Learn

Android Studio 3
with Kotlin

Efficient Android App Development
Ted Hagos

APress’

Learn Android Studio 3
with Kotlin

Efficient Android App Development

Ted Hagos

Apress’

Learn Android Studio 3 with Kotlin: Efficient Android App Development

Ted Hagos
Manila, National Capital Region, Philippines

ISBN-13 (pbk): 978-1-4842-3906-3 ISBN-13 (electronic): 978-1-4842-3907-0
https://doi.org/10.1007/978-1-4842-3907-0

Library of Congress Control Number: 2018962941

Copyright © 2018 by Ted Hagos

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484239063. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3907-0

For Adrianne and Stephanie.

Table of Contents

About the AUROFccciiemmisnmmissnsmmsssnsssssnssssssssssansesssnsesssnsesssnnesssnnesssnnesssnnsessnnssss Xiii
About the Technical REVIEWEI'Sccuiesrsssssssssansssssnssssansssssnsssssnsssssnsssssnsssssnnssssnnssssns XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
INtroductioncocieeriisennmssnnmsssnnmsssnnesssnnesssnnesssnnesssnnesssnnesssnnesssnnnsssnnenssnnssssnnssssnnnsns Xix
Part I: The Kotlin Languagecccuussemmmmmmmssssssnmmmssssssssnmnsssssssssnssssssssssnnssssssnnns 1
Chapter 1: Getting into Kotlinccccciiemmmmnnsmmmmmmnsssmmmmssssmmnssssmmmsssssssssssssnnnns 3
ADOUL KOHN...cveeiiecisesiscen st e e 4
Installing the Java SDK ... ettt 6
INStalling 0N MACOS........coeirrirer e e s e e eae s a e sa e e s a e s e e e e e naenaen 7
Installing on WindOWS 10.........ccocrieriririirsienerserree e s s s e s e e sae s s e s e e sresnensenns 8
103 P2 1 10T T 0] T GO 9
1LY LT 40 0] £ 10
Installing the Command LiNe TOOIS........ccoueermrererreserrnseseresessesesessesesssse s sessesessssessssesessesenns 10
Coding With the Command Ling TOOISccccvourerererennesereneseseresesesese s ses e ssssesessesenns 15
INSEAIING INTEHIIY ... 17
Creating @ PrOJECLccvecerierneses e n e 19
TR INEEIIIJ IDE ...t 29
Chapter SUMMANYccooeeeecr s n e ne e e nnn e 31
Chapter 2: Kotlin BaSiCScuuueemmrmsssnnmmmsssssnnssssssnsnsssssssnnssssssnsnssssssnnnssssssnnnsssssnnnnnssss 33
Program EIBMENTS ..ot e 33
)T OSSOSO 34
VaNIADIEScueieeerree s e p e n R 34
Expressions and Statements..........cvcvveinnninesns s 36

G A0 (0 SO SOP 37

TABLE OF CONTENTS

L L TE e 0 T S 38

00 T=T (0] O 39
BIOCKS ...cititiiiiit i ————— 41
COMMENTS ... 42

5 R [1] 0T O 44
Numbers and Literal Constants ..., 44
CRAFACTEIScvvrcicrs s 46
BOOIBANS.......ccciir i —————————— 47
1 47
Strings and String TEMPIALEScccocvecrri e 49
Controlling Program FIOWccooeermenrnenesesssessesssessssssssessesesssssssssssessssssssssssssssssssssssssssssssssnns 51
LS TSP 51
The when Statement ... ——————————— 53
The while Statement ... ——————— 55
{000 L OSSOSO 55
EXCeption HANAIINGccvvvereierirrire st s ss s s s a s se s s st s 57
g LT T T N L 58
Chapter SUMMANYccvverereserese s se s s rs e s e s e s nenns 60
Chapter 3: FUNCLIONSccuviisemmmmmsssmnnmmmsssssnmmssssssnmmssssssnsessssnsnsssssssnsssssssnnnsssssnnnnsnnss 63
DecClaring FUNCHIONScociiiie e r e s s s n e e s 63
Single EXPression FUNCHIONS.........cvcvveveveneniere s sessesse e sessessessessssessessessessssessessessssssnessesaes 67
Default ArgUMENTES ..o s e s e e e ns 68
Named Parameters ..o ———— 69
Variable Number of ArQUMENTSccce i e s sn e s 70
EXtension FUNCHONS ..o s 71
INFIX FUNCHIONS....c.ciiiiiicii e s 73
(00 T=T L0 G0NV =T 0 Vo [T R 75
Chapter SUMMAIY ... s s 78

TABLE OF CONTENTS

Chapter 4: Working With TYPeS.....ucccrrrmsssnnsrssssnnssssssssnsssssssnssssssssnssssssssnsnssssssnnnsssss 79
INEEITACESveec et ———————————————— 79
Diamond ProbIem ... —————— 81
INVOKING SUPEr BENAVIOL.........ccccoiircr e 82
LT 84
CONSEIUCTONS ... 85
INNEIIEANCEvveicieri i 88

o (0] 4T TSRS 92

DALA CIASSES ...vvvreresesescsiesiissss s 96
ViSiDility MOGIFIErS.ccurecereseresrrissires s 100
ACCESS MOIfIEIS.....ecueuiereriisiisi e 102
0DJECt DECIArAtiONSccvcervererrersere s s r e ae e e a e e nnen 102
(TGS 1T 1T O 103
Chapter 5: Lambhdas and Higher Order FUnctions.........ccccusssemmmmsssssnnsssssssnssssssnnnnss 105
Higher Order FUNCHIONSccvcvienincse e 105
Lambda and Anonymous FUNCHIONScocviiiiininin s ss s e ss s s saenns 109
Parameters in Lambda EXPreSSioNnsSccvvevvervennieneniensenssesessessesssesessessssssessesesssssaessessenns 110
0L 113

WIth @N0 APPIY c.eeeeciecicrr e e e e R e nn 114
Chapter SUMMANYcovevieiree e nr e 116
Chapter 6: Collections and Arraysosssmsmmsmmsmmsmsmssms s 117
2 S 117
COHBCTIONSceerreriscic e s 121
LISES ettt ————————————————— 123

SIS e —————————————————————— 124
2 0 OSSOSO 125
Collections TraVersal.........cccvrrrmiinisesssssss s 127

a1 T a0 1 o OSSN 128
(1P 10 (T AT 1 R 130

vii

TABLE OF CONTENTS

Chapter 7: GENEIICS .uuuuiseesrrrssssnnnmsssssnnnssssssnnsesssssnnssssssnnssssssssnnnesssssnnnsssssnnnnssssnnnnnss 133
WHY GENEIICS ..c.veueeeucerseerreeresesessesesseeses e sse e se e ses e e sse e se e see e e sse e ssesesensesssssssssensssnsesnsenens 133
TErMINOIOGIES. ... eeereserrrreserrese s e s s e e e e e r s s e b e e nae e e Re e r e e nnenrnnn e 135
Using GENerics iN FUNCHIONS.........ccvovevirierere s sse s sessesse s ssssessessessesessesaessessssensesaees 136
USiNg GENENICS iN ClIASSES......ccucrceririiririnene st nne 138
L1 T 140
SUDCIASS VS SUDTYPEeererei et sa e s s a e e s ae e se e e sa e e e naennen 144
Reified GENEIICS.....ciuiuisiiiri e s 149
Chapter SUMMANYccoverierree e nr s 153

Part ll: Android Programming with Kotlinccccccmmmnnnssemmnmnnnsssssssnnnnn. 155

Chapter 8: Android Studio Introduction and Setup.........ccccccmmrnssenmnnnssssnnnsnsssnnnns 157
3 15 (0] 7SS 157
AICRITBCIUNE ...t ———————— 158
Android StUI0 IDE ..o 160
£] R 161
Android Studio Configurationcccvriininni s 163
Hardware ACCEIBration............ouvrrrniinniss s 169
(1P 10 (T T R 170

Chapter 9: Getting Started..........ccurrmmmrnnsnmnnnnsssnnmmnsssnnssss s —————— 173
L e LI 1117 o SOOI 173

Component ACHIVALION.........ccccveriinrr e e e 176
Creating @ PrOJECLccvvceviererese e e nr s 177
TRE IDE........eeecerect ettt 190

MaIN MENU....eiitii i 192

Keyboard SHOMCULSccceveierrirere s se e e s s ss s sae s a e se e sae e nnennes 193

Customizing CoUe SEYIE......ccvcrerrrerrere e re e s a e sae e s s aesr e e nne s 195
Chapter SUMMAIY ... e e s e nnn 196

viil

TABLE OF CONTENTS

Chapter 10: Activities and Layouts.........ccccrrnssnnnnmmssssnsnmssssssssssssssssssssssssssssssssnnnss 197
Application Entry POINt.........cccrirsr e 197
ACHIVITY CIASS ...uvveuereenererscrerseserreeresesessese s ses e sesse e se e ses e e s sessesesee e sessesensssesessesensessssenees 198
LAYOUL FIlB ...t e e bbb 200

View and ViewGroup ODJECTS........cccrniinnnin s sn s enes 201
CONTAINEIS ...cuvririricie s s 203

HEHO WOKI......ccocciiiiri s s 204
Modifying Hello WOFIQ........ccoveeririreerssesssese s se s se s ssnnes 208
(1 T0 (T T 1 R 218
Chapter 11: Event Handlingccuscemmmnnssnmnmmsssssnnmmsssssssmssssssssssssssssssssssssssssssssnnnss 221
Introduction to Event HaNdIing.........cccocvcnnninnnnnn s sesesnens 221
Chapter SUMMANY ... e nr s 237
Chapter 12: Intents........ccciviiemmmmmnsnnmmmmnnsssmmmsssnnmmssssnssss s 239
WhaL INTENTS AF€......coviiiiiiini i ——— 239
LO0OSE COUPIING.....cieriiriiiircrerie st s e s s e s e e s e b et e e ne s 242
TWO Kinds Of INTENTceiirriicir 243
INtents Can Carry DAta..........coovvrveviererenserereses s sre s s ssessesessessessessssessessesassessesaesaesssnessesaens 243
Getting Back Results from AnOther ACHIVITYcocvvrvrieriernrenseniers s s ses e sessessesne s 246
IMPHCIE INTENTS ... eae e 249
Demo 1: Launch an ACHIVITY.......cocueeeerenernsesrnesesese s sesse s 251
Demo 2: Send Data to an ACHIVITYcoveevveriererierrerere s rsere s s s se e e s e s sre e s ssesnesassessesaees 259
Demo 3: Send and Get Data Back to and from an AGLIVItycccvvrninvninnnsnsnn s 265
Demo 4: IMPIICIt INTENTScveie e 278
(1P 10 (T AT 1 R 282
Chapter 13: Themes and MeNUScccvussseensrsssssnnnmssssssssssssssssssssssssnsssssssnsssssssnnnnss 283
SEYIES ANA THEIMES......ceeecerceree e n e p e ne e 283
Customizing the TNEME ... e s 286
MIBIUS ..ottt 288
(01 10 (T T 1 O 303

TABLE OF CONTENTS

Chapter 14: Fragments.......cccccmrunsnmmnmmssssnsnmsssssssssssssssssesssssssssssssssssssssssnsssssssnnnnss 305
Introduction t0 Fragments..........ccccinininsr e 305
Book Title and Description, @ Fragments DEmOccucevrenernsmsnsesnnssssssse s sessesenns 311
Fragments Demo, DYNAMIC........c.ccvcvierieriniinne e r s see s s se s e s s s ss e sae s 337
Chapter SUMMAIY ... e e s e 341

Chapter 15: Running in the Background..........ccoeemmmmmmmmnmsssssssssssnsssmssssssssssssssssnnes 343
5 (o 00 =T) OO 344
LILLLE © 1T o 344
Threads and RUNNADIES ... 349
Using the HANAIEr ClaSS.........cuccvvererrinerinsesrnesessse s ss e s ssse s s e ssssssesnnns 354
[- T S 357
ANKO’S UOASYNC......eierueriiiesirese e s e e st b e b e s s b b s s b b e e e e Re b e e e e naenae s 360
A Real-World EXAMPIEcccereriirire e rser e s s e s sn e s s sn s s s s s sne s s 363
(1 10 (T T 1 O 371

Chapter 16: DeDUGQINGcvsurssssasssasssnssssssasssasssssssnssssssnsssnsssnsssnssssssnsssnsssnsssnsnnss 373
B3 L1 t2 V. = (0] 373
RUNTIME EITOFS.....ciitiiiciini st s s 377
00 = 0] OSSP 382

Walking Through Code.........curirirmrerininisisiiisssssssssss s 385
Other NOTEScoieiiciri 387
Chapter SUMMANY ... e sr s e nr s 388

Chapter 17: SharedPreferenCes......ccccruussemmmsssssnnsmsssssnnssssssssnsssssssnnsssssssnnssssssnnnnss 389
Sharing Data BetWeen ACHIVITIEScucvivrerierrrerrere s sere s s e s sae e s e snesnes 398
ChapLer SUMMANYccoeeceereree e e ne e 406

Chapter 18: Internal Storagecccuunmmmmmmmmmnmmmsssssssssnmmmeessssssss s 407
Overview Of File STOrage........cucvvenrinernesinesese s s 407

Internal and External STOrage..........c.covnnnn s 408
L2 T3 T D1 (T (0] OSSPSR 409

TABLE OF CONTENTS

How to Work with Internal ST0ragecceevrevrrrrvniernsnsneneses s ssssessessesssssssessessessssessessens 409
(TG 1T 1 T T 424
Chapter 19: BroadcastReCeIVerScciuussssmmmmsssssnnsmsssssnnnssssssnnsssssssnnnsssssnnnssssssnnnnss 425
Introduction to BroadCastReCEIVErS..........ccuriiiinnn s 425
System Broadcast vs. Custom BroadCastccveeveverrnierenennnsesenessssessessessssessessesssssssessesses 426
Manifest Registration vs. Context RegiStration...........cocorerreernscnnsescree e 427
Basics 0f BroadCastRECEIVENS........c.cuuiirrmriissss s 430
Implicit vs. Explicit Broadcast ACtIONSc.ccoveviririnn s 432
Demo App: Custom BroadCast..........cccuuvvnirinnninnnenn s sesses s sessesesssssssessessessssessesnens 433
Demo App: System BroadCast..........couvrvnninnininenn s s snens 440
OthEr NOTES ...t 443
Chapter SUMMAIY ... e e s e 444
Chapter 20: App Distributionccccmmmmmmrnnmmnssssssssmnssss s —————————— 445
Preparing the App fOr REIEASEccevcerriereninerie e 446
Prepare Materials and Assets for Release.........ccvvvrvrernnnnniene s sessennes 446
Configure the App TOr REIEASE........ccccvvereriiiriene s s 447

Build a Release-Ready AppliCation.........c.covvvvrennnnsnie s s sessessesnes 448

e LT R T (=AY] oSSR 452
Chapter SUMMAIY ... e e s e 456
INA@X...ciiiisnmnnrssssnnnnsssssnnnssssssnnnssssssnnssnssssnnnsnssssnnnsnsssnnnnsnsssnnnnsnsssnnnnsnsssnnnnnnsssnnnnnnnss 459

xi

About the Author

Ted Hagos is the CTO and Data Protection Officer of RenditionDigital International, a
software development company based out of Dublin, Ireland. Before he joined RDI, he
had various software development roles and also spent time as trainer at IBM Advanced
Career Education, Ateneo ITI, and Asia Pacific College. He spent many years in software
development dating back to Turbo C, Clipper, dBase IV, and Visual Basic. Eventually, he
found Java and spent many years there. Nowadays, he’s busy with full-stack JavaScript
and Android.

xiii

About the Technical Reviewers

Massimo Nardone has more than 24 years of experience
in Security, Web/Mobile development, Cloud, and IT
Architecture. His true IT passions are Security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years.
He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer,
Research Engineer, Chief Security Architect, Information
Security Manager, PCI/SCADA Auditor and Senior Lead IT Security/Cloud/SCADA
Architect for many years.

Technical skills include: Security, Android, Cloud, Java, MySQL, Drupal, Cobol, Perl,
Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj,
and he is a member of ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and has
coauthored Pro JPA in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8 (Apress, 2018),
and Pro Android Games (Apress, 2015).

ABOUT THE TECHNICAL REVIEWERS

Val Okafor is a software architect with expertise in Android
development and resides in sunny San Diego, California. He
has over 12 years of industry experience and has worked for
corporations such as Sony Electronics, The Home Depot,
San Diego County, and American Council on Exercise. Val
earned his BSc in IT from National University, San Diego and
his Masters in Software Engineering from Regis University,
Colorado. He is the creator and principal engineer of Pronto
line of mobile apps including Pronto Diary, Pronto Invoice,
and Pronto Quotes.

His passion for software development goes beyond
his skill and training; he also enjoys sharing his knowledge with other developers. He
has taught Android development to over 5,000 students through Udemy, and his blog
valokafor.com is considered an essential reading for Android developers. Val was also
recently named among the first cohort of Realm MVP program because of his active
participation in the Realm database community.

Acknowledgments

To Stephanie and Adrianne, for bearing with me for the past 9 months while I wrote this
book. My thanks and my love.

To Mark Powers, for his understanding when I missed some of the writing deadlines
and for keeping the schedule straight.

To Steve Anglin, for bringing me to Apress.

To everyone who made this book possible, Thank you. It truly feels great to hold
one’s printed book in one’s hands. It’s even more awesome the second time around.

Xvii

Introduction

Welcome to the Kotlin edition of Learn Android Studio 3, This book will help you get
started in your programming journey with the little green robot. You already bought
the book, so you don’t need to be convinced that programming for the mobile platform
offers a lot of opportunity for software developers. Thank you for buying it, by the way.

Who This Book Is For

The book is aimed at beginning Android programmers, but it isn’t for people who are
completely new to programming. Ideally, you already are a Java programmer trying to
get your feet wet in Android, and you wanna try the Kotlin language (coz all your dev
friends told you it was cool). But in case you're not a Java developer or you don’t have
Android programming experience, don’t sweat it. The book is friendly enough—I tried
hard to write it that way—and approachable enough such that anyone with a passing
knowledge of either C#, JavaScript, C, or C++ will be able to follow the code samples and
the concepts presented in this book.

What’s Different in the Kotlin Edition

All the code examples and the demo projects are mostly new. They're not a plain Kotlin
port of the first edition’s examples. I've also added new chapters; here they are:

¢ Collections

e Generics

o Higher Order Functions
e Broadcast Receivers

Some chapters in the first edition have been split into two or more chapters. I

”n

split them so that I can treat the subjects with more depth—for example, “Intents,

” u

“SharedPreferences,” “Internal Storage,” and “Fragments.”

Xix

INTRODUCTION

Organization and Treatment

The book is divided into two major parts. Chapters 1 to 7 are all about the Kotlin
language, and Chapters 8 to 20 are about Android programming.

While you can use it as a reference book, I didn’t write it that way. It's not meant as
a substitute for the docs in https://kotlinglang.org or the Android developer guides
https://developer.android.com. It’s also not meant to be a “Definitive Guide” type of
book where you can spend hours or days exploring every nook and cranny. Quite the
contrary—I wanted it to be a “get started quick” type of book, like a recipe book, but
without losing our grasp on the fundamental concepts.

Android and Kotlin are big subjects; I don’t think there exists a “single best way” to
present the materials for either of these two. So, I made certain bets on the instructional
design. Here they are:

o Bite-sized concepts. The troublesome topics are broken down into
a series of small steps so that you can solve them in isolation. When
you can solve small problems, it gives you confidence to solve bigger
ones. This approach helps a beginning programmer to grow in the
direction of skill.

o Conciseness. I tried to keep each chapter as short as possible, so you
can finish it in one sitting. Originally, I wanted each chapter to be a
“20-minute read”; that was too ambitious, so, I gave up on it—but
still, the chapters are short.

o Multiple Learning Curves. The book is about three topics: Android
Studio, Android Programming, and Kotlin. Although Kotlin and
Android programming may seem to have dedicated chapters for
them, techniques on how to use Android Studio (and IntelliJ) are
scattered throughout the book.

o Balance between concept and code. Admittedly, the treatment is
biased (just a little bit) toward code. Programming is not a spectator
sport; we learn by doing. Nonetheless, in every chapter, I tried to
explain what the fundamental concepts are, what we're trying to
do, what problems are we trying to solve, how we might solve those
problems, and what does the solution look like—in code. Almost all
of the chapters have one or more demo projects in them.

https://kotlinglang.org/
https://developer.android.com/

INTRODUCTION

o Verbose and complete code presentations. Sometimes (most of
the time actually), I presented the full source example, but only
one or two lines of it are relevant. I erred on the side of caution
(and verbosity) because it’s easier for a beginner to understand the
relevant codes if he can see it in relation to the whole program. So,
you don’t have to worry about, “Where do I put this code? Does this
go inside function main or inside a class?”

« Immediacy and coherence. Like I said, I wanted this to be a “get
started quick” or a “recipe” kind of book. So, instead of covering
everything, including the kitchen sink, I chose to cover some topics
and ignore others. I chose use-cases whose complexities are easy or
moderate and covered topics that are only relevant for those use-
cases. For example, in the BroadcastReceiver and Intent chapters,

I didn’t cover LocalBroadcastManager and PendingIntent. Cool as
these topics are, they weren’t relevant for the use-cases I chose. If I
added more use-cases or demo-projects, that would have stretched
the length of the chapter. It’s a balancing act, you see.

o Independent demo projects. I designed them as such so that the
demo project could be started (and followed) from scratch. There is
no “putting it all together” project in the end. This way, the book can
be conveniently used as a reference. If you pick a topic, it’s almost
self-contained, including the demo project.

In the end, I can only hope that the bets I made will pay off and that you will walk
away as a slightly better programmer after reading the book.

Chapter Overviews

Chapter 1: “Getting into Kotlin” introduces the language. It tells you how to setup Kotlin
in various ways on the three major platforms: macOS, Linux, and Windows. It also
contains instructions on how to create, configure, and run a project in IntelliJ]—this is the
IDE I used to create all the Kotlin code samples for Chapters 1 through 7.

Chapter 2: “Kotlin Basics” dives into the language fundamentals of Kotlin. You'll
learn the basic building blocks of a Kotlin program (e.g., Strings, control structures,

xxi

INTRODUCTION

exception handling, basic data types). You'll also see some of Kotlin’s features that are
very different from Java, like its treatment of nullable and non-nullable types.

Chapter 3: “Functions.” There’s a whole chapter dedicated to functions because
Kotlin’s functions have something new up their sleeves. It has all the trimmings of a
modern language like default and named parameters, infix functions, and operators;
and with Kotlin, we can also create extension functions. Extension functions lets you add
behavior to an existing class, without inheriting from it and without changing its source.

Chapter 4: “Working with Types.” This chapter deals with object-oriented topics.
You'll learn how Kotlin treats interfaces, classes, and access modifiers. We’ll also learn
about the new data classes in Kotlin. It also talks about object declarations—it’s the
replacement for Java'’s static keyword.

Chapter 5: “Lambdas and Higher Order Functions.” Now we go to Kotlins'’s
functional programming capabilities. It discusses how to create and use higher-order
functions, lambdas, and closures.

Chapter 6: “Collections” walks through the classic collection classes of Java and how
to use them in Kotlin.

Chapter 7: “Generics.” Using generics in Kotlin isn’t that much different from Java.

If generics is old hat for you, then most of this chapter will be a review. But try to read
through it still because it talks about reified generics, which Java doesn’t have.

Chapter 8: “Android Studio Introduction and Setup.” This chapter talks a bit about
Android’s history, its technical make-up, and the OS. It also walks you through the
installation and setup of Android Studio.

Chapter 9: “Getting Started” gets you grounded on the fundamental concepts about
Android programming. It talks about components, what they are, how they are organized,
and how they come together in an Android app. In this chapter, you'll learn how the basic
workflow of an Android project—how to create a project and run it on an emulator

Chapter 10: “Activities and Layouts.” Here, we'll learn how to build a UL Activity,
Layout, and View objects are the building blocks for an Android UL

Chapter 11: “Event Handling.” You'll learn how to react to user-generated events like
clicks and longclicks. We'll use some concepts that we learned in Chapters 4 and 5 (inner
objects and lambdas) to help us write more compact and succinct event-handling code.

Chapter 12: “Intents.” This chapter reviews some fundamental concepts on Android
programming, specifically the concept of components, which dovetails to the topic of
Intents. You'll learn how to use Intents to launch another Activity and pass data in-and-
around Activities.

xxii

INTRODUCTION

Chapter 13: “Themes and Menus.” This is a short chapter. You'll learn how to add
styles/themes to your app. We'll also work with some menus and the ActionBar.

Chapter 14: “Fragments.” You'll learn how to use Android Fragments as a more
granular composition unit for UL. We'll also see how to use Fragments to address
changes in device orientation.

Chapter 15: “Running in the Background.” Any non-trivial app will do something
substantial like read from a file, write to a file, download something from the network,
etc. These activities will likely take more than 16 ms to execute (you'll learn why 16 ms
should be the upper limit and why you should not exceed it). When that happens, the
user will see and feel “jank.” This chapter discusses the various ways on how to run our
code in a background thread.

Chapter 16: “Debugging” shows some of the things you can do to debug your apps
in Android Studio 3. It goes through a list of the kinds of errors you might encounter
while coding and what you can do in Android Studio to respond them.

Chapter 17: “SharedPreferences.” When you need to save simple data, you can use
the SharedPreferences API. This chapter walks you through detailed examples on how to
do that.

Chapter 18: “Internal Storage.” Just like in SharedPreferences, you can also store data
using the Internal Storage API of Android. This chapter discusses internal and external
storage.

Chapter 19: “BroadcastReceivers.” Android has a way to make highly decoupled
components talk to each other. This chapter talks about how BroadcastReceivers can
facilitate messaging for Android components.

Chapter 20: “App Distribution.” When you're ready to distribute your app, you’ll
need to sign it and list it in a marketplace like Google Play. This chapter walks you
through the steps on how to do it.

How to Get the Most From This Book

I designed it like a workbook; it’s best to use it like that. Most chapters have a “Demo
Project” section. There are details on how to create a project—for example, what name
should you use for the project, the minimum SDK to target, etc. The reason I included
this information is so you can follow the coding exercise.

xxiii

INTRODUCTION

I used three kinds of blocks in the book: Examples, Listings, and Figures.
o Examples are commands that you would type in a terminal window.

o Listings contains program or code listing; it's something that you
would type in a program file.

o Figures could be screenshots or diagrams. Some of the screenshots
are annotated to point out a sequence of steps and how to do them
on the IDE. I used Android Studio 3.1 and IntelliJ 2018.2 for the
examples in this book; it’s possible that by the time you read this
book, you'll be using a different or higher version of these tools.

Programmers (mostly) learn by doing. If you work your way through the demo
projects, I think the lessons will stick better. Remember that coding is like swimming or
driving, you can read as many books as you want on the subjects, but if you don’t go in
the water or behind the wheel, you won’t get anywhere.

Source Code

Source Code for this book can be accessed by clicking the Download Source Code
button at www.apress.com/9781484239063.

XXiv

http://www.apress.com/9781484239063

PART |

The Kotlin Language

CHAPTER 1

Getting into Kotlin

What we’ll cover:
e Anintroduction to the Kotlin language
e How to get Kotlin
e Installing Kotlin on macOS, Windows, and Linux
e Running a Kotlin program in the command line
o (Creating and running a project in Intelli] IDEA

This chapter introduces the Kotlin language and goes into some details on how
to set up a development environment. You will find instructions on how to install
Kotlin on macOS, Windows, and Linux. You'll also find instructions on how to install a
Kotlin environment using just bare-bones command line. Each developer gravitates to
certain kind of setup, and yours truly is not an exception. Here’s the setup that I've used
throughout the book:

o Intelli] 2018 running on macOS (High Sierra). I used this throughout
chapters 1to 7

e Android Studio 3 on macOS (High Siera). I used this for the rest of
the book

You don’t need to follow my exact setup. We've taken pains to ensure that the
instructions in this book works in Linux and Windows just as well as they do in
macOS. Also, when I say Linux, I don’t mean all the distributions of Linux. The fact is,

I tested these codes only in Lubuntu 17. Why? Because that’s the Linux distro that I'm
most familiar with. I believe that most readers of this book (who use Linux) will also be
familiar with this Linux distro (or any of its close cousins).

© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_1

CHAPTER 1 GETTING INTO KOTLIN

Android Studio 3 and Intelli] works on Windows 7, 8, and 10 (32- and 64-bit), but I
only tested the exercises on Windows 10 64-bit—this is the only machine I have access
to; and I believe that most readers who use Windows use this setup as well.

Lastly, let’s discuss the JDK version. At the time of writing, JDK 10 is in early access.
So the choices for JDK version was 8 or 9 (since JDK 7 ended its life sometime in 2015).
I went with 9—no special reason, I think 8 would have worked just as well.

About Kotlin

Kotlin is a new language that targets the Java platform; its programs run on the JVM (Java
Virtual Machine), which puts it in the company of languages like Groovy, Scala, Jython,
and Clojure, to name a few.

Kotlin is from JetBrains, the creators of Intelli], PyCharm, WebStorm, ReSharper, and
other great development tools. In 2011, JetBrains unveiled Kotlin; the following year, they
open-sourced Kotlin under the Apache 2 license. At Google I/0 2017, Google announced
first-class support for Kotlin on the Android platform. If you're wondering where the
name Kotlin came from, it’s the name of an island near St. Petersburg, where most of
the Kotlin team members are located. According to Andrey Breslav of JetBrains, Kotlin
was named after an island, just like Java was named after the Indonesian island of Java.
However, you might remember that the history of the Java language contains references
that it was named after the coffee, rather than the island.

Kotlin has many characteristics and capabilities as a language, and we have the
whole first part of this book to explore those, but here are a few things that makes it

interesting.

o Like Java, it’s object-oriented. So, all those long hours you've
invested in Java’'s OOP and design pattern won'’t go to waste. Kotlin
classes, interfaces, and generics look and behave quite a lot like
those of Java. This is definitely a strength because, unlike other JVM
languages (e.g., Scala), Kotlin doesn’t look too foreign. It doesn’t
alienate Java programmers; instead, it allows them to build on their
strengths.

o Statically and strongly typed. Another area that Kotlin shares with
Java is the type system. It also uses static and strong typing. However,
unlike in Java, you don’t have to always declare the type of the
variable before you use it. Kotlin uses type inference.

CHAPTER 1 GETTING INTO KOTLIN

e Less ceremonious than Java. We don’t (always) have to write a class;
top-level functions are OK. We don’t need to explicitly write getters
and setters for data objects; there are language features in Kotlin,
which allows us to do away with such boiler-plate codes. Also, the
natural way of writing codes in Kotlin prevents us from ever assigning
null to a variable. If you want to explicitly allow a value to be null, you
have to do so in a deliberate way.

« It’s a functional language. Functions are not just a named collection
of statements; you can use them anywhere you might use a variable.
You can pass functions from a parameter input to other functions,
and you can even return functions from other functions. This way
coding allows for a different way of abstraction.

o Interoperability with Java. Kotlin can use Java libraries, and you can
use it from Java programs as well. This lowers the barrier to entry in
Kotlin; the interoperability with Java makes the decision to start a
new project using Kotlin a less daunting enterprise.

There are many reasons to use Kotlin in your next project, but there are also counter-
arguments to it. We won'’t list the pros and cons of why you should or why you shouldn’t
use Kotlin in your next project; but I'll discuss one reason why I would advise you to slow
down and pause before you get all gung-ho about it.

It’s still relatively new. Some people are convinced that it’s approaching its “peak
of inflated expectation” and will soon enter the “trough of disillusionment.” Their main
argument is that if you bet on Kotlin right now, you'll be saddled with learning curve
problems and you’ll be obligated to maintain that codebase—even if Kotlin disappears
in a puff of smoke. In other words, you might carry it as a technical debt.

Kotlin’s adoption will also come at some cost. You'll have to train your team on how
to use it. No matter how experienced your team is, they will definitely lose some speed
along the way—and that’s a project management concern. Also, because Kotlin is new,
there is no “Effective Kotlin” guide post yet, while Java programmers will always have
their “Effective Java.

It will all boil down to your bet. If you bet that Kotlin will go the distance instead of
quietly disappearing in the dark, then the bet would have paid off. If you're wrong about
the bet, then you go down the arduous road of maintaining the codebase of a defunct
language—a technical debt. Either that or you rework it back to Java.

CHAPTER 1 GETTING INTO KOTLIN

Google has officially supported the language in Android Studio, and more and more
developers are getting on the bandwagon. Adoption is growing. These are good signs
that Kotlin won’t go down quietly and might actually go the distance. Plus, it’s a cool

language.

Note “Peak of inflated expectation” and “Trough of disillusionment” are part
of the the “Hype cycle.” The hype cycle is a branded graphical presentation
developed and used by the American research, advisory, and information
technology firm Gartner, for representing the maturity, adoption, and social
application of specific technologies. You can read more about it at https://
gtnr.it/cycleothype.

Let’s continue and build ourselves a dev environment.

Installing the Java SDK

Before we can use Kotlin, we need to install the JDK. If you already have an existing
setup of the Java development kit, you can skip this section and jump to the next one
(Installing Kotlin). The JDK installer is available for Windows, Linux, and macOS. You
can download the currently stable version from the Oracle site, http://bit.ly/
javagdownload.'

Figure 1-1 shows the download page for Oracle JDK. Choose the installer appropriate
for your platform, then click the “Accept License Agreement” to proceed.

'Available from http://www.oracle.com/technetwork/java/javase/downloads/jdk9-
downloads-3848520.html

6

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Gartner
https://en.wikipedia.org/wiki/Technology
https://gtnr.it/cycleofhype
https://gtnr.it/cycleofhype
http://bit.ly/java9download
http://bit.ly/java9download
http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html

CHAPTER 1 GETTING INTO KOTLIN

&« c @ www.oracle.com/technetwork/fjavafjavase/downloads/jdk9-downloads-384... 1t] v A g b &8 1
5] o

ORACLE — Menu Q o Signinv (@ CountryRegion v @]

Oracle Technology Network / Java / Java SE [/ Dr.\'.mlua&i

Java SE Civerview D 1 || € ity || Technologi Training Java SDKs and Tor
Java EE g &= B : g & Java SE
Java EE and Glassfis|
pinkialia Java SE Development Kit 9 Downloads x
Java SE Advanced & Suite Thank you for downloading this release of the Java™ Pilatform, Standard Edition Development Kit | M
% (JDOK™). The JOK is a di i for building icati and using the =
dJovs Sribhdded Java programming language. # JavaCarg
Java DB 4§ NetBeans IDE
Weo T The JOK includes tools useful for ping and testing prog written in the Java programming joet e
. language and running on the Java platform. & Java Mission Control
Java Card See also:) R =
Java TV 2 tar
= Java Developer Newslelter: From your Oracle account, select Subscriptions, expand &
New to Java Technology, and subscribe to Java. i fﬁ'ﬂ
Commurity » Java Developer Day hands-on workshops (free) and other evenis * %
& Demos and Videos
Java Magazine » Java Magazine -
& Forums
JOK 9.0.1 checksum b
% Java Magazine
& Developer Training
Java SE Development Kit 9.0.1 ki
You must accept the Oracle Binary Code License Agreement for Java SE to download this s
Aftwarg, & Java com

) Decline License Agreement

Product / File o SIze Download
Linux 30499 MB #jdk-9.0.1_linux-x64_bin.rpm
Linux 338.11 MB #jdk-9.0.1_linux-x64_bin.lar.gz
macOS 382.11 MB #jdk-9.0.1_osx-x64_bin.dmg
Windows 37551 MB #jdk-9.0.1_windows-x64_bin exe
Solaris SPARC 206.85MB #jdk-9.0.1_solaris-sparcvd_bin.tar.gz

Figure 1-1. Oracle JDK download page

Installing on mac0S

To install the JDK on macOS, double-click the downloaded dmg file and follow the
prompts. The installer takes care of updating the system path, so you don’t need to
perform any further action after the installation.

When you're done with the installation, you can test if the JDK has been installed by
launching the “Terminal.app” and trying out the Java command (see Listing 1-1).

Listing 1-1. Test the JDK tools on a macOS Terminal

$ java -version
$ javac -version

You'll know that you've installed the JDK without problems if the terminal outputs
the version of java and javac as shown in Figure 1-2.

CHAPTER 1 GETTING INTO KOTLIN

ted in ~
java -version
java version "9.0.1"
Java(TM) SE Runtime Environment (build 9.0.1+11)
Java HotSpot(TM) 64-Bit Server W (build 9.0.1+11, mixed mode)

ted in ~
javac -version
javac 9.0.1

ted in ~
Figure 1-2. java and javac on the Terminal.app

Installing on Windows 10

You can install Android Studio 3 in Windows 7/8/10 (32- and 64-bit); but for the purpose
of this book, I only used Windows 10 64-bit.

To install the JDK on Windows, double-click the downloaded zipped file, and follow the
prompts. Unlike in macOS, you must perform extra configuration after the setup. You need
to (1) include java/bin in your system path and (2) include a CLASSPATH definition in the
Environment Variables of Windows. Table 1-1 walks you through the steps on how to do this.

Table 1-1. DK Configuration in Windows

1 Include JAVA_HOME/bin 1. Click Start » Control Panel » System
to the system path 2. Click Advanced > Environment Variables. There are two boxes

for variables, the upper box reads “User variables” and the lower
box reads “System variables,” the system PATH will be in the
“System variables” box.

3. Add the location of the bin folder to the system PATH variable.

4. It is typical for the PATH variable to look like this: C: \WINDOWS\
system32;C:\WINDOWS;C: \Program Files\Java\jdk-9\bin;

2 Create a CLASSPATH While the Environment Variables window is still open, click the
definition in Windows “New” button on the “User variables” section. Another dialog window
Environment Variables will pop up with two text boxes that will allow you to add a new

variable. Use the values below to populate the textboxes.

1. Name » CLASSPATH

2.Value » C:\WINDOWS\system32;C:\WINDOWS;C:\Program
Files\Java\jdk-9\jre\lib\rt.jar;

CHAPTER 1 GETTING INTO KOTLIN

Close the Environment Variables window and get a cmd window so we can test
whether our changes have taken effect. When the cmd window is open, type the
commands as shown in Listing 1-2.

Listing 1-2. Test the JDK tools on a Windows cmd shell

C:\Users\yourname>java -version
C:\Users\yourname>javac -version

If the cmd shell shows you the version of java and javac, then you have successfully
installed and configured the JDK. If, on the other hand, you saw an error message (e.g.,
“Bad command or file name”), it means that JAVA_HOME\bin is still not part of the
system path. You should revisit Table 1-1 and recheck your entries, then retest.

Installing on Linux

If you are a Linux user, you may have seen the tar ball and rpm options on the download,
you may use that and install it like you would install any other software on your

Linux platform or you may install the JDK from the repositories (see Listing 1-3). This
instruction applies to Debian and its derivatives (e.g., Ubuntu, Mint, etc.).

Listing 1-3. Installing the JDK in Ubuntu Using a PPA

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update

sudo apt-get install oracle-java9-installer
sudo update-alternatives --config java

When the download finishes, you can test the installation by trying out the java
and javac tools from the command line (see Listing 1-4). Open your favorite terminal
emulator (e.g., xterm, terminator, gnome-terminal, Ixterminal, etc.).

Listing 1-4. Test the JDK Tools on Linux

$ java -version
$ javac -version

If the install was successful, you should be able to see the version of java and javac in
your system. Once the JDK is up and running, we can now get Kotlin.

CHAPTER 1 GETTING INTO KOTLIN

Installing Kotlin

There are a couple of ways to get started in Kotlin coding. You can use the online IDE,
which is the quickest because it won’t require you to install anything. You may also try to
download an IDE that has a plug-in for Kotlin (e.g., Intelli], Android Studio, or Eclipse).
Finally, you can download the command line tools for Kotlin. If you don’t want to install
a full-blown IDE and simply use your trusty favorite editor, you can certainly do that with
the command line tools. We won’t explore each and every one of these options, but we’ll
take a look at the command line tools and IntelliJ.

Note This book is about Android Studio, so you might be wondering why we
won’t use Android Studio to try out Kotlin. That’s because this part of the book

is about Kotlin only and not about Android programming (yet). | thought it best to
focus more on the language and not be hampered by Android-specific topics when
we do some coding exercises. Android Studio is based on IntelliJ anyway, so any
IDE techniques we learn in this part of the book should carry over nicely when we
get to part 2.

Installing the Command Line Tools

Even if you opt for the command line tools, there are a couple of choices for installation
method. We can install it by (1) downloading a zipped file; (2) using SDKMAN if your OS
and tooling supports it; or (3) using HomeBrew or MacPorts if you are on macOS. You
only need to pick which one of these methods you are most comfortable with and go
with that.

HomeBrew or MacPort

If you are on macOS and already using either brew or port, see either Listing 1-5 or 1-6
for the terminal commands to get Kotlin.

Listing 1-5. Install Kotlin Using HomeBrew

$ brew update
$ brew install kotlin

10

CHAPTER 1 GETTING INTO KOTLIN

Listing 1-6. Install Kotlin Using MacPorts

$ sudo port install kotlin

Using a Zipped Installer

If you go to the Kotlin website, http://kotlinglang.org then “learn” » “tutorials” »
“getting started” » “working with the command line compiler’, you'll find a web page?
that might look like the one shown in Figure 1-3. The zipped installer can be downloaded

by following the link “GitHub releases” (also shown in Figure 1-3).

« C {7 | & Secure | https://kotlinlang.org/docs/tutorials/command-line.html | @ (E. v A @ & 1
Kotlin
Reference Tutorials Books More resources
 Getting Started Working with the Command Line Compiler ¢ srue
- Getting Started with L3
Intelli] IDEA
- Getting Started with This tutorial walks us through creating a Hello World application using the command line compiler.,
Eclipse
- Working with the
Command Line Compiler Downloading the compiler
= Working with Build Tools Every release ships with a standalone version of the compiler. We can download it ffpm GitHub Releases. The
- Koans latest release is 1.2.10.
* Android

Manual Install

* Java Interop
Unzip the standalone compiler into a directory and optionally add the bin directory to the system path. The

¥ JavaScript bin directory contains the scripts needed to compile and run Kotlin on Windows, 05 X and Linux.

Figure 1-3. Kotlin command line compiler page

The link should take you to the GitHub page of JetBrains/Kotlin® (Figure 1-4). At the
time of writing, Kotlin was on version 1.2.10; it might be a different version by the time
you are reading this, but just download the latest stable version.

*Working with the command line compiler: https://kotlinlang.org/docs/tutorials/
command-line.html

%JetBrains/Kotlin GitHub page: https://github.com/JetBrains/kotlin/releases/tag/v1.2.10

11

http://kotlinglang.org
https://kotlinlang.org/docs/tutorials/command-line.html
https://kotlinlang.org/docs/tutorials/command-line.html
https://github.com/JetBrains/kotlin/releases/tag/v1.2.10

CHAPTER 1 GETTING INTO KOTLIN

C (O & GitHub, Inc. [US] | https://github.com/JetBrains/kotlin/releases/tag/v1.2.10 # @O~V A G & I
O This repository Pull requests Issues Marketplace Explore

| JetBrains [kotlin © Watch~= 1,060 W Star 20,016 YFork 2,183

<> Code Pull requests 60 Insights

1.2.10

'goodwlnnk released this 23 days ago - 1224 commits to master since this release

©v1.2.10
- 4b551b4

Assets

[kotlin-compiler-1.2.10.zip 31.5 MB

[) source code (zip)

[} Source code (tar.gz)

Figure 1-4. GitHub page for the installer zipped file

When the download finishes, unzip the installer file and put it somewhere in your
system—preferably, a directory where you have read, write, and execute privileges. The
file should unzip to a folder named “kotlinc” Next thing to do is to add the kotlinc/bin
folder to the system path variable. The following sections will demonstrate how to do
this on macOS, Linux, and Windows.

mac0S and Linux

Copy the downloaded zipped file to your home directory and unzip it there. Listing 1-7
shows the command.

Listing 1-7. Unzip Kotlin Installer

$ cd ~
$ unzip ~/kotlin-compiler-1.2.10.zip

Note The unzip command is available in macOS by default, but for Linux
systems, you might have to get it from the repositories first. Listing 1-8 shows the
command on how to pull it from the repositories.

12

CHAPTER 1 GETTING INTO KOTLIN
Listing 1-8. Getting the Unzip Tool

$ sudo apt get update
$ sudo apt-get install unzip

The installer file should unzip to a folder named “kotlinc’, as shown in Figure 1-5.

ted in ~
— unzip kotlin-compiler-1.2.10.zip
Archive: kotlin-compiler-1.2.10.zip

creating: kotlinc/

creating: kotlinc/bin/

creating: kotlinc/1ib/

creating: kotlinc/license/

creating: kotlinc/license/third_party/

creating: kotlinc/license/third_party/testdata/
inflating: kotlinc/build.txt

inflating: kotlinc/lib/allopen-compiler-plugin.jar
inflating: kotlinc/lib/android-extensions-compiler.jar
inflating: kotlinc/lib/android-extensions-runtime.jar
inflating: kotlinc/lib/annotations-13.0.jar
inflating: kotlinc/lib/kotlin-annotation-processing.jar
inflating: kotlinc/lib/kotlin-annotations-android.jar
inflating: kotlinc/1ib/kotlin-annotations-jvm-sources.jar
inflating: kotlinc/lib/kotlin-annotations-jvm.jar
inflating: kotlinc/lib/kotlin-ant.jar

inflating: kotlinc/lib/kotlin-compiler.jar
inflating: kotlinc/lib/kotlin-daemon-client.jar
inflating: kotlinc/lib/kotlin-jslib-sources.jar

Figure 1-5. Unzipping the Kotlin installer

Before we can use the command line tools, we need to add the “kotlinc/bin” folder
to the system path variable as shown in Listing 1-9.

Listing 1-9. Adding kotlinc/bin to the System Path
$ export PATH=~/kotlinc/bin:$PATH

Press ENTER and the kotlinc command should now work. You can add the line
shown in Listing 1-9 to your login script so that the Kotlin tools are available every time

you open a terminal window.

13

CHAPTER 1 GETTING INTO KOTLIN

Windows 10

Copy the Kotlin installer zipped file to your home directory and unzip it there. Use your
favorite archive tool for unzipping. It should unzip to the following folder: C: \Users\
yourname\kotlinc. Inside the kotlinc folder is the bin folder, which contains the various
script and batch files that we need to use for compilation. This bin folder is what we need
to add the Windows system path.

To add the kotlinc\bin folder to the system path, click the Windows Start button
» Control Panel » System. Once the System dialog opens, click Advanced »
Environment Variables. There are two boxes for variables; the upper box reads “User
variables” and the lower box reads “System variables” The system PATH will be in the
“System variables” box. Append kotlinc\bin the PATH variable. Close the system dialog
box to save your changes.

Using SDKMAN

SDKMAN can be used on macOS, Linux, Cygwin (Windows), FreeBSD, and other UNIX
systems. If you have this already as part of your toolchain, you can use it to get the Kotlin
compiler. If you don’t have SDKMAN yet, it is simple to install. See Listing 1-10 to install
SDKMAN.

Important Before you can install SDKMAN from the command line, you will need
to get the curl tool. If you don’t have it yet, use your platforms package manager
to get curl.

Listing 1-10. Installing SDKMAN From the Command Line
$ curl -s "https://get.sdkman.io" | bash

Follow the on-screen instructions to complete the installation. You will need to close
the current terminal window and launch another one because the SDKMAN installer
made changes to the login script. In order for those changes to take effect, you will need to
open a new terminal window. When that’s done, we can now install kotlin. See Listing 1-11
for the installation command.

14

CHAPTER 1 GETTING INTO KOTLIN
Listing 1-11. Installing Kotlin via SDKMAN

$ sdk install kotlin

Coding With the Command Line Tools

Whichever way you chose to install the command line tools, by now you should already
have a working Kotlin compiler. To try it out, get a terminal window and enter the
command kotlinc. This will change your terminal prompt to a triple chevron (greater
than sign); see Listing 1-12.

Listing 1-12. Kotlin REPL

$ kotlinc

Welcome to Kotlin version 1.2.10 (JRE 9.0.1+11)
Type :help for help, :quit for quit

>>>

This is the Kotlin REPL—short for Read, Eval, Print, Loop. It executes Kotlin
commands interactively and shows you the results immediately. If you have used the
console feature of modern browsers to enter JavaScript commands before, this is very
similar to that. The REPL is a good way to learn the language interactively. It’s also very
useful during development because it allows you to try out expressions and statements
without having to go through the full write-compile-run cycle. You might want to try out
a couple of expressions and statements (see Listing 1-13).

Listing 1-13. Simple Expressions

>> 5 * 3
15
>>> println("Hello there")
Hello there
for (i in 1. . 3) {
. .println(i)
-}

>>>
15

CHAPTER 1 GETTING INTO KOTLIN

The REPL is very useful for trying out statements and even short snippets like the
one shown in Listing 1-13, but if you need to try out longer programs, it will be more
convenient to write it in a program file, compile, and run it, as you would Java programs.
Let’s try to see what that looks like in Kotlin.

First, create a file and name it “hello.kt”—Kotlin source files have an extension of “kt”.
The contents of hello.kt is shown in Listing 1-14.

Listing 1-14. hello.kt

fun main(args: Array<String>) {
print("Hello")
}

Kotlin has similarities with Java, so Listing 1-14 may look familiar, but you will also
quickly notice some obvious things, so let’s address those right now.

o There is no class construct. Kotlin doesn’t need a class to execute
function. The function, as shown in Listing 1-14, is known as a top-
level function; the main function is special because, like the public
static void main() ofJava, the fun main() of Kotlin is the entry
point of the application. The runtime will look for this function when
you run a Kotlin file.

o Function main has a slight different syntax. Functions are defined
with the keyword fun. The type declaration comes after the identifier
(args); you'll get used to it. Also, Kotlin doesn’t have a special syntax
to define an array. Arrays are just types in Kotlin.

o Function main has no return value. Actually, it has, we just didn’t
write it in the example. The default return value for a function is
Unit; it’s like void in Java.

o There is no semi-colon. These are not necessary anymore.
The next step is to compile and run our source file. Listing 1-15 shows the commands

to manage this.

Listing 1-15. Compile and Run hello.kt

kotlin hello.kt -include-runtime -d hello.jar
java -jar hello.jar

16

CHAPTER 1 GETTING INTO KOTLIN

If you managed to type everything correctly as shown in the earlier listings and
examples, you should see the “Hello World” message in your screen.

If you feel that command-line tools are not to your liking and you'd rather use a more
feature-rich programming environment, you can try other IDEs like Eclipse, Intelli], or
Android Studio 3 (AS3). We'll cover the installation and use of both IntelliJ and AS3 in
this book. The next section will walk you through the setup of Intelli] IDEA.

Installing IntelliJ

JetBrains created Kotlin, so as you would imagine it has excellent support for it. Android
Studio is based on JetBrain’s Intelli] IDEA CE (Community Edition); however, Android
Studio is free and OSS and is maintained by Google, not JetBrains.

We could have used AS3 even for the first part of this book; however, doing that would
require that we deal with both Kotlin and Android components at the same time. I chose
not to do it and instead focus solely on Kotlin. AS3 is based on Intelli] IDEA anyway, so
whatever learnings and skills we’ll acquire on Intelli] will commute nicely to AS3.

You can download Intellij] IDEA from the JetBrains website (http://www.jetbrains.
com) then come up to tools and come down to Intelli] IDEA (see Figure 1-6). It will take
you to a page where you can choose the appropriate installer for your platform. You
will also be able to choose if you want to download the “Ultimate” or the “Community”
edition. We will download the community edition.

« C {7 | & JetBrains s.r.o. [CZ] | https://www.jetbrains.com o (G g A & Y o i

Tools Languages Resources

| T Ji TUL) L 2 N
& AppCode ReSharper TeamCity PyCharm Edu
CLion Rider Upsource Kotlin Edu
Find a tool for DataGrip ReSharper C++ YouTrack
ou
Y GoLand dotCover Hub
Whichever g IntelliJ IDEA g dotMemory
technologies you
use there's a PhpStorm dotPeek
JetBrains tool to PyCharm dotTrace
match Ride!
nd a toc RubyMine
WebStorm

Figure 1-6. Intelli] IDEA download page

17

http://www.jetbrains.com
http://www.jetbrains.com

CHAPTER 1 GETTING INTO KOTLIN

If you are on Windows, you need to:

1. Double-click the idealC.exe that you downloaded

2. Follow the on-screen prompts to complete the installation
For macOS, do the following:

1. Double-click the idealC.dmg that you downloaded

2. Copy Intelli] IDEA to the Applications folder

3. Run Intelli] IDEA.
For Linux, the installation instruction is as follows:

1. Copy the tar.gz installer file into a directory where you have read,
write, and execute privileges; for our purposes, we'll copy it into
the home folder (see Listing 1-16).

Listing 1-16. Copy Intelli] Installer to Your Home Folder

$ cd
$ cp ~/Downloads/ideaIC-2017.3.2.tar.gz .

2. Unpack the idealC.tar.gz, as shown in Listing 1-17.

Listing 1-17. Untar the Installer

tar -xzvf idealC.tar.gz

3. Add the idealC/bin to the system path, as shown in Listing 1-18.

Listing 1-18. Add idealC/bin to the System Path

$ export PATH=~/idealC-2017.3.2/bin:$PATH:.

4. Start Intelli] IDEA by running idea.sh script, as shown in Listing 1-19.

Listing 1-19. Startidea.sh

$ sh idea.sh

18

CHAPTER 1 GETTING INTO KOTLIN

Creating a Project

Launch Intelli] if you haven’t done so yet. It starts with a welcome screen, as shown in
Figure 1-7. To get started, let’s create a project.

[N Welcome to InteIEJ IDEA

IntelliJ IDEA
¢ Create New Project
¥ Import Project

Open

¥ Check out from Version Control ~

#* Configure ~ Get Help ~

Figure 1-7. Welcome to Intell] IDEA

19

CHAPTER 1 GETTING INTO KOTLIN

Clicking the “Create New Project” takes us to the “New Project” window (shown in
Figure 1-8). Choose “Kotlin/JVM” and then click the “Next” button.

® 0 New Project b

¥5 Java Project SDK: - java version "9.0.1" (/Libra va/JavaVirtualM s/idk-9.0.1.jdk/C§ell | New...
& Java FX

‘& Android
IntelliJ Platform Plugin

Additional Libraries and Frameworks:

& Groovy

10 arveny E Kotlin/Js r
(2 Gradle (Kotlin DSL)

' Gradle

& Groovy
7) Griffon

K Kotlin

-] Empt; Prﬁ'lect . - R " Dt oot

Figure 1-8. New Kotlin/JVM Project

This leads us to the second window of the “New Project” wizard where we need to
enter some information, but most of them are pre-filled with default entries already,
and we can simply accept the defaults. We do need to provide the “Project Name’, unless
you'd like to name your project “untitled” (which is the default value of the Project Name
field—probably not a good idea).

In Figure 1-9, I used “kotlinproject” as the Project Name. I didn’t change the default
project location, which is “IdeaProjects” under the home folder. I also did not make
any changes to the “Project SDK’, which was detected by Intelli] during the time of
installation. To finish the project creation wizard, click the “Finish” button.

20

CHAPTER 1

[] [] New Project
Project name: kotlinproject I

Project location: = ~fideaProjects/kotlinproject

Project SDK: +, java version "9.0.1" yrary/Java/JavaVirtualMachines/jdk-9.0.1.jdk/Contents/Hom
Kotlin runtime
Use library: |||l KotlinJavaRuntime

Project level library KotlinJavaRuntime with 3 files will be created

» More Settings

? Cancel

Figure 1-9. New Project

GETTING INTO KOTLIN

Ed | Create...

Configure...

Previous

You'll be shown the “Tip of the Day” window (Figure 1-10) the very first time you

launch Intelli]. Tips are very useful in learning the capabilities of the IDE, but I prefer

that they show up only when I summon them and not really pop up every time I launch

the IDE. You can disable the “Tip of the Day” window showing up during launch time by

unchecking the “Show tips on startup.” Let’s close it for now.

® 0 Tip of the Day

Welcome to Intelli] IDEA 2017

You can quickly get familiar with the main features of the IDE by reading these tips. You may try out the
features described in the tips while this dialog stays open on the screen. If you close the dialog, you can

always get back to it from the Help | Tip of the Day main menu item.

Show tips on startup Close Previous Tip

Figure 1-10. Tip of the day

21

CHAPTER 1 GETTING INTO KOTLIN

When the tip of the day dialog is dismissed, we can see more fully our newly created
project (Figure 1-11). The left-hand side of the IDE shows the “Project Tool window”; it
doesn’t have much right now because we haven'’t created anything yet.

‘o0 @ kotlinproject (~/IdeaProjects/kotlinproject]
I kotlinproject
0 Project.

> kotlinproject ~/ideaProjects/kotlinproject
» |l External Libraries

Figure 1-11. Our Kotlin project in Intelli]

The Project Tool window allows us to change “views.” All of the views show the same
project, but each view arranges the contents a bit differently. You can change the view of
the Project Tool window by clicking the dropdown button (see Figure 1-12). You should
try out a couple of the views to familiarize yourself with them.

KX X) kotlinproject [~/IdeaProjects/kotlinproject]
1 kotlinproject)

/
55 Packages
4P Project Files
42 Problems
#2 Production
P Tests

{7 Local Unit Tests

¢® Android Instrumented Tests
37 Scratches

& Android

Figure 1-12. Project tool window, Views

For the rest of this section, we’ll use the “Project” view. This view shows our files in
a tree-like structure, pretty much like the file manager in your OS (see Figure 1-12). You
can drill down and expand to see the contents of the folders, as shown in Figure 1-13.

22

CHAPTER 1 GETTING INTO KOTLIN

XX kotlinproject [~/IdeaProjects/kotlinproject]

jects/kotlinproject

* > I .idea
B src

'm kotlinproject.iml
» Il External Libraries

Figure 1-13. Project tool window. Project view

The “src” folder (short for “source”) is where we will place our Kotlin source files.
Right-click on the src folder and choose New » Kotlin File/Class, as shown in Figure 1-14.

200 kotlinproject [~/IdeaProjects/kotlinproject]
1% kotlinproject ; ' src)

. nprot -deaPojec ,"kt

r tc}aa
[e
kot Ll © Java Class
> il Extern Y o %X Kotlin File/Class
u - L
File
o gx: oot 0:2 # Scratch File 08N
£» Package
Copy Reference X{O8C | a EXML ’g:I
[l Paste ®v |5 S
| a= package-info.java
Find Usages \F7 | &= module-info.java
Find in Path... Q8F | ., HTML File
. =
i:p:ace in Path... {}SGR’ & JavaFXApplication
e +% Singleton
Refactor » @ Gradle Kotlin DSL Build Script
@ Gradle Kotlin DSL Settings
Add to Favorites > & XSLT Stylesheet
Show Image Thumbnails T8T
Bt o % Edit File Templates...
eformat e 3L
Optimize Imports AxX0 | [GUIForm
Delete... ® £ Dialog
Form Snapshot
Build Module 'kotlinproject’ {4 Resource Bundle
Rebuild '<default>* {3%F9 ! | Plugin DevKit

Figure 1-14. New Kotlin file, from the Project tool window

23

CHAPTER 1 GETTING INTO KOTLIN

We'll create a Kotlin file for now and name it “Hello”; we don’t have to write the “kt”
extension the Name field (see Figure 1-15)—the extension will be automatically added
for us. Make sure that on the “Kind” field of the dialog window, the “File” option is
selected (see Figure 1-15). Click the OK button to create the file.

[NeN New Kotlin File/Class

Name: Héllo

i’z File

g Class

g Interface
‘fg Enum class
& Object

Figure 1-15. New Kotlin File

When the source file is created, you will see it under the src folder in the Project Tool
window, and it will also be opened in the Main Editor window (see Figure 1-16).

0@ || kotlinproject [~/IdeaProjects/kotlinproject] - .../src/Hello.kt [kotlinproject] 1
4 L
I kotlinproject) f src) [Hello.kt) 'l
7 Project * € | %= 1= [Hellokt > i
v I kotlinproject ~/ideaProjects/kotlinproject 1 B fun main(args: Array<String=) { 4
» Bu.idea 2 rintl 4
v Msrc -
% Hello.kt f printin(message: Int) tlin. Unit
i k:&linpro[em iml f & println{message: Any?) (k n. Unit 1
Ll 5 int x v ;
» [llli External Libraries f prfn.ln{message. Byte) .10 Lrnft ’
f % println(message: Char) tlir Unit
f = println(message: Long) (k n.i Unit i
r printin(message: Float) (kotlin. Unit
I & printin(message: Short) (kotlin.i Unit |
f = printin(message: Double) tii 0 Unit
f println(message: Boolean) tlin. Unit b
f & println(message: CharArray) (kotlin.i Unit
‘Press ~. to choose the i (or first) suggestion and insert a dot aft

Figure 1-16. Hello.kt

24

CHAPTER 1 GETTING INTO KOTLIN

Intelli] has excellent code hinting and autocomplete capabilities. When it recognizes
something that you are typing, it tries to be helpful by giving you suggestions and
hints (see Figure 1-15). As soon as you type enough character patterns that may be
Kotlin keywords or constructs, the IDE offers suggestions. You can accept the currently
suggested option (highlighted on pop-up window, shown in Figure 1-15) or use the
mouse or arrow key to choose other auto-completion options.

The full code listing for this example is shown in Listing 1-20.

Listing 1-20. Hello.kt

fun main(args: Array<String>) {
println("Hello World")

}

The next step is to run this program; you can manage this by invoking the Run menu
on the main menu bar of Intelli]. The main menu bar sits on top of the IDE, the top-level
options are File, Edit, View all the way to Help. From the main menu bar, click Run >
Run. You will notice that there are two Run options on the main Run menu and that
the first Run option is greyed out. Choose the other Run option, which is located four
items down from the top. The first Run option is greyed out because we haven'’t defined
any runtime configuration for the project. We could have edited the configuration and
supplied the name of the runtime class, but we don’t have to do it. Choosing the second
run option pops out a dialog window (see Figure 1-17) and will ask us for the name of the
runtime class for the current project. “HelloKt” is the class we will choose as the runtime
class for this project.

Note The name of our source file is “Hello.kt” but the Kotlin compiler will not
generate “Hello.class”; instead, it will generate the byte code “HelloKt.class”. You
should keep this in mind when working with Kotlin class files.

25

CHAPTER 1 GETTING INTO KOTLIN

[X X] kotlinproject [~/IdeaProjects/kotlinproject] - .../src/Hello.kt [kotlinproject]

; B D & & M Helloke ~ | P WK B2 ‘o @ ?
', kotlinproject " src . Hello.kt
(37 Project * D %= | -1 ¢ Hellokt
v g kotlinproject ~fideaProjects/kotlinproject 1 I fun main{args: Array<String=) {

» [.idea 2 printin{"Hello World")

> out - }

B src
+ Hello.kt =

u kotlinproject.iml

~ L
» |llh External Libraries 0.[7 Edit Configurations...

1. HellokKt >
Hold {r to Debug

e o a N S e P Y Y PSR ER

Figure 1-17. Running Hello.kt

The IDE will compile “Hello.kt” into “HelloKt.class” and run afterward. The results
will be displayed in the “Run” tool window (see Figure 1-18).

‘o200 | kotlinproject [~/IdeaProjects/kotlinproject] - .../src/Hello.kt [kotlinproject]
B¢ XA & > [Helokt v | B W KB FmiLi?
" kotlinproject [sre
[0 Project v € o | 8- I~ [Helloke
¥ g kotlinproject ~/ideaProjects/kotlinproject 1 fun main{args: Array<String>) {
» Bu.idea 2 println{"Hello World")
v mout ; ¥
v production
¥ I kotlinproject
META-INF

g HelloKt.class

L Hello.kt I
i/ kotlinproject.iml
» |l External Libraries

Run [Hellokt

> /Library/Java/JavavirtualMachines/jdk-9.@, 1. jdk/Contents/Home/bin/java "-javaagent:/Applications/Intelli) IDEA CE.app/Contents/l
Hello World

Process finished with exit code @

I
jul]

=
Figure 1-18. Result of Running Hello.kt

& o @

26

CHAPTER 1 GETTING INTO KOTLIN

Now that we’ve successfully run a top-level function, let’s add a class to the app and
do a more object-oriented version of the code sample. To add a class, right-click the “src”
folder on the Project tool window (Figure 1-19) and choose New » Kotlin File/Class.

[X N] | kotlinproject [~/Ideal ts/kotli] - .../src/Hello.kt [kotlinproject]
EHO A XOA Q G D Heloke v | P o K F@EL 7
1, kotlinproject 1 src '
[Project - 0 %= | #- 1= L Hellokt
v Iy kotlinproject ~/IdeaProjects/kotlinproject 1 K fun main(args: Array<String>) {
> b .idea 2 printin("Hello World")
» Bmout 2
v s
#L Hello.kt © Java Class
i'a kotlinproject.iml Kotlin File/Class
» Il External Libraries éﬁ‘;c“‘ %X T'dl File
g°w oath Q:E # Scratch File 08N
oy e } £s Package
Copy Reference N{®8C 2 FXML File
|
LiiFacta ! i package-info.java
Find Usages F7 &s module-infojava

Figure 1-19. Adding a new File/Class to the project

When the “New Kotlin File/Class” dialog window pops up, choose “Class” (Figure 1-20);

let’s name it “Greeter”.

Name: Greeter

New Kotlin File/Class

Tl

Kind: | iig File

ig File

Iy Interface
fz Enum class
% Object

e

Figure 1-20. New Kotlin class

27

CHAPTER 1 GETTING INTO KOTLIN

Edit the Greeter class on the main editor window (Figure 1-21).

YY) | kotlinproject [~/IdeaProjects/kotlinproject] - .../src/Greeter.}
SHS ¢4 XOH QR &> Wlr- P B E L ¥a L ?
75 kotlinproject | [src | i Greeter.kt
B Project - € = | #8- I+ g Hellokt x | (G Greeterkt
v By kotlinproject ~/IdeaProjects/kotlinproject 1 class Greeter {

» B .idea 2 fun greet(args: String) {
b Gt 3 printin(args)
v src ; }}
(&g Greeter
ig Hello.kt
iy kotlinproject.iml
» |l External Libraries

Figure 1-21. Greeter class

Then edit Hello.kt as shown in Figure 1-22. After making the changes, run “Hello.kt”
again. From the main menu bar, Run » Run; alternatively, you can use Shift + F10to
run the code.

| X N) _ kotlinproject [~/IdeaProjects/kotlinproject] - .../src/Hello.kt [kotling
= H S XD QA G DM (e bW E EIFEML?
1", kotlinproject - ' src | [Hello.kt
57 Project - @D o | £~ 1= | g Hellokt (€ Greeter.kt
v I kotlinproject ~/ldeaProjects/kotlinproject 1 K fun main(args: Array<String=) {
> B .idea 2 val g = Greeter()
> Bmout 3 g.greet(args: "Hello Object Oriented Hello World")
v BEsrc 5 ¥
't Creeter 6
L Hello.kt

i’m kotlinproject.iml
» |l External Libraries

Run [HelloKt
/FL10TAry/ Jdvd/ JaVavir LUd tMdLANes/ JUK-Y. . 1. JUK/LONLENTS/NOME/ DLN/ JdVd = JdVddyeni:/ApP LILdLLons/ tNteLLL) U
> Hello Object Oriented Hello World

Process finished with exit code @ k

» »

L1 compilation completed fully in 125 118ms (a minute ago)

Figure 1-22. Running main with the Greeter class

28

CHAPTER 1 GETTING INTO KOTLIN

Figure 1-21 shows the output of our updated code(s). That concludes all the coding
activities for this chapter. As you can probably tell by now, Intelli] has excellent support
for the Kotlin language; you don’t have to use it if you prefer to code Kotlin programs
using a different editor. But if you choose to use it, we might as well take a quick tour of
the IDE so we can use it better. That’s what the next section is all about.

The IntelliJ IDE

Figure 1-23 shows the various parts of the IDE. You need to have an open project for you
to see something similar on your desktop.

8- L
avas JavaVirtua Machines/ | dk-9.0. 1. jok/Content s/Hose/Bin/ java “-]avasgent:/Applicat ions/Intelli) IDCA CL.app/Contents/ Lib/idea_rt. jars50908: /Applications/Inte
a

S
"o .
§ main menu bar ‘], tool bar navigation bar
§ T TG o GG Eod e Tehcer BT 5o VT Window TR d = wi) wonEF MondaERM O © =
S Q
B & proect - Dok O 1 i reen 7
K | fus mainlargs: Array<Strings) § 11
printla{"Helle Morld™) g
: j<
o
€ A i
=
3
e
3, B
e
(=9

) Evert Leg
s [Hmirudes sg0l 2 utrst w @

main editor window

tool window bar
[Zf show/hide tool window

Figure 1-23. Intelli] IDEA IDE

29

CHAPTER 1 GETTING INTO KOTLIN

Table 1-2 discusses the parts of the IDE, as it relates to Figure 1-22.

Table 1-2. Intelli] IDE

Main Menu bar

Tool Window bar

Show/hide tool
window

Main Editor window

Tool bar

Navigation bar

Project tool window

There are many ways to accomplish any task in the IDE; you can use

the various keyboard shortcuts or the context menus, but the most
comprehensive means of navigation will be on the main menu bar. This bar
sits on the very top of the IDE.

The tool window bar runs along the perimeter of the IDE window. It contains
the individual buttons you need to activate specific tool windows.

This is a fast shortcut to view the various tool windows in IDEA. The tool
windows can also be viewed or hidden from the main menu bar, View >
Tool Windows.

This is the most prominent window, and it has the most screen real estate.
The editor window is where you can create and modify project files and
source files.

The tool bar lets you do a wide range of actions (e.g., save files, run the app,
open the AVD manager, open the SDK manager, undo, redo actions, etc.).

It allows you to navigate the project files. This is just a more compact view
of the “Project files” window. It’s a horizontally arranged collection of arrow
boxes that resembles some sort of breadcrumb navigation that you can
find on some websites. You can open your project files either through the
navigation bar or the project tool window.

Shows you the files in your project. If you want to open a particular file,
double-click that file from this window and it will be opened in the main
editor window. You can also use context menus on the items in this window.
Context menus allows for alternative ways to accomplish task in the IDE
(e.g., adding a class file, running codes, debugging, etc.).

30

CHAPTER 1 GETTING INTO KOTLIN

Chapter Summary

Kotlin is the newest programming language for Android, and it has
first-class support on Android Studio 3.

There are many ways to install the Kotlin command line compiler and
runtime on macOS, Linux, and Windows.

Various IDEs have support for the Kotlin language; on some of them,
you’ll have to get a plug-in, and on some, it’s supported out of the
box.

Kotlin looks similar to Java, but it also has differences.

Intelli] has excellent support for Kotlin—well, JetBrains created
Kotlin after all.

In the next chapter, we’ll look at the following:

Program elements (e.g., literals, variables, expressions, keywords,
operators, etc.) —all kinds of stuff that makes up our code

What types of data can we use in Kotlin
Why is there a Nullable type in Kotlin, and what is it in the first place?
Control structures, so that you can loop and branch

Exception handling and why you don’t have to write try-catch
anymore in Kotlin (spoilers)

31

CHAPTER 2

Kotlin Basics

What we’ll cover:
e Program elements
o Basic types
e Immutability
o Strings
o Nullable types
e Control structures
o Exception handling

Kotlin isn’t all that different from Java. While it introduced quite a few features, you'll
find that Kotlin and Java are more similar than they are different. This is good news to
Java programmers because it means the learning curve for Kotlin isn’t that steep.

You'll need to get used to a few new things, like expressions and statements in Kotlin
(they are quite the reverse from Java; e.g., assignments are statements in Kotlin but they
are expressions in Java). In this chapter, we’ll cover some Kotlin basics that we can use as
foundation knowledge in the coming chapters.

Program Elements

When learning a new language, a proper language, like French, Spanish, etc., you'll
probably start with parts of speech and the rules that govern them. It'd be easier to
approach a language if we had some basic understanding of how its parts come together.
A Kotlin program contains literals, variables, expression, keywords, and a whole lot of
other things, we’ll explore some of them in this section.

33
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_2

CHAPTER 2 KOTLIN BASICS

Literals

Kotlin provides literals for the basic types (numbers, character, Boolean, String).

Listing 2-1. Literal Examples

var intlLiteral = 5

var doubleliteral = .02
var stringliteral = "Hello"
var charLiteral = "1’

var boolliteral = true

In Listing 2-1, the values 5, .02, "Hello", '1', and true are literals of Integer,
Double, String, Character, and Boolean types, respectively.

Variables

A variable is something that we use to manipulate data or, more precisely, a value. Values
are things that you can store, manipulate, print, push, or pull from the network. For us to
be able to work with values, we need to put them inside variables. A variable in Kotlin is
created by declaring an identifier using the var keyword followed by the type, like in the
statement

var foo: Int

In this statement, foo is the identifier and Int is the type. Kotlin specifies types by
placing it to the right of the identifier and is separated from it by a colon.
Now that the variable is declared, we can assign a value to it, like so:

foo = 10
and then, use it in a function, like the following:
println(foo)

We can declare and define variables on the same line, like in Java. Here’s the var foo
example again.

var foo: Int = 10
println(foo)

34

CHAPTER 2 KOTLIN BASICS

We can still shorten the assignment statement above by omitting the type (Int).
See the sample code:

var foo = 10
println(foo)

We don’t always have to declare or write the type of the variables; Kotlin is smart
enough to figure out the type when you assign a literal value to variable; it’s called type
inference. On the occasions that we explicitly tell Kotlin the type of variable, notice that it
is on the right side of the variable name (f00), while in Java, it’s the other way around, the
variable type is on the left side of the identifier. The reason Kotlin did not follow the Java
convention of putting the type to the left of the identifier is because in Kotlin, we don’t
always write the fype.

var foo

10 // compiler knows 10 is an integer literal

var boo = .02 // double literal makes boo a double type

Kotlin uses another keyword to declare variables, the val keyword. Variables
declared with this keyword can be initialized only once within the execution block where
they were defined. That makes them effectively constants; think of val as the equivalent
of the final keyword in Java—once you initialize it to a value, you can’t change it
anymore, they're immutable. While variables that were created using var are mutable,
they can be changed as many times as you want.

Val variables are declared and initialized just like var variables:

val a = 10 // declaration and initialization on the same line
They can also be declared and initialized at a later time, like the statements here:

val a: Int
a =10

Just remember that variables that are declared with the val keyword are final and
cannot be re-assigned once you've initialized them to a value. The code snippet here will
not work:

val boo = "Hello"
boo = "World" // boo already has a value

If you think you need to change the value of the variable boo at a later time, change
the declaration from val to var.

35

CHAPTER 2 KOTLIN BASICS

Intellid Tip If you try to re-assign the value of a variable that was declared
using the val keyword, IntelliJ will give you enough visual hints that “val cannot be
reassigned” even before you try to compile the code.

Expressions and Statements

An expression is a combination of operators, functions, literal values, variables,

or constants and always resolves to a value. It also can be part of a more complex
expression. A statement can contain expressions, but in itself, a statement doesn’t
resolve to a value. It cannot be part of other statements. It’s always a top-level element in
its enclosing block.

For the most part, what you learned in Java about expressions and statements holds
true in Kotlin, but there are slight differences. As we go further along, I'll point out the
differences between Java and Kotlin when it comes to statements and expressions. Some
of these differences are:

Assignments are expressions in Java, but they are statements in Kotlin. That means
you cannot pass assignment operations as argument to loop statements like while. See
Listing 2-2.

Listing 2-2. Assignment Operation As Argument to While

while ((rem = a % b) !=0) {

a=>
b = rem
}
println(b)

Kotlin won’t let you compile because the while statement expects an expression and
assignments are not expressions. To make the previous code example (Listing 2-2) work
in Kotlin, you'll have to write it another way, as shown in Listing 2-3.

