	do	with	your	app.	Having	an	old	app	version	can	be
very	valuable	in	the	design	process	for	understanding	real	user	needs.	From
there,	the	redesign	is	like	building	a	new	app.

Looking	at	an	Example	app
This	section	looks	at	an	example	app	that	ties	in	everything	from	this	and
from	the	previous	chapters.	This	simple	app	demonstrates	how	to	reuse
fragments	and	lay	them	out	in	different	configurations,	as	well	as	how	to
manage	the	communication	between	the	fragments	and	activities.

The	app	function	is	simple.	Users	can	select	a	color	from	three	provided
choices.	After	the	selection,	the	users	see	the	color	and	can	then	choose	to	see
more	information	about	it.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

App	design
Let’s	start	exploring	the	app	design	from	the	phone	interface	wireframes.
This	is	probably	something	you’ll	be	doing	for	your	own	app,	too.	Phones	are
still	the	most	important	target	group	for	most	apps	and	probably	will	be	for	a
long	time	in	the	future.

The	phone	app	consists	of	three	screens.	Figure	16-2	shows	the	wireframes.
The	user	will	press	one	of	the	buttons	on	the	first	screen	to	select	a	color
(color	picker	screen).	That	selection	will	open	up	a	second	screen	with	that
color	shown	(color	screen).	Pressing	the	button	on	the	second	screen	will	take
user	to	the	last	screen,	which	contains	textual	information	about	the	selected
color	(color	info	screen).

Now,	taking	that	design	to	larger	screen	the	first	step	is	to	look	at	smaller
tablets	and	how	to	better	utilize	the	available	space.	On	a	smaller	tablet,	you
can	nicely	fit	two	of	the	screens	together.	For	this	available	space,	I’ve
created	two	screens	that	unify	two	of	the	three	phone	screens	into	one.	Figure

created	two	screens	that	unify	two	of	the	three	phone	screens	into	one.	Figure
16-3	shows	how	this	would	look	on	a	portrait	tablet.

Figure	16-2:	The	example	app	smartphone	screen	design	wireframes.

Figure	16-3:	The	example	app	two-column	layout	design	wireframes.

The	two-column	layout	is	not	optimal	for	larger	10-inch	tablets.	For	a	larger
tablet,	I’ve	created	a	three-column	layout	that	unifies	all	the	three	phone
screens	into	one	(see	Figure	16-4).	Note	that	the	button	on	the	color	screen	is

screens	into	one	(see	Figure	16-4).	Note	that	the	button	on	the	color	screen	is
not	needed	in	this	design,	because	the	info	text	is	always	visible.

Figure	16-4:	Example	app	with	three-column	design	wireframes.

Building	the	phone	user	interface	with	fragments	In
this	state	it	is	easy	to	see	that	there	clearly	are	three
fragments	in	this	design.	Each	of	the	phone	design
screen	forms	one	design.	When	you’re	starting	to
build	the	app	(whether	or	not	you	plan	to	support
larger	screens	in	the	first	release),	it	makes	sense	to
build	these	three	screens	using	fragments.	Each	one	of
the	screens	is	an	activity.
Color	Picker	Screen

Let’s	look	at	the	activity	and	the	fragment	of	the	color	picker	screen.

Activity
The	color	picker	screen	activity	at	this	point	sets	a	simple	content	layout	that
only	points	to	the	fragment.	See	the	following	example	code:	<FrameLayout

		android:id=”@+id/color_picker_frame”

		android:layout_width=”300dp”

		android:layout_height=”match_parent”	>

	
		<fragment

				android:id=”@+id/color_picker_fragment”

				android:layout_width=”match_parent”

				class=”com.androiduipatterns.smashingandroidui.

																examples.responsive.PickColorFragment”/>	</FrameLayout>

The	activity	class	(ResponsiveExampleActivity)	has	one	extra	method	that
is	called	from	the	fragment	to	handle	the	color	change	as	well	as	constants
defining	the	colors:	public	static	final	int	COLOR_RED	=	0;

public	static	final	int	COLOR_GREEN	=	1;

public	static	final	int	COLOR_BLUE	=	2;

	

public	void	setColor(int	color)	{

		Intent	intent	=	new	Intent(this,

ResponsiveExampleColorDetailsActivity.class);	intent.putExtra(“color”,

color);

		startActivity(intent);

}

Fragment
The	PickColorFragment	class	uses	a	simple	layout	that	displays	the	buttons
in	a	linear	layout.

<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”

				android:gravity=”center_horizontal”

				android:orientation=”vertical”	>

	
				<Button

								android:id=”@+id/responsive_example_red”

								android:layout_width=”100dp”

								android:layout_height=”wrap_content”

								android:layout_margin=”10dp”

								android:text=”Red”	/>

	

<!--	the	other	buttons	-->

	

</LinearLayout>

In	the	fragment	class	code,	the	only	method	that	is	implemented	is	the
onCreateView	where	the	fragment	layout	is	set	and	the	button	listeners	are
initialized.

public	class	PickColorFragment	extends	Fragment	{

	
				@Override

				public	View	onCreateView(LayoutInflater	inflater,	ViewGroup	container,

Bundle	savedInstanceState)	{

								View	view	=

inflater.inflate(R.layout.responsive_example_color_picker,	container,

false);

								Button	redButton	=	(Button)	view

																.findViewById(R.id.responsive_example_red);

redButton.setOnClickListener(new	View.OnClickListener()	{

	
												@Override

												public	void	onClick(View	v)	{

																((ResponsiveExampleActivity)	getActivity())

.setColor(ResponsiveExampleActivity.COLOR_RED);	}

});

								//..	listeners	for	the	other	buttons								

	

								return	view;

}

}

Figure	16-5	shows	the	activity	being	displayed	on	a	phone	screen.

Figure	16-5:	The	example	app’s	color	picker	screen	on	a	phone	screen.

Color	Screen	and	Color	Info	Screen
The	other	two	screens,	shown	in	Figures	16-6	and	16-7,	are	built	the	same
way.	The	layout	the	activity	uses	points	to	the	fragment	and	the	fragment
creates	a	scalable	layout	that	is	placed	on	the	screen.

From	phone	interface	to	two-and	three-column
interfaces	Now	to	the	interesting	part—making	this
phone	interface	responsive	and	ensuring	that	the
design	scales	up	nicely	to	larger	screens.	Because	the
interface	is	already	fragment-based,	the	job	of
converting	this	interface	to	work	on	a	larger	screen	is
much	easier.

Figure	16-6:	The	example	app’s	color	screen	on	a	phone	screen.

Figure	16-7:	The	example	app’s	color	info	screen	on	a	phone	screen.

Layouts
As	you	can	see	on	the	wireframe	designs,	the	first	activity	can	have	any	of	the
three	layouts—a	one-column	phone	screen,	two	columns	on	a	small	tablet
screen,	or	three	columns	on	a	large	tablet	screen.	The	first	thing	to	do	is	to
build	these	three	layout	files.	The	first	one	is	already	done	in	the	previous
phase	and	it	is	placed	in	the	res/layout/resource	folder.	That	is	the	safest
layout,	and	it	is	the	one	that	is	going	to	be	used	if	nothing	else	is	better.

To	add	the	other	layouts,	you	need	to	create	two	more	layout	folders	and	add
resource	qualifiers	to	them	in	order	to	define	the	minimum	screen	width.	The
values	used	in	the	example	code	are	based	on	my	evaluation	of	what	looks
best	in	one-,	two-,	or	three-column	layouts.

For	the	two-column	layout,	I	created	a	res/layout-w550dp	folder	(which	is
used	when	the	available	width	is	at	least	550dp).	Then	I	created	a	layout
XML	file	with	the	same	filename	used	in	the	phone	layout	with	the	following

content:	<?xml	version=”1.0”	encoding=”utf-8”?>

<RelativeLayout	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”	>

	
				<FrameLayout

								android:id=”@+id/color_picker_frame”

								android:layout_width=”300dp”

								android:layout_height=”match_parent”

								android:layout_alignParentLeft=”true”	>

	
								<fragment

												android:id=”@+id/color_picker_fragment”

												android:layout_width=”match_parent”

												android:layout_height=”match_parent”class=”com.androiduipatterns.smashingandroidui.examples.responsive.											PickColorFragment”

/>	</FrameLayout>

	
				<FrameLayout

								android:id=”@+id/color_frame”

								android:layout_width=”300dp”

								android:layout_height=”match_parent”

								android:layout_alignParentRight=”true”

								android:layout_toRightOf=”@id/color_picker_frame”	>	</FrameLayout>

</RelativeLayout>

Note	that	only	PickColorFragment	is	defined	in	this	layout.	The	second
fragment	is	added	dynamically	from	the	activity	code.	The	layout	has	an
empty	frame	layout	as	a	fragment	container	that	you	can	easily	use	from	code
to	change	the	fragments	whenever	the	user	selects	a	color.	Figure	16-8	shows
how	this	layout	looks	on	a	tablet	in	portrait	mode.

Figure	16-8:	The	example	activity	with	a	two-column	layout.

For	the	three-color	layout,	I	add	the	res/layout-w1200dp	folder	(used	when
the	available	width	is	at	least	1200dp)	and	a	layout	XML	file,	again	with	the
same	name,	that	has	a	three-column	layout:	<?xml	version=”1.0”
encoding=”utf-8”?>

<RelativeLayout	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”	>

	
				<FrameLayout

								android:id=”@+id/color_picker_frame”

								android:layout_width=”300dp”

								android:layout_height=”match_parent”

								android:layout_alignParentLeft=”true”	>

	
								<fragment

												android:id=”@+id/color_picker_fragment”

												android:layout_width=”match_parent”

												android:layout_height=”match_parent”

												class=”com.androiduipatterns.smashingandroidui.																			examples.responsive.PickColorFragment”

/>	</FrameLayout>

	
				<FrameLayout

								android:id=”@+id/color_frame”

								android:layout_width=”300dp”

								android:layout_height=”match_parent”

								android:layout_toRightOf=”@id/color_picker_frame”	>	</FrameLayout>

	
				<FrameLayout

								android:id=”@+id/color_info_frame”

								android:layout_width=”300dp”

								android:layout_height=”match_parent”

								android:layout_alignParentRight=”true”

								android:layout_toRightOf=”@id/color_frame”	>	</FrameLayout>

	

</RelativeLayout>

As	with	the	two-column	layout,	only	PickColorFragment	is	added	to	the
layout	file.	The	other	two	fragments	are	added	dynamically	from	the	code
into	the	frame	layout	fragment	containers.	Figure	16-9	shows	how	this	layout
looks	on	a	large	tablet	screen.

Figure	16-9:	The	example	activity	with	a	three-column	layout.

Because	all	these	layouts	use	the	same	filename	but	are	placed	in	different
folders,	the	operating	system	will	take	care	of	using	the	correct	layout	in
correct	devices.

Activity
The	activity	needs	to	be	changed	to	manage	all	the	different	layouts.
Although	the	operating	system	already	chooses	the	correct	layout

Although	the	operating	system	already	chooses	the	correct	layout
automatically	on	runtime,	the	activity	still	needs	to	react	correctly	to	user
interactions.	The	first	step	is	to	make	the	activity	aware	of	which	layout	is
currently	used.	You	can	do	that	by	adding	control	constants	and	checking
which	fragment	containers	are	available.

private	static	int	LAYOUT_ONE_COLUMN	=	1;

private	static	int	LAYOUT_TWO_COLUMN	=	2;

private	static	int	LAYOUT_THREE_COLUMN	=	3;

	
private	int	currentLayout	=	LAYOUT_ONE_COLUMN;

	
				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

	

								setContentView(R.layout.example_fragment_layout);

								View	colorFrame	=	findViewById(R.id.color_frame);	View	colorInfoFrame

=	findViewById(R.id.color_info_frame);

								//	determine	which	layout	is	in	use	so	the	actions	can	be	//

redirected	correctly

								if	(colorInfoFrame	!=	null)	{

												currentLayout	=	LAYOUT_THREE_COLUMN;

								}	else	if	(colorFrame	!=	null)	{

												currentLayout	=	LAYOUT_TWO_COLUMN;

								}	else	{

												currentLayout	=	LAYOUT_ONE_COLUMN;

}

}

Another	change	you	must	make	is	to	the	setColor	method.	Right	now,	it
launches	an	activity	(when	on	a	phone),	replaces	one	fragment	(for	the	two-
column	layout),	or	replaces	two	fragments	(for	the	three-column	layout).

				public	void	setColor(int	color)	{

	
								if	(currentLayout	==	LAYOUT_THREE_COLUMN

																||	currentLayout	==	LAYOUT_TWO_COLUMN)	{	//	just	change	//

fragments

												ColorFragment	colorFragment	=	(ColorFragment)

getFragmentManager()	.findFragmentById(R.id.color_frame);	if	(colorFragment

==	null	||	colorFragment.getColorShown()	!=	color)	{

	

																if	(currentLayout	==	LAYOUT_THREE_COLUMN)	{

																				colorFragment	=	ColorFragment.newInstance(color,	false);

}	else	{

																				colorFragment	=	ColorFragment.newInstance(color,	true);	}

	

																FragmentTransaction	ft	=	getFragmentManager()

.beginTransaction();

																ft.replace(R.id.color_frame,	colorFragment);

																//	info	only	shown	on	three-column	layout	if	(currentLayout

==	LAYOUT_THREE_COLUMN)	{

	

																				ColorInfoFragment	colorInfoFragment

=																							(ColorInfoFragment)	getFragmentManager()

.findFragmentById(R.id.color_info_frame);	if	(colorInfoFragment	==	null

																												||	colorInfoFragment.getColorShown()	!=	color)	{

	

																								colorInfoFragment	=	ColorInfoFragment

.newInstance(color);

	

																								ft.replace(R.id.color_info_frame,	colorInfoFragment);

}

}

																ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);

ft.commit();

}

								}	else	{	//	launch	other	activity

												Intent	intent	=	new	Intent(this,

																				ResponsiveExampleColorDetailsActivity.class);

intent.putExtra(“color”,	color);

												startActivity(intent);

}

}

One	More	Activity
The	other	two-column	screen	is	still	missing.	That	screen	should	be	shown

The	other	two-column	screen	is	still	missing.	That	screen	should	be	shown
when	the	user	presses	the	color	info	button	on	the	two-column	layout.	To
make	the	screen	accessible,	you	need	to	add	another	method	to	the	previous
activity	that	is	handling	the	color	info	button	press.	This	method	is	called
from	the	color	fragment	when	the	user	presses	the	button.	In	this	case,	you
don’t	need	conditional	statements,	because	the	Info	button	is	visible	only	if
the	app	is	in	the	two-column	layout.

				public	void	setColorDetailsSelected(int	color)	{

								Intent	intent	=	new	Intent(this,

																ResponsiveExampleColorDetailsActivity.class);

intent.putExtra(“color”,	color);

								startActivity(intent);

								overridePendingTransition(android.R.anim.fade_in,

android.R.anim.fade_out);

}

The	same	activity	also	starts	when	you’re	using	the	one-column	phone	layout.
This	means	that	you	need	to	make	this	other	activity	responsive	as	well.	That
activity	will	be	used	only	in	the	one-and	two-column	layouts,	so	you	need	to
add	only	one	extra	layout.	Figure	16-10	shows	how	this	two-column	layout	is
rendered.	This	is	the	same	activity	you	saw	in	Figure	16-6.

Figure	16-10:	The	second	example	activity	with	two-column	layout.

Older	Android	versions

Older	Android	versions
The	example	you’ve	seen	in	this	chapter	uses	the	newer	qualifier	that	is
available	only	on	Android	3.2	or	newer	as	well	as	the	fragment	APIs,	which
are	only	available	on	Android	3.0	and	newer.	To	make	this	example
backward	compatible,	you	need	to	use	the	support	package	for	all	fragment-
related	classes,	as	explained	earlier	in	this	chapter.

When	it	comes	to	the	layouts,	you	have	two	choices.	Folders	with	qualifiers
that	are	not	understood	by	the	runtime	are	simply	ignored	by	the	system.	In
this	case	it	means	that	older	devices	will	always	use	the	single-column	layout.
Often	that	is	good	enough	as	a	large	majority	of	Android	tablets	run	Android
3.2	or	newer.	If	you	want	to	bring	the	responsive	user	interface	to	older
devices,	you	can	use	the	old	size	qualifiers	(-large,	-xlarge).	Unfortunately,
they	are	not	as	fine-grained	as	the	new	ones.	If	you	end	up	using	both	the	old
and	the	new	qualifiers,	you	should	avoid	copying	your	layouts,	and	use	the
include	and	merge	elements	introduced	in	Chapter	13.

Summary
Android	provides	great	tools	for	implementing	responsive	user	interfaces.
You	can	create	modular	user	interfaces	using	Android	fragments	and
dynamically	let	the	operating	system	pick	the	correct	layouts	using	the
Android	Resource	Manager.	Modular	and	independent	fragments	can	easily
be	reused	in	different	layout	configurations	while	letting	activities	handle	the
workflow	control.

Part	IV:	Android	UI	Design	Patterns

Chapter	17:	Introduction	to	User	Interface	Design	Patterns

Chapter	18:	User	Action	Design	Patterns

Chapter	19:	Navigation	and	Layout	Design	Patterns

Chapter	20:	Data	Design	Patterns

Chapter	21:	User	Interface	Design	Anti-Patterns

Chapter	17:	Introduction	to	User
Interface	Design	Patterns

A	design	pattern	is	a	well-thought-out	solution	to	a	common	problem.	In	your
everyday	life	as	well	as	in	your	work,	you	likely	run	into	the	same	problems	over
and	over	again.	In	many	cases,	you	may	have	found	solutions	that	work	and	then
repeat	the	same	behavior	patterns	whenever	you	encounter	the	same	problems
again.	People	also	tend	to	share	such	solutions	with	others.

Design	patterns	provide	a	way	to	formalize	the	same	approach	to	help	designers
with	their	professional	challenges.	The	“gang	of	four,”	in	their	book	Design
Patterns,	were	the	first	to	utilize	the	design	pattern	approach	in	the	software
realm.	If	you	are	a	software	developer,	you	are	probably	familiar	with	this	book.

