
Learn
Android Studio 3
with Kotlin

Efficient Android App Development
—
Ted Hagos

Learn Android Studio 3
with Kotlin

Efficient Android App Development

Ted Hagos

Learn Android Studio 3 with Kotlin: Efficient Android App Development

ISBN-13 (pbk): 978-1-4842-3906-3			 ISBN-13 (electronic): 978-1-4842-3907-0
https://doi.org/10.1007/978-1-4842-3907-0

Library of Congress Control Number: 2018962941

Copyright © 2018 by Ted Hagos

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484239063. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ted Hagos
Manila, National Capital Region, Philippines

https://doi.org/10.1007/978-1-4842-3907-0

For Adrianne and Stephanie.

v

About the Author�� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

Introduction���xix

Table of Contents

Part I: �The Kotlin Language��� 1

Chapter 1: �Getting into Kotlin�� 3

About Kotlin�� 4

Installing the Java SDK�� 6

Installing on macOS�� 7

Installing on Windows 10��� 8

Installing on Linux�� 9

Installing Kotlin�� 10

Installing the Command Line Tools��� 10

Coding With the Command Line Tools�� 15

Installing IntelliJ��� 17

Creating a Project�� 19

The IntelliJ IDE��� 29

Chapter Summary�� 31

Chapter 2: �Kotlin Basics�� 33

Program Elements��� 33

Literals�� 34

Variables��� 34

Expressions and Statements�� 36

Keywords�� 37

vi

Whitespace��� 38

Operators�� 39

Blocks��� 41

Comments�� 42

Basic Types�� 44

Numbers and Literal Constants�� 44

Characters�� 46

Booleans��� 47

Arrays��� 47

Strings and String Templates��� 49

Controlling Program Flow�� 51

Using ifs�� 51

The when Statement�� 53

The while Statement�� 55

for loops��� 55

Exception Handling�� 57

Handling Nulls�� 58

Chapter Summary�� 60

Chapter 3: �Functions��� 63

Declaring Functions��� 63

Single Expression Functions�� 67

Default Arguments��� 68

Named Parameters�� 69

Variable Number of Arguments�� 70

Extension Functions��� 71

Infix Functions�� 73

Operator Overloading��� 75

Chapter Summary�� 78

Table of Contents

vii

Chapter 4: �Working with Types�� 79

Interfaces��� 79

Diamond Problem��� 81

Invoking Super Behavior�� 82

Classes��� 84

Constructors��� 85

Inheritance��� 88

Properties��� 92

Data Classes�� 96

Visibility Modifiers�� 100

Access Modifiers�� 102

Object Declarations�� 102

Chapter Summary�� 103

Chapter 5: �Lambdas and Higher Order Functions�� 105

Higher Order Functions�� 105

Lambda and Anonymous Functions��� 109

Parameters in Lambda Expressions��� 110

Closures�� 113

with and apply��� 114

Chapter Summary�� 116

Chapter 6: �Collections and Arrays��� 117

Arrays��� 117

Collections��� 121

Lists�� 123

Sets�� 124

Maps��� 125

Collections Traversal��� 127

Filter and Map�� 128

Chapter Summary�� 130

Table of Contents

viii

Chapter 7: �Generics��� 133

Why Generics��� 133

Terminologies��� 135

Using Generics in Functions�� 136

Using Generics in Classes�� 138

Variance��� 140

Subclass vs Subtype�� 144

Reified Generics��� 149

Chapter Summary�� 153

Part II: �Android Programming with Kotlin��� 155

Chapter 8: �Android Studio Introduction and Setup�� 157

History�� 157

Architecture��� 158

Android Studio IDE��� 160

Setup�� 161

Android Studio Configuration��� 163

Hardware Acceleration��� 169

Chapter Summary�� 170

Chapter 9: �Getting Started��� 173

What’s in an App�� 173

Component Activation��� 176

Creating a Project�� 177

The IDE��� 190

Main Menu�� 192

Keyboard Shortcuts�� 193

Customizing Code Style�� 195

Chapter Summary�� 196

Table of Contents

ix

Chapter 10: �Activities and Layouts�� 197