36

CHAPTER 2 KOTLIN BASICS
Listing 2-3. Using the While Loop in Kotlin
var foundGef = false

while(!foundGcf) {

rem=a%b

if (rem !=0) {
a=>b

b = rem

}

else {

foundGef = true
}

}
println(b)

Listing 2-3 is a bit more verbose than what you may be used to (in Java), and it has
more characters to type but the intent of the code is clearer and plainer to see.

Another notable difference between Kotlin and Java when it comes to expressions
and statements is that in Kotlin, most control structures (except for, do, and do/while)
are expressions, while in Java they are statements.

Keywords

Keywords are reserved terms that have special meaning to the compiler, and as such,
they cannot be used as identifiers for any program elements such as classes, variable
names, function names, and interfaces.

Kotlin has hard, soft, and modifier keywords. The hard keywords are always
interpreted as keywords and cannot really be used as identifiers. Some examples of these
are as, break, class, continue, do, else, false, while, this, throw, try,
super, and when.

Soft keywords act as reserved words in certain context where they are applicable;
otherwise, they can be used as a regular identifier. Some examples of soft keywords
are the following: file, finally, get, import, receiver, set, constructor,
delegate, get, by, and where.

37

CHAPTER 2 KOTLIN BASICS

Finally, there are modifier keywords. These things act as reserved words in modifier
lists of declarations; otherwise, they can be used as identifiers. Some examples of these
things are the following: abstract, actual, annotation, companion, enum, final,
infix, inline, lateinit, operator, and open.

Intellid Tip If you use Intellid, you don’t have to memorize the list of keywords.
The IDE will give you enough visual hints if you accidentally use a keyword as an
identifier.

Whitespace

Like Java, Kotlin is also a tokenized language; whitespace is not significant and can be
safely ignored. You can write your codes with extravagant use of whitespace, like

fun main(args: Array<String>) {
println("Hello")
}

or you can write it with very little of it, like the following example:
fun main(args: Array<String>) {println("Hello")}

Either way, the compiler doesn’t care, so write your codes for the benefit of humans
who may be unlucky enough to maintain our codes. Forget the compiler—it doesn’t care
about whitespace anyway. Use whitespaces to prettify the code and make it readable,
probably something like

fun main(args: Array<String>) {
println("Hello")
}

38

Operators

CHAPTER 2 KOTLIN BASICS

Like in Java and other programming languages, Kotlin supports a variety of operators

and symbols that we can use to formulate expression and statements. Table 2-1 shows

some of them.

Table 2-1. Kotlin Operators and Symbols

Operators or
Symbol

What It Means

+, - *) /) %

/=, %=

&&, ||, !
logical 'and",
"not

IOI_I ,
operators

These are the usual mathematical operators—they do exactly what you
expect them to do. No difference with Java at all. But we need to note that the
asterisk or star symbol (*) is also used to pass an array to a vararg parameter.

The equal symbol is used for the assignment statement (assignment is a
statement in Kotlin, while in Java, it's an expression).

These are augmented assignment operators. The += can be used like this
a += 1, whichis shortfora = a + 1; the -=can be used like
a -= 1, whichis shortfora = a -1, and so on.

When you need to construct complex or compound logical operations, you will
use these operators.

The short-circuit and (8&) behaves similarly as in Java. When one of the
operands evaluates to false, the other operand will no longer be evaluated and
the whole expression evaluates to false. While logical "and" does not perform
short-circuit evaluation; think of it as the equivalent of the & operator in Java.
The short-circuit or (| |) acts the same as in Java. Kotlin doesn’t have the
single pipe operator; instead, it has the 'or' operator, which performs a
logical OR without short-circuiting.

(continued)

39

CHAPTER 2 KOTLIN BASICS

Table 2-1. (continued)

Operators or What It Means

Symbol

==, |= These are equality operators. Since Kotlin doesn’t have primitive types (like in
Java), you can use these operators to compare any type, basic or otherwise:
fun main(args: Array<String>) {
var a = "Hello"
var b = "Hello"
if (a == b) { // this evaluates to true
println("$a is equal to $b")
}
}
In Java, we wouldn’t be able to do object comparisons like this using the
double equals operator. Objects (like Strings) should use the .equals ()
method if we want to test for equality. In Kotlin, however, we don’t need to
worry about such things. We use the double equals operator to compare
Strings. Kotlin translates this internally to call to .equals () method.

===, l=== Referential equality is checked by the === operation (and its negated
counterpart !==). a === b evaluates to true if and only if a and b point to the
same object. For example,
var p1 = Person("John")
var p2 = Person("John")
if(p1 === p2) { // false
println("p1 == p2")
}
In the above example, p1 and p2 do not point to the same object; hence, the
triple equals will not evaluate to true.

<, >, <=, >= Comparison operators. Kotlin translates these to calls to compareTo()—no

primitive types, remember?

40

(continued)

CHAPTER 2 KOTLIN BASICS

Table 2-1 (continued)

Operators or What It Means

Symbol

[] Index access operators are used as a convenience way to access elements
[,] of a list or the values of map. Instead of using the Java-style get(index) or

get(key), we can use array-indexing to retrieve the items.

fun main(args: Array<String>) {

val fruits = listOf("Apple", "Banana", "Orange")
println(fruits.get(2)) // Banana
println(fruits[2]) // Banana

}

Blocks

Often, you may need to write a bunch of statements and you will need to group them
together. Blocks allow us to do just that. The lexical symbol for blocks are a pair of curly
braces; they are also sometimes called French or squiggly braces. Blocks can be found on
many Kotlin constructs such as classes, like the following code:

class Person(val name: String) {

}

when defining interfaces, such as

interface Human {
fun walk()
fun talk()

}

in functions, like

fun main(args: Array<String>) {
greet("John")
}

41

CHAPTER 2 KOTLIN BASICS

fun greet(name:String) {
println("Hello $name")

}

in looping constructs, like the while loop

var counter = 0
while (counter++ != 5) {
println("counter $counter")

}

when using the fry-catch construct

"1"

try {
Integer.parseInt(num)

}
catch(e:Exception) {

e.printStackTrace()
}

and any other control structure that may need to group statements.

val num

val ans

Comments

Comments are useless to the compiler; it ignores them. But they are useful to other
people (and you) who will read the codes. This makes them an excellent tool to make
the code more understandable because you can use comments to dump your thought
processes at the time you are writing the code. It clarifies and conveys your intentions.
There are three ways to write comments, they are:

1. Single-line comments, also known as inline comments. These
are written using two forward slashes. The compiler will ignore
everything to the right of the slashes until the end of the line, see
the example:

// This statement will be ignored
var a = 0 // so will this line

42

CHAPTER 2 KOTLIN BASICS

2. Multiline comments, also known as C-style comments. They are
called as such because they came primarily from the C language. This
style is useful if your comments span multiple lines. See the example:

/*

Everything inside the pair of these slashes
and asterisks will be ignored by the
compiler
*/

3. KDoc is like Javadoc, it starts with /** and it ends with */. This
form of commenting is very similar to the multiline comment
(above), but this is used to provide API documentation to Kotlin
codes. Listing 2-4 illustrates how to use the KDoc syntax.

Listing 2-4. KDoc Syntax
/)%

This is an example documentation using KDoc syntax

@author Ted Hagos
@constructor

*/
class Person(val name: String) {
/**

This is another KDoc comment
@return

*/

fun foo(): Int{

43

CHAPTER 2 KOTLIN BASICS

Intellid Tip You can comment on multiple lines of code in IntelliJ by selecting
the lines you want to comment on and use one of the the keyboard shortcuts to
comment out codes.

In Windows and Linux, these keys are:

CTRL + / — comment using //
CTRL + Shift + / — comment using /* */

In macOS, the keys are:

38 + / — comment using //
3 + ~ + / — comment using /* */

Basic Types

Kotlin has some basic types, but they are not the same as Java’s primitive types because
all types in Kotlin are objects. They're just called basic types because they are in very
common usage. These types are numbers, characters, booleans, arrays, and string—we’ll
look at them in this section.

Numbers and Literal Constants

There are built-in types to handle numbers (shown in Table 2-2). They may be
represented as primitive values during runtime, but for all intents and purposes, they
don’t appear to the programmer as primitives. They appear as bona fide objects, with
member functions and properties.

44

CHAPTER 2 KOTLIN BASICS

Table 2-2. Kotlin’s Number Built-In Type

Type Bit Width
Double 64
Float 32
Long 64
Int 32
Short 16
Byte 8

Kotlin handles numbers very close to how Java handles them but with some notable

differences. For example, widening conversions are not implicit anymore; you will need

to perform the conversions deliberately.

var a =

var b = 20

var a = b // this won't work
var a =

b.toLong() // this will work

0L // a is a Long literal, note the L postfix

When whole numbers are used as literal constants, they are automatically Ints. To

declare a Long literal, use the L postfix, like

var a

var b

100 // Int literal
0L // Long literal

You can use underscores in numeric literals to make them more readable. This

feature was introduced in Java 7 and its later versions.

var oneMillion = 1 000 000

var creditCardNumber = 1234 5678 9012 3456

Literals with decimal positions are automatically Doubles. To declare a float literal,

use the F postfix, like

var a
var b

3.1416 // Double literal
2.54 // Float literal

45

CHAPTER 2 KOTLIN BASICS

Every number type can be converted to any of the number types. That means all
Double, Float, Int, Long, Byte, and Short types support the following member functions:

o toByte() : Byte

e toShort() : Short

e toInt() : Int

o tolong() : Long

e toFloat() : Float

o toDouble() : Double
o toChar() : Char

Characters

Characters in Kotlin cannot be treated directly as numbers. You can’t do things like the
following:

fun checkForKey(keyCode:Char) {
if (keyCode == 97) { // won't work, keyCode is not a number

}
}

Character literals are created by using single quotes, like

var enterKey = 'a

Like in Java, you can use escape sequences such as \t, \b, \n, \r, \", \", \\,
and \$ and if you need to encode any other character, you can use the Unicode syntax
(e.g., \UFF00).

Let’s not forget that Characters are objects in Kotlin, so you can call member
functions on them. Listing 2-5 shows a snippet that demonstrates some usage scenarios.

Listing 2-5. Member Functions of the Character Type
val a = 'a'
println(a.isLowerCase()) // true
println(a.isDigit()) // false

46

CHAPTER 2 KOTLIN BASICS
println(a.toUpperCase()) // A

val b: String = a.toString() // converts it to a String

Booleans

Booleans are represented by the literals true and false. Kotlin doesn’t have the notion
of truthy and falsy values, like in other languages such as Python or JavaScript. It means
that for constructs that expect a Boolean type, you have to supply either a Boolean literal,
variable, or expression that will resolve to either true or false.

var count = 0O

if (count) println(“"zero") // won't work
if ("") println("empty") // won't work either

Arrays

Kotlin doesn’t have an array object like the one created in Java using the square braces
syntax. The Kotlin array is a generic class—it has a type parameter. We've been using
Kotlin arrays for quite some time now because the small code snippets and the “Hello
World” example in the previous chapter have featured the use of Arrays. The argument to
the main function is actually an Array of String. Let’s see that main function again, just as
arefresher.

fun main(args:Array<String>) {

}

There are a couple of ways to create an array. They can be created using the
arrayOf() and arrayOfNulls() functions, and finally, they can be created using the
Array constructor. Listing 2-6 provides some sample codes on how to work with them.

47

CHAPTER 2 KOTLIN BASICS

Listing 2-6. Working With the Array Type

fun main(args: Array<String>) {

var emptyArray = arrayOfNulls<String>(2) ©
emptyArray[0] = "Hello" @
emptyArray[1] = "World"

for (i in emptyArray.indices) println(emptyArray[i]) ©

for (i in emptyArray) println(i) @

var arrayOfInts = array0f(1,2,3,4,5,6) ©
arrayOfInts.forEach { e -> println(e) } @

var arrayWords = "The quick brown fox".split(" ").toTypedArray() @
arrayWords.forEach { item -> println(item) }

}

o

We used the arrayOfNulls function to create an array that has two elements.

We can assign values to specific elements of the array. We just need specify the position of the
element in the array using its index. This syntax of accessing the element of the array is the
same as in Java.

We can use the for loop to traverse the contents of the array. In this example, we used the
indices to access the element of the array.

This is a more direct way of accessing the element of the array. An Array object has an iterator,
S0 we can use that iterator to get to the array element right away.

This creates an array of Ints using the arrayOf () function.

This example uses the forEach function to traverse the elements of the array. Using the
forEach function is considered more idiomatic (and more efficient).

This creates an array using an ArrayList(arrayWords). The List arrayWords was created by
invoking the split() member function of the String.

48

CHAPTER 2 KOTLIN BASICS

Strings and String Templates

Much of what we've learned about Java Strings are still applicable in Kotlin; hence, this
section will be short.

The easiest way to create a String is to use the escaped string literal —escaped strings
are actually the kind of strings we know from Java. These strings may contain escape
characters like \n, \t, \b, etc. See the code snippet below.

var str: String = "Hello World\n"

Kotlin has another kind of string that is called a raw string. A raw string is created
by using triple quote delimiter. They may not contain escape sequences, but they can
contain new lines, like

var rawStr = Amy Pond, there's something you'd
better understand about me 'cause it's important,
and one day your life may depend on it:

I am definitely a mad man with a box!

A couple more things we need to know about Kotlin strings are as follows:

1. They have iterators, so we can walk through the characters using a
for loop:

val str = "The quick brown fox"
for (i in str) println(i)

2. Its elements can be accessed by the indexing operator
(str[elem]), pretty much like Arrays

println(str[2)) // returns 'e'

3. We can no longer convert numbers (or anything else for that
matter) to a String by simply adding an empty String literal to it:

var strNum = 10 + // this won't work anymore

var strNum = 10.toString() // we have to explicitly convert now

49

CHAPTER 2 KOTLIN BASICS

We can still use String.format and System.out.printf in Kotlin; after all, we can
use Java codes from within Kotlin. It’s still possible to write programs like the code
snippet shown in Listing 2-7.

Listing 2-7. Using String.format and printf

var name = "John Doe"
var email = "john.doe@gmail.com"
var phone = "(01)777-1234"

var concat = String.format("name: %s | email: %s | phone: %s", name, email,
phone)

println(concat)

// prints

// name: John Doe | email: john.doe@gmail.com | phone: (01)777-1234

The preferred way to do string composition in Kotlin is by using string templates, like

var concat = "name: $name | email: $email | phone: $phone”
println(concat)
// prints

// name: John Doe | email: john.doe@gmail.com | phone: (01)777-1234

Kotlin strings may contain template expressions. These are pieces of code that
are evaluated. The result of the evaluation is inserted (concatenated) into the String.
A template expression starts with a dollar sign ($) followed by an expression.

See Listing 2-8 for examples.

Listing 2-8. Using Template Expressions

fun main(args:Array<String>) {
var name = "John Doe"

println("Hello $name") @
println("The name '$name’ is ${name.length} characters long") @
println("Hello ${foo()}") ©

}

fun foo(): String {
return "Boo"

}
50

CHAPTER 2 KOTLIN BASICS

© Shows the basic use of a template string. The template expression is created by using the $
symbol immediately followed by an identifier. The value of the identifier is evaluated, resolved,
and finally inserted into the body of the String where the template expression is declared.

® In this example, the name. length is enclosed in curly braces. This is because the $ symbol
is right-associative—it will evaluate the expression that is immediately to its right. That won’t
work in our situation because we don’t want to evaluate the name variable; what we want to
resolve instead, is name . length—nhence, the need to enclose it in curly braces.

® We’re not limited to simple variables; we can even write functions inside template expressions.

Controlling Program Flow

Program statements are executed sequentially by default, one after the other, in a linear
fashion. There are constructs that can cause programs to deviate from a linear flow.
Some can cause the flow to fork or branch, and other constructs can cause the program
flow to go around in circles, like in a loop. These constructs are the subject of this
section.

Using ifs
The basic form of the if construct is
if (expression) statement

where expression resolves to Boolean. If the expression is true, the statement will be
executed; otherwise, the statement will be ignored and program control will flow to the
next executable statement. When you need to execute more than one statement, you can
use a block with the if construct, like

if (expression) {
statements

}

51

CHAPTER 2 KOTLIN BASICS
Let’s see how it looks in code.

val theQuestion = "Doctor who"
val answer = "Theta Sigma"

val correctAnswer =

if (answer == correctAnswer) {
printIn("You are correct")

}

So far, the if construct in Kotlin behaves exactly as it does in Java. It also supports the
else if and the else clause, as shown in following snippet:

val d = Date()
val ¢ = Calendar.getInstance()
val day = c.get(Calendar.DAY_OF WEEK)

if (day == 1) {
println("Today is Sunday")
}

else if (day == 2) {
println("Today is Monday")
}

else if (day == 3) {
println("Today is Tuesday")
}

The new thing about Kotlin’s ifis that it’s an expression, which means we can do
things like

val theQuestion = "Doctor who"
val answer = "Theta Sigma"

val correctAnswer =

var message = if (answer == correctAnswer) {
"You are correct”

}

else{

"Try again”
}
52

CHAPTER 2 KOTLIN BASICS

The String on the first block of the if construct will be returned to the message
variable if the condition is true; otherwise, the String on the second block will be the
returned value. We can even omit the curly braces on the blocks, since the blocks contain
only single statements.

var message = if (answer == correctAnswer) "You are correct" else "Try
again”

The code example above would probably remind you of the ternary operator in Java.
By the way, Kotlin doesn’t support the ternary operator, but don’t worry since you don’t
need it. The if construct is an expression, if you feel you need to write code that requires
the ternary operator, just follow the preceding code example.

The when Statement

Kotlin doesn’t have a switch statement, but it has the when construct. Its form and
structure is strikingly similar to the switch statement. In its simplest form, it can be
implemented like this:

val d = Date()
val ¢ = Calendar.getInstance()
val day = c.get(Calendar.DAY_OF WEEK)

when (day) {

1 -> println("Sunday")

2 -> println("Monday")

3 -> println("Tuesday")

4 -> println("Wednesday")
}

when matches the argument (the variable day) against all branches sequentially until

it encounters a match; note that unlike in switch statements, when a match is found, it
doesn’t flow through or cascade to the next branch—hence, we don’t need to put a break
statement.

53

CHAPTER 2 KOTLIN BASICS

The when construct can also be used as an expression, and when it’s used as such,
each branch becomes the returned value of the expression. See the code example:

val d = Date()
val ¢ = Calendar.getInstance()
val day = c.get(Calendar.DAY OF WEEK)

var dayOfweek = when (day) {

1 -> "Sunday"
2 -> "Monday"
3 -> "Tuesday"

4 -> "Wednesday"
else -> "Unknown"

}

Just remember to include the else clause when when is used as an expression. The
compiler thoroughly checks all possible pathways and it needs to be exhaustive, which is
why the else clause becomes a requirement.

You're not limited to numeric literals; you can use a wide variety of types for the
branches, as shown in Listing 2-9.

Listing 2-9. How to Write Branches Inside the When Construct
fun main(args: Array<String>) {

print("What is the answer to life? ")
var response:Int? = readlLine()?.toInt() @

val message = when(response){

42 -> "So long, and thanks for the all fish"
43, 44, 45 -> "either 43,44 or 45" @

in 46 .. 100 -> "forty six to one hundred" ©
else -> "Not what I'm looking for" @

}

println(message)

54

CHAPTER 2 KOTLIN BASICS

® readline() reads an input from the console. Don’t worry about the questions marks for now;
we’ll get to that in the coming sections.

® The branch conditions may be combined with a comma.

®

We can check if it's a member of a range or a collection.

® The else clause is required when when is used as an expression.

The while Statement

The while and do . . while statements work exactly as they do in Java—and like in Java,
these are also statements and not expressions. We won'’t spend too much time on while
and do . . whileloops here.

A basic usage of the while loop is shown here, just as a refresher.

fun main(args: Array<String>) {
var count = 0
val finish =5

while (count++ < finish) {
println("counter = $count")

}
}

for loops

Kotlin doesn’t have the traditional for loop of Java 7 and below—the one that looks like
the following:

for (int i = 0; 1 < 10; i++) {
statements

}

Kotlin’s for loop, instead, works on things that have an iterator. If you've seen the for
each loop in JavaScript, C#, or Java 8, Kotlin’s is a lot closer to that. A basic example is
shown in Listing 2-10.

55

CHAPTER 2 KOTLIN BASICS

Listing 2-10. Basic for Loop
fun main(args: Array<String>) {
val words = "The quick brown fox".split(" ") @

for(word in words) { @
println(word) ©

}

}

® The split() method of the String class returns an ArrayList type, we can iterate over that.

® For each item (woxd) in the collection (woxds), we;

® print the item.

If you need to work with numbers on the for loop, you can use Ranges. A range is a
type that represents an arithmetic progression of integers. Ranges are created with the
rangeTo() function, but we usually use it in its operator form (..). To create a range of
integers from 1 to 10, we write like this:

var zeroToTen = 0..10
We can use the in keyword to perform a test of membership.
if (9 in zeroToTen) println("9 is in zeroToTen")

To use ranges in for loops, we can start with something that looks like the code
shown in Listing 2-11.

Listing 2-11. Using Ranges in for Loop

fun main(args: Array<String>) {
for (i in 1..10) {

println(i)

}

}

56

CHAPTER 2 KOTLIN BASICS

Exception Handling

Kotlin’s exception handling is very similar to Java: it also uses the try-catch-finally
construct. Whatever we've learned about Java’s exception handling commutes nicely

to Kotlin. However, Kotlin simplifies exception handling by simply using unchecked
exceptions. What that means is writing try-catch blocks is now optional. You may or may
not do it. Let’s consider the code shown in Listing 2-12.

Listing 2-12. 1/0 Operations Without Try-Catch Blocks
import java.io.FileReader @

fun main(args: Array<String>) {

var fileReader = FileReader("README.txt") @

var content = fileReader.read() ©
println(content)

}

© We can use Java’s standard library in Kotlin.
@ This one may throw the "FileNotFoundException".

® And this could throw the "/0Exception", but Kotlin happily lets us code without handling the
possible Exceptions that may be thrown.

Although Kotlin lets us get away with not having to handle exceptions, we still can do
that, and for some situations, we may really have to. When that happens, just write the
exception handling code the way you did in Java; see Listing 2-13 for an example.

Listing 2-13. Kotlin’s Try-Catch Block

import java.io.FileNotFoundException
import java.io.FileReader
import java.io.IOException

fun main(args: Array<String>) {

var fileReader: FileReader

57

CHAPTER 2 KOTLIN BASICS

try {

fileReader = FileReader("README.txt")
var content = fileReader.read()
println(content)

}

catch (ffe: FileNotFoundException) {
println(ffe.message)

}

catch(ioe: IOException) {
println(ioe.message)

}

}

Handling Nulls

A common source of bugs and expensive rework activities in Java may be attributed

to the way programmers handle null values. Some of us are really diligent, and such
defensive programmers that this discussion may not be necessary anymore. But not all
programmers are created equal, and for most of us, we need to be reminded to mind the
possibility of NullPointerExceptions. Handling of null values is such a big concern in Java
that Kotlin made a very deliberate decision to introduce the concept of a Nullable type.
In Kotlin, when we declare a variable like

var str: String = "Hello"
str = null // won't work

we will never be able to set the value of this variable to null. We may assign it a
different String value, but Kotlin guarantees that str will never be null. If, for some
reason, you really need this variable to be null, you have to explicitly tell Kotlin that str
is a Nullable type. To make a String (or any type) Nullable, we use the question mark
symbol as postfix to the type, like

var str: String? = "Hello"

After declaring a type as Nullable, we now have to do some things that Kotlin used
to do for us. For non-Nullable types, Kotlin ensures that it’s pretty safe to use them in

operations such as assignment, printing, inclusion in expressions, etc. When we make

58

CHAPTER 2 KOTLIN BASICS

types Nullable, Kotlin assumes that we know what we’re doing and that we’re responsible
enough to write the necessary guard conditions to prevent NullPointerExceptions. Kotlin
assumes we’d do something like the code shown in Listing 2-14.

Listing 2-14. Demonstration of Nullable Types

fun main(args: Array<String>) {
var a = array0f(1,2,3)
printArr(null)

}

fun printArr(arr: Array<Int>?) { @
if(arr !'= null) { @

arr.forkach { i -> println(i) } ©
}

}

® We're declaring Array<Int> to be Nullable. This means we can pass null to printArz().

® Because arr is no longer guaranteed to be non-null, we have to manually check for null values
before we do some operations that involve the arx local variable.

® |If arr is not null, we can safely perform this operation.

Kotlin introduced an operator that we can use to handle Nullable types. It’s called the
safe-call operator, which is written as the question mark symbol followed by a dot ?.

We can replace the entire if block, which performs the null checking, with just one
statement:

arr?.forkach { i -> println(i) }

What the safe call does is to first check if arr is null; if it is, it won’t go through the
forEach operation. Only when arz is not null will the array be traversed.

59

CHAPTER 2 KOTLIN BASICS

Listing 2-15 shows the refactored code for Listing 2-14.

Listing 2-15. Safe Call Operator
fun main(args: Array<String>) {

var a = array0f(1,2,3)
printArr(null)
}

fun printArr(arr: Array<Int>?) {
arr?.forkach { i -> println(i) }

}

Kotlin’s default behavior regarding nullability of objects should prevent many of us
from doing things that will disgrace ourselves because it doesn’t allow variables to be
null by default. However, if we think we know what we’re doing and certain situations
would force us to use Nullable types, we can still do that. Just remember to use the safe
call operator; it’s idiomatic compared to performing null checks using ifs.

Chapter Summary

e Kotlin’s program elements are not that different from Java; it also
has operators, blocks, statements, expressions, etc. In Kotlin,
however, some constructs that are considered statements in Java are
expressions in Kotlin, and some that were considered expressions in
Java are statements in Kotlin (e.g., the assignment operation).

« Kotlin’s basic types are not the same as primitive types of Java.
Everything in Kotlin is an object.

o There are two ways to declare a variable in Kotlin. When the var
keyword is used, the variable is mutable. When the val keyword is
used, the variable is immutable.

e Strings in Kotlin have iterators. Also, they're easier to compose and
combine with the help of template expressions.

e When variables are declared in Kotlin, they are by default non-
Nullable, unless we declare them otherwise.

60

CHAPTER 2 KOTLIN BASICS

e Kotlin doesn’t have a switch statement, but it’s got a when construct.

e InKotlin, we don’t have to write try-catch anymore because it
basically uses unchecked Exceptions.

In the next chapter, you'll find out:
e How to (easily) create functions in Kotlin
¢« Whywe don’t need to do tons of method overloads in Kotlin

e How we can move away from writing Utility functions and instead

use Kotlin’s Extension functions (Java doesn’t have this)

61

CHAPTER 3

Functions

What we’ll cover:
o Declaring functions
e Default parameters
e Named parameters
» Extension functions
o Infix functions
o Infix operators

Kotlin’s functions are almost the same as Java methods, although it’s closer in
behavior to functions in JavaScript, because in Kotlin, functions are more than just a
named collection of statements. In Kotlin, functions are first-class citizens; you can use
a function wherever you could use a variable. You can pass them as parameters to other
functions, and you can return functions from other functions as well. But before we can
dive into that topic, we need to start with the basics of Kotlin functions—for example,
how they are declared, how they treat parameters, how different (or similar) they are
from Java methods, plus a couple of other details. That’s what we’ll cover in this chapter.

Declaring Functions

Functions can be written in three places. You can write them (1) inside a class, like
methods in Java—these are called member functions; (2) outside classes—these are
called top-level functions; and (3) they can be written inside other functions—these

63
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_3

CHAPTER 3 FUNCTIONS

are called local functions. Regardless of where you put the function, the mechanics of
declaring it doesn’t change much. The basic form a function is as follows:

fun functionName([parameters]) [:type] {
statements

The function is declared using the reserved word fun followed by an identifier,
which is the function name. The function name includes the parentheses where you
can declare optional parameters. You may also declare the type of data the function will
return, but this is optional since Kotlin can infer the function’s return type by simply
looking at the function’s body declaration. What follows is the pair of curly braces with
some statements inside the function’s body.

You should name your functions following the same guidelines as if you are writing
Java methods—namely, the function name (1) shouldn’t be a reserved word; (2) mustn’t
start with a number; and (3) shouldn’t have special characters in them. And finally,
from a stylistic perspective, its name should contain a verb or something signifying an
action—as opposed to when you are naming a variable where the name contains a noun.
Listing 3-1 shows a basic declaration of a function that takes a String and Int parameters.
For purposes of comparison, Listing 3-3 shows the equivalent Java code for Listing 3-1.

Listing 3-1. displayMessage Function

fun displayMessage(msg: String, count: Int) {
var counter = 1
while(counter++ <= count) {
println(msg)
}
}

The displayMessage() in Listing 3-1 is a non-productive function; it doesn’t return
anything—notice the absence of a return keyword in the body of the function. In Java,
when a function doesn’t return anything, we still indicate that the return type is void
(see Listing 3-3). In Kotlin, however, we don’t really have to do that since Kotlin is
capable of type inference—it can figure it out for itself. But as an academic exercise, let’s
rewrite Listing 3-1 verbosely to completely tell the compiler what kind of return type
displayMessage() has. See the code example in Listing 3-2.

64

CHAPTER 3 FUNCTIONS

Listing 3-2. displayMessage With an Explicit Return Type

fun displayMessage(msg: String, count: Int) : Unit {
var counter = 1
while(counter++ <= count) {
println(msg)
}
}

The only difference between Listing 3-1 and 3-2 is the Unit return type of the
displayMessage() function. Unit corresponds to Java’s void.

Listing 3-3. DisplayMessage in Java
public class DisplayMessage {

public static void main(String [Jargs) {
displayMessage("Hello", 3);
}

static void displayMessage(String msg, int count) {
int counter = 1;
while(counter++ <= count) {
System.out.println(msg);
}
}

To invoke the displayMessage() function, we call it by its name and pass the
appropriate parameters, as shown in Listing 3-4.

Listing 3-4. Calling the displayMessage Function

fun main(args: Array<String>) {
displayMessage("Hello", 3) @ @
}

fun displayMessage(msg: String, count: Int) {
var counter = 1

65

CHAPTER 3 FUNCTIONS

while(counter++ <= count) {
println(msg)
}
}

@ "Hello" is passed to the msg argument of displayMessage()

® 3 is passed to the count argument of displayMessage(); like in Java, arguments passed to
a function are matched to its parameters in the order they were defined, starting from left going
to the right.

To make functions productive (return something), just put a return statement
somewhere in the body of the function and declare the function’s return type. See
Listing 3-5 for an example.

Listing 3-5. getSum, A Productive Function

fun main(args: Array<String>) {
println(getSum(list0f(1,2,3,4,5,6)))
}

fun getSum(values: List<Int>) : Int { // return type is Int
var total = 0;
for (i in values) total += i
return total // return value

You can return anything from functions; we’re not limited to the basic types.
See Listing 3-6 for another example.

Listing 3-6. Using Pairs As a Return Type
fun bigSmall(a: Int, b:Int) : Pair<Int, Int> { @

if(a > b) return Pair(a,b) @
else {
return Pair(b,a) @
}
}

66

CHAPTER 3 FUNCTIONS

fun main(args: Array<String>) {
var (x,y) = bigSmall(s,3) @

println(x)
println(y)
}

@ This function is telling the compiler that it returns a Pair. A Pair is a data class that represents
a, well, generic pair. If you’ve used Python before, this might remind you of tuples.

® |If parameter ais greater than b, then we create the Pair using parameter a as the first
component, and b as the second component, then we return it to the caller.

® If parameter ais less than b, then we create the Pair using parameter b as the first component,
and a as the second component, and then we return it to the caller.

® A Pair can be returned to two named variables on the left-hand side of the assignment
statement. This destructuring declaration allows us to save multiple values to multiple variables
all at once. In this case, variable x will receive the first component of the returned Pair and
variable y will receive the second component of the Pair.

Single Expression Functions

Earlier in the chapter, we did say that functions follow the basic form

fun functionName([parameters]) [:type] {
statements

There is a second form of writing functions in Kotlin that allows for a more concise
syntax. There are situations when we can omit (1) the return statement; (2) curly braces;
and (3) the return type altogether. This second form is called single expression functions.
As you may have inferred from its name, the function only contains a single expression,
as shown in the code snippet here:

fun sumInt(a: Int, b: Int) =a +b

A single expression function omits the pair of curly braces and instead uses an
assignment operator in its place. It also doesn’t need the return statement anymore
because the expression on the right-hand side of the assignment automatically becomes

67

CHAPTER 3 FUNCTIONS

the returned value. Finally, a function like this doesn’t need an explicit return type
because the compiler can infer the type that’s returned from the value of expression. The
omission of the explicit return type is not in any way a hard rule. You may still write an
explicit return if that’s what you prefer, like so:

fun sumInt (a: Int, b: Int): Int =a + b

Default Arguments

Function parameters can have default values in Kotlin, which allows the caller (of the
function) to omit some arguments on the call site. A default value can be added to
function’s signature by assigning a value to a function’s parameter. An example of such a
function is shown in Listing 3-7.

Listing 3-7. connectToDb

fun connectToDb(hostname: String = "localhost",
username: String = "mysql",
password:String = "secret") {

” «

Notice that “localhost’, “mysql’; and “secret” were assigned to hostname, username,
and password, respectively. This function can be invoked like this:

connectToDb("mycomputer"”, "root")

Any and all arguments to call the connectToDb() function can be omitted because all
of its parameters have default values. But in this case, we omitted only the third one.
We can even call the function without passing any arguments to it, like so:

connectToDb()

Kotlin’s ability to provide default arguments to functions allows us to avoid creating
function overloads. We couldn’t do this in Java, which is why we had to resort to method
overloading. Overloading functions is still possible in Kotlin, but we’ll probably have
fewer reasons to do that now, all thanks to default parameters.

68

CHAPTER 3 FUNCTIONS

Named Parameters

Let’s go back to Listing 3-7. If we call that function and provided all the arguments, the
call might look like this:

connectToDb("neptune”, jupiter", "saturn")

This is a valid call because all of the parameters of connectToDb() are Strings, and
we passed three String arguments. Can you spot the problem? It isn’t clear from the call
site which one is the username, the hostname, or the password. In Java, this problem of
ambiguity was solved by a variety of workarounds, including commenting the call site.

connectoToDb(/* hostname*/, "neptune,
/* username*/ "jupiter",
/*password*/ "saturn")

We don’t have to do this in Kotlin because we can name the argument at the call site.

connecToDb(hostname = "neptune",
username = "jupiter",
password = "saturn")

It’s important to remember that when we start specifying the argument name, we
need to specify the names of all the arguments after that in order to avoid confusion.
Besides, Kotlin wouldn’t let us compile if we did that. For example, a call like this

connectToDb(hostname = "neptune”,
username = "jupiter",
"saturn")

isn’t allowed because once we name the second argument (username), we need to
provide the name of all the arguments that come after it. And in the example call above,
the second argument is named but not the third one. On the other hand, a call like this

connectToDb("neptune"”,
username = "jupiter",
password = "saturn")

is allowed. It’s okay that we didn’t name the first argument, because Kotlin would have
treated this as a regular function call and use the positional value of the argument to
resolve the parameter. And then we named all the remaining arguments.

69

CHAPTER 3 FUNCTIONS

Variable Number of Arguments

Functions in Kotlin, like in Java, can also accept an arbitrary number of arguments. The
syntax is a bit different from Java, instead of using three dots after the type ... , we use
the vararg keyword instead. Listing 3-8 shows an example on how to declare and call a
vararg function.

Listing 3-8. Demonstration of a Variable Argument Function

fun<T> manyParams(vararg va : T) { @
for (i inva) { ®
println(i)
}
}

fun main(args: Array<String>) {
manyParams(1,2,3,4,5) ©
manyParams("From", "Gallifrey", "to", "Trenzalore") @
manyParams (*args) @
manyParams(*"Hello there".split(" ").toTypedArray()) @

@ The vararg keyword lets us accept multiple parameters for this function. In this example, we
declared a function that has a typed parameter; it’s generic. We didn’t have to declare it as
generic in order to work with variable arguments—we just chose to so that it could work with a
variety of types.

® This is a simple looping mechanism so that we can print each item in the argument.

® We can pass Ints, and we can pass as many as we want because manyParams accepts
variable number of arguments.

O It works with Strings as well.

@ Like in Java, we can pass an array to a function that accepts variable arguments. We need to
use the spread operator * to unpack the array. It’s like passing the individual elements of the
array one by one, manually.

® The split() member function will return an ArrayList, you can convert it to an Array, then use
the spread operator so you can pass it to a vararg function.

70

CHAPTER 3 FUNCTIONS

Extension Functions

In Java, if we needed to add functionality to a class, we could either add methods to

the class itself or extend it by inheritance. An extension function in Kotlin allows us

to add behavior to an existing class, including the ones written in Java, without using
inheritance. It essentially lets us define a function that can be invoked as a member of
the class, but the function is implemented outside the class. To demonstrate this, let’s
start with a simple code, chanthofy, terminatorify (shown in Listing 3-9); it’s a contrived
application but it should set the grounds for us to explore extension functions.

Listing 3-9. homerify, chanthofy, terminatorify

fun main(args: Array<String>) {
val msg = "My name is Maximus Decimus Meridius"
println(homerify(msg))
println(chanthofy(msg))
println(terminatorify(msg))

}

fun homerify(msg: String) = "$msg -- woohoo!"
fun chanthofy(msg: String) = "Chan, $msg , tho"
fun terminatorify(msg: String) = "$msg -- I'll be back"

The application in Listing 3-9 features three functions that take a String argument,
add some Strings to it, and then return them back to the caller; it’s simple. It is usable as
itis, but we can probably consolidate it a bit more by putting all the three functions in a
common class, which will become our utility class. Such a class might look something
like the code in Listing 3-10

Listing 3-10. Our Very Own StringUtil Class

fun main(args: Array<String>) {
val msg = "My name is Maximus Decimus Meridius"
val util = StringUtil()
println(util.homerify(msg))

println(util.chanthofy(msg))
println(util.terminatorify(msg))

71

CHAPTER 3 FUNCTIONS

/*
The StringUtil class consolidates our three methods as member functions.
This is a very common Java practice

*/

class StringUtil {
fun homerify(msg: String)
fun chanthofy(msg:String)

"$msg -- woohoo!"
"Chan, $msg , tho

fun terminatorify(msg: String) = "$msg -- I'll be back"
}

We can already use the code in Listing 3-10; in fact, this is a very common practice
in Java. It’s considered a good idea to consolidate methods that are somewhat
related into a utility class (like our very own StringUtil class in Listing 3-10), although
Java programmers might have implemented homerify(), chanthofy(), and
terminatorify() as static methods, and not instance methods, as we did here. That’s
a small matter, and we can safely ignore it. The point is, in Kotlin, instead of writing a
utility class for our three methods, we can rewrite our methods in a much simpler way
(see Listing 3-11).

Listing 3-11. homerify As an Extension Function
fun String.homerify() = "$this -- woohoo!"

It looks deceptively simple, but this is really all it takes to write an extension
function. Extension functions introduce the concept of a receiver type and a receiver
object. In Listing 3-11, the receiver type is String; it’s the class to which we’d like to add
our extension function. The receiver object is the instance of that type, which in our
examples is “My name is Maximus Decimus Meridius” When you attach an extension
function to a type, such as a String in our case, the extension function can reference
the receiver object using the keyword this. For all intents and purposes, an extension
functions appears to be just like any member function defined on the receiver type. So,
it makes sense for the extension function to be able to reference this. Listing 3-12 shows
the full code for our extended String class.

72

CHAPTER 3 FUNCTIONS

Listing 3-12. Extended String Class

fun main(args: Array<String>) {
val msg = "My name is Maximus Decimus Meridius"

println(msg.homerify())
println(msg.chanthofy())
println(msg.terminatorify())

}

fun String.homerify() = "$this -- woohoo!"
fun String.chanthofy() = "Chan, $this , tho"
fun String.terminatorify() = "$this -- I'1l be back"

It’s perfectly alright to still write utility functions in Kotlin, but with extension
functions at our disposal, it seems more natural to use them because it increases the
semantic value of our code. It feels more natural to use extension function syntax.

Infix Functions

“Infix” notation is one of the notations used in math and logical expressions. It’s the
placement of operator between operands (e.g., a + b; the plus symbol is “infixed”
because it's between the operands a and b). In contrast, operations can follow “post
fixed” notation where the expression is written like so (+ a b) or they can be “post fixed,”
in which our expression is written like this (a b +).

In Kotlin, member functions can be “infixed,” which allow us to write codes like the
following:

john say "Hello World"

If john is a variable that points to an object of type Person (we'll see the definition in
a little while) and say is a method that takes a String argument like "Hello World", then
the statement above is a more natural way of writing something like

john.say("Hello World")

To begin our exploration of infix functions, let’s start by implementing the codes that
will allow us to call the say() member function using the traditional dot notation. And
then we’ll write the codes that will let us use the infixed version. Listing 3-13 shows the
classic implementation of the Person class, which we can call using the dot notation.

73

CHAPTER 3 FUNCTIONS
Listing 3-13. Person Class Without infix Function

fun main(args: Array<String>) {
val john = Person("John Doe")
john.say("Hello World")

}

class Person(val name : String) {
fun say(message: String) = println("$name is saying $message")

}

No surprises here, these kinds of call are where most of us cut our teeth in
Java programming. This doesn’t need any further commentary. Now, let’s see the
implementation that allows us to call the say method in an “infixed” way.

Listing 3-14. Person Class With an infix Function

fun main(args: Array<String>) {
val john = Person("John Doe")
john say "Hello World"

}

class Person(val name : String) {
infix fun say(message: String) = println("$name is saying $message")

}

The only thing you need to do in order to use the say() function in an “infixed” way
is to add the infix keyword in the beginning of the function, as shown in Listing 3-14.
Having said that, you cannot convert every function to become an infix. A function can
be converted to infix, only if

e it'samember function (part of a class) or an extension function, and

e itaccepts exactly one parameter (only). If you're thinking of a
loophole like, “I could probably define a single parameter in my
function and use vararg,” that won’t work. Variable arguments are not
allowed to be converted to infix functions.

By the way, you cannot call an infix function using named parameters, like this

john say msg = "Hello World" // won't work

74

CHAPTER 3 FUNCTIONS

Remember that infix functions take only a single argument; it doesn’t make much
sense to name the argument at the call site.

Infix functions, when used judiciously, allow for more intuitive coding because they
can hide program logic behind a keyword-like syntax. You can create some sort of a
meta-language with infix notation; just be careful not to overdo it.

Operator Overloading

The topic of operator overloading may seem a bit out of place in a chapter that is all
about functions. But in Kotlin, this topic dovetails nicely into a discussion of infix
functions because of their shared mechanics in implementation, as we will see shortly.
Operator overloading allows us to appropriate the use of some standard operators,
like the math operators’ addition, subtraction, division, multiplication, and modulo.
For example, we can write a code that allows the use of the plus sign to, say, add two
Employee objects, or any other custom type. Consider the code in Listing 3-15.

Listing 3-15. Adding Two Employee Objects
fun main(args: Array<String>) {

var el = Employee("John Doe")
var e2 = Employee("Jane Doe")

var e3 = el + e2

println(e3.name)

Somehow, we intuitively know what the statemente3 = el + e3 means; if we
add one employee object to another, then we should get the combined information or
state of employees el and e2—if that is the kind of thing you want to be able to do in
code. Programmatically, we know this statement should not work because the addition
operator doesn’t know anything about Employee objects, much less how to perform the
add operation on them. However, in Kotlin, we can teach the addition operator how to
add two Employee objects. This is shown in Listing 3-16.

75

CHAPTER 3 FUNCTIONS
Listing 3-16. class Employee
class Employee(var name: String) {

infix operator fun plus(emp: Employee) : Employee { @
this.name += "\n${emp.name}" //
return this

@ This is very similar syntax to an infix function, as we’ve seen in previous section. The only thing
new here is the operator keyword.

We already know what the infix keyword will do to the function. The fact that plus is
an infix-ed function, allows us to write code like this (see Listing 3-16):

var el = Employee("John Doe")
var e2 = Employee("Jane Doe")
var e3 = el plus e2

However, the function name plus isn’t an ordinary function name. It isn’t just
another name that we thought about and made up. It has a special meaning to Kotlin.
The plus function name is a fixed identifier that corresponds to the math operator +. And
when this special function name is combined with the keywords infix and operator, it
allows us to write codes like this

var e3 = el + e2

Kotlin allows us to override quite a number of operators, and it’s not limited to just
math operators. Table 3-1 shows some of them. It’s not a complete list, but it should give
you an idea of how much you can overload.

76

Table 3-1. Operators That can be Overloaded and Their Corresponding Function

CHAPTER 3 FUNCTIONS

Names
Operator Function name Expression Translated to
+ Plus a+b a.plus(b)
- Minus a-b a.minus(b)
/ Div al/b a.div(b)
* Times a*b a.times(b)
% rem a%b a.rem(b)
rangeTo a..b a.rangeTo(b)
++ inc a++ a.inc()
-- dec a-- a.dec()
+= plusAssign a+=b a.plusAssign(b)
-+ minusAssign a-=b a.minusAssign(b)
/= divAssign a/=b a.divAssign(b)
*= timesAssign a *=b a.timesAssign(b)
%= remAssign a%b a.remAssign(b)
> compareTo a>b a.compareTo(b) > 0
< compareTo a<hb a.conpareTo(b) < 0
>= compareTo a >= a.conpareTo(b) >= 0
<= compareTo a<=b a.conpareTo(b) <= 0

Operator overloading is a specific case of polymorphism where different operators,
like math operators, can have different implementations depending on the arguments
(or type of operands), as we've seen demonstrated in Listings 3-14 and 3-15. The use
of operator overloading, when done correctly, can produce codes that are easier to
understand because they are written in the language of the business or object domain.
They have higher semantic values.

Kotlin isn’t the first language to implement operator overloading. It's been done by
languages like C++ before. It should be noted that the use or, more aptly, the overuse and
abuse of operator overloading has led to much criticism. Precisely because if you can

77

CHAPTER 3 FUNCTIONS

redefine the actions and behavior of well-known operators like plus, minus, etc., it can
lead to unwieldy code. So, exercise good judgment when you take the route of operator
overloading.

Chapter Summary

¢ Kotlin functions can be written in three places. Like in Java, they can
be a member of the class, but they can also be written as a top-level
construct. Third, they can be written embedded in other functions—
we did not delve into local functions in this chapter, but we will
consider this topic at some length in later chapters.

o Kotlin makes it easier to declare and call functions by adding support
for default parameters, named parameters, and even variable
numbers of arguments. The combination of positional, named, and
default parameters allows us to move away from excessive use of
parametric overloading, like what we did in Java.

o Extension functions offer a new way to extend behaviors of existing
types. We can add the extra behavior outside the class but we can call
the extension function as if it was baked right into the class definition.

o Infix functions and Infix operators let us increase the semantic values
of our codes by allowing to us write function invocations without
using the dot notation. By allowing function calls to be infix-ed, the
resulting code becomes more expressive and closer to the language
of the domain.

In the next chapter, we’ll look the OOP side of Kotlin. We'll learn how Kotlin deals
with classes, constructors, and interfaces. We'll also learn about the new data classes in
Kotlin.

78

CHAPTER 4

Working with Types

What we'll cover:
o Interfaces
e Classes
e Data classes
e Access modifiers
e Object declarations

Kotlin, like Java, is a class-based, object-oriented language. It uses interfaces and
classes to define custom types. The way Kotlin works with types will feel very similar to
the way we’ve worked in Java, but there are also some areas where Kotlin will not feel like
we're in familiar ground. In this chapter, we’ll explore those similarities and differences.

Interfaces

The basic form of an interface in Kotlin, like in Java, looks something like the code in
Listing 4-1.

Listing 4-1. Interface Fax

interface Fax {
fun call(number: String) = println("Calling $number")
fun print(doc: String) = println("Fax:Printing $doc")
fun answer()

}

79
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_4

CHAPTER 4 WORKING WITH TYPES

It still uses the interface keyword, and it also contains abstract function(s). What'’s
remarkable about Kotlin interfaces are that they can (1) contain properties and (2) have
functions with implementations—in other words, concrete functions. Although, Java
8 did allow for default implementations in Java, so that last one is no longer unique to
Kotlin, but still pretty useful, as we shall see later. Don’t worry too much about interfaces
having properties—you’ll get used to it. Although we won'’t deal with properties in this
section (yet), we'll get to them in a later section (classes). To implement an interface,
Kotlin uses the colon operator, as shown in Listing 4-2.

Listing 4-2. class MultiFunction Implementing Fax

class MultiFunction : Fax { @
override fun answer () { ®

}
}

@ The colon operator is used, instead of Java’s implements keyword. The colon is used for
inheriting classes as well.

® We have to provide an implementation for the answexr () function because it didn’t have
an implementation in the interface definition. On the other hand, we don’t have to provide
implementation for call() and print() because they have an implementation in the
interface definition. You may also note that we are using the override keyword in this
function. Its use is necessary in order to clarify to the compiler that we don’t intend to hide or
overshadow the answer () function in the interface definition. Rather, we intend to replace it,
so it can be polymorphic. We want to provide our own behavior for the answexr () function in
this class.

You might be wondering why Kotlin would allow us to provide implementations
inside interfaces. Aren’t interfaces supposed to contain only abstract functions and leave
the implementations to the classes that will implement the interface? That way, you can
enforce contracts between types. Well, during the early days of Java, that was precisely
the way interfaces were used; they were purely an abstract construction. However, as of
Java 8, you can already provide default implementations on interfaces.

There are some practical reasons why this was allowed. Default implementations
on interfaces would allow us to evolve the interfaces over time. Imagine if we wrote
interface Foo today with member functions a(), b(), and ¢(), and this was released to

80

CHAPTER 4 WORKING WITH TYPES

other developers. In the future, if we added function d() to interface Foo, all codes that
used Foo would now break. However, if we provide a default implementation for d(),
then the existing codes don’t have to break. This is one of the use-cases where a function

implementation on an interface might be useful.

Diamond Problem

A “diamond problem” happens when a class inherits from, say, two super types, and
both super types implement exactly the same function or method. See Listing 4-3 for a
code example.

Listing 4-3. Diamond Problem

interface A {
fun foo() {
println("A:foo")
}
}

interface B {
fun foo() {
println("B:foo")
}
}

class Child : A, B {

The code shown in Listing 4-3 won’t compile because it’s not clear what will be
the behavior of function foo() when invoked from an instance of the Child class; foo()
is defined by interfaces A and B and both interfaces provide default implementation
for the function. This is known as the “diamond problem.” A class inherits from two
supertypes, and a behavior is defined on more than one of the types from where the class
descends. In Listing 4-3, if we invoked foo() from an instance of Child, it is ambiguous
which behavior it would exhibit—whether it would print “A:foo” or “B:foo”. In Kotlin, the
way to resolve this is to let the Child class provide an implementation of the conflicted
function—in this case, function foo(). Listing 4-4 shows the solution.

81

CHAPTER 4 WORKING WITH TYPES

Listing 4-4. Diamond Problem, Solved

interface A {
fun foo() {
println("A:foo")
}
}

interface B {
fun foo() {
println("B:foo")
}
}

class Child : A, B {
override fun foo () {
println("Child:foo")
}
}

fun main(args: Array<String>) {
var child: Child = Child()
child.foo()

}

Invoking Super Behavior

Like Java, Kotlin’s functions can call the functions of its supertype if it has an

implementation. Also, like in Java, Kotlin uses the super keyword to accomplish this. The

super keyword in Kotlin means the same as it did in Java—it’s a reference to the instance

of the supertype. To invoke a function on a supertype, you'll need three things: (1) the

super keyword; (2) name of the supertype enclosed in a pair of angle brackets; and (3)

the name of function you want to invoke on the supertype. It looks something like the

code snippet here:

super<NameOfSuperType>.functionName()

Let’s expand our Fax and Multifunction example from earlier in the chapter.

82

CHAPTER 4 WORKING WITH TYPES

Listing 4-5. Printable, Fax, and MultiFunction

interface Printable {
fun print(doc:String) = println("Printer:Printing $doc")
}

interface Fax {
fun call(number: String) = println("Calling $number")
fun print(doc: String) = println("Fax:Printing $doc")
fun answer() = println("answering")

}

class MultiFunction : Printable, Fax {

override fun print(doc:String) {
println(“Multifunction: printing”)
}
}

Listing 4-5 shows the Fax and MultiFunction example from earlier. We've added a
new interface called Printable, and it also defines a print () function. Our revised code
listing shows the MultiFunction class inheriting from both Fax and the new Printable
interfaces. The MultiFunction class overrides the print () function; it has to, because the
print() function is inherited from both Printable and Fax interfaces, and it has default
implementations on both.

The overridden print () function in MultiFunction has a simple println statement.
To demonstrate how to call a function on the supertype, we will invoke the print()
function on both supertypes from within the overridden print() in MultiFunction.
Listing 4-6 shows us how to do this.

Listing 4-6. MultiFunction, Calling Functions on Supertype
class MultiFunction : Printable, Fax {

override fun print(doc:String) {
super<Fax>.print(doc)
super<Printable>.print(doc)
println("Multifunction: printing")
}

}
83

CHAPTER 4 WORKING WITH TYPES

Now, when we invoke the print() function, it will call the print() in Fax, then
in Printable, and finally, whatever statements are left in the overridden print() in
MultiFunction. Listing 4-7 shows the full codes for this example.

Listing 4-7. MultiFunction, Printable, and Fax

interface Printable {
fun print(doc:String) = println("Printer:Printing $doc")
}

interface Fax {
fun call(number: String) = println("Calling $number")
fun print(doc: String) = println("Fax:Printing $doc")
fun answer() = println("answering")

}

class MultiFunction : Printable, Fax {

override fun print(doc:String) {
super<Fax>.print(doc)
super<Printable>.print(doc)
println("Multifunction: printing")
}
}

fun main(args: Array<String>) {
val mfc = MultiFunction()
mfc.print("The quick brown fox")
mfc.call("12345")

}

Classes

A class is defined using (1) the class keyword; (2) an identifier, which will be its name; (3)
an optional header; and (4) an optional body. Listing 4-8 shows a basic class.

84

CHAPTER 4 WORKING WITH TYPES
Listing 4-8. A basic class in Kotlin

class Person() {

}

The header of the class is the pair of parentheses. The header may contain
parameters, but in this example, it doesn’t have any. The pair of curly braces comprises
the body of the class. Both the header and the class body are optional, but most of the
codes we will use this in book will include both of them.

To instantiate the Person class, we can write something like the following:

var person = Person()

If not for the noticeable absence of the new keyword, it looks a lot like how we would
create objects in Java. The pair of parentheses after the type name (Person) is a call to a
no-arg constructor (ctor). Let’s go back a bit to Listing 4-8 and take a closer look at the
header portion of the class definition. This is one of the few areas where Kotlin looks
and feels a bit different from Java. Java classes didn’t have headers, but Kotlin does. This
header is actually a constructor definition.

Constructors

Kotlin classes can have more than one constructor in their definitions. This isn’t very
different from Java since its classes can also contain more than one ctor. However,
Kotlin makes a distinction between a primary ctor and a secondary one. A primary

ctor is written on the header part of the class, like the one you've seen in Listing 4-8,
while secondary ctor(s) are written in the body. Listing 4-9 shows a class with a primary
constructor.

Listing 4-9. Person Class with Primary Constructor

class Person constructor(_name: String) { @
var name:String @
init { 3}
name = name @
}
}

85

CHAPTER 4 WORKING WITH TYPES

© When a constructor is written on the class header, like this, it’s primary ctor. This way of writing
a ctor is essentially the same as in our example in Listing 4-8, except that Listing 4-8 doesn’t
contain the constructor keyword, and that in here (Listing 4-9), our ctor is taking in a parameter.

® This is a member variable that will hold the value of _name.

® This is an initializer block that is similar to Java’s initializer. This gets executed whenever an
instance of a class is created. You can have more than one initializer block in your class, and
when that happens, initializers will be executed in the order they were defined in the class.
An initializer block is a pair of curly braces prefixed by the keyword init You would normally
use them when the only constructor you have is a primary constructor, because primary
constructors cannot contain any code (whether statement or expressions).

® We can access arguments that were passed to the primary ctor from an initializer block.

When the primary ctor doesn’t have (or need) annotations or visibility modifiers, we
can omit the constructor keyword, like so:

class Person (_name: String) {
var name:String
init {
name = _name
}
}

We can further simplify and shorten the code by joining the init block and
declaration of the name variable in a statement. Kotlin is smart like that.

class Person (_name: String) {
var name:String = name

}

Constructors may also be defined inside the body of the class, just like the way it
was done in Java. When they are written as such, they are called secondary constructors.
Listing 4-10 shows a sample code with a secondary ctor.

86

CHAPTER 4 WORKING WITH TYPES
Listing 4-10. Employee Class, with Secondary Constructor

class Employee {
var name:String
constructor(_name: String) {
name = _name

}
}

Notice in Listing 4-11 that we didn’t have to use the init block because the
initialization of the name member variable was done in constructor body. A secondary
ctor, unlike a primary ctor, can contain code.

Listing 4-11. class Employee, with Two Secondary Constructors

class Employee {
var name:String = "" (1]
var empid:String = ""

constructor(_name: String) : this(_name, "1001") @
constructor(_name:String, id: String) { (3]
name = _name
empid = _id
}
}

@ We have to initialize our member variables because Kotlin won’t be able to tell what we are
doing the initialization.

® A secondary constructor needs to have the constructor keyword. This ctor doesn’t have a body;
it’s okay to write it like that. Furthermore, this ctor invokes another ctor—one that accepts two
arguments.

® Another secondary constructor is defined for the Employee class. This one takes in two
parameters: a name and an employee id.

You can overload your constructors in Kotlin, like we did in Java, as you can see
in Listing 4-11. And also, as in Java, we can invoke other constructors using the this
keyword. The this keyword in Kotlin is the same as in Java, it refers to an instance

87

CHAPTER 4 WORKING WITH TYPES

of yourself—no surprises there. Notice, though, how we used the this construct to
delegate the call to another secondary constructor. You need to chain the this call to the
constructor definition using a colon (see bullet 2 of Listing 4-11).

While Kotlin allows us to do parametric polymorphism on constructors via
overloading, this isn’t really idiomatic Kotlin because the same result can be achieved
using Kotlin’s ability to provide default values for function parameters. See Listing 4-12
for a simplified version of the Employee class example.

Listing 4-12. Simplified Employee class

class Employee (_name:String, empid:String = "1001") {
val name = _name
val empid = empid

}

The code in Listing 4-12 is shorter and more concise. Furthermore, by moving the
constructor parameters to the primary constructor, it allowed us to declare the member
variables using val rather than var. The use of immutable variables is a preferred
technique in Kotlin because it reduces coding errors overall. You can’t accidentally
change a property’s value if it's immutable in the first place.

Inheritance

Kotlin classes are final by default, as opposed to Java classes that are “open” or non-final.
The code, as shown in Listing 4-13, won’t compile because the Person class is final.

Listing 4-13. Person and Employee class

class Person {

}

class Employee : Person() {

}

In order for our code sample to compile, we have to explicitly tell Kotlin that class
Person is open, which signifies that we intend for it to be extended or inherited (see
Listing 4-14). This default behavior of Kotlin classes is considered to be the correct
behavior and good practice. To paraphrase a quote from Joshua Bloch’s Effective Java

88

CHAPTER 4 WORKING WITH TYPES

(Addison-Wesley, 2008): “design and document for inheritance, otherwise prohibit it.”
This effectively means that all classes and methods that you don’t intend to be extended
or overridden ought to be declared as final. In Kotlin, this is the automatic behavior.
Listing 4-14 shows the Person class again, but this time, it has the open modifier, which
signifies that class Person can be extended.

Listing 4-14. Person and Employee class

open class Person {

}

class Employee : Person() {

}

The behavior of being final as a default behavior isn’t just for classes; member
functions are like that too in Kotlin. When a function is written without the open
modifier, it is final.

Listing 4-15. Method Overriding

open class Person(_name:String) {
val name = _name

open fun talk() { @
println("${this.javaClass.simpleName} talking")
}
}

class Employee(name:String, empid:String = "1001") : Person(_name) {
val empid = empid

override fun talk() { ®
super.talk() ©
println("Hello")

}

override fun toString():String{ @
return "name: $name | id: $empid"

}

89

CHAPTER 4 WORKING WITH TYPES

© Functions need to be specifically marked as open so that they can be overridden by subtypes.

® Subtypes need to mark the function with the override keyword in order to make it polymorphic.
Intellid is smart enough to prevent compilation from happening when it senses that you are
defining a function on the subtype that has an exact signature on the supertype without using
the override keyword.

© We can call the super behavior from here; this effectively invokes the talk() function in class
Person.

@ We're overriding the toString() function. This behavior was inherited from the Person class,
which in turn it inherited from class Any. You can think of class Any as the analog for the java.
lang.Object.

You need to keep in mind that when a function has been marked as open, it will
remain open for overriding by its direct subtypes and even its indirect subtypes unless
the function is marked as final again. To illustrate this point, let’s consider Listing 4-16.

Listing 4-16. class Person, Employee, and Programmer

open class Person(_name:String) {
val name = name

open fun talk() { @
println("${this.javaClass.simpleName} talking")
}
}

open class Employee(_name:String, empid:String = "1001") : Person(_name) {
val empid = _empid

override fun talk() { ®
super.talk()
println("Employee overriding talk()")

}

override fun toString():String{
return "name: $name | id: $empid"

}
}

90

CHAPTER 4

class Programmer(_name:String) : Employee(_name) {
override fun talk() { ®
super.talk()
println("Programmer overriding talk()")
}
}

WORKING WITH TYPES

® talk() function is marked as open for the first time.

® We can override talk() from here.

® We can still override talk() from here even if class Employee did not mark the function as
open. Function talk() stays implicitly open through the inheritance hierarchy, unless it will be

marked as final somewhere in the inheritance chain.

Listing 4-17 demonstrates how to make a function “closed” again in the midst of the

inheritance chain.

Listing 4-17. How to Make a Function Final, Again

open class Person(_name:String) {
val name = _name

open fun talk() {
println("${this.javaClass.simpleName} talking")
}
}

open class Employee(name:String, empid:String = "1001")
val empid = empid

override fun talk() {
super.talk()
println("Employee overriding talk()")

}

final override fun toString():String{ ©
return "name: $name | id: $empid"
}
}

: Person(_name) {

91

CHAPTER 4 WORKING WITH TYPES

class Programmer(_name:String) : Employee(name) {
override fun talk() { ®
super.talk()
println("Programmer overriding talk()")
}
}

@ Seeing the final and override keyword on the same line does seem a bit odd, but it’s perfectly
legal. What it means is that we are overriding the function and at the same time “closing” it for
further inheritance. The final keyword in this function affects only subtypes of the Employee
class, but not the Employee class itself.

® This won’t compile anymore.

Properties

A property in a class or object is traditionally created by defining a member variable
and providing accessor methods for it. These methods will usually follow some naming
conventions where the name of the member variable will be prefixed by get and set.

Listing 4-18. Person Class in Java with a Single Property

class Person {
private String name;

public String getName() {
return this.name;

}

public void setName(String arg) {
this.name = arg;

}

public static void main(String []args) {
Person person = new Person();
person.setName("John Doe");
System.out.println(person.getName());
}

}
92

CHAPTER 4 WORKING WITH TYPES

Listing 4-18 shows a simple Java class that defines a single property called name. This
is done by defining a member variable that will be kept private so that access to this state
will only be controlled via the accessors—getName() and setName (). This kind of coding
is idiomatic in Java because it doesn’t have native language support for properties. We
can still follow this style of coding in Kotlin, but we don’t have to because Kotlin has
language support for properties.

If we were to re-write Listing 4-18 in Kotlin, it would look like the code in Listing 4-19.

Listing 4-19. Person class With a Single Property

class Person(_name:String) { ©
val name:String = name @

}

fun main(args: Array<String>) {
var person = Person("John Smith")
println(person.name) ©

}

© A constructor takes in a parameter. This allows us to set the name of the object at the point of
creation.

® We have access to parameters from via the constructor from here.

® This may look like we are directly accessing the name member variable, but we are not. This
actually calls the get accessor method.

The Person class definition in Listing 4-19 can further be simplified to that in
Listing 4-20.

Listing 4-20. Simplified Person class
class Person(val name:String)

fun main(args: Array<String>) {
var person = Person("John Smith")
println(person.name)

}

93

CHAPTER 4 WORKING WITH TYPES

The code here is the most concise way of defining a property in Kotlin. It’s also
considered idiomatic. Notice the changes we made in the code:

1. The parameter in the primary constructor now has a val
declaration. This effectively makes the constructor parameter a
property. We could have used var, and it would work just as well.

2. We no longer need to differentiate the identifier in the constructor
parameter with the member variable; hence we dropped the
leading underscore in the _name variable.

3. We can drop the entire body of the class since we don’t need
it anymore. The class body only contains the code to transfer
the value of the constructor parameter to the member variable.
Since Kotlin will automatically define a backing field for the
constructor parameter, we don’t have to do anything anymore in
the class body.

The code in Listing 4-20 shows the most basic way to define data objects in Kotlin
(Java programmers refer to them as POJOs or plain old java object). By simply using
either val or var in the primary constructor parameters, we can automagically define
properties with proper mutator methods. However, there will still be situations when
you will need to exercise more control over the “getting” and “setting” process of these
properties. Kotlin allows us to do that as well.

We can take over the automatic process of “getting” and “setting” by doing the
following:

1. Declare the property in the body of the class, not in the primary
constructor.

2. Provide getter and setter methods in the class body.

The full syntax for declaring a property is as follows:

var <property name>:[<property type>][=<initializer>]
[<getter>]
[<setter>]

Listing 4-21 shows some basic usage of custom accessor methods.

94

CHAPTER 4 WORKING WITH TYPES

Listing 4-21. Custom Accessor Methods

class Employee {

}

var name: String = "" @

get() { @
Log("Getting lastname") ©
return field @

}

set(value) { ©
Log("Setting value of lastname")
field = value O

fun Log(msg:String) {

}

println(msg)

fun main(args: Array<String>) {

}

var emp = Employee()
emp.name = "John Doe" @
println(emp.name) @

We declare and define the property inside the class body, instead of capturing it as parameter in
the primary constructor. We initialize it to an empty String first.

The syntax for get () looks a lot like the syntax for defining a function, except we don’t write
the fun keyword before it.

This is where you write your custom code. This statement will be executed every time someone
tries to access the name property.

The field keyword is a special one. It refers to the backing field, which Kotlin automatically
provides when we define a property called name. The name member variable isn’t a simple
variable; Kotlin makes an automatic backing field for it, but we don’t have direct access to that
variable. We can, however, access it via the field keyword, like what we did here.

The value parameter corresponds to the value that will be assigned to the property after the
Employee object has been created (see bullet @).

95

CHAPTER 4 WORKING WITH TYPES

® After we’ve performed our custom logic, we can now set the value of the field.
©@ This will trigger our set accessor logic, see bullet @.

® This will trigger our get accessor logic, see bullet @.

You might be wondering why we use the field keyword in the getter and setter
method. Why couldn’t we just code the accessor methods like we did in Java (see
Listing 4-22)? This is the wrong way to code getter and setter for properties.

class Employee {
var name: String =

get() {
Log("Getting lastname")
return this.name 0

}

set(value) {
Log("Setting value of lastname")
this.name = value @

@ This results in a recursive call, which will eventually throw StackOverflowError.

& So will this

In Listing 4-22, the expression this.name doesn’t really access the member variable
name. Instead, it calls the default accessor methods that Kotlin provides automatically
when you define a property for the class. So, calling this.name from within an accessor
function will result in a tailspin of recursive calls, and eventually the runtime will throw
a StackOverflowError. To prevent this from happening, you should use the field keyword
when referring to the backing field of a property name from within an accessor function.

Data Classes

When POJOs are created, sometimes they get to be stored on collections (e.g., ArrayList,
HashMap, HashSet, etc.). And in order to utilize these POJOs correctly, in Java, we
needed to override the equals(), hashCode(), and toString() methods. Remember

96

CHAPTER 4 WORKING WITH TYPES

that in Java, so that we can use properly when they are stored in collections—specifically
collections that are sensitive to the hashCode.

In the previous section, we've seen how easily we can create the analog of POJOs
in Kotlin. We can simply define properties in our classes and we should be good to go.
For simple use-cases, the data objects that we created in the previous section should
be good enough. But when you need to do things like store value objects in collections
or compare objects with one another for content equality, you'll find that classes with
properties aren’t enough. To utilize value objects properly from within collection objects,
we need to be able to compare objects with each other reliably. In Java, we use to solve
this kind of problem by overriding some methods of the java.lang.0Object—namely,
the equals() and hashCode () methods. These methods are the key players when we're
doing object comparison.

Listing 4-22. Comparing Two Employee Objects
class Employee(val name:String)
fun main(args: Array<String>) {

val el

Employee("John Doe")

val e2 = Employee("John Doe")

println(el == e2) // output is false
}

Remember that in Kotlin, the double equals operator actually invokes the equals()
function of the operands being compared—and since everything in Kotlin is an object,
they all have the equals () function since it’s inherited from the supertype Any. If we
let the Employee class stand as it does in Listing 4-22, it will use the implementation
of the equals () function from class Any, and it doesn’t know how to compare
Employee objects. To resolve this, we can override the equals() method and provide an
implementation on how to compare Employee objects.

Note Like Java, Kotlin follows a single-rooted class inheritance. If we don’t
specify a superclass in a class definition, the class will implicitly extend Any. This
class is the supertype of all non-nullable types in Kotlin.

97

CHAPTER 4 WORKING WITH TYPES

To fix the code in Listing 4-22, we would normally have to override the equals() and
hashCode() functions as shown in Listing 4-23.

Listing 4-23. Overriding the hashCode() and equals() Functions
import java.util.*

class Employee(val name:String){
override fun equals(obj:Any?):Boolean { @
var retval = false
if(obj is Employee) { @
retval = name == obj.name ©

}

return retval

}
override fun hashCode(): Int { @

return Objects.hash(name)

}
}

fun main(args: Array<String>) {

val e1

Employee("John Doe")
Employee("John Doe")

val e2

println(e1) (5]
println(el == e2) (6]

® The equals() function in class Anyis open, we can override it.

® We check first if we are comparing an Employee object to another Employee object. The is
keyword performs two functions: (1) it checks if objis actually an instance of Employee, and (2)
it automatically casts objto an Employee object.

® 0bj is automatically casted to an Employee object. The is keyword already did that. Now, we
can safely compare the name member variables of the two objects.

98

CHAPTER 4 WORKING WITH TYPES

O Overriding the hashCode() function is usually needed if you intend to store this object in
collections where comparisons of hash code is material (e.g., HashSet, HashMap, etc.). For our
small example, it’s not necessary. But it'’s a good practice to override the hashCode () function
whenever you override the equals () function.

© Invokes the toString() function of the Employee object. The toString() function is found
on the supertype Any. The default implementation of toString() gives us an output of
something like this "Employee@ae805cc4".

® Now, this prints "true".

This kind of coding practice is very common in Java, and for that reason, quite a
few IDEs have capabilities to generate the boilerplate code of toString(), equals(), and
hashCode(). While we can still do these things in Kotlin, we don’t have to. The only thing
we need to do in Kotlin is to make Employee a data class. Listing 4-24 shows us how.

Listing 4-24. Employee Data Class
data class Employee(val name:String) @

fun main(args: Array<String>) {
val e1 = Employee("John Doe")
val e2 = Employee("John Doe")

println(el) (2]
println(el == e2) ©

© To make any class in Kotlin a data class, just use the keyword data on the class declaration.

® We get an added bonus of a nicer toString() output with data classes. This one now prints
“Employee(name=dJohn Doe)”.

® Also, the equals () comparison returns true.

99

CHAPTER 4 WORKING WITH TYPES

Visibility Modifiers

Kotlin uses almost the same keywords as Java for controlling visibility. The keywords
public, private, and protected mean exactly the same in Kotlin as they do in Java. But, the

default visibility is where the difference lies. In Kotlin, whenever you omit the visibility
modifier, the default visibility is public.

Listing 4-25. Class Foo

class Foo {

var bar:String =
fun doSomething() {

}
}

In Listing 4-25, class Foo and its members are visible publicly. If you want to change
the visibility to something less permissive, you have to declare that explicitly. In contrast,
Java’s default visibility is package-private, meaning it’s only available to classes that are
on the same package. Kotlin doesn’t have a package-private equivalent because Kotlin
doesn’t use packages as a way to manage visibility. Packages in Kotlin are simply a way to
organize files and prevent name clashes.

In place of Java’s package-private, Kotlin introduces the internal keyword, which
means it is visible in a module. A module is simply a collection of files, it can be (1) an
Intelli] module or project; (2) an Eclipse project; (3) a Maven project; or (4) a Gradle
project. To demonstrate the some of the visibility modifiers in action, see Listing 4-26.

Listing 4-26. Demonstrating Visibility Modifiers

internal open class Foo { @
private fun boo() = println("boo")
protected fun doo() = println("doo")

}

fun Foo.bar() { @
boo() ©
doo() @

}

100

CHAPTER 4 WORKING WITH TYPES

fun main(args: Array<String>) {
var fu = Foo()
fu.bar()

}

@ Class Foois marked as internal, which makes it visible only in classes and top-level functions
that are within the same module and whose visibility are also marked internal.

® This is an error. The extension function is marked as public, but the receiver of the function
(Foo) is marked as internal. Class Foo is less visible than the extension function; hence, Kotlin
doesn’t allow us.

® boo() is private to the class, so we can’t reach it from here.

O doo() is protected, we can’t reach it from here.

To make Listing 4-26 run without problems, we need to fix the visibility errors.
Listing 4-27 shows the solution.

Listing 4-27. class Foo, Corrected Visibility Errors

internal open class Foo {
internal fun boo() = println("boo")
internal fun doo() = println("doo")

}

internal fun Foo.bar() {
boo()
doo()

}

fun main(args: Array<String>) {
var fu = Foo()
fu.bar()

}

101

CHAPTER 4 WORKING WITH TYPES

Access Modifiers

The access modifiers of Kotlin are final, open, abstract, and override. They affect
inheritance. We've used final, open, and override earlier in the chapter, so the only
keyword we haven’t used is abstract. The abstract keyword has the same meaning in
Kotlin as it does in Java. It’s applicable to classes and functions.

When you mark a class as abstract, it becomes implicitly open as well, so you don’t
need to use the open modifier, it becomes redundant. Interfaces don’t need to be
declared as abstract and open, since they are implicitly, already, abstract and open.

Object Declarations

Java'’s static keyword did not make the cut in Kotlin’s list of keywords. There is no static
equivalent in Kotlin; in its place, Kotlin introduces the object and companion keywords.

The object keyword allows us to define both a class and its instance all at the same
time. More specifically, it defines only a single instance of that class, which makes this
keyword a good way to define singletons in Kotlin. Listing 4-28 shows the basic usage for
the object keyword.

Listing 4-28. Using the Object Keyword to Define a Singleton

object Util {
fun foo() = println("foo")
}

fun main(args: Array<String>) {
Util.foo() // prints "foo"
}

We substitute the object keyword in place of the class keyword. What this effectively
does is define the class and create a single instance of it. To invoke the functions defined
in this object, we prefix the dot (.) with the name of the object—pretty much like how we
would call static methods in Java.

Object declarations can contain most of the things you can write in class, like
initializers, properties, functions, and member variables. The only thing you cannot
write inside an object declaration is a constructor. The reason for this is because you

102

CHAPTER 4 WORKING WITH TYPES

don’t need a constructor. The object declaration creates an instance already at the point
of definition, so a constructor is not necessary. Listing 4-29 shows some basic usage and
definition for an object declaration.