Design	Patterns	introduced	multiple	software	design	patterns	that	described
commonly	known	problems	in	building	software	and	solutions	for	solving	them.
These	patterns	are	now	commonplace	in	developer	language.	You	hear
developers	talking	about	singletons	and	factories	when	they	talk	about	software
architecture	and	design.	These	design	patterns	not	only	give	them	proven
solutions	to	their	problems	but	also	provide	a	very	powerful	communication	tool.
Having	commonly	used	names	for	design	patterns	allows	developers	to
communicate	complex	solutions	in	one	or	two	words.

User	interface	design	patterns
User	interface	design	is	less	formal	than	writing	code	or	designing	software
architecture.	But	still	in	design	the	same	design	problems	reoccur.	This	is
especially	true	when	you’re	designing	software	for	small	screens	of	mobile
devices,	which	add	further	constraints	to	the	available	solutions.

In	the	time	of	this	writing,	Google	Play	has	more	than	500,000	apps—many
with	great	user	interfaces	and	many	with	poor	user	interfaces.	By	viewing
thousands	of	different	solutions	to	common	problems,	you	can	see	which
solutions	have	worked	and	which	have	not.	By	studying	other	apps,	you’ll
start	to	see	good	user	interface	design	patterns	as	well	as	bad	ones.

Designing	the	design
The	first	chapters	of	this	book	talked	about	user	goals	and	scenarios	and
understanding	the	user’s	need.	Then,	the	following	chapters	talked	about
tools	you	can	use	to	build	the	interface	once	you	know	what	your	users	want.
This	part,	the	user	interface	design	patterns,	is	what	you	use	when	you	need
to	organize	the	components	of	your	designs.	Design	patterns	can	help	you
form	a	concrete	design	based	on	the	user’s	needs.

It	is	good	to	remember	that	user	interface	design	isn’t	an	exact	science,	so
user	interface	design	patterns	are	much	more	like	foundations	for	solving
problems	than	complete	out-of-the-box	solutions.	They	can	sometimes	be
applied	directly,	but	more	often	than	not	they	should	be	adapted	to	the	needs
of	the	particular	user	interface	being	designed.

When	to	use	and	when	not	to	use	design	patterns
A	design	pattern	should	never	be	applied	if	you	don’t	have	a	compelling
reason	to	do	so.	You	should	never	try	to	solve	a	problem	that	doesn’t	exist.
For	example,	the	side	navigation	Android	user	interface	design	pattern—
which	is	very	widely	used—does	not	work	with	every	app.	If	the	app	in
question	shows	the	next	departures	of	a	nearby	bus	stop,	for	example,	the
design	probably	should	not	have	side	navigation.	Figure	17-1	shows	an
example	app	that	is	using	side	navigation	well.	There	is	much	more	about
side	navigation	in	Chapter	19.

Tip:	Never	use	a	design	pattern	if	it	doesn’t	solve	a	problem	you	have!	Even
if	you	have	an	exact	problem	described	in	a	pattern	description,	design
patterns	don’t	always	work	in	every	app.	It’s	always	wise	to	evaluate	the	use
of	any	design	pattern	in	the	context	of	your	app.

Figure	17-1:	Evernote’s	use	of	side	navigation	is	justified,	as	the	app	has
more	a	complex	structure.

Source:	Evernote	Corporation

Benefits	of	using	UI	design	patterns
There	are	many	benefits	of	knowing	the	platform	and	its	common	design
patterns.

Don’t	reinvent	the	wheel
Design	patterns	don’t	emerge	overnight.	They	have	evolved	through	many
iterations.	The	solutions	that	form	design	patterns	have	been	vigorously	tested
by	thousands	of	designers	and	developers	and	used	by	thousands	of	users.
The	solutions	that	have	survived	as	design	patterns	have	been	found	to	work
in	multiple	different	apps	in	the	real	world.	Some	of	the	solutions	have	been
tweaked	and	refined	by	highly	skilled	designers	over	time.	The	benefits	of
using	solutions	like	these	are	evident.	You	get	to	build	on	top	of	a	solid

using	solutions	like	these	are	evident.	You	get	to	build	on	top	of	a	solid
foundation.

Platform	consistency
Solid	foundations	aren’t	the	only	benefit	of	using	user	interface	design
patterns.	The	user	interface	design	patterns	also	bring	consistency	to	the
Android	platform.	Users	know	how	Action	Bars	and	side	navigations	work,
and	they	don’t	have	to	learn	your	app’s	user	interface	separately.	Even
complex	user	interfaces	are	easy	to	use	if	they	are	consistent	in	all,	or	most,
of	the	apps	on	the	platform.

Library	support	and	ready	components
Another	notable	benefit	of	using	UI	design	patterns	is	the	library	support.
Some	of	the	design	patterns	are	going	to	find	their	way	into	the	Android	core
libraries	and	Google’s	support	library.	Using	those	components	guarantees
quality	of	the	components.	But	many	of	the	design	patterns	won’t	be
supported	by	the	core	libraries.	Fortunately,	there	are	multiple	third-party
library	projects,	many	of	them	Open	Source,	that	aim	to	fill	the	gap.	It	is
always	better	to	use	a	library	that	has	been	tested	and	is	being	maintained
than	to	build	your	own.	Just	remember	to	contribute	your	changes	back	to	the
community!

Design	Patterns	in	Android	design	guidelines
Android	design	guidelines	list	some	design	patterns	as	well.	You	should	take
a	look	of	the	listing	in	the	Android	design	website	at
http://developer.android.com/design/patterns/index.html.	Some	of
the	design	patterns	listed	in	this	book	are	the	same	as	in	that	website.	When	I
talk	about	a	design	pattern	that’s	listed	in	the	Android	design	guidelines,	I
give	you	a	link	to	the	web	page.

Tip:	There	are	a	lot	of	bad	designs	out	there.	Chapter	21	covers	bad	user
interface	designs	by	explaining	what	not	to	do.	These	common	solutions	are
bad	for	the	user	experience.	I’ll	explain	why	they’re	bad	as	well	as	give	you
an	alternative	solution	that	is	better.

User	Interface	Design	patterns	found	in	this
book

As	mentioned	previously,	a	design	pattern	is	a	proven	solution	to	a	commonly
occurring	problem.	I	have	kept	the	same	approach	in	this	book.	For	each	of
the	design	patterns,	I	start	with	the	problem	description	after	a	short
overview.	After	describing	the	problem	I	talk	about	the	available	solutions.
The	solution	describes	the	design	pattern	and	usually	also	gives	examples	of
apps.	The	solution	is	an	abstract	description	of	how	the	user	interface	works.
It	doesn’t	tell	you	how	to	implement	it,	although	sometimes	you	might	have	a
really	good	idea	how	you	would	implement	it	intuitively.	The	solution	part	of

http://developer.android.com/design/patterns/index.html

really	good	idea	how	you	would	implement	it	intuitively.	The	solution	part	of
a	user	interface	design	pattern	is	like	a	developer	goal.	Your	goal	is	to	make
the	user	interface	work	the	way	the	solution	describes.

Phones,	tablets,	and	responsive	design
One	of	the	important	themes	in	this	book	is	the	responsive	design	that	makes
your	apps	work	well	on	small	phone	screens	as	well	as	on	large	tablet
screens.	For	each	design	pattern	in	this	book	I	describe	how	to	use	it	on	small
and	large	screens.	Some	of	the	design	patterns	can	be	used	directly	without
any	modifications,	but	some	of	them	need	to	be	adapted	and	in	some	cases
even	discarded	when	the	user	interface	moves	from	a	small	screen	to	a	large
screen.

Example	apps
The	example	apps	included	in	this	book	represent	a	good	implementation	of
the	design	pattern.	I	encourage	you	to	download	and	experiment	with	the
apps	I	mention.	However,	the	app	design	is	moving	so	fast	that	some	of	the
designs	you	see	mentioned	here	might	have	been	changed	by	the	time	you
read	this	book.	In	all	of	the	cases	there	are	many	other	apps	you	can	find	to
see	the	same	design	pattern.

Note	that	I	don’t	want	to	encourage	you	to	copy	the	example	app’s	design
directly.	Each	design	pattern	should	be	adapted	to	your	needs;	it	is	very
unlikely	that	your	app	has	exactly	same	needs	as	the	examples	shown	here.
Take	time	and	evaluate	the	examples	and	other	apps	you	find,	and	make	your
own	design.

Example	code
For	some	of	the	design	patterns,	I	also	include	source	code	examples	to	help
you	get	started;	however,	many	of	them	don’t	include	any	code.	The	reason
for	that	is	that	many	of	the	design	patterns	introduced	in	this	book	are	well
supported	by	multiple	Open	Source	libraries.	I	have	included	links	to	the
projects	usually	in	github	(https://github.com/),	where	you	can	find	much
better	examples	than	the	space	in	this	book	allows	me	to	include.	These	Open
Source	libraries	are	valuable	in	the	process	of	implementing	your	app.	Many
of	them	are	backward	compatible	with	older	Android	versions	and	allow	you
to	skip	some	of	the	most	difficult	parts	of	Android	development.

https://github.com/

Design	pattern	naming
The	name	of	a	design	pattern	is	an	important	part	of	it.	As	I	mentioned,	a
well-known	design	pattern	is	a	powerful	communication	tool.	A	sentence	like
“should	we	use	an	Action	Bar	on	this	screen?”	can	communicate	a	lot	of
information	without	having	to	explain	what	an	Action	Bar	is.	Using	these
standard	naming	conventions	allows	the	design	team	to	communicate
effectively.

This	book	uses	the	terms	that	have	gained	popularity	with	the	Internet
Android	design	community.	Many	of	the	design	patterns	have	multiple	names
and	I	have	included	some	of	the	other	names	in	the	description	of	the	design
patterns	that	do	not	have	a	well	established	name	yet.

It	is	also	worth	noting	that	design	patterns	often	do	not	use	the	names	of	the
technical	implementation	components	or	classes.	The	class	names	and
package	names	in	the	Android	source	code	serve	a	different	purpose	than
design	pattern	naming.	A	design	pattern	name	should	refer	to	the	problem	it
solves,	combined	with	the	solution.	A	technical	class	name,	on	the	other
hand,	is	typically	used	to	describe	the	functionality.

User	interface	design	pattern	categories
This	part	of	the	book	is	organized	into	three	user	interface	design	pattern
categories	and	one	chapter	on	bad	design	patterns	(called	anti-patterns).	The
categories	are	loosely	organized	but	hopefully	will	help	you	find	the	designs
you	need.	The	user	action	design	patterns	all	have	something	to	do	with	user
interaction	with	the	app.	Layout	and	navigation	design	patterns	can	help	you
solve	layout	and	scalability	problems.	The	data	design	patterns	can	help	you
organize	your	data	to	make	it	easier	for	users	to	understand.	Some	of	the
design	patterns	could	probably	be	in	more	than	one	of	the	categories.

Summary
User	interface	design	patterns	can	help	you	move	from	an	idea	toward	an	app.
It’s	very	likely	that	other	designers	have	wrestled	with	the	same	problems
you	are	encountering,	so	it	makes	sense	to	use	these	same	solutions,	which
have	already	proven	to	work.	You	should,	however,	always	be	critical	and
make	sure	that	the	solution	you	are	applying	is	solving	a	real	issue	you	have.
Do	not	add	design	patterns	to	your	app	design	just	because	others	are	using
them.

	

Chapter	18:	User	Action	Design	Patterns
This	chapter	introduces	and	explains	the	user	action	design	patterns.	These
patterns	can	help	you	solve	issues	related	to	presenting	and	performing	user
actions.	Some	of	the	design	patterns	are	very	commonly	used	and	are	an	integral
part	of	the	Android	platform	(like	the	Action	Bar	pattern),	whereas	others	are
much	more	rare	and	solve	more	obscure	problems.

The	user	action	design	patterns	discussed	in	this	chapter	include	the	following:

•	The	Action	Bar	pattern

•	The	Quick	Actions	pattern
•	The	Action	Drawer	pattern
•	The	Pull-to-Refresh	pattern

•	The	Swipe-to-Dismiss	pattern

Using	the	Action	Bar	Pattern
The	Action	Bar	is	the	styled	top	bar	of	a	user	interface	view	that	consists	of
the	app	icon	and	the	contextual	action	buttons.	It	can	also	optionally	contain
an	overflow	menu	as	well	as	some	navigation	options.	The	Action	Bar	is	one
of	the	defining	user	interface	design	patterns	of	the	Android	user	interface
language.	This	design	pattern	has	been	around	for	a	long	time	and	has
become	one	of	the	most	recognizable	components	of	the	Android	user
interface.

Problems	Addressed
The	Action	Bar	pattern	can	potentially	be	a	solution	to	multiple	different
problems,	each	of	which	is	discussed	in	the	following	sections.

Important	Contextual	Actions
Mobile	apps	have	many	actions	that	users	can	perform	on	any	screen.	Some
of	these	actions	are	important	and	are	used	often.	These	actions	can	be,	for
example,	sending	an	email	from	the	compose	screen	or	showing	a	new	note

example,	sending	an	email	from	the	compose	screen	or	showing	a	new	note
on	a	note	taking	app’s	list	screen.	These	important	actions	need	to	be
instantly	accessible	and	their	placement	in	the	user	interface	must	be	intuitive
and	consistent.

Corporate	Logo
Presenting	the	corporate	logo	or	brand	in	an	app	somewhere	is	very	important
to	most	companies.	The	user	interface	is	often	covered	by	components	that
are	relatively	difficult	to	customize	or	at	least	would	cause	a	lot	of	additional
design,	implementation,	and	quality	assurance	effort	to	manipulate.

Sense	of	Location
Users	should	always	have	a	clear	understanding	of	where	they	are	in	the	app
structure	and	be	able	to	clearly	understand	the	significance	of	the	information
they	are	presented.	On	a	small	phone	screen,	it	can	be	difficult	to	include
navigation	aids	like	breadcrumbs	or	navigation	menus	with	the	location
highlighted.

Solutions
The	Action	Bar	pattern	is	a	dedicated	area	at	the	top	of	the	screen	that	is
visually	separated	from	the	rest	of	the	user	interface.	The	height	of	the	Action
Bar	is	typically	the	height	of	a	single	clickable	icon	plus	the	margin.	The
Action	Bar	is	usually	present	on	all	screens	throughout	the	app.

Action	Bar	Components
The	Action	Bar	has	four	sections	(see	Figure	18-1).	Note	that	you	don’t	have
to	use	all	of	them.	Your	app	might	not	require	all	of	the	possible	functions.
The	left	side	of	the	Action	Bar	is	reserved	for	the	app	icon.	The	app	icon	has
three	possible	functions.	It	can	take	the	users	to	the	app	front	page,	take	them
one	level	higher,	or	open	the	side	navigation	menu	(more	about	side
navigation	design	pattern	in	Chapter	19).	When	the	app	icon	is	used	to
navigate	to	a	higher	level,	it	is	called	the	Up	button	and	is	displayed	with	a
companion	icon,	sometimes	called	up	affordance,	indicating	the	up
functionality.	In	some	cases,	the	app	icon	doesn’t	have	to	have	any
functionality.

The	second	part	of	an	Action	Bar	is	the	view	control.	In	Figure	18-1	the	view
control	is	just	a	simple	label	and	doesn’t	have	any	interactive	functionality.

control	is	just	a	simple	label	and	doesn’t	have	any	interactive	functionality.
I’ll	talk	more	about	the	navigation	aspect	in	Chapter	19.

The	action	buttons	are	shown	on	the	right	side	of	the	Action	Bar.	Any	actions
that	do	not	fit	to	the	Action	Bar	or	are	low	priority	or	rarely	used	are	moved
into	the	action	overflow	menu.

Figure	18-1:	Action	Bar	components.

Source:	Google

Action	Bar	and	Corporate	Brand
Color	selection	of	the	Action	Bar	background	in	combination	with	the	app
icon	(or	any	other	icon	that	is	used	in	the	Action	Bar)	provides	a	very
distinguishable	application	brand	without	having	to	customize	other
components.

Figure	18-2	shows	a	good	example	of	the	Action	Bar	design	pattern.	The
TED	app	uses	the	Action	Bar	to	give	the	app	a	recognizable	TED	branding	by
using	its	colors	and	icons.	The	app	also	shows	three	actions	available	to	the
users	on	the	screen.

Figure	18-2:	Good	use	of	the	Action	Bar	design	pattern	by	the	TED	app.

Source:	TED	Conferences

Official	Design	Guidelines
The	Action	Bar	design	pattern	is	very	well	defined	in	the	Android	design
guidelines	documentation.	I	recommend	reading	it	to	get	Google’s	point	of
view	of	this	design	pattern	at
http://developer.android.com/design/patterns/actionbar.html.

Consequences
The	Action	Bar	provides	a	consistent	place	for	the	most	important	actions.	By
using	a	common	component	in	multiple	applications,	users	learn	to	expect	the
functionality	and	find	it	easy	to	use.	If	the	applications	consistently	provide
the	functionality,	the	app	user	interface	does	not	have	to	be	relearned.	Users
can	utilize	the	knowledge	established	in	other	apps.	This	makes	users	more
comfortable	with	the	app’s	main	functionality,	thus	improving	the	overall
user	experience	tremendously.

http://developer.android.com/design/patterns/actionbar.html

user	experience	tremendously.

Additional	features
There	are	few	user	interface	features	that	relate	to	the	Action	Bar	design
pattern	without	being	part	of	the	pattern	itself.	These	additional	features,
discussed	in	the	following	sections,	can	be	added	to	the	Action	Bar	and	are
often	seen	as	part	of	the	same	design.

Up	Button
The	app	icon	is	often	used	as	an	Up	button.	The	Up	button	concept	can	be
fairly	complex	and	sometimes	difficult	for	the	users	to	understand.	The
problems	arise	when	the	Up	button	is	confused	with	the	Back	functionality.
The	Up	concept	is,	however,	part	of	the	Android	design	guidelines	and	worth
noting.	The	Up	button	should	always	take	the	users	to	the	parent	screen	in	the
app	hierarchy,	regardless	of	how	the	user	ended	up	at	the	current	screen.	The
Up	functionality	is	indicated	with	a	small	left	caret	symbol.	You	can	read
more	about	the	Up	navigation	from	the	Android	design	guideline	page	online
at
http://www.developer.android.com/design/patterns/navigation.html.com

Extra	Navigation	Controls
The	Action	Bar	is	sometimes	used	as	a	container	for	navigation	controls.	The
two	common	navigation	controls	are	the	dropdown	spinner	navigation	list,
such	as	the	one	shown	on	the	Google	Maps	app	in	Figure	18-3,	and	the	use	of
tabs,	such	as	those	shown	on	the	YouTube	app	in	Figure	18-4.