Application Entry Point��� 197

Activity Class�� 198

Layout File�� 200

View and ViewGroup Objects�� 201

Containers�� 203

Hello World��� 204

Modifying Hello World��� 208

Chapter Summary�� 218

Chapter 11: �Event Handling��� 221

Introduction to Event Handling��� 221

Chapter Summary�� 237

Chapter 12: �Intents�� 239

What Intents Are��� 239

Loose Coupling��� 242

Two Kinds of Intent�� 243

Intents Can Carry Data��� 243

Getting Back Results from Another Activity�� 246

Implicit Intents��� 249

Demo 1: Launch an Activity�� 251

Demo 2: Send Data to an Activity��� 259

Demo 3: Send and Get Data Back to and from an Activity�� 265

Demo 4: Implicit Intents��� 278

Chapter Summary�� 282

Chapter 13: �Themes and Menus�� 283

Styles and Themes��� 283

Customizing the Theme�� 286

Menus�� 288

Chapter Summary�� 303

Table of Contents

x

Chapter 14: �Fragments�� 305

Introduction to Fragments�� 305

Book Title and Description, a Fragments Demo��� 311

Fragments Demo, Dynamic�� 337

Chapter Summary�� 341

Chapter 15: �Running in the Background��� 343

Basic Concepts�� 344

The UI Thread��� 344

Threads and Runnables��� 349

Using the Handler Class��� 354

AsyncTask�� 357

Anko’s doAsync�� 360

A Real-World Example��� 363

Chapter Summary�� 371

Chapter 16: �Debugging�� 373

Syntax Errors��� 373

Runtime Errors��� 377

Logic Errors�� 382

Walking Through Code�� 385

Other Notes�� 387

Chapter Summary�� 388

Chapter 17: �SharedPreferences��� 389

Sharing Data Between Activities�� 398

Chapter Summary�� 406

Chapter 18: �Internal Storage��� 407

Overview of File Storage�� 407

Internal and External Storage��� 408

Cache Directory�� 409

Table of Contents

xi

How to Work with Internal Storage�� 409

Chapter Summary�� 424

Chapter 19: �BroadcastReceivers��� 425

Introduction to BroadcastReceivers��� 425

System Broadcast vs. Custom Broadcast�� 426

Manifest Registration vs. Context Registration�� 427

Basics of BroadcastReceivers�� 430

Implicit vs. Explicit Broadcast Actions��� 432

Demo App: Custom Broadcast�� 433

Demo App: System Broadcast�� 440

Other Notes�� 443

Chapter Summary�� 444

Chapter 20: �App Distribution��� 445

Preparing the App for Release��� 446

Prepare Materials and Assets for Release�� 446

Configure the App for Release�� 447

Build a Release-Ready Application��� 448

Releasing the App�� 452

Chapter Summary�� 456

�Index�� 459

Table of Contents

xiii

About the Author

Ted Hagos is the CTO and Data Protection Officer of RenditionDigital International, a

software development company based out of Dublin, Ireland. Before he joined RDI, he

had various software development roles and also spent time as trainer at IBM Advanced

Career Education, Ateneo ITI, and Asia Pacific College. He spent many years in software

development dating back to Turbo C, Clipper, dBase IV, and Visual Basic. Eventually, he

found Java and spent many years there. Nowadays, he’s busy with full-stack JavaScript

and Android.

xv

About the Technical Reviewers

Massimo Nardone has more than 24 years of experience

in Security, Web/Mobile development, Cloud, and IT

Architecture. His true IT passions are Security and Android.

He has been programming and teaching how to program

with Android, Perl, PHP, Java, VB, Python, C/C++, and

MySQL for more than 20 years.

He holds a Master of Science degree in Computing

Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer,

Research Engineer, Chief Security Architect, Information

Security Manager, PCI/SCADA Auditor and Senior Lead IT Security/Cloud/SCADA

Architect for many years.