Listing 4-29. Initializers, Properties, Functions, and Member Variables in Object
Declarations

object Util {
var name = ""
set(value) {

field = value

}
init {
println("Initializing Util")
}
fun foo() = println(name)
}
fun main(args: Array<String>) {
Util.name = "Bar"
Util.foo() // prints "Bar"
}
Chapter Summary

o Kotlin interfaces are almost similar to that of Java, except that you can
declare properties in interfaces, although they still are not allowed
to have backing fields. Like Java 8, Kotlin interfaces can have default
implementations.

¢ Kotlin classes are defined a bit differently than their Java
counterparts. Classes are, by default, final and public.

103

CHAPTER 4 WORKING WITH TYPES

o Kotlin has two kinds of constructors: you can define primary and
secondary constructors. Primary constructors are a good way to
create simple value objects. However, to create really useful value
objects, Kotlin’s data classes are a good way to go.

o Kotlin has almost the same mechanism for controlling visibility
like Java, except that Kotlin replaced Java's package-private with the
internal keyword.

In the next chapter, we’ll dip our toes into the world of functional programming.

104

CHAPTER 5

Lambdas and Higher
Order Functions

What we’ll cover:
e Higher order functions
e Lambda
e Closures
e With and apply

In Chapter 2, we discussed the mechanics of Kotlin functions, and you've already
seen how similar they are to Java functions; you've also seen how different they are.
In this chapter, we’ll get back to the discussion of functions, but a different kind of
function—the kind that supports functional programming. You may have used lambdas
in Java 8; similarly, Kotlin also has support for lambdas. In this chapter, we’ll explore
these two topics.

Higher Order Functions

Higher order functions are functions that operate on other functions, either by taking
them in as parameters or by returning them. The term higher order functions comes from
the world of Math where there is a more formal distinction between functions and other
values.

Before we can get into a discussion about “Why would we need higher order
functions?” we’ll need to attend to its mechanics. We need to know how to write them
and what they look like. The discussion on the “why” of higher order functions may even

105
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_5

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS

come in later chapters, when we get to Android programming where there are plenty of
opportunities to put higher order functions to good use.
Listing 5-1 below shows an example of a function that takes in another function as

parameter.

Listing 5-1. A Function That Accepts Another Function

fun executor(action:() -> Unit) {
action()

}

Notice how the parameter is written in Listing 5-1, action is the name of the

parameter and its type is written as ()-> Unit, which means that it’s type is function.

A function type is written with a pair of parentheses, followed by the arrow operator

(a dash plus the greater than sign) and then followed by a type that the function is
supposed to return. In our example in Listing 5-1, our function parameter doesn’t return
anything—hence it’s declared as Unit.

This may look strange at first, especially if you haven’t used a language where
functions are treated the same way that variables are treated. In Kotlin, like any language
that supports higher order functions, functions are first class citizens. We can pass (or
return) functions from anywhere we can pass (or return) variables. Wherever you can
use a variable, you can also use a function.

Let’s go back to Listing 5-1. If we wanted the action parameter to be of type String,
then we could have written something like that in Listing 5-2.

Listing 5-2. 1f Action Was of Type String

fun executor(action:String) {
action()

}

But that’s not the case; we want action to be of type function. In Kotlin, a function
isn’t just a named collection of statement, it’s also a type. So, just like String, Int, or Float,
we can declare a variable to be of type function. A function type has three components:
(1) the parenthesized parameter type list; (2) the arrow operator; and (3) the return type.

106

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS

In Listing 5-1, the parenthesized parameter type list is empty, but it won’t always
be the case. It's empty right now because the function we intend to pass to executor()
doesn’t accept any parameters. The return type of executor () is Unit because the
function we intend to pass to it doesn’t return any value—that also, will not always be the
case, you may want to return an Int or String sometimes.

Now that we understand how to declare a parameter to be of function type, let’s take
alook at how to declare and define a variable to be of function type. See Listing 5-3.

Listing 5-3. How to Declare and Define a Function Type

val doThis:() -> Unit = {
println("action")

}

The LHS (left-hand side) doesn’t require much explanation, we’re simply declaring a
variable named doThis to be of type function, and this function doesn’t return anything,
so it’s declared return type is Unit. The RHS (right-hand side) looks like a function
without a header (the fun keyword and the function name), this is a lambda. We'll get to
lambdas in the next section. Going back to our code examples, Listing 5-4 shows how to
put executor () and doThis together.

Listing 5-4. Complete Code for doThis and executor() Examples

val doThis:() -> Unit ={ ©
println("action")

}

fun executor(action:() -> Unit) { @
action() ©
action.invoke() @

}

fun main(args: Array<String>) {
executor(doThis) @
}

107

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS

o

doThis is declared and defined as a function type. The implementation of the function is given
as a lambda expression on the RHS. The body of the function doesn’t return anything; hence the
return type specified for the function is Unit.

executor() is a function that accepts another function as a parameter; this parameter is
named action and its type is function, which is written as () — Unit. More specifically, this
function type doesn’t return anything—that’s why it's declared as Unit.

By appending a pair of parentheses on the name of the parameter, we get to invoke the
function.

This is another way of invoking the action function, but calling it like action()is more
idiomatic and, hence, preferred.

Inside the main function, we get to call executor () and we pass doThis. Note that we’re
not passing doThis ()with the parentheses. We don’t want to invoke doThis and then pass
the resulting value to executor (). What we want is to pass doThis not as a resulting
value, but as a function definition. The idea is to invoke doThis within the body of the
executor ()function.

In Listing 5-4, we wrote doThis as a property whose value is a lambda. This is

perfectly fine, but it might not feel like a natural way to write functions. Another way to

write Listing 5-4 is shown in Listing 5-5.

Listing 5-5. Another Way of Writing the doThis and executor() Examples

fun doThis() { @

}

println ("action")

fun executor(action:() -> Unit) {

}

action()

fun main(args: Array<String>) {

}

108

executor(::doThis) @

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS

O doThis is now defined in the usual way that we write functions, with the fun keyword and the
name of the function in the header.

® ::doThis is invoked with a double colon. This means we are resolving the function within the
current package.

Lambda and Anonymous Functions

Lambdas and anonymous functions are called function literals. These are functions that
are not declared but, rather, passed immediately as an expression—more often than not,
to a higher order function. Because of this they don’t need a name. We've used lambda
expressions earlier in this chapter. In Listing 5-3, we defined a property called doThis
whose type is a function, but it’s a rather verbose way of working with a function type. We
actually don’t need to explicitly write the return type of the function because Kotlin can
infer it for us. Listing 5-6 shows a more concise version of Listing 5-3.

Listing 5-6. Concise Version of Listing 5-3

val doThis = {
println("action")

}

As you've seen in the previous section, this kind of code is intended to be passed
along as an argument to a higher order function. But you can actually use this without
passing it to a higher order function. To invoke it, you may do something like the
following—presumably inside function main or any other top-level function

doThis()
or something like this
doThis.invoke()

The former looks more natural; it’s also considered more idiomatic, so we should
probably use that. Anyway, lambda expressions aren’t meant to be used like this. They
really shine when used within the context of higher order functions. In Listing 5-5, we
used the full syntactic form of the lambda expressions when we passed a named lambda

109

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS

expression to a higher order function. While you can certainly do that, it may not be
the usual way you'll encounter lambda expressions in the wild. Listing 5-7 is a rewrite
of Listing 5-5, but this time, instead of declaring and defining a named lambda, we will
simply pass it as an argument to the higher order function executor, as seen in

Listing 5-7.

Listing 5-7. Pass alambda to a Higher Order Function

fun main(args: Array<String>) {

executor(
{ println("do this") } @
)
}
fun executor(action:() -> Unit) {
action()
}

O This is the function literal. In Listing 5-5, we passed doThis, which was a property whose
value was a lambda expression. In this example, we are passing the lambda expression itself
directly to the higher order function. A lambda expression is enclosed in a pair of curly braces—
just like the body of a function.

Parameters in Lambda Expressions

Consider the code in Listing 5-8. If we were to write it as a lambda, it would look like
Listing 5-9.

Listing 5-8. Simple Function to Display a String

fun display(msg:String) {
println("Hello $msg")
}

110

CHAPTER 5 LAMBDAS AND HIGHER ORDER FUNCTIONS
Listing 5-9. display Function Written As lambda
{ msg:String -> println("Hello $msg") }

You'll notice that the entire function header, the keyword fun and the function name,
is completely gone, and the parameter list was relocated inside the lambda expression.
The whole expression is enclosed in a pair of curly braces. In a lambda expression, the
parameter list is written on the left-hand side of the arrow operator and the body of
the function is found on the right. You will also notice that the parameters in a lambda
expression don’t need to be inside a pair of parentheses because the arrow operator
separates the parameter list from the body of the lambda.

Also, in Listing 5-9, you can omit the type declaration of String in the parameter, so it
can be written like in Listing 5-10.

Listing 5-10. Omitted Type Declaration in Parameter List
{ msg -> println("Hello $msg") }

In some cases where the lambda expression takes only one parameter, like our code
example shown in Listing 5-10, Kotlin allows us to omit the parameter declaration and even
the arrow operator. We can rewrite Listing 5-10 in an even shorter way (see Listing 5-11).

Listing 5-11. The Implicit It
{ println("Hello $it") }

The it parameter name is generated if the context expects a lambda that has only
one parameter and if its type can be inferred. Listing 5-12 shows the full code on how to
declare and use a lambda expression within the context of a higher order function. Now
we have the functional programming version of the Hello World example.

Listing 5-12. Full Code for the lambda Example

fun main(args: Array<String>) {
executor({ println("Hello $it") })
}

fun executor(display:(msg:String) -> Unit) {
display("World")
}

111

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS

Writing and using lambdas with more than one parameter isn’t much different from
our single parameter example, as long as you write the parameter list on left side of the
arrow operator. See Listing 5-13 for an example.

Listing 5-13. lambdas With More Than One Parameter

fun main(args: Array<String>) {
doer({ x,y -> println(x +vy) })
}

fun doer(sum:(x:Int,y:Int) -> Unit) {
sum(1,2)

}

There may be occasions when a higher order function will take in some other
parameters together with function types. Such a function could look like Listing 5-14.

Listing 5-14. Higher Order Function With Multiple Parameters

fun executor(arg: String = "Mondo", display:(msg:String) -> Unit) {
display(arg)
}

We can invoke this function with this
executor("Earth", {println("Hola $it")})

And since executor’s first parameter has a default value, we can still invoke it like this
executor({println("Hola $it")})

Kotlin allows us to be a bit more precise in our syntax with lambdas. In cases where
the lambda is expected as the last parameter in a higher order function, we can write the
lambda outside the parentheses of the invoking function, like this:

executor() { println("Hello $it")}

And if the lambda is the only parameter, we can even omit the parentheses entirely,
like this one:

executor { println("Hello $it")}

112

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS

The simplification may not seem like a big deal right now, but I believe you'll
appreciate the syntactical improvements later as you write more and more lambda
expressions. The Kotlin Standard library makes heavy use of these things.

Closures

When you use a lambda expression inside a function, the lambda can access its closure.
The closure is comprised of the local variables in the outer scope as well as all the
parameters of the enclosing function. See Listing 5-15 for an example.

Listing 5-15. lambda Accessing Its Closure

fun main(args: Array<String>) {
executor(1listOf(1..1000).flatten()) ©
}

fun executor(numbers:List<Int>) {
var sum = 0;
numbers.forEach { (2]
if (it%2==0) {
sum += it 3]
}
}

println("Sum of all even numbers = $sum")

}

© We're passing a list of /nts to the executor ()function. Using the rangeTo function in operator
form (. .) is a handy way to generate a list of integers from 1 up to 1000. But you’d have to
use the flatten() function to make it a list of /nts.

® forEach is a higher order function; it takes in a lambda, which allows us to walk through items
in the list. The forEach only has one parameter, and we can access that single parameter
using the implicit it parameter name.

® The sum variable is part of the closure; it’s within the function body where the lambda is
defined. Lambdas have access to their closures.

113

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS

Note In Java lambdas, you can only access a variable in its closure if that same
variable is final. There is no such restriction in Kotlin.

with and apply

Lambdas are used heavily in Kotlin, they have their footprint all over Kotlin’s library. In
this section, we'll take a look at the functions with and apply from the standard library,
specifically from Standard.kt. These functions demonstrate the capabilities of Kotlin’s
lambdas and what makes them stand out from their Java counterparts. Kotlin lambdas
have the ability to call methods of a different object without additional qualifiers in the
body of the lambda. These kinds of lambdas are called lambdas with receivers.

The functions with and apply are of particular interest not because they allow
us to perform multiple operations on the same object without repeating the object’s
name—which is a welcome feature-but because they look like they were baked into
the language, which they’re not. They simply are functions that were made special by
extension functions and lambdas.

Listing 5-16 shows the definition of a simple class and how to set some of its
properties. The creation of an Event instance and the setting of its various properties
are happening inside function main. Notice that for every property we set, we have to
explicitly resolve the property back to the object reference, and this might be just fine—
after all, this was how we coded in Java, this chore is, sort of, expected.

Listing 5-16. class Event
import java.util.Date

data class Event(val title:String) {
var date = Date()

var time =
var attendees = mutablelListOf<String>()

fun create() {
print(this)
}
}

114

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS
fun main(args: Array<String>) {
val mtg = Event("Management meeting")

mtg.date = Date(2018,1,1)
mtg.time = "0900H"
mtg.attendees.add("Ted")

mtg.create()

If we were to use the with function to refactor the code, it would look like one in
Listing 5-17.

Listing 5-17. Using the With Function
fun main(args: Array<String>) {
val mtg = Event("Management meeting")

with(mtg) {
date = Date(2018,1,1)
time = "0900H"
attendees.add("Ted")

The with function takes in an object (mtg) and a lambda. Inside the lambda, we
can work with the mig object without the need to explicitly reference it. This is made
possible because the mitg object was made into a receiver of the lambda—remember the
extension functions in Chapter 3? And because mtg is the receiver, inside the lambda,
the this keyword points to the mig object. We could have explicitly referenced this in
our code, but that wouldn’t be any better than when we first started with this example.
By omitting the explicit reference to this, the resulting code is much cleaner. Also, the
convention to put the lambda outside the parentheses definitely works in this situation
because it makes the construct look as if with is a part of the Kotlin language.

The apply function can achieve the same thing; it’s almost very similar to the with
function except that it returns the receiver (the object passed to it)—the with function
doesn’t.

115

CHAPTER5 LAMBDAS AND HIGHER ORDER FUNCTIONS
fun main(args: Array<String>) {

val mtg = Event("Management meeting")

mtg.apply { (1)
date = Date() (2]
time = "0900H"
attendees.add("Ted")

}.create() (3]

}

@ Apply is an extension function and the mtg object becomes its receiver.

® And because the mig object is the receiver, this refers to the mfg object.

® When the lambda returns, it returns the receiver, which is a mtg object; hence, we can chain
some calls into it.

There are many more functions in Standard.Kt like run, let, also, etc., but these two
examples using with and apply should give us an idea of what lambdas are capable of.

Chapter Summary

e Functions in Kotlin are more than just a named collection of
statements. They are also a type. A function type can be used
anywhere else that other types can be used—functions are first-class
citizens in Kotlin.

« Lambdas and anonymous functions are function literals. They're like
regular functions, but they don’t have a name. They can be passed
around (to other functions) immediately as an expression.

o Kotlin lambdas, unlike their Java lambdas (at least Java 9, as of this
writing), can mutate variables in its closure.

o Higher order functions are functions that operate on other functions.
They can accept function types as parameters, or return function

types.

In the next chapter, we’ll explore Kotlin’s Collection classes.

116

CHAPTER 6

Collections and Arrays

What we’ll cover:
o Arrays
e Collections
o Filter and Apply

One of the real-world analogies for collections would be a purse or a pouch filled
with various things such as coins. The coins would be the items and the pouch itself is
the collection. So, based on this analogy, we can say that a collection is a container of
sorts that may have zero, one, or many items in it. You might remember that we already
have something like that—an array. The array fits this description exactly because it can
contain zero, one, or many items inside it. If this is the case, do we really need to learn
about other containers? In this chapter, we'll take a look at arrays, collections, and some
of the functions within the Kotlin collections framework.

Arrays

Coming from Java, you'll need to step back a bit before working with Kotlin arrays. In
Java, these are special types; they have first-class support on the language level. In Kotlin,
arrays are just types; more specifically, they are parameterized types. If you wanted to
create an array of Strings, you might think that the following snippet might work:

var arr = {"1", IIZII’ "3"’ II4II) "5"}

This code wouldn’t make sense to Kotlin—it doesn’t treat arrays as a special type. If
we wanted to create an array of Strings like the example, we can do it in a couple of ways.
Kotlin has some library functions like arrayOf, emptyArray, and arrayOfNulls that we

117
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_6

CHAPTER6 COLLECTIONS AND ARRAYS

can use to facilitate array creation. Listing 6-1 shows how to create and populate an array
using the emptyArray function.

Listing 6-1. Using the emptyArray Function

var arr = emptyArray<String>();

arr += "1
arr += "2"
arr += "3"
arr += "4"
arr += "5"

Adding elements to a Kotlin array isn’t as verbose as it is in Java, but don’t be fooled
by nice syntax. Arrays are still fixed-size at the time of creation, even here in Kotlin.
Adding an element to an array is done by creating a new array that is bigger than the old
array and then copying the elements of the old array into the new one. So, you see, it’s
still an expensive operation—even if we have a nice sugary syntax. Listing 6-2 shows how
to use the arrayOfNulls function to do the same thing.

Listing 6-2. Using the arrayOfNulls Function

var arr2 = arrayOfNulls<String>(2)
arr2.set(o, "1")
arr2.set(1, "2")

The integer argument of the arrayOfNulls function is the size of the array to be
created. Unlike the empty array in Listing 6-1, this function gives you a chance to provide
a size for the array you're about to create. By the way, you can still use bracket syntax for
Kotlin arrays, the get and set methods of Arrays are just convenience functions. Listing 6-3
shows the use of the bracket syntax together with the new get and set functions.

Listing 6-3. Getand Set Methods of Array
var arr2 = arrayOfNulls<String>(2)

// arr2.set(o, "1")
// arr2.set(1, "2")

"1"
ll2ll

arr2[0]
arr2[1]

118

CHAPTER6 COLLECTIONS AND ARRAYS

println(arr2[0]) // same as arr2.get(0)
println(arr2[1])

Another way to create an array is using the arrayOf function. Listing 6-4 shows the
snippet.

Listing 6-4. Using the arrayOf Function
var arr4 = arrayof("1", "2", "3")

This function is probably the closest syntax we can get to the Java array literal, which
is probably why it is used by programmers more commonly. You can pass a comma-
separated list of values to the function, and that automatically populates the newly
created array.

Finally, arrays can be created using the Array constructor. The constructor takes in
two arguments, the first of which is the size of the array to be created and the second

argument is a lambda function that can return an initial value of each element.

Listing 6-5. Using the Array Constructor
var arr3 = Array<String>(5, {it.toString()})

In most situations when you need to work with arrays of numbers, using the Array
class should suffice. You need to remember, however, that Array<Int>, for example,
represents the ints as Integer objects rather than integer primitives. So, if you need to
squeeze a bit more performance juice out of your code and really use the primitive
number types, you can use the specialized array types of Kotlin.

The specialized classes like ByteArray, IntArray, ShortArray, and LongArray represent
arrays of primitive types (like the ones in Java). These types let you work with arrays
without the boxing and unboxing overhead of Arrays that uses the object counterparts
of the number primitives. These specialized types actually do not inherit from Array, but
they have the same sets of methods and properties. Also, they have specialized factory
functions that make them easier to work with. See Listing 6-6 for an example.

Listing 6-6. Special Array Types

intArray0f(1,2,3)
longArray0f(1,2,3)

var z

var y

119

CHAPTER6 COLLECTIONS AND ARRAYS

var X

byteArray0f(1,2,3)

var w = shortArray0f(1,2,3)

println(Arrays.toString(z))
println(Arrays.toString(y))
println(Arrays.toString(x))
println(Arrays.toString(w))

I used the Arrays.toString() function so that we'll get a human-readable output

when printing the contents. If you simply print the array without the helper function, it
looks like gibberish, like this

println(z) // outputs [Ljava.lang.String;@6ad5c04e
Traversing arrays can be done in a couple of ways. First, you can use the trustworthy

Jorloop, as shown in Listing 6-7.

Listing 6-7. Using a for Loop to Process Each Array Element

for (i in z) {
println("$i zee")
}

Or you could use the forEach function, like so.
y.forEach { i -> println("$i why") }

If you need to keep track of both the index and the element of the array, you can use
the forEachIndexed function, as shown in Listing 6-8.

Listing 6-8. Using the forEachIndexed Function to Traverse the Array

x.forEachIndexed { index, element -»
println("$index : $element")

}

Before we leave the subject of arrays, we need to remember that if you don’t want
any duplication on the contents of the array, you'll have to write that program logic
yourself. Uniqueness of contents is not something that arrays will guarantee.

While arrays are very useful in many situations, they do have limitations, as you've
seen in the previous discussions. Adding new elements to arrays, while the syntax is

120

CHAPTER6 COLLECTIONS AND ARRAYS

friendly, is still an expensive operation. You can’t print them out without the use of
helper functions (although this is not a big deal). Finally, it doesn’t have a facility for
constraining the elements (e.g., enforcing uniqueness). For some situations these
limitations may not be a big deal, but for some situations, these may be deal-killers. So,
when we come up to the limitations of the arrays, we are coming up on the territory of
Collections—they help us deal with such limitations.

The availability of the collections framework as part of the development kit may
not be such a big deal for you. After all, you came from Java and it has an impressive
collections framework. But you need to remember that before languages like Java, C#,
Python, etc., there were no collections frameworks. Programmers had to write their own
program logic in order to deal with problems like resizable arrays, last-in first-out access,
hash tables or hash maps, etc. These aren’t simple storage issues, but rather, they are
data structure issues. It’s quite difficult to implement this data structure logic on your
own; there are a lot of edge cases to get right. Although there might still be legitimate
reasons to implement your own data structures (probably for performance reasons), in
most cases, you'd be better off to use the built-in collections framework.

Collections

The Kotlin collections are actually direct instances of the collections in the JDK. There’s no
conversion of wrapping involved. So, if you didn’t skimp on your study of collections while
you were in Java, that will certainly come in handy now. Although Kotlin didn’t define
its own collections code, it did add quite a few convenience functions to the framework,
which is a welcome addition because it makes the collections easier to work with.

Before we go to the code examples and more details, something needs to be said
regarding why it is called a collections framework. The reason it’s called a framework
is because the data structures are very diverse, in and of themselves. Some of them put
constraints on how we go through the collection; they impose certain order of traversal.
Some of the collections constrain the uniqueness of the data elements; they won'’t allow
you to put duplicates. And some of them let us work with the collections in pairs—like in
a dictionary entry, you'll have a key with a corresponding value.

121

CHAPTER6 COLLECTIONS AND ARRAYS

<<Iterable>> |<}— <<MutableIterable>>

I I

<<Collection>> [<}——— <<MutableCollection>>

| T 7

«List>> [<<Mutablelist>>

<<Set>> <} ZF <<MutableSet>>

Arraylist Zr

HashSet

Figure 6-1. Collections Framework

Figure 6-1 shows the hierarchy of the Kotlin collections framework. At the top of the
hierarchy are the interfaces Iterable and Mutablelterable—they are the parents of all the
collection classes we will work with. As you may have noticed in the diagram, each Java
collection has two representations in Kotlin: a read-only one and a mutable one. The
mutable interfaces map directly to the Java interfaces while the immutable interfaces
lack all of the mutator methods of their mutable counterparts.

Kotlin doesn’t have a dedicated syntax for creating lists or sets, but it does provide us
with library functions to facilitate creation. Table 6-1 lists some of them.

Table 6-1. Kotlin Collections and Their Creation Functions

Collection Read-Only Mutable

list listof mutablelListOf, arraylListOf
set setOf mutableSetOf, hashSetOf, linkedSetOf, sortedSetOf
map mapOf mutableMapOf, hashMapOf, linkedMapOf, sortedMapOf

122

CHAPTER6 COLLECTIONS AND ARRAYS

Note Although the map class doesn’t inherit from either /terable or
Mutablelterable (Figure 6-1), it’s still represented in Kotlin as two distinct versions:
a mutable and an immutable one.

Lists

Alist is a type of collection that has a specific iteration order. It means that if we added a
couple of elements to the list, and then we stepped through it, the elements would come
out in a very specific order—it’s the order by which they were added or inserted. They
won’t come out in a random order or reverse chronology, but precisely in the sequence
they were added. It implies that each element in the list has a placement order, an index
number that indicates its ordinal position. The first element to be added will have its
index at 0, the second will be 1, the third will be 2, and so on. So, just like an arrayj, it is
zero-based. Listing 6-9 shows the basic usage for a list.

Listing 6-9. Basic Usage of Lists
fun main(args: Array<String>) {

val fruits = mutableListOf<String>("Apple") @
fruits.add("Orange") (2]

fruits.add(1, "Banana") ©
fruits.add("Guava")

println(fruits) // prints [Apple, Banana, Orange, Guava]
fruits.remove("Guava") (4]
fruits.removeAt(2) (5]

println(fruits.first() == "Strawberries") @
println(fruits.last() == "Banana") 7]

println(fruits) // prints [Apple, Banana]

123

CHAPTER6 COLLECTIONS AND ARRAYS

@ Creates a mutable list, the constructor function allows us to pass a variable argument that will be
used to populate the list. In this case, we only passed one argument—we could have passed more.

® Adds an element to the list; “Orange” will come right after “Apple” since we did not specify the
ordinal position for the insertion.

® Adds another element to the list, but this time, we told it where exactly to put the element. This
one bumps down the “Orange” element and then inserts itself. Naturally, the ordinal position or
the index of all the elements that come after it will change.

® You can remove elements by name. When an element is removed, the element next to it
will take its place. The ordinal position of all the elements that comes after it will change
accordingly.

® You can also remove elements by specifying its position on the list.

@

You can ask if the first () element is equal to “Strawberries”.

© You can also test if the 1ast () element is equal to “Banana”.

Sets

Sets are very similar to lists, both in operation and in structure, so all of the things

we've learned about lists apply to sets as well. Sets differ from lists in the way they put
constraints on the uniqueness of elements. They doesn’t allow duplicate elements or

the same elements within a set. It may seem obvious to many what the “same” means,
but Kotlin, like Java, has a specific meaning for “sameness.” When we say that two

objects are the same, it means that we've subjected the objects to a test for structural
equality. Both Java and Kotlin define a method called equals(), which allows us to
determine equivalence relationships between objects. This is generally what we mean by
“sameness.” Listing 6-10 shows some basic operations with sets.

Listing 6-10. Basic Usage for Sets

val nums = mutableSetOf("one", "two") @

nums.add("two") (2]
nums.add("two") (3]
nums.add("three") o

println(nums) // prints [one, two, three]

124

CHAPTER6 COLLECTIONS AND ARRAYS

val numbers = (1..1000).toMutableSet() ©
numbers.add(6)
numbers.removelf { i ->i%2==0} @

println(numbers)

1]
12}

©

Creates a mutable set and initializes it by passing a variable argument to the creator function.

This doesn’t do anything. It won’t add “two” to the set because the element “two” is already in
the set.

No matter how many times you try to add “two,” the set will reject it because it already exists.
This, on the other hand, will be added because “three” doesn’t exist in the elements yet.

Creates a mutable set from a range. This is a handy way of creating a set (or a list) with many
numeric elements.

This demonstrates how to use a lambda to remove all the even numbers in the set.

Maps

Unlike lists or sets, maps aren’t a collection of individual values; rather, they are a

collection of pairs of values. Think of a map like a dictionary or a phone book. Its

contents are organized using a key-value pair. For each key in a map, there is one and

only one corresponding value. In a dictionary example, the key would be the term, and

its value would be the meaning or the definition of the term.

The keys in a map are unique. Like sets, maps do not allow duplicate keys. However,

the values in a map are not subjected to the same uniqueness constraints; two or more

pairs in map may have the same value. Listing 6-11 show some basic usage for maps.

Listing 6-11. Basic Operations on a Map

val dict = hashMapOf("foo" to 1) ©

dict["bar"] = 2 (2]
val snapshot: MutableMap<String, Int> = dict ©
snapshot["baz"] = 3 (4]
println(snapshot) (5]
println(dict) (6]

println(snapshot["bar"]) // prints 2 @

125

CHAPTER6 COLLECTIONS AND ARRAYS

© Ca mutable map

®

Adds a new key and value to the map

®

Assigns the dict map to a new variable. This doesn’t create a new map. It only adds an object
reference to the existing map.

Adds another key-value pair to the map
Prints {bar = 2, baz = 3, foo=1}

Also prints {bar = 2, baz = 3, foo=1}, because both snapshot and dict points to the same map.

©Q ©@ © ©

Gets the value from the map using the key

Now that we’ve seen some examples of basic usage of collections, you probably have
noticed that they share some common characteristics—maybe not 100% as with the
map, but the list and the set have quite a lot of overlap. One good thing about working
with the collections framework is the uniformity or regularity of certain operations
throughout the entire collection. The skills and knowledge that we learn from working
with lists, for example, commutes or translates nicely across sets and maps as well.
Because of this, it’s a good idea to be familiar with the collections protocol. Table 6-2 lists

some of the more common operations on collections.

Table 6-2. Common Operations on Collections

Function or Property Description

Size Tells you how many elements are in the collection. Works with lists, sets
and maps.

isEmpty() Returns True if the collection is empty, False if it’s not. Works with lists,
sets, and maps.

contains(arg) Returns True if arg is within the collection. Works with lists, sets, and maps.

add(arg) Add arg to the collection. This function returns true if arg was added—in

the case of a list, arg will always be added. In the case of a set, arg will be
added and return true the first time, but if the same arg is added the second
time, it will return False. This member function is not found on maps.

remove(arg) Returns True if arg was removed from the collection, returns False is the
collection is unmodified.

iterator() Returns an iterator over the elements of the object. This was inherited from
the lterable interface. Works with lists, sets, and maps.

126

CHAPTER6 COLLECTIONS AND ARRAYS

Collections Traversal

By now, we already know how to work with basic collections. We know how to create
them and add and remove items from them. Another skill we will need to work
effectively with collections is the ability to loop through them or traverse them. To do
that, let’s go back to Figure 6-1 and recall the inheritance structure of the collections
framework.

In Figure 6-1, you'll notice that Collections inherits the Iterable interface. An iterable
defines something that can be iterated over or stepped over. When a class inherits an
Iterable interface, whether directly or indirectly, it means we can pull an iterator out of it
and step through its elements one by one. And in each step, we can also pull the value of
each element—it’s up to your program logic what you want to do with those values; you
can transform them, use them in an arithmetic operation, or persist it in a storage, for
example.

We can use a variety of ways to step through the elements in a collection. We can use
the trusty while and for loops, if you prefer, but using the more modern forEach is more
idiomatic—and a bit in vogue. Listing 6-12 shows how to step through a list using while
and for loops.

Listing 6-12. Using while and for Loops for Collections

val basket = listOf("apple", "banana", "orange")
var iter = basket.iterator()
while (iter.hasNext()) {

println(iter.next())

}

for (i in basket) {
println(i)
}

Listing 6-12 is probably something close to how you worked with collections in
Java, so it should look familiar. Listing 6-13 shows the equivalent codes when using the
forEach function.

127

CHAPTER6 COLLECTIONS AND ARRAYS

Listing 6-13. Using forEach

fruits.forkach { println(it) } ©
nums.forkach { println(it) } @

// for maps

dict.forkach { println(it) } @
dict.forkach { t, u -> println("$t | $u") } @

@ The lambda expression of the forEach has an implicit it parameter. The it parameter is the
value of the current element. What this statement means is for each item in fruits, do what'’s
inside the lambda, which in our case is just print1ln().

® Same thing works for sets

®

Same thing works for maps

® This is a variation of bullet 3 above, but this one allows us to work with the key and value
separately.

Filter and Map

Filter and map are part of the essential skills you need to master in order to work with
collections efficiently. Filtering allows us to work with the elements of a collection
selectively. It narrows down the field. It basically returns a subset of the original
collection. A map, on the other hand, allows us to transform either the elements or the
collection itself.

Let’s say, for example, that we have a list of numbers—integers to be precise, like this

val ints = (1..1200).toList()

The variable ints contains a list of integers from 1 up until 100, in increments of 1.
If we wanted to work with only the even numbers in this list, we could do so by (1)
creating a new list; (2) iterating over the ints list and performing a modulo check for even
numbers; and then (3) if the current element being processed is an even number, we add
it to the new list. That code might look like Listing 6-14.

128

CHAPTER6 COLLECTIONS AND ARRAYS

Listing 6-14. Using a for Loop to Sieve Out the Even Numbers

val evenInts2 = mutableListOf<Int>()
for (i in ints) {
if (i%2==0){
evenInts2.add(i)
}
}

Listing 6-14 is what might be called the “imperative” way of filtering out things.
Nothing wrong with it—it’s a little verbose, that’s all. But it’s perfectly readable, even by
someone just starting out in programming. However, in Kotlin, the more idiomatic way
of narrowing down collections is by using the filter function. If we were to do this using
filters, it would like this

val evenInts = ints.filter { it % 2 == 0 }

I do not even put a Listing label on it anymore because it's unnecessary—it’s just one
line. The filter function is a standard function in the collections library. You already know
that the expression in the curly braces is a lambda. However, for filters, the more apt term
is a lambda predicate. A lambda predicate is also a function literal, but the expression
inside has to yield a Boolean value.

Going back to our example, the filter is invoked against a collection—for example,
alist of ints. The result of filter operation is a smaller list or a subset. The list is trimmed
down by iterating over each element and testing them against the condition specified in
the lambda predicate. Any item that passes the test of the predicate will be included in
the resulting subset.

Let’s continue our example and work with our smaller list of even integers. Let’s
say that what we want now is to square each element in our list of even integers. This
requires us to manipulate and transform each element in the list and then return a new
list that contains the transformed elements. If we were to solve this using a for loop, it
would look like Listing 6-15.

129

CHAPTER6 COLLECTIONS AND ARRAYS

Listing 6-15. Generate a List of Squared Ints Using a for Loop

val squaredInts2 = mutableListOf<Int>()
for (i in evenInts2) {
squaredInts2.add(i * i)

}
println(squaredInts2)

Or we could have solved it using the forEach function in Collections. It would have
looked like Listing 6-16.

Listing 6-16. Generate a List of Squared Ints Using forEach

val squaredInts2 = mutablelListOf<Int>()
evenInts2.forEach { squaredInts2.add(it * it) }

This is actually looking much better, but transforming elements in a collection is
really the province of the map function. So, let’s solve the squared integers problem
using maps. Listing 6-17 shows the code.

Listing 6-17. Using the Map Function

val squaredInts = evenInts.map { it * it}
println("Sum of squares of even nos <= 100 is ${squaredInts.sum()}")

The only relevant statement in Listing 6-17 is the first one. The second statement
just prints out the sum of all the even numbers from 1 up to 100. Also, the second line
showcases another built-in function in the collections framework, the sum() function.
It’s pretty obvious what it does—it sums up the values in the collection.

Chapter Summary

o When working with a group of values, we can use either Arrays or
Collections. Use arrays for simple data structures, but when you
need to dynamically size your group of data or you need to put more
constraints to it, such as a uniqueness constraint, you might be better
served by Collections.

130

CHAPTER6 COLLECTIONS AND ARRAYS

e Arrays in Kotlin are unlike the ones in Java; they don’t enjoy special
treatment. In Kotlin, Arrays are just classes.

o Kotlin provides specialized classes for arrays if you feel you need to
work with arrays without the overhead of boxing and unboxing.

o Kotlin Collections are very similar to Java collections, but each of the
Java collection classes is represented in two ways: a mutable and an
immutable one.

o Kotlin collections have built-in functions like filter, map, and sum,
which makes working with collections a bit easier.

In the next chapter, we'll explore how Kotlin deals with Generics.

131

CHAPTER 7

Generics

What we’ll cover:
o Using generics
o Constraints
e Variance
e Reified generics

Ah, Generics. That devious topic that emerges even in beginner texts. This subject
trips up a lot of beginners because it’s tricky to understand and even trickier to
explain. But we need to deal with it because without Generics, it’s difficult to work with
Collections.

For the most part, Kotlin generics works the same way as Java generics; but they have
some differences. In this chapter, we’ll look at how to work with generics and how similar
(or different) Kotlin’s generics is from that of Java’'s—also, don’t worry too much about
the complexities of generics, we won’t do anything too crazy in this chapter.

Why Generics

Generics came to Java around 2004, when JDK 1.5 was released. Before generics, you
could write codes like that in Listing 7-1.

Listing 7-1. Using a Raw List, Java

List v = new ArraylList();
v.add("test");
Integer i = (Integer) v.get(0); // Run time error

133
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_7

CHAPTER 7 GENERICS

You might say, “But why would you do something as careless and patently idiotic as
that? You could clearly see from Listing 7-1 that we put a String in the ArrayList; so, just
don’t do any operation that’s not appropriate for a String. Problem solved.” It may not
always be as easy as that. The sample code is clearly contrived, and it’s easy to spot the
error right now, but if you're doing something non-trivial, it may not always be obvious
what the List contains.

The other point to notice about the sample code—and it’s actually the main point—
is that the code will compile without problems. You'll only discover the error at runtime.
There was no way for the compiler to warn us that we're about to do something that isn’t
type-safe. This is the main problem that generics is trying to solve: type-safety.

Going back to Listing 7-1, we know that the variable v is a List. It would have been
more useful if we knew what kinds of things were stored on that list. It’s in these situations
where generics is helpful. It allows us to say things like “this is a list of Strings” or “this is a
list of Ints”—and the compiler knows that beforehand; and because the compiler knows
it, it can prevent us from doing inappropriate things like casting a String to an Int or
subtracting with Strings, etc. Listing 7-2 shows how to use generics in our code.

Listing 7-2. List, with Generics: Java

List<String> v = new ArraylList<String>();
v.add("test");
Integer i = v.get(0); // (type error) compilation-time error

Now that the compiler has foreknowledge about what kinds of things are in the List,
it can prevent us from doing unsupported operations on the List.

The codes in Listings 7-1 and 7-2 are both valid in Java, which means you have the
option not to use generics in Collections (raw types). Java has to do this because it needs
to maintain backward compatibility with codes that were written prior to JDK 5. Kotlin,
on the other hand, doesn’t need to maintain any compatibilities with legacy codes. So,
in Kotlin, you cannot use raw types. All Kotlin Collections require type parameters. You
always have to use generics.

134

CHAPTER 7 GENERICS

Terminologies

Generic programming is a language feature of Kotlin. With it, we can define classes, functions,
and interfaces that accept type parameters. The parameterized type allows us to re-use
the algorithm to work with different types; it truly is a form of parametric polymorphism.
Figure 7-1 shows where the type parameters and type arguments are in a generic class.

type parameter

(1]

class Node < T >(val item:T) {
fun getleaf() : T {
return item g;
}

}

type
argument
val m = Node<Int>(1)
val n = Node(1) <@
val o = Node<String>("World")

Figure 7-1. Type arguments and type parameters

@ Angle brackets. When a class has angle brackets at the end of its name, it’s called a generic
class (there are also generic functions and interfaces).

@ Type parameter. It defines the type of data that this class can work with. You can think of it as being
part of the class implementation. Right now, we’re using the letter T to symbolize the type parameter,
but this is arbitrary. You can call it anything you want, it can be any letter or a combination of letters;
I'd stick to T if | were you, because it’s the convention many developers follow. You can use T
throughout the code inside the class as if it’s a real type. It's a placeholder for a type. In this example,
we used T as type for the item property and as return type for the getLeaf function.

© Type argument. In order to use the generic class, you to have provide the type argument. Now
that we’re creating an instance of the Node class, T will be substituted by type argument (Int
and String, in this illustration).

135

CHAPTER 7 GENERICS

You've seen generics code in the previous chapters, specifically in Chapter 6
(Collections). All of Kotlin’s collections classes use generics. As I said before, there are
no raw types in Kotlin. It’s not possible to create just a List—you have to be specific what
kind of List it is (e.g., a “list of Strings” List<String> or “a list of Ints” List<Int>).

Using Generics in Functions

To create a generic function, declare the type parameter before the function name. Then,
you can use the type parameter anywhere in the function.

Listing 7-3. fooBar, Generic Function

fun <T> fooBar(arg:T) : String { @
return "Heya $arg" // @

}

println(fooBar("Joe")) // prints "Heya Joe"
println(fooBar(10)) // prints "Heya 10"

© The type parameter T is used as the type of the function parameter arg.

® We're just returning the arg concatenated in String.

That'’s pretty simple to follow. We just used the type param in one place, and the
function is returning a String, no matter what type the param is. For another example,
see Listing 7-4.

Listing 7-4. A More Complex fooBar Function

fun <T> fooBar(arg:T) : T{ ©
var retval:T =0as T
when (arg) {
is String -> { (2]
retval = "Hello world" as T ©

136

CHAPTER 7 GENERICS

is Number -> {
retval = 100 as T
}
}

return retval

@ In this example, we used the type parameter as a type for arg (parameter to fooBar function)
and as a return type of the function itself.

® We're testing if arg is of String type. If it is, we’re also effectively casting it to a String; smart
cast, remember?

® We’re returning “Hello world”, and we are casting it (forcibly) as T. We cannot return a “String”
type right here, because fooBar expects to return type T to its caller, not String.

You can also use generics for extension functions. If you're making a function that
works with Lists, you probably want it to work with any kind of List, not just Strings or
Ints. Listing 7-5 shows how to use generics in an extension function.

Listing 7-5. Generics in Extension Function

fun <T> List<T>.getIt(index:Int): T { @
return this[index] @

}
fun main(args: Array<String>) {

val lfruits = listOf("Apples”, "Bananas", "Oranges") ©
val lnumbers = list0f(1,3,5) (4]
(1..100).toList().filter { it ¥ 5==0} ©

val lnumlist

println(1lnumlist.getIt(5))
println(1fruits.getIt(1))

137

CHAPTER 7 GENERICS

@ You can use the type parameter in the receiver (List<T>) and the return type of the extension
function.

® Let’s not do anything fancy; let’s just return an item given an index. In a production code, you
might want to actually check if the index exists, before you return it. In case you forgot what
this refers to, it refers to the List itself (it’s the receiver object).

® Our extension function works with a list of Strings.

©

It also works with a list of Ints.

@ This one is a bit fancy, but in the end, it still returns a List, so our extension function should
still work.

Using Generics in Classes

Like in Java, you can create Kotlin generic classes by putting a pair of angle brackets after
the name of the class and placing the type parameter between the angle brackets. After
that, you can use the type parameter anywhere in the class. Listing 7-6 shows, annotates,
and explains how to write a generic class.

Listing 7-6. Writing a Generic Class

class Node<T>(val item:T) { ©

fun getleaf() : T { (2]
return item

}

}

fun main(args: Array<String>) {
val m = Node<Int>(1) (3]
val n = Node(1) o
val o = Node<String>("World") @

138

CHAPTER 7 GENERICS

@ Type parameter is declared right after the name of the class, Node<T>. We’re using the T as
the type for parameter item.
® We're also using T as the return value of the function getLeaf.

® We’'re passing an Int to the constructor of Node. We can be verbose and specify Int as the as the
type parameter, Node<Int>.

® Node can infer what the type parameter is, so we can skip the angle brackets. It’s okay to write
it this way, too.

@ And because it’s a generic class, it works with Strings too.

You can constrain or restrict the types that can be used as type arguments for a class
or function. Our Node class, at the moment, should work with any type, because the
default parent (or upper bound) for the type parameter, if you don’t specify a constraint,
is Any? (Nullable type, so the question mark is included).

When you specify an upper-bound constraint for a type parameter, that will limit
the types you can use to instantiate the class. For example, if we wanted our Node
class to accept only Ints, Doubles, or Floats, we could use Number as the upper-bound
constraint. See Listing 7-7 for the code sample.

Listing 7-7. Node Class, with Constraint

class Node<T:Number>(val item:T) { @
fun getLeaf() : T {
return item

}

}

fun main(args: Array<String>) {
val m = Node<Int>(1) (2]
val n = Node(1.0F) (3)
val o = Node<String>("World") @
val p = Node(1.0) (5]

}

139

CHAPTER 7 GENERICS

© Now we’re putting a constraint on the type parameter <T:Number>. The only types we can use
to instantiate this class has to be subtypes of Number.

Int is subtype of Number, so it’s okay.
Float is also okay.

This wouldn’t work anymore; IntelliJ will tell you that “Type argument is not within bounds”.

®© © © ©

This should still work for Double, since it is a child class of number.

If you don’t have any restriction other than nullability of the type argument, you can
simply use Any as the upper-bound for the type parameter; see Listing 7-8.

Listing 7-8. Prevent Null Type Arguments

class Node<T:Any>(val item:T) {
fun getleaf() : T {
return item

Variance

We'll need to review some of our object-oriented programming (OOP) basics to prepare
us for a discussion on variance. Hopefully, we can jog your memory and remember some
of the fundamental principles of OOP.

OOP is a boon to developers; because of it, we can write codes like Listing 7-9.

Listing 7-9. Assign an Int Variable to Number Type

val a:Int = 1
val b:Number = a

println("b:$b is of type ${b.javaClass.name}")

We can also write functions like Listing 7-10.

140

CHAPTER 7 GENERICS

Listing 7-10. Function That Accepts a Number Type

foo(1)
foo(100F)
foo(120)

fun foo(arg:Number) {
println(arg)
}

The codes in Listings 7-9 and 7-10 are possible because of the Liskov Substitution
Principle (LSP). It's one of the more important parts of OOP — where a parent type is
expected, you can use a subtype in its place. The reason we use a more generalized
type (like Number, in Listing 7-10), is so that in the future, if we need to, we can write
an implementation of a subtype and insert into an existing and working code. This is
the essence of the Open Closed Principle (which states that a class must be open to
extension but closed to modification).

Note The Liskov Substitution Principle and Open Closed Principle are part of
the SOLID design principles. It’s one of the more popular sets of design principles
in O0OP. SOLID stands for (S) Single Responsibility (0) Open Closed (L) Liskov
Substitution (I) Interface Segregation and (D) Dependency Inversion

Let’s take another example, see Listing 7-11.

Listing 7-11. Employee, Programmer, and Tester

open class Employee(val name:String) {
override fun toString(): String {
return name

}
}

class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}

141

CHAPTER 7 GENERICS

fun main(args: Array<String>) {
val employee 1 :Employee = Programmer("Ted") @
val employee 2 :Employee = Tester("Steph") ()

println(employee 1)
println(employee 2)

© employee_1 is of type Employee, we’re assigning a Programmer object to it. Which is okay.
Programmer is a subtype of Employee.

® Same thing here, the type Tester is a subtype of Employee, so the assignment should be okay.

No surprises here, the Liskov principle is still at work. Even if you put Programmer
and Employee on a List, the type relationship is preserved.

Listing 7-12. Employee and Programmer in Lists

val 1list 1: List<Programmer> = listOf(Programmer("James"))
val list 2: List<Employee> = list 1

So far, so good. What about this next code; do you think it will work? (See Listing 7-13.)

Listing 7-13. Group of Employees and Programmers

class Group<T>
val a:Group<Employee> = Group<Programmer>()

This is one of the tricky parts of generics. Listing 7-13, as it currently stands, won’t
work. Even if we know that Programmer is a subtype of Employee, and that what we're
doing is type-safe, the compiler won’t let us through because the second statement in
the code has a problem.

When you're working with generics, always remember that by default
Group<Employee>, Group<Programmer>, and Group<Tester> don’t have any type
relationship—even if we know that Tester and Programmer are subtypes of Employee. By
default, the type parameter in the class Group<T> is invariant. For the second statement
(in Listing 7-13) to work, Group<T> has to be covariant. We'll solve in Listing 7-14.

142

CHAPTER 7 GENERICS

Listing 7-14. Classes Employee, Programmer, Tester, and Group
class Group<out T> 1]

open class Employee(val name:String) {
override fun toString(): String {
return name

}
}

class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}

fun main(args: Array<String>) {
val a:Group<Employee> = Group<Programmer>() @

}

© When you put the out keyword before the type parameter, that makes the type parameter
covariant.

® This code works because, Group<Programmer> is now a subtype of Group<Employee>,
thanks to the out keyword.

From these examples, we can now generalize that if type Programmer is a subtype
of Employee and Group<T> is covariant, then Group<Programmer> is a subtype
of Group<Employee>. Also, we can generalize that generic class, like Group, is
invariant on type parameter, if for the given types Employee and Programmer,
Group<Programmer> isn’t a subtype of Group<Employee>.

Now we've dealt with invariant and covariant. The last terminology we need to deal
with is contravariant. If the type parameter of Group<T> is contravariant, for the same
given types Employee and Programmer, then we can say that Group<Employee> is a
subtype of Group<Programmer>—it’s quite the reverse of covariant.

Listing 7-15. Use the in Keyword for Contravariance
class Group<in T> @

open class Employee(val name:String) {
override fun toString(): String {
return name

143

CHAPTER 7 GENERICS

}
}

class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}

fun main(args: Array<String>) {
val a:Group<Programmer> = Group<Employee>() @

}

@ The in keyword makes the type parameter <T> contravariant, which means;

® Type Group<Employee> is now a subtype of Group<Programmer>.

Subclass vs Subtype

Alright. I suspect that what you've read in the last 10 minutes left a bitter taste

in your mouth. How can it happen that Programmer is a subtype of Employee,
List<Programmer> is a subtype of List<Employee>, but Group<Programmer> is not a
subtype of Group<Employee>? Let’s try to answer that by going back to the concept of
class, types, subclass, and subtypes.

We think of a class as somewhat synonymous to a type, and generally that’s true—for
non-generic classes at least, and for most of the time. We know that a class has at least
one type—it’s the same type as that of the class itself. Go back to that time when you
were first studying Java classes—your teacher, mentor or probably a favorite author must
have defined a type of an object like this: “It’s the sum total of all its public behavior,
otherwise known as the object’s methods or contract,” or something like that. Let’s just
say it’s the set of behavior that the object has.

Going back to “a class has at least one type,” well, it can have more. Just look at
Figure 7-2.

144

CHAPTER 7 GENERICS

Any
CComparabIe) 1 (Comparable) CharSequence
~ N A
Number Employee String
A A
Int Programmer

Figure 7-2. Hierarchy for a bunch of classes and interfaces

From Figure 7-2, we can say:

o Any s at the top of the class chart; class Any is the equivalent of java.
lang.Object.

o Employee is a subclass of Any. Employee has two types: the one that
itinherited from Any, and itself—because the Employee class can
define its own set of behavior (methods), so that counts as one type.

e Programmer is a subclass of Employee, which is a subclass of Any,
which means Programmer has three types: one from Any, another
from Employee, and another coming from the Programmer class itself.

e Number is a subtype of Any, but it also implements the Comparable
interface. So, Number has three types: one from Any, another
one from itself, and another from the Comparable interface. We
can say that Number is a subtype of Any and it’s also a subtype
of Comparable—whatever you expect the Comparable to do, the
Number can do; whatever Any can do, Number can also do. This is
basic OOP.

o The String class has four types: one from Any, another from
Comparable, another one from CharSequence, and finally, from its
own class.

From the statements and the diagram, it’s okay to use subclass and subtype
interchangeably. There’s not much difference between the two. Their difference will
become apparent when we start considering nullable types.

The case of the nullable type is an example where a subclass is not the same as a
subtype. See Figure 7-3.

145

CHAPTER 7 GENERICS

Programmer? Any? Any
A A

Programmer Any Any?

Figure 7-3. Nullable types

When you put a question mark after the name of a type, it becomes the nullable
version of that type. In Kotlin, we can create two types from the same class: the
nullable and the non-nullable version. We can’t really say Programmer is a subclass
of Programmer? because there is just one class definition for Programmer, but
Programmer (the non-nullable version) is a subtype of Programmer? (the nullable
one). Similarly, Any is a subtype of Any? but Any? is not a subtype of Any—the reverse
direction isn’t true.

It’s okay to write

var j:Programmer? = Programmer("Ted") // assign non-null to nullable
Programmer
j = null. // then we assign a null to j

But it’s not okay to write
var i:Programmer = j // assign j (which is null) to non-nullable Programmer

Now we come to generics. Figure 7-4 should help us illustrate the next set of
concepts we need to grapple with.

Employee List<Employee> Group<Employee>
A A A

Programmer List<Programmer> Group<Programmer>

Figure 7-4. Generic types

146

CHAPTER 7 GENERICS

We know the first relationship Employee is the supertype of Programmer. We also
know List<Employee> will accept List<Programmer>; we tested this in Listing 7-12—
you're probably not quite sure why it works, so I'll circle back to this point after we deal
with the third set of boxes.

Now, given the codes

class Group<T>
val a:Group<Employee> = Group<Programmer>() // not sure

Why is it that we can’t reliably answer the question “Is Group<Employee> a
supertype of Group<Programmer>?"

It’s because while Group is a class, Group<Employee> is not, and by extension,
Group<Programmer> is not a subclass of Group<Employee>—if you're thinking of
List<Employee> and List<Programmer> right now, stop. I did say I'll circle back to that.
Stick with Group<Employee> and Group<Programmer> first. Table 7-1 should help us
summarize some of these things.

Table 7-1. Class vs. Type

Is It Class Is It a Type
Programmer Yes Yes
Programmer? No Yes
List Yes Yes
List<Programmer> No Yes
Group Yes Yes
Group<Programmer> No Yes

Now we can establish that Group<Employee> has no type relationship with
Group<Programmer>, even if class Employee has a type relationship with Programmer.
The type parameter in Group<T> is, by default, invariant (no type relationship). In order
to change the variance of <T> you need to use either out (to make it covariant) or in (to

make contravariant) keyword.

147

CHAPTER 7 GENERICS

So, if we want Group<Programmer> to be a subtype of Group<Employee> we need to
write the Group class like this:

class Group<out T>
val a:Group<Employee> = Group<Programmer>() // this is ok now

Now we can circle back to List<kEmployee> and List<Programmer> question. Why
and how does it work? Why is it okay to write this?

var m:List<Employee> = listOf(Programmer("Ted"))

The simple answer lies in the definition of the List interface, I copied the source code
of the List interface in Listing 7-16 for your convenience; I stripped all the comments.

Listing 7-16. Excerpt of the List Interface Source Code

public interface List<out E> : Collection<E> { @
override val size: Int
override fun isEmpty(): Boolean
override fun contains(element: @UnsafeVariance E): Boolean
override fun iterator(): Iterator<E>
override fun containsAll(elements: Collection<@UnsafeVariance E>):
Boolean
public operator fun get(index: Int): E
public fun indexOf(element: @UnsafeVariance E): Int
public fun lastIndexOf(element: @UnsafeVariance E): Int
public fun listIterator(): ListIterator<E>
public fun listIterator(index: Int): ListIterator<E>
public fun subList(fromIndex: Int, toIndex: Int): List<E>

© Type parameter is covariant. List uses the out keyword before the type parameter E.

The reason why it’s okay to assign List<Programmer> to List<Employee> is because
the type parameter on List<E> is covariant. Hence, if type Employee is a supertype
of Programmer, and List<E> is covariant, then List<Programmers> is a subtype of
List<Employee>.

148

CHAPTER 7 GENERICS

So, now that we understand types and subtypes a bit better, like in a Quentin
Tarantino movie, I'd like you to go back some 20 minutes ago and read the section on
“Variance” again.

Reified Generics

Let’s deal with the meaning of “reify” first. It means “to make something real,” and the
reason we're using rify and generics on the same statement is because of Java’s type
erasure.

Type erasure means exactly what you think it means. Java, and Kotlin as well, erases
generic type information at runtime. There are good reasons for this, but unfortunately,
we're not going to discuss those reasons why the language design is like that—but we will
discuss its effects. Because of type erasure, you can’t perform any reflection activity and
you can’t do any runtime check on a type, if it’s generic. See Listing 7-17 for an example.

Listing 7-17. Check for Type at Runtime

fun checkInfo(items:List<Any>) {
if(items is List<String>) { o
println("item is a list of Strings")

}

@ This won’t compile. The error is “Cannot check for instance of erased type.”

The is keyword doesn’t work on generic types at runtime; the smart cast breaks
because of type erasure. If you have some confidence about what the runtime type of the
List will be, you can make a speculative decision and cast it using the as keyword, like
this:

val i = item as List<String>

The compiler will let you through, but this is a dangerous thing to do. Let’s consider
one more example where we can build a stronger case as to why we need to retain type

information at runtime.

149

CHAPTER 7 GENERICS

Let’s say I have a List of objects, Programmer and Tester objects. [want to create a
function where I can pass a type parameter and filter the list using that type parameter. I
want the function to return the filtered list. Listing 7-18 shows us a code sample on how
this might be done—the code sample won’t work of course, because of the type erasure
issue, but just read through it first, and we will fix it later.

Listing 7-18. Filtering a List Using a Type Parameter

fun main(args: Array<String>) {
val mlist = listOf(Programmer("Ted"), Tester("Steph")) (1]
val mprogs = mlist.typeOf<Programmer> () (2]

mprogs.forEach {
println("${it.toString()} : ${it.javaClass.simpleName}")

}

}
fun <T> List<*>.typeOf() : List<T> { (4]
val retlist = mutableListOf<T>() (5]
this.forEach {
if (it is T) { 6}
retlist.add(it) 7]
}
}
return retlist (8]
}

open class Employee(val name:String) {
override fun toString(): String {
return name

}
}

class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}

150

CHAPTER 7 GENERICS

@ Let’s create a list of Programmer and Tester objects.
® Let’s call an extension function (of the List type) called typeOf. We’re passing Programmer as a
type argument, which means we want this function to return only a list of Programmers objects.

® We're just iterating through each item of the list. We print the name property and the Java
simpleName.

® Now we come to the definition of the extension function. We're defining a type parameter <T>,
we’re using T as the return type of this function. Also, we want this function to work with any
kind of List—hence the syntax.

® Let’s define a mutable list; we’ll use this to hold the filtered list.

® This is the code that won’t compile because we don’t know what kind of List this is anymore at
runtime. Kotlin, like Java, erases the type information. But let’s assume for a moment that Kotlin
does retain generic type information; if that’s the case, then this code is okay.

© |If the condition is okay, let’s add the current item to the return value.

® Finally, let’s return the filtered list.

Listing 7-18 would have worked perfectly if only List.typeOf could remember, at
runtime, what kind of list it was. To solve this problem, we’ll use the inline and reified
keyword. Listing 7-19 shows us how to do this.

Listing 7-19. How to Use Reified and Inline in a Function
inline fun <reified T> List<*>.typeOf() : List<T> { @

val retlist = mutableListOf<T>()
this.forEach {
if (it is T) {
retlist.add(it)
}
}

return retlist

@ Make the function inline and use the reified keyword before the type parameter. After doing
this, the function can retain type information at runtime.

151

CHAPTER 7 GENERICS

You can only reify inline functions. When you inline a function, the compiler will
replace every call to that function with its actual bytecode (not just the address of
the function). It’s like copying and pasting the bytecode of the function wherever the
function is called. This is how the compiler knows the exact type that you used as the
type argument. Hence, the compiler can generate the bytecode for the specific class that
was used as the type argument.

So, if we make a call like this:

val mprogs = mlist.typeOf<Programmer>()

If we reverse-engineer the bytecodes that compiler will generate for our reified
function, it might look like Listing 7-20.

Listing 7-20. Reified Function

val retlist = mutableListOf<Programmer>()
this.forEach {
if (it is Programmer) {
retlist.add(it)
}
}

return retlist

Asyou can see, we're not testing if it is T anymore—we’re testing if it is Programmer.
The generated bytecode references a specific class (Programmer), not a type parameter (T).
This is the reason why reified functions are not affected by type erasure. This, of course,
will increase the size of your runtime program, so use it sparingly. Listing 7-21 shows the
full and revised code of the reified example.

Listing 7-21. Filtering a List Using a Type Parameter

fun main(args: Array<String>) {
val mlist = 1istOf(Programmer("Ted"), Tester("Steph"))
val mprogs = mlist.typeOf<Programmer>()

mprogs. forEach {
println("${it.toString()} : ${it.javaClass.simpleName}")

}
}

152

CHAPTER 7 GENERICS

inline fun <reified T> List<*>.typeOf() : List<T> {

val retlist = mutablelListOf<T>()
this.forEach {
if (it is T) {
retlist.add(it)

}
}

return retlist

}

open class Employee(val name:String) {
override fun toString(): String {
return name

}
}

class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}

Chapter Summary

Generic programming lets us reuse algorithms.
All Collections in Kotlin uses generics.
Kotlin doesn’t have raw types, like Java.

There are three variances you need to know about: (1) invariance; (2)
covariance; and (3) contravariance.

Kotlin, like Java, erases generic type information at runtime; but if
you want to retain type information, inline your functions and use
the reified keyword.

This is the end of book’s Kotlin part. In the next chapter, we'll start our discussion
of Android programming. We'll kick it of by setting up the Android Studio development

environment.

153

PART I

Android Programming
with Kotlin

CHAPTER 8

Android Studio
Introduction and Setup

What we’ll cover:

e Overview of Android

° HiStOI'y
e Tooling
e Setup

Android could mean many things to different people, but since you're holding this
book, I assume you're interested in the part of Android that’s suited for developers.
Android is a platform that’s comprised of an operating system, software libraries,
application frameworks, software development kit, pre-built applications, and a reference
design. Both the platform and its development eco-system have evolved over time.

In this chapter, we’ll take a look at Android’s history and architecture. We'll also
discuss Android Studio and how to set it up.

History

Android came to life sometime in 2003 when a company named Android Inc. was
founded by Andy Rubin. At that time, Google was already backing Android Inc. but
didn’t own it yet. Google acquired Android Inc. sometime in 2005; then in 2007, the
Open Handset Alliance came to life, and the Android OS was officially opensourced.
During this time, Android had not reached version 1.0 just yet and it was far from
mainstream. Android reached version 1.0 in 2008—the dessert names weren’t part of the
culture just yet, but it wouldn’t be long before they were.

157
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_8

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

The following two years, 2009 to 2010, saw a torrent of rapid releases: Cupcake,
Donut, Froyo, éclair, and Gingerbread versions were released during this period.

2011 was a major milestone because up until that point, the Android OS remained
confined to mobile phones. Honeycomb, the successor to Gingerbread, was the
first Android version to be installed on tablets. There was a bit of controversy with
Honeycomb because Google did not release its code to open source immediately.

Table 8-1 shows a brief summary of Android’s history.

Table 8-1. Android’s History

2003 Android Inc., founded by Andy Rubin and backed by Google, was born
2005 Google bought Android Inc.

2007 Android was officially open-sourced. Google turned over its ownership to the Open Handset
Alliance (OHA)

2008 version 1.0 was released

2009 versions 1.1, 1.5 (Cupcake), 1.6 (Donut), and 2.0 (Eclair) were released
2010 versions 2.2 (Froyo) and 2.3 (Gingerbread) were released

2011 versions 3.0 (Honeycomb) and 4.0 (Ice cream sandwich) were released
2012 version 4.1 (Jellybean) was released

2013 version 4.4 (KitKat) was released

2014 versions 5.0-5.1 (Lollipop) were released; Android became 64-bit
2015 version 6.0 (Marshmallow) was released

2016 versions 7.0-7.1.2 (Nougat) were released

2017 version 8 (Oreo) was released

2018 version 9 (Android P, beta) was released

Architecture

The most visible part of Android, at least for developers, is its operating system (OS).

An OS is a complex thing, but for the most part, it is what stands between a user and the
hardware. That is an oversimplification, but it will suffice for our purposes. By “user;” I
don’t literally mean an end user or a person. What I mean by it is an application, a piece
of code that a programmer creates, like a word processor or an e-mail client.

158

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

Take the e-mail app, for example: as you type each character on the keys, the app
needs to communicate to the hardware for the message to make its way to your screen
and hard drive, and eventually send it to the cloud via your network. It is a more involved

process than I describe it here, but that is the basic idea. At its simplest, an OS does three
things:

1. manages hardware on behalf of applications

2. provides services to applications like networking, security,
memory management, etc.

3. manages execution of applications; this is the part that allows us
to run multiple applications, seemingly, almost at the same time

Figure 8-1 shows the logical architecture of the Android platform.

browser| | email | [yourapps | APPLICATIONS
| MANAGERS m
["activity |[location || package | [notification || LProviders | APPLICATIONS
[resource | | telephony | | window | b ; RIS
system
LIBRARIES ‘ android
: : e o runtime
webkit, media framework, open media libc, etc | —————
core
’ libraries
["hardware | [power | memory H process | l ‘
drivers | mgt___| mgt mgt | e LINUX KERNEL

Figure 8-1. Android’s logical architecture

At the lowest level of the diagram is the Linux kernel. It’s responsible for interfacing
with the hardware, among other things. It’s also responsible for various services like
memory management and execution of processes.

Linux is a very stable OS and is quite ubiquitous; you can find this OS in wide use.
It can run on things as small as watches or as large as server farms. Android has an
embedded Linux inside it that handles hardware interfacing and some other kernel
functions.

159

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

On top of the Linux kernel are low-level libraries like SQLite, OpenGL, etc. These
are not part of the Linux kernel but are still low level and, as such, are written mostly in
C/C++. On the same level, you will find the android runtime (android class libraries +
dalvik virtual machine), which is where Android applications are run.

Next up is the application framework layer. It sits on top of both the low-level
libraries and the android runtime because it needs both. This is the layer that we will
interact with as application developers because it contains all the libraries we need to
write apps.

Finally, on top is the application layer. This is where all our applications reside, both
the ones we write and the ones that come prebuilt. It should be pointed out that prebuilt
applications that come with the device do not have any special privileges over the ones
we will write. If you don't like the e-mail app of the phone, you can write your own and
replace it. Android is democratic like that.

Android Studio IDE

Developing applications for Android was not always as convenient as today. When
Android 1.0 was released sometime in 2008, what developers got by way of development
kit was no more than a bunch of command line tools and Ant build scripts. Building
apps with Vim, Ant, and other command line tools wasn’t so bad if you were used to that
kind of thing, but many developers were not used to that. The lack of IDE capabilities like
code hinting, project setups, and integrated debugging was somewhat a barrier to entry.

Thankfully, the android development tools (ADTs) for the Eclipse IDE was released,
also in 2008. Eclipse was, and still is, a favorite and dominant choice of IDE for many Java
developers. It felt very natural that it would also be the go-to IDE for Android developers.

From 2009 up until 2012, Eclipse remained the choice of IDE for development. The
android SDK has also undergone both major and incremental changes in structure
and in scope. In 2009, the SDK manager was released; we use this to download tools,
individual SDK versions, and android images that we can use for the emulator. In 2010,
additional images were released for the ARM processor and X86 CPUs.

2012 was a big year because Eclipse and ADT was finally bundled, this was a big deal
because until that time, developers had to install Eclipse and the ADT separately, and
the installation process wasn’t always smooth. So, the bundling of the two together made
it a whole lot easier to get started with Android development. 2012 is also memorable
because it marked the last year of Eclipse being the dominant IDE for android.

160

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

In 2013 Android Studio was released; to be sure, it was still on beta, but the writing
on the wall was clear. It will be the official IDE for Android development. Android
Studio is based on JetBrains’s Intelli]. Intelli] is a commercial Java IDE that also has a
community (non-paid) version. It would be this version that would serve as the base for
Android Studio.

There are quite a few JVM languages, but Java has always been the go-to language for
Android development—until 2017, when it was announced at Google I/0 that Android
will have first-class support for Kotlin. Android Studio 3 (AS3) automatically has support
for Kotlin.

Setup

The JDK is a required software for Android Studio, but since we've already covered the
JDK installation in Chapter 1, we'll proceed to the installation of AS3. The installer is
available for macOS, Windows, and Linux; the download page is at http://bit.ly/
getas3—the page should be able to detect what OS you are using and will display the
appropriate installer for you. You will be asked to agree to some terms and conditions
before you can proceed with the download. Read it, understand it, and agree to it so you
can carry on. After that, the AS3 installer will be downloaded in a zipped file.

For macOS, you need to do the following:

1. Unpack the installer zipped file.
2. Drag the application file into the Applications folder.
3. Launch AS3.

4. AS3 will prompt you to import some settings if you have a previous
installation. You can import that—it’s the default option.

Note If you have an existing installation of Android Studio, you can keep using
that version and still install the preview edition. AS3 can coexist with your existing
version of Android Studio; its settings will be kept in a different directory.

161

http://bit.ly/getas3
http://bit.ly/getas3

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

For Windows, you need to do the following:
1. Unzip the installer file.

2. Move the unzipped directory to a location of your choice, for
example C:\Users\myname\AndroidStudio

3. Dirill down to the AndroidStudio folder; inside it, you'll find
studio64.exe. This is the file you need to launch. It's a good idea
to create a shortcut for this file—if you right-click on studio64.exe
and choose “Pin to Start Menu,” you can make AS3 available from
the Windows Start menu. Alternatively, you can also pin it to the
Taskbar.

The Linux installation requires a bit more work than simply double-clicking and
following the installer prompts. In future releases of Ubuntu and its derivatives, this
might change and become as simple and frictionless as its Windows and macOS
counterparts, but for now, we need to do some tweaking. The extra activities on Linux
are mostly because AS3 needs some 32-bit libraries and hardware acceleration.

Note The installation instructions in this section are meant for Ubuntu 64-bit and
other Ubuntu derivatives (e.g., Linux Mint, Lubuntu, Xubuntu, Ubuntu MATE, etc.). |
chose this distribution because | assumed that it was a very common Linux flavor;
hence, readers of this book would be using that distribution.

If you are running a 64-bit version of Ubuntu, you will need to pull some 32-bit
libraries in order for AS to function well.

To start pulling the 32-bit libraries for Linux, run the following commands on a
terminal window:

sudo apt-get update && sudo apt-get upgrade -y
sudo dpkg --add-architecture 1386
sudo apt-get install libncurses5:1386 libstdc++6:1386 z1lib1g:i386

162

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

When all the prep work is done, you need to do the following:

1.

Unpack the downloaded installer file. You can unpack the file
using command line tools or using the GUI tools. You can, for
example, right-click on the file and select the “Unpack here”
option, if your file manager has that.

After unzipping the file, rename the folder to AndroidStudio.

Move the folder to a location where you have read, write and
execute privileges. Alternatively, you can also move it to /usr/
local/AndroidStudio.

Open a terminal window and go to the AndroidStudio/bin folder,
then run ./studio.sh.

At first launch, AS3 will ask you if you want to import some
settings. If you have installed a previous version of Android Studio,
you may want to import those settings.

Android Studio Configuration

If this is the first time you've installed AS3, you might want to configure a couple of things

first before diving into coding work. In this section, I'll walk you through the following:

Getting some more software that we’ll need in order to create
programs that target specific versions of Android

Making sure we have all the SDK tools we need; and optionally

Changing the way we get updates for AS3

Launch AS3 if you haven’t done so yet, then click “Configure,” as shown in Figure 8-2.

Choose “Preferences” from the dropdown list.

163

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

‘@@ Welcome to Android Studio

%

Android

Version
VETSIUI «

nStudio

J¢ Start a new Android Studio project

= Open an existing Android Studio project
¥ Check out project from Version Control ~
[€' Profile or debug APK

» Import project (Gradle, Eclipse ADT, etc.)

¥ Import an Android code sample

@) Events ~ | # Configure ~ Get Help

SDK Manager
Preferences

Figure 8-2. Go to preferences from the AS3 opening screen

You will see the “Preferences” window, as shown in Figure 8-3. On the left-hand side
of the window, click “Android SDK.”

164

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

[J=N] Default Preferences
Appearance & Behavior) System Settings ' Android SDK

v Appearance & Behavior Manager for the Android SOK and Tools used by Android Studio
Appearance Android SDK Location: | /Users/ted/LibraryfAndroid/sdk Edit
Menus and Toolbars _ SDK Tools SDK Update Sites
¥ System Settings
Pasanords Each Android SDK Platf, & includes the Android platform and sources pertaining to an
AP level by default. Once i lled, Android Studio will ically check for updates. Check
HTTP Proxy “show package details" to display individual SDX components.
Updates RN . TS AELLavel) Qevaion | S0
Usage Statistics v [E Android 8.1 (Crec)
Android SDK Platform 27 27 3 Installed
= Sources for Android 27 27 1 Installed
File Colors L] % R
Android TV Intel xB6 Atom System Image 27 4 Not installed
Scopes L &= Google APIs Intel xBE Atom System Image 27 2 Update Available: &
Notifications Google Play Intel x86 Atom System Image 27 3 Not installed
Quick Lists v B Android 8.0 (Oreo)
: Android SDK Platform 26 28 2 Installed
Path Variables Sources for Android 26 26 1 Installed
Keymap Android TV Intel x86 Atom System Image 26 9 Not installed
» Editor China version of Android Wear Intel xB6 Atom System Image 26 4 Mot installed
Plugins Android Wear Intel x86 Atom System Image 26 4 Not installed
» Version Control e & Google APIs Intel x86 Atom System image 2% 8 Update Available: 10
& Google APIs intel xBE Atom_B4 System Image 26 8 Update Available: 10
* Build, Execution, Deployment Google Play Intel x86 Atom System Image 26 7 Not installed
» Schemasand DTDs [} v & Android7.1.1 (Nougat)
< Android SDK Platform 25, rev 3 25 3 Installed
Sources for Android 25 25 1 Not installed
Android TV Intel x86 Atom System Image 25 1 Not installed
Show Package Details
T Cancel Apply m

Figure 8-3. SDK platforms

When you get to the SDK window, enable the “Show Package Details” option so you
can see a more detailed view of each API level. We don’t need to download everything in
the SDK window. We will get only the items we need.

SDK levels or platform numbers are specific versions of Android. Android 8 or “Oreo”
is API levels 26 and 27, Nougat is API levels 24 and 25. You don’t need to memorize the
platform numbers, at least not anymore because AS3 shows the platform number with
the corresponding Android nickname.

You may download “Nougat” and “Oreo” if you wish; those are API levels 24, 25, 26,
and 27. For our purposes, please download “Marshmallow”—it is API level 23. This is the
version that we will mostly use throughout the book. Make sure that together with the
platforms, you will also download “Google APIs Intel x86 Atom_64 System Image.” We
will need those when we get to the part where we test run our applications.

Choosing an API level may not be a big deal right now, because at this point, we’re
simply working with practice apps. When you plan to release your application to the
public, you may not be able to take this choice lightly though. Choosing a minimum

165

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

SDK or API level for your app will determine how many people will be able to use your
application. At the time of writing, 25% of all Android devices are using “Marshmallow,”
22% are using “Nougat,” and 4% are using “Oreo.” These stats are from dashboard page of
developer.android.com. It’s a good idea to check these statistics from time to time; you
can find it here http://bit.1ly/droiddashboard.

Going back to our configuration, when you're happy with your selection, enable the
tick boxes for the API and images that you'd like to download, then click “SDK Tools” —
it’s right next to the “SDK Platforms” button as shown in Figure 8-4.