Large	screen	adaptation
The	Action	Bar	adapts	to	larger	screens	very	easily.	The	larger	horizontal
space	makes	it	easier	to	fit	all	the	components	on	the	Action	Bar.	The	Action
Bar	is	often	slightly	taller	on	a	tablet	device	than	on	a	phone,	so	it	looks	more
visually	balanced.	Figure	18-5	shows	how	the	TED	app’s	Action	Bar	looks
on	a	tablet	device.	This	is	the	same	screen	shown	on	the	phone	in	Figure	18-
2.

The	increased	space	of	larger	screen	or	landscape	layout	allows	you	to	add
components	like	navigation	tabs	(see	Figure	18-4),	expand	labels,	and	move
some	of	the	actions	from	the	action	overflow	menu	to	the	Action	Bar.

http://developer.android.com/design/patterns/navigation.html
http://developer.android.com/design/patterns/navigation.html
http://developer.android.com/design/patterns/navigation.html
http://developer.android.com/design/patterns/navigation.html
http://developer.android.com/design/patterns/navigation.html
http://developer.android.com/design/patterns/navigation.html
http://developer.android.com/design/patterns/navigation.html

some	of	the	actions	from	the	action	overflow	menu	to	the	Action	Bar.

Many	of	these	adaptations	are	provided	by	the	Action	Bar	libraries	or	the
Android	SDK.	You’ll	read	more	about	implementation	options	in	the
technical	implementation	section	later	in	this	chapter.

Considerations	and	criticisms
The	Action	Bar,	although	a	very	common	design	pattern,	isn’t	without
criticism.	There	are	few	things	to	consider	when	implementing	an	Action	Bar
design.

Figure	18-3:	The	Google	Maps	app	uses	the	dropdown	spinner	navigation	as
part	of	the	Action	Bar.

Source:	Google

http://developer.android.com/design/patterns/navigation.html

Figure	18-4:	YouTube	apps	places	tabs	in	the	Action	Bar	when	the	device	is
in	landscape	mode.

Source:	Google

Figure	18-5:	The	TED	app	and	Action	Bar	on	a	larger	tablet	screen.

Source:	TED	Conferences

Reach
The	Action	Bar	contains	the	most	important	functionality	and	is	located	at	the
top	of	the	screen.	As	smartphone	displays	grow	in	size,	it	is	increasingly	more
difficult	for	users	to	use	their	phones	with	one	hand	and	especially	to	reach
the	top	part	of	the	screen.

Wasted	Screen	Real	Estate	and	Hiding
Another	issue	with	the	Action	Bar	has	been	its	persistent	nature.	In	some	apps
screens	need	to	be	fully	dedicated	to	the	content,	and	there’s	no	room	for	the
Action	Bar.	Apps	like	video	players	and	ebook	readers	are	good	examples	of
this.	The	Action	Bar	is	often	hidden	until	the	user	taps	the	content	to	make	it
visible	again.	Although	this	interaction	has	become	pretty	common,	it	can
still	cause	discoverability	problems.

Icon-Based	Actions
The	actions	on	the	Action	Bar	are	most	of	the	time	associated	with	icons.
Icons,	especially	on	touch	screens,	are	often	not	very	intuitive.	Users	cannot
hover	over	an	icon	to	get	a	helpful	tooltip	if	the	meaning	of	the	icon	is
unclear.

Google	added	action	tooltips,	which	can	be	shown	by	long-pressing	the
Action	Bar	icon	(see	Figure	18-6).	Although	this	can	be	helpful	for	some
users	most	of	the	users	do	not	know	that	they	can	long-press	icons	to	get	this
tooltip.	You	should	not	rely	on	this	to	help	your	users,	but	you	should
definitely	provide	this	functionality	in	your	Action	Bars.	As	time	passes,
more	users	are	likely	to	find	out	about	this	feature.	In	any	case	the	most
important	thing	is	to	make	sure	that	your	Action	Bar	icons	are	descriptive	and
intuitive	to	your	users!

Variations	of	the	Action	Bar	Pattern
There	are	some	common	variations	on	the	standard	Action	Bar	pattern	that
have	become	commonplace;	several	of	them	are	covered	in	the	following
sections.

Split	Action	Bar
As	a	response	to	the	limited	space	in	the	Action	Bar	as	well	as	the	reach
problem,	a	split	Action	Bar	concept	has	emerged.	The	split	Action	Bar	adds

problem,	a	split	Action	Bar	concept	has	emerged.	The	split	Action	Bar	adds
another	bar	of	actions	to	the	bottom	of	the	screen.	There	are	a	few	variations
of	this	concept.	Sometimes	the	bottom	Action	Bar	functions	as	an	extension
of	the	top	Action	Bar,	and	the	actions	that	do	not	have	enough	room	to	be
shown	on	the	top	Action	Bar	are	placed	on	the	bottom.	In	this	case	the
overflow	action	menu	should	be	placed	on	the	bottom	Action	Bar	instead	of
the	top	right.

Another	way	to	split	the	Action	Bar	is	to	leave	the	app	icon	in	the	top	Action
Bar	and	move	all	its	actions	to	the	bottom	part.	This	solves	the	reach	issue	but
creates	inconsistency	in	the	Android	system.	Figure	18-7	shows	an	example
of	a	split	Action	Bar	that	lists	the	functions	in	the	bottom	bar.

Figure	18-6:	An	example	of	tooltip	help	in	the	Tasks	app,	which	you	access
by	long-pressing	an	icon	on	the	Action	Bar.

Source:	Tasks	App

Figure	18-7:	Evernote	uses	the	split	Action	Bar.

Source:	Evernote

It	is	very	important	to	make	sure	the	split	Action	Bar	adapts	correctly	to
orientation	changes.	Reserving	top	and	bottom	bars	in	landscape	mode	is	not
acceptable.	When	a	split	Action	Bar	screen	rotates,	the	Action	Bar	should
switch	to	single	top	Action	Bar	mode.

Contextual	Action	Bar	Mode
In	some	screens,	the	user	can	manipulate	individual	items	instead	of	just
performing	actions.	In	these	situations,	a	so-called	contextual	Action	Bar
mode	or	action	mode	is	often	activated.	It	causes	the	Action	Bar	to	show
actions	that	relate	to	the	selected	items.	Action	mode	is	discussed	more	in	the
quick	actions	design	pattern	section	later	in	this	chapter.

Which	actions	to	show?

Since	the	space	for	actions	is	limited	you	must	carefully	consider	which
actions	you	want	to	place	in	the	Action	Bar	and	which	ones	to	leave	in	the
overflow	action	menu.

Your	first	priority	should	be	to	include	actions	that	are	contextual	to	the
screen	and	are	very	frequently	used.	A	good	example	of	this	is	the	send	action
on	an	email	compose	screen.	The	second	priority	is	actions	that	might	not
necessarily	be	contextual	but	address	some	of	the	most	common	use	cases.	In
an	email	application,	for	example,	the	compose	email	action	on	the	app
landing	screen	should	be	visible	on	the	Action	Bar.

Adaptive	Action	Bar	Actions
Different	phones	and	tablets	and	different	screen	orientations	have	differing
amounts	of	space	for	actions.	Your	app’s	Action	Bar	should	adapt	to	different
screen	sizes	the	same	way	as	the	rest	of	the	user	interface.	Based	on	the
importance	of	these	actions,	you	should	classify	them	in	three	categories:	•
Always	show	on	the	Action	Bar

•	Show	on	the	Action	Bar	if	there	is	space
•	Never	show	on	the	Action	Bar

Most	of	the	actions	you	deal	with	should	be	classified	in	the	“if	space”
category.	Only	very	general	actions,	like	general	settings,	should	be	placed
into	the	“never	show”	category.

Technical	implementation
Since	the	Action	Bar	is	a	very	well-established	design	pattern	it	has	good
support	for	implementation.	It	is	one	of	the	few	complex	components	that	has
been	added	as	part	of	the	Android	core	SDK.

SDK
Support	for	the	Action	Bar	was	added	to	the	Android	SDK	at	the	release	of
Android	3.0	Honeycomb,	and	support	for	the	phone	Action	Bar	was	added	to
the	Android	4.0	Ice	Cream	Sandwich	release.

If	your	app	targets	only	Android	3.0	or	newer	you	can	simply	use	the	Action
Bar	provided	by	the	SDK.	It	gives	you	a	lot	of	functionality	out	of	the	box.	It
automatically	adapts	to	larger	screens	and	screen	orientations	as	well	as

automatically	adapts	to	larger	screens	and	screen	orientations	as	well	as
manages	the	shown	actions	based	on	the	definitions	you	give	to	the	action
items.	It	also	provides	the	long-press	tooltip	functionality	and	allows	you	to
turn	the	app	icon	into	an	Up	function.

For	the	full	specification	and	guide	for	using	the	SDK’s	Action	Bar	you
should	read	the	Android	documentation	at
http://developer.android.com/guide/topics/ui/actionbar.html.

ActionBarSherlock
If	you	have	a	project	that	supports	older	Android	versions,	there	is	a	very
good	Open	Source	third-party	library	that	you	can	use.	The	library	is	called
ActionBarSherlock,	and	it	is	maintained	by	Jake	Wharton.	The	library
allows	you	to	bring	the	Action	Bar	functionality	to	all	Android	versions
starting	with	Android	2.1.	The	library	is	implemented	well	and	uses	the	same
API	call	and	styling	parameters	that	the	SDKs	Action	Bar	uses.	This	means
that	you	don’t	have	to	relearn	everything	to	use	the	ActionBarSherlock
library.	The	library	also	automatically	uses	the	native	Action	Bar	when
available.

Download	and	read	the	documentation	for	using	ActionBarSherlock	from
the	project	website	at	http://actionbarsherlock.com/.

Theming
You	have	a	large	set	of	parameters	you	can	use	to	create	Action	Bar	themes.
You	can	use	solid	colors	or	user	background	images	for	color	themes.	It’s
best	to	use	nine-patch	images	for	backgrounds.

Drawing	all	the	required	assets	can	be	a	long	process.	There	are	tools	that
make	it	easier.	For	example,	you	can	use	an	Action	Bar	style	generator
website	created	by	Jeff	Gilfelt	to	generate	all	the	graphics	based	on	numerical
color	values.	The	site	also	generates	all	the	required	XML	files	for	you.	You
can	find	the	generator	at	http://www.jgilfelt.github.com/android-
actionbarstylegenerator/.com/.

Using	The	Quick	Actions	design	pattern
The	Quick	Actions	design	pattern	helps	you	create	a	user	interface	for	actions

http://developer.android.com/guide/topics/ui/actionbar.html
http://actionbarsherlock.com/
http://jgilfelt.github.com/android-actionbarstylegenerator/
http://jgilfelt.github.com/android-actionbarstylegenerator/
http://jgilfelt.github.com/android-actionbarstylegenerator/
http://jgilfelt.github.com/android-actionbarstylegenerator/
http://jgilfelt.github.com/android-actionbarstylegenerator/
http://jgilfelt.github.com/android-actionbarstylegenerator/
http://jgilfelt.github.com/android-actionbarstylegenerator/
http://jgilfelt.github.com/android-actionbarstylegenerator/

The	Quick	Actions	design	pattern	helps	you	create	a	user	interface	for	actions
that	affect	only	one	or	a	few	items	on	the	screen.	This	design	pattern	is	most
often	used	with	list	screens	or	other	screens	that	show	multiple	items.

Problems	Addressed
Apps	often	have	screen	where	they	display	multiple	items	like	emails,	notes,
and	to-do	items.	Users	need	to	be	able	to	perform	actions	only	on	items	they
want	to	be	affected.	Operations	like	delete,	edit,	and	move	require	users	to
select	the	items	explicitly.

With	mouse-operated	user	interfaces,	users	are	used	to	right-clicking	items
they	want	to	manipulate	individually.	On	touch	screens	that	approach	is	not
possible,	so	an	alternative	must	be	found.

Solution
This	design	pattern	contains	multiple	solutions	to	this	problem.	Each	solution
works	best	in	certain.	The	first	one,	the	contextual	Action	Bar,	is	the
preferred	solution	but	is	not	applicable	if	the	application	doesn’t	use	the
Action	Bar	design	pattern.	It	can	also	sometimes	be	cumbersome	compared	to
the	other	solutions—the	dropdown	menu	and	custom	overlay.	The	contextual
Action	Bar	is	the	only	one	of	the	solutions	that	supports	bulk	operations	that
can	be	performed	on	multiple	selected	items.

Note	that	there	is	a	related	anti-pattern,	called	Swipe	Overlay	Quick	Actions,
covered	in	Chapter	21.

Contextual	Action	Bar
The	Contextual	Action	Bar	is	an	extension	to	the	Action	Bar	pattern
introduced	previously.	This	is	also	the	recommended	solution	in	the	Android
design	guidelines.	The	Contextual	Action	Bar	is	sometimes	called	the	Action
Bar	action	mode.	The	Gmail	app	uses	the	Contextual	Action	Bar	to	display
actions	that	the	users	can	perform	when	email	list	items	are	selected	(see
Figure	18-8).	The	Action	Bar	style	changes	and	the	actions	provided	there
apply	to	selected	items	only.	The	top-left	icon	on	the	Action	Bar	changes	into
a	Done	icon	that	the	users	can	use	to	cancel.	The	Android	back	button	also
cancels	this	mode.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

When	using	the	Contextual	Action	Bar,	you	should	indicate	clearly	that	the
list	items	are	selectable.	Often	the	best	solution	is	to	add	a	checkbox	to	the
list	items.	List	items	with	checkboxes	allow	users	to	select	multiple	items
easily	and	edit	their	existing	selection.	When	using	checkboxes	in	list	items
that	are	themselves	active	selection	components	(such	as	when	users	can	tap	a
list	item	to	move	to	the	item	details	screen),	you	must	make	sure	that	the
checkbox	area	is	large	enough.	Making	only	the	checkbox	itself	the	hit	area
will	lead	to	user	confusion	and	frustration.	It	is	a	good	idea	to	make	the
portion	of	the	left	end	of	the	list	item	a	hit	area	for	the	checkbox	as	well.

Long-pressing	a	list	item	should	also	select	the	item.

Read	more	about	contextual	Action	Bar	from	the	Android	design	guidelines
at
http://www.developer.android.com/design/patterns/actionbar.html#contextual

Dropdown	Menu
The	dropdown	menu	can	be	used	to	present	options	for	individual	list	items
when	no	bulk	operations	are	needed	and	the	available	operations	are	difficult
to	explain	in	the	Action	Bar	icons.	The	Google	Play	Music	Player	app	(see
Figure	18-9)	shows	a	good	example	of	acceptable	use	of	the	dropdown	menu
quick	actions.

Dropdown	menus	do	not	allow	users	to	select	more	than	one	item	at	a	time.
However,	you	have	much	more	space	to	explain	the	actions.	In	my	opinion,
you	should	use	a	dropdown	menu	only	if	the	contextual	Action	Bar	is	not
suitable.

http://developer.android.com/design/patterns/actionbar.html#contextual
http://developer.android.com/design/patterns/actionbar.html#contextual
http://developer.android.com/design/patterns/actionbar.html#contextual
http://developer.android.com/design/patterns/actionbar.html#contextual
http://developer.android.com/design/patterns/actionbar.html#contextual

Figure	18-8:	The	Contextual	Action	Bar	is	used	in	the	Gmail	app.

Source:	Google

http://developer.android.com/design/patterns/actionbar.html#contextual
http://developer.android.com/design/patterns/actionbar.html#contextual
http://developer.android.com/design/patterns/actionbar.html#contextual

Figure	18-9:	Using	dropdown	quick	actions	in	the	Google	Play	Music	Player
app.

Source:	Google

Be	sure	to	indicate	that	users	can	open	the	menu	by	using	the	Android’s
dropdown	menu	symbol	on	your	list	items.	That	symbol	will	visually	indicate
that	a	menu	is	available.	Users	can	then	open	it	by	tapping	the	menu	indicator
or	long-pressing	the	list	item.

Custom	Overlay
The	third	option	is	use	a	custom	overlay	to	present	quick	actions	to	users.
Although	this	is	not	the	standard	way	of	showing	quick	actions	and	might
require	more	development	work,	the	result	can	be	very	stylish.	The
TouristEye	app	shown	in	Figure	18-10	uses	this	approach.	The	TouristEye
app	doesn’t	have	that	many	quick	actions,	and	they	also	don’t	need	any	bulk
operations.	This	custom	overlay	solution	is	very	non-intrusive	and	offers
users	easy	access	to	the	actions.	Note	the	use	of	the	indicator	icon,	which

users	easy	access	to	the	actions.	Note	the	use	of	the	indicator	icon,	which
triggers	the	custom	overlay.

Figure	18-10:	Nice	use	of	custom	overlay	to	show	quick	actions	in	the
TouristEye	app.

Source:	TouristEye	app

Consequences
Providing	an	easy	and	consistent	way	for	users	to	perform	actions	is	very
important.	If	users	are	forced	to	navigate	to	separate	screens	in	order	to
perform	actions,	the	application	will	start	to	feel	cumbersome.	Using	these
common	design	patterns	will	also	help	users	understand	the	functionality	of
your	app	more	easily.	They	won’t	have	to	spend	time	figuring	out	how	to
perform	their	desired	actions.

Long-press
Long-press	has	become	a	standard	gesture	on	touch	screens.	It	replaces	the

Long-press	has	become	a	standard	gesture	on	touch	screens.	It	replaces	the
right-click	on	pointer	devices.	Users	are	used	to	right-clicking	components
they	want	to	manipulate	individually.	You	should	make	sure	that	you	provide
long-press	as	a	way	for	doing	the	same.	Whichever	of	the	previous	solutions
you	choose	to	implement,	make	sure	the	long-press	always	brings	up	the
quick	actions.