Technical skills include: Security, Android, Cloud, Java, MySQL, Drupal, Cobol, Perl,

Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj,

and he is a member of ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and has

coauthored Pro JPA in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8 (Apress, 2018),

and Pro Android Games (Apress, 2015).

xvi

Val Okafor is a software architect with expertise in Android

development and resides in sunny San Diego, California. He

has over 12 years of industry experience and has worked for

corporations such as Sony Electronics, The Home Depot,

San Diego County, and American Council on Exercise. Val

earned his BSc in IT from National University, San Diego and

his Masters in Software Engineering from Regis University,

Colorado. He is the creator and principal engineer of Pronto

line of mobile apps including Pronto Diary, Pronto Invoice,

and Pronto Quotes.

His passion for software development goes beyond

his skill and training; he also enjoys sharing his knowledge with other developers. He

has taught Android development to over 5,000 students through Udemy, and his blog

valokafor.com is considered an essential reading for Android developers. Val was also

recently named among the first cohort of Realm MVP program because of his active

participation in the Realm database community.  

About the Technical Reviewers

xvii

Acknowledgments

To Stephanie and Adrianne, for bearing with me for the past 9 months while I wrote this

book. My thanks and my love.

To Mark Powers, for his understanding when I missed some of the writing deadlines

and for keeping the schedule straight.

To Steve Anglin, for bringing me to Apress.

To everyone who made this book possible, Thank you. It truly feels great to hold

one’s printed book in one’s hands. It’s even more awesome the second time around.

xix

Introduction

Welcome to the Kotlin edition of Learn Android Studio 3, This book will help you get

started in your programming journey with the little green robot. You already bought

the book, so you don’t need to be convinced that programming for the mobile platform

offers a lot of opportunity for software developers. Thank you for buying it, by the way.

�Who This Book Is For
The book is aimed at beginning Android programmers, but it isn’t for people who are

completely new to programming. Ideally, you already are a Java programmer trying to

get your feet wet in Android, and you wanna try the Kotlin language (coz all your dev

friends told you it was cool). But in case you’re not a Java developer or you don’t have

Android programming experience, don’t sweat it. The book is friendly enough—I tried

hard to write it that way—and approachable enough such that anyone with a passing

knowledge of either C#, JavaScript, C, or C++ will be able to follow the code samples and

the concepts presented in this book.

�What’s Different in the Kotlin Edition
All the code examples and the demo projects are mostly new. They’re not a plain Kotlin

port of the first edition’s examples. I’ve also added new chapters; here they are:

•	 Collections

•	 Generics

•	 Higher Order Functions

•	 Broadcast Receivers

Some chapters in the first edition have been split into two or more chapters. I

split them so that I can treat the subjects with more depth—for example, “Intents,”

“SharedPreferences,” “Internal Storage,” and “Fragments.”

xx

�Organization and Treatment
The book is divided into two major parts. Chapters 1 to 7 are all about the Kotlin

language, and Chapters 8 to 20 are about Android programming.

While you can use it as a reference book, I didn’t write it that way. It’s not meant as

a substitute for the docs in https://kotlinglang.org or the Android developer guides

https://developer.android.com. It’s also not meant to be a “Definitive Guide” type of

book where you can spend hours or days exploring every nook and cranny. Quite the

contrary—I wanted it to be a “get started quick” type of book, like a recipe book, but

without losing our grasp on the fundamental concepts.

Android and Kotlin are big subjects; I don’t think there exists a “single best way” to

present the materials for either of these two. So, I made certain bets on the instructional

design. Here they are:

•	 Bite-sized concepts. The troublesome topics are broken down into

a series of small steps so that you can solve them in isolation. When

you can solve small problems, it gives you confidence to solve bigger

ones. This approach helps a beginning programmer to grow in the

direction of skill.

•	 Conciseness. I tried to keep each chapter as short as possible, so you

can finish it in one sitting. Originally, I wanted each chapter to be a

“20-minute read”; that was too ambitious, so, I gave up on it—but

still, the chapters are short.