L =N | Default Preferences
ApE & Behavior) Sy gs ! Android SDK
v Appearance & Behavior Manager for the Android SOK and Tools used by Android Studic
Appearance Android SOX Location: | /Users/ted/Library/Andreid/sdk Edit
Menus and Toolbars SOK Platforms _ SDK Update Sites

¥ System Settings
Below are the available SDK developer tools. Once installed, Android Studio will automatically

Hebind check for updates. Check "show package details” to display available versions of an SDK Tool.
HTTP Proxy Nacie Versin P
gy SESRPRNE..i -
ppass CMake Not Installed
Usage Statistics LLDB Not Installed
Android Auto API Simulaters 1 Not installed
File Colors o Andreid Auto Desktop Head Unit emulator 11 Not installed
Android Emulator 27.2.9 Installed
Scopes Android SDK Platform-Tools 27.0.1 Installed
Notifications Android SDK Tools 26.1.1 Installed
Quick Lists Documentation for Android SDK 1 Not installed
Path Variables Google Play APK Expansion library 1 Not installed
Google Play Licensing Library 1 Mot installed
Keymap Google Play services 49 Not installed
» Editor Google Web Driver 2 Not installed
Plugins instant Apps Development SDK 1.2.0 Not installed
T T intel x86 Emulator Accelerator (HAXM installer) 6.2.1 Installed
NDK 17.0.4754217 Not installed
* Build, Execution, Deployment v Support Repository
» Schemasand DTDs o] ConstraintLayout for Android Installed
» Tools Solver for ConstraintLayout Installed
Android Support Repository 47.0.0 Installed
Google Repository 58 Installed
Show Package Details

2 Cancel Apply m
Figure 8-4. SDK tools

You don’t generally have to change anything on this window, but it wouldn’t hurt to
check if you have the tools, as shown in Table 8-2, marked as “Installed.”

166

http://android.com
http://bit.ly/droiddashboard

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

Table 8-2. SDK Tools

Tool Description

Android SDK This contains important tools like adb, which will help us do diagnostics and

Build Tools debugging; sqlite3, which we can use when we create applications that use
databases; plus a couple of other tools.

Android SDK This contains important tools like adb, which will help us do diagnostics and

Platform Tools debugging; sqlite3, which we can use when we create applications that use
databases; plus a couple of other tools.

Android SDK This includes essential Android tools like ProGuard. You don’t need to deep dive

Tools into the details of these tools (for now). Just make sure this box is ticked and
we’re good to go.

Android You will definitely use this. This is a device emulation tool. We will use this to test

Emulator our applications in a virtual device.

Support If you want to write code that targets Android Wear, Android TV, or Google Cast,

Repository you want to download this. This also contains local Maven repository for support
libraries. The support repository also allows you to use new features on older
Android versions.

HAXM Installer If you are using a macQS, or a PC with Intel processor, you can use this. It is an

accelerator for the Android Emulator.

Note If you are on the Linux platform, you cannot use HAXM, even if you have an
Intel processor. KVM will be used in Linux instead of HAXM.

Once you're happy with your selection, click the “OK” button to start downloading

the packages.

The last configuration check we will do is the “Update Channel.” It’s on the same

“Preferences” window. Click the “Updates” item on the right-hand side to show the

“Updates” settings, as shown in Figure 8-5.

167

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

L =N | Default Preferences
Appearance & Behavior } Sy gs ! Upd
¥ Appearance & Behavior Automatically check updates for Stable Channel B Check Now x
Appearance Use secure connection Lanary Channol
Menus and Toclbars Dev Channel
5 Beta Channel
¥ System Settings Last checked 1-‘-,
Passwords Current version Android Studio 3.1.2
HTTP Proxy Build number Al-173.4720617
Androld SDK Tools: 2611
LTS Android Platform Version: API 27: Android 8.1 (Oreo) revision 3
Android SDK
File Colors B View/edit ignored updates
Scopes
Notifications
Quick Lists
Path Variables
Keymap
» Editor
Plugins
* WVersion Control
* Build, Execution, Deployment
» Schemasand DTDs
» Tools
? Cancel Apply m

Figure 8-5. Updates

AS3, just like any Android Studio installation, is configured by default to get updates
from channel where you originally downloaded the installer. Since we downloaded the
installer from the stable channel, it will get its update from that channel by default. You
can change the channel to either one of these four:

o Canary channel: this is bleeding edge releases, it could be updated
every week. You don’t want to use this for production codes.

e Dev Channel: just like the Canary channel but a bit more stable. You

still don’t want to use this for production.

o Beta channel: this contains release candidates. The devs are basically
waiting for feedback before it gets fed to the stable channel.

« Stable Channel: this is official stable release and is suited for

production work.

168

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

Hardware Acceleration

As you write your apps, it will be useful to test and run it from time to time in order to
get immediate feedback and find out if it is running as expected, or if it is running at all.
To do this, you will use either a physical or a virtual device. Each option has its pros and
cons, and you don’t have to choose one over the other. In fact, you will have to use both
options eventually.

An Android Virtual Device, or AVD, is an emulator where you can run your apps.
Running on an emulator can sometimes be slow—this is the reason why Google and
Intel came up with HAXM. It is an emulator acceleration tool that makes testing your
app a bit more bearable. This is definitely a boon to developers. That is if you are using a
machine that has an Intel processor that supports virtualization and that you are not on
Linux. But don’t worry if you're not lucky enough to fall on that part of the pie; there are
ways to achieve emulator acceleration in Linux, as we'll see later.

macOS users probably have it the easiest, because HAXM is automatically installed
with AS3. They don’t have to do anything to get it—the AS3 installer took care of that for
them.

Windows users can get HAXM either by:

o Downloading it from https://software.intel.com/en-us/android.
Install it like you would any other Windows software, double-click,
and follow the prompts.

e Alternatively, you can get HAXM via AS3’s SDK manager; this is the
recommended method.

For Linux users, the recommended software is KVM instead. KVM (Kernel-based
Virtual Machine) is a virtualization solution for Linux. It contains virtualization
extensions (Intel VT or AMD-V).

To get KVM, we need to pull some software from the repos. But before doing
anything else, you need to do two things:

1. Make sure that virtualization is enabled on your BIOS or UEFI
settings. Consult your hardware manual on how to get to these
settings. It usually involves shutting down the PC, restarting it,
and pressing an interrupt key like F2 or DEL as soon as you hear
the chime of your system speaker, but like I said, consult your
hardware manual.

169

https://software.intel.com/en-us/android

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

2. Once you have made your changes, and rebooted to Linux,
find out if your system can run virtualization. This can be
accomplished by running the following command from a
terminal egrep -c ' (vmx|svm)' /proc/cpuinfo.If the resultis a
number higher than zero, that means you can go ahead with the
installation.

To install KVM, type the commands, as shown in Listing 8-1, on a terminal window.

Listing 8-1. Commands to Install KVM

sudo apt-get install gemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils
sudo adduser your user name kvm
sudo adduser your user name libvirtd

You may have to reboot the system to complete the installation.

Chapter Summary

¢ Android is complete development platform. It includes an OS,
application framework, applications, software development kit, pre-
built applications, and a reference design

o Therelease cadence for Android is approximately 12 months; we get
a new version every year.

e AS3 automatically includes support for Kotlin.

o Hardware acceleration for the emulator is something you might want
to look into. It will shave off a lot of waiting time during development
and testing.

Here’s what's in store for the next chapter:

¢ What's inside an Android app? We'll explore what makes up an app;
Android calls them components, and there are several of them. We'll
take a look at each one of them.

170

CHAPTER 8 ANDROID STUDIO INTRODUCTION AND SETUP

We'll create our first project. We'll step through the processes (and
the screens) on how get a simple project up and running in Android
Studio.

We’ll build an emulator—it’s what you use to test an app. Android
devs call it AVD, which is short for Android Virtual Device.

We'll look the some part of the Android Studio IDE. It’s always good
to know the nooks and crannies of your tools.

171

CHAPTER 9

Getting Started

What we’ll cover:
¢ Android components
e Creating a project
o Creating an android virtual device
e The Android Studio IDE

Applications in android are not quite the same as apps written for the desktop. They
might have some striking similarities as far as appearances go, but structurally they differ
quite a lot. The EXE files contain all the routines and subroutines the application needs
within it. From time to time it may rely on some dynamically loaded library, but the
executable file is pretty much self-contained. Android apps are not quite like that, they
are made up of loosely coupled components that communicate with each other using a
message-passing mechanism that is quite unique to the Android platform.

In this chapter, we’'ll take a closer look at what'’s inside an Android application. We
will also try to familiarize ourselves with Android Studio 3 by creating and running a
sample application. Finally, we’ll take a brief tour of the Android Studio 3 IDE.

What’s in an App

An android app is not a monolithic package like an EXE file in Windows. It is a bundle
of loosely assembled components and other resources and they are held together inside
an Android Package file or APK. Figure 9-1 shows the logical structure of a hypothetical
application.

173
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_9

CHAPTER9 GETTING STARTED

APK
(AndroidManifest.xml
(Intents
o N
Activities [Services

Views (layouts,

buttons, textviews [BroadcastReceiverS
etc)

| fragments
-

\—

[ContentProviders

— U U

[Resources

Figure 9-1. What makes up an app

The app depicted in Figure 9-1 is a big application—it’s got everything in it, including
the kitchen sink. Your applications don’t need to include all of these things, like our
hypothetical app in here; but yours will definitely include some of them.

Activities, Services, BroadcastReceivers, and ContentProviders are called Android
components. They are the key building blocks of an application. They are high-level
abstractions of useful things like showing a screen to a user, running a task in the
background, broadcasting an event so that interested applications may respond to them,
etc. Components are pre-coded or pre-built classes with very specific behavior, and we
use them in our application by extending them so that we can add the behavior that will
be unique to our application.

Building an Android app is a lot like building a house. Some people build houses the
traditional way—they assemble beams, struts, floor panels, etc. They build the doors and
other fittings from raw materials by hand, like an artisan. If we built android applications
this way, it could take us a long time and it might be quite difficult. The skill necessary
to build applications from the scratch could be out of reach for some programmers. In
Android, applications are built using components. Think of it as pre-fabricated pieces of
a house. The parts are manufactured in advance, and all it requires is assembly.

An Activity is where we put together things that the user can see. It’s a focused thing
that users can do. For example, an Activity may be purposely made to enable a user to
174

CHAPTER9 GETTING STARTED

view a single email or fill up a form. It's where the user interface elements are glued
together. As you can see in Figure 9-1, inside the Activity, there are Views and Fragments.
Views are classes that are used to draw content into the screen; some examples of View
objects are buttons and textviews. A Fragment is similar to an Activity in that it’s also a
composition unit but a smaller one. Like Activities, they can also hold View objects. Most
modern apps use Fragments in order to address the problem of deploying their app on
multiple form factors. Fragments can be turned on or off depending on available screen
real estate and/or orientation.

Services are classes that allow us to run program logic without freezing up the user
interface. Services are codes that run in the background; they can be very useful when
your app is supposed to download a file from the web, or maybe play music.

BroadcastReceivers allow our application to listen for specific messages from either
the Android system or from other applications—yes, our apps can send messages and
broadcast systemwide. You might want to use BroadcastReceivers if you want to display
a warning message when the battery dips to below 10%, for example.

ContentProviders allow us to create applications that may be able to share data
to other applications. It manages access to some sort of central data repository. Some
ContentProviders have their own UI but some don’t. The main reason why you would
use this component is to allow other applications access to your app’s data without
them going through some SQL acrobatics. The details of database access are completely
hidden from them (client apps). An example of a pre-built application that is a
ContentProvider is the “Contacts” app in Android.

Your application may need some visual or audio assets; these are the kinds of things
we mean by “Resources” in Figure 9-1.

The AndroidManifest is exactly what its name implies—it’s a manifest and it’s in XML
format. It declares quite a few things about the application, like

¢ The name of app
o Which Activity will show up first when the user launches the app

e What kind of components are in the app. If it has activities, the
manifest declares them—names of classes and all. If the app has
services, their class names will also be declared in manifest.

e What kinds of things can the app do? What are its permissions? Is
it allowed to access the internet or the camera? Can it record GPS
locations? And so on.

175

CHAPTER9 GETTING STARTED

¢ Does it use external libraries?
e What version(s) of Android will this app run on?

As you can see, the manifest is a busy place, there’s a lot of things to keep an eye on.
But don’t worry too much about this file. Most of the entries here are automatically taken
care of by the creation wizards of AS3. One of the few occasions you will interact with it is
probably when you need to add permissions to your app.

Component Activation

Android is gung-ho about loose coupling. An application is just a collection of
components held together by a manifest file. Each of these components can be activated
by sending a message to it. This approach to program interactivity is quite unique
because it’s very user-centric. It gives the user a lot of power to make choices on how
they manipulate and create data.

Let’s take a common usage scenario for an Android device. A user opens the
“Contacts” application and chooses the contact detail of John Doe, for example. This
contact could have an e-mail address, a mobile phone, and a twitter name, let’s say. The
user could tap on each and every one of John’s contact points, and each time, Android
will launch a different application; the default e-mail client, a dialer, and a downloaded
Twitter app. The user probably doesn’t care which application was launched or how
many applications are currently open; he just wants to send a message. If this user
doesn’t like the e-mail app or the default twitter client, he could delete these apps and
replace them with something else, and he should be back in business.

For this kind of program interaction to happen, Android needed to architect the
platform, focusing heavily on loose coupling and pluggability. A component, like the
Contacts app should not know any specific detail about what app it should use when
an e-mail address or a mobile phone number is tapped. The resolution for what kind
of app to use for a specific kind of data should not be hardwired into the Contacts app;
otherwise, the user won’t be able to exercise his choice on which app to use when
sending e-mails or tweets.

This is where Intents come in. When a component has data or information that is
beyond its capability to service, it can go out to the Android platform using Intents and
ask around if there’s any application that can (or wants) to fulfill the request. There are two
kinds of Intent: an implicit and an explicit one. The Intent we are talking about in the e-mail
and twitter example is called an explicit Intent. We'll get into this a bit more in later chapters.

176

CHAPTER9 GETTING STARTED

Android Intents is a component activation mechanism. They are a message-passing
mechanism that you can use if you want to activate any Android component, be it an
Activity, Service, ContentProvider, or BroadcastReceiver. To activate any component,
you will need to create an Intent and pass it to the component you want to activate. In an
application that has more than one Activity, Intents are used to switch control or focus
from one Activity to another.

Creating a Project

Now that we have some working idea about what goes inside an Android app, let’s try
to create a sample project and try out the IDE. Launch AS3 if it isn’t open yet. Figure 9-2
shows the Welcome screen of Android Studio 3.

i ® O Welcome to Android Studio

o L3

Android Studio

Version 3.1.2

#¢ Start a new Android Studio project

= Open an existing Android Studio project

¥ Check out project from Version Control ~
[¢' Profile or debug APK
1 Import project (Gradle, Eclipse ADT, etc.)

¥ Import an Android code sample

@) Events ~ % Configure ~ Get Help ~

Figure 9-2. AS3 welcome screen

177

CHAPTER9 GETTING STARTED

Click “Start a new Android Studio Project,” as shown in Figure 9-2. It may be a good
idea to check if you have an internet connection. AS3 uses the Gradle build tool; when
the creation wizard finishes, Gradle will pull several files from internet repositories.
Figure 9-3 shows the next screen.

[NN] Create New Project

-. A Create Android Project

Application name

My Application

Company domain

ted.example.com

Project location

[Usersfted/AndroidStudioProjects/MyApplication

Package name

com.example.ted.myapplication Edit

Include C++ support
Include Kotlin support

Cancel Previous m Finish
Figure 9-3. Create new project

As you can see in Figure 9-3, you'll need to fill in some information about the
project (e.g., app name, company domain, and project location). The default value for
application name is “My Application”; you can leave the default value.

Ifilled up the company domain; you can too, if you prefer. It’s usually the website of
your company. This information will be used in the project and will become its package
name in reverse-DNS notation. So, our class will be stored in a package named com.
example.ted.

The project location is the location of the folder where AS3 will store your project.
You can also leave this with the default value.

178

CHAPTER9 GETTING STARTED

It’s important that the “Include Kotlin support” tick box is enabled because we're
going to use Kotlin as our programming language. Click “Next.”

Figure 9-4 shows the next screen. In here, you will be asked to choose the Android
version that your application is expected to run on. Tick only “Phone and Tablet” and
choose API 23.

[NN] Create New Project

A Target Android Devices

Select the form factors and minimum SDK
Some devices require additional SDKs. Low API levels target more devices, but offer fewer API features.
Se— =

Phone and Tablet

| API 23: Android 6.0 (Marshmallow) B

By targeting API 23 and later, your app will run on approximately 39.3% of devices. Help me choose

Include Android Instant App support

Wear

API 23: Android 6.0 (Marshmallow) &
TV

API 23: Android 6.0 (Marshmallow) i
Android Auto
Android Things

API 24: Android 7.0 (Nougat) =

Cancel Previous m Finish

Figure 9-4. Target Android devices

179

CHAPTER9 GETTING STARTED

Figure 9-5 shows the next screen; a small pop-up might appear reminding you that
you need to install “Instant Apps.” Click “No” for now. “Instant Apps” is a Google Play
feature that allows users to use or try out apps without installing them. If the users like
the app, then they can purchase it, if necessary, from the App Store. We will completely
ignore this for now. Click “Next.”

Instant Apps
Target Androi 0 Required Instant App SOK companents not

- installed. Do you want to install it now?

Select the form f
Some devices require additional SDKs. Low API levels target more devices, but offer fewer API features.
Phone and Tablet
AP| 23: Android 6.0 (Marshmallow)
By targeting API 23 and later, your app will run on approximately 39.3% of devices. Help me choose

Include Android Instant App support

Wear
API 23: Android 6.0 (Marshmallow) B
TV

o

API| 23: Android 6.0 (Marshmallow)

Android Auto
Android Things
API 24: Android 7.0 (Nougat) i

Cancel Previous m Finish

Figure 9-5. Instant apps
On the next screen, as shown in Figure 9-6, we are asked to add an Activity to the

app. You have a couple of choices, but for our purpose, choose “Empty Activity.” Click
“NeXt,"

180

CHAPTER9 GETTING STARTED

[NN] Create New Project

Add No Activity
Basic Activity Bottom Navigation Activity Empty Activity
2
LJd

\{

Cancel Previous Finish
Figure 9-6. Choose an activity

The last screen on the project creation wizard is shown in Figure 9-7. We're asked
to fill in the activity name and the layout name. We'll leave everything in their default
values. Click “Next.”

181

CHAPTER9 GETTING STARTED

[NN] Create New Project

A Configure Activity

Creates a new empty activity

Activity Name: | MainActivity]

Generate Layout File
Layout Name: activity_main

Backwards Compatibility (AppCompat)

The name of the activity class to create

Cancel Previous Next -I

Figure 9-7. Configure activity

Figure 9-8 shows our newly created project in the main Window of AS3. After
Clicking the “Next” button in Figure 9-7, it will take a while before things settle in
because the Gradle tool will build the project, and as it tries to do that, it will pull quite a
few files from the repositories.

ece MyAppEcation [~/AndrodStudoPromcts/MpApocation) - ../spp/src/main/rew/layo.tjec ity main xml |

I MyApplication | s spp | B src) B main | By res) B layout) J activity main xmi A, 2 Lt L A0a

l W Moo - Od B F gecvtymeram i MerActiviy ki r
Paerte - . - Nexus 4 - = 27 OF: ® @ Arwinres P |

- manifests Qe-¢ 0 Nexw ~ 2 (O JONOM) Q g

ol v Common Ab TextView e-b b®, L F T

com.exampie.ted. myappication o - Acton S

5 #; MainActivity B imageVien

¥ . . Buoes

i * £ com.example.ted myappication (sndroidTes = RecyclerView

~ com example ted myapplcation (tes WOREE () ragments

res ayouts W ScroliView

> 0
e Siutewy | =9 Getiens
oog e
Logacy

Figure 9-8. Main AS3 with an open project

¥ Capiures

182

CHAPTER9 GETTING STARTED

We won'’t try to change anything in this project right now. Our goal is to simply take
AS3 for a test drive and get acquainted with the various steps of project creation. The
project creation wizard generated an activity with a couple of views in it already.

The next step in our test drive is to run the project in an emulator. To do that, click the
Run icon in the toolbar (encircled in Figure 9-8).

When you click the Run icon, the “Select Deployment Target” screen will appear,
as shown in Figure 9-9. This screen shows all running Android Virtual Devices (AVDs).
It also shows all the connected physical Android Devices, if you plugged any.

[JoN Select Deployment Target

No USB devices or running emulators detected Troubleshoot

Connected Devices
<none>
Available Virtual Devices
[Android Accelerated Nougat
[l Nexus 5X API 25

Create New Virtual Device Don't see your device?

? Use same selection for future launches Cancel “
Figure 9-9. Select deployment target

Asyou can see, I've created a couple of virtual devices already. In your case, you
might not see anything under the “Available Virtual Devices” since you have a fresh
installation. Click “Create New Virtual Device.”

183

CHAPTER9 GETTING STARTED

In Figure 9-10, you can choose the form factor for your virtual device. I chose the

Nexus 5x. Click “Next”

[NaN] Virtual Device Configuration

Select Hardware

Android Studio

Choose a device definition

Q

Category | Name ¥ Play Store size
™ Pixel XL 5.5"
Wear Pixel 2 5.0"
Tablet Pixel 5.0"

Nexus S 4.0°
Nexus One .r
Nexus 6P 5.7
MNexus 6 5.96"

MNexus 6X

New Hardware Profile Import Hardware Profiles

Figure 9-10. Select hardware

184

Resolution |

1440x2...

1440x2...

1080x1...

1080x1...
&

480x800

480x800

1440x2...

1440x2...

Density

560dpi
560dpi
420dpi
xxhdpi
hdpi

hdpi

560dpi

560dpi

) Nexus 5X

1080px
Size: large
Ratio: long
Density: 420dpl

52 1920px

Clone Device...
—_—
Cancel Previous Next Finish

CHAPTER9 GETTING STARTED

Figure 9-11 shows our options for the system image. A system image is a copy of the
Android OS that we can run on an emulator. Our project was created with the target SDK
value of API 23 (“Marshmallow”). It’s okay to choose a system image that is higher than
API 23, but for our purpose, let’s actually download the API 23 system image.

[NaN] Virtual Device Configuration

System Image

Android Studio

Select a system image

Recommended _ Other Images

Marshmallow

Release Name APiLevel = | ABI | Target |
Nougat 25 x86 Android 7.1.1 (Google APIs)
Nougat Download 25 x86.64 Android 7.1.1 (Google APis) m ;"”3""'""
Nougat Download 24 x86_64 Android 7.0 (Google APIs)]
Nougat Download 24 x86 Android 7.0 (Google APIs) .? .. Angroid
Nougat Download 24 xB86_64 Android 7.0 6.0
. ndroid 7 ﬂ Google Inc.
Marshmallow Download 23 x86_64 Android 6.0 (Google APIs) System image
Marshmallow Download 23 x86 :‘-r‘dror‘g‘ 6.0 (Google APIs) x86_64
Marshmallow Download 23 x86 Android 6.0
Marshmallow Download 23 x86_64 Android 6.0
Lollipop Download 22 xB86_684 Android 5.1 (Google APIs)
Lollipop Download 22 x86 Android 5.1 (Google APIs) .
ol AT] < Lol A - LI <A Questions on AP! level?
& See the API level distribution chart

© A system image must be selected to continue.

? Cancel Previous Finish

Figure 9-11. System image

Click the middle tab that’s labeled “x86 Images,” as shown in Figure 9-11, and look
for API level 23, x86_64 with the Google APIs. Click the “Download” link.

185

CHAPTER9 GETTING STARTED

Figure 9-12 shows the Component installer window, it displays the progress of the
download. As soon as it finishes, click “Finish” to dismiss the window.

e @ SDK Quickfix Installation

Component Installer

H Android Studio

Installing Requested Components

SDK Path: fUsersfted/Library/Android/sdk

To install:

~ Google APIs Intel x86 Atom_64 System Image (system-images;android-23;google_apis;x86_64)
Preparing "Install Google APIs Intel x86 Atom_64 System Image (revision: 28)".

Downloading https://dl.google.com/android/repository/sys—img/google_apis/x86_64-23_r28.zip

Downloading...
https://dl.google.com/androidfrepository/sys-img/google_apis/x86_64-23_r28.zip

O Please wait until the installation finishes

Cancel Previous MNext

Figure 9-12. Component installer

186

CHAPTER9 GETTING STARTED

We're back to System Image window again, as shown in Figure 9-13. You'll notice

that the “Download” link is no longer visible beside the “Marshmallow” label and that

the row is now selectable. While the Marshmallow row is selected, Click “Next.”

System Image

Android Studio

Select a system image

Recommended _ Other Images

Release Name
Nougat Download
Nougat Download
Nougat Download
Nougat Download

Nougat Download

Marshmallow

25
24
24
24

24

APl Level ~

ABI
x86_64
xB86_64
x86
x86.64
x86

Virtual Device Configuration

Target

Android 7.1.1 (Google APis)
Android 7.0 (Google APIs)

Android 7.0 (Google APis)

Android 7.0

Android 7.0

| Android 6.0 (Google APis)

Marshmallow Download
Marshmallow Downlo%
Marshmallow Download
Lollipop Download
Lollipop Download

Latlimen Dawmlosd

23
23
23
22
22

29

Figure 9-13. System image

Android 6.0 (Google APIs)

Android 6.0
Android 6.0
Android 5.1
Android 5.1

Andeaisl 5.1

(Google APIs)

{Google APIs)

(%)

Marshmallow

P
|

AP Level

23

Angroid
6.0
Google Inc.

System Image

x86_64

Questions on API level?
See the API level distribution chart

Cancel Previous Next Finish

187

CHAPTER9 GETTING STARTED

Figure 9-14 shows the final configuration screen for the AVD creation. I'll leave

everything in their default value, including the AVD name. Click “Finish.”

Android Virtual Device (AVD)

A Android Studio

Virtual Device Configuration

Verify Configuration

AVD Name | Nexus 5X API 23|

L Nexus 5x 5.2 1080x1920 xxhdpi

‘H Marshmallow Android 6.0 x86_64

0 O

Startup orientation

Emulated

Bafareros Graphics: Automatic

Device Frame Enable Device Frame

Show Advanced Settings

Figure 9-14. Android Virtual Device

188

AVD Name
Change... 3
The name of this AVD.
Change...
k
—
Cancel Previous Nex Finish

CHAPTER9 GETTING STARTED

We're back to the “Select Deployment Target” screen (Figure 9-15), but this time
around, we have our newly created AVD (Nexus 5X API 23) showing up in “Available
Virtual Devices.” Select the AVD we just created and click “OK.

[NON Select Deployment Target

No USB devices or running emulators detected Troubleshoot

Connected Devices
<none>
Available Virtual Devices
[l Android ARMv7a Nougat (Missing system X, ge)
[Android Accelerated Nougat
[l Nexus 5X AP| 25

Create New Virtual Device Don't see your device?

? Use same selection for future launches Cancel m

Figure 9-15. Select deployment target

AS3 might prompt you to install “Instant Run’; as shown in Figure 9-16. We want
to install this because it will speed up our development time. Instant run allows us to
push code changes to the AVD without building a new APK. That will save us time. Click
“Install and Continue.”

4 Instant Run
Instant Run requires that the platform comresponding to your target

ot device (Android 6§ (Marshmallow)) is i

Proceed without Instant Run Install and Continue

Figure 9-16. Instant run

189

CHAPTER9 GETTING STARTED

AS3 will create the APK for the app and will push it to the AVD right after. When that’s
done, you should be able to see the app running in the AVD, as shown in Figure 9-17.

My Application

Figure 9-17. Android Virtual Device

The IDE

Let’s take some time to familiarize ourselves with the IDE. It’s best to get some bearings
before diving deep into coding. Android Studio is based on Intelli], and we used IntelliJ
for our Kotlin studies in the earlier chapters, so AS3 should look familiar. Figure 9-18
shows the AS3 IDE with an opened project.

190

CHAPTER9 GETTING STARTED

tool bar A vi
android view o\ et files navigation bar editor window

@ @ | MyAppli
» MyApplication | I

ion [~/AndroidStydioProjects/MyApplication] - £fapp/src/maini fexample/ted/myppplication/MainActivity.kt [spp]
B src) B rpain) B java) BN com E‘Aamole A [mowp ~ P 18 . g [F.. LcQ

] i Androld v 63 sk = I g octivity mainxml » @ MainActivity kt [|
} - L app 1 package com.example.ted.myapplication v 5‘
- > manifests ? 5 v =
-~ v java 3 ~import ...
& g v ucom.example.ted.myapplication o & 1555 MainActivity : AppCompatActivity() {
© fz MainActivity 7
'; E » [m com.example.ted.myapplication (i @ ol override f:n onc:eat:;;aved!ns;ance?tetc: Bundle?) {
“ - T 9 super.onCreate(savedInstanceState
8 —pf e i S b nyyapplcation (f os setContentView(R. layout.activity_main)
= = > Btres 11 }
= > (& Gradle Scripts 12 } I
I=] § 13
L a
5]
W
—
I -
RE
e |B
s |5 e # L
“g % |% ¥ @ Build: completed successfully at 6/1/18, 12:29 PM 23s 259ms -
- v @ Run build /Usersfted/AndroidStudioProjects/MyApplication 225 577ms
s | » @ Load build 1ms g
é @ » @ Configure build 478ms é
=1 Calculate task graph 99ms P
1k > @ Run tasks 21s B17ms B
S s R
a -
v —
=5 B Terminal]Ilm E B:logcat g3, Android Profiler b 4:Run %3 TODO @ Event Log
-g 'mulator: Process finished with exit code 0 (3 minutes ago) ¢ 1 LF$ UTF-8: Context: <no contexts §

tool window bar

Figure 9-18. AS3 IDE with an opened project

The Editor window is the most prominent window and has the most screen real
estate. The editor window is where you can create and modify project files. It changes its
appearance depending on what you are editing. If you're working on a program source
file, this window will show just the source files. When you are editing layout files, you
may see either the raw XML file or a visual rendering of the layout.

Each project in Android Studio contains one or more modules with source code
files and resource files. The types of modules includes Android app modules, library
modules, and, sometimes, Google app modules. By default, AS3 displays the Project
Files in Android View, as shown in Figure 9-18. The Android View is organized by
modules to provide quick access to the project’s most relevant files. You change how you
view the project files by clicking the down arrow on top of the Project window, as shown
in Figure 9-19.

191

CHAPTER9 GETTING STARTED

@® O ® | MyApplication [~/AndroidStudioProjects/MyApplication] - .../app/src/mainfjava/com/e)

}

¢2 Local Unit Tests B
¢2 Android Instrumented Tests

W N b

» B java) B com) B example) Dn ted) B myapplication) G MainActivity.kt) A [[mapp ~| Pp
el i& Android s | $#~ |- g activity_mainxml| > ¢ MainActivity.kt

7 Project | 1 package com.example.ted.myapplicat
=1l 1 Packages 2 -

3 + mpo “aw

“1 [Scratches 5
o T -FPication ¢ & class MainActivity : AppCompatActi
§ #2 Project Files . R ——
2| gn application (i & ® override fun onCreate(savedInsta
0 ;: Problem's application (i 9 super.onCreate(savedInstanceSt
~i @ Production 10 setContentView(R. layout.activi
S0P Tests 11 }
g

Figure 9-19. How to switch views in the Project window

The Navigation bar lets you navigate the project files. This is just a more compact
view of the “Project files” window. It’s a horizontally arranged collection of chevrons that
resembles some sort of breadcrumb navigation that you can find on some websites. You
can open your project files either through the navigation bar or the project tool window.

The Tool bar lets you do a wide range of actions (e.g., save files, run the app, open
the AVD manager, open the SDK manager, undo, redo actions, etc.).

The Tool windows gives you access to very specific tasks (e.g., look at the project
files, view all the TODO annotations, view the logcat window, access the profiler, etc.).
Each of the tool windows are expandable and collapsible. You can pop them open when
you need them, then tuck it away when you’re done.

The Tool window bar runs along the perimeter of the IDE window. It contains the
individual buttons you need to activate specific tool windows.

The Status Bar is that part of the IDE that shows what'’s going on with your project
and with AS3 itself. It displays context-sensitive messages, such as error messages,
running processes, repository messages, etc.

Main Menu

Android Studio offers many way of navigating the IDE, but the primary way of navigation
is the Main Menu. Figure 9-20 shows the AS3 Main Menu; it sits at the top of the IDE
and provides the most complete way of navigation. It contains commands for opening,

192

CHAPTER9 GETTING STARTED

creating projects, refactoring code, running and debugging apps, keeping files under
version control, and so much more.

@ Android Studio File Edit View Na\ngaia Code Analyze Refactor Build Run Tools VCS Window Help

‘s0e@® | MyApplication [~/AndroidStudioProjects/MyA 1 - .../app/src/mainfjava/com/ le/ted/my MainActivity.kt [app]
) B java) Em com) Em example) I ted) B myapplication) i MainActivity.kt } &, Tmapp ~ | P 4 A G R LEQ
=] v Android * 0 o | #8- |- g octivity mainxml x| Fp MainActivity.kt o
% v 1. app package comRexample.ted.myapplication v g
“t > manifests 2 2
- v java 3 ~import ...
¢ v [Excom.example.ted.myapplication | ¢ =& class MainActivity : AppCompatActivity() {
2 & MainActivity 7
E » B com le.ted.myapplication (: & I override fun onCreate(savedInstanceState: Bundle?) {
o = aa , 9 super.onCreate(savedInstanceState)
i (o |
£ =i En com: excample:ted.mysppiication (e setContentView(R. layout.activity_main)
2 » bres 11
» (= Gradle Scripts 12 }
L -m

Figure 9-20. Main menu of Android Studio

Keyboard Shortcuts

As your application grows, you may want to try a quicker way to navigate AS3. Here are
some keyboard shortcuts to get you started.

Table 9-1. Some Keyboard Shortcuts

Task Linux and Windows mac0S

Search within a file CTRL + F 8 + F
Search everywhere CTRL + Shift + F CTRL +38+ F
Save all CTLR + S 38+ S
Override methods CTRL + O CTRL + O
Implement methods CTRL + I CTRL + I
Basic code completion CTRL + Space CTRL + Space
Build CTRL + F9 8+ F9

Build and Run Shift + F10 CTRL + R
Apply changes (with Instant Run) CTRL + F10 CTRL +38+ R

193

CHAPTER9 GETTING STARTED

The list of keyboard shortcuts shown in Table 9-1 is obviously not complete.
The Android Developer website maintains a page that has a comprehensive
list of Android Studio keyboard shortcuts; you can find it here http://bit.ly/
androidstudiokbshortcuts.

There are certain actions or option in AS3’s Main Menu that don’t have a default
mapping to the keyboard (e.g., entering a full screen view). In such cases, you may map a
keyboard shortcut of your own choosing to a menu action. You can do this in the keymap
settings for AS3.

To open the keymap setting, choose File » Settings (on macOS, Android Studio
» Preferences) from the Main Menu and navigate to the keymap pane, as shown in
Figure 9-21.

keycaps dropdown duplicate actions list search box search by shortcut
e ° Preferences
Keymap
v Appearance & Behavior Mac 05 X 10.5+ B »
Appearance
Menus and Toolbars
Tz K

v System Settings o

Passwords » Py Editor Actions

v [B= Main menu
HTTP Proxy S e
Updates 3 Edit
Usage Statistics v View
Android SDK i Tool Windows
Quick Definitinn \Space XY
File Colors X ShowsSibl Add Keyboard Shortcut
Scopes Quick Doc Add Mouse Shortcut F1 ~J ~Button2 Click
Notifications Show Dec Add Abbreviation
. . External C F
SLEE parameter Remove \Space s%p
Path Variables Expressio Remove ®Y ~0P
» Editor Error Description ®F1
Plugins [Jump to Source ®i F4
? Cancel Apphy m

Figure 9-21. Keymap settings

o Keymaps dropdown lets you select the desired keymap, it switches
between the preset keymaps.

e Actions list. Right-click on an action to modify it. You can add
additional keyboard shortcuts for the action, add mouse shortcuts to
associate an action with a mouse click, or remove current shortcuts.
If you are using a preset keymap, modifying an action’s shortcuts

194

http://bit.ly/androidstudiokbshortcuts
http://bit.ly/androidstudiokbshortcuts

CHAPTER9 GETTING STARTED

will automatically create a copy of the keymap and add your
modifications to the copy.

¢ You can use the Search Box to search for a keyboard shortcut using
the action name.

e Search by shortcut. You can type the keyboard short cut in this
search window to find the action name.

Customizing Code Style

On the same Settings (Preferences in macOS) window, you can also customize the coding
style and a lot more other settings like editor font and color scheme, etc.

To customize the coding style, open the preferences window, if it isn’t opened
yet. Click File » Settings (on macOS, Android Studio » Preferences) on the Main
Menu. The code style window is under the Editor menu on the right-hand side of the
Preferences window, as shown in Figure 9-22.

e Preferences

Editor } Code Style) Kotlin

» Appearance & Behavior Scheme: Default IDE B £
Keymap Set from...
v Editor
Tabs and Inderts Spaces Wrapping and Braces Blank Lines Imports Load/Save
» General
open class Some {
Font Use tab character private val f: (Int) —= Int = { (a: Int) > a =2}
» Color Scheme £t fun foo(): Int {
. S val test: Int = 12
v Code Style ® | Tab size: 2 for (i in 10..42) {
ClC++ - printin{when {
_ Indent: 2 i< test. .1
Groovy 3 i=>test -»1
s s lse -> @
HTML @ Continuation indent: 4 LN
Java k }
Keep indents on empty lines it (troe)
JSON }
while (true) {
break
Properties }
try {
o : when (test) {
YAML 12 -> prin'{:‘l.n{"foo")
. else —> println{"bar")
Other File Types g }
Inspections @ i :?;:?15‘3; Exception) {
2 cancel | | Acply | (IS

Figure 9-22. Code style

195

CHAPTER9 GETTING STARTED

Now you can tune your editor whichever way you want. The settings are very self-
explanatory, just tweak it to your liking—or, if you are working on a team, tweak the
settings according the issued coding style guide.

Chapter Summary

¢ An Android app is made up of components that are loosely
assembled that are held together by AndroidManifest.xml.

¢ You can set application permissions in the Android manifest file.

e An app may contain a combination of components such as Activities,
Services, BroadcastReceivers, and ContentProviders.

o Components communicate to each other using Intents.

In the next chapter, we will start looking at how to build user interfaces with
Activities and layouts. We'll learn how Android uses XML as a layout resource and how
these XML resources get converted and rendered into objects at runtime using a process
called inflation—this, and so much more.

196

CHAPTER 10

Activities and Layouts

What we’ll cover:
e Activities and layouts
e View and ViewGroup objects
o Activity lifecycle
e Kotlin Android Extension

Most programs need an entry point or a beginning routine where all execution
begins. Even the simple “Hello World” in previous examples required a main function
as an entry point. Android programs are the same, it also needs its own version of the
“function main.” But the entry point of an Android program isn’t just a function called
“main”—it’s a bit more involved than that. In this chapter, we’ll explore the structure of
a basic app. We'll take a look at how to build a user interfaces and discover what makes
them tick.

Application Entry Point

A simple app that shows a screen to the user requires at least three things. It needs (1)
an Activity class that acts as the main program file; (2) a layout file that contains all UI
definitions; and (3) a Manifest file, which ties all the project’s contents together. If you
still remember working with JavaBean'’s manifest file, the Android manifest is a bit like
that. It describes the contents of the project.

When an application is launched, the Android runtime creates an Intent object and
inspects the manifest file. It’s looking for a specific value of the intent-filter node;
the runtime is trying to see if the application has a defined entry point, something like a
“main function.” Listing 10-1 shows an excerpt from a manifest file.

197
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_10

CHAPTER 10 ACTIVITIES AND LAYOUTS
Listing 10-1. Excerpt from AndroidManifest.xml

<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Listing 10-1 shows the declaration for one Activity. If the app has more than one
activity, you will see several definitions like Listing 10-1—one for each Activity. The first
line of the definition has an attribute called android:name. This attribute points to the
class name of an Activity. In this example, the name of the class is “MainActivity.”

The second line declares the intent-filter; when you see something like android.
intent.action.MAIN, on the intent-filter node, it means the Activity is the entry point for
the application. When the app is launched, this is the Activity that will interact with the user.

Activity Class

The main Activity class is responsible for the initial interaction with the user. This is a
Kotlin class, and in it, we can, and often, do the following:

o Choose which Ul file to use. When we call the setLayout(xml:file)
function from inside the Activity, it will bind the Activity to xml:file.
This is called “Layout binding” When the Activity binds to the layout,
the screen will be filled with user interface elements that users can
touch or swipe.

o Getreferences to view objects. View objects are also called widgets
or controls. When we have a programmatic reference to the view
objects, we can manipulate them, change their properties, or
associate them with an event. This is called View binding.

The Activity class inherits from android.app.Activity in one way or another. In our
examples, they inherit from AppCompatActivity; this is a child of FragmentActivity,
which in turn is a child of android.app.Activity. We use the AppCompatActivity class so
we can put modern Ul elements like ToolBars in our project, and still run them on older
versions of Android where ToolBars are otherwise unsupported—hence, the “Compat”
in the name AppCompatActivity.

198

CHAPTER 10 ACTIVITIES AND LAYOUTS

When the runtime launches an app that eventually launches an Activity, it creates
and tracks what’s happening to the Activity. Each Activity has a very thorough life cycle,
and each life cycle event has an associated function that we can use to customize the
behavior of the application.

Figure 10-1 shows the stages of the Activity’s life cycle. Each box shows the state
of the Activity on a particular stage of existence. The name of the function calls are
embedded in the directional arrows that connect the stages.

Resumed \ ____________________
visible onPause()
—— v
oy * - onResume() = = = - - Paused
’ partially visible
_____ - Started '
s visible i
Start T ol
- onStart() onStop()

- =
onCreate() hidden

—— onDesiroy)
¥
m Destroyed

Figure 10-1. Activity Life Cycle

When the runtime launches the app, it calls the onCreate() function of the main
Activity, which brings the state of the Activity to “created.” You can use this function to
perform initialization routines like preparing event handling codes, etc.

The Activity will proceed to the next state, which is “started”; the Activity is visible to
the user at this point, but it’s not yet ready for interaction. The next state is “resumed”;
this is the state where the app is interacting with the user.

If the user clicks on anything that may launch another Activity, the runtime will
pause the current Activity and it will enter the “paused” state. From there, if the user goes
back to the Activity, the onResume () function is called and the Activity is running again.
On the other hand, if the user decides to open a different application, the runtime may
“stop” and eventually “destroy” the application.

199

CHAPTER 10 ACTIVITIES AND LAYOUTS

Layout File

A layout file contains view objects that are arranged in an XML hierarchy. The user
interface elements like buttons or text fields are written inside an XML file. Some people
may cringe at the thought of composing the UI by hand using only an XML editor. But
you don'’t have to worry because AS3 makes it easy to compose user interfaces. We can
work with the layout file either in text mode (hand editing the XML), or we can work with
it in design mode (WYSIWYG).

Figure 10-2 shows a layout file displayed in two possible modes: text mode and
design mode. You can switch the modes by clicking on the tabs “Text” or “Design” on the
left lower part of the main editor window. When you change an element by editing the
XML, AS3 automatically updates the rendition of the design view. Similarly, when you
make a change in the design view, the XML file gets updated.

—— e e —— ———— - —— 1

. . \
shown in design |

,
I
|

t mode)
______ r-----7 N~
1
1
1
\J
<?xml version="1.0" encoding="utf-8"7> CH1OHela

<android.support.constraint.ConstraintLayout xmlns:
xmlns:app="http://schemas.android.com/apk/res-auto'
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

<TextView
android: id="@+id/hello"

w android:layout_width="wrap_content"
android:layout_height=" aa_content"
android: text="Hello Nor:a!"
app:layout_constraintBottom_toBottomOf="parent'
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout> _

android.support.constraint.ConstraintLayout

Design Text <

| You can view thelayout filein text or design |
' view by clicking these tabsin the IDE)

Figure 10-2. Layout file shown in both text and design mode

200

CHAPTER 10 ACTIVITIES AND LAYOUTS

Listing 10-2 shows a typical layout file. It's what the project creation wizard will
produce if you chose to create an “empty” activity.

Listing 10-2. activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

<TextView
android:layout width="wrap_ content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout constraintBottom toBottomOf="parent"
app:layout_constraintleft tolLeftOf="parent"
app:layout_constraintRight toRightOf="parent"
app:layout _constraintTop_ toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

A simple layout file generally has two parts: a declaration of a container and the
declarations of each UI element inside of it. In Listing 10-2, the second line (which is also
the root of the XML document) is the container’s declaration. The TextView element is
declared as a child node of the container. This is how containers and UI elements are
arranged in a layout file.

View and ViewGroup Objects

A view object is a composition unit. You build a UI by arranging one or more view objects
alongside each other, or sometimes embedded in each other. There are two kinds of
views as the Android library defines it, a “view” and a “view group.” An example of a View
object is a button or a text field. These objects are meant to be composed alongside other
views, but they are not meant to contain child views—they are meant to stand alone.

201

CHAPTER 10 ACTIVITIES AND LAYOUTS

A ViewGroup, on the other hand, can contain child views—it’s the reason why they're
sometimes called containers.

Figure 10-3 shows the class hierarchy of some of the more common UI elements.
Every item in a user interface is a child of the android.view.View class. We can use pre-
built user interface elements in the Android SDK such as TextView, Button, ProgressBars,
etc., or, if need be, we can construct custom controls (widgets or views are sometime
called “controls”) by either (1) sub-classing existing elements like TextViews; (2)
subclassing the View class itself and completely drawing a custom widget from scratch;
or (3) sub-classing the ViewGroup and embedding other widgets in it—this is known as a
composite view (the RadioGroup in Figure 10-3 is an example of such).

View
[|
Textview ImageView ViewGroup
Button |]
ConstraintLayout LinearLayout FrameLayout
CompoundButton
RadioGroup
RadioButton

Figure 10-3. ViewGroup class hierarchy

Each view object ultimately becomes a Java object at runtime, but we work with
them as XML elements during design time. We don’t have to worry about how Android
inflates the XML into Java objects because that process is invisible to us—it happens
behind the scenes. Figure 10-4 shows a logical representation of Android’s compilation
process.

202

CHAPTER 10 ACTIVITIES AND LAYOUTS

Kt Kotlin Standard
i Librar
Kotlin compiler'j
Java .class >| .dex —>(aapt.)—> .apk

Figure 10-4. Android compilation process

The Kotlin compiler transforms the program source files into Java byte codes. The
resulting byte codes are combined with the Kotlin Standard Library to form a DEX file.
A DEX file is a Dalvik Executable—it’s the executable format that the Android Runtime
(ART) understands. Before the dex files and other resources gets wrapped into an
Android package (APK), it also produces as a side effect a special file named “R.class.
We use the R.class to get a program reference to the Ul elements that we defined in the
layout file.

Containers

Apart from creating composite views, the ViewGroup class has another use. They form
as the basis for layout managers. A layout manager is a container that’s responsible for
controlling how child views are positioned on the screen, relative to the container and to
each other. Android comes with a couple of pre-built layout managers. Table 10-1 shows

us some of them.

203

CHAPTER 10 ACTIVITIES AND LAYOUTS

Table 10-1. Layout Managers

Layout Manager Description

LinearLayout

TableLayout

FrameLayout

RelativeLayout

ConstraintLayout

positions the widgets in single row or column, depending on the selected
orientation. Each widget can be assigned a weight value that determines the
amount of space the widget occupies compared to the other widgets.

arranges the widgets in a grid format of rows and columns

stacks child views on top of each other. The last entry on the XML layout file is
the one on top of the stack.

Views are positioned relative to other views and the container by specifying
alignments and margins on each view.

The ConstraintLayout is the newest layout. It also positions widgets relative to
each other and the container (like RelativeLayout). But it accomplishes the layout
management by using more than just alignments and margins. It introduces the
idea of a “constraint” object which anchors a widget to target. This target could
be another widget or a container; or another anchor point. This is the layout we
will use for most of our examples in this book.

Now that we have some working knowledge about activities and layouts, let’s explore

them at the code level in the next section.

Hello World

Let’s create a new application with an empty activity. If you want to follow along and

work on the code examples, the project information is shown in Table 10-2.

204

CHAPTER 10 ACTIVITIES AND LAYOUTS

Table 10-2. Project Information for the Hello App

Project Detail

Value

Application name
Company domain
Kotlin support
Form factor
minimum SDK
Type of activity
Activity name

Layout name

CH10Hello

Use your website name
Yes

Phone and Tablet only
API 23 Marshmallow
Empty

MainActivity

activity_main

When the project is created, you will see a bunch of files in the project window, but

we're only interested in three. Figure 10-5 shows the location of (1) the main program

file; (2) the manifest; and (3) the main layout file in the project file window.

main program file

Android Main fest

main layout file

®oe CH10Hello [~/AndroidStudioProjects/CH10Hello] - .../app/src/main/res/layout/activity_main.xml

e CTOHQHO % app) Im src)/Bm main) T res) Il layout) g5 tivity_main.xml) A Cxapp v | P

:! i#{ Android (5 IE - T L o(activity_main.xm| {f MainActivity kt

v | app B E TR v v ©

g | i Palette Q#-1- ® S ONexusd ~ =23~ ©

m '@ AndroidManifest.xml Common Ab TextView ©~- i 8, 5 S I~

- | java Text 8 Button

5 v Imcom example ted chiOhello - B imageView

Bl Lol @manacvty D 0% | = RecyclerView

i » I com.example.ted.ch10hgffo (androidTest) Wideets ¢ cfragment> &

%1 » I com.example.ted.chighello (test) Layouts W ScrollView _
v Wires Containers *® Switch

§ » = drawable ;

s v In layout ¢

:

- » Pm MIPMaEPD Component Tree L A

8 » [mvalues ¥ ", ConstraintLayout

'§ » (& Gradle Scripts Ab TextView - "Hello World!

2

Figure 10-5. CHI10Hello project

205

CHAPTER 10 ACTIVITIES AND LAYOUTS

The main layout file, named activity_main.xml, is found in app » res » layout folder.
All user interface elements are written in a layout file.

The main program file, MainActivity.kt, is found in app » java » package name
folder. This is the Kotlin file that contains the class that extends an Android Activity. If
you want to do something as a reaction to a user-generated event, this is where we write
that program logic. Don’t let the “java” folder throw you off, all source files, whether Java
or Kotlin, are stored in the “java” folder. There is no “kotlin” folder.

The manifest file describes the essential information about the app to the Android
build tools: Android OS and Google play. Looking at Figure 10-5, it appears as if the
manifest file is in app » manifests » AndroidManifest.xml. You need to remember
that what we're looking at is the “Android View” of the Project window. It’s a logical
representation of the project files, it’s not the literal arrangements of the files with respect
to the root folder of the project. If you want to see the actual location of the project files,
switch to “Project view,” as shown in Figure 10-6.

Switch to project view Main program file main layout file Android Manifest

=] [] : CHJOHello [~/AndroidStudiofrojects/CH10Hello] £ .../app/src/main/res/layout/activity_main.xm

A [Cmapp ~ P

’ CH10Hello

57 Projoct (-) ok &r
v CH10Hello ~/AndroiaSiudioProjec’s/CH10Hello

e ACtivity_mhainxml € Mai

€. Oy [ONexusd+ =23+ @

*# 1: Project

> .gradle -

; .idea Ab TextView @~ bi 8, s/ I~

s app @ Button
] build M imageView
,E_ libs = RecyclerVig
2, v src <> <fragmenft>
%1 androidTest W ScrollVi

v main dortainers =® Switch
g java aoogle
] v com.exaple.ted.ch10hello
=
= v res
drawable Component Tree -1
> drawable-v24 v "\, ConstrfintLayout

g v layout Ab TeftView
-s
3 mipmap-3a y PI=-VZD
o mipmap-hdpi
* > mipmap-mdpi
a mipmap-xhdpi _
E mipmap-xxhdpi
3 mipmap-xxxhdpi
§ b values
L Design = Text

1estT

Figure 10-6. CHI10Hello, in project view

206

CHAPTER 10 ACTIVITIES AND LAYOUTS

The Project view shows the actual location of all the project files. It looks a lot busier
than the “Android view,” but if you need to locate any file under the project, this view
could be useful. Now we can revert back to “Android view,” which is what we'll use
throughout most of the book.

Let’s take a closer look at the generated layout and MainActivity files. The codes are
shown in Listings 10-3 and 10-4, respectively.

Listing 10-3. activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout @
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match_parent”
tools:context=".MainActivity">

<TextView (2]
android:id="@+id/hello"
android:layout width="wrap content"
android:layout height="wrap_ content"
android:text="Hello World!"
app:layout constraintBottom toBottomOf="parent" ©
app:layout constraintlLeft toleftOf="parent"
app:layout constraintRight toRightOf="parent"
app:layout_constraintTop_ toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

@ Root node of layout file, which also declares what kind of layout manager is in effect. In this
case, we are using the ConstraintLayout manager
® Declaration of the a TextView object. It’s a child node of the layout manager.

® Defines one of the constraints of the TextView object. It says, there’s an anchor point to the
bottom of the TextView and it anchored to the bottom of the container.

207

CHAPTER 10 ACTIVITIES AND LAYOUTS
Listing 10-4. MainActivity.Kt
package com.example.ted.chi0hello

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) { @
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main) @
}
}

© The very first of the Activity life cycle methods. The runtime may or may not pass a Bundle
object to the function. A bundle object typically contains data from a previous Activity state (e.qg.,
when you’re collecting data from the user, you may want to save them in a Bundle when the
Activity gets to a “paused” state so that if the user is interrupted—usually by another Activity—
you won'’t have to ask the user to input the data again because it’s already in the Bundle).

® The setContent() function binds this Activity to a specific layout file. The “R” class was
generated by the aapttool during the Android build process; it contains a programmatic
reference to everything we declared in the app » res folder. In this statement, we’re associating
MainActivity.Kt with R.1ayout.activity main.

Now that we know what the project wizard gave us, let’s make changes to the
application.

Modifying Hello World

We’ll make some minor changes to both the layout file and the Activity. We'll do the
following:

1. Change the text in the current TextView control.

2. Add a Button to the screen, we will put the button right below the
TextView.

208

CHAPTER 10 ACTIVITIES AND LAYOUTS

3. Add a function to the Activity. The function will increment the
current value of the TextView.

4. We'll associate our new function to the Button, so that every time
we click the button, the value of the TextView will increase by 1.

Figure 10-7 shows the general layout of our project inside AS3. Currently, we're
looking at activity_main.xml in design mode. While in this mode, we can see the view
palette, design surface, and blueprint surface.

View Design Blue print
Palette surface surface
[] - CHICHl:hD|'|'ﬁl‘ﬁvi:ls'.wio5rb_ocl:vc~ﬂﬁ>1r‘b wfepp srefmain/resfayout/activity main) lspp]
i CHIOMello | by app | B8 src) B main) 0 ces) B leyout Jol activity_main aml A yee - B & mhm EE ADQ
& trorod - Do e - G acahity_main T AncenoManifestam ¥ MErActihvity 5t o
spp Faierie Q8- I|®. O~ ONewss~ =¥ - @ AppThome | © Defoult fon-us) |+ O @ @ A swiowes Q=04
- manitests ¥
o Java Al et View & W, Bdo, 2 F T
s res Text M Bulton
- deararable . B imageiew
H layout B RecyclerView
A mipmag Wdgets &5 cfragment>
= values Lavais W SerollView
- T (@ Gradle Seripts Cortarers | *® Switch
5 & build.gradie [Project: CH10Helo A
% & build.gradie [Module: app o
° % radie-wrappes. properties (Grady Legsty
i # proguard-rues.pro (ProGuard i
7o aradie propecties (Pro
& sentinge.gradie (Project Sottings)|
local properties (S0
Component L 2N
v ", CondtemintLayout Helio Wosid
40 thxtHello (TextView]
] - 7
g
o L \r -~
£ |
i , Drag controls from the |
= H |
H : Palette to the Design | .
+
| surface . o o | g
: NS / :
- ;
* — H
Bifn FTTOOO0 £ Glegest decrdProfiee I Termingl [V Buid & Cvent Log
[Geacie wuiid firishod in 35 36ms (33 minctes agal . =

Figure 10-7. CHI10Hello shown in design view

To add a Button control, drag and drop the Button from the View palette to the
design surface as shown in Figure 10-8—you can also drop it in the blueprint surface,
that will work as well.

209

CHAPTER 10 ACTIVITIES AND LAYOUTS

s Activity_main.xml i AndroidManitest.xml £ MainActivity kt
Palette Q #-1- €. O~ [Nexus4 - = 27~ © AppTheme
Common Ab TextView ©~ o, 80, % B mr I~

8 Button

Text

ImageView \

B s
Wiz Recyclerview
Widgets | ¢y cfragment> \
Layouts B ScrollView \
Containers *® Switch \\ CH10Hello
Google \\
¢ Legacy \)
\ -
\ ()
%2,
%%
<,
\ %o
- A
N% %
Component Tree #*- I \\
¥ "\, ConstraintLayout \\ Hello World

Ab textHello (TextView) - "

8 button2 - "Button” 4

® Default (en-us) ~

Figure 10-8. Drag and drop controls from the view palette

The Button control doesn’t have any constraint yet because we didn’t put any.

|
|
|
)

Constraints are not automatically added when you add a control to the design surface.

The TextView has constraints because that was generated by the wizard when we created

the project. Figure 10-9 shows the runtime and design time rendition of our project as it

currently stands.

210

CHAPTER 10 ACTIVITIES AND LAYOUTS

| Design time |

ClL] “ 0zu ' *h:aoo
CH10Hello : CH10Hello
BUTTON :
. PR <
4 ' Il Constraints f or :
- : | HelloButton
| N - s
7/
| L3 7 U
I % !
’ \
| ,
| 7’ '\
| '
| . ¥ Hello World
| Hello World . \
| BUTTON |
7
\ ' 7
\ : //
\

\ . &~
Without constraints, .
controls float to
position 0,0

Figure 10-9. Button without constraint

The Hello TextView is nicely centered in the screen because it has four anchor
points (constraints). The Button appears right below the Hello text in design time, but in
runtime, it’s on position 0,0 (top left) of the screen—this is how controls are positioned at
runtime when they don’t have constraints.

Let’s start fresh. Remove all existing constraints in the design surface. You can do

this by selecting all the controls and clicking the “clear constraints” button, as shown in
Figure 10-10.

211

CHAPTER 10 ACTIVITIES AND LAYOUTS

Zoom controls

€. O+ [ONexus4~ m 27 v © AppTheme @ @ Default (en-us) ~ O3 ® @
@ v = T

&
R 80, S F 3

/

Clear
constraints

Thaoo
CH10Hello

ooo

ello World

Figure 10-10. Clear constraints

When all the constraints are removed, reposition the controls on the design surface
in the way you would like them to appear during runtime. Next, select all the controls
again—you can do this by clicking and dragging the mouse around the controls.

To “magically” add all the constraints for our controls, click “Infer constraints,” as
shown in Figure 10-11. AS3 will try to best guess the needed constraints for the controls
that will match your arrangement in the design surface.

212

CHAPTER 10 ACTIVITIES AND LAYOUTS

CHE

y O [Nexus 4 v = 27 + © AppTheme & Default (en-us) ~ ©3%® @®

- o Bdp, g% i

n

ooo

= -
v mmv I w

Infer
constraints

CH10Hello

Figure 10-11. Inferred constraints

The properties of the controls can be set in the “Attributes” window. We need to
change some properties of the TextView and the Button controls. The properties of an
object will appear on the attributes window when the object is selected in the design
surface, as shown in Figure 10-12.

213

CHAPTER 10 ACTIVITIES AND LAYOUTS

Attribute
window
Attribute
] S =
= 1 =
€. O- [ONexusd- =27~ © AppTheme_ @ Default (en-us) - GO3% @@ A Mibues Q & (8-
@ N 800 5 Al By T~ TSN ID_ _ _ — | textHello *® 13—
1 “sl o eee=—"5 \
| k S~_o--—"—7 S s
| 2 g
1 ANEY
| t -
QO
hd : =
b 335 ‘i .
CH10Hello 0) 0 g
; I
] o
| 0 —
|
| S
1
|

layout_width | wrap_content

layout_height iwrap_mntent

ello World

TextView

Figure 10-12. Attributes window

The attributes window contains all of the properties for the selected view object, but
it doesn’t show all of them by default. It shows only the properties we commonly use. To
view all the properties, click the “view all attributes” button, as shown in Figure 10-12.

Change the “ID” property of the TextView to “textHello’, as shown in Figure 10-12.
Next, change the “textApperance” to “Material. LARGE”—you have to scroll down a bit in
the attributes window, so you can see the “textApperance” property.

The ID property of a view object is important because it makes the view object
accessible from our code (the Activity class).

The next attribute we need to change is the Button’s onClick property. Select the
Button, then find the “onClick” property. You may have to show all the attributes of the
Button and scroll down until you get to the onClick property.

214

CHAPTER 10 ACTIVITIES AND LAYOUTS

vertical_weight

width_default

width_max

width_min

width_percent
» Layout_Margin [?, 12dp, 34dp, ?, ?]
» Padding 7,272 7
» Theme

elevation
onClick addNumber
text Button
accessibilityLiveReg
accessibilityTravers:
accesslbnhtyTravers

o

CH10Hello

Hello World

allowUndo
alpha

v

autolink
autoText
background
bac kgrou ndTint

E—.

Figure 10-13. Button’s onClick property

anbbnaind A 2 2

Type “addNumber” in the Button’s onClick property, as shown in Figure 10-13.
This action will associate the click event of the Button to the addNumber () function in
MainActivity class. Of course, we haven’t written the function yet, but it’s okay, because
we'll implement it shortly.

We've finished our work in the layout file. Now we can work on MainActivity class.
Open MainActivity.Kt in the main editor and make the following changes as shown in
Listing 10-5.

Listing 10-5. MainActivity.Kt
class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

findViewById<TextView>(R.id.textHello).text = "1"

215

CHAPTER 10 ACTIVITIES AND LAYOUTS

No surprises here. The last statement in the onCreate() function gets the reference
to the textHello object and sets the text property to “1.” This is already a big improvement.
Remember that in Java, this statement would have looked like Listing 10-6.

Listing 10-6. How to Set a Property During Runtime, in Java

TextView helloText = (TextView) findViewById(R.id.textHello);
helloText.setText("1")

In Kotlin, we get that nice getter and setter syntactic sugar. But we can still cut some
more boiler-plate code. AS3 comes automatically with the Kotlin Android Extensions
plug-in, and it’s already declared in the module level “build.gradle” file whenever a new
project is created. Figure 10-14 shows the build.gradle file and its contents.

Gradle has replaced Apache Ant as the build tool. You generally don’t need to
change anything in the gradle file because the default contents are just fine, most of the

time.

5 & Android v @ & | - |~ g activity_mainxml 6 MainActivity.kt (2 app

lg ¥ Iz app 1 apply plugin: ‘com.android.application’
B manifests i in: in- id

L. » java apply plugin: ‘kotlin-android-extensions’
g v WRres . aigiroid {

2 > drawable 6 compileSdkVersion 27

H > Em layout 7 defaultConfig {

| & 5 8 applicationId "com.example.ted.chl@hello"
[& » mipmap 5 minSdkVersion 23

| & » [n values 18 targetSdkversion 27

| ¥ (& Gradle Scripts 11 versionCode 1

versionName “1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner”

}
buildTypes { o . o

{3 build.gradle (Project: CH10Helio) | 1
(# build.gradle (Module: app)

| gradle-wrapper.properties (Grad|e
‘\-"“I ’ahﬁm il e el it

Captures

Figure 10-14. build.gradle, module level

Going back to the code, Listing 10-7 shows the full program for MainActivity.Kt,
which implements the logic for incrementing the value of textHello whenever the Button
is clicked.

Listing 10-7. MainActivity.Kt

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import android.widget.TextView

import kotlinx.android.synthetic.main.activity main.* @

216

CHAPTER 10 ACTIVITIES AND LAYOUTS
class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

textHello.text = "1" @

}

fun addNumber(v: View) { ©
val currVal = textHello.text.toString().toInt() @
val nextVal = currVal + 1
textHello.text = nextVal.toString() @

}

© This statement imports the Kotlin Android Extension. You may not have to type this yourself—
AS3 adds it automatically as soon as try to do view binding using the ID of a view object.

® We don't have to use findViewById() anymore; we don’t even have to use the R.class to
qualify the ID of the view object. The Android Kotlin Extensions exposes the views to our code
with a lot less ceremony. This results in a much cleaner code. Notice also that we get the nice
getter and setter syntax that was added by Kotlin.

® The addNumber () function is associated with the onClick event of the Button control. This
function is an event handle—when the Button is clicked, this function will be called. It needs
to accept a View object as a parameter because that’s a requirement for an event handler. The
function needs to have access to the view object that raised the event.

® textHello.text returns the current value of textHello as CharSequence type. The
toString() converts it to a String type that we can convert to an Int using the toInt()
function. We need the value as Int because we will use it in a Math operation.

@ This statement sets the text property of textHello to a new value.

When you’re done with the edits, run the application on an AVD. Figure 10-15 shows

the project running on an emulator.

217

CHAPTER 10 ACTIVITIES AND LAYOUTS

ie "W 0 9:58

CH10Hello

Figure 10-15. CHI10Hello running on an emulator

Chapter Summary

218

The entry point for an Android application requires three files: the
manifest file, the layout file, and an Activity class

The AndroidManifest file declares all the contents of the Android
project. The manifest may be able to designate an Activity class that
will serve as the application’s entry point.

A layout file describes the UI structure of a screen. Each element
is described as an XML node, but the XML file is inflated

during runtime. The inflation process produces the Java object
representations of the UI elements.

All UI elements inherits from the android.viewView class.

Composite views can be constructed by inheriting from the
ViewGroup class.

CHAPTER 10 ACTIVITIES AND LAYOUTS

Layout managers provide ways to arrange Ul elements in a screen.
The Android SDK has plenty of pre-built managers we can use out of
the box.

The Kotlin Android Extensions allow us to simplify view-binding
codes by exposing the properties and functions of view elements. We
don’t need to use findViewByld anymore.

In the next chapter, we’ll learn how to:

Work with some basic View elements like Buttons and Toasts

Use Kotlin’s Android Extensions to get references to View objects; it
replaces ButterKnife

Handle clicks and long clicks; we’ll do both long-form using the full
syntax of object expressions and the short-cut way using lambda
expressions

219

CHAPTER 11

Event Handling

What we’ll cover:
o Listener objects
e Anonymous inner objects
e Use oflambdas in event handlers

In the last chapter, we already did some event handling. The part of the exercise
where we wrote a function that will increment the value of a text view each time a button
is clicked is an exercise on declarative event handling. To bind a function name to a click
event, we simply set a View’s android:onClick attribute to the name of a function. This
is a simple and low-ceremony way to handle events, but it is limited to only the “click”
event. When you need to handle events like long-clicks or gestures, you need to use
event listeners—this is the topic of this chapter.

Introduction to Event Handling

The user interacts with your app by touching, clicking, swiping, or typing something. The
Android framework captures, stores, processes, and sends these actions to your app as
event objects. We can respond to these events by writing functions that are specifically
designed to handle them. Functions that handle events are written inside listener
objects—and there’s quite a few of them. Figure 11-1 shows a simplified model of how
user actions are handled by the Android framework and your app.

221
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_11

CHAPTER 11 EVENT HANDLING

(2) Android captures
and processes the
action

(4) Android executes
whatever you wrote in
the overridden onClick()
function

@ """ —————— >l 1I|----- +»| Listener .onClick()

(1) User clicks .
a button (3) Android Framework

creates an event object
and sends it to the
onClick() function of the
Button control

Figure 11-1. Simplified event handling model

When a user does something with your app, like clicking a button, the Android
framework catches that action and turns it into an event object. An event object contains
data about the user’s action (e.g., which button was clicked, what was the location of
button when it was clicked, etc.) Android sends this event object to your application
and it calls a specific function that corresponds with the user’s action. If the user clicked
the button, Android will call the onClick() function on the Button object, if the user
clicks the same button but holds it a bit longer, then the onLongClick() function will
be called. View objects, like the Button, can respond to a range of events like clicks,
keypresses, touch or swipes, etc. Table 11-1 lists some of the common events and their
corresponding event handlers.

222

CHAPTER 11 EVENT HANDLING

Table 11-1. Common Listener Objects

Interface Function Description
View.OnClickListener onClick() This is called when the
user either touches and

holds the control (when in
touch mode), or focuses
upon the item with the
navigation keys then
presses the ENTER key

View.OnLongClickListener onLongClick() Almost the same as a
click, but only longer

View.OnFocusChangelistener onFocusChange() When the user navigates
onto or away from the
control

View.OnTouchListener onTouch() Almost the same as click
action but this handler
lets you find out if the
user swiped up or down.
You can use this to
respond to gestures

View.OnCreateContextMenuListener onCreateContextMenu() Android calls this when
a ContextMenu is being
built, as a result of a
sustained long click

To set up a listener, the View object can set or, more aptly, register a listener object.
Registering a listener means you are telling the Android framework which function to
call when the user interacts with the View object. Figure 11-2 shows an annotated code
for registering handlers.

223

CHAPTER 11 EVENT HANDLING

View object. The user Registration. Calling this function on the
will interact with this View object tells the Android Framework
) ,~~ 7~ which listener object to use when
/] /) something interesting happens
v T e e e ————

Listener Object. When the user clicks on the button
control, it will look for an appropriate handler inside this
object.

Figure 11-2. Annotated event registration and handling code

The setOnClickListener is a member function of the android.viewView class, which
means every child class of View has it. This function expects an OnClickListener object
as an argument—this object becomes the listener for the button control. When the
button is clicked, the codes inside the onClick function are run.

We created the listener object by creating an object expression that inherits from
View.OnClickListener. This type is declared as a nested interface in the View class.
Obiject expressions are the Kotlin equivalent of Java’s anonymous inner classes. In Java,
we wrote codes like thseat in Listing 11-1.

Listing 11-1. onClick Listener in Java

button.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View view) {
System.out.println("Hello click");

}
1)

In Kotlin, an anonymous inner class is created using an object expression, as shown

in Listing 11-2.

224

CHAPTER 11 EVENT HANDLING
Listing 11-2. onClick Listener in Kotlin

button.setOnClickListener(object: View.OnClickListener {
override fun onClick(v: View?) {
println("Hello click")

}
1)

Listing 11-2 is actually a verbose way of writing an object expression. Kotlin’s support
for lambdas can simplify our existing code to something like that in Listing 11-3.

Listing 11-3. onClick Listener Using lambdas

button.setOnClickListener {
println("Hello")

}

Now that we have enough working knowledge about events, let’s explore them
further by creating a new project. Table 11-2 shows the project details.

Table 11-2. Project Information for the
CH11EventAnonymousclass

Project Detail Value

Application name CH11EventAnonymousClass
Company domain Use your website name
Kotlin support Yes

Form factor Phone and Tablet only
minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility Yes. AppCompat

225

CHAPTER 11 EVENT HANDLING

This project will contain only two controls: the TextView that came with the project
when we used the wizard and a Button view, which we are yet to add. The Button will
intercept the events click and long-click using an anonymous inner object.

Open the activity_main.xml file in the main editor if it’s not open yet. You can find it
in the Project Explorer window under the app > res > layout folder.

Add a button to the design surface and add some constraints to it. You can add a
Button control to the layout by dragging it from the palette and onto the design surface,

as shown in Figure 11-3.

Palette Q#H-1- €. 8~ [ONexuss - = 27 - © AppTheme : & Default (en-us) ~ O3x® @
Common Ab TextView @ + ¥ 8dp ;g% 4

ik B Butto /T\
m Imageﬁ%«\ L

Buttons

4
*

000

_ While the Button is selected,

) i= RecyclerView click “Infer constraints”
Widgets | ¢y cfragment> < /
Layouts [ScrollView MR TR0
Containers *® Switch I CH11-Event-anonymous-class
Google S N
Legacy S N
\ Drag and drop /
M. the Button from
N N the pallete |
\ !
\
weoriaid. |
N il Yo ldi-s
\
Component Tree - T & N v/
7 "\, root_layout (ConstraintLayo b WT"'”W M
Ab textView - "Hello World

Figure 11-3. Add a button control to the design surface

While the button control is selected, click the “Infer constraints” on the constraints
toolbar (also shown in Figure 11-3).

You might notice a yellow warning triangle somewhere in the upper-right corner of
the layout editor (shown in Figure 11-4). Click the warning box.

s OCHivity_mainxmi g MainActivity.kt Show Warnings and Errors (E)
Palette Q#-1- €. &+ [ONewsd~ = 27 - @ AppTheme @ Default (en-us) - Pax®@E A n E
- L
commen [ERCOICINN © - i 8%, % S T - g
Tt B Button £
M imageView 2
Buttons

i= Recycler\View
Widgets ¢ ctragments

Layouts W ScrollView ¥ Rs00
Containers | =® Switch CH11-Event-anonymous-class
Geoale

Figure 11-4. Show warnings and error button

226

CHAPTER 11 EVENT HANDLING

Figure 11-5 shows the message tool window. It contains some explanation as to why
we got the warning and a button prompt for a suggested fix.

Message & Source
Hardcoded string "Button®, should use @string resource

Hardcoding text attributes directly in layout files is bad for several reasons:

* When creating configuration variations (for example for landscape or portrait)you have to repeat the actual text (and keep it
up to date when making changes)

* The application cannot be translated to other languages by just adding new translations for existing string resources.

There are quickfixes to automatically extract this hardcoded string into a resource lookup.

Suggested Fix
I Fix | Extract string rasourcel

Figure 11-5. Suggested fix

AS3 is complaining because the newly added Button has a hard-coded value in its
text property. Listing 11-4 shows (a snippet of) activity_main.xml before the “fix.” Right
now, the android:text property has a value of “Button,” a string literal.

Listing 11-4. activity_main.xml, Button Element, Before the Fix

<Button
android:id="@+id/button"
android:text="Button"

/>

Androids prefer that we write attribute values, like the text property of the Button,
in a resource file, rather than hard-coding them. Click the “Fix” button so AS3 can
automatically extract the string resource. This action opens the Extract Resource window
(see Figure 11-6).

227

CHAPTER 11 EVENT HANDLING

® o Extract Resource

[
Resource name: | button|

Resource value: Button
Source set: main B

File name: strings.xml

Create the resource in directories:

values
| '__'__'__'__'__'__'_I
! <resources> |
1 < string name= "button">Button</string> |
k | </ resources> !
| |
app/res/values/strings.xml
i |

Cancel

Figure 11-6. Extract resource

Our project has a string resource file in app/res/values/strings.xml. It provides
textual resource values for the app. Android wants us to store all the string literals in this
resource file instead of hard-coding them as you've seen in Listing 11-4.

The “Resource name” becomes the “name” attribute of the newly created string
resource, and the “Resource value” becomes, well, the value of the string resource. This
value is what will show up in the Button’s text. Click “OK” to complete the action.

Listing 11-5 shows the content of activity_main.xml after the fix. The value of
android:text is now set to “@string/button.” The @ sign means we should not use the
value of this string directly but instead look up a resource named “button” in the strings
resource file.

Listing 11-5. activity_main.xml, Button Element, After the Fix

<Button
android:id="@+id/button"
android:text="@string/button”
/>

228

CHAPTER 11 EVENT HANDLING

Last thing we need to do on the layout file is to assign an id attribute to the layout
container. The layout container, by default, doesn’t have an id attribute. We need to
assign an id to it because we will refer to it later in our code. Switch to design mode and
click somewhere inside the layout container (as shown in Figure 11-7). In the attributes
panel, edit the id property. In this example, the id of the layout container is “root_layout.”

id. Click somewhere inside the design surface and
------- inspect the attributes. We need to give our layout
container an id

|
|
|
|
fg MainActivity.kt | N
|
I

~ O]
N
®. O+ [JNexusd~ m 27 ~ 10 AppTheme » D20% @ @ © atrbutes \& Qlel#- 1 g
- pe— ®
©- ¥ ,8, ST | id oot layout] |4
] layout_width match_parent
| layout_height match_parent
| » Constraints
| » Layout_Margin P P
J » Padding 2277
Thaoo » Theme
CH11-Event-anonymous-cless elevation
context MainActivity

accessibilityLiveReg
accessibilityTravers:
accessibility Travers:
actionBarNavMoc
addStatesFromChilc &

alaba

Figure 11-7. Change the id attribute of the layout container

Listing 11-6 shows the modified contents of our layout file.