Large	screen	adaptation
All	of	these	solutions	adapt	to	large	screens	very	nicely.	Contextual	Action
Bar	uses	the	added	screen	real	estate	to	show	the	actions	nicely	(see	Figure
18-11	for	an	example).	The	other	quick	action	alternatives	do	not	require	any
alterations	for	the	larger	screen	and	can	be	used	the	same	way	they	are	used
on	smaller	screens.

Figure	18-11:	The	Gmail	app	contextual	Action	Bar	on	a	tablet.

Source:	Google

Considerations	and	criticism
The	way	quick	actions	are	presented	has	changed	as	the	Android	design	has
evolved.	You	might	still	see	the	old	pre-ICS	style	quick	actions	in	apps,

although	the	new	Android	standards	make	them	look	outdated	and	you	should
not	use	them	anymore.	Prioritizing	the	contextual	Action	Bar	makes	it	easier
for	you,	from	both	a	design	and	implementation	point	of	view.

An	important	consideration	when	designing	quick	actions	is	that—regardless
of	which	approach	you	take—you	should	always	avoid	hiding	the	selected
items.	You	should	also	make	it	very	clear	to	users	which	items	are	going	to
be	affected	by	the	actions.	See	Chapter	21,	which	covers	anti-patterns	(or	bad
designs),	for	more	information	about	this.

Technical	implementation
Depending	on	the	solution	you’ve	chosen,	the	implementation	can	be	very
straightforward	or	somewhat	complicated.

Contextual	Action	Bar
The	Contextual	Action	Bar	implementation	is	supported	in	the	Android	SDK
as	well	in	the	ActionBarSherlock	library.	Most	of	the	heavy	lifting	is	done
by	the	framework	or	library	code.

When	working	with	ActionBarSherlock,	you	only	need	to	provide	an
ActionMode.Callback	implementation	that	is	used	to	display	the	contextual
Action	Bar.	See	the	following	code	example	for	a	simple	implementation
skeleton:	private	final	class	ExampleActionMode	implements
ActionMode.Callback	{

								@Override

								public	boolean	onCreateActionMode(ActionMode	mode,	Menu	menu)	{

	

												menu.add(“Example	action	1”).setShowAsAction(

																				MenuItem.SHOW_AS_ACTION_IF_ROOM);

	

												return	true;

}

								@Override

								public	boolean	onPrepareActionMode(ActionMode	mode,	Menu	menu)	{

												return	false;

}

								@Override

								public	boolean	onActionItemClicked(ActionMode	mode,	MenuItem	item)	{

												//	react	to	selections

												mode.finish();	//	end	action	mode

												return	true;

}

								@Override

								public	void	onDestroyActionMode(ActionMode	mode)	{

}

}

To	start	the	action	mode,	you	simply	call	startActionMode	provided	by	the
activity	and	give	your	action	mode	as	a	parameter:	startActionMode(new
ExampleActionMode());

Dropdown	Quick	Actions	Menu
For	dropdown	quick	actions,	you	must	implement	a	dropdown	spinner	user
interface	component.	This	spinner	should	take	care	of	displaying	and
handling	the	actions.	See	the	dropdown	spinner	user	interface	component	for
more	implementation	details	in	Chapter	11.

Another	option	for	implementing	a	dropdown	menu	is	to	use
View.registerForContextMenu().	See	the	Android	documentation	for	more
details	and	examples:
http://www.developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu

Custom	Overlay
Custom	overlay	is	the	most	complicated	implementations	of	these	three
alternative	quick	actions	approaches.	Fortunately,	there	are	Open	Source
libraries	you	can	use	as	starting	point	for	your	implementation.	A	library
called	New	Quick	Actions	3D	is	one	of	them.	You	can	find	the	instructions
and	source	code	for	the	project	from	githib	at

http://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
http://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
http://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
http://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
http://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu

https://github.com/lorensiuswlt/NewQuickAction3D.

Using	the	Action	Drawer	design	pattern
The	Action	Drawer	design	pattern	is	not	commonly	used,	but	still	discussed
in	this	chapter	because	the	problem	is	commonly	occurring	and	the	solution
can	be	very	powerful.	It	saves	space	on-screen	but	still	provides	controls	to
users	when	they	need	them.	This	design	pattern	is	sometimes	called	the
sliding	drawer,	after	the	technical	implementation	in	the	Android	SDK.

Problems	Addressed
On	small	smartphone	displays,	screen	real	estate	is	very	limited.	Designers
must	carefully	consider	which	actions	should	be	shown	to	users	on-screen
and	which	ones	will	be	hidden	behind	menus	or	other	structures.	Hiding
menus	or	other	screens	can	make	them	hard	to	find	and	make	the	app	feel
difficult	to	use.

Solution
Action	drawer	is	a	view	that	contains	user	actions	and	controls	that	aren’t
fully	visible	on	the	screen	by	default.	Usually	a	handle	component	is	shown
to	users,	which	they	can	use	to	expose	the	view.	The	opened	drawer	view
covers	the	user	interface	either	partially	or	fully	without	moving	the	user	into
a	new	activity.	The	Winamp	app	uses	the	action	drawer	to	show	additional
playlist	controls	when	the	user	needs	them.	In	Figure	18-12,	the	action	drawer
is	closed	and	only	a	handle	to	open	it	is	visible.	In	Figure	18-13,	the	action
drawer	is	open	and	is	covering	the	underlying	user	interface.

http://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
http://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
http://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
https://github.com/lorensiuswlt/NewQuickAction3D

Figure	18-12:	Winamp	app	uses	the	action	drawer	to	hide	additional	player
controls.	In	this	screen	the	action	drawer	is	closed.

Source:	Nullsoft

Figure	18-13:	Winamp’s	action	drawer	opened	to	expose	additional	player
controls.	This	is	the	same	screen	as	Figure	18-12.

Source:	Nullsoft

The	action	drawer	should	be	opened	when	the	user	taps	the	handle	or	drags	it
open.	The	action	drawer	should	be	closed	when	the	user	taps	the	handle	or
drags	it	close.	The	Back	button	should	also	close	the	action	drawer.

Consequences
Having	secondary	actions	hidden	frees	space	for	primary	functions	and
makes	the	user	interface	less	cluttered.	An	action	drawer	is	a	very	simple
concept	to	understand	and	discover.	An	action	drawer	also	maintains	the
user’s	position	in	the	user	interface	and	is	unlikely	to	confuse	users	as	to	the
context	of	app	navigation.

Large	screen	adaptation

Large	screen	adaptation
It	is	unlikely	that	you’ll	need	an	action	drawer	on	a	larger	display.	You
should	design	your	large	screen	user	interface	in	a	way	that	the	actions	that
are	hidden	on	a	smaller	display	are	visible	on	the	large	screen.

Considerations	and	criticism
Android	design	in	general	has	shifted	away	from	this	design	pattern;	apps	are
more	often	using	the	Action	Bar	overflow	menu.	The	overflow	menu	is	very
pervasive	and	is	often	much	more	familiar	to	users	than	an	action	drawer.	To
justify	using	an	action	drawer,	the	components	placed	there	must	be	more
complex.	For	example,	in	the	Winamp	app’s	case,	the	seek	bar	cannot	be	part
of	an	overflow	menu	as	the	overflow	menu	can	only	contain	simple	text
items.

You	should	also	make	opening	the	action	drawer	as	smooth	and	easy	as
possible.	The	drawer	should	open	immediately	and	follow	the	user’s	drag
gesture	immediately.	It	is	also	important	to	make	the	handle	component	look
like	it	opens	the	action	drawer	to	make	it	intuitive	to	users.

Technical	implementation
Android	SDK	provides	a	user	interface	component	for	implementing	an
action	drawer	easily.	The	sliding	drawer	component	was	introduced	in
Chapter	11.	For	more	information	about	the	implementation,	refer	to	the
chapter	or	to	Android	documentation	online	at
http://www.developer.android.com/reference/android/widget/SlidingDrawer.html

Note	that	the	sliding	drawer	implementation	allows	only	for	creating	drawers
that	open	by	pulling	from	the	bottom	upward.	There	are	third-party	libraries
that	can	be	used	to	implement	drawers	that	open	in	other	directions.

Using	the	Pull-to-refresh	design	pattern
Pull-to-refresh	is	a	more	controversial	design	pattern	and	has	not	been	fully
accepted	as	suitable	for	the	Android	platform.	It	is	more	prominent	on	the
iOS	than	on	Android	devices	even	though	its	origins	are	not	platform
specific.	It	is	also	covered	by	a	software	patent	owned	by	Twitter.	Twitter	has
publicly	announced	that	they	intend	to	use	the	patent	only	as	a	defensive	tool
and	sue	anyone	with	this	patent	only	if	they	are	being	sued	first,	but	anything

http://developer.android.com/reference/android/widget/SlidingDrawer.html
http://developer.android.com/reference/android/widget/SlidingDrawer.html
http://developer.android.com/reference/android/widget/SlidingDrawer.html
http://developer.android.com/reference/android/widget/SlidingDrawer.html
http://developer.android.com/reference/android/widget/SlidingDrawer.html

and	sue	anyone	with	this	patent	only	if	they	are	being	sued	first,	but	anything
written	in	this	book	should	not	be	taken	as	legal	advice,	and	you	should
consult	your	company’s	lawyers	instead.

The	pull-to-refresh	pattern	adds	functionality	to	your	list	components	by
allowing	users	to	refresh	lists.	They	can	pull	down	the	list	when	it’s	scrolled
all	the	way	to	the	top.

Problems	addressed
Refresh	is	a	very	common	action	that	usually	must	be	provided	to	users
especially	when	you’re	displaying	dynamic	data.	The	refresh	function	often
appears	as	a	button	on	the	Action	Bar,	which	is	valuable	and	limited	screen
real	estate.

When	users	need	to	use	the	manual	refresh	very	frequently,	it	can	be
annoying	to	constantly	reach	for	the	Action	Bar	on	top	of	the	screen.

Solution
To	save	room	and	allow	users	to	manually	invoke	the	refresh	functionality,
users	can	pull	the	list	down	beyond	the	top	item.	Figure	18-14	shows	an
example	sequence.	The	user	moves	the	list	all	the	way	to	the	top	and	then
pulls	it	down.	An	additional	user	interface	component	is	placed	above	the	list,
giving	the	user	feedback	of	the	action.	Once	the	user	releases	the	drag
gesture,	a	loading	indicator	is	placed	above	the	list.	Once	the	refresh
operation	is	finished,	the	loading	indicator	disappears	and	any	new	items	are
added	to	the	list.

Figure	18-14:	Different	states	of	pull-to-refresh	when	user	pulls	down	the	list.

http://developer.android.com/reference/android/widget/SlidingDrawer.html
http://developer.android.com/reference/android/widget/SlidingDrawer.html
http://developer.android.com/reference/android/widget/SlidingDrawer.html

Source:	Twitter

Note	that	pull-to-refresh	works	only	on	lists	that	have	the	most	recent	items
placed	on	the	top.	If	the	list	is	not	ordered,	the	gesture	does	not	make	sense.

Consequences
Pull-to-refresh	allows	users	to	easily	invoke	the	list	refresh	from	any	point	on
the	list	user	interface.	Pulling	the	list	downwards	is	a	very	natural	interaction
as	that	is	the	normal	way	users	interact	with	list	components.	If	a	user	wants
to	see	what	is	on	top	of	the	top-most	item,	pulling	it	down	is	the	intuitive
gesture.

Large	screen	adaptation
Pull-to-refresh	works	well	on	large	screens.	In	most	cases,	there’s	no	need	to
modify	the	functionality	when	moving	to	larger	screens.

Considerations	and	criticism
Pull-to-refresh	has	been	criticized	for	not	feeling	like	an	Android	design
feature.	It	has	been	associated	with	the	iOS	bouncy	list	border	effect,	which
doesn’t	exist	on	the	Android	platform.	My	opinion	is	that	pull-to-refresh	is
platform-independent	and	having	bouncy	list	border	effects	is	not	necessary
or	related.

Discoverability	is	a	real	concern	with	pull-to-refresh.	It’s	not	visible	on-
screen	before	users	try	to	perform	the	pull	gesture.	Some	developers	have
suggesting	using	a	small	indicator	on	top	of	the	list,	but	this	hasn’t	gained
significant	penetration	yet.

Technical	implementation
There	are	few	Open	Source	libraries	that	implement	the	pull-to-refresh
feature	for	the	Android	platform.	In	my	experience	the	best	one	is	the
Android-PullToRefresh	library	by	Chris	Banes.	You	can	download	the	library
project	as	well	as	see	more	details	about	how	to	use	it	from	the	github	page	at
https://github.com/chrisbanes/Android-PullToRefresh.

https://github.com/chrisbanes/Android-PullToRefresh

The	library	project	is	implemented	in	a	very	smart	way,	extending	the
Android	list	view.	That	way,	you	can	use	all	the	functionality	from	the
Android	list	view.	Instead	of	using	the	default	ListView	in	your	layout	code,
you	must	use	the	list	view	class	provided	by	the	library	project.	The
following	layout	code	shows	an	example:	<?xml	version=”1.0”
encoding=”utf-8”?>

<LinearLayout	xmlns:android=”http://schemas.android.com/apk/res/android”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”

				android:orientation=”vertical”	>

	

				<!--	The	PullToRefreshListView	replaces	a	standard	ListView	widget.	-->

				<com.handmark.pulltorefresh.library.PullToRefreshListView

								android:id=”@+id/pull_refresh_list”

								android:layout_width=”fill_parent”

								android:layout_height=”fill_parent”	/>

	
				<TextView

								android:id=”@android:id/empty”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:layout_margin=”5dp”

								android:text=”List	is	empty”	/>

	

</LinearLayout>

You	can	add	a	simple	listener	to	the	activity	or	fragment	code	that	will
receive	an	event	when	users	pull	down	the	list:	pullToRefreshView	=
(PullToRefreshListView)	getActivity().findViewById(R.id.pull_refresh_list);
pullToRefreshView.setOnRefreshListener(new
PullToRefreshListView.OnRefreshListener()	{

		@Override

		public	void	onRefresh()	{

	

				new	GetDataTask().execute();	//	do	refresh	in	background.

}

}

});

To	remove	the	list-loading	indicator,	you	need	to	let	the	list	item	know	that
the	refresh	operation	is	complete	with	the	following	simple	call:
pullToRefreshView.onRefreshComplete();

Using	the	Swipe-to-dismiss	gesture
Swipe-to-dismiss	is	a	way	for	users	to	get	rid	of	individual	items	shown	on-
screen.	This	is	a	new	and	emerging	design	pattern	that	is	likely	to	become
more	common	in	the	future.	It	has	a	somewhat	limited	area	of	use	due	to
some	gesture	conflicts.

Problems	addressed
For	long	lists	of	notifications	or	similar	content,	users	might	want	to	get	rid	of
the	items	individually	instead	of	clearing	them	all	at	once.	Users	can	use
individual	delete	with	the	quick	actions	design	pattern	introduced	previously,
but	it	can	be	cumbersome,	as	it	requires	selecting	the	item	first	and	then
performing	the	action.

The	problem	of	not	being	able	to	quickly	dismiss	items	is	emphasized	if	the
app	in	question	generates	data	automatically.	Automatically	generated	data,
whether	the	data	is	events	from	other	systems	or	something	else,	can	lead	to
too	much	information	being	presented	to	the	users.	In	situations	like	this,
users	must	be	able	to	easily	dismiss	the	items	they	are	not	interested	in	while
keeping	the	others.

Solution
Android	4.0	Ice	Cream	Sandwich	introduced	few	changes	to	the	Android
notification	system	and	to	the	multi-tasking	system.	Notifications	and	recent
apps	are	now	both	shown	as	lists.	If	users	want	to	get	rid	of	any	of	the
individual	items	in	either	list,	they	can	simply	drag	the	item	they	want	to	get
rid	of	to	the	left	or	right.	This	effectively	throws	the	item	outside	the	screen.
Figure	18-15	shows	how	Android	notifications	can	be	swiped	to	dismiss.

At	the	release	of	the	Android	4.1	Jelly	Bean,	Google	introduced	a	new
Google	service	called	Google	Now.	This	is	the	first	app	that	utilizes	this
pattern	in	an	app	instead	of	in	a	system	service.	The	app	is	a	single	list	of
cards	that	can	be	dragged	outside	the	screen	to	get	rid	of	them	(see	Figure	18-
16).	Note	that	in	this	app	as	well	as	in	the	notifications,	the	item	that	is	being
swiped	away	follows	the	user’s	finger.	This	makes	the	gesture	more	pleasant
and	easier	to	discover.

Figure	18-15:	Android	notifications	since	Android	4.0	use	swipe	to	clear
individual	notifications.

Source:	Android

Figure	18-16:	Google	Now	allows	users	to	swipe	individual	notifications.

Source:	Google

Consequences
Swiping	is	an	intuitive	gesture	for	getting	rid	of	things.	It	corresponds	to	real-
world	actions.	People	tend	to	swipe	things	away	from	their	view	when	they
don’t	need	to	see	them.	Users	can	also	intuitively	try	this	gesture	as	it	is	being
used	on	other	similar	functions	on	the	platform.	It’s	easy	to	find	and	pleasant
feeling,	as	it	corresponds	to	the	real	world.

Additional	features
There	are	many	ways	you	can	design	this	gesture	to	make	it	easier	to
understand.	You	can,	for	example,	apply	an	increasing	transparency	or	other
effect	when	the	user	is	moving	it	further	away	from	its	original	place.

Large	screen	adaptation

Large	screen	adaptation
On	larger	screens,	it	doesn’t	always	make	sense	to	require	users	to	swipe	the
item	all	the	way	off	the	screen.	You	must	make	sure	that	you	use	a
transparency	effect	or	something	similar	to	clearly	communicate	to	your	users
how	far	they	have	to	swipe	to	dismiss	the	item.	The	Android	multi-tasking
menu	is	a	good	example	of	this.	The	multi-tasking	menu	is	placed	on	the	left
side	of	the	screen,	but	users	can	still	remove	recent	apps	from	the	list	by
swiping	them	to	the	right	a	few	centimeters.

Considerations	and	criticism
Although	swiping	might	be	good,	it	is	also	already	reserved	for	a	lot	of
different	functions	in	the	Android	user	interface.	Recall,	too,	the	difficulties
of	detecting	a	swipe	versus	a	drag	to	pan.	Swiping	is	also	very	commonly
used	to	switch	between	workspaces	on	tabbed	user	interfaces	(more	about
workspaces	in	the	Chapter	19).