•	 Multiple Learning Curves. The book is about three topics: Android

Studio, Android Programming, and Kotlin. Although Kotlin and

Android programming may seem to have dedicated chapters for

them, techniques on how to use Android Studio (and IntelliJ) are

scattered throughout the book.

•	 Balance between concept and code. Admittedly, the treatment is

biased (just a little bit) toward code. Programming is not a spectator

sport; we learn by doing. Nonetheless, in every chapter, I tried to

explain what the fundamental concepts are, what we’re trying to

do, what problems are we trying to solve, how we might solve those

problems, and what does the solution look like—in code. Almost all

of the chapters have one or more demo projects in them.

Introduction

https://kotlinglang.org/
https://developer.android.com/

xxi

•	 Verbose and complete code presentations. Sometimes (most of

the time actually), I presented the full source example, but only

one or two lines of it are relevant. I erred on the side of caution

(and verbosity) because it’s easier for a beginner to understand the

relevant codes if he can see it in relation to the whole program. So,

you don’t have to worry about, “Where do I put this code? Does this

go inside function main or inside a class?”

•	 Immediacy and coherence. Like I said, I wanted this to be a “get

started quick” or a “recipe” kind of book. So, instead of covering

everything, including the kitchen sink, I chose to cover some topics

and ignore others. I chose use-cases whose complexities are easy or

moderate and covered topics that are only relevant for those use-

cases. For example, in the BroadcastReceiver and Intent chapters,

I didn’t cover LocalBroadcastManager and PendingIntent. Cool as

these topics are, they weren’t relevant for the use-cases I chose. If I

added more use-cases or demo-projects, that would have stretched

the length of the chapter. It’s a balancing act, you see.

•	 Independent demo projects. I designed them as such so that the

demo project could be started (and followed) from scratch. There is

no “putting it all together” project in the end. This way, the book can

be conveniently used as a reference. If you pick a topic, it’s almost

self-contained, including the demo project.

In the end, I can only hope that the bets I made will pay off and that you will walk

away as a slightly better programmer after reading the book.

�Chapter Overviews
Chapter 1: “Getting into Kotlin” introduces the language. It tells you how to setup Kotlin

in various ways on the three major platforms: macOS, Linux, and Windows. It also

contains instructions on how to create, configure, and run a project in IntelliJ—this is the

IDE I used to create all the Kotlin code samples for Chapters 1 through 7.

Chapter 2: “Kotlin Basics” dives into the language fundamentals of Kotlin. You’ll

learn the basic building blocks of a Kotlin program (e.g., Strings, control structures,

Introduction

xxii

exception handling, basic data types). You’ll also see some of Kotlin’s features that are

very different from Java, like its treatment of nullable and non-nullable types.

Chapter 3: “Functions.” There’s a whole chapter dedicated to functions because

Kotlin’s functions have something new up their sleeves. It has all the trimmings of a

modern language like default and named parameters, infix functions, and operators;

and with Kotlin, we can also create extension functions. Extension functions lets you add

behavior to an existing class, without inheriting from it and without changing its source.

Chapter 4: “Working with Types.” This chapter deals with object-oriented topics.

You’ll learn how Kotlin treats interfaces, classes, and access modifiers. We’ll also learn

about the new data classes in Kotlin. It also talks about object declarations—it’s the

replacement for Java’s static keyword.

Chapter 5: “Lambdas and Higher Order Functions.” Now we go to Kotlins’s

functional programming capabilities. It discusses how to create and use higher-order

functions, lambdas, and closures.

Chapter 6: “Collections” walks through the classic collection classes of Java and how

to use them in Kotlin.

Chapter 7: “Generics.” Using generics in Kotlin isn’t that much different from Java.

If generics is old hat for you, then most of this chapter will be a review. But try to read

through it still because it talks about reified generics, which Java doesn’t have.

Chapter 8: “Android Studio Introduction and Setup.” This chapter talks a bit about

Android’s history, its technical make-up, and the OS. It also walks you through the

installation and setup of Android Studio.