Listing 11-6. Complete Listing for activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintlLayout xmlns:android="http://schemas.
android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/root_layout" o
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

229

CHAPTER 11 EVENT HANDLING

<TextView
android:id="@+id/textView"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout constraintBottom toBottomOf="parent
app:layout constraintlLeft tolLeftOf="parent"

app:layout_constraintRight toRightOf="parent"
app:layout constraintTop toTopOf="parent"
app:layout constraintVertical bias="0.353" />

<Button
android:id="@+id/button"
android:layout width="wrap content"
android:layout height="wrap_ content"
android:layout_marginEnd="8dp"
android:layout marginStart="8dp"
android:layout _marginTop="36dp"
android:text="@string/button" @
app:layout constraintEnd toEndOf="parent"
app:layout _constraintStart toStartOf="parent"
app:layout constraintTop toBottomOf="@+id/textView" />

</android.support.constraint.ConstraintLayout>

@ The android:id of the layout container is now set to +@id/root_layout. Later in our code, we
can refer to this control as just root layout .

® The android:text property now has a value of @string/button; it's no longer hardcoded. It
now gets its value from the strings.xml resource file.

Now we can work on the program file. Open MainActivity.Kt in the main editor. You
can launch it by double-clicking on the file app/java/com.example.../MainActivity.Kt in
the Project window.

We want the button to respond to both clicks and long-clicks. To do this, we need to
set up two separate listeners for the same button—we could have created two buttons
and assigned a listener to each, but I feel that the exercise is more instructive if we bind
the two listeners to the same button.

230

CHAPTER 11 EVENT HANDLING

The Activity doesn’t need to be visible to the user before we set up the listeners;
it only needs to be on the “created” state. This is why we’ll set up the listeners in the
onCreate() callback function. Let’s deal with the click event first, then we’ll handle the
long-click. Listing 11-7 shows the code for the OnClickListener.

Listing 11-7. OnClickListener

button.setOnClickListener(object : View.OnClickListener {
override fun onClick(v: View?) {

}
1)

By the way, as you type these codes, you might see some errors or warnings, like the
one shown in Figure 11-8.

Click anywhere in the “button” text, then
e T - do a Quick Fix — OPTION + ENTER in
s macOS or ALT + ENTER if you’re on

F . N Windo ws or Linux
2 button.setOnClickListener()

Uﬁ-resolved reference: button
Figure 11-8. AS3 hints

In the Figure 11-8, AS3 warned of an unresolved “button” reference. To fix this error,
we can either manually type the required import statements or we can use AS3’s “Quick
Fix” feature. To use the Quick Fix, click anywhere in unresolved reference—in our case,
the “button” identifier—then press the keys OPTION + ENTER if you're on macOS; ALT
+ ENTER if you're on Windows or Linux.

AS3 will present some options if there’s more than one way to resolve the issue. You
can scroll through the options and choose which one you want to use.

Figure 11-9 shows the options on how to the fix the unresolved reference error. We’ll
pick the last option—this import statement is the Kotlin Android Extensions (KAE).
KAE'’s magic sauce is that it exposes the IDs of all the view elements in your layout as

231

CHAPTER 11 EVENT HANDLING

extension properties of the Activity class. So, if you have a Button view in activity_main.
xml whose ID is “button,” you can simply use that ID in the Activity class like a regular
variable—you don’t need to use findViewBylId() anymore.

button.setOnClickListener() a
Imports

¥ com.example.ted.ch11_event_anonymous_class.R.id.button >
¥ com.example.ted.ch11_event_anonymous_class.R.string.button »

kotlinx.android.synthetic.main.activity_main.button

/%
* Using lambdas to setup event listeners i1s much cleaner

T Py . o Y % Sewwsr)

Figure 11-9. AS3 hinting on an import

Once you've typed the event handler as shown in Listing 11-7 and also in Figure 11-10,
you'll notice that AS3 is hinting us to convert the listener object to a lambda expression.

button.setOnClickListener(object: View.OnClickListener {
_ override fun onClick(v: View?) { a0 .
v ‘ Convert to lambda more... (38F1) |

Figure 11-10. Convert to lambda hint

To use the Quick Fix, click anywhere in “OnClickListener,” as shown in Figure 11-11,
and press OPTION + ENTER or ALT + ENTER, then choose “Convert to lambda.”

-
button.setOnClickListener(object: View.OnClickListener {
override fun onClick(v: view?) { ® Convatto b <
}
H % Convert to run >
2 Convert to with >
 Annotate interface 'OnClickListener' as @Deprecated »

o et

Figure 11-11. Convert to lambda quick fix

232

CHAPTER 11 EVENT HANDLING

The lambda-simplified version removed some of our codes—the parentheses of
setOnClickListener, the object expression, and the overridden onClick function are all
gone, leaving us with just the following code:

button.setOnClickListener { }

Next thing to do is to put a Toast message inside the onClick handler. Listing 11-8
shows a simple Toast message inside the click handler. A Toast is a small pop-up message
that automatically disappears after some time. You can use it to send small feedback
messages to the user. Listing 11-8 shows how to construct a Toast message inside the
OnClickListener.

Listing 11-8. Toast Message

button.setOnClickListener {
Toast.makeText(this, "Hello World", Toast.LENGTH LONG).show()

}

Showing a Toast message is a two-step process. First step is to create a Toast
message using the makeText() function. It takes three parameters: (1) the Context of the
application, which in our case is the instance of MainActivity; (2) the message to show;
and (3) how long to show the message. Second step is to make it visible by calling the
.show() function.

Let’s move on to the long-click listener. The code for this listener is shown in
Listing 11-9.

Listing 11-9. OnLongClickListener

button.setOnLongClickListener(object: View.OnLongClickListener {
override fun onLongClick(v: View?): Boolean {

return true

}
1)

Reducing the code in Listing 11-9 to its lambda version gives us the following code:

button.setOnLongClickListener { true }

233

CHAPTER 11 EVENT HANDLING

To test the long-click handler, let’s use SnackBar rather than Toast. SnackBar is
similar to Toast but it appears at the bottom of the screen. You can make it disappear
after some timeout too, like Toasts, or you can make the user swipe it. SnackBar is more
capable than Toast because you can include some actions in the message, like a small
dialog box.

Before you can use SnackBar in your project, you need to modify the project’s build.
gradle file. See Listing 11-10 for the changes you need to make.

Listing 11-10. /app/build.gradle

dependencies {
implementation 'com.android.support:design:27.1.1"' @
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"
implementation 'com.android.support:appcompat-v7:27.1.1"
implementation 'com.android.support.constraint:constraint-layout:1.1.2"
testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-
core:3.0.2'

© You need to add this to the project’s build.gradle file (app level) before you can use SnackBar.

After that, you need to “Sync” the gradle file. A yellow strip will appear on the upper
portion of the main editor, and on the upper-right corner, there will be a link to “Sync”
the file. Click it, as shown in Figure 11-12.

3 BCtivity_mainxm| 3 MainActivity.kt (& app Pl
Gradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly. Sync Now
1 apply plugin: ‘com.android.application’ \,' -
apply plugin: 'kotlin-android’ bl
apply plugin: ‘kotlin-and roid-extensions’
android {
compileSdkVersion 27
defaultConfig {
applicationld "com.example.ted.chll event_anonymous_class™
g & ¥ SRV o O ROV S i S ST Y W

Figure 11-12. Sync the build.gradle file

234

CHAPTER 11 EVENT HANDLING

After that, you can now use the SnackBar element. Listing 11-11 shows how to
construct a SnackBar inside a long-click handler.

Listing 11-11. SnackBar Message Inside OnLongClickListener

button.setOnLongClickListener {
Snackbar.make(root layout, "Long click", Snackbar.LENGTH LONG).show()
true

SnackBar’s make function requires three parameters: (1) a parent view; root_layout
is the ID of our layout container; (2) a message to show; and (3) how long to show the
message.

The last line in OnLongClickListener is actually a return statement, but we omitted
the “return” because the handler is in lambda form—and in this form, the last expression
on the block is returned.

The onLongClick() callback function has a Boolean signature—it returns either true
or false. In our example, we returned true, which tells the Android runtime that the event
has already been consumed and there is no need for other event handlers (like onClick)
to handle it again. Had we returned false, the onClick handler would have kicked in right
after onLongClick. Listing 11-12 shows the full code for MainActivity.

Listing 11-12. MainActivity.Kt, Annotated
package com.example.ted.ch1l event anonymous class @

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.support.design.widget.Snackbar

import android.test.ViewAsserts

import android.view.View

import android.widget.Toast

import kotlinx.android.synthetic.main.activity main.* @

class MainActivity : AppCompatActivity() { ©

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main) @

235

CHAPTER 11 EVENT HANDLING

button.setOnClickListener {
Toast.makeText(this, "Hello World", Toast.LENGTH LONG).show()

}
button.setOnLongClickListener {

Snackbar.make(root layout, "Long click", Snackbar.LENGTH_LONG).show()
true

© Package declaration for our project. This comes from the “company domain” entry during
project creation.

® |mport statement for the Kotlin Android Extension (KAE). The KAE turns all the View elements in
activity_main.xml into an extension property. Hence, we can refer to any View element using just
their ID.

® We're extending from AppCompatActivity, so we can use modern elements like SnackBar and
still run the app on earlier versions of Android.

® This statement binds MainActivity to activity_main.xml, our layout file.

If you run the app on the emulator, you'll see something like Figure 11-13.

236

CHAPTER 11 EVENT HANDLING

CH11-Event-anonymous-class

Toast. A toast provides simple feedback
about an operation in a small popup. It
only fills the amount of space required for
the message and the current activity
remains visible and interactive. Toasts
automatically disappear after a timeout

Snackbars provide lightweight feedback
about an operation. They show a brief
message at the bottom of the screen on
mobile and lower left on larger devices.
Snackbars appear above all other elements
on screen and only one can be displayed at
a time. They automatically disappear after
a timeout or after user interaction
elsewhere on the screen, particularly after
fong click interactions that summon a new surface or
activity. Snackbars can be swiped off

< screen

Figure 11-13. Completed project running in the emulator

Chapter Summary

¢ You can set the android:onClick attribute to a name of a function if
you want to handle simple click events.

o Listener objects has to be registered to the Android runtime if you
want to intercept certain events.

o There are many kinds of listener objects, and they are listed as nested
interfaces in the View class.

237

CHAPTER 11 EVENT HANDLING

o Using the Kotlin Android Extension simplifies our coding. It exposes
the IDs of all the Views in the layout file as extension properties of
MainActivity—we don’t need to use findViewBylId() anymore.

o Lambdas cleans up our event handling codes.

In the next chapter, we’ll take a look at one of Android’s most important part: Intents.
Android, as an architecture, cannot exist without it. It’s the glue that binds together all
the loosely coupled components in Android.

238

CHAPTER 12

Intents

What we’ll cover:
¢ Intent overview
o Explicit and implicit Intents
o Passing data between activities
e Returning results from Intents

Android’s architecture is quite unique in the way it builds application. It has this
notion of components instead of just plain objects. And the way that Android makes
these components interact is something that can only be found in the Android platform.
Android uses Intents as a way for its components to communicate—it uses it to pass
messages across components. In this chapter, we’ll look at Intents: what they are and
how we use them.

What Intents Are

An Intent is “an abstract description of an operation to be performed.!” It’s a uniquely
Android concept because no other platform uses the same thing as a means of
component activation. In the earlier chapters, we looked at what'’s inside an Android
application. You might remember that an app is just a bunch of “components” (see
Figure 12-1) that are loosely held together, and each component is declared in a

manifest file.

'https://developer.android.com/reference/android/content/Intent

239
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_12

https://developer.android.com/reference/android/content/Intent

CHAPTER 12 INTENTS

APK
(AndroidManifest.xml)
C Intents
o N
Activities [Services

Views (layouts,

buttons, textviews [BroadcastReceivers
etc)

| fragments
-

\—

[ContentProviders

—

[Resources

Figure 12-1. Logical representation of an Android App

What if youl need your components to talk to each other (e.g., launch another
Activity)? How do you think we should manage that? If you have any experience with
desktop programming, you might do something like the code in Listing 12-1.

Listing 12-1. Wrong Way to Activate Another Activity
class MainActivity : AppCompatActivity {

button.setOnClickListener(object: View.OnClickListener {
override fun onClick(v: View?) {
SecondActivity(). // Won't work
}
1y
}

class SecondActivity : AppCompatActivity {}

Listing 12-1 may appear to be a simple and direct way to launch another Activity,
but unfortunately, it’s wrong and it won’t work. An Activity is not a simple object—it’s

240

CHAPTER 12 INTENTS

a component. You cannot activate a component just by instantiating it. To launch an
Activity, you need to create an Intent object and launch it using the startActivity()
function. The code is shown in Listing 12-2.

Listing 12-2. How to Activate Another Activity

button.setOnClickListener {
val intent = Intent(this@MainActivity, SecondActivity::class.java) @ @
startActivity(intent) @

}

O this@MainActivity The first parameter of the Intent constructor is a Context object. We
passed this@MainActivity because the Activity class is a subclass of Context, so we can
use that. Alternatively, we also could have used getApplicationContext(); an Application
context would have been accepted just as well.

® SecondActivity::class.java. The second parameter is a Class object. It’s the class of the
Component to which we want to deliver the message. This a reflection syntax. As you may
already know, reflection allows us inspect the structure of our programs during runtime.
SecondActivity::class would refer to the runtime reference of SecondActivity if it were
a Kotlin class (KClass), but it’s not. SecondActivity is a Java class (Android libraries are still in
Java), hence we refer to it as SecondActivity::class.java

©® We launch the Activity by calling startActivity() and passing the intent object to it.

The Android platform is gung-ho on loose coupling, and component activation
is smacked in the middle of its architecture. An application is just a collection of
components held together by a manifest file, and each of these components can be
activated by sending a message to it. The basic idea is that none of the components
talks directly to another. If one component, like an Activity, wants to talk to another
component, it needs to send a request to the Android runtime and let the runtime
resolve that request. You can think of an Intent as a message-passing mechanism within
Android: it glues the components together.

241

CHAPTER 12 INTENTS

Loose Coupling

You might be tempted to think that Android was over-architected because, why go to
these lengths just to launch another screen? Why couldn’t we just create an instance of
an object and be done with it—it is a well-known programming idiom already. Why do
we have to replace this with component activation?

Well, Android’s approach to program interactivity is quite unique because it’s very
user-centric. It gives the user a lot of power to make choices on how they manipulate and
create data. Mobile users are generally task-focused rather than app-focused; they don’t
really care which application does what, as long as it gets done.

Let’s take a common usage scenario for an Android device. A user opens the
“Contacts” application and chooses the contact detail of Ted Hagos, for example. This
contact could have an e-mail address, a mobile phone, and a twitter name, let’s say.

The user could tap on each of Ted’s contact points, and each time, Android will launch
a different application; the default e-mail client, a dialer, and a downloaded Twitter
app. The user probably doesn’t care which application was launched or how many
applications are currently open; he just wants to send a message. If this user doesn’t like
the e-mail app or the default twitter client, he could delete these apps and replace them
with something else, and he should be back in business. Figure 12-2 shows a simple
storyboard on using the Contacts app.

(3) Taps on mobile icon, (4) Taps on message
launches the dialer app ~ icon, launches the SMS

- ° N app
el R G
|
Ted Hagos & 632111111 [.
SMS
John Doe ﬂ tedhagos@gmail.com
Jane Doe !
—————————————————————————— =(Email app
(1) User opens the (2) Contact details has (5) Taps on envelope
Contacts app. Taps on a info on mobile number icon, launches the email
contact and email address app

Figure 12-2. How a user interacts with the Contacts app

242

CHAPTER 12 INTENTS

For this kind of program interaction to happen, Android needed to architect the
platform, focusing heavily on loose coupling and pluggability. A component, like the
Contacts app, should not know any specific detail about what app it should use when
an e-mail address or a mobile phone number is tapped. The resolution for what kind
of app to use for a specific kind of data should not be hardwired into the Contacts app;
otherwise, the user won’t be able to exercise his choice on which app to use when
sending e-mails or tweets.

This is where Intents come in. When a component needs to complete a task that is
beyond its capability to service, it can go out to the Android platform using Intents and
ask around if there’s any application that can (or wants to) fulfill the request.

Two Kinds of Intent

There are two kinds of Intent: an implicit and an explicit one. An analogy might be
helpful to illustrate the difference between these two kinds of Intent. Let’s say that
we’ll ask someone to buy some sugar. If we gave an instruction like “could you please
buy some sugar,” with no further details, this would be equivalent to an implicit Intent
because that person could buy the sugar anywhere. On the other hand, if we gave
instructions like “could you please go to the ABC store on third street and buy some
sugar,’ this would be equivalent to an explicit Intent. The earlier code sample in
Listing 12-2 is an example of an explicit Intent.

Implicit Intents are very powerful because they allow your application to take
advantage of other applications. Your app can gain functionalities that you did not write
yourself. You can, for example, create an Intent that opens the Camera, shoots and save a
photo—without writing any Camera specific code.

Intents Gan Carry Data

Intents can do much more than launch other Activities; you can also send and receive
data with it. Assuming we have two Activities named MainActivity and SecondActivity
and when a Button View object is clicked within MainActivity, we want to launch and
send some data to SecondActivity. To send data to SecondActivity, you need to:

1. Create an Intent—for the purposes of our example here, it will be
an explicit Intent.

2. Add data to the intent using the putExtra method.

243

CHAPTER 12 INTENTS

3. Launch the other Activity by calling the startActivity method; at
this point, the Android runtime will launch SecondActivity.

4. Within the onCreate method of SecondActivity, we can extract the
data from the Intent by using the getExtra method.

Figure 12-3 shows a simple sequence diagram on how this all works.

| Main Activity | | Android Runtime | | Second Activity
T

intent.putExtra()

G

start Activity()

onCreate()

intent.getExtra()

_)

Figure 12-3. How to send data to another Activity

Note Most of the function calls in Android like startActivity, onCreate, etc. are
asynchronous—that’s why the arrows used in the sequence diagram are half-stick
arrows. The sequence of calls as shown in Figure 12-3 (and in the other sequence
diagrams) are approximations only, they may not actually happen in that order.

To represent these steps in code, it might look like Listing 12-3.

Listing 12-3. Code Snippet from MainActivity

button.setOnClickListener {
val intent = Intent(this@MainActivity, SecondActivity::class.java)
intent.putExtra("main_activity data", editText.text.toString())
startActivity(intent)

}

244

CHAPTER 12 INTENTS

The parameters of the putExtra method is a key-value pair; the first parameter is the
key or name and the second parameter is the value. The name parameter will always be
of String type but the second parameter (value) may not be of String type always. The
putExtra method is overloaded, it can accept a range of types for the second parameter.
If you type slowly enough in Android Studio, you might see the options shown in the
code hinting while you are typing the putExtra method; see Figure 12-4.

button.setOnClickListener { it: View!
val intent = Intent(packageContext: this@ainActivity, SecondActivity :class. java)
1ntent putExtra{ name: "main_activity_data", editText.text.toString())

} |m % putExtra(name: String!, value: Byte) Intent!
butt m ‘= putExtra(name: String!, value: Char) Intent!
va'm putExtra(name: String!, value: Long) Intent!_.java}
va m = putExtra(name: String!, value: Float) Intent!
m = putExtra(name: String!, value: Short) Intent!
bu i & putExtra(name: String!, value: Double) Intent!
2: m = putExtra(name: String!, value: Boolean) Intent!
st ™M putExtra(name: String!, value: Bundle!) Intent!
} m ‘= putExtra(name: String!, value: String!) Intent!

} mi#kCvtrnlnamas C+rinnal mTias TatAreawl) Tatant |

"-l- and ~ 4 will move caret down and l.p in the editor >>

th

Figure 12-4. Code hinting in AS3 showing the overloaded putExtra()

In Listing 12-3, we put a String in the second parameter of putExtra; we can use
other types as well (e.g., basic types like Int, Byte, Char, Float, Short, etc.). We can also
use Bundles, Parcelables, or Serializables.

After calling the putExtra method on the Intent, the next step is to call startActivity.
That will trigger the Intent resolution mechanism of the Android runtime and will
eventually launch the SecondActivity.

Now we move on to SecondActivity. Naturally, you'd like to extract the data we sent
from MainActivity. You need to do two things to achieve that. You need to:

1. Getareference to Intent object; and

2. Call the getExtra function from the Intent. That code might look
like this:

val myintent = getIntent()
val data = myintent.getStringExtra("main_activity data")

245

CHAPTER 12 INTENTS

But because of Kotlin’s magic with getters and setters, the getIntent() function
becomes the intent property. So, we can rewrite it like this:

val data = intent.getStringExtra("main_activity data")

Getting Back Results from Another Activity

In the previous section, we managed to launch a second Activity and send data to it. In
this section, we’ll build on our previous example, but this time, we will also send some
data back to MainActivity. To do that, we need to:

1. Create an explicit Intent.
2. Add data to the intent using the putExtra method.

3. Launch the other Activity by calling the startActivityForResult
method. Like the startActivity method, we need to pass an Intent
object to this method as a parameter. In addition, we also need
to pass a request code to it. A request code acts as some sort of a
token. When we start an Activity and we expect some results back,
any other Activity can send back any result. If we have a couple
of Activities within a project, it could get confusing when we get
back the results. We need a way to track who's sending back those
results, and the request code will help us do that. Once we call
startActivityForResult, the SecondActivity will launch.

4. Within the onCreate method of SecondActivity, we can extract the
data from the Intent by using the getExtra method.

5. We can do some computation within SecondActivity. When we
are ready to send back data, we’ll do the following:

a. Getareference to the Intent object.
b. Add data to the Intent using the putExtra method.

c. Call the setResult method of SecondActivity. There are two
things we need to do in here: (1) set the status of Intent call, if
there are no errors, you can set it to Activity. RESULT _OK; and
(2) pass the intent object containing the extras as the second
parameter.

246

CHAPTER 12 INTENTS

d. Callfinish() from within SecondActivity. This will stop the
SecondActivity and effectively send the Intent to whichever
component called SecondActivity, which is MainActivity

6. Back to MainActivity, whatever results we expect back from
SecondActivity—or any other Activity, for that matter—can be
received from within the onActivityResult callback. This method
has three things in its parameter: it has the request code, result
code, and the Intent object that was sent back by SecondActivity.

Figure 12-5 shows a sequence diagram on how to send and get back results from
another Activity.

| Main Activity | | Android Runtime | | Second Activity

intent.putExtra()

|
|
:
:: startActivityForResult()

: onCreate() intent.getExtra()
X onPause() .
| |Q—Q
: I intent.putExtra()
| | setResult()
finish
! onRestart(), onStop() ! inish()
| 1 1
! onResume()| !
I { |
intent.getExtra() : onActivityResult() | :
. ' l
| |

C

Figure 12-5. Sequence diagram for getting back results from another Activity

When you send data to another Activity and you expect to get some data back, you
need to use startActivityForResult instead of startActivity. The code to do that looks
like this:

startActivityForResult(intent, SECOND ACTIVITY)

Like startActivity, you pass the Intent object to startActivityForResult, in addition to
the Intent object, you also need to pass a request code (SECOND_ACTIVITY). This request
code is important for MainActivity because we will use it to track from whom we are
getting the data back. The request code is an Int that you need to define. It doesn’t matter

247

CHAPTER 12 INTENTS

what number you will use for it, as long as if you have multiple request codes, each is
different. If you send and expect data back from a couple of Activities, you will use the
request code to track which of the other Activities are sending data back to you. This way,
when the results come back, we can tell what we were trying to do in the first place.

In SecondActivity, when we are ready to send data back, we need to create another
Intent object and load it with data using the putExtra method. After that, we call the
setResult method of SecondActivity. The setResult method takes two parameters: a
result code and the Intent object. If everything is going fine in the app, use Activity.
RESULT_OK; otherwise use Activity. RESULT_CANCELLED. RESULT_OK is actually
-1 and RESULT_CANCELLED is 0, but please don’t use the Int literals, always use the
supplied class constants.

When you call the finish method on SecondActivity, it will enter the stopped state
and MainActivity will emerge to the foreground again—so, it will restart and resume.
Whatever data was sent back by SecondActivity, we should be able to pick it up within
the onActivityResult callback of MainActivity. Listing 12-4 shows a typical overridden
onActivityResult callback.

Listing 12-4. onActivityResult

override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
super.onActivityResult(requestCode, resultCode, data)

if((requestCode == SECOND ACTIVITY) and (resultCode == Activity.RESULT
0K)) {

// extract data here

Note How do you know when you are supposed to override the onActivityResult
callback? If you launch another Activity using startActivityForResult, you should
override the onActivityResult callback—it’s where you can pick up whatever data
was sent back to you.

248

CHAPTER 12 INTENTS

Implicit Intents

What we've seen in the previous sections are all examples of explicit Intents. An explicit
Intent tells the Android runtime precisely which component to Activate. Going back to
our analogy, it’s like telling somebody to go to the grocery store on 3" street to buy some
sugar. An implicit Intent, on the other hand, simply will give the instruction to “get some
sugar”—it doesn’t matter where or how. An implicit Intent specifies only the action.

When you use an implicit Intent, the general idea is that you'd like to use a
functionality that doesn’t exist within your app—if it did exist within your app, you
would have used an explicit Intent in the first place;—so, you're asking the Android
runtime to find an application somewhere on the device that can service your request.

We know from the previous examples that Intents can carry data; we did that with
Extras. Extras are one of four things that an Intent can have; the other three are Action,
Data, and Category. An Action is the operation that you want to do (e.g., VIEW, DIAL,
ANSWER, CALL, etc.). The Data pertains to what kind of information the Action has to
work with (is it a URI, a Phone number, a picture, etc.), and Category pertains to what
components are eligible to deal with this Intent. Sometimes the runtime needs the
Category to filter out or select only those components that can respond to our Intent. You
can send Intents to Activities, BroadcastReceivers, and Services, but in this chapter, we’ll
deal only with Activities.

There’s generally four things you need to do to get an implicit Intent off the ground.

You need to:
1. Create the Intent object

” u ” u

2. Setits action (e.g., “view a map,” “call a number,” “take a picture,”
etc.)

3. Setits data; and
4. Launch the intent

Listing 12-5 shows us how all this might look like in code.

249

CHAPTER 12 INTENTS

Listing 12-5. Example Intent to Launch a Web Browser

val m_intent = Intent() ©®

m_intent = setAction(Intent.ACTION VIEW) @

m_intent = setData(Uri.parse("https://workingdev.net")) ©
startActivity (m_intent) @

@ Create the Intent using the no-arg constructor.

® Set the Intent action. In this example, we’d like to view something; it could be a contact,
a web page, a map, a picture somewhere, etc. At this point the Android runtime doesn’t
know yet what you want to view. ACTION_VIEW is one of the many Intent Actions you can
use. You can find other kinds of Action in the official Android’s website (http://bit.1ly/
androidcommonintents).

® Set its data. At this point, the Android runtime has a pretty good idea what you’re up to. In this
example, the Uri is a web page. Android is pretty smart to figure out that we’d like to view a
web page.

® Android will search every app on the device that will best match this request. If it finds more
than one app, it will let the user choose which one. If it finds only one, it will simply launch that
app.

We can simply the codes in Listing 12-16 into something like this

m_intent = Intent(Intent.ACTION VIEW, Uri.parse("https://workingdev.net"))
startActivity(m_intent)

The ACTION and DATA can be passed as arguments to the Intent’s constructor.

Any component that can answer to our Intent does not need to be running in order
to receive the Intent. Remember that all applications need to have a manifest file. Each
application declares its capabilities in the manifest file, specifically through the <intent-
filter> section. Android’s package manager has all the info of all the applications
installed on the device. Android’s runtime only needs the information on the manifest
file to see which among the apps are capable and/or eligible to respond to the Intent.

In the following sections, we'll explore implicit and explicit Intents in more details.
WEe'll set up example projects so you can practice on them.

250

http://bit.ly/androidcommonintents
http://bit.ly/androidcommonintents

CHAPTER 12 INTENTS

Demo 1: Launch an Activity

We won'’t do anything fancy with this project. We will simply create two Activities:
MainActivity and SecondActivity. We will launch the SecondActivity from MainActivity
when a Button is clicked. The project details are shown in Table 12-1.

Table 12-1. Project Detail for Demo App

Project Detail Value

Application name CH12LaunchAnotherActivity
Company domain Your website name

Kotlin support Yes

Form factor Phone and Tablet only
minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility ~ Yes. AppCompat

When the project opens in the Main window, create the SecondActivity. One of the
ways you can do that is to select the “app” the Project tool window as shown in
Figure 12-6, then from the Main toolbar click File » New » Activity » Empty Activity.

@ @ | | CH12LaunchAnotherActivity [~/AndroidStudioProjects/CH1 2LaunchAnotherActivity] - .../app/sre/main/java/net/workingdevich12lau
ctivity ; iz app) B src) B main java) Em net) Em workingdev) Em chi2launchanotheractivity) i MainActivity.kt) &, Cmapp ~ | P 3

s ACtivity_mainxml 6 MainActivitykt

package net.workingdev.chl2launchanotheractivity

=8 > (& Gradle Scripts

~import ...
g 6 g class MainActivity : AppCompatActivity() {
E g of override fun onCreate(savedInstanceState: Bundle?) {
@ super.onCreate(savedInstanceState)
:‘: setContentView(R. layout.activity_main)
- }
}

Figure 12-6. Select “app” in the Project tool window

251

CHAPTER 12 INTENTS
Let’s give it the name “SecondActivity,” as shown in Figure 12-7.
‘e

@ New Android Activity

Configure Activity

A Android Studio

Creates a new empty activity

Activity Name: SecondActivity]

Generate Layout File
Layout Name: activity_second
Launcher Activity

Backwards Compatibility (AppCompat)

Package name: net.workingdev.chi2launchanotheractivity
Source Language: Kotlin
Target Source Set: main

The name of the activity class to create

Cancel Previous Mext

Figure 12-7. New Android activity

Next, go to activity_main.xml (design view). Remove the TextView element and
replace it with a Button view. Position the Button approximately to the center of the
layout, then use the “infer constraint” button, as shown in Figure 12-8.

Next, open activity_second.xml, also in design view, then add a Button view and
center it in the layout, just like what you did in activity_main.

252

CHAPTER 12 INTENTS

I' e A .
© -~ & 8dp, .ﬁ‘ ¥ ,':Q - By Tow id : button
-0 layout_width wrap_content
lT\ layout_height wrap_content
t= -(2) Click the “infer constraints” » Constraints
» Layout_Margin [?, ?, 80dp, ?, ?]
» Padding 77.%%7
CH12LaunchAnotherActivity » Theme

elevation
Go to SecondActivity
accessibilityHeadir &
accessibilityLiveRe

accessibilityPaneTi

accessibilityTraver

accessibilityTraver

allowlUndo

L __ (1) Select the Button element
and change the text to “Go to

o s Second Activity” =

Figure 12-8. Center the Button view on the layout

At this point, you should have the following View elements and classes to work with:

o MainActivity.Kt and its associated activity_main.xml, this is from the
project creation wizard

o SecondActivity.Kt. and its associated activity_second.xml, this is from
the Activity creation wizard

e A Button view object in activity_main whose id is “button” —it’s the
default id for the first Button element in the project

e Another Button view object in activity_second whose id is
“button2”—it’s the default id for the second Button element in the
project

Listings 12-6 and 12-7 show the codes for activity_main and activity_second,
respectively; you may use them as reference or for comparison in case you tried to build
the project yourself.

Listing 12-6. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"2>
<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"

253

CHAPTER 12 INTENTS

android:layout_height="match_parent"
tools:context=".MainActivity">

<Button

android:id="@+id/button”
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout marginTop="80dp"
android:text="Button"
app:layout constraintEnd toEndOf="parent"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Listing 12-7. /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"2>
<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"
android:layout height="match_parent"
tools:context=".SecondActivity">

<Button

android:id="@+id/button2"

android:layout width="wrap content"

android:layout_height="wrap content"

android:layout _marginTop="88dp"

android:text="Button"

app:layout_constraintEnd_toEndOf="parent"

app:layout constraintStart toStartOf="parent"

app:layout_constraintTop_ toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

Listings 12-8 and 12-9 show the annotated codes for MainActivity.Kt and
SecondActivity.Kt, respectively.

254

CHAPTER 12 INTENTS

Listing 12-8. Full Listing and Annotated Code of MainActivity.Kt

import android.content.Intent

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import kotlinx.android.synthetic.main.activity main.*
import java.util.logging.Logger

class MainActivity : AppCompatActivity() {
val Log = Logger.getlLogger(MainActivity::class.java.name) @

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

Log.info("onCreate") @

button.setOnClickListener { ©
val m_intent = Intent(this@MainActivity, SecondActivity::class.java) @
startActivity(m intent) @
}
}

override fun onPause() {
super.onPause()
Log.info("onPause")

}

override fun onRestart() {
super.onRestart()
Log.info("onRestart")

}

override fun onResume() {
super.onResume()
Log.info("onResume")
}
}

255

CHAPTER 12 INTENTS

o

®

(5]

We’re defining a simple Logger object. We could have used the android.util.Log class, but |
would think that most of you who will read this book will come from a Java background, so
this should look familiar. The parameter MainActivity: :class.name is roughly equivalent
to Java’'s getClass().getName(). Alternatively, you can also just pass any String to the
getLogger() method—e.g., getLogger("My Project")—but the usual practice is to
use the name of class for the Logger object.

We're just creating a log entry saying that we’re on the “onCreate” callback of MainActivity.
This is a basic setup for a Button’s click listener; you’ve done this already.

This line creates an Intent object. First parameter of the Intent object is a Context object; you
can use an Application Context here, but in our case, we used an Activity context. this@
MainActivity is a reference to MainActivity’s context. The second parameter is the Intent’s
target object. This is a specific instruction to Android runtime that we want to activate this
object. The second parameter should be of type Class. The notation for MainActivity’s class
objectis MainActivity::class.java.

We launch the Intent.

Listing 12-9. SecondActivity.Kt

import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity second.*

import java.util.logging.Logger

class SecondActivity : AppCompatActivity() {

val Log = Logger.getlogger(SecondActivity::class.java.name)

override fun onCreate(savedInstanceState: Bundle?) {

256

super.onCreate(savedInstanceState)
setContentView(R.layout.activity second)

Log.info("onCreate")

http://class.name

CHAPTER 12 INTENTS

button2.setOnClickListener {
finish() @
}
}

override fun onStart() {
super.onStart() @
Log.info("onStart")

}

override fun onStop() {
super.onStop()
Log.info("onStop")
}
}

©® When we call this, SecondActivity will be on a “stopped” state.

® When SecondActivity enters the onStart callback, it will be visible to the user. Whatever
Activity was in the foreground, will now be moved to the background; MainActivity will enter a
“paused” state.

When you call startActivity from MainActivity, the runtime will activate
SecondActivity. When SecondActivity becomes visible to the user, which should happen
during onStart of SecondActivity, MainActivity will enter the “paused” state.

When you call finish() from SecondActivity, it will enter the “stopped” state.
MainActivity will be brought to the foreground, so it will re-enter the “resume” and

“restart” states. This interaction is shown in Figure 12-9.

257

CHAPTER 12 INTENTS

| Main Activity Android Runtime | Second Activity |
| |
startActivity() onCreate() :I
onPause() |
onStop() D
onRestart() finish()
onResume()

Figure 12-9. Sequence diagram for MainActivity, SecondActivity, and the

runtime

I've overridden some of the life cycle callbacks for both MainActivity and
SecondActivity. You can inspect the logs to see the timing and sequence of when the life
cycle methods are called. You can use the Logcat tool window to inspect the application
and system logs, as shown in Figure 12-10.

Logeat

onStart

4x Build Variants

3 2: Favorites

pr L 1
F

Figure 12-10. Logcat tool window

258

o 07-20 20:30:19.459 1479-14709/net.workingdev.
07-20 20:30:19.476 14709-147@9/net.workingdev.
=]
97-20 20:30:19.596 14709-14749/net.workingdev.
07-20 20:30:23.865 14709-14789/net.workingdev.
@7-20 20:30:23.966 14709-14789/net.workingdev.
97-20 20:30:23.116 14709-14749/net.workingdev.
i) ©7-20 20:30:23.378 14709-147@9/net.workingdev.

[i# Emulator Nexus_S5X_API_23 A net.workingdev.ch1 2Iaum:hanoa Info

chi2launchanotheractivity
chi2launchanotheractivity

chl2launchanotheractivity
chi2launchanotheractivity
chi2launchanotheractivity
chl2launchanotheractivity
chi2launchanotheractivity

L

Terminal ¥ Build
9: utSesgl 7f88

B«]

I/MainActivity: onPause
I/SecondActivity: onCreate

E/Surface: getSlotFromBufferLocked: u
I/MainActivity: onRestart
I/MainActivity: onResume
E/Surface: getSlotFromBufferLocked: u
I/SecondActivity: onStop

50 preseptF i Item Texti

CHAPTER 12 INTENTS

Demo 2: Send Data to an Activity

In this project, we will continue to explore the basic mechanics of explicit Intents.
However, instead of just launching another Activity, we will also send some data to it.
We'll go through the details on how to put an “Extra” in the Intent and how to extract it.
Again, if you want to code along, the details of the project is shown in Table 12-2.

Table 12-2. Project Details

Project Detail Value

Application name CH12SendDataToAnotherActivity
Company domain Your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility ~ Yes. AppCompat

Like in the previous section, we also need to create another Activity. Create another
Activity and name it “SecondActivity.”

Go back to activity_main and open it in design view. Remove the “Hello” TextView
from the layout, then add an EditText and a Button view, as shown in Figure 12-11. Align
the elements, center them in the layout, and use the “infer constraint,” just like what we
did in the previous demo project.

259

CHAPTER 12 INTENTS

©. N 8, 5 #itBrlny I

Thaoo

CH12SendDatatoAnotherActivity

Figure 12-11. activity_main.xml, design view

id button 3
layout_width wrap_content
layout_height wrap_content

» Constraints

» Layout_Margir [?, ?, 31dp, ?, 7]

» Padding 277747
> Theme
elevation
text Button
accessibilityH B
accessibilityLi

accessibilityPz
accessibilityTr
accessibilityTr
allowlUnd.

Next, open activity_second in design view, then add A TextView element to it. Use

the “infer constraint” (as usual) and adjust some of the attributes like the textSize and

text Alignment, as shown in Figure 12-12.

*hew

CH12SendDatatoAnctherActivity

§ "I'exfjfiew {>

Figure 12-12. activity_second.xml, design mode

260

o

layout_width 324dp
layout_height wrap_content
TextView

text | TextView

o text [
contentDescription |

v textAppearance |Material

fontFamily sans-serif I

typeface none
textSize _3659
lineSpacingExtra nore
textColor

textStyle B I T

textAlignment I == = 3

RSy o g

CHAPTER 12 INTENTS

By now, you should have the following View elements and classes to work with:

MainActivity.Kt and its associated activity_main.xml; this is from the
project creation wizard.

SecondActivity.Kt. and its associated activity_second.xml; this is from
the Activity creation wizard.

An EditText and a Button view object in activity_main whose ids are
“editText” and “button,” respectively. editText is the default id for the
first PlainText element in the project.

A TextView view object in activity_second whose id is “textView” —it’s
the default id for the first TextView element in the project.

Listings 12-10 and 12-11 show the code for activity_main.xml and activity_two.xml,

respectively.

Listing 12-10. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"2>
<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.

android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools

android:layout width="match parent"
android:layout height="match_parent"
tools:context=".MainActivity">

<Button
android:id="@+id/button"
android:layout width="wrap content"
android:layout height="wrap_ content"

android:layout _marginTop="31dp"

android:text="Button"

app:layout constraintEnd toEndOf="@+id/editText"
app:layout constraintStart toStartOf="@+id/editText"
app:layout_constraintTop_toBottomOf="@+id/editText" />

261

CHAPTER 12 INTENTS

<EditText

android:id="@+id/editText"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:layout_marginTop="49dp"
android:ems="10"
android:inputType="textPersonName"
android:text="Name"
app:layout constraintEnd_toEndOf="parent"
app:layout constraintStart toStartOf="parent"
app:layout_constraintTop toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Listing 12-11. /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.Constraintlayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"
android:layout height="match parent"
tools:context=".SecondActivity">

<TextView

android:id="@+id/textView"
android:layout width="324dp"
android:layout_height="wrap_content"
android:text="TextView"
android:textAlignment="center"
android:textSize="36sp"
tools:layout editor absoluteX="35dp"
tools:layout editor absoluteY="78dp" />

</android.support.constraint.ConstraintLayout>

Listings 12-12 and 12-13 show the annotated codes for MainActivity and
SecondActivity, respectively.

262

CHAPTER 12 INTENTS
Listing 12-12. MainActivity

import android.content.Intent

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import kotlinx.android.synthetic.main.activity main.*

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener {
val m data = editText.text.toString() @
val m_intent = Intent(this@MainActivity, SecondActivity::class.java) @
m_intent.putExtra("main_activity data", m data) ©
startActivity(m intent) @
}

© We're getting the value of whatever the user has typed in the EditText object. The syntax to do
this is actually editText.getText().toString() but Kotlin makes our lives easier with
the syntactic sugars of getters and setters. We can use the property “text” to either set or get
the runtime value of the EditText view. We had to call the toString() function because the
return type of EditText.getText() is Editable or CharSequence. | needed it to be a of
type String because the putExtra does not take an Editable nor a CharSequence; it takes in
Strings.

® We’re creating an explicit Intent and its target is SecondActivity.

® Now we get to put some data to piggyback on the Intent. The two parameters of putExtra look
like a key-value pair; and they are. The key is the first parameter, “main_activity_data” and
thevalue is the runtime content of the EditText—converted to String, of course.

O We're sending off the Intent object.

263

CHAPTER 12 INTENTS

Listing 12-13. SecondActivity

import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity second.*

class SecondActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity second)

val m _data = intent.getStringExtra("main activity data") @ @
textView.setText(m data) ©
}
}

© We're getting a reference to the Intent object that’s associated with SecondActivity, we’re not
creating a new Intent object here. The syntax is actually getIntent() but because of Kotlin’s
magic sauce, we get to reference it as simply intent

® The getStringExtra method of the Intent object is doing what you think it does. It’s extracting
some data from the Intent object using a map idiom; you give it a key, you’d get a value. In this
case, we gave it the key “main_activity_data—this is the same key we used in MainActivity.
We used the getStringExtra method because we know that it contains a String. The get-
ershould correspond to the put-er. If you put Byte, Array, or Bundle then you should get it
getByteExtra, getArrayExtra, and getBundleExtra, respectively.

® We’'re changing the runtime value of the TextView. We’re setting it to whatever we got from the
Intent extra.

Run the program and try typing on the EditText. When you click on the Button, the
TextView on SecondActivity should display whatever you typed.

264

CHAPTER 12 INTENTS

Demo 3: Send and Get Data Back to and
from an Activity

In this project, we'll ask the user to input his weight and height and then we’ll
calculate his BMI (body mass index). The project has two Activities: MainActivity and
SecondActivity.

We'll ask the user to input his height and weight on MainActivity. We will send that
data to SecondActivity via an Intent. In SecondActivity, we will extract the data from
the Intent that was sent to us by MainActivity. We will use the height and weight data to
calculate the BMI and then send it back to MainActivity.

If you want to follow along, I've listed the project details in Table 12-3.

Table 12-3. Project Details for Demo App

Project Detail Value

Application name CH12SendAndGetDataBackFromActivity
Company domain Your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility Yes. AppCompat

This project, like the previous demos, also has two Activities, but it has a few more
View elements to it. Create the two Activities like how you created them in the previous
demos.

The MainActivity has a couple of View elements: two EditTexts for the user input, a
Button, and a TextView that we will use to display the BMI. You can find the details for
the View objects like id, height, and text size in Listing 12-14; it’s the complete code for
activity_main.xml.

265

CHAPTER 12 INTENTS

I gave the Views a very simple arrangement—I simply packed and centered all of

them vertically. I also did not bother much with the layout constraint. After eye-balling
an arrangement I thought wasn'’t so repulsive, I used the “infer constraints” button to

automagically fix all the layout constraints, just like what we did in the previous demos.

Figure 12-13 illustrates how to manage the layout for activity_main.

(3) Use the “infer _
H ” _=-=""N
constraints” button - L - o
v 8dp "k S ME Bt

~e. - ‘i — \\\
2 Left Edges RN
=| Right Edges
"] Top Edges (2) Get everything centered

I+ Vertical Centers
1l Bottom Edges
b Baselines

+|* Horizontally
CH12SendAndGetDat ;
= Vertically

<+ Horizontally in Parent

|31 Verticklly in Parent
)

Name ’ |

A

7 [}
(1) Select all View objects| !
:

[}
b . gl oy rindP

Figure 12-13. Basic layout for activity_main

The sample code doesn’t go out of its way to validate inputs programmatically, so

we'll put some validation mechanism on the EditTexts. The weight and height input

fields should take in only numbers—specifically, Float numbers; we can enforce this by
setting the inputType attribute of the EditText views. Here’s how to do it:

266

1. While editing activity_main on design view, select one the
EditText views.

2. On the attributes tool window, click “inputType.
3. Select “numberDecimal’”
4. Repeat steps 1-3 for the other EditText.

Figure 12-14 illustrates this process.

CHAPTER 12 INTENTS

(2) While the Edit Text View
is selected, inspect its
attributes. Click on

(3) Check “numberDecimal”

T
|

~N——————_—— 2

textLongMessage {'input Type
. . Thew textPersonName
(1) Select the Edit Text Vlew it irvdl ps N
3 textPassword | @ S

textVisiblePassword! -
layout_width |rap_content

1
|
~ textWebEditText " !
\Igl textFilter I layout_height |rap_content |
textPhonetic / _ JI
Name textWebEmaiAddfess [fEText -
textWebPasswordl inputType \umberDecimal <~
1 3 r =
CALCULATE Bl number | hint
t—t EUPE{SLQ"_% V_/ - style editTextStyh
: | @ numberDecimal j)
TextView i rarbePassward singleLine =
- phone || selectAllOnFo
R et !

Figure 12-14. Put a validation constraint on the EditText

That should take care of MainActivity’s UL Listing 12-14 shows the complete code for
activity_main.xml

Listing 12-14. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

<EditText
android:id="@+id/input_weight"
android:layout width="wrap_content"
android:layout_height="wrap content"
android:layout marginTop="68dp"
android:ems="10"
android:inputType="numberDecimal"
android:text="Name"
app:layout constraintEnd_toEndOf="@+id/input_height"

267

CHAPTER 12 INTENTS

app:layout constraintStart toStartOf="@+id/input_height"
app:layout_constraintTop_ toTopOf="parent" />

<EditText

android:id="@+id/input_height"

android:layout width="wrap_content"
android:layout_height="wrap_content"

android:layout marginTop="23dp"

android:ems="10"

android:inputType="textPersonName"

android:text="Name"
app:layout_constraintEnd_toEndOf="@+id/btn_send data"
app:layout constraintStart toStartOf="@+id/btn_send data"
app:layout_constraintTop_ toBottomOf="@+id/input_weight" />

<Button

android:id="@+id/btn_send data"

android:layout width="wrap_content"
android:layout_height="wrap content"

android:layout _marginTop="21dp"

android:text="calculate BMI"

app:layout constraintEnd toEndOf="@+id/txt bmi"
app:layout_constraintStart_toStartOf="@+id/txt_bmi"
app:layout constraintTop toBottomOf="@+id/input_height" />

<TextView

android:id="@+id/txt_bmi"

android:layout width="wrap content"

android:layout _height="wrap_content"
android:layout_marginTop="33dp"

android:text="TextView"

android:textSize="36sp"
app:layout_constraintEnd_toEndOf="parent"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toBottomOf="@+id/btn_send data" />

</android.support.constraint.ConstraintLayout>

268

CHAPTER 12 INTENTS

You can use the context menu in AS3 to create SecondActivity. Right-click on

the “app” in the project folder, then New » Activity » Empty Activity, as shown in

Figure 12-15.

eoe cH1 ity [~{AndroidStudioProjects| d : ivity] - ..fapp/ iy vty main.ami [app]
= + i app) e src | B main) I res) B layout | o, sctivity maind A Cawe | P 6 a G TRILOQ
} i+ Android - 3o | e BT sctivity_mainxm T MunActvty it @
" ke . ~ -t T .)
i = — - i 4+ @ AppTh " 0% 0] Atrinutes CAF- T]
5 ©ondesos NPT © Jsvo Cias bl i MO e CETE]
: ¥ 2 2 3 Module
. Link C++ Project with Gradle % Kotlin File/Class
] Cut ¥ | #h Android Resource File
& Copy #c | ™ Android Resource Directory
4] Copy Path ¢¥c ™ Sample Data Directory
{1 Paste ®v | # Fie
§ e @ Scrateh File {HN
3 Find in Path... ORF |y Package
Replace in Path... 3R
. Analyze » | % C++ Class m
i CfC++ Source File
Rafacter £ C/C++ Header File
Add to Favorites L2 T Image Asset
Show Image Thumbnals ORT | 5 Vector Asset
Fhefr:lrmal Code TB_QL £ singleton
Optirize|mpcets YO0 @ Gradle Kotlin DSL Buld Script
Local History » @ Gredle Kotlin DSL Settings
£ synchronize ‘app' Edit File Templates...
TR v
Reuetln Finder AIDL >
+* Compare With... %0 # Gallery.
“* Android Auto [=
Open Module Settings ®4 | Folder » Androld TV Activity B -
Load/Unload Modules... # Fragment » Android T *!nqs Empty ﬂct-'.l-ly. [Requires minSdk == 24)
- Google > Android Things Peripheral Activity (Requires minSdk >= 24)
2 @ Create Gist... ey » | Basic Activity
.g Service > _ ::'* W'::'_“EH_‘I'RYM =2
H # Ul Component > Ao Nevgalion ActhAcy
p e "= i 2
5 # Widget » |, Fullscreen Activity g
§ XML » Login Activity
o Dot o
3 1 Resource Bundle jocqpastaniabal How BN :
i Navigation Drawer Activity g
= Serolling Activi
* Dosigr | Tewt e Y |

B Tominsl [RBuld & g logeat 9 TODO
[Croate o new Emoty Activity

™ Settings Activity
™ Tabbed Activity

Figure 12-15. Create a new empty activity

Fill up the details for the new Activity, as shown in Figure 12-16. Make sure that

the name of the new Activity is SecondActivity and that you're creating it in the same

package as MainActivity.

269

CHAPTER 12 INTENTS

® 0 New Android Activity

Configure Activity

A Android Studio

Creates a new empty activity

Activity Name: SecondActivity]

Generate Layout File
Layout Name: activity_second

Launcher Activity

Backwards Compatibility (AppCompat)

Package name: net.workingdev.ch1‘zsendandge:d5:ahack!
Source Language: Kotlin
Target Source Set: main

The name of the activity class to create

Cancel Previous Mext

Figure 12-16. Create SecondActivity

SecondActivity has two View elements: a TextView to display the contents of the
Intent that was passed to it and a Button to trigger the calculation of the BMI.
Figure 12-17 show what the UI of SecondActivity looks like. Center the elements in the
layout and use the “infer constraints” to anchor the elements into position. You can also
adjust fextAlign and textSize attributes of the TextView to fit your liking.

270

CHAPTER 12 INTENTS

'I 8:00
fmﬂrlng; app_name
k
TextView
CALL B
B v DAt p B ol

Figure 12-17. activity_second.xml

Listing 12-15 shows the full code for activity_second.xml

Listing 12-15. /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".SecondActivity">

<TextView
android:id="@+id/txt_intentdata"
android:layout width="346dp"
android:layout_height="wrap content"
android:layout _marginTop="109dp"
android:text="TextView"
android:textAlignment="center"
android:textSize="24sp"
app:layout constraintEnd toEndOf="parent"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

271

CHAPTER 12 INTENTS

<Button
android:id="@+id/btn calculate"
android:layout width="wrap content"
android:layout _height="wrap_content"
android:layout_marginTop="29dp"
android:text="calc bmi"
app:layout_constraintEnd_toEndOf="@+id/txt_intentdata"”
app:layout constraintStart toStartOf="@+id/txt_intentdata"

app:layout_constraintTop toBottomOf="@+id/txt_intentdata" />
</android.support.constraint.ConstraintLayout>

Let’s zoom in on MainActivity’s onCreate method. As soon as the application opens,
the EditText will wait for user inputs. As soon the user clicks the Button, our app will
collect the inputs and send it off with an Intent.

Listing 12-16 shows the annotated snippet of MainActivity that contains the event
handling code when the Button is clicked

Listing 12-16. onCreate Method of MainActivity
val SECOND_ACTIVITY = 1000 ©

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)
input_weight.setHint("weight (1bs)") (2]
input_height.setHint("height (inches)")

btn_send data.setOnClickListener {

val m_intent = Intent(this@MainActivity, SecondActivity::class.java) ©

Bundle() @

val m_bundle

m_bundle.putFloat("weight", input weight.text.toString().toFloat()) ©
m_bundle.putFloat("height", input_height.text.toString().toFloat())
m_intent.putExtra("main_activity data", m bundle) ©

startActivityForResult(m_intent, SECOND ACTIVITY) @

272

CHAPTER 12 INTENTS

© We're declaring and defining a property that will act as some sort of constant. This is what
we’ll use as the request code later on in the code.

® We’'re setting the hint attribute of the Plain Text view. A hint appears as greyed place holders
for text. If you've used the placeholder attribute in HTML 5, the hint attribute is similar to that.
You can use hints as a replacement for labels.

® We're defining an explicit Intent, this@MainActivity is the Context and the Intent target is a
class object (SecondActivity::class.java).

® We need to send two data points to SecondActivity, when you need to send more than one pair
of key-value pair, it’s better to use Bundles.

@ The Bundle object, like the Intent, also lets us add data to it in a couple of ways. | used
putFloat()in this example because | wanted to work with Float numbers. If you need to
work String, Byte, Char, Int, etc., just use the appropriate putXXX method.

® We’re loading to bundle to the Intent object. Using bundles with Intents allows us to work with
more complex data structures.

©® We’re sending off the Activity, but this time around, we’re telling the runtime that we expect
some data back—that’s why we used startActivityForResult. This signals the runtime to
invoke MainActivity’s onActivityResult callback whenever other Activities calls their finish()
method. The second parameter of startActivityForResult is the request code. The request code
will help us route the program logic when we receive the results back. In this call, we used the
class constant SECOND_ACGTIVITY as the request code for launching SecondActivity, which
means when SecondActivity calls its finish() method, this request code will also be sent
back to MainActivity.

The next stage of the exercise happens on the onCreate callback of SecondActivity.
After we've sent the height and weight data to the receiving Activity, we must extract and
work with that data. Listing 12-17 shows the annotated snippet for that code.

Listing 12-17. onCreate Method of SecondActivity

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity second)

val bundle = intent.getBundleExtra("main activity data") @

273

CHAPTER 12 INTENTS

val height = bundle.getFloat("height") @

bundle.getFloat("weight")

val weight

txt_intentdata.text = "Height: $height | Weight: $weight" ©

btn_calculate.setOnClickListener {
val m_intent = Intent() @
val m_bmi = 703 * (weight / (height * height)) @
m_intent.putExtra("second activity data", m bmi) @
setResult(Activity.RESULT OK, m_intent) @
finish() ©

© We need to get a reference to the Intent object that’s associated with SecondActivity. This
is the same Intent object that we launched from MainActivity. It’s also the same Intent that
activated SecondActivity. To get the associated Intent object, we should call getIntent(),
but because we're using Kotlin, instead of using the method getIntent(), we simply refer
to it as intent—a property instead of a method. Just remember that we’re not creating a new
Intent here, we are simply getting a reference to the Intent associated with SecondActivity. We
sent a bundle in MainActivity, so we should use getBundleExtra get the data.

® Now that we got the bundle out, we need to start getting more data out of the bundle. We
used putFloat to put data into the bundle, so, we need to use getFloat to get it out.

® We're setting the fext attribute of the TextView to the concatenated height and weight string.

® Inthis line, we are creating a new Intent object. This Activity will send some data back to
MainActivity. We need a new Intent to do that.

® This is a simplistic way to calculate the BMI, but it should work.

@

Now that we’ve calculated the BMI, let’s load it up to our newly created Intent object.
® The setResult method takes in two parameters:

a. resultCode. This is either 0 or -1. Generally, if something went wrong, you'd want to return -1,
or if everything went well, you’d return 0. But it’s a good idea to use the class constants in
the Activity class. Activity.RESULT_OK is -1 and Activity.RESULT_CANCELLED is 0.

b. intent. This is the Intent object the contains the calculated BMI.

® Finally, to return the result of the calculation to MainActivity, we need to call finish().

274

CHAPTER 12 INTENTS

The next part of the Intent’s journey is back on MainActivity. After SecondActivity
calls finish, the runtime will call the onActivityResult callback on MainActivity—it’s on
this callback that we get the chance to work with whatever data the SecondActivity sent
us. Listing 12-18 shows us the annotated snippet of MainActivity’s onActivityResult.

Listing 12-18. Annotated onActivityResult of MainActivity

override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
super.onActivityResult(requestCode, resultCode, data)

if((requestCode == SECOND ACTIVITY) and (resultCode == Activity.RESULT
oK) {©
val bmi = data?.getFloatExtra("second activity data", 1.0F) @
txt_bmi.setText(bmi.toString()) ©

}
}

© There are two tests in this expression;

1. requestCode == SECOND_ACTIVITY.We’re asking if the data is coming from
SecondActivity.

2. Activity.RESULT_OK.We're trying to see if SecondActivity called setResult and actually
called finish.

® Now that we know that the data came from SecondActivity and everything went well, we
can extract the data from the Intent. We used getFloatExtra because we know it contains
a Float—uwe put it there after all. We had to use the safe call (question mark) in data?.
getFloatExtra() because the signature of the Intent object as it was passed to
onActivityResult is a Nullable type.

® We can display the calculated BMI value.

If you're coding along, you should be able to piece the whole application together by
now.

Listing 12-19 shows the full code of MainActivity. You might notice some differences
between this full listing and Listings 12-16 and 12-18. I omitted a couple of other details
in Listings 12-16 and 12-18, for purposes of brevity and clarity. In Listing 12-19, I put
back all the omissions, and they’re annotated so you can spot them more readily.

275

CHAPTER 12 INTENTS

Listing 12-19. Full Code Listing for MainActivity

import android.app.Activity

import android.content.Intent

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import kotlinx.android.synthetic.main.activity main.*

class MainActivity : AppCompatActivity() {
val SECOND_ACTIVITY = 1000

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

input_weight.setHint("weight (1bs)")
input_height.setHint("height (inches)")

btn_send data.setOnClickListener {

val m_intent
val m bundle

Intent(this@MainActivity, SecondActivity::class.java)
Bundle()

m_bundle.putFloat("weight", input weight.text.toString().toFloat())
m_bundle.putFloat("height", input height.text.toString().toFloat())
m_intent.putExtra("main_activity data", m_bundle)

startActivityForResult(m_intent, SECOND ACTIVITY)

}
}

override fun onResume() {
super.onResume()
clearInputs() @

}

276

CHAPTER 12 INTENTS

override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
super.onActivityResult(requestCode, resultCode, data)

if((requestCode == SECOND ACTIVITY) and (resultCode == Activity.RESULT
0K)) {

val bmi = data!!.getFloatExtra("second activity data", 1.0F) @

val bmiString = "%.2f".format(bmi)

input_height.setText("")

input_weight.setText("")

txt _bmi.setText("BMI : $bmiString ${getBMIDescription(bmi)}")

}
}

private fun getBMIDescription(bmi: Float) : String { ©

return when (bmi) {
in 1.0..18.5 -> "Underweight"
in 18.6..24.9 -> "Normal weight"
in 25.0..29.9 -> "Overweight"
else -> "Obese"
}
}

private fun clearInputs() { // @
input_weight.setText("")
input_height.setText("")

}
}

© Let’s clear out the input field. We’re placing this call inside the onResume callback so that
every time the Activity becomes visible to the user, the input fields are clear. You might
remember that the onResume life cycle method could be called several time within the life
time of the Activity. It will be called for the first time when the app is started. It will be called
the second time when SecondActivity calls finish, the MainActivity will be popped out from the
back stack, and so on.

277

CHAPTER 12 INTENTS

® |Instead of using data?.getExtra(), which would return a Nullable type, | used data!!.
getExtra(), which returned a non-Nullable type. | did this to simplify our codes inside the
gerBMIDescriptionfunction, which expects a non-Nullable type. We could have worked with
Nullables inside getBMIDescription, but | chose to use the simpler approach of working with

non-Nullable types.

® This function takes in a BMI Float value and returns a weight description.

© Implementation of initializeInputs().We’re simply setting the text property of the

EditTexts to an empty String.

Demo 4: Implicit Intents

Our last demo app features implicit Intents. In this section, we’ll deal with three types

of data: a web URI, a geographic coordinate, and a phone number. Hopefully, these

three examples will give you enough insights and footing to continue your exploration of

implicit Intents. Like always, if you want to code along, the project details are shown in

Table 12-4.

Table 12-4. Project Details for Demo App

Project Detail

Value

Application name
Company domain
Kotlin support
Form factor
Minimum SDK
Type of activity
Activity name
Layout name

Backward compatibility

CH12Implicitintents
use your website name
Yes

Phone and Tablet only
API 23 Marshmallow
Empty

MainActivity
activity_main

Yes. AppCompat

278

CHAPTER 12 INTENTS

The app has a simple setup, the only thing I did on activity_main.xml is to remove
the “Hello World” TextView. I used the Options Menu to facilitate the user’s choices for
launching the three sample intents. The Options Menu is on the ActionBar, as shown in
Figure 12-18.

CH12Implicitintents

Map

Phone number

Figure 12-18. MainActivity’s menu

There is nothing to do in UI part so there’s no need to show activity_main’s XML
listing. Everything we need to do is done inside MainActivity.

In earlier chapters, we built the Menu using an XML resource; I built the menu a bit
differently in this example. I didn’t use an XML resource—instead, I built all the menu
items dynamically. Listing 12-20 shows the full and annotated code for MainActivity.

Listing 12-20. MainActivity

import android.content.Intent

import android.net.Uri

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.view.Menu

import android.view.MenuItem

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

}

279

CHAPTER 12 INTENTS

override fun onCreateOptionsMenu(menu: Menu?): Boolean { @
menu? .add("Web") @
menu?.add("Map")
menu?.add("Phone number")
return super.onCreateOptionsMenu(menu)

}

override fun onOptionsItemSelected(item: MenuItem?): Boolean { ©

var m_uri: Uri
var m_intent: Intent = Intent()

when (item?.toString()) { @
"Web" -> {
m uri = Uri.parse("https://www.apress.com")
m_intent = Intent(Intent.ACTION VIEW, m uri) @

}
"Map" _> {
m uri = Uri.parse("geo0:40.7113399,-74.0263469")
// This would have worked as well
// m uri = Uri.parse("https://maps.google.com/maps

?G=40.7113399,-74.0263469")
m_intent = Intent(Intent.ACTION VIEW, m uri)

}

"Phone number" -> {
m uri = Uri.parse("tel:639285083333")
m_intent = Intent(Intent.ACTION DIAL, m uri)
}

startActivity(m_intent)
return true

280

CHAPTER 12 INTENTS

© The onCreateOptionsMenu callback will be called sometime after the onGreate method
is called. Before APl 11 (Honeycomb), onGreateOptionsMenu is called only when the user
clicks the Options button of the phone, but starting from Honeycomb, it’s now called onCreate.
The main reason for this change of behavior is because the ActionBar was introduced starting
with API 11. Since we are using APl 23, we can take advantage of this behavior to build a
simple menu.

® We’re adding a Menu Item to dynamically.

® Whenever the user clicks on one of the Menu Items, the onOptionsltemSelected is called.
This is where we will handle the menu clicks.

® The item parameter can tell us which Menu ltem was clicked. We’re converting it to String so
that we can use it to route our program logic inside the when expression.

® This is a shortened version of creating an Intent.

Figure 12-19 shows the runtime snapshots of our app.

& +5 Create new contact

Tor

'
™ www.apress.com/gp =

I

Apress EXCHANGI
B, o 2 Addtoacontact
This website uses cookies.

By using our website and iy
agreeing to our cookies policy, you : B sendSMS

Sl e it ; p 639285083333
: =g 123

4 5 6

/14 M 7 8 9

(WEB ADDRESS) MAP (PHONENUMBER)

Figure 12-19. Implicit intent, running

281

CHAPTER 12 INTENTS

Chapter Summary

Intents are used for component activation.
There are two kinds of Intents: implicit and explicit ones.

Explicit Intents let us work with multiple activities. You can activate a
specific Activity using an explicit Intent.

Implicit Intent extends the functionality of your application. It lets
your application do things that are outside the functionality of your

app.

You can send and receive data via Intents.

In next chapter, we will:

282

Peek and dip briefly into Material design (not a lot).
See how to create and apply Styles and Themes in our app.

Learn how add menus in the ActionBar.

CHAPTER 13

Themes and Menus

What we’ll cover:
¢ Themes and colors
¢ Menus

There are nearly 3.5 million apps in the Google Play Store. That'’s a lot of apps to
choose from, which is good for users, but for the developers, that’s a lot of competition.

If you will publish an app, you need to polish it—even if it’s just cosmetically—so it
doesn’t come across as shabby. Even if you have a killer app, you should also think about
how it looks (and feels) to the user. Remember that no matter how great your code is, the
user doesn’t see the code, he sees the UI.

Google has published a set of guidelines on user interfaces. They called it Material
Design, you can read more about it at http://material.io. Material Design is a big
topic, it can fill whole books on its own and we don’t intend to cover it all, but in this
chapter, we'll look at Themes and how to add an AppBar to your apps.

Styles and Themes

The Android platform has concepts like “styles” and “themes”. A style is a collection

of attributes where you can control how a View looks, what’s the background and
foreground color, font size, and much more. A theme, on the other hand, is a style that
applies to the whole app, not just a single View. When you apply a style as a theme, every
View in the app follows the theme. A theme is applied to the application in the Android
Manifest’s application node, as shown in the following snippet:

android:theme="@style/AppTheme"

283
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_13

http://material.io

CHAPTER 13 THEMES AND MENUS

In this example, “AppTheme” is the name of the style. Styles are written as an XML
file in app » res » styles.xml—the filename is usually style.xml, but it can change, it’s not
a hard requirement. Listing 13-1 shows the current styles.xml; this is what we get after

the project creation wizard.

Listing 13-1. app/res/values/styles.xml

<resources>
<!-- Base application theme. -->
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
</style>
</resources>

The root node of styles (styles.xml) is “resources,” you can define as many styles
as you want under this node. A style node has the attributes “name” and “parent.”
The name attribute is something that you choose, like the name of a variable, class, or
function. The parent attribute is something you need to choose from a set of existing
Themes. AS3 will you help you out using hints, as shown in Figure 13-1.

Edit all themes in the project in the theme editor.

resources | style
<resourcess
<!— Base application theme. —>
<style name="AppTheme" parnnt-"Thcmd'>
<!— Customize your theme hé Theme.AppCompat.DayNight. Dmlou Alert
= SLLES nam:"calorPr%mary":@(Theme . AppCompat.DayNight.Dialog.MinWidth
n <item name="colorPrimaryDark _ o R [) IRGhErL
<item name="colorAccent">@cc by S d o alogwhenLarge
</style> Theme . AppCompat.DayNight.NoActionBar
e . AppCompat.Dialog
</resources> AppCompat.Dialog.Alert
e, AppCompat.Dialog.MinWidth
e. AppCompat.DialogwWhenLarge ‘
e. AppCompat.Light.Dialog
--.npp(c*pa‘ Lu;ﬁ [:-alcq Mc“ - j

Figure 13-1. Code hinting while editing styles.xml

284

CHAPTER 13 THEMES AND MENUS

Once you have defined a style node, you can start customizing the colors for the app.
The colors are defined as “item” entries inside the “style” element.

Google’s Material design brings your brand identity to life by using primary and
accent colors that are used throughout the app. These colors are defined as follows:

e colorPrimary: The color of the app bar

colorPrimaryDark: The color of the status bar and contextual
app bars; this is the dark version of colorPrimary

¢ colorAccent: The color of Views like check boxes, radio buttons, and
edit text boxes

o windowBackground: The color of the screen background
o textColorPrimary: The color of Ul text in the app bar

o statusBarColor: The color of the status bar

o navigationBarColor: The color of the navigation bar

You don’t have to define all of these in styles.xml, but you can if you want to. You may
have noticed that the values of the color items are not themselves defined in the styles.
xml file but instead are redirected to another resource file. In styles.xml, when you see an
entry like this

<item name="colorPrimary">@color/colorPrimary</item>

It means that the actual value for “colorPrimary” can be found on the colors.xml file,
which is in the app » res » values folder. Listing 13-2 shows the current contents of

colors.xml.

Listing 13-2. app/res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="colorPrimary">#3F51B5</color>
<color name="colorPrimaryDark">#303F9F</color>
<color name="colorAccent">#FF4081</color>
</resources>

285

CHAPTER 13 THEMES AND MENUS

Customizing the Theme

You can edit the colors in two ways. You can either edit the colors.xml file directly or
make the color changes using the AS3’s theme editor. To use the Theme Editor, open
the styles.xml file in the main editor, then click the “Open editor” link in the upper-right
corner, as shown in Figure 13-2.

i Styles.xml

Edit all themes in the project in the theme editor. iHide notification

<resources> v

Base application theme.

<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<!— Customize your theme here. —>
<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>

_ <item name="colorAccent">@color/colorAccent</item>

/style>

O ~NOW A WN
| B N

o

10 </resources>
S et PPt I

Figure 13-2. Launch “open editor”

The Theme editor lets you change the color values for the app. It also shows you

how the app will look in a given color scheme. Figure 13-3 shows the various parts of the
Theme Editor.

Shows the name of the theme you are

colorPrimary is the color of Ul controls currently editing
A \
N
This area shows how the wn stylesxml © | @ Theme Editor S \\ @
various controls will N
I &S+ ONexusé - m 27 ~ Q 2 \
look like in the current _ _ N &
color scheme T > AN Theme
. . X AN N #eemheme - Defau B
colorPrimary is the N

background color of the

N\
Toolbar. — = — 0O ® Theme parent -
textColorPrimary is the

AppCompat Light [Theme. AppCompa
foreground color g <)

~
| Click these \ :
| swatches to | ooforrelmaTy
| launch the F——===-- 9' @color/eolorprimary
\ colorpicker Q=< _
B — e AN ST colorPrimaryDark
NORMAL S =

() \\ * @colorfcolorPrimaryDark

N\ _ EolorAccent

DISABLED

@color/colorAccent

Rl e W e

Figure 13-3. Theme Editor

286

CHAPTER 13 THEMES AND MENUS

To change a color, click the swatch next to the Material color (as shown in Figure 13-3).
That will launch the color picker (shown in Figure 13-4).

e @ Select Resource for colorPrimary
=im Add new resource ¥
= frjent Name | colorPrimaryDark
. colorAccent Saving this color will override existing resource colorPrimaryDark.
. colorPrimary Reference Color

+ android

» Theme attributes A: 256 R: O G: 167 B: 161 ARGB Bﬂ FFODATAY

= Vos———

+ Device Configuration

cancel | [HEISN

Figure 13-4. Color picker
Google published documentation on Material Design at http://bit.1ly/
materialdesigndox; it'll be good to read it before making changes to the color scheme.

Another web resource you can use is materialPalette.com; it’s geared toward Android
Material Design. Figure 13-5 shows a screen grab from their website.

287

http://bit.ly/materialdesigndox
http://bit.ly/materialdesigndox

CHAPTER 13 THEMES AND MENUS

PALETTES ICONS COLORS MORE MATERIAL DESIGN >

DEEP PURPLE

W
Palette preview

Full Palette colors below

INDIGO LIGHT BLUE CYAN

Daily Material Design Showcase
Visit MaterialUp

® Daily Resources for Designers & Developers
Vigit UpLabs

YELLOW

g

| Your Palette ~ 2 DOWNLOAD < TWEET

BROWN GRE' BLUE GREY
#007968 #FFFFFF

DARK PRIMARY COLOR GHT PRIMARY COLOR TEXT / ICONS

#NN

Figure 13-5. Screen grab from https://www.materialpalette.com

The basic idea is to choose two colors, and the site builds a palette for you. Now you
can simply copy the hex values of primary, dark primary, accent, light primary colors,
and others.

Menus

Menus are very important in UI design. They allow the user to get to the application’s
functionality. Traditionally, menu systems are organized hierarchically in intro groups,
which means before a user can get to his target action, he needs to traverse the hierarchy
of the menu. Android’s menu system, at some point in time, has behaved exactly like

288

https://www.materialpalette.com

CHAPTER 13 THEMES AND MENUS

that—grouped and hierarchical. But that was in the past. Android’s approach to menus
has changed dramatically over the course of its lifetime.

Menus prior to Android Honeycomb relied on hardware buttons, like the ones
shown in Figure 13-6.

) Bl

Manage apps Wallpaper

el Ay

Search Notifications Settings

Figure 13-6. Menus on older Android hardware

Back then, we could always rely that the “home” and “option” buttons would always
be present on any Android phone. We built our apps based on these assumptions
because they were reasonable at the time.

Well, times have changed and so has the Android hardware. Screen resolutions
have increased dramatically, and the hardware buttons have disappeared. Fortunately,
Android’s approach to menus has also changed and kept up with the state of hardware
capabilities.

When Honeycomb came out, a new kind of menu system was added to Android.
Applications whose minimum target SDK is API 11 are now able to use the “ActionBar.”

289

CHAPTER 13 THEMES AND MENUS

The ActionBar, shown in Figure 13-7, is a dedicated area at the top of the screen and
is persistent throughout the app. It’s a lot like the main menu bar of AS3 if you think
about it.

Archived

Settings

Figure 13-7. App with an ActionBar

You can use the ActionBar to display the most important features of your app and
make them accessible in a predictable way (e.g., like putting a permanent Search widget
on top, etc.). It creates a cleaner look by removing clutter in your menus, and in cases
where not all items in the menu fit on the screen, the ActionBar displays an overflow
icon. The overflow icon is a vertical ellipsis—three dots arranged vertically, which is
always found on the far right of the bar. It also displays the name of the application, so it
reinforces brand identity of the app.

Nowadays, the ActionBar has fallen a bit out of fashion and has been eclipsed by the
Toolbar. The Toolbar is more versatile because it’s not permanently clipped on top of the
screen—you can place it anywhere you want—and it has a few more capabilities. The
ActionBar, however, remains a viable solution for simple menu systems; in fact, nothing
stops you from using both the ActionBar and the Toolbar in your apps. Just work with the
best tools you have.

In Android API level 10 or lower, the menu options will appear at the bottom of the
screen when the user presses the hardware menu button. In Android API 11 and higher,
items from the options menu are available in the app bar. By default, the system places
all items in the action overflow, which the user can reveal with the action overflow icon
on the right side of the app bar.

To add a menu to an app, you need to do the following:

1. Create a menu resource file. We will create a menu folder in the
app/res folder. Then, we’ll create a menu resource file inside it.

2. Inflate the menu resource in the main program. We will
override the onCreateOptionsMenu of MainActivity and call the
inflate function of the Menu object.

290

CHAPTER 13 THEMES AND MENUS

3. Add event handlers to the menu items. We’ll override the

onOptionsltemSelected function of MainActivity, and route the

user action depending on which menu item was clicked.

4. Optionally, add vector images to the menu.

Let’s create a demo app so we can explore menus. The details of the project are

shown in Table 13-1.