Technical	implementation
At	the	time	of	this	writing,	the	technical	implementation	of	this	design	pattern
requires	large	amounts	of	code	using	the	Android	framework	classes,
including	property	animations.	Including	the	full	example	here	would	be	too
cumbersome.	There	are,	however,	Open	Source	projects	that	provide	this
functionality.	Therefore,	I	recommend	you	search	github	for	“swipe	to
dismiss”	to	find	the	best	project.	One	project	that	might	help	you	is	the
SwipeToDismissNOA	project	by	Jake	Wharton,	based	on	work	of	Roman
Nurik.	You	can	find	it	from	the	github	at
https://github.com/JakeWharton/SwipeToDismissNOA.

Summary
User	action	design	patterns	can	help	you	create	designs	that	users	can	easily
interact	with.	These	design	patterns	vary,	from	handling	individual	items	to
executing	batch	operations	on	multiple	items	to	app	operations	like	refresh.
Of	all	the	patterns	discussed	in	this	chapter,	the	Action	Bar	pattern	is	the	most
important	and	has	become	a	standard	component	in	almost	all	Android	apps.

	

https://github.com/JakeWharton/SwipeToDismissNOA

Chapter	19:	Navigation	and	Layout
Design	Patterns

Navigation	and	layout	design	patterns	help	you	display	information	on-screen	in
a	way	that’s	intuitive,	familiar,	and	easy	for	users	to	learn	and	use.	These
patterns	help	you	arrange	information	based	on	how	it’s	related	to	other
information.	The	layout	design	patterns	discussed	in	this	chapter	include	the
following:	•	Stacked	galleries

•	Dashboards

•	Workspaces
•	Split	view

•	The	Expand-in-Context	pattern
•	Side	navigation

Using	Stacked	Galleries
A	stacked	gallery	provides	you	with	a	way	to	present	multiple	sources	of
independent	information	on	the	same	screen	while	giving	users	an	easy	way
to	navigate	through	any	one	of	them.

Problems	addressed
Apps	that	aggregate	data	from	multiple	sources	or	apps	that	contain	multiple
categories	of	information	often	require	that	users	navigate	between	views	to
get	an	overview	of	the	content	in	each	category	or	source.	If	the	content	is
separated	on	different	screens,	it	takes	users	much	longer	to	navigate	through
them.

Solution
By	presenting	stream	or	category	content	in	independently	scrolling	gallery
components,	an	app	can	offer	users	a	compromise	between	the	amount	of
information	shown	from	each	stream	and	an	overview	of	all	the	content.	The
Pulse	app	is	a	good	example	of	using	stacked	galleries	to	show	user	streams.
Figure	19-1	illustrates	how	the	categories	can	be	separately	scrolled	with	a
horizontal	drag	gesture.	Only	one	of	the	categories	scrolls	horizontally	a	time.
This	allows	users	to	get	a	good	overview	of	all	the	items	in	one	category.
Figure	19-2	shows	how	all	the	categories	can	be	scrolled	up	and	down	by
dragging	vertically.	This	allows	users	to	get	a	good	overview	of	the	latest
items	in	all	categories.

Figure	19-1:	The	Pulse	app	uses	stacked	galleries.	Users	can	scroll	each
category	separately	by	dragging.

Source:	ALPHONSO	LABS

Figure	19-2:	Users	can	scroll	the	whole	interface	up	and	down	by	dragging
and	exposing	more	categories.

Source:	ALPHONSO	LABS

Consequences
Providing	users	with	an	easy	way	to	navigate	and	browse	through	categories
as	well	as	within	a	category	can	be	very	powerful	simple	user	interface	when
this	kind	of	navigation	is	needed.	All	the	interactions	are	easily
understandable	and	don’t	need	explanations.	Dragging	on	a	touch	screen
device	is	one	of	the	best	gestures	to	use	due	to	its	intuitiveness.

Additional	features
Each	of	the	categories	can	be	combined	with	the	pull-to-refresh	design
pattern	introduced	in	Chapter	18.	Pulling	a	category	to	the	left	can	be	used	to
expose	a	pull-to-refresh	indicator	and	trigger	an	individual	category	refresh.

Large	screen	adaptation
Stacked	categories	scale	up	very	well	to	larger	devices.	This	is	because	the
component	expands	in	both	directions,	fully	utilizing	the	extra	screen	real
estate	horizontally	and	vertically.	Figure	19-3	shows	the	Pulse	app	on	a	tablet
screen.

Figure	19-3:	The	Pulse	app	utilizes	a	larger	tablet	screen	without	having	to
add	new	components	to	the	screen.

Source:	ALPHONSO	LABS

Technical	implementation
You	can	implement	a	stacked	gallery	user	interface	easily	by	using	the
Android	standard	components.	To	build	it	you	should	create	a	scroll	view	that
holds	a	linear	layout	with	the	gallery	components	for	each	category.	The
scroll	view	will	take	care	of	vertical	scrolling	and	each	gallery	component	is
independently	scrollable	horizontally.

Tip:	If,	while	implementing	this,	you	run	into	problems	of	components	locking
into	scroll	modes—for	example	the	scroll	view	preventing	the	galleries	from
scrolling—you	might	want	to	try	a	non-locking	implementation	of	the	scroll
view.	You	can	find	an	example	implementation	from	here:
https://github.com/CyanogenMod/android_packages_apps_Email/blob/ics/src/com/android/email/view/NonLockingScrollView.java

https://github.com/CyanogenMod/android_packages_apps_Email/blob/ics/src/com/android/email/view/NonLockingScrollView.java

Using	the	Dashboard
The	dashboard	is	one	of	Android’s	oldest	user	interface	design	patterns.	At
some	point	this	design	pattern	was	one	of	the	official	recommendations	from
Google,	but	that	is	no	longer	the	case.	The	dashboard	is	a	landing	screen	that
contains	large	icons	leading	to	the	app’s	functionality.

Problems	addressed
Mobile	apps	can	be	overwhelming,	especially	to	first-time	users.	Users	are
sometimes	confused	by	information	on	the	first	screen	and	can	easily	miss
functionality	that	isn’t	clearly	presented.	Competition	in	the	mobile	app
market	is	fierce	and	a	confusing	or	overwhelming	first	experience	can	lead
users	to	abandon	your	app	and	search	for	alternatives.

Solution
A	dashboard	screen	is	the	app’s	landing	screen.	This	screen	is	designed	to	be
simple.	This	screen	does	not	have	much	information	on	it	but	instead	has
links	to	the	app’s	functionality.	The	functions	have	traditionally	been
presented	as	large	icons	fitting	up	to	six	of	them	on	the	screen.	The	number	of
functions	presented	on	this	screen	is	very	important.	Any	number	beyond	six
is	very	likely	to	add	to	confusion	instead	of	solving	it.	Of	course,	not	all	apps
have	that	many	functions,	and	it	is	not	necessary	to	use	that	many	icons	on
the	screen.	Think	of	the	dashboard	screen	as	a	showcase	for	your	app’s	hero
functionality.	Each	of	the	icons	on	the	dashboard	screen	should	take	users
directly	to	a	logical	part	of	the	app.

Although	the	original	guideline	for	dashboard	was	very	simple,	it	has	evolved
to	be	something	more.	For	example,	the	Aldiko	reader	app	added	a	secondary
part	to	the	dashboard,	providing	the	user	with	a	direct	link	to	the	books	in
addition	to	the	four	icon	links	(see	Figure	19-4).	The	Songkick	app,	on	the
other	hand,	is	using	the	dashboard	design	patterns	but	fully	redesigned	the
visuals	to	match	the	Android	4.0	guidelines	(see	Figure	19-5).

Figure	19-4:	The	Aldiko	reader	app	uses	a	dashboard	that	is	pretty	close	to
the	old	style	dashboard	with	small	modifications.

Source:	Aldiko

Figure	19-5:	The	Songkick	app	uses	a	dashboard	that	has	a	modern	look.

Source:	Songkick

Consequences
A	dashboard	makes	the	app’s	first	user	experience	friendlier.	The	user	gets	a
good	overview	of	the	app’s	functionality	as	well	as	an	easy	navigation
approach.

Tip:	A	dashboard	can	also	serve	as	a	place	for	displaying	updated
information	and	notifications	to	the	users.	Many	apps	that	use	a	dashboard
have	used	an	information	bar	on	the	bottom	of	the	screen	to	display	such
information.	You	might	display,	for	example,	sync	status	or	the	latest	updates
to	the	app.

Large	screen	adaptation
The	dashboard	design	pattern	does	not	scale	up	to	a	larger	screen	that	well.	If
you	want	to	use	the	same	concept	on	larger	screens,	you	must	be	creative
with	it	and	think	about	ways	you	can	bring	part	of	the	app’s	content	to	the
landing	screen.	Don’t	ever	simply	stretch	out	your	dashboard	to	a	larger	tablet
screen	size!

The	Aldiko	reader	app	(see	Figure	19-6)	uses	a	dashboard	on	its	tablet	design
as	well.	Aldiko	utilizes	the	added	screen	real	estate	by	making	the	bookshelf
larger	and	showing	more	content	on	it.	The	screen	is	still	very	welcoming,
without	wasting	space.

Figure	19-6:	The	Aldiko	reader	app’s	dashboard	is	part	of	its	tablet-landing
screen.

Source:	Aldiko

Considerations	and	criticism
The	dashboard	design	pattern	has	recently	been	removed	from	multiple	high-
profile	apps.	The	main	reason	is	that	it	makes	it	slower	for	users	to	access	the
app’s	actual	content.	Many	apps	that	have	a	clear	main	function	make	the
main	function	the	app’s	home	screen.

The	side	navigation	pattern,	which	is	introduced	later	in	this	chapter,	is
slowly	replacing	the	use	of	the	dashboard	in	many	apps.	It	solves	a	very
similar	problem.

Variations
You’ve	already	seen	two	very	different	variations	of	this	design	pattern	in	the
figures	shown	in	this	section.	This	design	pattern	is	visually	very	weakly
defined.	Customizing	the	idea	and	creating	visually	pleasing	dashboards
require	good	visual	design	skill.	A	dashboard	can	be	a	hero	screen	of	an	app
and	provide	a	great	brand	experience.	If	you	choose	to	implement	this	design
pattern	in	your	app,	I	recommend	that	you	experiment	with	it	and	not	settle
for	the	simplest	alternative.

Technical	implementation
You	can	manually	build	the	layout	or	use	the	standard	Android	layouts.	Grid
layout,	for	example,	can	be	a	very	good	solution,	but	it	is	available	only	on
newer	Android	versions.	It	requires	you	to	create	two	layouts—portrait	and
landscape	versions.	There	are	layout	classes	available	that	take	care	of	the
work	for	you.	One	of	them	is	available	with	the	2011	Google	I/O	app.
Dashboard	was	used	in	the	Google	I/O	2011	app,	but	was	removed	in	the
2012	app.	The	dashboard	layout	class	is	included	in	the	book’s	companion
app	source	code.	If	you	include	the	layout	class	in	your	project,	you	can	then
simply	define	the	dashboard	layout	as	part	of	any	layout	in	your	app.	See	the

following	layout	XML	as	an	example:	 	Scan	the	QR	code	with	your
Android	phone	to	open	the	companion	app	and	try	out	a	functional	example.

<com.google.android.apps.iosched.ui.widget.DashboardLayout

								android:layout_width=”fill_parent”

								android:layout_height=”fill_parent”	>

	
								<Button

												android:id=”@+id/button_examples”

												android:layout_width=”wrap_content”

												android:layout_height=”wrap_content”

												android:drawableTop=”@drawable/section_icon”

												android:text=”Examples”	/>

	

<!--	…	more	buttons	here	…	-->

				

								<Button

											android:id=”@+id/button_more_functions”

												android:layout_width=”wrap_content”

												android:layout_height=”wrap_content”

												android:drawableTop=”@drawable/ic_launcher”

												android:text=”One	more	function”	/>

	

				</com.google.android.apps.iosched.ui.widget.DashboardLayout>

Tip:	The	dashboard	layout	has	a	known	bug	that	might	affect	you	and	cause
layout	issues.	You	might	want	to	get	a	patch	to	that	issue	from
http://code.google.com/p/iosched/issues/detail?id=19.

http://code.google.com/p/iosched/issues/detail?id=19

Using	Workspaces
Workspaces	are	screens	that	are	linked	to	make	navigating	between	them
very	easy.	This	is	one	of	the	most	important	and	widely	used	design	patterns
on	the	Android	platform.

Problems	addressed
Apps	often	have	much	more	content,	functionality,	and	data	than	that	can	fit
on	a	single	screen.	Allowing	users	to	view	all	of	that	information	can	be
difficult,	especially	when	users	are	forced	to	navigate	up	and	down	in	screen
hierarchy	to	move	from	one	set	of	functionality	or	data	to	another.	To	make
your	apps	useful	and	intuitive,	your	users	must	be	able	to	directly	move
between	screens.

Solution
Tabs	have	been	a	solution	to	this	problem	even	before	there	were	cell	phones.
Although	it	is	possible	to	use	simple	tabs	on	the	Android	platform,	you
should	take	your	tabbed	user	interface	one	step	further.	The	exact	solution
depends	on	the	number	of	screens	in	the	construct.	If	you	have	only	a	few
screens	(such	as	three	or	fewer),	tabs	are	a	good	solution.	Tabs	don’t	work	as
well	with	a	larger	number	of	screens.

The	following	solutions	are	similar	but	visually	slightly	different.	This	is	due
to	the	fact	that	the	tabbed	user	interface	can	be	used	only	with	a	limited
amount	of	tabs.	The	title	strip,	on	the	other	hand,	can	be	used	with	a	much
larger	amount	of	content.	Both	solutions	enable	users	to	navigate	between
tabs	or	views	using	the	swipe	gesture.	The	use	of	the	swipe	gesture	eliminates
the	need	for	users	to	reach	the	Tab	bar.	Users	can	control	the	tab	selection
from	any	point	of	the	user	interface	when	using	the	swipe	gesture.

Tip:	It	is	important	to	think	of	workspaces	as	part	of	the	same	screen	and	not
as	separate	screens.	Users	do	the	same.	They	do	not	expect	the	Back	button
to	move	them	to	the	previous	workspace.

Workspaces	are	referred	to	as	swipe	views	in	the	Android	design	guidelines;
see	http://developer.android.com/design/patterns/swipe-views.html.

http://developer.android.com/design/patterns/swipe-views.html

Tabbed	User	Interface
Tabs	are	a	very	familiar	concept.	The	tabs	on	the	Android	platform	have
additional	features	not	seen	on	other	platforms.	Android	tabs	are	always
located	at	the	top	of	the	screen.	Bottom	tabs	are	not	used	on	Android.	The
reason	for	this	is	that	top	tabs	adapt	much	more	flexibly	to	different	screen
sizes.	On	other	platforms	like	the	iOS,	bottom	tabs	are	often	used	to	make	it
easier	for	users	to	operate	them.	On	the	Android	platform,	tabs	can	be
changed	by	using	the	swipe	gesture,	so	top	tabs	are	as	easy	to	use	as	bottom
tabs.

The	tab’s	visual	presentation	is	unique	on	the	Android	platform.	You	should
follow	its	common	theme	in	your	apps.	Black	square	tabs	with	gray	icons	feel
and	look	wrong	on	Android	and	should	not	be	used.	The	tabs	used	in	Android
apps	usually	do	not	have	icons	on	them,	but	they	can	have,	and	they	use	a
solid	background	color	and	a	line	at	the	bottom	part	of	the	tab	to	highlight	the
selected	tab.	Figure	19-7	shows	a	simple	tabbed	user	interface—this	Google
I/O	2012	app	uses	tabs	to	separate	two	different	categories	of	information.
Users	can	move	between	the	two	by	tapping	on	the	non-active	tab	or	swiping.

Figure	19-7:	The	Google	I/O	app	uses	tabs	on	this	screen	to	separate	Android
sessions	and	sandbox	presentations	in	the	event.

Source:	Google

Tabbed	user	interfaces	play	well	with	the	Action	Bar	design	pattern.	Figure
19-8	shows	an	example	of	tabs	being	merged	into	the	Action	Bar	as	space
allows.	This	saves	a	lot	of	space	on-screen,	especially	in	landscape	mode.

Figure	19-8:	The	same	screen	presented	in	Figure	19-7,	but	this	time	in

Figure	19-8:	The	same	screen	presented	in	Figure	19-7,	but	this	time	in
landscape	mode,	where	the	tabs	are	merged	into	the	Action	Bar.

Source:	Google

Title	Strip
Using	the	title	strip	provides	a	way	to	implement	a	very	similar	interface	as
the	tabbed	interface,	but	without	a	limitation	on	tabs.	With	this	approach,	the
tabs	are	replaced	with	a	title	strip.	This	title	strip	always	shows	the	current
selection	and	available	selections	to	the	left	and	right.	The	Google	Play	app
shows	a	good	implementation	of	a	title	strip	(see	Figure	19-9).

Consequences
Easily	accessible	content	with	a	consistent	swipe	gesture	support	can	make
apps	feel	light	and	easy	to	use.	The	swipe	gesture	is	a	very	natural	and
pleasant	gesture	on	touch	screens	and	fits	to	this	pattern	perfectly.
Workspaces	are	present	on	Android	in	many	places,	from	home	screens	to
application	launchers.	Apps	that	use	the	same	approach	to	present	content	are
intuitive	to	users.

Large	screen	adaptation
Tabs	are	as	much	present	on	large	screens	as	on	small	screens.	They	are	very
often	merged	into	the	Action	Bar.	Title	strips	also	work	on	large	screens	and
often	do	not	need	to	be	modified.	However,	on	a	large	screen,	using	a	title
strip	might	look	bad	as	it	only	shows	three	titles	and	therefore	leaves	a	lot	of
empty	space.	It’s	probably	best	to	consider	prioritizing	tabs	over	title	strips	on
case-by-case	basis.

Considerations	and	criticism
Swiping	between	content	is	a	very	good	gesture,	but	once	it	is	used	in	that
context	it	is	reserved	for	it	and	cannot	be	used	in	any	other	function.	That	is
why	workspaces	containing	horizontally	scrolling	components	can	cause
problems.	Is	the	swipe	gesture	meant	to	scroll	the	content	or	move	to	the	next
tab	or	view?	In	situations	where	content	must	be	horizontally	scrollable,
using	the	workspaces	design	pattern	might	not	be	the	best	option.

Figure	19-9:	The	Google	Play	app	uses	a	title	strip	to	provide	users	with	very
easy	access	among	app	categories.

Source:	Google

Technical	implementation
Technical	implementation	of	this	pattern	is	very	straightforward	using	the
Android	SDK	or	available	third-party	libraries.	The	Android	ADT	(the
Eclipse	plug-in)	helps	you	create	your	activity	to	support	both	tabs	and	a	view
pager.	When	creating	a	new	activity	using	the	new	activity	wizard,	you	can
select	from	templates.	View	pager	is	the	technical	concept	that	is	used	to
provide	a	container	for	swipable	containers.	The	view	pager	is	also	part	of	the
support	package	so	you	can	use	it	even	when	targeting	older	Android
versions.

To	fully	support	the	tabs	in	older	versions,	you	can	use	ActionBarSherlock,
which	supports	embedding	tabs	in	the	Action	Bar	when	in	landscape	mode.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

View	Pager
You	can	find	the	ViewPager	class	from	the	support	package,	which
implements	the	workspaces	as	well	as	the	swipe	gesture	support.	You	can
combine	it	with	PagerTitleStrip	class	or	PagerTabStrip,	which	you	can
find	from	the	support	package	as	well,	depending	on	if	you	are	implementing
tabs	or	a	title	strip.	There	are	also	good	third-party	implementations	like	the
ViewPagerIndicator	project,	which	you	can	find	from
http://viewpagerindicator.com/.

http://viewpagerindicator.com/

Using	Split	view
Split	view	is	a	layout	design	pattern	for	showing	information	side	by	side.
This	pattern	is	often	used	as	the	cornerstone	of	responsive	design	when
moving	from	smaller	smartphone	displays	to	larger	tablet	displays.

Problems	addressed
Forcing	users	to	navigate	to	another	screen	to	show	more	information	can
make	the	app	seem	slow	and	awkward.	This	is	especially	true	with	larger
screens,	where	there’s	enough	room	to	show	more	details	about	selected
items.

Solution
A	user	interface	design	pattern	called	“overview	besides	details”	has	been
used	on	desktop	apps	as	well	as	on	the	web	to	make	it	easier	for	users	to	see
more	information	about	selected	items.	This	is	commonly	used	with	lists	of
items.	The	additional	details	are	shown	on	the	same	screen.	Users	understand
the	relationship	between	the	two	parts	of	the	screen	easily	as	long	as	the	right
part	of	the	user	interface,	the	details	part,	is	extending	the	details	shown	in	the
left	part	of	the	user	interface,	the	overview	part.

Smartphone	screens	are	often	too	small	to	utilize	this	pattern,	but	it	is	a	very
good	approach	for	tablet	user	interface	design.	For	example,	the	Google	RSS
Reader	app	utilizes	this	pattern	in	its	tablet	design	(see	Figure	19-10).

Split	view	is	referred	to	as	multi-pane	layouts	in	the	Android	design
guidelines;	see	http://developer.android.com/design/patterns/multi-
pane-layouts.html.

Figure	19-10:	The	Google	RSS	Reader	app	on	the	tablet	uses	split	view	to
show	a	list	of	the	user’s	reader	items	as	well	as	the	details	of	the	selected
item.

Source:	Google

http://developer.android.com/design/patterns/multi-pane-layouts.html

Source:	Google

Consequences
A	screen	that	utilizes	the	split	view	design	pattern	allows	user	to	navigate
between	items	and	their	details	effortlessly.	This	design	pattern	provides	a
massive	benefit	over	having	to	navigate	to	another	screen	for	such	details.	It’s
also	been	in	use	for	years	and	is	familiar	to	users.

Small	screen	adaptation
This	pattern	is	very	rarely	used	on	smartphone	screens.	To	accommodate	the
same	information	on	smaller	devices,	you	most	likely	need	to	create	two
separate	screens.	This	principle	was	explained	in	more	detail	in	Chapter	15.

Variations
Split	screen	designs	can	vary	a	lot.	They	should	always	maintain	the	same
relationship	between	the	selected	item	and	the	details	content.	A	great
example	of	a	very	different	visual	approach	is	the	Google	I/O	2012	app	(see
Figure	19-11).

Figure	19-11:	The	Google	I/O	2012	app	uses	a	split	view	on	the	tablet	to
show	the	conference	sessions	and	their	details.	The	visual	implementation	is
different	from	the	normal	split	view,	but	the	concept	is	the	same.

Source:	Google

Technical	implementation
For	technical	implementation	of	this	pattern	you	should	use	the	Android
layouts	and	fragments.	See	Chapter	16	for	technical	implementation	details.

Note	that	the	Android	Eclipse	plug-in	allows	you	to	create	an	Android	project
from	a	template	using	the	new	Android	project	wizard.	The	wizard	builds	a
framework	for	the	template.	This	construct	is	called	the	master-detail
template	in	the	wizard.

Using	the	Expand-in-context	pattern
Expand-in-context	is	a	simple	yet	powerful	design	pattern	that	can	make	your
user	interfaces	less	overwhelming	as	well	as	save	screen	real	estate.	The	idea
of	this	design	pattern	is	to	show	only	a	smaller	portion	of	the	selected	content
and	allow	users	to	easily	expand	the	section	to	see	the	rest.

Problems	addressed
Sometimes	one	screen	is	too	small	to	fit	the	information	you	want,	without
making	the	user	interface	feel	cluttered,	overwhelming,	or	forcing	users	to
scroll	almost	endlessly	to	reach	the	bottom	of	the	screen.

In	many	cases,	the	content	is	dynamic	or	user-provided	and	its	length	isn’t
known	beforehand.	If	a	single	screen	contains	this	type	of	content,	it	can	be
difficult	to	design	the	page	structure	in	a	consistent	way.

Solution
The	solution	to	this	problem	is	to	show	the	content	only	partially	and	hide	the
rest.	The	Google	Play	app	uses	this	pattern	to	make	it	easier	for	users	to	see
all	the	information	about	an	app	without	having	to	scroll	through	the	very
long	scroll	views.	In	the	app	details	screen,	each	app	in	Google	Play	has
multiple	information	fields	with	user	content,	like	description	and	what’s
new.	There’s	no	way	of	knowing	how	long	an	app	description	will	be,	for
example.	It	could	be	possible	to	solve	this	issue	by	using	some	kind	of	pop-up
windows	containing	the	data,	but	pop-up	windows	are	usually	interruptive
and	irritating.

A	much	better	solution	is	to	make	the	content	sections	a	fixed	size	by	default
and	allow	users	to	tap	to	expand	them	to	full	size	without	leaving	the	screen.
Figure	19-12	shows	a	single	app’s	information	page	opened	in	the	Google
Play	client.	The	description	section	is	visible	and	so	is	the	Reviews	section.	In
the	bottom-right	corner	of	the	description	section,	you	can	see	a	small
indicator	arrow	pointing	down.	It	tells	the	users	that	there	is	more	content	in
this	section	than	what	is	currently	visible.

Figure	19-12:	The	Google	Play	app	showing	one	app’s	details	screen.	The
description	section	is	a	fixed	size	no	matter	how	long	the	app’s	description	is.

Source:	Google

When	the	user	taps	anywhere	in	the	description,	the	section	extends	and	the
entire	content	is	shown	(see	Figure	19-13).	Note	that	the	user	is	still	on	the
same	screen.

Figure	19-13:	The	same	screen	as	in	Figure	19-12,	but	the	user	has	tapped	the
description	section	to	open	it.

Source:	Google

Consequences
When	you	build	your	user	interface	using	sections	that	expand	in	context,	the
interface	will	be	a	constant	size	even	when	you’re	displaying	dynamic	and
user	generated	content.	You	can	design	your	interface	without	worrying	about
extremes.

Making	the	content	expand	in	context	instead	of	forcing	users	to	open	another
screen	or	a	pop-up	helps	the	user	interface	feel	easy	to	use.	Users	don’t	lose
their	sense	of	location	when	data	expands	in	context	like	this.

Additional	features
In	some	cases	it	makes	sense	to	allow	users	to	collapse	the	expanded	content.
They	should	be	able	to	do	this	by	tapping	the	container	again.	The	indicator
arrow	should	rotate	around	and	point	upwards	if	collapsing	the	section	is
possible.

It	is	also	worth	noting	that	this	pattern	is	being	used	in	the	Android	4.1	Jelly
Bean	notification	to	allow	users	to	expand	notifications.	As	tapping	on
notifications	is	already	reserved	for	activating	them,	Google	has	decided	to
use	a	two-finger	swipe	as	the	primary	gesture	to	expand	and	collapse	the
notification	content	(although	other	gestures	work	as	well).	This	two-finger
swipe	gesture	might	become	popular	in	the	future,	but	it	isn’t	there	yet.

Large	screen	adaptation
Large	screens	have	more	space	so	this	design	pattern	isn’t	that	useful	on
them.	You	can	automatically	expand	such	sections	on	large	screen	devices.	If
showing	the	content	fully	on	a	tablet	display	is	not	possible,	however,	you
might	utilize	this	design	pattern	there,	too.

Technical	implementation
To	implement	an	expandable	section,	you	must	make	sure	that	the	content	in
the	session	is	dynamically	laid	out	and	that	you	can	change	the	parent
container’s	size	without	causing	problems.	The	implementation	requires	hard-
coding	the	section	size	when	it	is	closed	and	listening	for	the	tap	event	to
expand.

	Scan	the	QR	code	with	your	Android	phone	to	open	the	companion
app	and	try	out	a	functional	example.

Using	Side	navigation
Side	navigation	is	replacing	the	use	of	the	dashboard	design	pattern	on	many
Android	apps.	It	provides	more	direct	access	to	different	sections	of	the	app
than	a	dashboard	does.	This	design	pattern	is	shown	as	a	side	navigation
panel	that	can	be	pulled	out	from	the	left	side	of	the	screen.

Problems	addressed
In	larger	apps,	there	often	are	multiple	logical	sections	of	the	app	where	users
navigate	deeper	into	the	screen	hierarchy.	Accessing	other	parts	of	the
application	can	be	difficult	if	users	must	first	navigate	all	the	way	to	the	top
level	of	the	dashboard	to	dive	into	another	section.

Solution
The	side	navigation	approach	has	very	similar	functionality	to	the	dashboard.
In	fact,	many	apps	have	recently	replaced	their	dashboard	implementation
with	a	side	navigation.	The	side	navigation	is	a	sliding	panel	that	can	be
opened	from	the	left	side	of	the	screen	without	leaving	the	current	screen.
Opening	the	side	navigation	doesn’t	alter	the	user’s	back	stack.	To	indicate
that	fact,	a	small	portion	of	the	screen	is	still	visible	on	the	right	side	of	the
side	navigation	panel.

Perhaps	the	best	implementation	example	available	is	the	Prixing	app.	The
app	implements	both	the	side	navigation	and	gestures	to	open	it	very	well.
The	app	allows	users	to	open	the	side	navigation	from	any	screen.	It	is	always
available	to	users	by	tapping	the	Action	Bar’s	left	button.	The	app	also
provides	a	secondary	way	to	open	the	side	navigation—using	the	bezel	swipe
(see	Figure	19-14).

Consequences
Without	having	to	launch	the	app	to	the	dashboard	screen,	users	can	access
the	content	directly.	The	app’s	landing	screen	can	be	the	most	used	content
screen	instead.	Users	also	get	a	good	understanding	of	the	app’s	functionality
by	viewing	the	side	navigation.

In-app	navigation	also	becomes	easier,	as	users	no	longer	have	to	navigate	all
the	way	to	the	dashboard	to	access	other	parts	of	the	app.	The	side	navigation
provides	consistent	and	easy-to-understand	direct	navigation.

Figure	19-14:	The	Prixing	app	is	a	great	example	of	a	well-implemented	side
navigation	design	pattern.	Users	can	access	the	side	navigation	from	any
screen	by	using	the	Action	Bar’s	top-left	button	or	by	using	the	bezel	swipe
gesture.

Source:	Prixing

Additional	features
Some	apps,	like	Evernote,	take	the	side	navigation	one	step	further	by
providing	more	than	just	navigation	in	the	side	panel	(see	Figure	19-15).
However,	you	should	be	careful	not	to	overwhelm	users	with	additional
features	in	the	side	navigation	panel.	The	panel	must	remain	clean	and	easy	to
use.

Large	screen	adaptation
Side	navigation	can	be	used	on	larger	screens,	but	sometimes	it	is	not
necessary.	You	might	be	better	off	designing	the	screens	to	show	the	same
information	your	side	navigation	shows	constantly,	without	hiding	it.

Considerations	and	criticism
The	side	navigation	pattern	is	still	changing,	and	there	are	many	different
implementations	of	it.	One	big	difference,	particularly	in	Google’s	apps,	is
that	the	side	navigation	is	accessible	only	from	the	root	screen	of	each	app
section.	Google	uses	the	Up	button	in	its	design	to	navigate	up	from	all	other
screens.	It	also	uses	the	same	Up	button	to	open	the	side	navigation	once	the
section’s	root	screen	is	reached.

Although	I’m	not	a	fan	of	the	approach	Google	has	taken	due	to	the	lost
direct	navigation,	it	is	something	you	might	consider	for	platform
consistency.	At	the	time	of	this	writing,	the	side	navigation	pattern	has	not	yet
appeared	in	the	official	design	guidelines,	but	Google	has	hinted	that	it	might
be	added	soon.	If	that	is	the	case	by	the	time	you’re	reading	this,	you	should
definitely	take	into	account	what	the	design	guidelines	advise.

Variations
In	addition	to	Google’s	Up	button	approach	mentioned	previously,	different
implementation	use	different	ways	to	open	the	side	navigation.	Many	apps
use	the	top-left	Action	Bar	icon,	whereas	others	use	different	forms	of	swipe
gestures.	Note	that	a	gesture	should	never	be	the	only	way	to	open	the	side
navigation!	In	my	opinion,	the	bezel	swipe	is	the	best	gesture	to	be	used	here.
It	will	not	break	other	swipe	gestures	used	in	the	app,	and	it	is	intuitive	due	to
the	way	that	side	navigation	is	presented.

Figure	19-15:	The	Evernote	app	includes	actions	like	creating	new	notes	as
well	as	some	status	information	in	the	side	navigation	panel.

Source:	Evernote	Corporation

Technical	implementation
As	the	design	pattern	itself	is	still	evolving	so	are	the	libraries	implementing
it.	At	the	time	of	this	writing,	there	are	multiple	Open	Source	libraries	that
have	started	to	implement	this	design	pattern,	but	none	of	them	is	fully
complete.	Take	a	look	at	the	SlidingMenu	project,	which	you	can	find	in
github	at	https://github.com/jfeinstein10/SlidingMenu.

https://github.com/jfeinstein10/SlidingMenu

Summary
Navigation	and	layout	design	patterns	help	you	find	good	ways	to	layout	and
organize	your	app’s	user	interface	on	both	smartphones	and	tablets.
Navigation	design	patterns	like	the	side	navigation	bring	user	interface
consistency	to	apps	running	on	the	Android	platform.	This	helps	Android
users	intuitively	understand	your	user	interface	and	know	how	to	navigate
between	screens	and	sets	of	related	data.

	

Chapter	20:	Data	Design	Patterns
Handling	and	showing	data	requires	that	you	consider	many	factors,	from	both	a
performance	and	a	usability	point	of	view.	In	many	apps,	accessing	the	data	is
the	user’s	goal.	Users	want	to	see	or	modify	a	certain	piece	of	information.	If
your	app	shows	or	manipulates	data	poorly,	your	users	won’t	be	happy.

This	chapter	covers	data-related	user	interface	design	patterns.	It	is	worth	noting
that	these	are	not	data	structure	or	data	architecture	design	patterns;	it	doesn’t
cover	correct	usage	of	databases	or	caches.	There	are	other	books	that	are	better
for	that.	This	chapter	covers	data	design	issues	from	the	user	interface
perspective.

The	data	design	patterns	discussed	in	this	chapter	include	the	following:

•	Dynamic	lists

•	The	image	placeholder	pattern
•	The	non-forced	login	pattern
•	The	drag-to-reorder	handle

Using	Dynamic	lists
The	dynamic	list	is	one	of	the	most	common	components	in	Android	apps.
They	also	are	fairly	complex	from	both	a	user	interface	point	of	view	and
from	a	code	point	of	view.	Android	has	great	support	for	lists;	it	can
automatically	optimize	memory	usage	and	even	recycle	view	objects	for	you.
You	must	consider	how	much	data	you	need	to	show	in	one	list	and	how
users	can	access	more	data	when	they	need	to.

Problems	that	lists	solve
The	list	has	a	limited	number	of	items	in	it.	When	you’re	handling	real-world
data	like	social	network	update	statuses	or	online	store	item	catalogs,
however,	the	amount	of	data	will	be	much	larger	than	can	be	shown	in	a
single	list.	You	need	to	design	your	lists	so	it’s	easy	and	intuitive	for	users	to
view	more	items.

view	more	items.

Solution
A	dynamic	list	can	automatically	load	more	items	without	users	having	to
explicitly	request	more.	Whenever	a	user	scrolls	the	list	to	a	point	where	there
are	no	more	items	available,	a	dynamic	list	will	loading	the	new	items
automatically.	To	let	users	know	that	more	options	will	appear	automatically,
you	should	include	an	indicator	at	the	end	of	your	list.	The	Twitter	app	does
this	perfectly	(see	Figure	20-1).	The	app	is	often	so	fast	that	the	users	don’t
even	see	the	loading	indicator;	the	list	just	feels	endless.

Consequences
Loading	more	items	only	when	they’re	needed	makes	your	app	more
responsive;	you	can	show	the	list	much	faster,	as	you	don’t	have	to	wait	for	a
long	download	first.	The	automatic	download	trigger,	which	is	activated
when	users	reach	the	end	of	the	list,	makes	it	effortless	for	users.	They	don’t
have	to	think	about	it	or	even	notice	it.