Table 13-1. Project Details for Demo App

Project Detail

Value

Application name
Company domain
Kotlin support
Form factor
minimum SDK
Type of activity
Activity name

Layout name

CH13AppBar

use your website name
Yes

Phone and Tablet only
API 23 Marshmallow
Empty

MainActivity

activity_main

Backward compatibility ~ Yes. AppCompat

We won't put any additional View elements in this app because they won'’t be

needed, but we will add and android:id to our layout container. Notice the sixth line

in Listing 13-3: that ID attribute is not present by default, you'll need to put it in. The

IDs of each View element are more important to us now because the Kotlin Android

Extension depends on it. The Extension won’t be able to synthesize the View IDs if they

don’t have one.

Listing 13-3. excerpt from activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.Constraintlayout xmlns:android=http://schemas.

android.com/apk/res/android

xmlns:app=http://schemas.android.com/apk/res-auto

291

CHAPTER 13 THEMES AND MENUS

xmlns:tools=http://schemas.android.com/tools

android:id="@+id/root layout"

tools:context=".MainActivity">
</android.support.constraint.ConstraintLayout>

We also need to edit the module-level build.gradle file. In order to use the Snackbar
widget, we need to include the “com.android.support:design” dependency in the
gradle file. Figure 13-8 shows you the location of the gradle file in the Project window.

[NON) | CH13AppBar [~/AndroidStudio
I CH13AppBar) ['; app) (& build.gradle)
- i Android v € == | #- |- o activity mainxml x (6 MainActivitykt » (& app i Main,
g 1 apply plugin: 'com.android.application’
= b mamfests 2
. java 3 apply plugin: 'kotlin-android'
o » B=res 5 : 'kotlin-android-extensions’
S v (& CGradle Scripts 3
S It's this one
E (® build.gradle (Project: CH13App 7 o®
o ; : &° dkVersion 27
&4 build.gradle (Module: ap) o defaultConflg {
b i1 gradle-wrapper.properties (Grz 4, applicationId “com.thelogbox.chl3appbar
proguard-rules.pro (ProGuard | 11 minSdkVersion 23
] A :
s # gradle.properties (Project Prop 2 targgtsgk:erilon 27
2 -~ . e versionCode
5 (g—, settmgs.grac?le (Prol]ec. Se‘.‘mg 12 versionName "1.0"
® i local.properties (SDK Location] 15 testInstrumentationRunner "android.supps
16 }

huildTunes {

Figure 13-8. module-level build.gradle

You need to add the “com.android.support:design” line, as shown in Listing 13-4.

Listing 13-4. excerpt from build.gradle

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version
implementation 'com.android.support:appcompat-v7:27.1.0"
implementation 'com.android.support.constraint:constraint-layout:1.1.2"

testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'

292

CHAPTER 13 THEMES AND MENUS

androidTestImplementation 'com.android.support.test.espresso:espresso-
core:3.0.2'

implementation 'com.android.support:design:27.1.0"

AS3 will sense that something has changed in build file and it will ask you to “sync”
the gradle file. This prompt will appear as a yellow strip on the upper part of the main
editor. Click “sync” so you can proceed.

Now we’re ready to create the menu file, but before we can do that, let’s create a
menu folder. Right-click on the app » res folder in the Project window, as shown in
Figure 13-9. Choose New » Android Resource Directory.

‘g '@ Android v €3 sk | - |- o activitymainxml x 6§ MainActivitykt

? v I app 1 package com.thelogbox.chl3appbar

Rl > manifests 2 :
@ > java ; fiimport ...

g " "'-f'f‘d . [e S e | e mmmmmmmres (x Kotlin File/Class

g : ’—! Ia‘:(:; . | @ Android Resource File

fl > ; mipmap Link C++ Project with Gradle Android Resource Directory
2 > Puvalues - ex "*s S.ample Data Directory

» (& Gradle Scripts C %C = File

g opy #, Scratch File O8N
3 Copy Path. _Qagc M= Directory

Figure 13-9. Create a new Android Resource Directory

Give the newly created folder a name, like the one shown in Figure 13-10.

0 New Resource Directory

Directory name: [menu

Resource type: values

Source set: main

Available qualifiers: Chosen qualifiers:

&) Country Code

@ Network Code
.

B i T S s VRPN

Figure 13-10. New menu folder

293

CHAPTER 13 THEMES AND MENUS

Now that that we have a menu folder, right-click on it and create a new menu
resource file, as shown in Figure 13-11.

P CH13AppBar) Ii; app) B src) B main) = res) B menu) {
[Android v © sk | %+ |- g activity mainxml « G MainActivity kt
i v g app 1 package com.thelogbox.chl3appbar
. > manifests 2 ’
= > mijava o
_—— 2
v Bzres 6 4w class MainActivity : AppCompatActivity() {
g > B drawable: S 9 & Kotlin File/Class
> _Lulayout __ "
& Zz¥e ey . . : Menu resource file
& [menu 1| Link C++ Project with Gradle - p
© = mmES =S Sample Data Directory
» [mvalues o6 Cut sy | ® File
€ » @ocradlescripts [T Copy %C & Scratch File O8N
:% Copy Path ¢sc ™ Directory
® ~ Copy Relative Path X¢¥C | il Class
[l Paste ®vil & .
B P I i 2 W

Figure 13-11. New menu resource file

Let’s give the newly created menu file a name, like how it’s shown in Figure 13-12.

‘e0 @ New Resource File ‘
File name: main_menu
Source set: main E
Directory name: menu
Available qualifiers: Cho! ualifiers: }
0 Sl s WM&‘W‘M

Figure 13-12. main_menu resource file

Let’s add some items in our menu file. Open the file app/res/menu/main_menu.
xml in the main editor and add the menu items as shown in Listing 13-5.

Listing 13-5. app/res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/menuFile"
android:title="@string/menuFile"
/>

<item android:id="@+id/menuEdit"

294

CHAPTER 13 THEMES AND MENUS

android:title="@string/menukdit
/>
<item android:id="@+id/menuHelp"
android:title="@string/menuHelp
/>
<item android:id="@+id/menuExit"
android:title="@string/menuExit
/>
</menu>

Each item element in Listing 13-5 represents one menu item. Each element is
comprised of two attributes: an android:id and an android:title. The title is what you
will see on the menu itself and the id is a programmatic reference to the menu item. We
will use this id later when we want to refer to a menu item from our program.

The android:id is written in @+id notation so that it will be created in case it doesn’t
exist yet. The android:title is written in @string notation so that the value of the title
is resolved in the app/res/values/strings.xml file. We could have hard-coded the menu
titles like this:

<item android:id="@+id/menuFile"
android:title="File" />

But that would be a bad way of doing it. The convention in Android programming is
to store and retrieve your string literals in strings.xml resource file. Storing your strings in
/app/res/values/strings.xml also makes it easier for you to release your app in a non-
English version. Imagine if you created a French or Italian version of your app. You'd
have to replace all those hard-coded strings manually. But if you stored your strings in
the xml file, you would only need to replace it in one file, which makes localization and
internationalization a bit easier.

As soon as you're done typing the menu file, you will notice that AS3 complains
about the newly created menu items. The android:title entries cannot be resolved or
cannot be found in strings.xml. Of course AS3 can’t find it—we haven’t created it yet.

We can either add the new entries to strings.xml manually, or we can use AS3’s Quick
Fix to resolve the error. Let’s use the Quick Fix. While the main_menu.xml is still on the
editor, click on the @string/menukExit, as shown in Figure 13-13, then press OPTION +
ENTER or ALT + ENTER.

295

CHAPTER 13 THEMES AND MENUS

s activity_mainxml x 6 MainActivity.kt » 8 main_menu.xml 1

<?xml version="1.8" encoding="utf-8"7>
2 <menu xmlns:android="http://schemas.android.com/apk/res/android">

5 W

<item android:id="@+id/menuFile" @® @ New String Value Resource
android: title="@string/menuFile"
/>

<item android:id="@+id/menuEdit" ¥
?:droid :title="@string/menuEdit" pii 39"-'"‘ i B

<item android:id="@+id/menuHelp” ¢¢" -

android: title="@string/menuHelp" ‘,Fﬁ name: strings.xml n

/> »

13 <item android:id="@+id/menuExit" e

14 android:title="@string/menuExit" ¢ | values

15 /=

16 </menu>

Resource value: [Exit l

Lo,

®

B

- g .
ef“ Create the resource in directories:

B TRy T e Y VIO SR SOV P
Figure 13-13. Add the menu titles to strings.xml

Type the resource value for the item and repeat the steps for each android:title
attribute. The resource values will be stored in app » res » values » strings.xml—
contents of strings.xml are shown in Listing 13-6.

Listing 13-6. app/res/values/strings.xml

<resources>
<string name="app name">CH13AppBar</string>
<string name="menuExit">Exit</string>
<string name="menuHelp">Help</string>
<string name="menuEdit">Edit</string>
<string name="menuFile">File</string>
</resources>

The next step is to associate the menu with the MainActivity. To do this, we need to
inflate the menu file by overriding the onCreateOptionsMenu in MainActivity.

Open MainActivity.Kt in the main editor and start adding a top-level function. As
soon as you begin typing the first few characters of the onCreateOptionsMenu, AS3 will
assist you by giving code hints. Use the autocompletion feature as shown in Figure 13-14
to complete the skeleton of the function.

296

CHAPTER 13 THEMES AND MENUS

class MainActivity : AppCompatActivity() {

-

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R. layout.activity_main)

® WO o~
L

1 override fun onCreateMenu,
14 m®loverride fun onCreateContextMenu(menu: ContextMenu?, v: View?, .
15 r © override fun onCreateOptionsMenu(menu: Menu?): Boolean {...} Activity

m ol override fun onCreatePanelMenu(featureld: Int, menu: Menu?): Bo..
~4 and ~1 will move caret down and up in the editor >> T

R P S Y

Figure 13-14. Autocompleting the onCreateOptionsMenu

Copy the codes in Listing 13-7 to complete the onCreateOptionsMenu.

Listing 13-7. onCreateOptionsMenu

override fun onCreateOptionsMenu(menu: Menu?): Boolean {
menuInflater.inflate(R.menu.main_menu, menu)
return super.onCreateOptionsMenu(menu)

}

The inflate() function creates the menu items using the menu XML file we created
earlier (first parameter) and attaches it to the Menu object (second parameter of
the inflate function). The Android runtime will pass the Menu to us when it invokes
onCreateOptionsMenu callback function.

Figure 13-15 shows the menu during runtime; the picture on left shows the overflow
icon—it’s the three white dots arranged like a vertical ellipsis. Menu items are revealed
by clicking or touching the overflow icon. The picture on the right shows our app with all
the menu items revealed.

CH13AppBar CH13AppBar

Eae {
:

B e W Y SN M“#\#‘J

Figure 13-15. CHAppBar menus
297

CHAPTER 13 THEMES AND MENUS

Right now, the menu items show up, but they don’t do anything yet. To handle the
events for each menu item, we will override the onOptionsItemSelected() function in
MainActivity.

Listing 13-8 shows the code for an overridden onOptionsItemSelected. The Android
runtime calls this method each time a menu item is clicked by the user. The runtime
passes a Menultem object to the function that represents the menu item clicked.

Listing 13-8. onOptionsltemSelected

override fun onOptionsItemSelected(item: MenuItem?): Boolean {
return true

We can use the Menultem to route our program logic by comparing its itemId
property to the four menu items we defined in main_menu.xml. Listing 13-9 shows how
to test if the itemlId is equal to one of the menu items in our XML file.

Listing 13-9. comparing itemlId with R.id.menuFile

override fun onOptionsItemSelected(item: MenuItem?): Boolean {
if(item?.itemId == R.id.menuFile) {
showMessage(“File Menu “) // user defined function
return true

Notice how we are using the safe-call operator (?.) during the test. We need to use
the safe-call because Menultem is declared as nullable in onOptionsItemSelected—also,
the function should return a Boolean value. In our example, we returned true, which
tells the Android runtime that we’ve consumed this event, and there is no need for other
listeners to handle the event any further. We can keep using the if-else construct to route
program logic, but the when construct might be more appropriate in this situation.
Listing 13-10 shows how to use when to handle program logic. You might remember
from Chapter 3 that Kotlin doesn’t have a switch statement—the when construct is the
equivalent of Java’s switch.

298

CHAPTER 13 THEMES AND MENUS
Listing 13-10. using when to route program logic

override fun onOptionsItemSelected(item: MenuItem?): Boolean {

when(item?.itemId) {
R.id.menuFile -> {
showMessage("File menu")
return true

R.id.menuEdit -> {
showMessage("Edit menu")
return true

R.id.menuHelp -> {
showMessage("Help menu")
return true

R.id.menuExit -> {
showMessage ("Exit")
return true

Listings 13-11, 13-12, and 13-13 show the full codes for MainActivity, activity_main,
and the build.gradle, respectively. You may use for it reference in case you're coding along.

Listing 13-11. complete code for MainActivity.Kt

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.support.design.widget.Snackbar
import android.view.Menu

import android.view.MenuItem

import kotlinx.android.synthetic.main.activity main.*

299

CHAPTER 13 THEMES AND MENUS
class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

}

override fun onCreateOptionsMenu(menu: Menu?): Boolean {
menuInflater.inflate(R.menu.main_menu, menu)

return super.onCreateOptionsMenu(menu)

}

override fun onOptionsItemSelected(item: MenuItem?): Boolean {

when(item?.itemId) {
R.id.menuFile -> {
showMessage("File menu")
return true

R.id.menuEdit -> {
showMessage("Edit menu")
return true

R.id.menuHelp -> {
showMessage("Help menu")
return true

R.id.menuExit -> {

showMessage ("Exit")
return true

300

CHAPTER 13 THEMES AND MENUS

return super.onOptionsItemSelected(item)

}

private fun showMessage(msg:String) {
Snackbar.make(root layout, msg, Snackbar.LENGTH LONG).show()

}
}

Listing 13-12. complete code for activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:id="@+id/root_layout"
android:layout_width="match_parent"
android:layout height="match_parent"
tools:context=".MainActivity">

<TextView
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintlLeft toleftOf="parent"
app:layout constraintRight toRightOf="parent"
app:layout constraintTop toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

301

CHAPTER 13 THEMES AND MENUS

Listing 13-13. app/build.gradle

apply plugin: 'com.android.application’

apply plugin: 'kotlin-android’

apply plugin: 'kotlin-android-extensions'

android {

}

compileSdkVersion 27
defaultConfig {
applicationId "com.thelogbox.chi3appbar"
minSdkVersion 23
targetSdkVersion 27
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.

AndroidJUnitRunner"
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro’
}
}

dependencies {

302

implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin version'
implementation 'com.android.support:appcompat-v7:27.1.0'

implementation 'com.android.support.constraint:constraint-layout:1.1.2"
testImplementation 'junit:junit:4.12'

androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-
core:3.0.2'

implementation 'com.android.support:design:27.1.0'

CHAPTER 13 THEMES AND MENUS

Chapter Summary

e Using Styles and Themes can add pizzazz to your app quite instantly.
It’s the easiest thing to do level up your app’s game.

e Menus in the ActionBar can display the most important features of
your app.

In the next chapter, we will:

e Lookat Fragments. You can use them to make your app adapt to
different form factors and device orientation (portrait vs landscape).

o We'll also look at how we can make Fragments talk to each other.

303

CHAPTER 14

Fragments

What we’ll cover:
e Introduction to fragments
e Landscape and portrait orientation
o Interfragment communication

In the early days of Android, when it ran only on phones and there weren’t any
high-resolution screens, activities were sufficient as a way of composing the Ul and
interacting with the user. Then came the tablets and high-resolution screens, and it
became increasingly difficult to create applications that could run well on both phones
and tablets. Developers were faced with hard choices. Either you choose the least
capable hardware as the target and make it like the least common denominator or make
the app adapt to a range of form factors by removing and adding UI elements in response
to the device’s capability—which proved to be very difficult to do manually. When API 11
(Honeycomb) came out, Android solved this problem with Fragments.

Introduction to Fragments

Fragments are quite an advanced concept, and beginning programmers may approach
it with trepidation, but the basic concept behind it is quite simple. If we think of an
activity as a composition unit for our Ul, think of a fragment as a mini-activity—it’s a
smaller composition unit. You will usually show (and hide) fragments during runtime in
response to something that a user did (e.g., tilting the device or switching from portrait
to landscape orientation, thus making more screen space available). You may even

use fragments as a strategy to adapt to device form factors; when the app is running on
smaller screen, you will show only some of the fragments.

305
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_14

CHAPTER 14 FRAGMENTS

A fragment, like an activity, is comprised of two parts: a Java program and a layout
file. The idea is almost the same—define the UI elements in an XML file and then inflate
the XML file in a program file so that all the view objects in the XML will become an
object. After that, we can reference each view object in the XML using the R.class. Once
we've wrapped our brains around that concept, just think of a fragment as an ordinary
view object that we can drag and drop on the main layout file—except of course,
fragments aren’t ordinary Views, but they are Views.

To create a Fragment, we generally do the following:

1. Create an XML resource file, put in the /app/res/layout folder,
just like where we put activity_main.xml .

2. Give the new resource file a descriptive name—say,
fragment_booktitles.

3. Create the Fragment class. We used to choose between two classes
when creating Fragments—either we inherit from the native
android.app.Fragment or android.support.v4.app.Fragment.
You use the former if your target SDK is API 11 or higher and
the latter for apps targeted at anything lower than Android 3
(Honeycomb). You can still use android.app.Fragment, but as a
heads up, you need to know that Android P (a.k.a. Android 9) has
deprecated native Fragments. If you still want to use Fragments,
use the support library so you can get consistent behaviors across
all API levels.

4. Next, hook up the Fragment class with the XML resource layout.
You can do this by inflating the XML resource file in the onCreate
method of the Fragment class.

5. Add the newly created Fragment.

Let’s do them in Android Studio. First, create a project with an empty Activity, just
like all the other projects we've created.

Now, create an XML resource file and put it in /app/res/layout, as shown
in Figure 14-1.

306

CHAPTER 14 FRAGMENTS

Use the context menu, right click on the /app/res/layout folder in the Project tool
window (Figure 14-1). Choose New » Layout Resource File. This layout resource file
will contain all the View elements of our Fragment. You will see a “New Resource File”
dialog window; enter the name of the resource file—for the purpose of the exercise,
Inamed it “book titles.

2 v Beres - - 12 android: text="Hello World!"
2 > B it 13 app: layout_constraintBottom_toBottom0f="parent"
§ L drawanie 14 app:layout_constraintLeft_toLeftOf="parent"
® 0 layout | am T e A S U——)
i activity_main.xml New L ¢ Kotlin File/Class
» Em mipmap LIk C4+ Prokect with Gradi Layout resource file
» Emvalues ALAS A A AL LD s Sample Data Directory
» (& Gradle Scripts ¥ cut sex | & File
[Copy sgc # Scratch File 08BN
Copy Path {+3c ™ Directory
Copy Relative Path X{r36C

5 C++ Class

A m b I o pmeenn TLRASIE, b

Figure 14-1. New layout resource file

You can put whatever View element you need. This fragment resource file is no
different than any of the activity resources files we’ve worked on before. Whatever you
can put in an Activity resource file, you can also put in the fragment resource file.

Next, let’s create the Fragment class. Use the context menu again to create the class,
as shown in Figure 14-2.

mee P Q#1- €+ O+ ONexusd~ =28+ © AppTheme © Defaun‘s
" \

v = net.workingdev.frag —— B Button

e e = New Ll © Java Class

» a net.workingdev.frag test (al .) . Kotlin File/Class

» Ba net.workingdev.frag (¢ Link C++ Project with Gradle 2 Android Resource File
§ :“ strawable ¥ cut %x ™ Android Resource Directory

v be it [9 copy #c ™ Sample Data Directory

Copy Path asec | # File

e ACtivity_main.xml

‘Wﬂmw'w X0 i Scf;lznﬂiw T%N

Figure 14-2. Create new Kotlin class

If you right-clicked on java » net.workingdev.fragmentstest when you created the
new Kotlin class, the newly created class will belong to the same package as the rest of
your codes. If you right-click just on the java folder when you created the new Kotlin
class, that class will be on the default package; when that happens, you'll need to add the
package statement to the class yourself.

307

CHAPTER 14 FRAGMENTS

You'll be asked what kind of Kotlin file to create. Choose Class from the drop-down
menu, as shown in Figure 14-3.

® 0 New Kotlin File/Class ?

Name: BookTitle Tl

Kind: | i'g File s
g File
Iz Interface "
fz Enum class
G Object

W‘_’\

Figure 14-3. Give the Kotlin class a name

The Fragment class can be associated with the Ul resource file by inflating the
resource file and returning it from within the onCreateView callback. Listing 14-1
contains the annotated and explained snippet of MainActivity; it shows how to wire the
Fragment class with the Ul resource file. Bullet ®, specifically, is the code responsible for
associating the Fragment class with the Ul resource file.

Listing 14-1. BookTitle Fragment

import android.support.v4.app.Fragment o

class BookTitle : Fragment() {

override fun onCreateView(inflater: LayoutInflater, container:
ViewGroup?, savedInstanceState: Bundle?): View? { (2]

val v = inflater.inflate(R.layout.book titles, container, false) ®
return v

}

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
(4]

308

CHAPTER 14 FRAGMENTS

® We're using the Fragment class from the Support library because android.app.Fragment
was deprecated by Android 9. Even if we’re usually targeting API 23, it’s best to always use
supported libraries from now on.

® The onCreateView callback is similar to the onCreate of the Activity. But be careful not to
refer to any View element in here—they won’t be available just yet. If you try to refer to an Ul
element in here (e.g., a Button or TextField), it will return null.

® In this example, the name of the Ul resource file is book_titles. So, presumably, you have
a file named /app/res/layout/book_titles.xml. Inflate the XML resource file and return it,
so that MainActivity can compose the Ul on its end. The reason you cannot refer to any Ul
element while you’re inside onCreateView is because you haven't inflated the XML resource
yet, so none of your Ul elements exist at this point. The Android runtime passes the inflater
and container objects to the onCreateView method. We need these object to inflate the Ul
resource.

® The runtime calls onViewCreated method when all of the Ul elements are ready. This is where
you can start using and referring to Ul elements.

Note To “inflate” a Ul resource file means to take in a Ul definition (in XML),
create the actual View and ViewGroup objects, and render them. After the inflation
process, you will be able to refer to the View objects programmatically.

The final step is to add the Fragment to the Activity. You can add Fragments to
an Activity in two ways: during runtime or during design time. For now, we’ll add the
Fragment during design time.

Open the Ul resource file for MainActivity, if it isn’t opened yet. From the Project tool
window, double-click /app/res/layout/activity_main.xml. Open it in “Design” mode.
In the Palette, go to Common, look for <fragment>, as shown in Figure 14-4.

309

CHAPTER 14 FRAGMENTS

Palette Q#- 1 €+ O~ [INexus4~ = 28 ~ © AppTheme : @ Def
Common Ab TextView ® - i85 K : T
Teict B Button
M imageView
Buttons S :
= RecyclerView
Widgets ' ¢5 <fragment>
Layouts W ScrollView \‘
Containers = *® Switch \‘
»
Google “‘
Legacy ‘\‘ ________
AN Choose which Fragment class
you'll use _/
® 0 Fragments /
BookTitle (net.workingdev.fragmentstest) app
2z |
Cancel
Component Tree m
- . :

Figure 14-4. Drag a fragment element into activity_main

Drag the <fragment> element and drop it anywhere in the Activity, just like dragging
and dropping any View element. A Fragments dialog will pop up; you'll need to select
which Fragment class you would like to add to activity_main layout. In our case, there’s
only one Fragment class—choose the BookTitle fragment.

That'’s it, we can now run our un-interesting and uninspired Fragment sample. If you
run it, it looks like Figure 14-5 in an emulator.

o
D
Fragment <
(o4
w

Figure 14-5. FragmentsTest, running

Uninteresting as it is, it should ground you well enough on the basics of Fragments.
Now, we're ready for something a bit more interesting. In the next section, we'll create a
demo project with two fragments.

310

CHAPTER 14 FRAGMENTS

Book Title and Description, a Fragments Demo

What we’d like to do:

1. Use two fragments in our MainActivity.

2. One of the fragments contains a list of books; we’ll let the user

choose a book by clicking one of the radio buttons.

3. The other fragment contains a description of the book that’s

currently selected.

4. The fragments will re-arrange themselves depending on how the

user is holding the device—portrait or landscape orientation.

Atruntime, the app looks like Figure 14-6 when the device is oriented vertically.

|

|

|

|

I book_title
: fragment
|

|

fragment

Figure 14-6. Book titles app, oriented vertically (portrait)

book_description

() Learn Android Studio 3

Minimum Android Programming is Ih£21I
pook that got me started. | wrote in an
age when even the Eclipse ADT doesny

(O Learn Android Studio 3 with Kotlin

(®) Minimum Android Programming

rotate left

rotate right

311

CHAPTER 14 FRAGMENTS

When the user holds the device in landscape mode, it looks like Figure 14-7.

book_title : | book_description |
fragment | : fragment :

O Learn Android Studio 3 Minimum Android Programming

() Learn Android Studio 3 with Kotlin is the book that got me sstart-:‘:-d'
| wrote in an age when even the

®) Minimum Android Programming Y
Eclipse ADT doesn

e e e e e e e e e e e e e e - -

Figure 14-7. Oriented horizontally, landscape

We already know how to create fragments and how to add them to an Activity, but in
order to complete this demo project, we’ll need to hash a couple more details.

1. How can we use radio buttons as a selector, such that when
one button is selected, the others are deselected? We'll use a
radiogroup and collect all the radio buttons under this group.

2. Where will we store the text definition of each book? We will use
an XML file and then load it into an array. Each element of the
array will contain a book’s definition.

3. How are we going to synchronize the information between the
two fragments? We'll explore interfragment communication. We
won't let the fragments communicate with each other directly
(although we could, but that’s not considered good practice). We
will manage the synchronization via the Activity.

312

CHAPTER 14 FRAGMENTS

How are we going to handle the changes in the device
orientation? We will create another layout folder in /app/res
specifically for landscape layout. It will be named /app/res/
layout-land; this is where we will put our layout files when the
device is oriented in landscape.

Let’s get to work then. I created a new project for this demo; the details are
in Table 14-1.

Table 14-1. Project Details

Project Detail Value

Application name CH14FragmentsBooks
Company domain use your website name
Kotlin support Yes

Form factor Phone and Tablet only
minimum SDK API 23 Marshmallow
Type of activity Empty

Activity name MainActivity

Layout name activity_main

Let’s create the XML resource file that will hold the text for book descriptions. To do

this, you can:

1.

Use the context menu, right-click on /app/res/values in the
Project tool window, then

Click New » XML » Values XML file, as shown in Figure 14-8.

Name it “bookdescriptions”—don’t type the .xml extension;
Android Studio will take care of that.

313

CHAPTER 14 FRAGMENTS

v [mvalues 12 1
acoorsam Y ¢ otin Fie/Class i
i strings.xml . - . wm Values resource file
2 styles.xml Link C++ Project with Gradle = Sample Data Directory
» (& Gradle Scripts ¥ cut 3¢y # File
[0 copy s8c | ¥ Scratch File T8N
Copy Path ©0%8c | ™ Directory
Copy Relative Path Xgo#®RC | G+ Class
Of Paste #Y | & c/c++ Source File 5
Find Usages F7 . C/C++ Header File
Find in P?th... {+36F W Image Asset
Replace in Path... t#R B Verior Moot
Analyze >
@ Gradle Kotlin DSL Build Script
pedactoy * | @ Gradle Kotlin DSL Settings
Add to Favorites > .
Show Image Thumbnails osT Edit File Templates...
~ " AIDL >
Reformat Code XL | o ctivity .
Optimize Imports ~X0 & Android Auto >
Detate- ® | & Folder -
Local History » | Fragment >
D synchronize 'values' “# Google >
' Other >
Reveal in Finder & Service >
+* Compare With... gp ' Ul Component >
| ' Wear >
Load/Unload Modules... & Widget >

v

@ Create Gist...

‘WM

XML [L Layout XML File
| i1 Resource Bundle Values XML File
Figure 14-8. Create new XML values file

Open the bookdescriptions.xml in the editor and copy the contents of Listing 14-2
into it.

Listing 14-2. /app/res/values/bookdescriptions.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="bookdescriptions">
<item>
How to use Android Studio 3, but also teaches you how basic
Android programming. And hey, in case you're also a beginner in Java,
that's covered too.
</item>
<item>
This book is also about how to use Android Studio. Like the first one,
it also teaches you the basics of the IDE and Android programming; but

314

CHAPTER 14 FRAGMENTS

this time around, you'll use Kotlin. The newest kid in the JVM block

</item>

<item>
Minimum Android Programming is the book that got me started. I wrote
in an age when even the Eclipse ADT doesn't exist yet. So, this means
you'll use the Android SDK in all the glory of the CLI tools

</item>

</string-array>
</resources>

Now we can work on the fragments. Let’s create the book_titles fragments first. Create
a new layout resource file and name it “book _titles.”
Listing 14-3 shows the content of /app/res/layout/book _titles.xml

Listing 14-3. /app/res/layout/book_titles.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"”
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match_parent"
tools:layout editor absoluteY="81dp">

<RadioGroup (1]
android:id="@+id/radioGroup"
android:layout width="354dp"
android:layout_height="wrap content"
tools:layout _editor absoluteX="16dp"
tools:layout_editor absoluteY="75dp">

<RadioButton (2]
android:id="@+id/rlas3"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout weight="1"

315

CHAPTER 14 FRAGMENTS

android:text="Learn Android Studio 3"
android:textSize="18sp" />

<RadioButton (3]
android:id="@+id/rlas3kotlin”
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout weight="1"
android:text="Learn Android Studio 3 with Kotlin"
android:textSize="18sp" />

<RadioButton o
android:id="@+id/rminandroid"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout weight="1"
android:text="Minimum Android Programming"
android:textSize="18sp" />

</RadioGroup>
</android.support.constraint.ConstraintLayout>

Get a RadioGroup View.
Add the first radio button as a child node of the RadioGroup.

Do the same for the second radio button.

@ © ® @

Do the same for the third radio butto.n

Next, let’s create the Fragment class for the book_titles UL Use the context menu,
right-click on /app/java/net.workingdev.chl14fragmentbooks, then choose New »
Kotlin File/Class. Create a class and name it BookTitle. In this class, we need to do the
following:

1. It’s a fragment, so it needs to inherit the Fragment class.

2. Override the onCreateView callback, inflate the Ul resource file,
and return it.

316

CHAPTER 14 FRAGMENTS

3. Handle the click events for the radio buttons. There are a couple
ways to do this. One way is to set up a listener for the radioGroup,
and the other way is to set up a click listener for each radio button;
we're going for the latter.

The annotated (and explained) BookTitle class is shown in Listing 14-4.

Listing 14-4. BookTitle Fragment Class

import android.support.v4.app.Fragment
import android.view.LlayoutInflater
import android.view.View

import android.view.ViewGroup

class BookTitle : Fragment(), View.OnClickListener { @

override fun onCreateView(inflater: LayoutInflater, container:
ViewGroup?, savedInstanceState: Bundle?): View? { (2]
val v = inflater.inflate(R.layout.book titles, container, false) ®

return v

}

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
rlas3.setOnClickListener(this) o

rlas3kotlin.setOnClickListener(this)
rminandroid.setOnClickListener(this)

}

override fun onClick(v: View?) { ®
var index:Int = 0
when(v?.id) {

R.id.rlas3 -> { (6]
index = 0 (7}
}
R.id.rlas3kotlin -> {
index = 1
}

317

CHAPTER 14 FRAGMENTS

R.id.rminandroid -> {
index = 2

® We extend the Fragment class from the support library. We're also implementing the View.
OnClickListener interface. We will use the class as the onClick listener object for the three
radio buttons.

® The runtime calls onCreateView method to compose the Ul of the Fragment. At this point,
none of Ul elements of the Fragment are accessible. You cannot make any Ul changes or
initialization here.

® This will return a View object to the runtime. We’re inflating the Ul resource file. The inflate
method takes on three arguments:
1. Ul Resource file. The XML layout for the fragment, we will use R.layout.book_titles .
2. This is the would-be parent of the fragment, or root. We will just use container for this.
3. attachToRoot. This is a Boolean value. This value will decide whether the inflated View
should be attached to the root parameter? If false, root is only used to create the correct
subclass of LayoutParams for the root view in the XML.

® We're saying that the listener object for the radio button is an instance of the BookTitle class,
this class.

® The onClick callback is from the View.0OnClickListener interface. When one of the radio
buttons is clicked, the runtime will call this method and pass along the actual View object that
was clicked. This is where we route our program logic. We’ll which radiobutton was actually
clicked.

® The when construct is a good fit for routing program logic. We’re testing for the runtime value
of View.id here; R.id.rlas3, R.id.rlas3kotlin, and R.id.rminandroid are the declared ids of the
radio button in book_title.xml .

@ We’re assigning a zero value to rlas3 because the description for rlas3 is found on the 0"
element of the book description array (we have yet to create this array). Similarly, rlas3kotlin’s
definition is the 1t element and rminandroid’s is the 2" element of the book description array.

318

CHAPTER 14 FRAGMENTS

Now that the two components of the book_titles fragment are complete, we can work
on the book_description fragment. You already know how to create a fragment, so I'll
skimp on the instructions and jump straight to the codes.

Create a new Ul resource and name it book_description, and make sure it’s in
/app/res/layout folder. As the for the fragment class, name it BookDescription.

Listings 14-5 and 14-6 show the codes for book_description.xml and
BookDescription class, respectively.

The book_description fragment is simple. It only has a single TextView element. Note
that we're not using a ConstraintLayout for this fragment—we could have, but using a
LinearLayout is much simpler. We want the TextView’s width to occupy the whole width
of the screen. You can simply copy Listing 14-5 and overwrite the contents of your
book_description.xml, if you're trying to follow the exercise.

Listing 14-5. /app/res/layout/book_description.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android
xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"
android:layout_height="match_parent"
android:orientation="vertical">

<TextView
android:id="@+id/txtdescription”
android:layout width="match_parent"
android:layout_height="wrap_content
android:text="TextView"
android:textSize="24sp" />
</LinearLayout>

Listing 14-6. BookDescription class
class BookDescription : Fragment() {

lateinit var arrbookdesc: Array<String>
var bookindex = 0

override fun onCreateView(inflater: LayoutInflater, container:
ViewGroup?, savedInstanceState: Bundle?): View? {

319

CHAPTER 14 FRAGMENTS

val v = inflater.inflate(R.layout.book description, container, false)
arrbookdesc = resources.getStringArray(R.array.bookdescriptions) @

return v

}

fun changeDescription(index:Int) : Unit { ®
bookindex = index
txtdescription?.setText(arrbookdesc[bookindex]) &

}

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
changeDescription(bookindex)
}
}

@ This statement reads the file /app/res/values/bookdescriptions.xml and creates an array
out of it.

® We created a small function that will take care of changing the text in the description TextView.
It takes an Int value, which we will use as the selector for the description. Each element of the
array contains a description of a book.

® arrbookdesc[bookindex] gets a description from the array and then sets the text attribute of
the TextView to it.

Now that the two fragments are built, we can focus on the MainActivity. It needs to
do three things:

1. Hold the two fragments together;

2. Actas amessenger for each fragment. When the user selects a
book in book_titles fragment, we need to look up the description
of that book in bookdescriptions array and change the text
description accordingly in the book_description fragment; and

3. Adjust the arrangements of the two fragments depending on the
orientation of the device. If the device is oriented vertically, the two
fragments will be arranged stacked from top to bottom. When the
device is oriented horizontally, the stacking will be from left to right.

320

CHAPTER 14 FRAGMENTS

Let’s work on goal no. 3 first. Right now, we only have one layout folder, the
/app/res/layout folder is the default location where Android will look for a layout
resource. This is the reason why we’ve always put our activity_main.xml in this folder.
There is a convention that if we create a folder named /app/res/layout-land, Android
will look for a layout file in this folder when the device is in landscape mode. We will use
this convention to achieve our goal.

Also, we need to solve the top-to-bottom and left-to-right stacking order. The
easiest way to achieve this is to change activity_main’s layout from ConstraintLayout to
LinearLayout. The idea is to provide identical activity _main xml file for /app/res/layout
and /app/res/layout-land, but we will change the LinearLayout orientation such that in
the default layout folder, the orientation is vertical (the default) and in the layout-land
folder, the orientation is horizontal. We’ll make a couple more changes, but we’ll get to
that in a while.

To convert activity_main’s layout to LinearLayout, do the following:

1. Open activity_main.xml in design view.

2. Inthe “Component Tree” tool window, right-click on
“ConstraintLayout, as shown in Figure 14-9.

s e Palette Q#-1- €. O~ [ONexusd~ =28~ © App
> manifests
v java Common L ConstraintLayout @~ b8, % H I
v [net.workingdev.ch14fragme 1oy I+1 Guideline (horizontal)
¢ BookDescription e T Guideline (vertical)
¢ BookTitle [I] LinearLayout (horizontal)
& MainActivity Widgets |5 inearl ayout (vertical)
» [Ia net.workingdev.ch14fragme Layouts [=] FrameLayout
» [n net.workingdev.ch14fragme ¢ousiners | i85 TableLayout CH14FragmentsBooks
v Bzres &3 TableRow
» [m drawable Soogle - 5:::50
v Pu layout Legacy
s Activity_main.xml
e boOk_description.xml
wx DoOK_titles.xml
4 ipmap Component Tree #*- 1=
> values
(& Gradle Scripts 21 ConstraintLayo* -
oo Organize >
|+ Center b
I Helpers >
Refactor >

Figure 14-9. Convert activity_main to LinearLayout

321

CHAPTER 14 FRAGMENTS

3. Choose Convert View.

4. A dialog box will appear; choose LinearLayout, as shown in
Figure 14-10.

Convert View to: LinearLayout

“\, ConstraintLayout

LinearLayout

= CoordinatorLayout
Il RelativeLayout
[=] FramelLayout

Apply

the

Figure 14-10. Convert to LinearLayout

Listing 14-7 shows the code of the revised activity_main (after the conversion to
LinearLayout).

Listing 14-7. Code of activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match_parent" @
android:layout_height="match_parent" @
android:orientation="vertical" (3]
tools:context=".MainActivity">

</LinearLayout>

® layout_width:“match_parent” means the layout will span the whole width of the screen.

®

\This means the layout will span the whole height of the screen.

® orientation:“vertical” means whatever Views we’ll put in this layout will be arranged top to
bottom.

322

CHAPTER 14 FRAGMENTS

Next, add the two fragments to activity_main. Open activity_main in design mode, go
to the Palette » Common, then find the <fragment>, as shown in Figure 14-11. Add the
BookTitle fragment first. Repeat the process and add BookDescription.

Palette Q#-1- €+ O~ [Nexusa ~ =28+ © AppTheme
Common Ab TextView @~ i, 8dp ;% T
Téxt I Button

M ImageView
Buttons = -

i= RecyclerView
Widgets > cfragmenb

= -
Layouts B ScrollView "h.‘
Containers *® Switch “-‘ CH14FragmentsBooks
- .
S

coose O

Legacy
®00® Fragments
¢ BookDescription (net.workingdev.ch14fragmentsbooks) app g

__J ¥z BookTitle (net.workingdev.ch14fragmentsbooks) app i

Component Tree

"\, ConstraintLayout Cancel m

Y

Figure 14-11. Drag a fragment element into activity_main
Listing 14-8 shows activity_main.xml with the two fragments added.

Listing 14-8. activity_main With book_titles and book_description Fragments

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout _height="match_parent"
android:orientation="vertical"
tools:context=".MainActivity">

<fragment
android:id="@+id/fragmentbooktitle"
android:name="net.workingdev.ch14fragmentsbooks.BookTitle"
android:layout width="match_parent" @
android:layout height="0px" (2]
android:layout _weight="1" /> (3]

323

CHAPTER 14 FRAGMENTS

<fragment
android:id="@+id/fragmentbookdescription”
android:name="net.workingdev.ch14fragmentsbooks.BookDescription"
android:layout width="match_parent" @

android:layout_height="0px" (5]
android:layout weight="1" /> ®
</LinearLayout>

® We'd like the top fragment to span the whole width.

® Just set the height to Opx. We’ll let the runtime determine the height for us. We’re using layout
weights anyway.

® Let’s give a weight of “1.” It doesn’t matter what number you use here, as long as the other
fragment has the same weight.

® \We’d also like the bottom fragment to span the whole width.

9

We’re letting the runtime determine the height; set this one to Opx as well.

® We want the top and bottom fragments to have equal heights. So, we’re setting the weight
here to be “1” as well.

That takes care of the default portrait orientation. Now, let’s work on the landscape
orientation. To control the appearance and behavior of our app when the device is
oriented horizontally, we need to do four things. They’re outlined as follows:

1. Create the folder /app/res/layout-land.

2. Create another Ul resource file inside layout-land; we will name
activity_main as well.

3. Copy the content of /app/res/layout/activity_main to /app/res/
layout-land/activity_main.

4. Make the necessary orientation changes in /app/res/layout-land/
activity_main.

First, you need to switch the view of the Project tool window. Right now we’re using
“Android View,” and we need to go to “Project View.” Go to the upper area of the Project
tool window, click on the downward arrow (as shown in Figure 14-12), then choose
“Project”

324

CHAPTER 14 FRAGMENTS

2! CH14FragmentsBooks) [; app) [src) [main) B=res)

Iil Android v Q& | ¥ 1" =
Project W 1
5 Packages i
7 Scratches p
‘% Android 5
S ¢ Project Files fragmentsbooks 6
g ¢ Problems ;
=1 §% Production 9
9 !,l Tests 10 of
#% Local Unit Tests Ak
g 9 Android Instrumented Tests fragmentsbooks (andro 1; } 5
W me r ntsboo

Figure 14-12. Change from Android view to Project view

Create the folder layout-land inside the /app/res folder. Right-click on the /app/
res folder, then choose New » Android Resource Directory. Name the new directory
“layout-land,” as shown in Figure 14-13.

[NON) New Resource Directory
Directory name: layout-land

Resource type: values

Source set: [main

Available qualifiers: Chosen qual

@ Network Code

@ Locale

& Layout Direction

£l Smallest Screen Width

& Screen Width

[] screen Height

Size &
Www..—.-

>>

Figure 14-13. New resource directory

325

CHAPTER 14 FRAGMENTS

Right-click on the newly created layout-land folder, then choose New » Layout

Resource File.
Name the file “activity_main” and choose LinearLayout for the “Root Element,” as

shown in Figure 14-14.

® 00 New Layout Resource File '

File name: activity_main

Root element:

android.support.v7.widget.FitWindowsLinearLayout
androtd SL.pport v7.widget.LinearLayoutCompat
S e the selected (or first sungostnonand insert a dot afterwards

Figure 14-14. New layout resource file

Copy the content of /app/res/layout/activity_main.xml to this newly created
activity_main in layout-land, and make the appropriate changes, as shown in Listing 14-9.

Listing 14-9. /app/res/layout-land/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal" @

tools:context=".MainActivity">

<fragment
android:id="@+id/fragmentbooktitle"
android:name="net.workingdev.ch14fragmentsbooks.BookTitle"

android:layout width="0px" (2]
android:layout_height="match_parent" @&
android:layout weight="1" /> 4]

326

CHAPTER 14 FRAGMENTS

<fragment

android:id="@+id/fragmentbookdescription”
android:name="net.workingdev.ch14fragmentsbooks.BookDescription"
android:layout _width="opx"

android:layout_height="match_parent"

android:layout weight="1" />

</LinearLayout>

® We’re in landscape mode, so this needs to be “horizontal”. With this setting, the fragments will
be arranged from left to right, instead of top to bottom.

® In portrait mode, the layout_width is set to “match_parent and layout_height is set to “Opx”.
We will reverse those settings in landscape mode. So set the layout_width to “Opx”.

® Set the layout_height to “match_parent”.

® Asalways, we want to the two fragments to have equal weights, so use “1” in here. Make sure

that the layout_weight in the other fragment is also “1.”

The last piece of this project is synchronizing the two fragments. Figure 14-15

reminds us of what our small project is supposed to do.

e % 01102

RadioButtons

as you click one of

these
(® Minimum Android Programming

the description is O Learn Android Studio 3
shown in this

O Learn Android Studio3 with Kotlin
Minimum Android Programming
is the book that got me started.
| wrote in an age when even the
Eclipse ADT doesn

a proe -

L - A it

Figure 14-15. Synchronized fragments

327

CHAPTER 14 FRAGMENTS

When the user clicks one of the radio buttons in book_titles fragment, the
book_description fragment should change and display the description for the currently
selected book. Earlier, we wrote the changeDescription function in the BookDescription
class; we could simply call this function from the BookTitle class, but that’s not
considered good practice. Why? Because if we did that, the BookTitle class will know
a lot about the BookDescription class—it makes the former depend on the latter.
Developers call that “tight coupling,” and you should avoid that most of the time.

If we won'’t call changeDescription directly from BookTitle, how are we going to do
it? Figure 14-16 shows us show.

Runtime | | Book Title | | Main Activity | | Book Description

onClick()

onBookChanged()

changeDescription()

T
|
|
|
|
|
=T
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 14-16. Communication between fragments

The idea is to course the action through MainActivity. In the sequence diagram,
BookTitle calls the onBookChanged function in the Activity, then the Activity calls the
changeDescription function in BookDescription. The astute reader might note that
we're simply shifting the dependency away from BookDescription and into MainActivity,
and that would make BookTitle dependent on (and tightly coupled with) MainActivity.
You would be correct, if we were to couple MainActivity specifically with BookTitle. We
won’t. We'll use an interface instead; this approach gives us some degree of indirection.
It won't be tightly coupled anymore—at least, not that tight. Here’s what we’ll do.

328

CHAPTER 14 FRAGMENTS

1. Create a coordinator interface—let’s name it Coordinator, why
don’t we?

2. Implement the Coordinator interface in MainActivity.

3. Use the Coordinator type from within BookTitle. When we need
to call the coordinator method within BookTitle, we’ll make it
against the Coordinator type—not against MainActivity.

To create an interface, right-click on your project’s package in the Project tool
window (as shown in Figure 14-17), then click New » Kotlin File/Class.

¥ Fujava 5 import android.support.vd.app.FragmentActivity
v o net.workingdev.ch1fésanm - T P e ey B A e e e S T

¢ BookDescription B [l '© Java Class
; BookTitle z : E Kotlin File/Class
& MainActivity Link C++ Project with Gradle | am Android Resource File

» [m net.workingdev.chli y/ ot sgy = Android Resource Directory
» [m net.workingdev.chli

o [0 Copy 2c B S.ample Data Directory
> Bu drawable Copy Path ogc | #Fle
v balayout Copy Reference N(¢®C | Scratch File %N
2 activity_main.xm| Of Paste sgy | Em Package
'= :mu.fcripﬁf " Find Usages E7 |8 C++Class
e "':;'pr:;k“m XM | Find in Path... Q%F | & C/Cs+ Source File
v Bumvalues Replace in Path... {+3¥R | . C/C++ Header File

= pookdescriptions Analyze ” o set

Figure 14-17. Create new Kotlin file/class

329

CHAPTER 14 FRAGMENTS

Name it “Coordinator” as shown in Figure 14-18, then change the “kind” to
“Interface.”

® o New Kotlin File/Class 4

Name: Coordinator 1)
Kind: | i’y File i
'x File
¢ Class
Interface
fr Enum class

& Object

Figure 14-18. New interface

Listing 14-10 shows the code for the Coordinator interface.

Listing 14-10. Coordinator.Kt

interface Coordinator { (1)
fun onBookChanged(index:Int) @

}

@® Declare an interface.

® Declare an abstract method. It takes an Int parameter. This param stands for the element
number in the bookdescriptions array. Whatever value we receive here, we’ll use it to call the
changeDescription method in the BookDescription fragment. By the way, we don’t have to
explicitly declare this method as public and abstract—that’s the default for all methods in an
interface.

Next, let’s implement this interface in MainActivity. Listing 14-11 shows the
annotated code.

330

CHAPTER 14 FRAGMENTS

Listing 14-11. MainActivity, Annotated

import android.os.Bundle
import android.support.v7.app.AppCompatActivity
import kotlinx.android.synthetic.main.activity main.*

class MainActivity : AppCompatActivity(), Coordinator { @

override fun onCreate(savedInstanceState: Bundle?) {

}

override fun onBookChanged(index:Int) {
val frag = fragmentbookdescription

}
}

super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

if (frag is BookDescription) {
frag.changeDescription(index)

}

Q@O0

Let’s implement the Coordinator interface.

Override the onBookChanged method. This was declared as abstract in the Coordinator
interface; we have to override it in MainActivity so we can provide the concrete behavior.

Let’s get a reference to the BookDescription fragment; fragmentbhookdescription is the id
of the fragment. This call returns a Fragment class; NOT yet the BookDescription class. If
you worked with Fragments before, using Java, you might remember that we needed to use
findFragmentByld for doing this kind of thing. We don’t have to do it anymore. The Kotlin
Android Extensions let us refer to the fragments by id, directly—it’s already synthesized in
the MainActivity.

We're casting frag (which is still a Fragment class) to BookDescription. The is operator in
Kotlin is smart enough to perform the cast automatically for us. We don’t have to perform an
explicit cast anymore. This is one more difference between Java and Kotlin; in the former,
you to have to cast explicitly. In Kotlin, the is operator not only functions as the equivalent of
instanceof, it also performs as smart cast for us.

Now, we can call the changeDescription method of the BookDescription class.

331

CHAPTER 14 FRAGMENTS

What's left to do is to make the changes in the BookTitle class. When a radiobutton is
clicked, we’ll do the following:

1. Find out which button was clicked.

2. Depending on the radiobutton’s value at the time of the click, we’ll
assign a value to an index variable; 0-“Learn Android Studio 3”;
1- Learn Android Studio 3” with Kotlin; and 2-“Minimum
Android Programming.” The integers 0,1, and 2 correspond to the
three array elements of bookdescriptions.xml.

3. Getareference to MainActivity using the Coordinator type; then
4. Call the onBookChanged method.

Listing 14-12 shows how all this looks in code.

Listing 14-12. BookTitle, Annotated
class BookTitle : Fragment(), View.OnClickListener {

override fun onCreateView(inflater: LayoutInflater, container:
ViewGroup?, savedInstanceState: Bundle?): View? {
val v = inflater.inflate(R.layout.book titles, container, false)
return v

}

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
rlas3.setOnClickListener(this)
rlas3kotlin.setOnClickListener(this)
rminandroid.setOnClickListener(this)

}

override fun onClick(v: View?) {
var index:Int = 0

when(v?.id) { (1]
R.id.rlas3 -> { (2]
index = 0
}
R.id.rlas3kotlin -> {
index = 1

332

CHAPTER 14 FRAGMENTS

}

R.id.rminandroid -> {
index = 2

}

}

val activity = getActivity() (3]
if (activity is Coordinator) { @

activity.onBookChanged(index) &
}

@ Let’s find out which button is clicked.

® Ifit’s the button for “Learn Android Studio 3,” we’ll set the value of index to 0, and we’ll
set the value of index accordingly for rlas3kotlin and rminandroid. The when construct is
essentially translating the runtime value of the radiobutton to an Int, which we can use as an
index to our array.

® Let’s get a reference to the currently running Activity, which is MainActivity. Note that
getActivity() does not return the specific instance of MainActivity; it just returns the supertype
of MainActivity (FragmentActivity).

® Let’s cast activity to the Coordinator type.

® Finally, call the onBookChanged method.

We've connected all the dots. Now we can:
» Display books using radiobuttons in one fragment;

o Display a description of the currently selected book in another

fragment; and

o Adapt the layout of the fragments in response to changes in device
orientation.

Try to run the app in an emulator. Click a few buttons and then try to change the
orientation from portrait to landscape. Try to cycle through the radiobuttons in between
changes from portrait to landscape mode. Use rotation buttons on the emulator (shown
in Figure 14-19) if you want to switch from landscape to portrait and vice versa.

333

CHAPTER 14 FRAGMENTS

(O Learn Android Studio 3
(O Learn Android Studio 3 with Kotlin
(® Minimum Android Programming

rotate left

rotate right

Minimum Android Programming is the
book that got me started. | wrote in an
age when even the Eclipse ADT doesn

Figure 14-19. Device rotation buttons, emulator

You might have noticed that the two fragments go out of sync when you change the
device orientation. The book_description fragment always goes back to the description
of “Learn Android Studio 3” (the first element on the bookdescription array).

The two fragments stay in sync as long as you don’t change the device’s orientation.
Something happens in the fragments when you change the orientation.

As the orientation of the device changes, something happens to MainActivity and
its fragments. Remember that an Activity has a life cycle? Fragments have life cycles
too—they are similar to that of the Activity but there are notable differences. We won’t
get into the details of Fragments life cycle nor will we discuss how the Activity life cycle
affects the life cycle of Fragments. I'll just point out that as you shift the orientation of the

334

CHAPTER 14 FRAGMENTS

device, the Activity, together with the Fragments, will be torn down and rebuilt again.

The Activity may enter and transition through the following states (callbacks):

1.

5.

6.

7.

Activity.onSavelnstanceState. Fragment’s onSavelnstanceState
will be called.

Activity.onPause. Fragment’s onPause will be called.
Activity.onStop. Fragment’s onStop will also be called.

Activity.onCreate. Fragment’s onCreate » onCreateView »
onViewCreated will be called.

Activity.onStart. Fragments onStart will be called.
Activity.onRestorelnstanceState

Activity.onResume. Fragment’s onRestorelnstance will be called.

What'’s important to take away here is that as you change orientation, the fragments

lose their current state. We need to find a way to save the value of the array index (in

BookDescription class) before it gets torn down and rebuilt again. Luckily, we know that

the runtime will call the Activity’s onSaveInstanceState, and by extension, it also calls

the Fragment’s onSavelnstanceState; this method lets us save values in a Bundle, so

we'll use that to save whatever is the value of the array index when the device is rotated.

Listing 14-13 shows the complete and annotated code for the BookDescription class.

Listing 14-13. Complete Code for BookDescription, Annotated

import
import
import
import
import
import

android.os.Bundle

android.support.v4.app.Fragment
android.view.LlayoutInflater

android.view.View

android.view.ViewGroup
kotlinx.android.synthetic.main.book description.*

class BookDescription : Fragment() {

lateinit var arrbookdesc: Array<String>

var bookindex = 0

335

CHAPTER 14 FRAGMENTS

override fun onCreateView(inflater: LayoutInflater,
container: ViewGroup?, savedInstanceState: Bundle?): View? {

val v = inflater.inflate(R.layout.book description, container, false)
arrbookdesc = resources.getStringArray(R.array.bookdescriptions)

bookindex = if(savedInstanceState?.getInt("bookindex") == null) 0 @

else { savedInstanceState.getInt("bookindex")} 2]
return v

}

override fun onSavelnstanceState(outState: Bundle) { (3]
outState.putInt("bookindex", bookindex)

}

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
changeDescription(bookindex)

}

fun changeDescription(index:Int) : Unit {
bookindex = index
println("BOOK INDEX = $bookindex")
txtdescription?.setText(arrbookdesc[bookindex])
println(arrbookdesc[bookindex])

}
}

(1} We need to check if the “bookindex” key isn’t null. It will be null the first time we launch the
app, because the app hasn’t called onSavelnstanceState just yet. If it’s null, let's make the
default bookindex = 0; we go with the first description in the array.

(2] If it isn’t null, we’ve already saved a value in the “bookindex” key; so, get the value of
“bookindex” and set the value of the bookindex variable to it.

(3] Just before the Activity and Fragments are torn and rebuilt, the runtime calls
onSavelnstanceState. This method gives us access to a Bundle object; this is the same
Bundle object that we get during the onGreateView callback. Save the current value of
bookindex to the Bundle using the key “bookindex”.

336

CHAPTER 14 FRAGMENTS

Fragments Demo, Dynamic

Now that we know how to work with fragments during design time, let’s see how we can

work with fragments dynamically. To add fragments dynamically, we generally have to

do the following:

1.

Create the layout resource and the corresponding Kotlin class for

the fragment; just like what we did in the previous project.

In MainActivity, we create an instance of the fragment class.

Create an instance of a FragmentManager and a

FragmentTransaction object.

Create placeholders for the fragments in our Activity’s layout file.

The placeholders are where we’ll put the fragments later on.

Using the FragmentTransaction object, add the fragment to the

Activity.

This project is almost the same as the previous one. The only difference is the way

we'll add the fragments. I think it’s best to create a new project for this, so you can keep

the previous project untouched for future reference.

Create a new project with the following details (Table 14-2).

Table 14-2. Project Details

Project Detail

Value

Application name
Company domain
Kotlin support
Form factor
minimum SDK
Type of activity
Activity name

Layout name

CH14FragmentsBooksDynamic
use your website name

Yes

Phone and Tablet only

API 23 Marshmallow

Empty

MainActivity

activity_main

337

CHAPTER 14 FRAGMENTS

For the most part, you'll just copy and paste the files from the previous project. I
suggest that you don’t copy the whole project folder. Create a new project and recreate
your steps in the previous project; create the same classes, interfaces, xml resources, and
Ul resources using exactly the same file names as in the previous project. Then, copy the
contents of the file from the previous project and onto the corresponding files in the new
project.

Having done that, Table 14-3 shows which file stays unchanged and which file will
change in this current project.

Table 14-3. Summary of Changes in the New Project

File Description

MainActivity.Kt Changes = Yes. We need to add FragmentManager and
FragmentTransaction codes .

activity_main.xml Changes = Yes. We’ll remove the <fragment> element and replace it
with a placeholder.

book_description.xml Changes = No. Stays as is. You can copy and paste and then leave it alone.

BookDescription.Kt Changes = No. Copy, paste, then leave it alone.

book_titles.xml Changes = No. Copy as is.

BookTitle.Kt Changes = No. Copy as is.

bookdescriptions.xml Changes = No. Copy as is

Coordinator.Kt Changes = No. Copy as is.

Asyou can see, the changes are all contained in the main activity files. Listing 14-14
shows the full code and annotates the changes in activity_main.xml.

Listing 14-14. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match_parent"
android:layout_height="match_parent"

338

CHAPTER 14

android:orientation="vertical"
tools:context=".MainActivity">

<LinearLayout (1]

android:id="@+id/fragtop" 2]
android:layout width="match_parent"
android:layout_height="match_parent"
android:layout weight="1"
android:orientation="horizontal">

</LinearLayout>
<LinearlLayout (3]
android:id="@+id/fragbottom" 4]

android:layout width="match parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="horizontal">

</Linearlayout>

</LinearLayout>

FRAGMENTS

@ © ® @

We added a LinearLayout container; and

we named this first container fragtop. This is the placeholder for the BookTitles fragment.

We added another LinearLayout container; and

named this one fraghottom. This is the placeholder for the BookDescription fragment.

Instead, we've put two LinearLayout containers that act as placeholders for the

You'll notice that activity_main doesn’t contain <fragment> elements anymore.

fragments. When we make the call to add the fragments to our Activity, we’ll put them in

these placeholders. That’s the extent of the changes on Ul resource layout. Most of the

change will actually be on MainActivity.

In the previous project where we added the fragments to the Activity statically, we

didn’t do much as far as fragments were concerned; but now that we will add fragments

dynamically, we'll need to add the necessary codes to add the fragments at runtime.

339

CHAPTER 14 FRAGMENTS

To work with fragments dynamically, you'll need two objects: a FragmentManager
and a FragmentTransaction. You can use the FragmentManager for doing a lot of things
like finding fragments by Id and by tag; but for our purpose, we’ll only use it as to get a
FragmentTransaction object.

A FragmentTransaction is what'’s responsible for adding, attaching, detaching, and
removing fragments at runtime. For our purpose, we will only use it to add fragments.

The full code for MainActivity is shown in Listing 14-15.

Listing 14-15. MainActivity, Annotated

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

class MainActivity : AppCompatActivity(), Coordinator {

lateinit var fragBookDescription: BookDescription
lateinit var fragBookTitle: BookTitle

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

fragBookTitle = BookTitle() o

fragBookDescription = BookDescription() (2]

val fragTransaction = supportFragmentManager.beginTransaction() ©
fragTransaction.add(R.id.fragtop, fragBookTitle) @
fragTransaction.add(R.id.fragbottom, fragBookDescription) @
fragTransaction.commit() ®

}

override fun onBookChanged(index:Int) { (7]
fragBookDescription.changeDescription(index) ©

}

340

CHAPTER 14 FRAGMENTS

®

Create an instance of the BookTitle fragment.
Create an instance of the BookDescription fragment.

Let’s get a FragmentTransaction object. The supportFragmentManager is made

available to us as a convenience feature of Android Studio and Kotlin. The actual call is
getSupportFragmentManager(), but it’s synthesized for us already so we don’t have to use
the actual method. Next, the beginTransaction() call is a factory method that gives us a
FragmentTransaction object.

Let’s use the FragmentTransaction to add a fragment. The add method takes two arguments:
1. Anid of a View object. This is the id the LinearLayout placeholder that we added in

activity_main.xml (fragtop).
2. Aninstance of a fragment (fragBookTitle)

Similarly, let’s add the book description fragment.

We have to call the commit() method of the FragmentTransaction to finalize all changes in
FragmentTransaction. If you don’t call this method, nothing will happen—the fragments won’t
be added.

You remember this method, when the user clicks one of the radiobuttons in BookTitle
fragment, that fragment will call the onBookChanged() method in MainActivity.

In the previous project, we had to find the id of the book_description fragment and then cast
it a BookDescription object before we called changeDescription. We don’t have to do that
anymore, since we can refer to the instance of the BookDescription fragment directly.

That concludes the exercise and the chapter. We barely scratched the surface on

Fragments—there’s more to them than what'’s presented here; but hopefully, this gives

you a good foundation when you further explore them.

Chapter Summary

» Fragments, like Activities, can contain View elements. They are also a
composition unit, but smaller.

e You can use Fragments to respond to different device orientation,
form factor, or size.

o Fragments, like Activities, also have life cycle callbacks.

341

CHAPTER 14 FRAGMENTS

o Thelife cycles of Activities have an effect on Fragments.

o When you change the device’s orientation, Activities (and Fragments)
get torn down and rebuilt again. They go through a series of life cycle
callbacks.

e Android P deprecated android.app.Fragments. So, if you want to use
Fragments, use the class from the support library.

In the next chapter, we’ll learn something about what Android calls “jank” and how
to avoid it in your code.

342

CHAPTER 15

Running in the
Background

What we’ll cover:
e The Ul thread
o Threads and runnables
o Handlers and messages
e AsyncTask
e Anko’s doAsync

No one wants to use slow applications. Users want their apps crisp and snappy.
Every developer wants this also—no one sets out to build their app and say, “This app
is too fast, maybe I should slow it down a bit”; nobody does that. So, how come there
are apps that move like molasses? You've probably seen some of these apps I'm talking
about—you know those where you try to scroll through a recycler view or a list and then
it starts, stops, and sputters. Sluggish.

We can list a number of reasons why some apps are sluggish, but I bet one of the top
10 reasons is that there’s too much going on the main thread. It’s probably saddled by an
I/0 routine or a complex calculation—or both—and that’s bad.

Does that mean you shouldn’t make any I/O calls or do any complex calculation in
your app? Not at all. But you should know where to put I/O calls or complex calculation;
and it’s not on the main thread.

In this chapter, we’ll take a look at ways on how to keep slow-moving codes away
from the main thread so that apps can respond crisply and snappily.

343
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_15

CHAPTER 15 RUNNING IN THE BACKGROUND

Basic Concepts

A process is created when an app is launched. It’s allocated some resources, like memory
and some other things that it needs so it can do its job. It’s also given at least one thread.

A thread, loosely speaking, is a sequence of instructions. It’s the thing that actually
executes your code. During the time that the app is alive, the thread will utilize the
process’ resources. It may read or write data to the memory, to the disk, or, sometimes,
even the network I/O. While the thread is interacting with all these, it really is just
waiting. It can’t take advantage of CPU cycles while it’s waiting. We can’t let all those
CPU cycles go to waste. Can we? What we can do is to create other threads so that
when one or more threads are waiting for something, the other threads can utilize the
CPU. This is the case for multi-threaded applications.

When the runtime created an instance of the app, that process was given one thread.
It’s called the main thread; some developers call it the Ul thread. The runtime gave us
just the one thread and no more. But the good news is we can create more. The UI thread
is allowed to spawn other threads.

The Ul Thread

Before we dive into the details of spawning or creating child threads, let’s talk about the
Ul thread first. It's the one responsible for launching the main activity and inflating the
layout xml so that all the View elements in it turn into actual Java objects (e.g., buttons,
text views, etc.). In short, it’s the one responsible the UL

When you make a call like setText or setHint, it will be done on the main thread;
if you thought that these calls executed immediately, that would be wrong. Whatever
statements you write in the app will generally follow these steps:

1. The statements will be placed in a MessageQueue, and there it will
stay, until

2. aHandler picks it up for execution; and finally
3. itgets executed on the main thread.

You might say, “This is all nice to know, but so what?”. Well, you should care about
this because the main thread is not only used for drawing UI elements. It’s also used for
everything else that happens in your app. Remember that the Activity has other methods
like onCreate, onStop, onResume, onCreateOptionsMenu, onOptionsItemSelected,

344

CHAPTER 15 RUNNING IN THE BACKGROUND

and other similar methods; whenever the code is running on these blocks, the Android
runtime cannot process any message in the queue. It’s in a blocked state; a blocked
state is a concurrency jargon that developers use when they mean to say that the app
is waiting for something to finish before it can continue to go about its business. Never
mind the jargon—just remember that blocking can be bad for the user-experience.

How can this happen? The answer is “because we only have one thread to do all
these things.” The solution for this problem is to create a background thread or a child
thread and do our non-UI tasks in there—but not always. If you think the call is cheap
enough in terms of processing resources, say 1 ms to 15 ms, then go ahead and just do it
on the main thread. If it’s going to take more than 16 ms and up, you should probably do
it on background thread.

The 16-ms threshold is a guideline from “Project Butter,” which was released at the
time of Android 4.1 (Jellybean). It was meant to improve the performance of Android
apps. When the runtime senses that you're doing too much on the main thread, it will
start dropping frames. When you're not making expensive calls, the app performs at a
smooth 60 FPS (frames per second). If you tie up the main thread, you'll start noticing
sluggish performance, or what the Android team refers to as “jank.” I don’t have a
clear-cut guideline that can tell you what’s an expensive call and what’s a cheap one.
What I can do, though, is to show you examples of both calls; hopefully, you'll get an idea
what an expensive versus cheap call looks like.

Listing 15-1 is a cheap call even if it sets the text attribute to a calculated value. The
calculation is simple enough, the UI thread won’t break a sweat.

Listing 15-1. Set Text Attribute to a Calculated Value: A Cheap Call

button.setOnClickListener {
txtsecondnumber.setText((2 * 2 * 2).toString())

}

Listing 15-2 might seem complicated because it calculates the GCE What if the
numbers are large—wouldn’t that be too taxing for the main thread? Not really. Listing
15-2 uses the Euclidian algorithm for finding the GCE The algorithm performs at
constant time or O(1); that’s another jargon that developers use when they talk about
the time complexity of an algorithm or how long it will take for the code to finish. O(1) or
constant time means that the algorithm will perform the same whether the input is large
or small; the time complexity doesn’t change much whether we’re finding the GCF of 12
and 15 or 16,848,662 and 24. So, it’s quite okay to put this in the main thread.

345

CHAPTER 15 RUNNING IN THE BACKGROUND

Note Time complexity of algorithms can be expressed as either 0(1), O(N), O(N?),
0(2"), or O(log N), where N stands for the size of the input. This is a called Big O
notation. It’s good to know something about it—especially if you want to write
performant codes.

Listing 15-2. Calculate GCF: Still a Cheap Call
button.setOnClickListener {

val numfno = txtfirstnumber.text.toString().toInt()

txtsecondnumber.text.toString().toInt()

val numsno

var numbig = if(numfno > numsno) numfno else numsno
var numsmall = if(numfno < numsno) numfno else numsno

var rem = numbig % numsmall

while(rem != 0) {
numbig = numsmall
numsmall = rem
rem = numbig % numsmall
}
Toast.makeText(this@MainActivity, "GCF is $numsmall", Toast.LENGTH_LONG).
show()

}

Listing 15-3 is considered expensive because it makes a call to the network
I/0. The code, in fact, won’t even compile at all because it will result in a
NetworkOnMainThreadException. The IDE won'’t even let us through the compilation
process. As a rule of thumb, if your code will make I/0 calls, whether local file or the
network, you should do it in a background thread.

346

CHAPTER 15 RUNNING IN THE BACKGROUND

Listing 15-3. Read Something from GitHub: Expensive Call

button.setOnClickListener {
val url = "https://api.github.com/users/tedhagos"
println("inside doGetHttp")
val client = OkHttpClient()
val request = Request.Builder().url(url).build()
val response = client.newCall(request).execute()

val bodystr = response.body().string()

Listing 15-4 doesn’t do any I/0O, but the function killSomeTime simulates an

expensive call.

Listing 15-4. Do Something That Blocks: Expensive Call

button.setOnClickListener {
killSomeTime()
}
}

private fun killSomeTime() {
for (i in 1..20) {
textView.text = i.toString()
println("i:$i")
Thread.sleep(2000)
}
}

The Thread.sleep call in Listing 15-4 is a dead giveaway that the code will block, but
it can simulate something that can take 2 seconds to complete. At first glance, you might
think that the textView will update every 2 seconds to show the current value of i, but
that won’t happen because the runtime will drop the framerates already. The UI thread
can’t update the textView because it’s tied up waiting for the Thread to wake up and
resume.

Imagine if you have a code like Listing 15-5—it doesn’t have any I/O call or Thread.
sleep, but it won’t update the text field (in the second level of the loop) like you
expect—again, because the main thread is busy calculating the Cartesian product.

347

CHAPTER 15 RUNNING IN THE BACKGROUND
Listing 15-5. Deeply Nested Calculation: Expensive Call

button.setOnClickListener {
for (i in 1..100000) {
for (j in 1..10000) {
txtfirstnumber.setText((i*j).toString())
for (k in 1..10000) {
printIn("i: $i | j: $j | k$k | i*j*k = ${i*j*k}")
}
}
}
}

Note A Cartesian product is a mathematical set that is the result of multiplying
other sets.

In earlier versions of Android, before Project Butter, the codes shown in
Listings 15-3, 15-4, and 15-5 may have resulted in the ANR error (Android Not
Responding). Nowadays, they may not draw the ANR anymore, but the bigger concern is
jank. To avoid jank, we should move those expensive calls to a background thread. There
are many ways to do that in Android. Some solutions are found on the framework level
like the Loader API or AsyncTaskLoader; however, these things were deprecated starting
with API 28, so it’s best to stay away from them. There’s also a couple of low-level ways to

do some task in the background, they are:
o Threads and Runnables, from Java
o AsyncTask, this is part of Android framework
o Handlers and Messages, also part of the Android framework

e Anko’s doAsync, Anko is a third-party library written in Kotin

348

CHAPTER 15 RUNNING IN THE BACKGROUND

Threads and Runnables

Let’s use Listing 15-14 as a use-case for our exploration. To run that code, you'll need a
UI that looks like Figure 15-1; the xml code for our basic Ul is in Listing 15-6.

hd EX0
CH15Scratch

TextView < __ | id: textView
textSize: 30sp

BUTTON

~---+id: button

|
|
.,3

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android

WW

Figure 15-1. Our basic activity_main layout

Listing 15-6. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"
android:layout _height="match_parent"
tools:context=".MainActivity">

<Button
android:id="@+id/button"
android:layout width="wrap_content"
android:layout_height="wrap_content"

349

CHAPTER 15 RUNNING IN THE BACKGROUND

android:layout_marginStart="16dp"
android:layout_marginTop="16dp"

android:text="Button"

app:layout constraintStart toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/textView" />

<TextView

android:id="@+id/textView"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout marginStart="16dp"
android:layout marginTop="32dp"
android:text="TextView"
android:textSize="30sp"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

If you try to run Listing 15-4 as it stands right now, it will run; but it won’t run well.
You will notice the following:

1. You expect that the textView will refresh every 2 seconds to show
the current value of i. It won’t. The frames are going to drop, so
you won't see any Ul activity.

2. Butyou will see the value of I as it gets updated every 2 seconds in
the Logcat window. This is because println isn’t affected by the
reduction in framerate—the output is in the console, not in the UL

3. You might see a message like this from the runtime’s
Choreographer:

07-31 15:51:29.646 13403-13403/net.workingdev.
chi5scratchasynctask I/Choreographer: Skipped 2402 frames!
The application may be doing too much work on its main
thread.

350

CHAPTER 15 RUNNING IN THE BACKGROUND

Though the app didn’t draw an ANR, it significantly slowed down. You can definitely

feel some jank. To fix this, let’s move the janky code to a background thread.

To create a thread and start it, you need to do the following:

1.

2.

Create a class that implements the Runnable type.

Anything that you want to run in the background, put it inside the
overridden run method.

Create a Thread object, then pass the Runnable object that you
just created in step 1 to the Thread’s constructor.

Call the start method of Thread.

Every time the value of the variable i changes, we update the
TextView.

In code, it looks like the following (see Listing 15-7).

Listing 15-7. Threads and Runnables

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener {
val runnable = Worker()
val thread = Thread(runnable)
thread.start()

}
}

inner class Worker : Runnable {

override fun run() {

}
}

killSomeTime()

351

CHAPTER 15 RUNNING IN THE BACKGROUND

private fun killSomeTime() {
for (i in 1..20) {
Thread.sleep(2000)
println("i: $i")
}
}
}

By now, in Chapter 15 of this book, you already know about anonymous objects,
lambdas, and how to chain function calls. We should be able to whip up something like this:

button.setOnClickListener {
Thread(Runnable { (1 0]
killSomeTime()
}).start() ©

}

® A Runnable anonymous object is created using Kotlin lambda expressions. It’s passed to the
constructor of a Thread class.

® We don’t have to write the run method anymore. Runnable is a SAM class (a class with a
Single Abstract Method). You don’t need to explicitly write the name of the abstract method
when you use a SAM class in a lambda expression.

® Calling start kicks the thread into high gear.

Our code should work fine right now if all we want to do is println to the console. But
remember that we need to set the value of the TextField to the current value of i.

A background thread is not allowed to change anything in the UI. That responsibility
belongs only to the Ul thread. So, the next problem we need to solve is how to come back
to the Ul thread so we can update the TextView. There are a couple of ways to do that,
but the simplest is to call the runOnUiThread method of Activity class.

352

CHAPTER 15 RUNNING IN THE BACKGROUND

The runOnUiThread method takes a Runnable object and executes the code of
the Runnable object in the main thread. Listing 15-8 shows the full, annotated, and
explained code for MainActivity.

Listing 15-8. Full Code of MainActivity, With Annotations

import android.os.AsyncTask

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import kotlinx.android.synthetic.main.activity main.*

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener {

Thread(Runnable { (1]
killSomeTime() (2]
}).start() (3]

}
}

private fun killSomeTime() {
for (i in 1..20) {
runOnUiThread(Runnable{ o
textView.text = i.toString()
H
println("i:$i")
Thread.sleep(2000)
}
}
}

353

CHAPTER 15 RUNNING IN THE BACKGROUND

® To create a background thread, you need to create an instance of Runnable type (Thread) and
start it. The Thread constructor takes a Runnable type and executes whatever is inside the
run method. | used an object expression in this line to create an instance of a Runnable type
without creating a named subclass—kinda like Java’s anonymous classes.

® We are inside the Runnable’s run method now. We're in a background thread.

®

Don’t forget to call start on the Thread object.

® One of the limitations of a background thread is that it cannot do anything that modifies the
UI. Any Ul modification code has to run from the original thread that created the U—which is
the Ul Thread. If you need to change the Ul from a background thread (like this), you can call
the runOnUiThread method of the Activity class. It takes a Runnable type (again), you can put
all the Ul modification code on the run method of this Runnable type.

When you run this code, you should see the updated value of the variable i every 2
seconds. The Choreographer will also stop bugging us about dropped frames because
we're back to the buttery smooth rate of 60 FPS.

Using the Handler Class

The Handler class, unlike the Thread, is part of the Android framework—not part of Java.
Handler objects are used mainly to manage threads. Remember the discussion earlier
about your code being put in MessageQueue; it waits there until it gets picked up and
executed—it’s the Handler that does the picking and the executing.

The basic idea is to get a reference to the Handler of the main thread, then, while
we're inside the background thread (where we can’t make any UI changes), send a
Message to the handler object. Use the Message object to convey data between the
background thread and the main thread.

To use a Handler object, you need to do the following:

1. Getthe Handler object that’s associated with the UI Thread.

2. Somewhere in your code, when you're about to do something that
may cause jank, run that instead on a background thread.

354

CHAPTER 15 RUNNING IN THE BACKGROUND

3. While you're inside the background thread, when you need to
change something in the UI, do the following:

a. Create a Message object, best way to do this is to call Message.
obtain().

b. Send a message to the Handler object by calling the
sendMessage method. Message objects can carry data. The
data attribute of the Message object is a Bundle object, so you
can use the various putXXX() methods on it (e.g., putString,
putint, putBundle, putFloat, etc.).

4. You can do the UI changes in the handleMessage callback of the
Handler object.

Listing 15-9 shows how all these come together in code.

Listing 15-9. Full Listing for MainActivity, Annotated and Explained

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.os.Handler

import android.os.Message

import kotlinx.android.synthetic.main.activity main.*

class MainActivity : AppCompatActivity() {
lateinit var mhandler: Handler (1]

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

mhandler = object : Handler() { (2]
override fun handleMessage(msg: Message?) {
textView.text = msg?.data?.getString("counter") @

}
}

355

CHAPTER 15 RUNNING IN THE BACKGROUND

}

button.setOnClickListener {

Thread(Runnable {
killSomeTime() (4]
}).start()

}

private fun killSomeTime() {

}
}

for (i in 1..20) {

var msg = Message.obtain() (5]
msg.data.putString("counter", i.toString()) (6]
mhandler.sendMessage(msg) (7]
Thread.sleep(2000)

}

o

Declare a Handler object as a property of the class. We need access to this from two of our
top-level functions. We're using lateinit here because were not yet ready to define the object.

We’re defining the Handler object now. We’re getting the Handler object that’s associated with
the Ul Thread.

It's safe to make Ul changes in here. This is the Handler that’s associated with the Ul
Thread. The handleMessage callback will be called by the runtime when we invoke the
sendMessage. The Message parameter of this method carries the data.

killSomeTime is representative of any I/0 or time-consuming task. Always run it in a
background thread to avoid jank.

Create a Message object. This is what we will send to the Handler later.

The data property of the Message object is like a Bundle—you can put things in it. It’s like
a dictionary, each item is a pair—a key and a value. We passed two things to the putString()
method, these are:

1. "counter", the key
2. 1i.toString(), the value

Send the Message to the Handler object.

356

When you run this code, it performs just as well as our earlier Thread example.

CHAPTER 15 RUNNING IN THE BACKGROUND

AsyncTask

Another way to run codes in the background is to use the AsyncTask class. AsyncTask,
like the Handler class, is part of the Android framework. Like the Handler, it has a
mechanism for doing the work on the background, and it also provides a (cleaner) way
to update the UL

To use the AsyncTask, you generally need to do the following:

1. Extend the AsyncTask class.

2. Override AsyncTask’s doInBackground method so you can
accomplish the background work.

3. Override a couple more of AsyncTask’s life cycle methods so
you can update the Ul and report on the overall status of the
background task.

4. Create an instance of AsyncTask subclass and call the
execute—that’s how you kickstart the background operation.

One of the reasons why AsyncTask is less preferred than simple Threads is that it
uses generics. The AsyncTask class is parameterized. You have to specify three types
before you can use it. Listing 15-10 shows us how to subclass the AsyncTask class.

Listing 15-10. Subclassing the AsyncTask

AsyncTask<Void, String, Boolean> {

override fun doInBackground(vararg po: Void?) : Boolean { (2]
// statement
publishProgress("status of anything") (3]
}
override fun onProgressUpdate(vararg values: String?) {
// update the UI o
}
override fun onPostExecute(result: Boolean?) {
println(result) (5)
}
}

357

CHAPTER 15 RUNNING IN THE BACKGROUND

o

The AsyncTask is a parameterized class. You have to specify three types before you can use it.
The three types, in the order they appear, are the following:

a. Params. This is the information you need to pass to the AsyncTask so that it can do the
background task. It could be anything, like a list of URLS, View object(s), or String(s). To
make it a bit more challenging for us, it's a vararg parameter. Typically, developers use this
parameter to pass the View elements so the AsyncTask can reference the View objects of
the Activity. But in our example, | will make the AsyncTask an inner class—that way, it can
refer to any View element in MainActivity (this is reason why | used Void as the first type
parameter—I simply don’t need it).

b. Progress. The type of information that you want the background thread to pass to the Ul
thread so you can tell the user what’s going on.

¢. Result. The kind data you want to indicate the result of the background operation; most of the
time, this is either frue or false. If the operation succeeds, then it’s true, otherwise it's false.

This is the only mandatory function to override. As the name suggests, this is where you’ll do
things in the background. Whenever you need to read/write to a file or a network 1/0, you’d
want to do it here. This function takes in a vararg Void parameter, it corresponds to the first
type parameter we defined for our class. If you made the first type parameter as String, then
dolnBackground should take a String. Notice also that this method returns a Boolean; that’s
because we passed a Boolean as the third parameter type.

Periodically, you may want to inform the user of what’s going on in your app, especially if

it’s a lengthy operation. The publishProgress method lets you do that. While you are inside
dolnBackground, you cannot make any changes to the Ul. Ul changes needs to happen on the
Ul Thread. When you call publishProgress, the Android runtime will call onProgressUpdate—
that’s where you can make Ul changes. Whatever argument you pass to publishProgress, the
onProgressUpdate receives it.

When you’re inside this method, all the statements will be executed on the Ul Thread. This

is where you make changes to your View objects. The method takes a String parameter
because we passed String as the second type parameter of the AsyncTask class, and it
corresponds to that. This method will be called after we’ve invoked publishProgress from the
dolnBackground method; whatever data you pass to publishProgress will be received by
onProgressUpdate.

When dolnBackground finishes, the runtime will call this method. The result parameter was
returned by dolnBackground.

358

CHAPTER 15 RUNNING IN THE BACKGROUND

Now that were acquainted with the structure of the AsyncTask, let’s see how we can
use it for our counting example. Listing 15-11 shows the full and annotated code for
AsyncTask when used within MainActivity.

Listing 15-11. Full Code for MainActivity, Annotated and Explained

import android.os.AsyncTask

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.view.View

import kotlinx.android.synthetic.main.activity main.*

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener {

Worker().execute() o
}
}
inner class Worker : AsyncTask<Void, String, Boolean>() { 2]
override fun doInBackground(vararg po: Void?) : Boolean {
for (i in 1..20) {
publishProgress(i.toString()) (3]
Thread.sleep(2000) o
}
return true
}
override fun onProgressUpdate(vararg values: String?) {
textView.text = values[0] (5]
}

359

CHAPTER 15 RUNNING IN THE BACKGROUND

override fun onPostExecute(result: Boolean?) {
println(result)
}
}
}

@ Create an instance of Worker, then execute it.

® Define an AsyncTask as an inner class, so we can refer to the View objects of the enclosing
MainActivity. The type parameters are explained below.

a. Void. | don’t really need to pass anything to the AsyncTask, so, Void.

b. String. The onProgressUpdate method will update the TextView. Since we’ll use this
second Type to update the value TextView, String seems like a good choice.

c. Boolean. When we’re done with doInBackground, we want to set a status to indicate
failure or success; Boolean seems to be good choice for that.

® Let’s tell the user what the current value of /is. The onProgressUpdate takes a String
argument; that’s why we’re converting /to an Int.

® This simulates a length operation.

® Now that were in the Ul Thread, we can safely set the fext attribute of TextView to the current
value of /. We only passed one parameter from publishProgress, so if we want to get that, it’s
the Oth element of the values parameter.

The AsyncTask, like the Handler and the Thread classes, will free up the Ul thread.
When you run this, the app purrs at a smooth 60 FPS.

Anko’s doAsync

Anko is an Android library written in Kotlin by JetBrains (the same company that
created Kotlin). You can use it for a wide variety of tasks, but for our purpose, we only
need the doAsync portion. As its name implies, Anko’s doAsync will let us run codes
asynchronously or in the background.

Before you can use Anko, you need to add it to the dependencies of the project’s
Gradle file, as shown in Listing 15-12.

360

CHAPTER 15 RUNNING IN THE BACKGROUND
Listing 15-12. /app/build.gradle

dependencies {

implementation 'org.jetbrains.anko:anko-common:0.9'

}

The syntax for using doAsync is shown in Listing 15-13.

Listing 15-13. Syntax for doAsync

doAsync {
// do things in the background @@
}

(1] In here, you can read or write to large files, download a file from the internet, or do a task
that will take a long time to complete. This block will execute in a background thread.

The next challenge is how to go back to the UI Thread. Remember that a background
thread is not allowed to change anything in the UIL. Anko’s approach is probably the
simplest of all the other options we've discussed in the previous sections. Listing 15-14
shows a sample code on how doAsync runs code in the background and how it gets back
to the Ul thread.

Listing 15-14. doAsync and activityUiThread

doAsync {
// do things in the background @@
activityUiThread {
// make changes to the UI (2]
textView.text = "Hello"

® Background processing.

® Now, you're back to the Ul Thread. It’s that simple. Whenever you need to go back to the Ul
Thread, you can do it inside the activityUiThreadblock.

361

CHAPTER 15 RUNNING IN THE BACKGROUND

Listing 15-15 shows the full code example for MainActivity. It uses Anko’s doAsync to
perform a long computation and then write something back to the UL

Listing 15-15. Full Code for MainActivity Using doAsync, Annotated and Explained

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import kotlinx.android.synthetic.main.activity main.*
import org.jetbrains.anko.activityUiThread

import org.jetbrains.anko.doAsync

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener { (1]
doAsync {

for(i in 1..15) { 2]

Thread.sleep(2000) ©

activityUiThread {
textView.text = i.toString() @

® Let’s set up a basic OnClickListener. This will trigger the background task.
® Let’s just count from 1 to 15.

® This simulates a long running task. Our loop will come around 15 times, so the task will take a
total of 30 seconds to complete.

® |Let’s tell the user what’s going on with the app. Update the TextView object with the current
value of /.

362

CHAPTER 15 RUNNING IN THE BACKGROUND

The doAsync, like the Thread, Handler, and AsyncTask examples before it, should
perform equally well. When you run this code, the app will run smoothly at 60 FPS.

You've seen four low-level techniques to execute tasks in the background. Hopefully
the code examples gave you enough ideas to continue on your own.

A Real-World Example

Before we close the chapter, let’s work on something that you might actually use in your
projects. Let’s pull some user info from GitHub using their public API. GitHub allows
anyone access to https://api.github.com/users/<usernames. If you have a GitHub
account, try calling this URL using you GitHub login so you can be familiar with what it
returns. Listing 15-16 shows a partial output of the HTTP call using my own GitHub id
(tedhagos).

Listing 15-16. Sample JSON Response from GitHub API

{
"login": "tedhagos",
"id": 1287584,
"node_id": "MDQ6VXN1lcjEyODc10DQ=",
"avatar_url": "https://avatarsi.githubusercontent.com/u/1287584?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tedhagos”,
"html_url": "https://github.com/tedhagos",
"followers url": "https://api.github.com/users/tedhagos/followers",
"following url": "https://api.github.com/users/tedhagos/following{/other_
user}",
"gists url": "https://api.github.com/users/tedhagos/gists{/gist_id}",
"starred url": "https://api.github.com/users/tedhagos/starred{/owner}{/
repo}"”,
"subscriptions_url": "https://api.github.com/users/tedhagos/
subscriptions”,
"organizations_url": "https://api.github.com/users/tedhagos/orgs",
"repos_url": "https://api.github.com/users/tedhagos/repos",
"events url": "https://api.github.com/users/tedhagos/events{/privacy}",

363

https://api.github.com/users/<username>

CHAPTER 15 RUNNING IN THE BACKGROUND

"received _events url": "https://api.github.com/users/tedhagos/received
events",

"type": "User",

"site_admin": false,

"name": "Ted Hagos",

"company": null,

"blog": "https://workingdev.net",

"location": null,

"email": null,

"hireable": null,

"bio": "Currently CTO and Data Protection Officer of RenditionDigital
International. Sometimes a writer and tech trainer."

What we'd like to do is as follows:

1. Prompt the user to input a GitHub account; it’s the login id. We'll
use the hint attribute of the EditText to tell the user what to input.

2. Compose the HTTP request using the login id we got from the
user. We can DIY our approach to this by using low-level java.net
classes, but that will distract us from the main topic, so we’ll use
OkHttp. It’s a third-party library, but it’s very easy to use—and,
most importantly, easy to understand.

3. Make an HTTP call to GitHub API and run it in a background
thread. We’ll use Anko’s doAsync for this project. It’s the easiest to
use. Don’t you think?

4. The HTTP call returns a JSON object, as you can see from Listing
15-16. We'll parse the JSON message and get only the value of the
name property.

5. We'll go back to Ul thread by using the method activityUiThread,
and there, we’ll update the textView with the value of the name
property (the one we got from the JSON object).

364

CHAPTER 15 RUNNING IN THE BACKGROUND

Table 15-1 shows the details of the demo project.

Table 15-1. Project Details

Project Detail

Value

Application name
Company domain
Kotlin support
Form factor
minimum SDK
Type of activity
Activity name
Layout name

Backwards compatibility

CH15GetGitHublnfo

use your website name
Yes

Phone and Tablet only
APl 23 Marshmallow
Empty

MainActivity
activity_main

Yes. AppCompat

A screenshot of the Ul is shown in Figure 15-2. We'll use an EditText to take the user’s
input and we’ll use a TextView to display the name attribute of the returned JSON file.

CH15GetGitHublnfo

Name <---7

id: txtsearchuser

T

TextView « --——————__

id: txtusername
textSize: 30sp

T

id: button

Figure 15-2. UI for CH15GetGitHublInfo

365

CHAPTER 15 RUNNING IN THE BACKGROUND

Listing 15-17 shows the full listing for activity_main.xml

Listing 15-17. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.
android.com/apk/res/android

xmlns:app=http://schemas.android.com/apk/res-auto

xmlns:tools=http://schemas.android.com/tools

android:layout width="match parent"

android:layout _height="match_parent"

tools:context=".MainActivity"

tools:layout editor absoluteY="81dp">

<Button
android:id="@+id/button"
android:layout width="wrap_content"
android:layout_height="wrap content"

android:layout marginTop="8dp"

android:text="Button"

app:layout_constraintStart_toStartOf="@+id/txtusername"

app:layout_constraintTop_toBottomOf="@+id/txtusername” />

<TextView
android:id="@+id/txtusername"
android:layout width="wrap content"
android:layout_height="wrap content"
android:layout marginTop="8dp"
android:text="TextView"
android:textSize="30sp"
app:layout constraintStart toStartOf="@+id/txtsearchuser"
app:layout_constraintTop_toBottomOf="@+id/txtsearchuser" />

<EditText
android:id="@+id/txtsearchuser”
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout marginStart="31dp"

366

CHAPTER 15 RUNNING IN THE BACKGROUND

android:layout_marginTop="30dp"

android:ems="10"

android:inputType="textPersonName"

android:text="Name"

app:layout constraintStart toStartOf="parent"

app:layout _constraintTop_ toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

Before you can use OkHttp and the Anko library, you need to add their dependencies
to the project’s module level gradle file. Listing 15-18 shows what you need to add to the
dependencies section of /app/build.gradle.

Listing 15-18. Add OkHttp and Anko to /app/build.gradle

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin version"
implementation 'com.android.support:appcompat-v7:28.0.0-alpha3’
implementation 'com.android.support.constraint:constraint-layout:1.1.2"
testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-
core:3.0.2'
implementation 'com.squareup.okhttp:okhttp:2.5.0' @
implementation 'org.jetbrains.anko:anko-common:0.9' @

® You need to add this in order to use OkHttp.

® You need to add this so you can use Anko’s doAsync.

After you've added Anko and OkHttp in the gradle file, you have to sync the file.
Click the “Sync Now” link, which is in the upper-right corner of the screen, as shown in
Figure 15-3.

367

CHAPTER 15 RUNNING IN THE BACKGROUND

Ll ™S

Gradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly. ' Sync Now
apply alug!n: ‘com.android.application’ ‘
apply plugin: ‘kotlin-android’ \- -
ajgly plugin: 'kotlin-android-extensions’

android {
L compileSdkVersion 28 ’
J defaultConfig {
applicationld “net.workingde .iM.S ti'th binfo"
"‘ i i net.workin v getgithubinfo "
Figure 15-3. Sync the gradle file after making your edits

The OkHttp website has a sample code that shows the basic usage—it’s shown in
Listing 15-19. It’s in Java, but it’s easy to adapt it for our use.

Listing 15-19. Sample Code from http://square.github.io/okhttp/
OkHttpClient client = new OkHttpClient();

String run(String url) throws IOException {
Request request = new Request.Builder()
.url(url)
.build();

Response response = client.newCall(request).execute();
return response.body().string();

}

Listing 15-20 shows our Kotlin version of OkHttp’s code sample.

Listing 15-20. Our Kotlin Version of OkHttp Code

private fun fetchGitHubInfo(login id: String): String {
val url = https://api.github.com/users/$login_id
val client = OkHttpClient()
val request = Request.Builder().url(url).build()
val response = client.newCall(request).execute()
val bodystr = response.body().string() // this can be consumed only once

return bodystr

368

http://square.github.io/okhttp/

CHAPTER 15 RUNNING IN THE BACKGROUND

That'’s close enough. By the way, I hope you noticed the second to the last line of
Listing 15-20—I even commented it. When you call response.body.string, you can
consume it only once, so you can’t make calls like this:

println(response.body.string()) // consumes the content
val bodystr = response.body().string(). // no more JSON file here

The response.body.string call is not idempotent. You can’t make repetated calls to it
and expect that it will return the same results on each call.

Now that we’ve got everything we need, it’s time to code the MainActivity.
Listing 15-21 shows the full and annotated code for MainActivity.

Listing 15-21. MainActivity, Annotated and Explained

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import com.squareup.okhttp.OkHttpClient

import com.squareup.okhttp.Request

import kotlinx.android.synthetic.main.activity main.*
import org.jetbrains.anko.activityUiThread

import org.jetbrains.anko.doAsync

import org.json.JSONObject

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener {

doAsync { o
val mgithubinfo = fetchGitHubInfo(txtsearchuser.text.toString()) @
val jsonreader = JSONObject(mgithubinfo) ©

activityUiThread {

CUN)

txtusername.text = jsonreader.getString("name"
}
}
}
}

369

CHAPTER 15 RUNNING IN THE BACKGROUND

private fun fetchGitHubInfo(login id: String): String {
val url = "https://api.github.com/users/$login_id"
val client = OkHttpClient()
val request = Request.Builder().url(url).build()
val response = client.newCall(request).execute()
val bodystr = response.body().string() // this can be consumed only once

return bodystr

}

override fun onResume() {
super.onResume()

txtsearchuser.setText("")
txtsearchuser.setHint("Enter GitHub username")
}
}

® Anko’s doAsync block starts here. Everything inside this block will run in a background thread.

® Let’s pass the current value of the txtsearchuser EditText to fetchGitHublnfo and assign the
resulting JSON object to the mgithubinfo variable.

® Let’s parse mgithubinfo with the built-in JSONObject.

@

Now we need to go to back to the Ul thread so we can write the result of the http call to the Ul.

® The activityUiThread block lets us come back to the Ul thread and make some changes.
We're setting the text attribute of txtusername to the name property of the JSON file.

One more thing to do before we can run the app: we need the add the INTERNET
permission to the manifest file.

Listing 15-22. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.workingdev.ch1i5getgithubinfo">
<uses-permission android:name="android.permission.INTERNET"/> @

370

CHAPTER 15 RUNNING IN THE BACKGROUND

<application

</application>=
</manifest>

©® You should add this to the project’s AndroidManifest file.

Figure 15-4 shows the running application.

e
©
CH15GetGitHublnfo
o
tedhagos @
Ted Hagos o
BUTTON
0]
g AR, it

Figure 15-4. CHI15GetGitHublInfo on an emulator

Chapter Summary

e Whatis jank? When you try to do too much on the Ul Thread, the
Android runtime will start dropping frames. When your app’s FPS
drops, the UI will stutter, it will be sluggish and annoying to use. This
is jank.

o Howdo we avoid it? Don’t try to do too much on Ul Thread. Don’t:
e Read from a large file, or write a large amount of info to a file.
¢ Connect to the network and read from it (or write).

o Compute a complex routine Do these things in background
thread.

e Whatis the UI Thread? It’s the original Thread that’s responsible
for creating (and modifying) View elements in your app. Some
developers refer to Ul Thread as the “Main Thread.

371

CHAPTER 15 RUNNING IN THE BACKGROUND

o Whatis a background thread? Any thread that isn’t the UI Thread.
You generally create a background thread for your app.

o What are the ways to create a background thread? Java Threads,
Handlers, AsyncTask, and Anko’s doAsync

In the next chapter:
o We'll learn about the kinds of errors that devs face day-to-day.
o We'll also get some tips on how to avoid them.

o We will learn what to do if we get knee-deep in errors.

372

CHAPTER 16

Debugging

What we’ll cover:
e Kind of errors you will encounter
o Logging debug statements
o Walk through codes with the inteactive debugger

Very soon, you will outgrow the simple structure of the example codes presented
in this book. Your programs will grow in complexity, number of files, and number of
components. As that happens, the number of errors you will face will also grow; and they
might be harder to detect by then.

In this chapter, we’ll look at the three main types of errors you might encounter and
what kinds of tools or techniques could help cope.

Syntax Errors

Syntax errors are exactly what you thought they were: errors in the syntax. It happens
because you wrote something in the code that’s not allowed in the set-rules of the
Kotlin compiler. In other words, the compiler doesn’t understand it. This could be as
benign as forgetting the closing curly brace or closing parenthesis in an expression.

It can also be slightly more complex, such as passing the wrong type of argument to

a function or a parameterized class when using generics. In the early days of Android
development when all you had to work with the was the bare SDK, you can only know

if you have syntactic error when you try to compile your code—this is the reason why
other programmers also call this kind of error a “compile time” error. Of course, Android
development has come a long way since. We have a very competent IDE that can spot
and point out syntax errors even before you try to compile your code. It’s almost as if the
IDE is continuously reading the code and compiling it.

373
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_16

CHAPTER 16 DEBUGGING

Figure 16-1 shows a snippet of an inner AsyncTask subclass. The IDE draws your
attention to it by highlighting the offending code in red squiggly lines.

3 +import ... L
6

7 @ class MainActivity : AppCompatActivity() {

8

9 ef override fun onCreate(savedInstanceState: Bundle?) {

10 super.onCreate(savedInstanceState)

11 setContentView(R. layout.activity_main)

12 }

13

15 inner class Worker : AsyncTask<Void, Void, Void> {

16 - :
17 } This type has a constructor, and thus must be initialized here
18 }

I VSV SUGY SV
Figure 16-1. AsyncTask class, missing a constructor

Hover the mouse long enough in the area where the squiggly lines appear, and you
should see AS3’s balloon tips. It says the AsyncTask class has a type constructor that must
be initialized. To fix it, put the constructor call—a paired parentheses—next to the class
definition, as shown in Figure 16-2.

7 @ class MainActivity : AppCompatActivity() {

8

g ef override fun onCreate(savedInstanceState: Bundle?) {
10 super.onCreate(savedInstanceState)

11 setContentView(R. layout.activity_main)

12 }

13 :

14 e

15 inner class[Worker : AsyncTask<Void, Void, Void>{) {

;nd does Inot implement abstracﬁ base class member
:kage®/ abstract fun doinBackground(vararg p0: Void!): Void! defined in android.os.AsyncTask

)

Figure 16-2. AsyncTask class missing a mandatory implementation

The squiggly lines are disappearing one by one. That’s a good sign—it means we're
fixing the errors, but we're not done yet. Did you notice line 15 in Figure 16-2? We still
have an error. It says our class doesn’t implement a base class member. The AsyncTask
class is abstract; it declares the abstract method doInBackground. We have to override

374

CHAPTER 16 DEBUGGING

this method and write our implementation, unless we make class Worker an abstract
class also—that’s not our intention. Use Android Studio’s Quick Fix feature (option +
Enter in Mac, alt + Enter in Windows and Linux) to solve the problem, as shown in
Figure 16-2.

Figure 16-3 shows the Quick Fix in action. It’s offering some suggestions on how
we can fix it. The first option is what we want—to implement and override the abstract

member of AsyncTask.

14 Q
15 inner class Worker : AsyncTask<Void, Void, Void>() {
d does not implement abst I AGMCMUCUETE [
age*/ abstract fun doinBa ¥ Make 'Worker' abstract sk
?: ¥ « Suppress: Add @SuppressLint("StaticFieldLeak") annotation
' . Safe delete 'Worker' >
= Add Parcelable Implementation »
 Create test -
i Move to companion object >

M"‘WWNW

Figure 16-3. Quick fix on the AsyncTask class

Click OK. What follows next is the dialog window for implementing members,
as shown in Figure 16-4. AsyncTask only has one abstract member that needs to be
overridden by child classes. Choose doInBackground and click OK to proceed.

O O Implement Members

12
¥ (€ android.os.AsyncTask

dolnBackground(vararg p0: Void!): Void!

[l
¥«

R T U Y i T

Figure 16-4. Implement members

375

CHAPTER 16 DEBUGGING

Android Studio will give you a structural skeleton of the doInBackground function.
Now, you can write your implementation.

There will be times when the error isn’t very obvious, even with help of the squiggly
lines. Figure 16-5 shows you an example of this problem.

-

8 mm class Main2Activity : AppCompatActivity() { }
9
10 eof override fun onCreate(savedInstanceState: Bundle?) {
11 super.onCreate(savedInstanceState)
12 setContentView(R. layout.activity_main2)
14 button2.setOnClickListener { it: View!
15 Runnable {
16 for (i :Imt in 1..100) {
17 Thread.sleep(millis: 10@0)
18 runOnUiThread(
19 Runnable { !
20 textView2.setText(i.toString())
21 } '
22)
23 }
24 }
25 }
26 et
7 }

2 -
-D-mL.' R e PP P
-
Figure 16-5. Nested blocks

The code between lines 14 and 27 in Figure 16-5 shows a deeply nested block.
This can happen sometimes when you use anonymous objects, as you can see from
the structure of the example code.

376

CHAPTER 16 DEBUGGING

- -
0 > button2. setOnClickListener { it: View! 3
> BEres Runnable {
@ i % | for (i:imt in 1..100) {
§ v (SOredeScripts [y Thread.sleep(millis: 100¢)
5 (# build.gradle (Project! 15 runOnUiThread(
B (# build.gradle (Module 19 | Runnable {
L ##, gradle-wrapper.prop 2° textView2. setText(i.toString()) !
proguard-rules.pro () }
#igradle.properties (Pr 23 | }
(& settings.gradle (Proj 24
i1 local.properties (SDk 22
26 g
27 [l) i

Build em|

A |7 Q Build: build failed at 10/08/2018, 4:20 PM with 1 error 65 547ms org.gl_'aﬁl.e.a;_n'.tasks.TaskExecu:mn‘Excep‘:.ion:
R ild U Jted/AndroidStudioProjects/MyApplication E0me at java.util.concurrent.ThreadPoolExecutor.
B v o _L_m bukd ;Iusers ed/Android$ gt s g i Ee.350ms at java.util.concurrent.ThreadPoolExecutor$
A » @ Load build 4ms at java.lang.Thread, run{Thread. iava:745)
@ » @ Configure build 107ms Caused by: org.gradle.api.GradleException: C
s » @ Calculate task graph 338ms at org. jetbrains.kotlin.gradle. tasks. TasksU
x £ v Jeaeae miids prade s L
i Fur fanks .) be:S70ms at org. jetbrains.kotlin.gradle, tasks.Kotlin
¥ @ Kotlin compiler: (1 error) at org.jetbrains.kotlin.gradle. tasks.Kotli
v I [Users/ted/AndroidStudioProjects/MyApplication (1 error) + at org.jetbrains.kotlin.gradle.tasks.Abstr.
v appfﬂﬁ-auw (1 error) . 107 more
'E‘ v Loy P d/my lication/Main2Activity.kt (1 error)
+ @ Missing '}
2
z S e
Mh.’#‘m

Figure 16-6. Code with error

If you try to Make the project (from the main menu bar » Build » Make) the IDE
will give you more information, lots more, as you can see in Figure 16-6; but it may not
give you more insights. This is one of those situations where you really need to do the
heavy lifting. You have to inspect the code structure manually. Notice that the squiggly
line appears at the tail-end of class (line 27 in Figure 16-6) and the error message that
tells us we're missing a curly brace; start there and inspect the pairs of curly braces
manually. This problem has something to do with how we structure our codes. You just
need to be careful with those braces—Python programmers are probably gloating right
now saying, “That’s what you get for using braces, indentation rocks.”

Runtime Errors

Runtime errors happen when your code encounters a situation it doesn’t expect; and as
its name implies, that errant condition is something that appears only when the program
is running—it’s not something you or the compiler can see at the time of compilation.
Your code will compile without problems, but it may stop running when something

377

CHAPTER 16 DEBUGGING

in the runtime environment doesn’t agree with what your code wants to do. There are

many examples of these things, for example:

e The app gets something from the Internet—a picture or a file, etc.
—so it assumes that the Internet is available and there is network
connection. Always. Experience should tell you that isn’t always the
case. Network connections go down sometimes, and if you don’t
factor this in your code, it may crash.

o The app needs to read from a file. Just like our first case earlier, your
code assumes that the file will always be there. Sometimes, files get
corrupted and may become unreadable. This should also be factored
in the code.

e The app performs Math calculations. It uses values that are input by
users, and sometimes it also uses values that are derived from other
calculations. If your code happens to perform a division and in one
of those divisions the divisor is zero, that will also cause a runtime
problem.

Here are some code samples that may look okay at first glance—and will compile—
but when it encounters a condition in the runtime that it’s not prepared for, you will get
runtime error.

Listing 16-1 shows the basic code for opening a file and reading its contents to a
String variable. If the code tries to open a file that exists, there’s no problem—the code
will work fine and as expected. The problem will come if it tries to open a file that isn’t

there or is unreadable for some reason.

Listing 16-1. Possible FileNotFoundException or Other IOException

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener {
openFile("doesnotexist.txt")

378

CHAPTER 16 DEBUGGING

private fun openFile(file: String) {
val strFile = File(file).readText()

}

Listing 16-2 may look contrived, but imagine if you were getting the input from a user
or you're reading the inputs from somewhere else and the divisor becomes zero. You will
encounter an ArithmeticException error.

Listing 16-2. Possible ArithmeticException

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener {
divide(10, 0)
}
}

private fun divide(a:Int, b:Int) : {
return a / b

By the way, the ArithmeticException is thrown only for Integer values. It doesn’t
happen for Floats and Doubles. If you try to divide a Float number by zero, it will just
yield an Infinity value, but it won’t throw an exception.

Another example of a code that will encounter a runtime problem is shown in
Listing 16-3. It looks contrived right now because you can obviously see that there’s no
fifth element of the array. But imagine if you're reading the array from an API (you didn’t
create the array, somebody else did) and you’re not using Integer literals to access the
array; instead you're using variables. The error won’t be so obvious by then.

Listing 16-3. ArrayIndexOutOfBounds Exception

val arr = array0f(1,2,3,4)
println(arr[5])

379

CHAPTER 16 DEBUGGING

The only way to address runtime errors is to:

1. Know your code. You need to know what calls may encounter a
runtime exception; and

2. Use proper exception handling in your codes.

Like Java, Kotlin also uses the try-catch structure for handling exceptions; but unlike
Java, all of Kotlin’s exceptions are unchecked. Exception handling is effectively optional
in Kotlin—throws isn’t even a keyword in Kotlin, but the throw keyword still is. This may
be a good or a bad thing, depending on how you look at it; and there’s a lively discussion
about this topic on popular coding forums. The opinion of the Kotlin team regarding
checked exceptions can be found on the Kotlin docs online (https://kotlinlang.org/
docs/reference/exceptions.html).

According to the Kotlin team, Kotlin is aimed at large development projects,
and there is little evidence that using checked Exceptions contributes to developer
productivity; quite the contrary, it lessens it.

Exception handling in Kotlin is, for the most part, exactly like the way you would do it
in Java. You can do it with a try-catch or try-catch-finally. In Java 7, the concept of
try-with-resources was introduced. Kotlin doesn’t have try-with-resources, but it does
have the use extension; it’s the equivalent of try-with-resources.

Just to jog our memories, the basic form of a try-catch block is shown in Listing 16-4.

Listing 16-4. The Try-Catch-Finally Structure

try {

... ©

}

catch(mexception: theException) { @
. ©

throw mexception @

}

finally {

. 0

380

https://kotlinlang.org/docs/reference/exceptions.html
https://kotlinlang.org/docs/reference/exceptions.html

CHAPTER 16 DEBUGGING

© This is the body of the try block. This is where you should write calls that may throw Exceptions.

® You have to provide, as much as possible, the exact type of Exception in the catch clause (e.g., if
you’re dealing with FileNotFoundException, then that is what you should write in here in place of
theException).

® This is the body of the catch clause. This is where you should write the things you want to do
when an exception happens (e.g., log to a file, ask the user repeat the input, etc.).

® Occasionally, you may not want to handle the Exception. You can throw it back to the caller of
the function (next level up the call-stack), and let it be their problem.

@ The body of the finally clause is where you put codes that you want to execute whether or not
an exception happens. The body of finally clause is guaranteed to be executed always.

Now, let’s see how we can use try-catch to prevent a crash when opening a file. See
Listing 16-5.

Listing 16-5. How to Handle the FileNotFoundException

private fun openFile(file: String) {

try { (1)

File(file).uselines {
println(it)

}

}

catch (fe: FileNotFoundException) { (2]
println("do your error handling here")

}

}

@ The File constructor can actually throw a FileNotFoundException, so we put them inside a
try-catch block.

® We know that FileNotFoundException can be thrown by File constructor, so that’s what we put
in the catch clause. If you want to match a more general type of Exception, you may also use
I0Exception in here. I0Exception is the parent class of FileNotFoundException.

381

CHAPTER 16 DEBUGGING

Listing 16-6 shows how to prevent a crash when working with Integer arithmetic.

Listing 16-6. How to Handle the ArithmeticException

private fun divideInt(a:Int, b:Int): Int {
var result = 0

try {
result = a /b

}
catch (ae: ArithmeticException) {
println("handle your exception here")
}
finally {
return result

Logic Errors

Logic errors are the hardest to find. As its name suggests, it’s an error on your logic.
When your code is not doing what you thought it should be doing, that’s logic error.
There are many ways to cope with it, but in this section, we’'ll take a look at two: printing
debugging statements in certain places of your code and code walkthrough using
breakpoints.

As you inspect your codes, you will recognize certain areas where you're pretty
sure what’s going on, and then there are areas where you are less sure—you can place
debugging statements in these areas. It’s like leaving breadcrumbs for you to follow.
There are a couple of ways to print debugging statements. You can either use println,
Log, or the Logger class in Java.

Figure 16-7 shows the output of a println statement in Logcat tool window.

382

CHAPTER 16 DEBUGGING

I (E} build.;radle .'_\,-,QQL..: 28 private fun divideInt{a:Int, b:Int): Int {
= - 2 =
5 J1 gradle-wrapper.prog _ ::; _{ERSJ-!.!.S @
g # proguard-rules.pro (3, result = a /b
| R il gradle.properties (Pr 32 e esessersee ey
4] (2 settings.gradle (Proj 33 catch (ae: ArithmeticException) {
e Ig v i 's:)l 34 println(“handle your exception here") -""""lh.
Ful WoCal.properties (5L 35 e »
§ 3 finally {
= A
a MainActivity * openFile()
® Logeat
PESTeRDw
il Emulator Nexus_S5X_API_23 ;\a com. nple.ted. pplicati a Verbose B

& 98-13 13:31:59.486 26166-26166/com.example. ted.myapplication I!S{;sTe?n:::t-:mandle your exception here

A a8 N et ot p B b ot sl I s N O,

Figure 16-7. printin as shown in the Logcat tool window

println is the simplest and the easiest thing you can do to print debugging
statements, but remember that you will only see these statements in Logcat if Logcat’s
mode is set to “verbose,” “info,” or “debug.” If you set the mode to anything else, like
warn, error, or assert, you won't see println statements.

When you set Logcat’s mode to verbose, info, or debug, you will see all the messages
that Android’s runtime generates. If you only want to see warn messages or errors, then
you need to use either the Log or the Logger class.

The Log class has five static methods; the usage is shown below.

Log.v(tag, message) // verbose
Log.d(tag, message) // debug
Log.i(tag, message) // info
Log.w(tag, message) // warning
Log.e(tag, message) // error

In each case, tag is a String literal or variable. You can use the tag for filtering the
messages in the Logcat window. The message is also String literal or variable, which
contains what you actually want to see in the log. Listing 16-7 shows a sample code on
how to use the Log class.

Listing 16-7. How to Use the Log Class
val TAG = this@MainActivity::class.toString() ©

private fun divideInt(a:Int, b:Int): Int {
var result = 0

try {

383

CHAPTER 16 DEBUGGING

Log.d(TAG, "Inside the try") (2]
result = a /b
}
catch (ae: ArithmeticException) {
Log.w(TAG, "Sample log message") (3)
}
finally {
return result

@ You can define the TAG anywhere in the class, but in this example, it’s defined as class
property.

® We're printing a DEBUG message.

® We're printing a WARN message.

Alternatively, we can also use the Logger class from Java; as shown in Listing 16-8.

Listing 16-8. How to Use the Logger Class
val Log = Logger.getlLogger(MainActivity::class.java.name)

private fun divideInt(a:Int, b:Int): Int {
var result = 0

try {
Log.info("inside try")
result = a /b
}

catch (ae: ArithmeticException) {
Log.warning("Sample log message")
println("handle your exception here")
}
finally {
return result

384

CHAPTER 16 DEBUGGING

When you run your app, you can see the Log messages in the Logcat tool window.
You can launch it either by clicking its tab in the menu strip at the bottom of the AS3
window or from the main menu bar, View » Tool Windows » Logcat. Figure 16-8
shows the Logcat Tool Window.

private fun divideInt(a:Int, b:Int): Int {
var result = @
try {
Fid Log.d(TAG, "Inside the try")
Log. info(msg: "inside try")
result = a /b
}
catch (ae: ArithmeticException) {
4 I/ Log.w(TAG, "Sample log message")
42 Log.warning(msg: "Sample log message")
43 printin{"handle your exception here")

Ww W www
~ AN B WK

bW W

44 }

45 finally {

46 return result
47 }

48 }
MainActivity > val Log
Logeat

i Emulator Nexus_5X_AP|_23 AB ccm.example.ted.myapgiication Info B

B ©08-13 14:45:59.609 27700-27700/com.example.ted.myapplication I/MainActivity: inside try
©08-13 14:45:59.609 2770@-27700/com.example.ted.myapplication W/MainActivity: Sample log message
% ©8-13 14:45:59.609 2770€-2770@/com.example.ted.myapplication I/System.out: handle your exception here

T D I At I B e B R I kB bt P A e DB

Figure 16-8. Logcat Tool Window

Walking Through Code

AS3 includes an interactive debugger that allows you to walk and step through your code
as it runs. With the interactive debugger, we can inspect snapshots of the application—
values of variables, running threads, etc.—at specific locations in the code and at specific
points in time. These specific locations in the code are called breakpoints; you get to
choose these breakpoints.

To set a breakpoint, choose a line that has an executable statement, then click its line
number in the gutter. When you set a breakpoint, there will be a pink circle icon in the
gutter, and the whole line is lit in pink, as shown in Figure 16-9.

385

CHAPTER 16 DEBUGGING

E .;- Android * @ 5 | #- |- gy activity_ mainxmi ¢ MainActivity.kt s 2ctivity_main2.xml :‘app :KMaEnZAQ
- app 2
Ny int // val TAG = thisgMa lass.toString()
: L G_:a::l:{;':;e e ul Loq = Logqer get Loqqertﬂainhctinty :class. java.name) Log: Log
4 (e g Froject: MyApphcation
(& build.gradle (Module: app of override fun onCreate(savedInstanceState: Bundle?) {
g | gradle-wrapper.properties (Gradle super.onCreate(savedInstanceState)
E - &k setContentView(R. layout.activity_main)
-] # proguard-rules.pro (ProGuarc
w o
1 k'l button.setOnClickListener { it: View
-+ | (s @ divideInt(= 10, b: @)
. ,||00 .:; wpenFile doesnotexist. txt")
3 }
5 }
W private fun divideFloat(a:Float, b:Float) : Float {
return a / b
rivate fun divideInt(a:Int, b:Int): Int { a: 10 b: @
r @
- try {
I .d(TAG, "Inside the try")
Im nfnf men: "incides trv™)
MainActivity divideint()

. Debug T3 app
: p'Donquef [Elconsoe b= ¥ % w A b R
g: h Frames +* = Variables
| | T T
hl |E-m;n-@3g?3 B + Y t, > = this = { Activity@4388}

pa=10
3I 3 dmdolnt 34, M.smActmty (com exa b =0

lick:2 inActivity$onCreate$1
M‘- bt ad e

Debugger toolbar

Figure 16-9. Debugger window

After the breakpoints are set, you have to to run the app in debug mode. Stop the app
if it is currently running, then from the main menu bar, click Run » Debug App.

Note Running the app in debug mode isn’t the only way to debug the app. You
can also attach the debugger process in a currently running application. There are
situations where this second technique is useful—for example, when the bug you
are trying to solve occurs on very specific conditions, you may want to run the app
for a while, and when you think you are close to the point of error, you can then
attach the debugger.

Use the application as usual. When the execution comes to a line where you set a
breakpoint, the line turns from pink to blue. This is how you know code execution is at
your breakpoint. At this point, the debugger window opens, the execution stops, and AS3

386

CHAPTER 16 DEBUGGING

gets into interactive debugging mode. While you are here, the state of the application
is displayed in the Debug tool window. During this time, you can inspect values of
variables and even see the threads running in the app.

You can even add variables or expression in the Watch window by clicking the plus
sign with the spectacles icon. There will be a text field where you can enter any valid
expression. When you press Enter, Android Studio will evaluate the expression and
show you the result. To remove a watch expression, select the expression and click the
minus sign icon on the watch window.

To resume program execution, you can click the “Resume program” button at the
top of the debugger toolbar—it’s the green arrow pointing to the right. Alternatively, you
can also resume the program from the main menu bar, Run » Resume Program. If you
want to halt the program before it finishes naturally, you can click the “Stop app” button
on the debugger toolbar—it’s the red square icon. Alternatively, you can do this also from

the main menu bar, Run » Stop app

Other Notes

In the early days of Android development, when there were no IDEs yet, developers
used a tool called “adb,” which is short for Android Debug Bridge. It’s a nifty command-
line tool that lets you communicate with Android devices (virtual or real). It lets you do

things like:
o install apps
e debugapps

e gets you access to shell terminal; Remember that Android is based
on Linux, having access to a terminal can be very handy (e.g., when
you’re doing some white-box testing on a sqlite database, etc.).

Android Studio has taken over some of the things that adb used to do (e.g.,
displaying logs, installing apps, debugging apps, etc.). But, if you need to do things at
a linux command line level, you really have to use adb—you can find this tool in the
ANDROID_HOME/sdk/platform-tools folder; where ANDROID_HOME is the folder
where you installed the Android SDK.

Another tool we didn’t cover in this chapter is the Android Profiler, it's new in
Android Studio 3.0. It replaced a tool called Android Device Monitor. You can use this

387

CHAPTER 16 DEBUGGING

tool to look at your app’s real-time data. You can find out how much CPU, memory,

network, and I/0 resources your app consumes. You can capture heap dumps, view

memory allocations, and inspect the details of network-transmitted files.

Chapter Summary

388

The three kinds of errors you may encounter are compile type or

syntax errors, runtime errors, and logic errors.

Syntax errors are the easiest to fix. Android Studio itself bends over
backward for you so you can quickly spot syntax errors. There are
various ways to fix syntax errors with AS3, but most of the time, the
Quick Fix should do it.

Kotlin doesn’t have checked Exceptions like Java does. The Kotlin
team has good reasons for doing this. If you're a beginner in Kotlin
but quite an old hat in Java, then this shouldn’t affect you—use

your knowledge of the old Java APIs when dealing with possible
exceptions. If you're a newcomer to both Kotlin and Java, you should
invest a little bit more time in learning about unit testing; that way,
you get to see the “happy path” and the “not-so-happy path” of your
apps; then you can act accordingly.

Logic errors are the toughest to find, but Android Studio makes this
activity more bearable because of the tools available for us—you can
literally walk through the code and inspect things while the program

is running.

In the next chapter, we’ll look at the following:

How to save data using SharedPreferences.

We’ll work with the Bundle object so we can save some basic types
into a file.

We'll also look at how we can pass data around among Activities.

CHAPTER 17

SharedPreferences

What we’ll cover:
o Introduction to SharedPreferences
e How to put and get data from a preferences file
o How to share a preferences file between Activities

Android apps do not persist your data by default. It’s your responsibility to make
the data durable and resilient throughout the app’s life cycle. Let’s say you're collecting
data from the user, then midway into your workflow, the application gets interrupted by
another app. There is no guarantee that whatever data the user has already input will be
there when your app comes back.

Making data durable means storing data in one form or another. You can store data
in a couple of ways. They're listed below:

o SharedPreferences. This is the simplest option. It’s just a dictionary
object, it uses the familiar key-value pair mechanics. This is useful
if your data is simple enough to be structured as a key-value pair.
Android stores these files internally as XML files. You can only store
simple data types, like String and basic types. This is usually used for
storing user’s preferences like sort order on a list, the last page you
were reading on an ebook application, etc.

« Internal or external storage. Uses the internal or media storage in
the device (e.g., sdcard). You can use this to store data that has more
complexity in structure (e.g., audio or video files). If you worked with
File I/0 before, this is no different from that.

389
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_17

CHAPTER 17 SHAREDPREFERENCES

e SQLite database. This one uses a relational database. If you have
worked with other databases before like MS SQL server, MySQL,
PostgreSQL, or any other relational database, this is essentially the
same. Data is stored in tables, and you need to use SQL statements to
create, read, update, and delete data.

o Network Storage. If you can assume that your users will always
have internet access and you have a database server that is hosted
on the Internet, then you can use this option. This setup can get
a bit complicated because you will need to host the database
somewhere (Amazon, Google, any other cloud provider), provide a
REST interface for the data, and use an HTTP library as a client in the
Android app. We won'’t cover this topic in this book.

e ContentProviders. Content Provider is another component on
the Android platform; it’s right up there with Activities, Services,
and BroadcastReceivers. This component makes data available to
applications other than itself. Think of it like a database that has
public HTTP API layer. Any application that communicates over
HTTP can read and write data to it. By the way, ContentProviders use
SQLite databases internally—they just wrap and serve the data in
neat HTTP APL. If you've worked on RESTful apps that expose some
underlying data via AP], this is kinda like that.

In this chapter, we’ll take a look at SharedPreferences.

A SharedPreferences object lets you store and retrieve data in the form of key-value
pairs, like a dictionary. It uses XML files for storage. Using a SharedPreferences object to
store basic data can be done with the following steps:

1. Get SharedPreferences object. You can do this by calling the
getPreferences method from within an Activity.

2. Next, we get a SharedPrefences.Editor object by using a factory
method of the SharedPreferences object.

3. Now we can insert data with the editor object.

4. Finally, to store the data permanently, we use either the commit
or apply method on the editor.

390

CHAPTER 17 SHAREDPREFERENCES

Listing 17-1 shows how all these look in code.

Listing 17-1. Basic Steps to Save Data

val pref = getPreferences(Context.MODE_PRIVATE) @
val editor = pref.edit() @

editor.putString("lastname", "Breslav") ©
editor.putString("firstname", "Andrey")
editor.apply() @

@ The Activity.getPreferences method gives us a SharedPreferences object that’s private to the
Activity. We’re using the Context.MODE_PRIVATE because we’d like the preferences file to
allow access only to our app—other apps are off limits.

® We need a SharedPreferences.Editor object, we can get it by calling edit method on a
SharedPreferences object.

® Now, we can use the various putXXX methods to store key-value pairs. The first parameter is
the key, this should be a String. The second parameter can be any of the basic types like Int,
Float, Double, String, etc.

® None of our putString calls will be stored permanently to a file if we don’t call apply.
Alternatively you can also call commit. The apply method saves the data asynchronously, while
commit does it synchronously. So, to persist the data, call either apply or commit.

In case you're wondering about the other Context mode options, here they are.

e MODE_PRIVATE: the default mode, where the created file can only
be accessed by the calling application. This is probably what you

want most of the time.

e MODE_WORLD_READABLE: Any application can read the
preference data. This may cause security holes in applications.
Unless you have a very good reason, stay away from this. If you want
to make the data available to any application, consider building a
ContentProvider instead.

391

CHAPTER 17 SHAREDPREFERENCES

e MODE_WORLD_WRITEABLE: Any application can edit the
preference data. This may cause security holes in applications. Again,
unless you have a good reason, stay away from this.

o« MODE_APPEND: This will append the new preferences with the
already existing preferences.

Let’s make a small demo project for this. Table 17-1 shows the details for the project.

Table 17-1. Details for the Demo Project

Project Detail Value

Application name CH17Preferences
Company domain use your website name
Kotlin support Yes

Form factor Phone and tablet only
Minimum SDK API 23 Marshmallow
Type of activity Empty

Activity name MainActivity

Layout name activity_main

What we want to do:

1. Letthe user input his lastname and firstname—we’ll use two
EditTexts for this.

2. When the user clicks the “Save” button, we'll store the lastname
and firstname to the preferences file.

3. When the user clicks the “Load” button, we'll read the lastname
and firstname from the preferences file.

4. We'll display them in a TextView object.

Figure 17-1 shows a screenshot of the running app.

392

CHAPTER 17 SHAREDPREFERENCES

CH17Preferences

{
TN

Figure 17-1. Snapshot of our project, running

Listing 17-2 contains the full code for the XML layout file, so you can see the
attribute settings of the View objects. Listing 17-3 shows the full and annotated code for
MainActivity.

Listing 17-2. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"2>
<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

<EditText
android:id="@+id/txtfirstname"
android:layout width="wrap content"
android:layout height="wrap_content"
android:layout_marginStart="16dp"
android:layout_marginTop="36dp"
android:ems="10"
android:inputType="textPersonName"

android:text="Name"

393

CHAPTER 17 SHAREDPREFERENCES

app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

<EditText

android:id="@+id/txtlastname"

android:layout width="wrap_content"
android:layout_height="wrap_content"

android:layout marginStart="16dp"

android:layout marginTop="16dp"

android:ems="10"

android:inputType="textPersonName"

android:text="Name"

app:layout constraintStart toStartOf="parent"
app:layout_constraintTop_ toBottomOf="@+id/txtfirstname" />

<TextView

android:id="@+id/txtoutput"

android:layout width="wrap_content"
android:layout_height="wrap content"
android:layout marginBottom="183dp"
android:layout marginStart="16dp"
android:text="TextView"

android:textSize="36sp"

app:layout constraintBottom toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent" />

<Button

android:id="@+id/btnsave"

android:layout width="wrap_content"
android:layout_height="wrap_content"

android:layout marginStart="16dp"

android:text="save"

app:layout_constraintBaseline toBaselineOf="@+id/btnload"
app:layout constraintStart toStartOf="parent" />

<Button

394

android:id="@+id/btnload"

CHAPTER 17 SHAREDPREFERENCES

android:layout width="wrap_content"

android:layout_height="wrap_content"

android:layout _marginEnd="11dp"

android:layout _marginTop="27dp"

android:text="load"

app:layout_constraintEnd_toEndOf="@+id/txtlastname"

app:layout_constraintTop toBottomOf="@+id/txtlastname" />
</android.support.constraint.ConstraintLayout>

Listing 17-3. MainActivity, Annotated

import android.content.Context

import android.content.SharedPreferences

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.widget.Toast

import kotlinx.android.synthetic.main.activity main.*

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

val pref = getPreferences(Context.MODE_PRIVATE) 1]

btnsave.setOnClickListener {
val editor = pref.edit()

editor.putString("lastname", txtlastname.text.toString()) (3]
editor.putString("firstname", txtfirstname.text.toString())
editor.apply() (4]
Toast.makeText(this, "Saved data", Toast.LENGTH LONG).show()

}

btnload.setOnClickListener {
val mlastname = pref.getString("lastname", "") (5]

val mfirstname = pref.getString("firstname", "")

395

CHAPTER 17 SHAREDPREFERENCES

val moutput = "$mfirstname $mlastname’

txtoutput.text = moutput

}
}

override fun onResume() { (6}
super.onResume()

txtfirstname.setText("")
txtlastname.setText("")
txtfirstname.setHint("first name")
txtlastname.setHint("last name")

txtoutput.setText("")

Get a SharedPreferences object.
Get a SharedPreferences.Editor object.
Save the runtime value of the EditText (txtlastname); let’s use “lastname” as key.

Save the data asynchronously by calling apply instead of commit.

®© ©6 © ®© ©

We’re inside the “Load” button listener now. Let’s get the value of the “lastname” key and save
it to a temporary variable.

()

Concatenates the lastname and firstname variables

N

Sets the text attribute of the TextView (txtoutput) to the concatenated lastname and firstname

O Inside the onResume callback, we initialized the text attributes of txtlastname, txtfirstname, and
txtoutput. We also set the hint attributes of the textfields.

Android will create an XML file to store the preference, and it will be named after the
Activity that created it; in our case, it's MainActivity.

If you want to inspect the file, you can download it using the Device File Explorer
(it used to be called Android Device Monitor). Go to the main menu bar, then View »
Tool Windows » Device File Explorer. You should see a screen similar to Figure 17-2.

396

CHAPTER 17 SHAREDPREFERENCES

fx MainActivity.kt Device File Explorer
.workingdev.chl7preferences [#8 Emulator Nexus_5X_API_23 Android 6.0, API 23
oid.content.Context Name | Permissions | Date

oid.content.SharedPreferences » B net.workingdev.ch15scratchasynct drwxr-x--x 2018-07-3115:50
0id.support.v7.app.AppCompatActivity

dd. 65, Bundle ¥ Im net.workingdev.ch17preferences drwxr-x--x 2018-08-14 201
oid.widget.Toast » Bm cache drwxrwx--x 2018-08-13 17:04
inx.android.synthetic.main.activity_mair » Bm code_cache drwxrwx--x 2018-08-13 17:04
v [shared_prefs drwxrwx--x 2018-08-14 20:1
MainActivity.xml 2018-08-14 20:1E
fun onCreate(savedInstanceState: Bundlei » B net.workingdev.kotlin_intentextra drwxr-x--x 2018-07-17 22:13
nCreate(savedInstanceState) » net.workingdev.kotlin_launchanott drwxr-x--x 2018-07-16 20:10
entView(R.layout.activity_main) » B net.workingdev.kotlin_oncreateopt drwxr-x--x 2018-07-14 19:32
B drm drwxrwx--- 2018-07-09 15:19
B local drwxr-x--x 2018-07-09 15:19
.setOnClickListener { it:View! b= lost+found drwxrwx--- 1970-01-01 08:00
ditor :SharedPreferences.Editor! = pref,edit| ;

PPN A ﬁpﬂa drwxrw;--- B :

Figure 17-2. MainActivity.xml file in Device File Explorer

ctivity : AppCompatActivity() {

f :SharedPreferences! = getPreferences(Con]

yYvy¥yYyyewy

Next, drill down to data » data » fullyQualifiedNameOfProject (which in my case
is net.workingdev.ch17preferences; substitute your own project name); then, drill down
further to shared_prefs » MainActivity.xml, as shown in Figure 17-2.

If you double-click the MainActivity.xml file, Android Studio will display its contents
in the main editor. Alternatively, you can also download it to your PC. Use the context-
sensitive menu (right-click) on MainActivity.xml, as shown in Figure 17-3, then “Save
As”” You can then open the XML file with your program editor.

» B net.workingdev.ch15scratchasynct drwxr-x--x 2018-07-31 15:50
v D net.workingdev.ch17preferences drwxr-x--x 2018-08-15 16:56

I cache drwxrwx--x 2018-08-15 16:56
Im code_cache drwxrwx--x 2018-08-15 16:56
v [shared_prefs drwxrwx--x 2018-08-15 16:57 1
& MainActivity.xml [=mwerweee. 9MA.NR-15 16:57
v B net.workingdev.kotlin_intente = Open 17 22:13
> Bu cache | ° SaveAs.. A0S SrEPHE
» Bm code_cache X Delete... B 172213
b net.workingdev.kotlin_launch -16 20:10
» Bm net.workingdev.kotlin_oncrea % Synchronize 14 19:32
> B drm [f Copy Path O'%C -0915:19
» Bmlocal drwxr-x--x 2018-07-09 15:19
» B lost+found drwxrwx--- 1970-01-01 08:00

A L RRNA et g n et QLR @20 [GPOGAORETI G

Figure 17-3. Save the XML file to a computer

397

CHAPTER 17 SHAREDPREFERENCES

Listing 17-4 shows the contents of the MainActivity.xml preferences file.

Listing 17-4. Contents of MainActivity.xml

<?xml version='1.0" encoding="utf-8"' standalone='yes' ?>
<map>

<string name="lastname">hagos</string>

<string name="firstname">ted</string>
</map>

Keep in mind that the preference file we created here can only be accessed by the
MainActivity class. If you need to share the preference file with other Activities in the
app, you need to create an application level preferences.

Sharing Data Between Activities

To make a preference file available to all Activities in app, we only need to make a minor
change in our code.

Listing 17-5. How to Create an Application Level Preferences File

val filename = "$packageName TESTFILE" (1]
val pref = getSharedPreferences(filename, Context.MODE_PRIVATE) @
val editor = pref.edit()

editor.putString("lastname", "Breslav")
editor.putString("firstname”, "Andrey")
editor.apply()

@ packageName is actually a call to getPackageName(). We’re just constructing a file name in
this line.

® This is the only change we need to make; instead of calling getPreferences, let’s use
getSharedPreferences. This function takes in two parameters. You already know the second
one, and it’s easy to guess what the first parameter is for. The first parameter specifies a
filename for the preferences file.

398

CHAPTER 17 SHAREDPREFERENCES

Actually, getPreferences (our example in the previous section) is just a wrapper call
to getSharedPreferences, the former simply passes the name of current Activity as the
first parameter to the latter.

To retrieve data from the shared preferences file, use the getSharedPreferences
again, specifying which file to read from, then use the getString methods, as shown in
Listing 17-6.

Listing 17-6. How to Read From an Application Preferences File

val pref = getSharedPreferences("$packageName TESTFILE", Context.MODE_
PRIVATE) ©

val mlastname = pref.getString("lastname”, "") @
val mfirstname = pref.getString("firstname", "")

© Get a SharedPreferences object. Specify the name of the preferences file by passing it as a the
first parameter.

® First parameter is the key; it’s the name of the preference to retrieve. The second parameter is
a default value, in case the key doesn’t exist.

Let’s do another small demo project for this. Table 17-2 shows the project details.

Table 17-2. Project Details

Project Detail Value

Application name CH17SharedPreferences
Company domain use your website name
Kotlin support Yes

Form factor Phone and Tablet only
Minimum SDK API 23 Marshmallow
Type of activity Empty

Activity name MainActivity

Layout name activity_main

399

CHAPTER 17 SHAREDPREFERENCES

What we want to do:

1. Letthe user input his lastname and firstname; we’ll use two
EditTexts for this.

2. When the user clicks the “Go to 2" Activity” button, we’ll create an
Intent that will launch “SecondActivity.”

3. Before MainActivity enters the paused state, we’ll save the
lastname and firstname data into the specified preferences file.

4. We'll display the “Click LOAD DATA” hint into a TextView, as the
SecondActivity comes to the user’s view.

5. Asthe “Load Data” button is clicked, we'll retrieve the preferences
file and display it as the text attribute of the TextView.

Figure 17-4 shows us a basic storyboard for our app.

CH17SharedPreferences CH17SharedPreferences

CH17SharedPreferences

Gosling
lick'LOAD DATA' ¢ .
L £ { JamesGosling
LOAD DATA z
GO TO 2ND ACTIVITY s it
! Main Activity (/ Second Activity\/‘/ «’\/ Second Activity \/\;

- - N ____~-

N ___-~-

Figure 17-4. Snapshot of our project, running

Listings 17-7 and 17-8 show the full codes for activity_main.xml and activity_second.
xml, so you can see the attributes of the View objects.

400

CHAPTER 17 SHAREDPREFERENCES

Listing 17-7. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.
android.com/apk/res/android

xmlns:app

=http://schemas.android.com/apk/res-auto

xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"
android:layout height="match_parent"
tools:context=".MainActivity"

tools:layout_editor absoluteY="81dp">

<EditText
android

android:
android:
android:
android:
android:
android:
android:

:id="@+id/txtlastname"
layout_width="wrap_content"
layout_height="wrap_content"
layout _marginStart="16dp"
layout _marginTop="40dp"
ems="10"
inputType="textPersonName"
text="Name"

app:layout constraintStart toStartOf="parent"
app:layout_constraintTop_ toTopOf="parent" />

<EditText

android:

android

android:
android:
android:
android:
android:

android

id="@+id/txtfirstname"
:layout_width="wrap_content"
layout_height="wrap_content"
layout _marginStart="16dp"
layout_marginTop="15dp"
ems="10"
inputType="textPersonName"
:text="Name"

app:layout constraintStart toStartOf="parent"

app:layout_constraintTop_ toBottomOf="@+id/txtlastname"”

/>

401

CHAPTER 17 SHAREDPREFERENCES

<Button
android:id="@+id/button"
android:layout width="wrap content"
android:layout_height="wrap_content"
android:layout marginStart="24dp"
android:layout _marginTop="57dp"
android:text="Go to 2nd Activity"
app:layout constraintStart toStartOf="parent"
app:layout_constraintTop toBottomOf="@+id/txtfirstname" />

</android.support.constraint.ConstraintLayout>

Listing 17-8. /app/res/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.Constraintlayout xmlns:android=http://schemas.
android.com/apk/res/android

xmlns:app=http://schemas.android.com/apk/res-auto

xmlns:tools=http://schemas.android.com/tools

android:layout width="match parent"

android:layout height="match parent"

tools:context=".SecondActivity"

tools:layout editor absoluteY="81dp">

<Button
android:id="@+id/btnloaddata"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout marginStart="34dp"
android:layout marginTop="33dp"
android:text="Load data "
app:layout _constraintStart toStartOf="parent"
app:layout_constraintTop toBottomOf="@+id/txtoutput" />

<TextView
android:id="@+id/txtoutput”
android:layout width="wrap content"
android:layout _height="wrap_content"

402

CHAPTER 17 SHAREDPREFERENCES

android:layout_marginStart="34dp"

android:layout_marginTop="87dp"

android:text="TextView"

android:textSize="30sp"

app:layout constraintStart toStartOf="parent"

app:layout _constraintTop_ toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

That takes care of the layout. In MainActivity, all we need to do are the following:
1. Take some input from the user, the lastname and firstname.

2. When the button is clicked, launch SecondActivity using an
explicit Intent.

3. Before MainActivity gets into the “paused” state, let’s save the
preferences file.

Listing 17-9 shows the full and annotated code for MainActivity.

Listing 17-9. MainActivity, Annotated

import android.content.Context

import android.content.Intent

import android.content.SharedPreferences

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.widget.Toast

import kotlinx.android.synthetic.main.activity main.*

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

button.setOnClickListener {

val intent = Intent(this@MainActivity, SecondActivity::class.java) @

startActivity(intent)

}
}

403

CHAPTER 17 SHAREDPREFERENCES

override fun onPause() {
super.onPause()
saveData() (2]

}

private fun saveData() { ©

val filename = "$packageName TESTFILE"
val pref = getSharedPreferences(filename, Context.MODE_PRIVATE)
val edit = pref.edit()

edit.putString("lastname”, txtlastname.text.toString())
edit.putString("firstname", txtfirstname.text.toString())
edit.apply()

Toast.makeText(this, "Saved data", Toast.LENGTH_LONG).show() @
}

override fun onResume() { @
super.onResume()

txtfirstname.setText("")
txtlastname.setText("")
txtfirstname.setHint("first name")
txtlastname.setHint("last name")

@ We're creating an explicit Intent that will launch SecondActivity. We won’t save the preferences
file in here—we’ll do that later in the onPause callback.

® Let’s call the saveData function from here. The onPause function will be called by the
Android runtime before MainActivity disappears from the user’s view, and eventually enter the
“paused” state.

® The saveData function is where we do the actual persisting of the preferences file. You've seen
all these codes before, so we won’t annotate them anymore.

404

CHAPTER 17 SHAREDPREFERENCES

® Asimple Toast message to tell the user that we’ve saved the data

® Android runtime will call the onResume function before MainActivity becomes fully visible to
the user again, if it’s coming from a “paused” state. | thought it was best to reinitialize all the Ul
elements in here.

That'’s all we need to do in MainActivity. In SecondActivity, we need to read the
specified preferences file when the button is clicked. Listing 17-10 shows the full and
annotated code for SecondActivity.

Listing 17-10. SecondActivity

import android.content.Context

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity second.*

class SecondActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity second)

btnloaddata.setOnClickListener {
val filename = "$packageName TESTFILE"
val pref = getSharedPreferences(filename, Context.MODE_PRIVATE) ©

val mlastname = pref.getString("lastname", "") @
val mfirstname = pref.getString("firstname", "")

txtoutput.text = "$mfirstname $mlastname " ©

}
}

override fun onResume() {
super.onResume()

txtoutput.text = "Click 'LOAD DATA""
}

405

CHAPTER 17 SHAREDPREFERENCES

© When the button is clicked, let’s read the specified preferences file.
@ Let’s exiract the lastname (and the firstname as well).

® Concatenate the lastname and firstname data, and show it as the text attribute of the TextView.

That should get you started with SharedPreferences. Before we close the chapter,
I'd like to leave you with a couple more pieces of information about the
SharedPreferences.Editor object. You already know that it's commit or apply function
is the one responsible for actually persisting the file. It also has other functions such as
clear and remove. Here’s what they do:

o remove(String parameter). This call deletes a named
preference. The String parameter stands for the key. So, a call
like remove ("lastname") will remove the lastname key from the
preferences file.

o clear(). Removes all the keys in the preference file.

I'll leave it up to you to experiment on these two Editor functions.

Chapter Summary

e Android has a couple of ways to persist data. It ranges from simple
mechanisms SharedPreferences up until the robust and a couple
more complicated ContentProviders and HTTP databases like
FireBase.

o SharedPreferences uses a dictionary-like or a Map-like idiom. It
stores the data in key-value pairs.

e You can make a preference file private to an Activity, or you can make
it available to all Activities in the app.

In the next chapter, we'll look at another way to save data into files; however, it won’t
be limited to basic types. You'll learn how to work with file without an imposed structure
(like key-value pairs).

406

CHAPTER 18

Internal Storage

What we’ll cover:
e Introduction to file I/O of Android
o Internal vs External storage
e How to use internal storage

We learned how to use the preferences file in the previous chapter.
SharedPreferences use a dictionary-like structure, you can save rows of data in
key-value format; but you can only save basic types in it. When you need to work with file
structures that are not limited to key-value pair and basic types, you can use the good ole
file classes from Java I/O (input/output). That’s the topic of this chapter.

Overview of File Storage

When you need to work with video, audio, json, or just plain text files, you can use the
Java file I/0O for local files. You'll use the same File, InputStream, and OutputWriter
and other I/0 classes in Java—if you've worked with them before. What will be different
in Android is where you save them. In a Java desktop application, you can put your files
practically anywhere you want. That’s not the case in Android. Just like in a Java web
application, Android apps are not free to create and read files just about anywhere. There
are certain places where your app has read and write access.

Don’t worry if you haven’t used Java I/O before, we won’t use any codes that
are difficult to follow. All I/O routines we will use will be within the capabilities of a
beginner.

407
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_18

CHAPTER 18 INTERNAL STORAGE

Internal and External Storage

Android differentiates between internal and external storage. The internal storage refers

to that part of a flash drive that’s shared among all installed applications. The external

storage refers to a storage space that can be mounted by the user—it’s typically an

sdcard, but it doesn’t have to be. As long as it can be mounted by the user, it could be

anything; it could even be a portion of the internal flash drive.

Each option has pros and cons, so you need to consider your app’s needs and the

limitation of each option. The following list shows some of these pros and cons.

Internal storage

The memory is always available to your app. There is no danger of a
user unmounting the sdcard or whatever device. It's guaranteed to be
there always.

The storage space will be smaller in size than an external storage
because your app will be allocated only a portion of the flash storage
that is shared by all the other apps. This was a concern in earlier
versions of Android, but it’s less of a concern now. According to the
Android Compatibility Definition, as of Android 6.0, an Android
phone or tablet must have at least 1.5 GB of non-volatile space
reserved for user space (the/data partition). This space should be
plenty for most apps. You can read the compatibility definition here
https://bit.ly/android6compatibilitydefinition.

When your app creates files in this space, only your app can access
them. Except when the phone is rooted, but most users don’t root
their phones, so generally, it isn’t much of a concern.

When you uninstall your app, all the files it created will be deleted.

External Storage

408

It typically has more space than internal storage; but

it may not always be available (e.g., when the user removes the
sdcard or if it’s mounted as USB drive.

https://bit.ly/android6compatibilitydefinition

CHAPTER 18 INTERNAL STORAGE

o Allfiles in here are visible to all applications and to the user. Anybody
and any app can create and save files here. They can also delete files.

e When an app creates a file in this space, it can outlive the app; by that
I mean when you uninstall the app, the file won’t be removed.

Cache Directory

Whether you choose internal or external storage, you may still have to make one more
decision on file location. You can put your files on a cache directory or somewhere more
permanent. Files in a cache directory may be reclaimed by the Android OS or third-
party apps, if the space will be needed. All files that are not in the cache directory are
pretty safe, unless you delete them manually. In this chapter, we won’t work with cache
directories or external storage. We will use only the internal storage, and we’ll put the
files in the standard location.

How to Work with Internal Storage

As said earlier, working with file storage in Android is like working with the usual classes
in Java I/0. There are few options to use like openFileInput() and openFileOutput(), or
some other ways where you can use InputStreams and QutputStreams. You just need
to remember that these calls will not let you specify the file paths. You can only provide
the filename, if you're not concerned with that, go ahead and use them—it’s what we
will use in this chapter, actually. If, on the other hand, you need more flexibility, you can
use the getFilesDir() or getCacheDir() to get a File object that points to the root of your
file locations—use getCacheDir() if you want to work with the cache directories of the
internal storage. When you have a File object, you can create your own directory and file
structure from there.

That'’s the general lay of the territory when it comes to Android file storage. Again, in
this chapter, we’'ll only work with internal storage in the standard location (not cache).

Writing to a file requires a few simple steps. You need to:

1. Decide on a file name
2. Get a FileOutputStream object

3. Convert your content to a ByteArray

409

CHAPTER 18 INTERNAL STORAGE

4. Write the ByteArray using the FileOutputStream
5. Don't forget to close the file

Listing 18-1 shows us how it looks in code.

Listing 18-1. How to Save to a File

val filename = "ourfile.txt"

val
out

out = openFileOutput(filename, Context.MODE_PRIVATE) ©
.use { ®

out.write(txtinput.text.toString().toByteArray()) ©

}

1]

openFileOutput returns a FileOutputStream; we need this object so we can write to a file. The
first parameter of the call is the name of the file you want to create. The second parameter is
a Context mode; you already know this from the previous chapter. We're using MODE_PRIVATE
because we want the file to be private to the app.

The use extension means | don’t have to close the file explicitly or manually. As soon as we’re
done using it, the Android runtime will close it for us. This is pretty handy considering that a lot
of developers forget to close files. Leaving a file handle open until the app terminates causes
memory leak. The use extension is Kotlin’s equivalent of Java’s try-with-resources.

The write method expects a ByteArray. So, we need to convert the Editable (data type of
EditText) to a String, then convert it to a ByteArray.

Reading from a file involves more steps than writing to it. You generally need to do

the following:

410

1. Geta FileInputStream
2. Read from the stream, one byte at a time

3. Keep on reading until there’s nothing more to read. You'll know
when you're at the end of the file if the value of the last byte you've
read is -1. It’s time to stop by then.

4. Asyou work your way to the end of the file, you need to store the
bytes you're taking from the stream into a temporary container.
A StringBuilder or a StringBuffer should do the trick. Building a

CHAPTER 18 INTERNAL STORAGE

String object using the plus operator is wasteful and inefficient
because Strings are immutable. Each time you use the plus
operator, it creates a new String object; if your file has 2,000
characters in it, you would have created 2,000 String objects.

This will be the case if you're reading a text file. If you're reading
something else like an audio or video file, you'll use a different
data structure.

5. When you reach the end of the file, stop reading. Do what you
need to do with what you've read and don’t forget to close the file.

Listing 18-2 shows us how this looks in code.

Listing 18-2. How to Read From a File

val filename = "ourfile.txt"
val input = openFileInput(filename) @

input.use {

var buffer = StringBuilder() @

var bytes read = input.read() ©

while(bytes read != -1) { @
buffer.append(bytes read.toChar()) @
bytes read = input.read() @

}

println(buffer.toString()) @

@ openFilelnput returns a FilelnputStream; this is the object we need so can read from a file. The
only parameter it takes is the name of the file to read.

® We won’t be able to read the entire file in one fell swoop. We’ll read it by chunks. As we get
some chunks, we’ll store them inside the StringBuilder object.

® The read method reads a byte of data from the input stream and returns it as an integer. We
need to keep reading from the stream one byte at a time until we reach the end of file (EOF)
marker.

® When there are no more bytes to read from the stream, the EOF is marked as -1. We will use this
as the condition for the while loop. Until bytes_read isn’t equal to -1 yet, just keep on reading.

411

CHAPTER 18 INTERNAL STORAGE

@ The read method returns an int; it's the ASCII value of each letter in the file, returned as integer.
We have to convert it to a Char before we can put it in the StringBuilder.

® If we're not at EOF yet, let’s read another byte.

©® When we run out of bytes to read, we’ll get out of the loop and print the content of StringBuilder.

Of course, we’ll do small demo project. It solidifies our learning. Table 18-1 shows
the details for the demo project.

Table 18-1. Project Details

Project Detail Value

Application name CH18InternalStorage
Company domain use your website name
Kotlin support Yes

Form factor Phone and Tablet only
Minimum SDK API 23 Marshmallow
Type of activity Empty

Activity name MainActivity

Layout name activity_main

What we want to do:
1. We'll set up two activities: MainActivity and SecondActivity.

2. In MainActivity, the user can freely type text in a multiline
EditText.

3. When the button “2" Activity” is clicked, we’ll launch an explicit
Intent to open SecondActivity.

4. But before we leave MainActivity, we'll create a file and save
the contents of the EditText to that file. This call isn’t terribly
expensive, but we'll run this code in background thread because
it’'s an I/0 call. You can never be sure if an I/0 call will be more or
less than 16 ms, so err in the side of caution.

412

CHAPTER 18 INTERNAL STORAGE

5. In SecondActivity, as soon as it becomes visible to the user,
we will read the contents of the file (that one we just saved in
MainActivity) and show it to the user using a multiline TextEdit.