Although	it’s	often	enough	to	start	loading	new	items	when	the	last	item
becomes	visible,	you	can	also	tweak	the	loading	triggers	if	it	is	likely	that
your	users	are	going	to	load	more	items	in	your	app.	You	can,	for	example,
start	the	load	process	in	the	background	when	another	item	other	than	the	last
one	becomes	visible.	Depending	on	your	app,	users	might	not	ever	see	the
loading	indicator,	and	they’ll	simply	feel	that	the	list	has	everything	loaded
already.

Figure	20-1:	The	Twitter	app	automatically	starts	downloading	new	items
when	users	reach	the	end	of	the	loaded	items.

Source:	Twitter

Large	screen	adaptation
The	dynamic	list	design	pattern	works	on	large	screens	as	well	as	on	smaller
screens.	You	don’t	have	to	make	any	changes	to	it.

Variations
If	your	list-loading	process	is	very	slow	or	uses	a	lot	of	data	(or	for	some
other	reason	should	not	be	triggered	automatically),	you	can	use	a	manual
trigger	instead.	You	can	add	an	extra	list	item	to	the	end	of	your	list	with
appropriate	controls	so	users	can	start	loading	additional	items.

Note	that	this	manual	option	should	be	used	only	if	there’s	a	very	good
reason	not	to	use	the	automatic	option.

Technical	implementation
There	are	few	specialized	third-party	library	components	that	are	built	to
implement	the	dynamic	list	design	pattern.	It’s	a	good	idea	to	quickly	search
github	before	you	start	to	implement	your	own	functionality,	especially	if	you
need	something	more	complex.	For	example,	cwac-endless	is	one	of	the
projects	that	implement	this	design	pattern.	You	can	find	it	at	github	(see
https://github.com/commonsguy/cwac-endless).

It	is,	however,	possible	to	implement	this	design	pattern	using	Android
components.	You	simply	need	to	add	an	OnScrollListener	listener	instance
to	your	lists.	The	Android	system	will	then	notify	the	listener	automatically
when	the	list	ends	and	you	can	invoke	methods	to	load	more	items.

Here’s	a	short	example	code	for	the	OnScrollListener	onScroll	method
implementation.	It	calculates	whether	new	items	should	be	loaded.	Note	that
the	event	can	be	fired	multiple	times	as	the	last	list	item	becomes	partially
visible.	You	must	prepare	and	handle	it	and	trigger	the	loading	process	only
once.

public	void	onScroll(AbsListView	view,	int	firstVisible,	int

visibleCount,																							int	totalCount)	{

								if(firstVisible	+	visibleCount	>=	totalCount)	{

											//	load	more	items	here

}

}

Using	the	Image	placeholder	pattern
Making	your	interface	feel	fast	and	responsive	is	very	important	and	can
sometimes	be	difficult	when	you	use	large	images	or	have	images	that	are
loaded	over	the	Internet.	In	these	cases,	it’s	better	to	use	a	local	placeholder
image	initially,	while	your	slow	images	load,	in	order	to	make	the	user
interface	operational	as	quickly	as	possible.	Note	that	a	splash	screen	or	a
blocking	loading	indicator	is	not	a	good	solution	to	this	problem.	In	fact,
splash	screens	are	covered	in	the	anti-patterns	chapter	(see	Chapter	21).

Problems	that	the	image	placeholder	pattern	solves

https://github.com/commonsguy/cwac-endless

Problems	that	the	image	placeholder	pattern	solves
If	your	interface	has	images	that	are	large	or	loaded	over	the	network	or
Internet,	they	can	cause	your	app	to	become	less	responsive	and	slow.
Making	users	wait	for	images	to	load	before	you	allow	them	to	interact	with
your	interface	is	not	acceptable.

Solution
Whenever	you	need	to	show	images	that	take	some	time	to	load,	you	should
show	a	local	placeholder	image	first.	Render	the	user	interface	and	activate
the	user	controls	and	then	load	the	images	in	the	background.	The	local
placeholder	image	should	be	good	enough	in	case	the	connection	fails.	The
user	interface	must	be	usable	even	when	no	images	are	loaded.	The
placeholder	image	should	also	be	lightweight,	so	that	it’s	rendered	quickly.
The	Gigbeat	app	uses	placeholders	in	its	user	interface,	so	it’s	ready	to	be
used	immediately	(see	Figure	20-2).

Figure	20-2:	The	Gigbeat	app	uses	placeholder	images	so	the	user	interface
can	be	used	immediately.

Source:	Gigbeat

Consequences

Consequences
Using	lightweight	local	images	makes	the	interface	immediately	usable.	Your
users	will	be	much	happier	if	they	can	start	using	the	app	without	waiting.
Using	placeholder	images	also	make	the	app	usable	when	users	are	offline.

Large	screen	adaptation
There	is	no	difference	on	a	large	screen	compared	to	smaller	screens	with	this
design	pattern.

Technical	implementation
The	best	way	to	go	about	implementing	this	design	pattern	is	to	use	a	third-
party	Open	Source	library.	There	are	multiple	libraries	you	can	use	and	if	one
of	these	libraries	doesn’t	support	your	use	case,	you	can	easily	find	others
that	will.	You	can	also	modify	the	existing	libraries	to	add	features	you	need.

One	of	the	lightweight	libraries	that	can	help	to	get	you	started	is	called
UrlImageViewHelper	(see
https://github.com/koush/UrlImageViewHelper).	This	library	loads
images	based	on	URLs	and	can	cache	them.	It	automatically	replaces	your
placeholder	images	when	the	real	image	is	done	loading.	You	don’t	have	to
use	custom	image	views.	You	simply	pass	the	target	image	view,	the	remote
image	URL,	and	a	placeholder	image	to	the	helper	class	and	it	takes	care	the
rest	automatically.	It	even	checks	the	cache	before	triggering	a	download	in
the	background.	The	following	short	code	sample	is	all	you	need	to	write
when	using	this	library:

UrlImageViewHelper.setUrlDrawable(mImageView,	drawableURL,

R.drawable.placeholder);

Using	the	Non-forced	login	Pattern
Forcing	your	users	to	log	in	to	your	app	before	they	can	see	any	parts	of	the
interface	is	extremely	bad	practice.	Instead,	your	app	should	allow	the	users
to	explore	the	app	before	it	forces	them	to	log	in	or	create	an	account.

Problems	that	this	pattern	solves
It’s	not	uncommon	for	an	app	to	have	server-side	functionality	that	requires
users	to	log	in	to	a	system	before	using	it.	The	apps	might	be	extensions	to

https://github.com/koush/UrlImageViewHelper

users	to	log	in	to	a	system	before	using	it.	The	apps	might	be	extensions	to
already	existing	systems	(for	established	users),	for	example.	But	if	new	users
search	Google	Play	and	your	app	is	featured	or	trending	in	the	Google	Play,
these	new	users	might	try	to	install	the	app	from	this	approach.	Your	app	will
then	launch	directly	to	a	login	screen.	Most	of	the	potential	new	customers
are	likely	to	be	turned	off	and	leave.

Solution
Do	not	force	users	to	log	in.	Let	unidentified	users	try	your	app’s	features	and
experiment	with	it	before	forcing	them	to	create	an	account	or	sign	in.	You
might	think	that	your	app	is	useless	without	an	account	but	the	reality	is	that
most	apps	are	not.	Your	app	might	not	be	at	its	full	potential	without	an
account,	but	potential	users	can	form	an	opinion	and	determine	whether	they
should	take	the	time	to	create	an	account.

Think	of	ways	you	can	provide	local	caching	or	access	to	public	information,
or	maybe	even	provide	an	example	account	for	potential	users	so	they	can	see
what	your	app	is	all	about—all	without	having	to	create	an	account.

The	Catch	notes	app	does	this	very	well.	When	the	app	launches	for	the	first
time,	it	prompts	users	to	log	in	to	the	app	but	also	provides	users	with	an
option	to	continue	to	use	the	app	without	an	account	(see	Figure	20-3).

Figure	20-3:	The	Catch	notes	app	shows	this	screen	when	it	starts.	It	invites
users	to	log	in	but	also	provides	a	link	for	non-logged-in	use.

Source:	Catch.com

Once	the	users	have	started	using	the	app	without	an	account,	they	can	keep
on	using	the	app.	However,	all	of	the	sync	features	are	not	available.	The
user’s	notes	are	saved	in	local	storage	and	synced	later	if	they	decide	to	log	in
to	an	account.	The	app	also	discretely	reminds	users	of	the	features	that	can
be	enabled	with	an	account	on	the	app’s	landing	screen	(see	Figure	20-4).

Figure	20-4:	Once	the	user	starts	to	use	the	app	in	non-logged-in	mode,	the
app	shows	information	on	the	app’s	landing	screen	encouraging	the	user	to
log	in.

Source:	Catch.com

Consequences
If	you	let	your	users	experiment	with	your	app	without	creating	an	account,
you	are	likely	going	to	gain	new	customers.	Users	who	find	your	app	through
a	mobile	app	market	are	more	likely	to	stick	with	it	if	they	see	more	than	just
a	login	screen.

Large	screen	adaptation
When	you	use	this	design	pattern	on	large	screens	you	have	an	even	better
opportunity	to	promote	the	benefits	of	creating	an	account.	You	can	show
features	that	are	disabled	on	the	screen.	However,	never	make	disabled
features	look	like	they	are	enabled.	If	users	press	a	button	on	your	user

features	look	like	they	are	enabled.	If	users	press	a	button	on	your	user
interface,	it	should	be	active.	It’s	not	good	practice	to	use	a	pop-up	window	to
inform	the	users	that	the	button	they	just	tapped	isn’t	active	and	they	need	to
create	an	account.	It	is	better	to	make	the	unavailable	features	look	disabled
and	explain	that	creating	an	account	will	enable	them.

Considerations	and	criticism
In	some	cases,	creating	a	functional	app	without	forced	logging	means	a	lot
more	work.	As	with	everything,	you	need	to	perform	a	cost-benefit	analysis
as	to	whether	it’s	best	to	create	non-forced	logins.	At	the	very	least,	you
should	allow	new	users	to	see	parts	of	the	user	interface	without	any
functions.	Do	not	block	users	from	the	login	screen.

Tip:	A	simple	variation	is	to	create	a	demo	account	and	provide	an	easy	way
for	users	to	log	in	to	it.	You	might	want	to	make	the	account	read-only	to
avoid	privacy	and	license	agreement	issues.

Technical	implementation
Technical	implementation	of	this	design	pattern	depends	on	your	app’s
functions.	It’s	best	when	your	app	is	set	up	to	work	in	offline	mode	and	then
sync	data	when	users	are	online.	You	might	be	able	to	utilize	the	same
mechanism	for	unregistered	users	as	well.

Using	the	Drag-to-reorder	handle	pattern
The	drag-to-reorder	handle	design	pattern	allows	users	to	reorder	list	items.
This	pattern	is	most	commonly	used	in	lists,	but	it	can	be	applied	to	similar
constructs.

Problems	that	this	pattern	solves
In	lists	where	order	matters,	users	should	be	allowed	to	manually	reorder
them.	Many	gestures	are	already	reserved	on	lists,	such	as	the	long-press	to
trigger	quick	actions	and	dragging	to	scroll	the	list.	Forcing	users	to	select
and	then	move	the	items	using	some	kind	of	separate	controls	is	too
cumbersome	and	can	lead	to	bad	user	experiences.

Solution

Solution
Adding	a	handle	to	lists	that	can	be	reordered	is	a	nice,	clean	way	to	allow
users	to	manipulate	your	interface.	Users	can	grab	the	handle	to	move	the
items	around	easily,	with	a	simple	and	intuitive	gesture.

The	Tasks	app	implements	this	design	pattern	very	well.	The	Tasks	app’s
developers	added	a	drag-to-reorder	handle	to	the	list	item’s	right	side	(see
Figure	20-5).	The	handle	is	easy	to	understand	due	to	its	graphical
representation.	Once	the	user	touches	the	handle	part	of	a	list	item,	the	item
immediately	indicates	to	the	users	that	they	have	selected	the	correct	item
(see	Figure	20-6).	When	the	users	drag	their	fingers,	the	list	rearranges	itself
on	the	fly.	This	makes	it	clear	to	users	what	would	happen	in	each	state	if
they	were	to	drop	the	item.	It	is	very	important	to	indicate	the	new	order
during	the	gesture.

Figure	20-5:	The	Tasks	app	has	a	handle	on	each	list	item.	The	visuals	clearly
indicate	where	users	can	grab	an	item.

Source:	Tasks	App

Figure	20-6:	When	users	touch	the	drag	handle	on	a	list	item,	the	list	item	is
immediately	highlighted	and	starts	to	follow	the	user’s	gesture.

Source:	Task	App

Consequences
When	you	implement	this	feature,	your	users	can	effortlessly	order	the	list
items	without	having	to	think	about	conflicting	gestures	and	complicated
interactions.	Keep	in	mind	that	the	dragging	handle	does	consume	some	of
the	screen	real	estate	available	for	your	list	items.

Large	screen	adaptation
The	same	approach	works	on	larger	screens	as	well.	You	just	need	to	be
mindful	of	the	list	item	sizes.	Do	not	make	the	lists	too	wide	and	the	dragging
handle	too	far	from	the	list	content.	Otherwise,	it	will	be	difficult	to	keep	the
list	item	visually	consistent.

Variations
You	can	change	the	style	of	the	dragging	handle	in	different	ways.	In	the
Tasks	app,	the	handle	is	an	icon	representing	the	function,	whereas	in	other
apps	a	different	metaphor	is	used.	You	can,	for	example,	make	it	look	like	a
handle	or	a	rougher	surface	that	encourages	users	to	grab	it.

Technical	implementation
There	are	several	Open	Source	libraries	that	you	can	use	to	implement	this
functionality.	You	can	use	these	libraries	as	a	basis	for	your	own
implementation.	My	recommendation	is	to	use	a	library	called
DragSortListview.	You	can	get	it	from	github	at
https://github.com/bauerca/drag-sort-listview.

Summary
The	data	user	interface	design	patterns	introduced	in	this	chapter	can	help	you
handle	data-related	problems	in	your	apps.	You	should	always	be	conscious
of	the	ways	your	users	are	going	to	interact	with	your	data.	Your	goal	should
be	to	think	of	ways	to	make	data	manipulation	easier,	transparent,	and	even
automatic.

	

https://github.com/bauerca/drag-sort-listview

Chapter	21:	User	Interface	Design	Anti-
Patterns
User	interface	anti-patterns	are	bad—but	common—solutions	to	commonly
occurring	problems.	All	of	the	anti-patterns	described	in	this	chapter	are
relatively	common,	and	you’ll	see	them	in	apps	that	are	currently	distributed	in
Google	Play.	I	don’t	show	real-life	examples	of	the	bad	designs	because	I	have
no	intention	of	shaming	any	developers,	well-known	and	not.	I’m	sure	you	have
seen	instances	of	these	anti-patterns	and	probably	even	have	apps	that	use	them
on	your	phone.	It	is	also	worth	noting	that	an	app	that	uses	some	of	these	anti-
patterns	should	not	automatically	be	seen	as	badly	designed.	Such	app	designs
might	be	flawed	in	one	place,	but	are	still	excellent	in	other	respects.

As	with	user	interface	design	patterns,	user	interface	design	anti-patterns	do	not
apply	in	every	situation.	If	your	app	has	certain	exceptions	and	constraints,	these
anti-patterns	might	after	all	be	an	acceptable	solution,	or	maybe	your	only
recourse.	Suffice	it	to	say	that	it’s	always	better	to	avoid	these	anti-patterns	if	at
all	possible,	but	keep	in	mind	that	there	are	exceptions	to	every	rule.

The	user	interface	anti-patterns	discussed	in	this	chapter	include	the
following:

•	The	splash	screen

•	The	tutorial	screen
•	The	confirmation	window
•	On-screen	Back	button

•	Menu	button
•	Hiding	the	status	bar

•	Swipe	overlay	quick	actions
•	Using	non-Android	designs

Avoid	Using	the	Splash	screen
The	splash	screen	is	a	loading	screen	that	appears	while	the	app’s	interface	is

The	splash	screen	is	a	loading	screen	that	appears	while	the	app’s	interface	is
loading.	It	typically	shows	the	logo	and	company	name	and	is	a	full-screen
image	that	sometimes	includes	a	loading	indicator.

This	is	not	a	new	device.	Splash	screens	have	been	used	on	desktop
computers	for	a	long	time.	If	you’re	an	Android	developer,	you	have	most
likely	seen	a	splash	screen	used	when	the	Eclipse	or	IntelliJ	IDEA	is
launching.

Problem	being	addressed
The	process	of	loading	an	app’s	user	interface	can	take	a	fair	amount	of	time,
especially	when	the	app	contains	a	lot	of	heavy	graphical	assets	and
components	loaded	over	a	network	connection.	Indicating	to	the	users	in
some	way	that	the	app	is	loading	is	better	than	having	the	screen	appear	black
and	unresponsive.

Why	A	splash	screen	is	a	bad	solution
With	desktop	operating	systems	and	applications,	the	splash	screen	is	a	pretty
standard	and	acceptable	design	approach.	This	is	due	to	the	large	size	of
desktop	applications	(they	take	a	long	time	to	load)	as	well	as	the	nature	of
how	applications	are	used	on	desktop	computers.	Computer	desktop	games,
IDEs,	and	programs	are	typically	used	for	hours	in	one	go.	The	same	is	not
true	on	a	mobile	phone.	Apps	are	used	in	short	bursts,	sometimes	for	a	few
seconds.	Therefore,	it	is	important	to	load	your	app	as	soon	as	possible.
Including	a	splash	screen	will	make	it	slower.	First,	loading	the	splash	screen
itself	takes	extra	time.	Most	apps	implement	a	minimum	time	for	a	splash
screen	to	be	seen.	Remember	that	your	app	should	include	features	only	if
they	help	your	users	reach	their	goals.	There	is	no	mobile	phone	goal	that	is
helped	by	using	a	splash	screen.