6. Still in SecondActivity, when the user clicks the button “1*
Activity,” we'll launch an explicit Intent to go back to the
MainActivity.

7. In MainActivity’s onResume, we'll try to read the file and make it
available for editing.

Figure 18-1 shows the two screens of our app.

CH18InternalStorage CH18InternalStorage

This is a test file for Chapter 18, internal Storage
This is a test file for Chapter 18, Internal Storage
fou can type as mi
wlti line EditTe x. When | click the button t
You can type as many lines as you want in here, ,‘-,_l,.]..|. the SecondActivity
this is, after all, multi line EditText View. When |
click the button below, it will launch the

SecondActivity

2ND ACTIVITY 1ST ACTIVITY

W’ B e S
' MainActivity { SecondActivity

~—— - ___ - - ___ -

Figure 18-1. The app, at runtime

413

CHAPTER 18 INTERNAL STORAGE

Listings 18-3 and 18-4 show the full codes for activity_main.xml (UI for MainActivity.
Kt) and activity_second.xml (UI for SecondActivity.Kt), respectively.

Listing 18-3. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

<EditText
android:id="@+id/txtinput"
android:layout width="odp"
android:layout_height="wrap content"
android:layout marginTop="34dp"
android:ems="10"
android:inputType="textMultilLine"
app:layout constraintEnd_toEndOf="parent"
app:layout constraintStart toStartOf="parent"
app:layout_constraintTop_ toTopOf="parent" />

<Button
android:id="@+id/btnsecondactivity"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout marginBottom="16dp"
android:layout marginTop="8dp"
android:text="2nd Activity"
app:layout constraintBottom toBottomOf="parent"
app:layout_constraintTop_toBottomOf="@+id/txtinput"
app:layout_constraintVertical bias="0.963"
tools:layout editor absoluteX="16dp" />
</android.support.constraint.ConstraintLayout>

414

CHAPTER 18 INTERNAL STORAGE

Next comes the xml definition for activity_second.

Listing 18-4. /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"
android:layout _height="match_parent"
tools:context=".SecondActivity">

<Button
android:id="@+id/btnmainactivity"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout marginBottom="18dp"
android:layout_marginStart="16dp"
android:text="1st activity"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintStart toStartOf="parent" />

<TextView
android:id="@+id/txtoutput”
android:layout width="0dp"
android:layout_height="wrap content"
android:layout _marginTop="29dp"
android:inputType="textMultilLine"
android:text="TextView"
app:layout constraintEnd_toEndOf="parent"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop_ toTopOf="parent" />

</android.support.constraint.ConstraintLayout>
There’s a couple of things going on for MainActivity. Before we look at the full code,

let’s look at its important sections first.

415

CHAPTER 18 INTERNAL STORAGE

When MainActivity opens, we run some code that checks if “ourfile.txt” (the name of
the file) already exists. If it does, we’ll read it and display the contents in the EditText, so
the user can edit it. This code is inside the onResume() callback, this is a good place to
put the code because the runtime calls it as soon as the Activity is visible to the user.

Listing 18-5 shows the onResume callback and the loadData function. I annotated
three points only—from where to call loadData and the beginning/ending lines of all the
codes related to file input/output. You're already familiar with the rest of the codes since
they’'ve been explained earlier in this chapter and/or in earlier chapters.

The code is straightforward, but it may be structurally challenging for a beginner. So,
let’s take it step by step.

Listing 18-5. loadData Function
val Log = Logger.getlLogger(MainActivity::class.java.name)

override fun onResume() {
super.onResume()
loadData() o

}
private fun loadData() {

val filename = "ourfile.txt"
Thread(Runnable{
try {
val input = openFileInput(filename) 12}
input.use {
var buffer = StringBuilder()
var bytes read = input.read()

while(bytes read != -1) {
buffer.append(bytes read.toChar())
bytes read = input.read()

}

runOnUiThread(Runnable{
txtinput.setText(buffer.toString())

1)

} (3)
}

416

CHAPTER 18 INTERNAL STORAGE

catch(fnfe:FileNotFoundException) {
Log.warning("file not found, occurs only once")
}
catch(ioe: IOException) {
Log.warning("IOException : $ioe")
}
}).start()

}

O Let’s call loadData() as soon as the Activity is visible to the user; this happens inside the
onResume callback.

® Start of /0 code
® End of I/0 code. The rest is boiler-plate for Threading and Exception.

Focus on the codes between points @ and @ of Listing 18-5. They are the only
ones important for reading the file. The Thread, Runnable, runOnUiThread, try,
and catch are all housekeeping codes. They’re there because we're trying to code
defensively. We're running in the background because the I/0 code might take some
time to complete. We're using the try-catch block because the I/0 codes might throw an
Exception. We used the runOnUiThread because we can’t write anything to the UI while
we're inside a background thread. Those are the reasons for the structural acrobatics.
Listing 18-6 shows the loadData function again, but this time without the I/O codes.
You only get to see the housekeeping codes.

Listing 18-6. loadData Without the I/O Codes

Thread(Runnable {

(1]
try {
(2]
runOnUiThread(Runnable {
(3]

1)
}

417

CHAPTER 18 INTERNAL STORAGE

catch(ioe:IOException) {
(4]

}
}).start() (5)

@ Run your background code here. All of our file input/out codes are here.

® This is where you write codes that can throw Exceptions. Java I/0 calls can throw
Exceptions—that’s why we need to put them here.

® If you need to update the Ul, you have to come back to the Ul Thread. You cannot make changes
to the Ul while in a background thread.

® If an Exception does happen, do whatever you need to do here so the app can recover. At the
very least, log something here, so you’ll see what errors occurred when you look at the logs later.
The benefit of handling Exceptions explicitly (like this) is that the app won’t crash if it encounters
something unfavorable during runtime. This way, you have a chance to recover gracefully.

® The start method kicks the Thread into high gear. It gets the Thread, well, started.

Points @ to ® contain everything that’s running in a background thread. The basic
structure of that overstretched statement is this Thread(Runnable { ... }).start().
All the I/0 codes and the try-catch block are written in place of the ellipsis.

Next, when the app is fully visible to the user, it waits for input. The user can add
text in the multiline EditText. If the user clicks the “2°¢ Activity” button, we’ll launch
SecondActivity with an explicit Intent. MainActivity transitions from “running” to
“paused” state, but before that happens, the runtime will call MainActivity’s onPause
method. This is where we’ll write our codes to save the data to a file. Listing 18-7 shows

the annotated saveData function.

Listing 18-7. annotated saveData function

private fun saveData() {
val filename = "ourfile.txt"

Thread(Runnable { o
try {
val out = openFileOutput(filename, Context.MODE_PRIVATE) @
out.use {
out.write(txtinput.text.toString().toByteArray()) (3]
}

418

CHAPTER 18 INTERNAL STORAGE

runOnUiThread(Runnable { o
Toast.makeText(this, "Saved", Toast.LENGTH_LONG).show()
1}

}
catch(ioe:I0Exception) {

Log.warning("Error while saving ${filename} : ${ioe}")

}
}).start()

}

override fun onPause() {
super.onPause()
saveData()

}

@ We’ll run in a background thread because it’s an 1/0 call.

® Let’s open a file for input. This gives us a FilelnputStream. Pass the name of the file as first
parameter and the context mode for the second parameter.

® Now we can write to the file. Remember that you can only write an array of bytes in a
FilelnputStream object, so you have to convert the runtime value of the EditText to a ByteArray.

® Now we have to go back to the Ul thread, even if we’re only going to show a Toast message.

Hopefully that clarifies the structure of MainActivity. SecondActivity is much simpler
but it also follows the same structural flow as MainActivity. Listings 18-8 and 18-9 show
the complete and annotated codes for MainActivity and SecondActivity, respectively.

Listing 18-8. MainActivity, Annotated

import android.content.Context

import android.content.Intent

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.widget.Toast

import kotlinx.android.synthetic.main.activity main.*
import java.io.FileNotFoundException

import java.io.IOException

419

CHAPTER 18 INTERNAL STORAGE
import java.util.logging.Logger
class MainActivity : AppCompatActivity() {

val Log = Logger.getlLogger(MainActivity::class.java.name)

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

btnsecondactivity.setOnClickListener {
startActivity(Intent(this, SecondActivity::class.java)) (1]
}
}

private fun saveData() { (2]
val filename = "ourfile.txt"
Thread(Runnable {
try {
val out = openFileOutput(filename, Context.MODE PRIVATE)
out.use {
out.write(txtinput.text.toString().toByteArray())

}
runOnUiThread(Runnable {

Toast.makeText(this, “Saved", Toast.LENGTH_LONG).show()
1)

}
catch(ioe:I0Exception) {

Log.warning("Error while saving ${filename} : ${ioe}")

}
}).start()

}

override fun onPause() { (3]
super.onPause()
saveData()

}

420

CHAPTER 18

override fun onResume() {
super.onResume()
loadData()

}
private fun loadData() {

val filename = "ourfile.txt"
Thread(Runnable{
try {
val input = openFileInput(filename)
input.use {
var buffer = StringBuilder()
var bytes read = input.read()

while(bytes read != -1) {
buffer.append(bytes read.toChar())
bytes read = input.read()

}

runOnUiThread(Runnable{
txtinput.setText(buffer.toString())

1)
}

}
catch(fnfe:FileNotFoundException) {

Log.warning("file not found, occurs only once")
}
catch(ioe: IOException) {
Log.warning("IOException : $ioe")
}
}).start()

}

INTERNAL STORAGE

o

421

CHAPTER 18 INTERNAL STORAGE

@ When the button is clicked, we’ll simply launch an explicit Intent to open SecondActivity. We
won’t do any 1/0 codes here.

® The saveData function contains all the I/0 code to write the runtime contents of the EditText to
afile.

© Before MainActivity enters the “paused” state and disappears from the user’s view, the runtime
will call onPause; this is where we’ll call saveData.

® When MainActivity first comes to the user’s view, the runtime calls onResume. This is where
we’ll call the loadData function. It’ll read the file and show its contents in a TextView object.

Let’s move on to SecondActivity.

Listing 18-9. SecondActivity, Annotated

import android.content.Intent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity second.*

class SecondActivity : AppCompatActivity() {

override fun onResume() { 0
super.onResume()
loadData()

}

private fun loadData() { (2}

val filename = "ourfile.txt"
Thread(Runnable {
val input = openFileInput(filename)
input.use {
var buffer = StringBuilder()
var bytes read = input.read()
while(bytes read != -1) {
buffer.append(bytes read.toChar())
bytes read = input.read()

}
runOnUiThread(Runnable{

422

CHAPTER 18

txtoutput.setText(buffer.toString())

1)
}
}).start()

}

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity second)

btnmainactivity.setOnClickListener { (3]
startActivity(Intent(this, MainActivity::class.java))
}
}

INTERNAL STORAGE

©® When SecondActivity comes to the user’s view, we’ll call loadData.

® You've seen this code before. This is the same code in MainActivity. It reads the file and shows

its contents using the TextView object. | suppose we could have refactored the code and
abstracted this function somewhere so that we could follow the DRY (don’t repeat yourself)
principle, but that means we have more code and concept to explain. | violated the DRY principle

in here in favor of readability. Just remember not to do this on production code.

When the “1st Activity” button is clicked, we go back to the MainActivity. We could have called
finish() in here as well, but | didn’t want to completely destroy SecondActivity, so | used an

explicit Intent to go back to MainActivity instead.

That draws the chapter to a close. I've said this a couple of times in the chapter, but

it'’s worth repeating. The I/O codes are not the ones that are difficult—it’s the boiler-plate

codes that makes the program look more complicated than it really is. But you can’t get

away with that, you need the threading and exception handling codes to observe good

housekeeping in your codes.

423

CHAPTER 18 INTERNAL STORAGE

Chapter Summary

e When your need for storage exceeds the simple structure of key-value
pairs and basic data type, use the Java I/O classes.

e You can store your file either in the always-available-but-limited
internal storage or in the larger-but-may-be-dismounted external
storage.

e Evenifyou think the I/O call will be less than 16 ms, run the codes in
background thread. You never know what can happen in an I/0 call.

e Javal/O calls throw Exceptions; handle them appropriately.

In the next chapter, we'll look at another important component of Android apps:
BroadcastReceivers. They actually do, what you think they do—receive broadcasts. We'll
look at some types of broadcast, and as always, we’ll do a small demo project on it.

424

CHAPTER 19

BroadcastReceilvers

What we’ll cover:
e Introduction to BroadcastReceivers
e Custom and system broadcasts
e Manifest and context registered receivers

Android’s application model is unique in many ways, but what makes it stand out
is the way it lets you build an app using the functionalities of other apps that you didn’t
make yourself—I don’t mean just libraries, I mean full apps. You already know about
Intents—what they are and what they can do. We've looked at how to use Intents to
launch other components, and we even used it to pass data around and in-between
components.

There’s one more way we can use Intents. We can use it to send a broadcast to all
components. A broadcast is an Intent that is sent either by the Android runtime or other
apps (your own apps included) so that every application or component can hear it.
Most applications will ignore the broadcast but you can make your app listen to it. You
can tune in to the message so you can respond to the broadcast. That is the topic of this

chapter.

Introduction to BroadcastReceivers

So, we can launch Intents that are sent (broadcasted) to all apps and components.

But what good does that do? To answer that, we need to jog our memories a bit and
talk about Android’s philosophy on interoperability and pluggability. Remember in
Chapter 12 when we first talked about Intents? We looked at the picture in Figure 19-1.

425
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_19

CHAPTER 19 BROADCASTRECEIVERS

(3) Taps on mobile icon, (4) Taps on message
launches the dialer app ~ icon, launches the SMS

- N app
B T I —— >(Daer)
|
| Ted Hagos | o 632111111 [.
SMS
| John Doe | g tedhagos@gmail.com
| Jane Doe | :
—————————————————————————— =>(Email app
(1) User opens the (2) Contact details has (5) Taps on envelope
Contacts app. Taps on a info on mobile number icon, launches the email
contact and email address app

Figure 19-1. How a user interacts with the Contacts app

The user doesn’t care which app to use to send an e-mail, SMS, or make a phone
call. When a user clicks on the e-mail, it launches an implicit intent that says, “Hey,
Iwanna send an e-mail. Who's interested?” every app in the device will hear this
but only those who are tuned-in will be able to respond. That’s the whole idea about
BroadcastReceivers—a message is published to all and if some apps are subscribed to it,
then they can respond. It uses a publish-subscribe model.

System Broadcast vs. Custom Broadcast

An Intent broadcast can be sent either by the OS (system broadcast) or by applications
(custom broadcast). A system broadcast is sent by the OS whenever something
interesting happens (e.g., when WiFi is turned on [or off], when the battery goes down to
a specified threshold, a headset is plugged, or the device was switched to airplane mode,
etc.). Some examples of broadcast actions from the system are as follows:

e android.app.action.ACTION PASSWORD CHANGED
e android.app.action.ACTION_PASSWORD EXPIRING

e android.bluetooth.a2dp.profile.action.CONNECTION STATE
CHANGED

o android.bluetooth.a2dp.profile.action.PLAYING STATE_CHANGED

426

CHAPTER 19 BROADCASTRECEIVERS

e android.bluetooth.adapter.action.CONNECTION STATE CHANGED
e android.intent.action.BATTERY_CHANGED

e android.intent.action.BATTERY_LOW

e android.intent.action.BATTERY_OKAY

There’s about 150+ of these listed on the documentation. You can find them on the
BROADCAST_ACTIONS.TXT file in the Android SDK.

A custom broadcast, on the other hand, is something you make up. These are intents
that you send in order to notify some of your app’s components (or other apps that are
tuned in) that something “interesting” happened (e.g., a file has finished downloading or
you've finished calculating prime numbers, etc.).

Manifest Registration vs. Context Registration

If you want to do something as a response to a broadcast, you need to listen for it, and
in order to do that, you need to register a receiver. There are two ways to register: via the
manifest and via the context.

A receiver registered in the manifest looks like Listing 19-1.

Listing 19-1. BroadcastReceiver Declared in AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.workingdev.ch19broadcastreceiverdosomething">
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

427

CHAPTER 19 BROADCASTRECEIVERS

</intent-filter>

</activity>
<receiver (1]
android:name=".MyReceiver" 2]

android:enabled="true"
android:exported="true">
<intent-filter> (3]
<action android:name="com.workingdev.DOSOMETHING" />
</intent-filter>
</receiver>

</application>

© Just like an Activity, a BroadcastReceiver needs to be declared in the manifest. You have
to declare it in its own node. Like an Activity declaration, it needs to be a child node of
application.

® “.MyReceiver” is the name of the BroadcastReceiver class. So, presumably, there is a class
in your app named MyReceiver and it inherits BroadcastReceiver. We simply write it as
“.MyReceiver,” just like the Activity above it, “.MainActivity”. The complete form is actually
net.workingdev.ch19broadcastreceiverdosomething.MyReceiver, but we can use the
short form because the package name is already declared earlier; look at the second line
of the manifest, and you’ll find the complete name of the package. Any subsequent classes
that need to be declared in the manifest can simply use the short form, like “.MyReceiver” or
“ MainActivity”.

® The intent-filter is how we actually register. We’re telling the OS that we’re interested in the
event com.workingdev.DOSOMETHING. In case that Intent is sent as a broadcast, this app
would like to respond to it.

Receivers that were registered via the manifest don’t need to be currently running in
order to respond to the broadcast. The fact that a receiver is registered on the manifest is
enough to resolve an intent.

When a receiver is programmatically registered—via a Context object—it looks like
Listing 19-2.

428

CHAPTER 19 BROADCASTRECEIVERS

Listing 19-2. How to Register and Unregister a BroadcastReceiver
val Log = Logger.getlogger(javaClass.name)
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

val action filter = IntentFilter("com.workingdev.DOSOMETHING") @
val receiver = MyReceiver()

btnregister.setOnClickListener {
registerReceiver(receiver, action filter) @

}

btnunregister.setOnClickListener {

try {
unregisterReceiver(receiver) (3)

}

catch(iae:IllegalArgumentException) {
Log.warning("IllegalArgument\n ${iae}")

}

catch(e:Exception) {
Log.warning("IllegalArgument\n ${e}")

}

}
}

inner class MyReceiver : BroadcastReceiver() { o
override fun onReceive(context: Context?, intent: Intent?) {
println("got it");
Toast.makeText(this@MainActivity, "Got it", Toast.LENGTH_LONG).show()
}
}

429

CHAPTER 19 BROADCASTRECEIVERS

o

This is the programmatic equivalent of the <intent-filter> node we’ve seen earlier. To
create an IntentFilter object, pass a broadcast action to its constructor. The broadcast action
is the event you’d like to subscribe to. In this case, we’d like to be notified when the Intent
whose action is com.workingdev.DOSOMETHING is sent out; this Intent is an example of a
custom broadcast, not a system broadcast.

Use the registerReceiver method of the Activity to register the receiver. The method takes two
arguments:

a. An instance of BroadcastReceiver, and

b. An instance of an IntentFilter

When you register a receiver programmatically, make sure you also unregister it. That’s what
we’re doing here. It’s inside a try-catch structure because it can throw an exception. If you try
to unregister a receiver that isn’t registered yet (or a receiver that’s been unregistered already),
the runtime will throw the lllegalArgumentException. | didn’t do this for the registration part
because registerReceiver doesn’t throw any exception, even if you (accidentally) register

the same receiver more than once. Once a receiver is registered, the runtime will ignore any
further attempts to register the same.

This is the bare-bones definition of a BroadcastReceiver class.

Receivers that are registered programmatically can only respond to broadcasts while

the app (which was used to register the receiver) is still running.

Basics of BroadcastReceivers

There are a couple of steps to follow when creating broadcast receivers. They are:

430

1. Decide which broadcast action you'd like to tune into. Do you
want to listen to a system broadcast or a custom broadcast?
Custom broadcast is typically used if you'd like to facilitate some
messaging between your app’s components. One use-case for
using a BroadcastReceiver is when you use the DownloadManager
system service to download large files, the service sends out a
broadcast when it finishes the download—you’d want to listen to
that so you can take action right after.

CHAPTER 19 BROADCASTRECEIVERS

2. Decide how you will register the receiver, via the context or
through the manifest? You can listen to custom broadcasts either
way (manifest or context), but there are some broadcast actions
that are restricted—you cannot listen to them via manifest
registration. We will discuss this shortly.

3. Create a class that inherits from the BroadcastReceiver class.

4. Override and implement the onReceive method of the new
class. When a broadcast is sent, the intent-filter is matched with
the action, the OS resolves the Intent to your app, and eventually
the specific BroadcastReceiver class, the runtime calls the
onReceive method. The onReceive method is the meat and
potatoes of the BroadcastReceiver class. Whatever you want to do
when the broadcast is matched, this is the place where you need

to write it.

Generally, you can listen to broadcasts if you register a BroadcastReceiver either via
the Android manifest or via a Context object. Let’s segue a little bit. Earlier, I used the
term “register via the context” and “register programmatically”—they are one and the
same, they mean the same. “Register via the context” means to call the registerReceiver
method on the Context object. So the statement

registerReceiver(receiver, intent filter)
is the same as the statement
this.registerReceiver(receiver, intent filter)

They are both called on Context of the current Activity—the Activity class actually
inherits from the Context object, and so does the Service class. So, you can call the
registerReceiver method from within an Activity or Service. If you're inside a class that
doesn’t inherit from Context, you may still be able to register a receiver by getting the
Application’s context. The code looks something like this:

getApplicationContext().registerReceiver(receiver, intent filter) // or
applicationContext.registerReceiver(receiver, intent filter)

Going back to manifest versus context registration, there are some broadcast actions
that you cannot register in the manifest; but you can register them via the Context.

431

CHAPTER 19 BROADCASTRECEIVERS

One example is android.intent.action.TIME_TICK, this is a protected intent that can
only be sent by the system. It’s sent every 60 seconds and you can only listen to it if you
registered via the Context.

In earlier versions of Android, there were already a couple of broadcast that were
off limits from the manifest. At the time of this writing, Android 9 (or API level 28)
came out. In this book, we’ve always used API level 23 as the target, but you will benefit
from reading the behavior changes documents for each Android version. I've listed
some links to the official Android documentation below. These documentations affect
BroadcastReceivers in one way or another.

o Android 9 (API 28) behavior changes. http://bit.ly/
behaviorchanges9. Talks about all the changes in the API that
developers should know if we want to target Android 9. This doc has
something to say about BroadcastReceivers.

o Background execution limits. http://bit.ly/bgexeclimit. This
talks about the things your app can and can’t do while it’s running
in the background. Don’t think that because you're not in the Ul
thread, you can run around and do whatever you want. This doc talks
about those limitations; it also talks about the limitations imposed on
BroadcastReceivers.

o BroadcastReceiver exceptions. http://bit.ly/
broadcastexceptions. Starting with Android 8 (continuing to 9), all
implicit broadcast actions are now off-limits from the manifest, with
the exception of some. This document itemizes those actions that are
exempted. If you want to know which implicit broadcast actions can
still be registered via the manifest, read this doc.

Implicit vs. Explicit Broadcast Actions

Android makes a distinction between implicit and explicit broadcast actions. It defines
an explicit broadcast as something that target just one application, no matter how many
other apps are listening for it. An explicit broadcast, on the other hand, can be heard

by any app that registered for it. For our purpose and to make our lives simpler, the
documentation is telling us not to listen to system broadcast via the manifest. Starting

432

http://bit.ly/behaviorchanges9
http://bit.ly/behaviorchanges9
http://bit.ly/bgexeclimit
http://bit.ly/broadcastexceptions
http://bit.ly/broadcastexceptions

CHAPTER 19 BROADCASTRECEIVERS

Android 8, all implicit broadcasts (with the exception of those listed at
http://bit.ly/broadcastexceptions) cannot be heard by receivers that were
registered via the manifest. But you may still listen for these broadcast actions if you
register via the context.

The main reasons for all the new restrictions have to do with performance
optimization and saving power. Consider this: when a device’s WiFi connectivity goes
up or down, the CONNECTIVITY_ACTION broadcast is sent. If there are a dozen apps
listening for this broadcast, all of them will wake up and take action. This is going to
happen every time the WiFi drops and reconnects. Remember that manifest-registered
receivers don’t need to be alive to receive the broadcast; in fact, they will come alive
when they get the broadcast. This behavior can cause significant power drain. If your
app doesn’t need to be informed on WiFi connectivity when it’s not running, it's more
responsible to do the registration via the context.

Demo App: Custom Broadcast

Let’s build a small project so you can try the BroadcastReceivers yourself. Table 19-1
shows the details for this project.

Table 19-1. Project Details

Project Detail Value

Application name CH19ContextRegistration

Company domain use your website name

Kotlin support Yes

Form factor Phone and tablet only
Minimum SDK API 23 Marshmallow
Type of activity Empty

Activity name MainActivity

Layout name activity_main

433

http://bit.ly/broadcastexceptions

CHAPTER 19 BROADCASTRECEIVERS

What want to do:

1. Create a BroadcastReceiver that will respond to an implicit
custom broadcast

2. We'll register the receiver as soon as the Activity becomes visible
to the user; and

3. We'll unregister the receiver before the Activity gets into the
“paused” state.

4. The MainActivity’s UI will only have one button. When the button
is clicked, it will send a custom broadcast intent.

Listing 19-3 shows minimalistic code for the UI.

Listing 19-3. /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintlLayout xmlns:android=http://schemas.
android.com/apk/res/android
xmlns:app=http://schemas.android.com/apk/res-auto
xmlns:tools=http://schemas.android.com/tools
android:layout width="match parent"
android:layout _height="match_parent"
tools:context=".MainActivity">

<Button

android:id="@+id/button”

android:layout width="wrap_content"

android:layout_height="wrap_content"

android:layout marginStart="26dp"

android:layout marginTop="43dp"

android:text="send broadcast"

app:layout constraintStart toStartOf="parent"

app:layout _constraintTop_ toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

434

CHAPTER 19 BROADCASTRECEIVERS

We need to add a class that inherits from BroadcastReceiver. One way to do this is
from the main menu bar File » New » Kotlin File/Class. Alternatively, we can also use
the context menu from the app » java folder of the Project tool window, as shown in
Figure 19-2. From there, you can go to New » Other » BroadcastReceiver.

ece - B ing2 [i ioPraj H1 5 ing2] = v ' ivity. main.xml [apg]
= i 3 8pp) B src) B androidTest) B java mapp +| P % o G ERADQ
i Android = £ o | @ 1= 3 activity_mairxm g MainActivity kt it
g v . -wmm_!ws ki, Q&1 €. &+ [OMexus4~ = 28 - © AppTheme @ Defaukt fen-us) - (8% @ @ O 1
A mjm oo Ab TaxtView e W R0 T . §
2 £ net.workingdev.ch1sbiiL L AR © .ava Class 5 3
2 » m net.workingdev.ch19br = = 7 « Kotlin File/Class
g '_ Pa net.workingdev.ch18br Link C++ Project with Gradle & Android Resource File
M » Bpres cut oY Android Resource Directory
B > (2 Gradle Scripts Copy se Sample Data Directory
¢ Copy Paths axc | @ File
g Copy Reference To®c | B Scratch File ORN
s i1 Paste 2y Package
Find Usages XF7 | ¥ G+ Class
Analyze » | &= C/C++ Source File
= C/C++ Header File
Refactor s }
W Image Asset
Add to Favorites ¥ | & Vector Asset !
Show Image Thumbnails BT
= Singleton
Reformat Code X¥L | @ Gradle Kotlin DSL Build Script
Optimize Imports “XO | @ Gradle Kotlin DSL Settings
Local History w Edit File Templates...
@ Synchronize selected files
 AIDL >
Reveal in Finder W Activity »
Load/Unload Modules... # Android Auto 4
8 # Folder »
3 & Create Gist... # Fragment >
: - e . ——
&% [[l Android Manifest File L
W Service >
E # Ul Component » [L Content Provider
5 W Wear » [Daydream
E Widget g
&+ Design | Toxt I. . "
1 Rescurce Bundle
M Torminal [¥Buld T §:logcat 3 TODO @ Evors Log

Figure 19-2. New BroadcastReceiver

You need to fill in the name of the class. In this example, I named the class
“MyReceiver”

We won'’t do anything special in the receiver. We'll simply display at toast message
print something in the Logger. Listing 19-4 shows the code for MyReceiver.

435

CHAPTER 19 BROADCASTRECEIVERS
Listing 19-4. MyReceiver.java

import android.content.BroadcastReceiver
import android.content.Context

import android.content.Intent

import android.widget.Toast

import java.util.logging.Logger

class MyReceiver : BroadcastReceiver() {
val Log = Logger.getlLogger(javaClass.name)

override fun onReceive(context: Context, intent: Intent) { ©
Toast.makeText(context, "Got it", Toast.LENGTH LONG).show()
Log.info("Got it")
}
}

© When a broadcast intent is matched to a receiver, the OS calls the BroadcastReceiver’s
onReceive method. This is where you should write your app’s business logic for the receiver
(e.g., save a file, route program logic depending on WiFi conditions, etc.).

In MainActivity, we will do the following:

1. Create an instance of MyReceiver. We need to do this only once.
That’s why we will create the instance inside the onCreate
callback.

2. Register the receiver each time it becomes visible to the user. We’ll
put this code inside the onResume callback of MainActivity.

3. Unregister the receiver when the user is no longer interacting with
MainActivity.

4. When the button is clicked, we’ll send a custom broadcast intent.

Listing 19-5 shows the full and annotated code for MainActivity.

436

CHAPTER 19 BROADCASTRECEIVERS

Listing 19-5. MainActivity.java

import android.content.Intent

import android.content.IntentFilter

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import kotlinx.android.synthetic.main.activity main.*
import java.util.logging.lLogger

class MainActivity : AppCompatActivity() {

lateinit var receiver:MyReceiver 1]
val Log = Logger.getlogger(javaClass.name) (2]

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

receiver = MyReceiver() (3]

button.setOnClickListener {
val intent = Intent("com.workingdev.DOSOMETHING") @

sendBroadcast(intent) (5]

}

}

override fun onResume() { (6}
super.onResume()
val filter = IntentFilter("com.workingdev.DOSOMETHING")
registerReceiver(receiver, filter)
Log.info("Registered receiver")

}

override fun onPause() { 7}

super.onPause()

try {
unregisterReceiver(receiver)

Log.info("Unregistered receiver")

}

437

CHAPTER 19 BROADCASTRECEIVERS

}
}

catch(iae: IllegalArgumentException) {
Log.warning(iae.toString())

}

®

The receiver variable holds the instance of the MyReceiver class (our BroadcastReceiver).
We’re declaring the variable as a property because we will refer to it in the onResume and
onPause methods. We used the lateinit keyword because we won’t define it just yet.

Let’s use a basic Logger object.

Now that we’re inside onGreate, let’s define the MyReceiver object.

When the button is clicked, we’d like to create a broadcast intent and set its action to
DOSOMETHING.

Launch the intent.

We’re inside the onResume callback. The OS will call this method every time MainActivity
is becomes visible to the user. This is good place to register the receiver. We only want to be
notified when we’re using the app.

We’'re inside onPause, the 0S calls this method before MainActivity enters a “paused” state
and then disappears from the user’s view. This is a good place to unregister the receiver. We
don’t want to be notified when we’re not using the app.

438

CHAPTER 19 BROADCASTRECEIVERS

sin java net workingdev) El ch19contextregistration) & MainActivity.kt
s 2Ctivity_mainxmi ¢ MyReceiver.kt € MainActivity.kt

package net.workingdev.chl9contextregistration

import android.content.BroadcastReceiver
import android.content.Intent CH1QContextRegistratio|1
g import android.content.IntentFilter
[import android.support.v7.app.AppCompatActivity
it 7 import android.os.Bundle
8 import kotlinx.android.synthetic.main.activity_main,.*
import java.util.logging.Logger

am class MainActivity : AppCompatActivity() {

lateinit var receiver:MyReceiver
val Log = Logger.getLogger(javaClass.name)

16 of override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R. layout.activity_main)

receiver = MyReceiver()

button.setOnClickListener { it: View!
val intent = Intent(action: “com.workingdev.DOSOMETHING")
sendBroadcast(intent)
}
}

ol override fun onResume() {
super.onResume()

val filter = IntentFilter(action: “com.workingdev.DOSOMETHING
registerReceiver(receiver, filter)
Log.info(msg: "Registered receiver”)

MainActivity

3
=1

*
‘mw

rkingdev.ch1 scontexlrsa Info B

ingdev.chlS9contextregistration I/MyReceiver: Got it

i

T Ny Y e P P e s Y oY 2

Figure 19-3. Our app, running

Another way to send a broadcast intent is via the Android Debug Bridge or adb,
for short. It’s a command-line tool that lets you communicate to a device—physical
or emulated. The adb can do quite a range of things like installing/uninstalling APKs,
displaying logs, running Linux commands on the device, simulating phone calls, and
many more. For our purpose, we'll use to send out a broadcast intent.

adb is in the platform tools folder of the Android SDK. Open a command-line
window and switch to the directory of the Android SDK. If you've forgotten where it is,
go to Android Studio’s Settings (Windows and Linux) or Preferences (macOS). You can do
that by the pressing the keys CTRL + ALT + S, for Windows and Linux, or Command +,
(comma) for macOS.

From there, go to Appearance and Behavior » System Settings » Android SDK, as
shown in Figure 19-4. The Android SDK location is found there.

439

CHAPTER 19 BROADCASTRECEIVERS

‘o0 @ Preferences

Appearance & Behavior) System Settings ! Android SDK

Maoager forthe Androl mq.wamwmm%w.............j
Edit

v lAppearance & Behavior
PEAmmRE=T===

Android SOX Location: | /Users/ted/Library/Android/sdk
LA A L L Ll Ll Ll A A A A 0 LA L L L L L LA Ll L Ll Ll

Mepgsand Toolbars, (SDKPaHommaN SO Tools SDK Update Sites
v ISystem Settings j "
nEaessee e Each Android SDK *m & includes the Android platform and sources pertaining to an
AP level by defguit®Once i lled, Android Studio will ically check for updates. Check
HTTP Proxy “show pag‘ details” to display individual SDK components.
Updates ‘Q‘ Name AP Lavel Revision Status
Usage Statistics "‘ & Android API 28 28 4 Update available
n Android 8.1 (Oreo) 27 3 Partially installed
Android SDK Android 8.0 (Oreo) 26 2 Not installed
File Colors Lo} Android 7.1.1 (Nougat) 25 3 Not installed
Scopes (5] Android 7.0 (Nougat) 24 2 Not installed
Notifications Andreid 6.0 (Marshmallow) 23 3 Update available
o Android 5.1 (Lollipop) 22 2 Not installed
e P Android 5.0 (Lollipop) 2 2 Not installed
Path Variables Android £4.4W (KitKat Wear) 20 2 Mot installed
Keymap Andreid 4.4 (KitKat) 19 4 Not installed
» Editor Android 4.3 (Jelly Bean) 18 3 Mot installed
Android 4.2 (Jelly Bean) 17 3 Not installed
Plugins Android 4.1 (Jelly Bean) 16 5 Not installed
» Version Control B Android 4.0.3 (lceCreamSandwich) 16 5 Mot installed
» Build, Execution, Deployment Android 4.0 (iceCreamSandwich) 14 4 Not installed
B ORa ges B Ersmemche Andreid 3.2 (Honeycomb) 13 1 Not installed
Android 3.1 (Honeycomb) 12 3 Not installed
* Tools Android 3.0 (Honeycomb) Ei 2 Not installed
Kotlin Compiler a Andreid 2.3.3 (Gingerbread) 10 2 Not installed
Andenid 9 2 IRianadheasdl o o Mat ineballad
Show Package Details
T Cancel Apply m

Figure 19-4. Preferences, Android SDK

Go back to the command-line window, and switch to the Android SDK folder. From
there, switch to the platform-tools folder, then run the following command:

adb shell am broadcast -a com.workingdev.DOSOMETHING

If you're on macOS or Linux, you may have to prepend the command with dot and
forward slash, like this:

./adb shell am broadcast -a com.workingdev.DOSOMETHING

Demo App: System Broadcast

The next project will be similar to the previous project, but we’ll listen for a system
broadcast. We will listen for the ACTION_TIME_TICK, which is sent out by the system
every 60 seconds. This is a protected intent, so we really have to register the receiver at
runtime. Table 19-2 shows the details for this project.

440

CHAPTER 19 BROADCASTRECEIVERS

Table 19-2. Project Details for System Broadcast

Project Detail Value

Application name CH19SystemBroadcast
Company domain use your website name
Kotlin support Yes

Form factor Phone and tablet only
Minimum SDK APl 23 Marshmallow
Type of activity Empty

Activity name MainActivity

Layout name activity_main

The app is very simple. There are no Ul elements to set up. Here’s what we’d like
to do:

1. Create a BroadcastReceiver that will listen for the ACTION_TIME_
TICK intent. We'll implement this one as an inner class—the
only reason for this is to make the presentation of the code a bit
more compact. You can definitely implement the receiver class as
stand-alone class if you wish.

2. We want to listen to broadcast only when the user is interacting
with the app. So we will register the receiver in the onResume
callback of MainActivity; we'll unregister it in the onPause
callback.

3. Whenever the ACTION_TIME_TICK is received, we’ll simply print
out a message to the console and also to the user screen using a
Toast object.

441

CHAPTER 19 BROADCASTRECEIVERS

Listing 19-6. MainActivity

import
import
import
import
import
import
import

import

android.
android.
android.
android.
android.
android.
android.

content.BroadcastReceiver
content.Context

content.Intent
content.IntentFilter
support.v7.app.AppCompatActivity
0s.Bundle

widget.Toast

java.util.logging.Llogger

class MainActivity : AppCompatActivity() {

lateinit var intentfilter:IntentFilter

lateinit var timereceiver:TimeReceiver
var current count = 0

val Log = Logger.getlogger(javaClass.name)

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

timereceiver =

intentfilter

}

TimeReceiver()
IntentFilter(Intent.ACTION TIME TICK)

override fun onResume() {
super.onResume()
Log.info("App is resuming")

registerReceiver(timereceiver,intentfilter)

}

override fun onPause() {

super.onPause()

Log.info("App is paused")
try {

442

1]
12}

CHAPTER 19 BROADCASTRECEIVERS

unregisterReceiver(timereceiver) o

}
catch(iae:I1legalArgumentException) {

Log.warning(iae.toString())

}
}
inner class TimeReceiver : BroadcastReceiver() { (5]
override fun onReceive(context: Context?, intent: Intent?) {
current _count += 1
var message = "Counter:${current count}"
Log.info(message)
Toast.makeText(this@MainActivity, message, Toast.LENGTH_LONG).show()
}
}

Creates an instance of the BroadcastReceiver

Creates the intentfilter that’ll listen for the ACTION_TIME_TICK broadcast

Register the receiver inside onResume; this method is called by the runtime when the app is
seen by the user.

Unregister the receiver before the app goes to a "paused" state. This way, the receiver only
listens for broadcast whenever our app is in view of the user. When the app is no longer in the
user’s view, we don’t want to be notified of any broadcast.

Here’s the class definition for the BroadcastReceiver. It’s implemented as inner class, and it’s
just as effective. This works for us because we’re not trying to do anything substantial in the
onReceive callback. If the program logic gets too involved or complex, the BroadcastReceiver
might be better implemented outside MainActivity.

Other Notes

BroadcastReceivers and Intents do an effective job of making decoupled components

talk to each other. It’s good to use BroadcastReceivers if you want to facilitate

communication between apps; they’re a good solution for inter-process communication.

443

CHAPTER 19 BROADCASTRECEIVERS

But if the communication is limited among the components of your own app,

BroadcastReceivers are an expensive solution. It’s not appropriate to use global

broadcast.

If you simply want to facilitate some messaging between your app’s components,

you might want to consider a LocalBroadcastManager class. When you use this, the

broadcast data doesn’t leave your application. It’s not interprocess. Unfortunately,

LocalBroadcastManager won't be discussed in this chapter. But hopefully you've gained

some good grounding on the concept and use of BroadcastReceivers.

Chapter Summary

You can use BroadcastReceivers and Intents to create truly decoupled
apps.

You can make your app listen to a specific broadcast and do
something interesting when the broadcast is sent.

BroadcastReceivers can be used to route program logic in your
app. You can make the app behave in certain ways as a response to
the changes in the runtime environment (e.g., low battery, no WiFi
connection).

BroadcastReceivers can be registered via the manifest or via a
Context object. If you will target Android 9.0, make sure to read

on the broadcast actions that are allowed to be registered via the
manifest. There is a push from the Android team that discourages
apps to register via the manifest and use context registration instead.

In the next chapter, you'll learn how to prepare your app for distribution.

444

CHAPTER 20

App Distribution

What we’ll cover:
e C(Cleaning up
e Preparing for release
o Signing the app
e Google Play

At some point, you might want to distribute your application to a wide audience.
Android apps can be distributed quite freely and without much restriction; you can
make it available as a download on your website or even e-mail the app directly to the
users, but many developers choose to distribute their app on a market place like Google
Play Store or Amazon App Store to maximize reach. Regardless of how you intend to
distribute, there are things you need to do before you release the app.

Publishing an app can be a very involved activity, and it's not limited to the
technical and procedural aspects of app distribution such as creating an account on
developer.android.com, making polished icons, and signing your app. It may also
involve creating copy and promotional text, social media activities, and many other
things that have nothing to do with tech at all. This chapter will only focus on the
technical requirements of app distribution.

Generally, there are two stages when you publish an app:

1. Prepare the app for release. This is where we do some clean up.
You'll need to sanitize the app before the release. This is where
we remove all debug information and other settings or log what
we used during development. You certainly don’t want your users
accidentally seeing all those “got it” or “I am here” breadcrumbs
you left for yourself while you were coding. You may also want to
think about icons and other visual assets for the app. It’s a good

445
© Ted Hagos 2018

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_20

http://android.com

CHAPTER 20 APP DISTRIBUTION

idea to invest on an actual device at this stage and test your app
on it. Most importantly, in this stage, we’ll build a developer
certificate.

2. Releasing the app. You'll need to publicize the app, sell it, and
distribute it. If you will release the app in the Google Play Store,
you will need to sign up for a publisher account and use developer
console of Google play to publish.

Preparing the App for Release

The three major things we need to do here are:
1. Prepare the material and assets for release
2. Configure the app for release

3. Build a release-ready app

Prepare Materials and Assets for Release

No matter how nifty or clever your codes are, the user will never see it. What he will see
are your View objects, the icons, and other graphical assets of the app. Make sure they
are polished.

You'd be remiss if you didn’t think about your app’s icon. This icon helps users
identify your app as it sits on the home screen. This icon also appears on a couple
of other areas such as the launcher window, the downloads section, and, more
importantly, if you are publishing your app in the Google marketplace, this icon
will be displayed there too. The app icon may play a major role in creating the first
impressions to your would-be users, so it is a good idea to put some work into this
and to read Google's guidelines for app icons, which can be found at http://bit.1ly/
androidreleaseiconguidelines.

Other things to consider if you will publish the app in Google's marketplace are
graphical assets, like screen captures and the text for promotional copy. Make sure to
read Google's guideline for graphical assets, which can be found at http://bit.1ly/
androidreleasegraphicassets

446

http://bit.ly/androidreleaseiconguidelines
http://bit.ly/androidreleaseiconguidelines
http://bit.ly/androidreleasegraphicassets
http://bit.ly/androidreleasegraphicassets

CHAPTER 20 APP DISTRIBUTION

Configure the App for Release

This is the part where you clean-up and sanitize the app. The things we mention here
are by no means mandatory, but it’s a good idea to go through them before building a
release version.

Check the Package Name

In previous chapters, you have used “com.example.myapp” for package names. That'’s
alright for test or practice apps, but that’s not alright when you will release the app to the
public. The package name makes the app unique across the marketplace, and once you
decide on a package name, you can’t change it anymore. So, give it some thought.

Remove Logging and Debug Information

Debug and log information are useful—indispensable even—during development,
but you must not let your users see them. Before releasing the app, strip your app of all
debug and log information.

The debugging information is easy enough to deal with, you simply need to remove
the android:debuggable attribute in the <application> tag of the Manifest file. The
same cannot be said about the logging information, unfortunately.

There are various approaches to the log issue; the solutions can be as simple (but
tedious) as manually removing all Log statements or as sophisticated as writing sed or
awk programs to automatically strip away the Log calls. Some people deal with the log
issues by configuring ProGuard (which is outside the scope of this book), and some
others would go as far as using a third-party library like Timber (a GitHub project) to
replace Android's Log class. Regardless of what approach you take, just be mindful that
you need to strip away the Log statements before you build for release.

Check the Application Permissions

Sometime during development, you may have experimented on some features of the
application and you may have set permissions on the manifest like permission to use
the network, write to external storage, etc. Review the <uses-permission> tag on the
manifest and make sure that you don't grant permissions that the application does not
need.

447

CHAPTER 20 APP DISTRIBUTION

Remote Servers and URLs

If your application relies on web APIs or cloud services, make sure that the release
build of the app is using production URLs and not test paths. You may have been given
sandboxes and test URLs during development; you need to switch them up to the
production version.

Build a Release-Ready Application

All of the projects and samples we did in this book were deployed in the emulator with
a simple procedure. We clicked the Run button. Android Studio built and assembled
the app into an APK, which was deployed in the target device. After that, the app ran.
Throughout this process, there was one step that Android Studio did for us, and you
didn’t know it. You weren’t aware of it at all.

Android Studio performed a very important task that is required before any APK
can be delivered or installed on any device (emulated or actual device). Android Studio
signed that APK.

Before you can install and run an app in any device, the application’s APK has to
be signed digitally. Android Studio automatically signs all apps when we click the Run
button. But it uses a debug certificate, which is good only for development and testing.
You cannot use the same certificate when you release the app. Most app stores, including
Google, won’t accept an application that is signed with a debug certificate.

Before we distribute the app, we have to sign it with a proper certificate—not a debug
certificate. We don’t need to go to a certificate authority like Thawte or Verisign for
this—a self-signed certificate will do.

Launch Android Studio, if it isn’t open yet. Open your project. From the main menu
bar, go to Build » Generate Signed APK, as shown in Figure 20-1.

448

CHAPTER 20 APP DISTRIBUTION

‘8 @ Generate Signed APK

Module: | 5 app I

7 Cancel] Next
Figure 20-1. Generate signed APK
Click the “Next” button. You should see the “Keystore” dialog, as shown in Figure 20-2.

‘e @ Generate Signed APK

Key store path:

Create new... Choose existing...
Key store password:
Key alias:
Key password:
Remember passwords
? Cancel Previous [BLLEISS

Figure 20-2. Keystore dialog

The Key store path is asking where our Java Keystore (JKS) file is. At this point, you
don’t have it yet. So, click Create New. You'll see the dialog window for creating a new
Keystore, as shown in Figure 20-3.

449

CHAPTER 20 APP DISTRIBUTION

® @ New Key Store

Key store path: /Users/ted/Desktop/testapp.jks

Password: 0000000000000 Confiim: 0000000000000
Key

Alias: testapp

Password: 1000000000000 Confirm: 1000000000000

Validity (years): 25

Certificate
First and Last Name: | Ted Hagos|

Organizational Unit:
Organization:

City or Locality:
State or Province:

Country Code (XX):

Figure 20-3. New Keystore

Note In Java, a keystore is a repository of security certificates—either
authorization certificates or public key certificates.

Table 20-1 shows the description for the input items of the Keystore.

450

CHAPTER 20 APP DISTRIBUTION

Table 20-1. Keystore Items and Description

Keystore items Description

Keystore path The location where you want to keep the keystore. This is entirely up to. Just make
sure you remember this location.

Password This is the password for the keystore.
Alias This alias identifies the key. It’s just a friendly name for it.

(Key) Password This is the password for the key. This is NOT the same password as the keystore’s
(but you can use the same password if you like).

Validity, in years The default is 25 years; you can just accept the default. If publish on Google Play,
the certificate must be valid until October of 2033—so0, 25 years should be fine.

Other Only the first and last name fields are required.
information

When you're done filling up the New Keystore dialog, click “OK.” This will bring you
back to the Generate Signed APK window, as shown in Figure 20-4; but now, the JKS file
is created and Keystore dialog is populated with it.

‘o @ Generate Signed APK

Key store path: JUsersfted/Desktop/testapp.jks

Create new... Choose existing...
Key store password: 0000000000
Key alias: testapp

Key password: o0e0800000

Remember passwords

? Cancel Previous m

Figure 20-4. Generate signed APK, populated

451

CHAPTER 20 APP DISTRIBUTION

Click “Next”

‘o @ Generate Signed APK

Note: Proguard settings are specified using the Project Structure Dialog

JAPK Destination Folder: | /Users/ted/AndroidStudioProjects/BasicDB/app

<3

Build Type: release

Flavars:
pro
Signature Versions: V1 (Jar Signature) V2 (Full APK Signature) Signature Help
? Cancel Previous W

Figure 20-5. Signed APK, APK destination folder

Next, we choose the destination of the signed APK, as shown Figure 20-5. You need
to remember this location. This is where Android Studio will store the signed APK. Also,
make sure that the Build type is set to “release.”

When you click Finish, Android Studio will generate the signed APK for your app.
This is the file that you will submit to Google Play. You can even sell this APK on your
website or some other marketplace—it ready for release.

Releasing the App

Before you can submit an app to Google Play, you'll need a developer account. If you
don’t have one yet, you can sign up at https://developer.android.com. There’s a lot of
assumptions I'm making about the next activities. I'm assuming that:

1. You already have a Google account (Gmail);

2. You're using Google Chrome to go to https://developer.
android.com; and

3. You're Google account is logged on to Chrome.

452

https://developer.android.com
https://developer.android.com
https://developer.android.com

CHAPTER 20 APP DISTRIBUTION

If you're Google account isn’t logged on to Chrome, you might see something like
Figure 20-6. Chrome will ask you go select an account (or create one).

@ Secure | https://accounts.google.com/ServiceLogin/signinchooser?service=googleplay&passive=1209600&continue=... ¥r | @

Fount [} AsciiDoc Writer's G... [AsciiDoc User Guide [Amazon Kindle Dire.. [% Insta Paper - Read.. [1 EI [7 Overview /Installati... »

Google

Choose an account

Ted Hagos

tedhagos@gmail.com
Signed out

‘ Ted Hagos
ted@thelogbox.com

Signed out

(3

Use another account

R i T il
Figure 20-6. Choose an account

When you get your Google account sorted out, you'll be taken to the developer.
android.com website, as shown in Figure 20-7.

Note The screenshots shown here are as they appear at the time of writing.
Google makes changes to the websites from time to time. The Google Play website
may not look like these screenshots anymore by the time you read this book.

453

CHAPTER 20 APP DISTRIBUTION

Click Google Play, as shown in Figure 20-7.

| < C | & Secure | https://developer.android.com # @O MW@ ®
i i Apps [Foumt [AsciiDoc Writer's G.. [1 AsciiDoc User Guide [¢ Oire.. [} Insta Paper - Read.. [€l [) Overview fInstallati.. » [Other Bookmarks
! Iil De\;elgpers Platform Android Studio Google Play Android Jetpack Docs Blog

N’

build for
the outdoors

Q. Search Products and Documentation

e T e

Figure 20-7. developer.android.com

Click Launch Play Console, as shown in Figure 20-8.

&« | & Secure | https://developer.android.com/distribute/ OB ®
#fApps [Fount [) AsciiDoc Writer's G.. [1 AsciiDoc User Guide [Amazon Kindle Dire.. [) Insta Paper - Read.. [) El [) Overview/Instaliati.. » B2 Other Bookmarks
lﬁl Developers Platform Android Studio Google Play Androeid Jetpack Docs » Q, Search
Y
Google Play LAUNCH PLAY CONSOLE
OVERVIEW PLAY CONSOLE PLAY STORE PLAY BILLING PLAY SERVICES GUIDES RESOURCE’ STORIES

4
/
4

' Google Play '/'

With the ability to publish rapidly to over 2 billion active Android de&es. Google Play helps you
grow a global audience for your apps and gami d earn revenue.

I LAUNCH PLAY CONSOLE I

e I

Figure 20-8. Launch Play Console

454

< C O @ Secure | https:/play.google.com/apps/publish/signup/

Sign-in with your Google
account

You are signed in as...

Ted Hagos

ted@helogbox com

Before you continue...

Accept developer agreement
igtribution agreement.

ret and | am willing 1o associate my

gistration with the Goagle Play

Accept Developer
Agreement Fee

This is the Google account that will be
 you would like to use a different account, you can choose from the following options below. Iif you are an
organization, consider registering a new Google account rather than using a personal account

Read and agree 1o the Google Flay Developer

Pay Registration

CHAPTER 20 APP DISTRIBUTION

* OHA & ¢

Complete your Account

details

Console.

@@

Review distribution countries

Review the distribution countries where you
can distribute and sell applications

If you are planning to sell apps or in-app
products, check if you can have a merchant
ACCOUNL iN your country.

d with your D

SIGN IN WITH A DIFFERENT ACCOUNT CREATE A NEW GOOGLE ACCOUNT

Credit card

Make sure you have your credit card
handy to pay the $25 registration
fee in the next step

Developer distribution agreement

CONTINUE TO PAYMENT

Figure 20-9. Google Play console, sign up

You need to go through four steps to complete the registration (shown in Figure 20-9):
1. Sign-in with your Google account.
2. Acceptthe developer agreement.
3. Pay the registration fee.
4. Complete your account details.

Once you have completed the registration and payment, you will now have access to
the Google Play console, as shown in Figure 20-10.

455

CHAPTER 20 APP DISTRIBUTION

p Google Play Conscle = All applications Q, search for apps A © 9

& Allapplications

P TR BTt o, P . Iy P NN N [A e AN T il

A Game services
Active install R
A App name oot :\;u. rimm; Last update Status

B Order management “ @ b

]| Another Test App - * = Nov 28,2017 Draft B
B Download reports

[] TestApp - * - Oct 30,2017 Draft]
A Alers

u Testing - *— Det 10,2017 Draft (]
Q Settings

Page 10f1

Figure 20-10. Play Console

This is where you can start the process of submitting your app to the store. Click the

“Create application” button to get started.

Chapter Summary

456

Your codes may be great, but the user will never see them. Pay
attention (also) to the things the user will see, like icons and other
graphical assets.

Clean up your code before you release them. Remove all those log
and debug info.

Code-review your own work. If you have buddies or other people who
can review the code with you, that’s much better. If your app uses
servers, RESTful URLs, etc., make sure they are production-ready and
not sandboxes.

You can’t use debug certificates if you want to release your app into
marketplaces like Google Play or Amazon.

CHAPTER 20 APP DISTRIBUTION

You'll need a Google Play account if want to sell your apps on Google

Play. I paid a one-time fee of $25 USD, but that was a couple of years
ago.

Don’t forget to test your app on a real device.

We tried to distill and simplify the process of putting your app in the
Play Store,\ but this chapter isn’t a subsitute to Android Developer’s
launch checklist. You should still read that. You can find at https://
bit.ly/appstorelaunchchecklist.

457

https://bit.ly/appstorelaunchchecklist
https://bit.ly/appstorelaunchchecklist

Index

A

Access modifiers, 102
Accessor methods, 94-96
ADTs, see Android development
tools (ADTs)
Android
architecture of, 158-160
history, 157-158
Studio (see Android Studio)
Android app
AndroidManifest, 175-176
AS3 IDE (see AS3 IDE)
components
activities, 174
BroadcastReceivers, 174-175
Contacts app, 176
ContentProviders, 174-175
Intents, 176-177
Services, 174-175
EXE files, 173
logical structure, APK, 173
project creation
AS3 welcome screen, 177-178
AVDs, 183, 188, 190
choosing activity, 181
Component installer, 186
configure activity, 182
“Include Kotlin support”
tick box, 179
Instant apps, 180

© Ted Hagos 2018

Instant run, 189
launching AS3, 177
location, 178
main AS3, 182-183
new project, 178
package name, 178
Runicon, 183
Select Deployment Target
screen, 183, 189
selecting hardware, 184
system image, 185, 187
target Android devices, 179
Android Debug Bridge (adb), 387, 439
Android development tools (ADTs), 160
Android Device Monitor, 387
Android Honeycomb, 289
Android Not Responding (ANR), 348
Android Studio
in 2013, 161
ADTs, 160
AS3 installer, 161
AVD, 169
32-bit libraries, Linux, 162
commercial Java IDE, 161
configuration
API levels, 165
changes, channel, 168
coding, 163
SDK tools, 166-167
SDK window, 165
updates, 167-168

459

T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0

https://doi.org/10.1007/978-1-4842-3907-0

INDEX

Android Studio (cont.)
HAXM, Windows users, 169
IDE, 160, 171
JDK, 161
JVM languages, 161
KVM, Linux users, 169
Linux installation, 162
macQS§, 161
macOS users, 169
SDK manager, 160
Window, 162
Android Studio 3 (AS3), 17
Intelli] IDEA (see Intelli] IDEA)
Android Virtual Devices
(AVDs), 169, 183, 188, 190
App configuration
cloud services, 448
debugging information, 447
logissue, 447
package name, 447
permissions, 447
ProGuard, 447
web APIs, 448
App distribution
Android apps, 445
developer.android.com, 445
Google Play Store, 446
publishing App, 445
release preparation
app’sicon, 446

configuration (see App configuration)

Google marketplace, 446
graphical assets, 446
release-ready application

(see Release-ready application)

releasing App
developer account, 452

developer.android.com, 453-454

460

Google account, 453
Google Play, 452, 454-456
payment, 455
registration, 455

Application entry point

Activity Class
Kotlin, 198
life cycle, 199
containers, layout managers, 204
layout file, 200-201
manifest file, 197
View, ViewGroup objects, 202-203

Arrays

arrayOf function, 119
arrayOfNulls function, 118
constructor, 119
emptyArray function, 118
forEachIndexed function, 120
get function, 118
limitations, 120-121

set function, 118
specialized classes, 119-120
strings, 117

traversing arrays, 120

AS3 IDE

customizing code style, 195-196
Editor window, 191
keyboard shortcuts
keymap settings, 194-195
list, 193-194
main menu, 192-193
Navigation bar, 192
opened project, 190-191
Project Files, 191
Status Bar, 192
Tool bar, 192
Tool window bar, 192
Tool windows, 192

B

Backround app
Anko’s doAsync
build.gradle, 360-361
code, 362
AsyncTask
code, MainActivity, 359-360
doInBackground method, 357-358
params, 358
progress, 358
publishProgress method, 358
result, 358
subclass, 357-358
type parameters, 360
handler class
code, 355-356
handler object, 354
putString() method, 356
process, 344
threads and runnables, 344
activity_main.xml, 349-350
basic UI, 349
code, 351-353
creation, 351
Logcat window, 350
runOnUiThread method, 353-354
single abstract method, 352
Ul thread
ANR error, 348
blocked state, 345
cheap call, 345
GCE 345-346
GitHub, expensive call, 347
killSomeTime function, 347
nested calculation, expensive
call, 348
NetworkOnMainThread
Exception, 346

INDEX

steps, 344
Thread.sleep call, 347

BroadcastReceivers

Android 9 (API 28), 432
Application’s context, 431
broadcast action, 430
BROADCAST_ACTIONS.TXT
file, 427
class creation, 431
CONNECTIVITY_ACTION, 433
custom broadcast App, 427
activity_main.xml, 434
adb, 439
Android SDK, 439-440
BroadcastReceiver, 435
context menu, 435
details, 433
lateinit keyword, 438
MainActivity.java, 437
MainActivity’s Ul, 434
MyReceiver.java, 436
onCreate callback, 436
onReceive method, 436
onResume callback, 436
platform-tools, 440
exceptions, 432
execution limits, 432
implicit vs. explicit broadcast
actions, 432-433
Intents, 425
LocalBroadcastManager class, 444
manifest vs. context registration
AndroidManifest.xml, 427-428
context register, 429
IllegalArgumentException, 430
intentfilter, 428, 430
MyReceiver class, 428
registerReceiver method, 430-431
461

INDEX

BroadcastReceivers (cont.)
onReceive method, 431
publish-subscribe model, 426
register, 431
system broadcast App, 426

ACTION_TIME_TICK, 440-441
vs. custom broadcast, 426-427
intentfilter, 443
MainActivity, 442
onResume callback, 441
paused state, 443
project details, 441
TIME_TICK, 432
user interaction, 426

C

Classes
basic class, 84
constructor, 85-88
custom accessor
methods, 95-96
header, 85
inheritance, 89-92
single property, 92-94
Collections, container, 117
Collections framework
common operations on, 126-127
data structure, 121
filter and map, 128-130
forEach function, 128
hierarchy of, 122
Iterable interface, 127
library functions, 122-123
lists, 123-124
maps, 125-126
sets, 124-125
while loops, 127

462

Color
current colors.xml, 285
defined, 285
Command line tools
hello.kt, 16
installing
HomeBrew/MacPort, 10-11
SDKMAN, 14
zipped installer (see Zipped installer)
REPL, 15-16
Constructor, 85-88

D

Data classes, 96-99
Data storage
content providers, 390
internal or external storage, 389
network storage, 390
SharedPreferences, 389
SQLite database, 390
Debugging
logic errors
breakpoints, 385-386
Logcat tool window, 383, 385
runtime errors
ArithmeticException, 379, 382
code for opening a file, 378
examples, 378
exception handling, 380
try-catch block, 380-381
syntax errors
AsyncTask class, 374-375
code with error, 377
nested blocks, 376
Diamond problem, 81-82
displayMessage() function, 65
Don’t repeat yourself (DRY) principle, 423

INDEX

E String class, 72-73
StringUtil class, 71-72

End of file (EOF), 411) .
terminatorify, 71

Event handling

activity_main.xml, 228-230
Android framework, 221
annotated code, registering
handlers, 223

AS3 hints, 231-232
build.gradle file, 234
button control, design surface, 226
convert to lambda hint, 232
convert to lambda quick fix, 232
event objects, 221
Extract Resource, 227-228
id attribute of layout container, 229
KAE, 231
listener objects, 221, 223
MainActivity.Kt, 230, 235
OnClickListener, 224, 231
OnLongClickListener, 233
project information, 225
project running, emulator, 236-237
setOnClickListener, 224
simplified model, 222
SnackBar, OnLongClickListener, 235
suggested fix, 227
text property, 227
Toast message, 233
user’s action, 222
View.OnClickListener

Lava, 224

Kotlin, 225

lambdas, 225
warnings and error button, 226

Exception handling, 57-58
Extension functions

chanthofy, 71
homerity, 71-73

F

File storage
cache directory, 409
external storage, 408
internal storage, 408
Java file I/0, 407
for loops statement, 55-56
Fragments
activity_main, element, 309-310
BookTitle, 308
book title and description, demo
activity_main.xml, 322
BookDescription
class, 319-320, 335, 337
book_description fragments, 323-324
book_description.xml, 314-315, 319
BookTitle class, 316-318
BookTitle, code, 332-333
book _titles fragments, 323-324
book_titles.xml, 315-316
callbacks, 335
changeDescription function, 328
communication, 328
coordinator interface, 328-330
device orientation, 334
emulator, 333-334
horizontal orientation, 312, 324
inflate method, 318
Kotlin file/class, 329
layout-land, 326-327
layout resource file, 326
linearLayout, 321-322
MainActivity, 320-321, 331-332
onBookChanged method, 331
463

INDEX

Fragments (cont.) default arguments, connectToDb, 68
onCreateView method, 318 infix, 73-75
onSavelnstanceState named parameters, 69
method, 335-336 operator overloading, 75-78
project details, 312-313 variable number of arguments, vararg
project view, 324-325 function, 70
radiobutton, 332
resource directory, 325 G

synchronization, 327
vertical orientation, 311
view.id, 318
XML values file, 313-314
creation, 306
defined, 306
dynamic demo
activity_main.xml, 338-339
beginTransaction() method, 341
commit() method, 341
FragmentManager, 337
FragmentTransaction object, 337
getSupportFragmentManager()

Generic programming

class, 138-140

extension function, 137-138

fooBar function, 136-137

Java, 133-134

parametric polymorphism, 135-136

reified function, 149, 151-153

variance
class, 144-145
contravariance, 143-144
generics type, 146-147
list interface, 148

method, 341 LSE, lb‘il—142
MainActivity, 339-341 nullable types, 145
onBookChanged() method, 341 OOP, 140 o
i open closed principle, 141
project, changes, 338
GitHub API

project details, 337
FragmentsTest, 310
Kotlin class, 307-308
onCreateView method, 309
resource file, 306-307

activity_main.xml, 366-367
AndroidManifest.xml, 370-371
GetGitHublInfo, 365

JSON response, 363-364
MainActivity, 369-370

XML file, 306
Functional language, 5 OkHttp, 367-369
Functions project details, 365
declaration, 63
displayMessage, 64-65 H
getSum, a productive Hello world application
function, 66-67 attributes window, 214
using pairs, 66-67 clear constraints, 212

464

design view, 209
inferred constraints, 213
MainActivity class, 215-217
MainActivity files, 207
manifest file, 206
modification, 208
project information, 205
project view, 207
running on an emulator, 217
view palette, 210

Higher order functions
action, type String, 106
declare and define, 107
description, 105
doThis and executor(), 107-109
function type, 106
parameter, 106

Hype cycle, 6

if statement, 51, 53
Inheritance, 89-92
Intelli] IDEA
creating project
Hello.kt, 24-29
Kotlin/JVM, 20
kotlinproject, 20-21
Project Tool window, 22-23
tip of the day, 21-22
welcome screen, 19
download page, 17
IDE, 29-30
Linux, 18
macQOS, 18
Windows, 18
Intents
Android app, 239-240

INDEX

defined, 239
explicit, 243
getApplicationContext(), 241
getExtra method, 244, 246
getIntent() function, 246
implicit, 243, 249
MainActivity, 279-281
project details, 278
snapshots, 282
launching activity
activity_main.xml, 253-254
activity_second.xml, 254
button view, 252-253
logcat tool window, 258
MainActivity.Kt, 255-256
project detail, 251
project tool window, 251
SecondActivity.Kt, 256-257
loose coupling, 242-243
MainActivity, 243-244
onActivityResult, 247-248
onCreate method, 244, 246
putExtra method, 243, 245-246
SecondActivity, 243, 252
send and get data, project
activity_main.xml, 268-269
activity_second.xml, 270-272
EditText views, 266-267
empty activity, creation, 269
finish() method, 273
gerBMIDescriptionfunction, 278
getStringExtra method, 264
layout, 266
MainActivity, oncreate
method, 272-273
project details, 265
SecondActivity, creation, 269-270
setResult method, 274

465

INDEX

Intents (cont.) read file, 410-411
send data, project read method, 411
activity_main.xml, 259-260 runOnUiThread, 417
activity_second.xml, 260, 262 saveData function, 418-419, 422
MainActivity, 263, 275-278 save file, 410
project details, 259 SecondActivity, 422-423
SecondActivity, 264 start method, 418
sequence diagram, 247, 257-258 TextView object, 423
setResult method, 246 threading, 423
startActivityForResult method, 246-247 try-catch block, 417
startActivity method, 244 Ul thread, 419
this@MainActivity, 241 use extension, 410
web browser, launching, 249-250 write method, 410
Interfaces writing file, 409
basic form, 79-80 Iterable interface, 127
default implementations, 80
diamond problem, 81-82
MultiFunction class, 80 J
super keyword, 82-84 Java
Internal storage interoperability with, 5
activity_main.xml, 414-415 methods, 63
activity_second.xml, 415 OO0P, 4
context mode, 410 type erasure, 149
DRY principle, 423 Java SDK, install
EOF marker, 411 Linux, 9
exception handling, 418, 423 macOS, 7
explicit Intent, 412-413 Oracle JDK download page, 6
getCacheDir(), 409 Windows 10, 8
housekeeping codes, 417 Java Virtual Machine (JVM), 4
loadData function, 416-417 JetBrains, 4
MainActivity, 419, 421
MODE_PRIVATE, 410 K

multiline EditText, 412-413
onPause method, 418
onResume callback, 416
openFileInput(), 409
openFileOutput(), 409 types

project details, 412 arrays, 47-48

Kernel-based Virtual Machine (KVM), 169
Kotlin
type inference, 35

466

Booleans, 47
characters, 46
literal constant, 45
numbers, 44
strings, 49-50
template, 50-51
Kotlin Android Extension (KAE), 231, 236

L

Lambdas
and anonymous functions
closures, 113
doThis, 109
higher order function, 109-110
parameters, 110-113
with and apply, 114-116
Liskov Substitution Principle (LSP),
141-142
Lubuntu 3, 17

Menus

with ActionBar, 290

add to an app, 290-291

Android Honeycomb, 289

creating Demo App
Android Resource Directory, 293
attributes, 295
build.gradle file, 292-293, 302
CHAppBar menus, 297
MainActivity codes, 299-301
onCreateOptionsMenu, 297
project details, 291
resource file, 294

inflate()function, 297

on older Android hardware, 289

INDEX

N

Nullable types, 59-60
Null value, handling, 58-60

O

Object declarations, 102-103
Open closed principle, 141
Operator overloading
class employee, 75-76
employee objects, 75
function names, 77
polymorphism, 77

PQ

Parametric polymorphism, 135-136
Preferences, AS3 opening screen, 164
Program elements
blocks, 41-42
comments, 42-43
expressions and statements, 36-37
keywords, 37
literals, 34
operators and symbols, 39-41
variables, 34-35
whitespace, 38
Program flow, control
for loops statement, 55-56
if statement, 51, 53
when statement, 53-55
while statement, 55
Project, see GitHub API

R

Read, Eval, Print, Loop (REPL), 15
Reified generics, 149, 151-153

467

INDEX

Release-ready application
Android Studio, 448
APK, 448
Build type, 452
debug certificate, 448
JKS file, 451
keystore dialog, 449
Keystore items, 451
Key store path, 449
signed APK, 449, 451-452

S

Safe call operator, 59-60

SDKMAN, 14

SharedPreferences

Activities, sharing data
activity_main.xml, 401-402
activity_second.xml, 402-403
application level preferences
file, 398

clear()function, 406
getPreferences function, 399

getSharedPreferences function, 399

getString method, 399
MainActivity, 403-404
onPause function, 404
onResume function, 405
project details, 399
remove function, 406
saveData function, 404
SecondActivity, 405-406

SharedPreferences.Editor, 406

storyboard, 400
device file explorer, 396-397
getPreferences method, 390

468

key-value pairs, 390
MainActivity class, 395-396, 398
MainActivity.xml file, 397-398
MODE_APPEND, 392
MODE_PRIVATE, 391
MODE_WORLD_READABLE, 391

MODE_WORLD_WRITEABLE, 392

project details, 392
putString, 391
save data, 391
SharedPreferences.editor, 396
TextView object, 392
XML layout file, 393-395
Single Abstract Method (SAM), 352
Single expression functions, 67-68
Single property, 92-94
SOLID design principles, 141
startActivity() function, 241
Style
current styles.xml, 284
definition, 283
Super keyword, 82-84

T, U
Theme
customizing
color picker, 287
palette, 288
Theme editor, 286
Traversing arrays, 120
Type erasure, 149

\'

Visibility modifiers, 100-102

W XY
when statement, 53-55
while statement, 55
Windows 4,

8-10, 14

INDEX

Y4

Zipped installer
GitHub releases, 11-12
unzip command, 12-13
Windows 10, 14

469

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part I: The Kotlin Language
	Chapter 1: Getting into Kotlin
	About Kotlin
	Installing the Java SDK
	Installing on macOS
	Installing on Windows 10
	Installing on Linux

	Installing Kotlin
	Installing the Command Line Tools
	HomeBrew or MacPort
	Using a Zipped Installer
	macOS and Linux
	Windows 10

	Using SDKMAN

	Coding With the Command Line Tools
	Installing IntelliJ

	Creating a Project
	The IntelliJ IDE
	Chapter Summary

	Chapter 2: Kotlin Basics
	Program Elements
	Literals
	Variables
	Expressions and Statements
	Keywords
	Whitespace
	Operators
	Blocks
	Comments

	Basic Types
	Numbers and Literal Constants
	Characters
	Booleans
	Arrays
	Strings and String Templates

	Controlling Program Flow
	Using ifs
	The when Statement
	The while Statement
	for loops

	Exception Handling
	Handling Nulls
	Chapter Summary

	Chapter 3: Functions
	Declaring Functions
	Single Expression Functions

	Default Arguments
	Named Parameters
	Variable Number of Arguments
	Extension Functions
	Infix Functions
	Operator Overloading
	Chapter Summary

	Chapter 4: Working with Types
	Interfaces
	Diamond Problem
	Invoking Super Behavior

	Classes
	Constructors
	Inheritance
	Properties

	Data Classes
	Visibility Modifiers
	Access Modifiers
	Object Declarations
	Chapter Summary

	Chapter 5: Lambdas and Higher Order Functions
	Higher Order Functions
	Lambda and Anonymous Functions
	Parameters in Lambda Expressions
	Closures

	with and apply
	Chapter Summary

	Chapter 6: Collections and Arrays
	Arrays
	Collections
	Lists
	Sets
	Maps
	Collections Traversal

	Filter and Map
	Chapter Summary

	Chapter 7: Generics
	Why Generics
	Terminologies
	Using Generics in Functions
	Using Generics in Classes
	Variance
	Subclass vs Subtype
	Reified Generics
	Chapter Summary

	Part II: Android Programming with Kotlin
	Chapter 8: Android Studio Introduction and Setup
	History
	Architecture
	Android Studio IDE
	Setup
	Android Studio Configuration
	Hardware Acceleration
	Chapter Summary

	Chapter 9: Getting Started
	What’s in an App
	Component Activation

	Creating a Project
	The IDE
	Main Menu
	Keyboard Shortcuts
	Customizing Code Style

	Chapter Summary

	Chapter 10: Activities and Layouts
	Application Entry Point
	Activity Class
	Layout File
	View and ViewGroup Objects
	Containers

	Hello World
	Modifying Hello World

	Chapter Summary

	Chapter 11: Event Handling
	Introduction to Event Handling
	Chapter Summary

	Chapter 12: Intents
	What Intents Are
	Loose Coupling
	Two Kinds of Intent
	Intents Can Carry Data
	Getting Back Results from Another Activity

	Implicit Intents
	Demo 1: Launch an Activity
	Demo 2: Send Data to an Activity
	Demo 3: Send and Get Data Back to and from an Activity
	Demo 4: Implicit Intents
	Chapter Summary

	Chapter 13: Themes and Menus
	Styles and Themes
	Customizing the Theme

	Menus
	Chapter Summary

	Chapter 14: Fragments
	Introduction to Fragments
	Book Title and Description, a Fragments Demo
	Fragments Demo, Dynamic
	Chapter Summary

	Chapter 15: Running in the Background
	Basic Concepts
	The UI Thread
	Threads and Runnables
	Using the Handler Class
	AsyncTask
	Anko’s doAsync
	A Real-World Example
	Chapter Summary

	Chapter 16: Debugging
	Syntax Errors
	Runtime Errors
	Logic Errors
	Walking Through Code

	Other Notes
	Chapter Summary

	Chapter 17: SharedPreferences
	Sharing Data Between Activities
	Chapter Summary

	Chapter 18: Internal Storage
	Overview of File Storage
	Internal and External Storage
	Cache Directory

	How to Work with Internal Storage
	Chapter Summary

	Chapter 19: BroadcastReceivers
	Introduction to BroadcastReceivers
	System Broadcast vs. Custom Broadcast
	Manifest Registration vs. Context Registration
	Basics of BroadcastReceivers
	Implicit vs. Explicit Broadcast Actions
	Demo App: Custom Broadcast
	Demo App: System Broadcast
	Other Notes
	Chapter Summary

	Chapter 20: App Distribution
	Preparing the App for Release
	Prepare Materials and Assets for Release
	Configure the App for Release
	Check the Package Name
	Remove Logging and Debug Information
	Check the Application Permissions
	Remote Servers and URLs

	Build a Release-Ready Application

	Releasing the App
	Chapter Summary

	Index