Better	solution
Instead	of	using	a	splash	screen,	try	to	make	your	app’s	landing	screen
lightweight	and	void	of	heavy	graphical	elements	that	must	be	loaded	before
the	interface	is	functional.	Utilize	design	patterns	like	the	image	placeholder
pattern	introduced	in	Chapter	20.	Your	goal	should	always	be	to	allow	users
to	start	using	your	app	as	soon	as	they	open	it.	Even	a	few	seconds	of	delay
when	opening	your	app	can	lead	to	a	poor	user	experience,	especially	if	your

when	opening	your	app	can	lead	to	a	poor	user	experience,	especially	if	your
app	is	the	kind	they	might	use	for	10	seconds	at	a	time.

Exceptions
Games	are	a	good	example	of	apps	that	can	get	away	with	using	splash
screens	without	losing	users.	Try	to	avoid	it,	even	with	games	if	possible,	but
it	can	be	more	difficult	to	do	so	than	in	normal	apps	due	to	the	heavily
customized	and	graphics-heavy	user	interfaces	in	many	games.

Avoid	Using	the	Tutorial	screen
Tutorial	screens	appear	when	users	first	open	an	app.	They	explain	the	app’s
available	functionality	and	screens.	They	usually	contain	instructions	on	how
to	open	menus,	find	functions,	and	perform	gestures.

Problem	being	addressed
Learning	to	use	an	app	and	learning	the	user	interface	can	be	difficult	at	first,
especially	when	the	app	uses	non-standard	user	interface	components	or
gestures.	The	tutorial	screens	try	to	explicitly	tell	the	users	where	the	features
are	and	how	to	access	them.

Why	is	this	a	bad	solution?
Although	it	might	sound	like	a	good	idea,	the	tutorial	screen	is	actually
counter-productive.	When	users	start	your	application	for	the	first	time,	they
do	not	have	any	understanding	of	your	app’s	user	interface,	functionality,	or
context.

Users	are	also	more	interested	in	using	your	app	instead	of	reading	text	or
looking	at	tutorials.	They	just	want	to	see	the	UI	and	start	using	it.	It	is	also
very	difficult	to	know	which	of	your	users	are	new	and	which	ones	are	just
reinstalling	the	app	after	changing	to	a	new	device	or	using	a	secondary
device.	Those	users	are	going	to	be	extra	annoyed	by	tutorial	screens	that	are
forced	on	them.

Better	solution
Of	course,	the	best	solution	is	to	make	your	app	so	easy	to	use	and	intuitive

that	no	tutorials	are	needed.	That’s	not	always	possible.	You	should,
however,	make	sure	that	your	app’s	main	user	interface	and	core	functions	do
not	need	any	tutorials.	Make	sure	users	can	just	jump	in	and	start	using	the
main	screen.

You	still	might	have	to	explain	how	the	more	advanced	features	are	used.	It’s
better	to	incorporate	your	tutorial	screen	into	your	app	instead	of	showing	it
upon	launch.	Once	your	users	have	become	familiar	with	the	app’s	user
interface,	it	is	much	easier	for	them	to	learn	new	features.

All	user	help	should	be	available	on	request	once	the	users	are	familiar	with
the	user	interface.	User	help	should	also	be	presented	in	the	right	context.	The
Evernote	app	has	done	a	great	job	work	implementing	its	tutorials.	Users	can
at	any	point	open	a	list	of	available	tutorials	(see	Figure	21-1).	When	a
tutorial	is	selected,	it	is	shown	in	right	context	for	users	to	understand	easily
what	it	means	(see	Figure	21-2).

Figure	21-1:	Evernote	displays	its	tutorials	in	a	list	whenever	the	users	want
to	see	them.

to	see	them.

Source:	Evernote	Corporation

Figure	21-2:	When	a	user	selects	one	of	Evernote’s	tutorials,	an	overlay	on
the	live	user	interface	shows	the	help	functionality.

Source:	Evernote	Corporation

Avoid	Using	the	Confirmation	Window
The	confirmation	window	is	typically	a	pop-up	dialog	box	that	confirms	users
actions.	You’ve	probably	seen	thousands	of	these	before.	Many	of	them	are
used	to	ask	the	users	questions	and	confirm	their	actions.

Problem	being	addressed
These	windows	help	prevent	users	from	accidentally	performing	operations

These	windows	help	prevent	users	from	accidentally	performing	operations
that	are	irreversible.	Users	might	accidentally	delete	a	file	or	discard	edits
they’ve	made	in	a	text	document.

Why	is	this	a	bad	solution?
Users	do	not	always	read	what	a	dialog	box	says.	In	many	cases,	they	simply
tap	yes	for	any	question	presented	to	them.	This	is	learned	behavior	from
years	of	using	apps	that	abuse	pop-ups	and	confirmation	dialog	boxes.

A	pop-up	confirmation	window	is	the	easiest	way	to	try	to	move	the
responsibility	of	accidental	operations	from	the	developers	to	the	users.
However,	forcing	a	user	to	tap	an	OK	button	doesn’t	relieve	the	design	and
developer	team	from	responsibility	if	users	mistakenly	lose	their	data	or
perform	actions	they	don’t	want	to.

Better	solution
Every	action	should	be	reversible.	Try	to	provide	an	Undo	for	all	operations
instead	of	confirmation	windows.	The	Gmail	app	does	this	brilliantly.	When	a
user	deletes	an	email,	the	app	deletes	it	but	provides	an	easy	way	to	undo	this
deletion	(see	Figure	21-3).

Exceptions
There	do	exist	operations	that	are	truly	irreversible.	Still	it	is	worth	trying	to
find	alternatives	before	reverting	to	a	confirmation	window.	Sending	email	is
a	good	example	of	an	irreversible	operation	as	once	the	email	is	in	the
receiver’s	email	box	you	cannot	change	it.	Even	in	this	example	you	should
try	to	make	sure	that	the	users	will	not	send	the	email	accidental	by
organizing	your	user	interface	in	a	way	that	it	is	very	clear	how	the	email	is
sent	and	avoiding	user	interface	component	placements	that	can	cause
confusion	or	accidental	taps.

Avoid	Using	the	On-screen	back	button
The	on-screen	Back	button	is	a	part	of	the	app’s	user	interface	that	brings	the
user	back	to	the	previous	screen.	It	is	common	to	see	these	buttons	on	apps
that	have	been	directly	ported	from	the	iOS.	On	the	iOS,	apps	must	have	a
Back	button.

Figure	21-3:	The	Gmail	app	provides	users	with	an	easy	undo	if	they	delete
an	email	by	accident.

Source:	Google

Problem	Being	addressed
Users	need	to	be	able	to	navigate	back	to	the	previous	screen	when	they
navigate	in	the	app’s	screen	hierarchy.

Why	is	this	a	bad	solution?
All	Android	devices	have	a	Back	button.	Some	of	them	are	software	Back
buttons,	and	some	of	them	are	hardware	buttons.	Adding	an	extra	Back
button	to	the	app	user	interface	is	counter-productive.	The	back	stack	can
already	be	confusing	to	users,	especially	when	combined	with	the	Up	button
concept.	If	you	add	an	on-screen	Back	button,	your	app’s	users	will	probably
confuse	it	with	an	Up	button.	If	the	button	then	works	as	a	Back	button
instead	of	an	Up	button,	it	is	likely	to	cause	confusion.

instead	of	an	Up	button,	it	is	likely	to	cause	confusion.

Better	solution
You	can	rely	on	Android’s	Back	button	and	the	Up	button	to	handle	all	the
required	backward	and	upward	navigation	in	your	app.	Do	not	add	on-screen
Back	buttons	to	your	app.	Also,	make	sure	that	your	Up	button	doesn’t	look
like	a	Back	button.	Try	to	use	the	Action	Bar’s	up	affordance	without
modifying	it.	It	can	already	be	fairly	confusing	to	users	and	making	it	look
like	a	left	arrow	is	likely	to	add	to	that	confusion.

Avoid	Using	the	Menu	button
Before	the	release	of	Android	4.0	Ice	Cream	Sandwich,	all	Android	phones
were	required	to	have	a	hardware	menu	button.	The	menu	button	opens	a
context	menu	on	screens	that	have	a	menu	set.

Problem	Being	addressed
Not	all	actions	can	be	addressed	in	the	user	interface.	Users	need	to	have
access	to	advanced	contextual	actions	on	top	of	the	visible	action	on	the
screen.

Why	is	this	a	bad	solution?
From	a	user	interface	design	point	of	view,	the	early	Android	phones	had	two
large	design	flaws.	First,	you	had	to	hold	down	the	Home	key	to	access
multitasking.	The	second	flaw	was	the	use	of	the	hardware	menu	button.	The
problem	with	a	hardware	menu	button	is	that	users	cannot	tell	if	the	menu	is
available.	Not	all	screens	and	apps	use	the	context	menu,	so	users	have	to
guess.	The	only	way	to	find	out	if	it’s	active	is	to	press	it.	It	goes	against	all
usability	guidelines	to	force	users	to	do	that.

Better	solution
In	the	Android	4.0	release,	support	for	software	buttons	was	added	and	the
requirement	for	a	menu	button	was	removed.	In	the	new	guidelines,	the	menu
concept	is	gone	altogether,	and	it	is	replaced	with	the	Action	Bar	design
pattern	combined	with	the	overflow	action	menu.	You	should	use	this	new
guideline	instead	of	the	old	menu	concept.

Avoid	Hiding	the	status	bar
Android	allows	your	app	to	hide	the	status	bar	(the	top	bar	with	notifications,
clock,	and	so	on).	It	is	quite	common	to	see	reading	apps,	for	example,	hiding
the	status	bar.

Problem	Being	addressed
Hiding	the	status	bar	leaves	more	on-screen	space	for	the	actual	content.	This
can	be	especially	true	when	the	content	is	large	blocks	of	text,	such	as	with	an
ebook	reader.

Why	is	this	a	bad	solution?
Android	notifications	are	visible	to	users	only	in	the	status	bar.	These
notifications	are	not	accessible	if	the	status	bar	is	hidden.	If	user	is	using	an
ebook	reader	app	that	hides	the	status	bar	when	they’re	reading	a	book,	for
example,	they	can	still	hear	the	notification	sound.	The	user	has	no	way	of
telling	whether	the	notification	is	important	or	not	if	the	status	bar	is	not
visible.	The	only	way	for	her	to	know	is	to	go	back	to	the	home	screen	and
check	the	notification.	If	the	status	bar	was	visible,	she	could	simply	dismiss
the	notification	if	it	wasn’t	important.

It	is	also	important	to	realize	that	hiding	the	notification	bar	also	prevents
users	from	seeing	the	time.	That	can	be	annoying	and	counter-productive.

Better	solution
Try	to	avoid	hiding	notification	bars.	Users	use	their	phones	to	pass	time
while	waiting	for	a	train	or	bus.	During	that	time,	each	notification	might	be
significant	and	hiding	the	status	bar	in	your	app	will	make	it	much	more
difficult	for	users	to	react	to	notifications.	Remember	that	yours	isn’t	the	only
app	running	on	the	user’s	device.

Exceptions
Apps	playing	full-screen	video	in	landscape	mode	have	often	a	good	reason
to	hide	the	status	bar.	Having	the	status	bar	visible	with	full	screen	video
would	ruin	the	video	experience.	Google’s	YouTube	app	has	dealt	with	this
issue	by	showing	the	video	in	full-screen	landscape	mode	without	the	status

issue	by	showing	the	video	in	full-screen	landscape	mode	without	the	status
bar,	but	including	the	status	bar	when	the	video	is	viewed	in	portrait	mode.

Avoid	Using	Swipe	overlay	for	quick	actions
Some	apps	use	a	swipe	gesture	to	activate	quick	actions	in	list	items.	See
more	about	quick	actions	design	pattern	in	Chapter	18.	Users	swipe	the	list
item	to	expose	a	quick	actions	panel	that	replaces	the	list	item.

Problem	Being	addressed
Apps	often	have	screen	where	they	display	multiple	items	like	emails,	notes,
or	to-do	items.	Users	need	to	be	able	to	perform	actions	only	on	items	they
want	to	be	affected.	Operations	like	delete,	edit,	and	move	require	users	to
select	the	items	explicitly.

On	mouse-operated	user	interfaces,	users	are	used	to	right-clicking	items	they
want	to	manipulate	individually.	On	touch	screens,	this	approach	is	not
possible.	An	alternative	must	be	found.	Note	that	this	is	the	same	problem
that	the	quick	actions	design	pattern	handles	effectively	(see	Chapter	18).

Why	is	this	a	bad	solution?
There	are	three	reasons	why	this	approach	should	not	be	used	in	Android
apps.	First,	this	gesture	is	very	difficult	to	discover.	It	is	not	a	standard	way	of
activating	a	quick	action	on	the	Android	platform,	so	users	are	unlikely	to
know	about	it.	Second,	the	swipe	gesture	already	serves	a	different	purpose
on	the	Android	user	interface—it	is	used	to	switch	between	workspaces	(see
more	about	the	workspaces	design	pattern	in	Chapter	19)	or	removing	items
using	the	swipe-to-dismiss	user	interface	design	pattern.

The	third	and	possibly	biggest	problem	to	this	approach	is	that	the	quick
actions	panel	replaces	the	actual	list	item.	This	means	that	users	immediately
lose	context	to	their	actions.	When	you	replace	the	row	in	your	list	that	the
actions	apply	to,	you	have	removed	the	most	important	part	of	the	user
interface	that	should	be	visible.

Better	solution
You	should	use	the	solution	outlined	in	the	quick	actions	design	pattern	in

You	should	use	the	solution	outlined	in	the	quick	actions	design	pattern	in
Chapter	18.	It	is	much	better	to	allow	your	users	to	see	the	available	actions
without	hiding	the	actual	content	these	actions	are	going	to	perform.	That
way,	users	remain	aware	of	the	context	and	can	perform	the	actions	with
greater	confidence.

Avoid	Using	Non-Android	Designs
The	importance	of	designing	for	the	Android	platform	specifically	and	not
applying	a	design	that	was	originally	made	for	another	smartphone	platform
is	sometimes	difficult	to	communicate	to	your	project’s	stakeholders.	Bad
decisions	might	lead	to	a	situation	where	a	design	that	is	not	suitable	for	an
Android	device	ends	up	being	used	anyway.

Problem	Being	addressed
Good	design	requires	skill	and	time.	Using	a	design	that	was	already	created
for	a	different	platform	might	sound	like	a	good	way	to	save	time	and	money.
Some	people	think	that	all	smartphone	platforms	are	the	same,	and,	therefore,
all	touch	screen	designs	are	interchangeable.	This	is	not	true.

I’ve	also	heard	arguments	about	maintaining	brand	consistency	among
smartphone	platforms	and,	therefore,	keeping	a	one-to-one	design	approach
across	all	platforms.

Why	is	this	a	bad	solution?
Unfortunately,	all	the	large	smartphone	platforms	are	different.	Android	has
its	own	design	guidelines	that	you	should	follow.	Users	have	certain
expectations	of	how	apps	work	and	they	will	expect	your	app	to	work	within
these	basic	paradigms	or	otherwise	will	find	it	frustrating	and	difficult.

The	argument	about	brand	consistency	over	platform	consistency	is	also
flawed.	Users	rarely	own	more	than	one	smartphone,	particularly	ones
running	on	different	operating	systems,	at	the	same	time.	Users	will,
however,	have	multiple	applications	on	their	phones.	Your	app	will	be	one	of
many.	If	your	app	differs	from	the	general	experience,	it	is	much	more	likely
to	be	abandoned	and	rated	poorly.

Better	solution

Better	solution
It	is	worth	investing	in	correct	design	from	the	beginning,	even	if	your	client
or	company	already	has	a	successful	app	on	another	platform.	Android	has
the	largest	mobile	operating	system	and,	therefore,	can	offer	your	project	a	lot
more	visibility	and	more	new	customers.	You	only	get	one	chance	to	launch	a
first	impression.

Exceptions
The	web	is	a	platform	that	spreads	across	operating	system	limits.	Each	of	the
large	mobile	operating	systems	has	a	browser	capable	of	rendering	modern
web	applications.	If	your	client	doesn’t	want	to	invest	into	application	design
for	a	platform-specific	app,	you	might	be	better	off	targeting	mobile	web
browsers	instead.	Users	have	different	expectations	of	an	app’s	functionality
when	it	runs	inside	a	web	browser.	Your	app	can	look	similar	on	the	iOS	and
on	Android,	for	example,	as	long	as	users	access	it	through	a	web	browser.

Summary
Anti-patterns	are	design	approaches	that	you	should	avoid	in	your	apps,	even
though	you	will	see	many	examples	of	them	on	current	Android	apps.	There
are	better	ways	to	handle	these	problems,	but	sometimes	it	requires	more
work	and	design	investment.	You	must	perform	a	cost-benefit	analysis	on	a
case-by-case	basis.	In	some	cases,	the	cost	of	implementing	the	better	design
might	actually	be	less.	Always	keep	in	mind	the	user’s	goals—what	do	your
users	want	to	achieve	when	using	your	app?	Don’t	create	user	interfaces	that
just	look	cool	or	are	great	on	other	platforms.	Create	a	good	Android	user
experience	and	your	users	will	be	happy.	In	addition,	your	app	will	receive
better	ratings	and	more	downloads.

	Table of Contents
	Title Page
	Foreword
	Part I: Introduction to Android Design
	Chapter 1: Introduction to Usability and User Interface Design
	Chapter 2: Don't Start Coding Just Yet
	Chapter 3: Considerations in Designing for Mobile and Touch Devices
	Chapter 4: Exploring the Android Platform

	Part II: Android Platform Features and UI Components
	Chapter 5: Android App Structure and Online Guidelines
	Chapter 6: Android Intents
	Chapter 7: Android App Navigation Structure
	Chapter 8: Home Screen App Widgets
	Chapter 9: Notifying and Informing Users
	Chapter 10: Designing for Hardware Buttons, Input Methods, and Sensors
	Chapter 11: Designing Platform User Interface Components

	Part III: Scalable Android Design
	Chapter 12: Managing Android Resources
	Chapter 13: Android App Layouts
	Chapter 14: Scalable Graphics
	Chapter 15: Beyond Scalable – Responsive Design
	Chapter 16: Implementing Responsive User Interfaces

	Part IV: Android UI Design Patterns
	Chapter 17: Introduction to User Interface Design Patterns
	Chapter 18: User Action Design Patterns
	Chapter 19: Navigation and Layout Design Patterns
	Chapter 20: Data Design Patterns
	Chapter 21: User Interface Design Anti-Patterns