Chapter 9: “Getting Started” gets you grounded on the fundamental concepts about

Android programming. It talks about components, what they are, how they are organized,

and how they come together in an Android app. In this chapter, you’ll learn how the basic

workflow of an Android project—how to create a project and run it on an emulator

Chapter 10: “Activities and Layouts.” Here, we’ll learn how to build a UI. Activity,

Layout, and View objects are the building blocks for an Android UI.

Chapter 11: “Event Handling.” You’ll learn how to react to user-generated events like

clicks and longclicks. We’ll use some concepts that we learned in Chapters 4 and 5 (inner

objects and lambdas) to help us write more compact and succinct event-handling code.

Chapter 12: “Intents.” This chapter reviews some fundamental concepts on Android

programming, specifically the concept of components, which dovetails to the topic of

Intents. You’ll learn how to use Intents to launch another Activity and pass data in-and-

around Activities.

Introduction

xxiii

Chapter 13: “Themes and Menus.” This is a short chapter. You’ll learn how to add

styles/themes to your app. We’ll also work with some menus and the ActionBar.

Chapter 14: “Fragments.” You’ll learn how to use Android Fragments as a more

granular composition unit for UI. We’ll also see how to use Fragments to address

changes in device orientation.

Chapter 15: “Running in the Background.” Any non-trivial app will do something

substantial like read from a file, write to a file, download something from the network,

etc. These activities will likely take more than 16 ms to execute (you’ll learn why 16 ms

should be the upper limit and why you should not exceed it). When that happens, the

user will see and feel “jank.” This chapter discusses the various ways on how to run our

code in a background thread.

Chapter 16: “Debugging” shows some of the things you can do to debug your apps

in Android Studio 3. It goes through a list of the kinds of errors you might encounter

while coding and what you can do in Android Studio to respond them.

Chapter 17: “SharedPreferences.” When you need to save simple data, you can use

the SharedPreferences API. This chapter walks you through detailed examples on how to

do that.

Chapter 18: “Internal Storage.” Just like in SharedPreferences, you can also store data

using the Internal Storage API of Android. This chapter discusses internal and external

storage.

Chapter 19: “BroadcastReceivers.” Android has a way to make highly decoupled

components talk to each other. This chapter talks about how BroadcastReceivers can

facilitate messaging for Android components.

Chapter 20: “App Distribution.” When you’re ready to distribute your app, you’ll

need to sign it and list it in a marketplace like Google Play. This chapter walks you

through the steps on how to do it.

�How to Get the Most From This Book
I designed it like a workbook; it’s best to use it like that. Most chapters have a “Demo

Project” section. There are details on how to create a project—for example, what name

should you use for the project, the minimum SDK to target, etc. The reason I included

this information is so you can follow the coding exercise.

Introduction

xxiv

I used three kinds of blocks in the book: Examples, Listings, and Figures.

•	 Examples are commands that you would type in a terminal window.

•	 Listings contains program or code listing; it’s something that you

would type in a program file.

•	 Figures could be screenshots or diagrams. Some of the screenshots

are annotated to point out a sequence of steps and how to do them

on the IDE. I used Android Studio 3.1 and IntelliJ 2018.2 for the

examples in this book; it’s possible that by the time you read this

book, you’ll be using a different or higher version of these tools.

Programmers (mostly) learn by doing. If you work your way through the demo

projects, I think the lessons will stick better. Remember that coding is like swimming or

driving, you can read as many books as you want on the subjects, but if you don’t go in

the water or behind the wheel, you won’t get anywhere.

�Source Code
Source Code for this book can be accessed by clicking the Download Source Code

button at www.apress.com/9781484239063.

Introduction

http://www.apress.com/9781484239063

PART I

The Kotlin Language

3
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_1

CHAPTER 1

Getting into Kotlin
What we’ll cover:

•	 An introduction to the Kotlin language

•	 How to get Kotlin

•	 Installing Kotlin on macOS, Windows, and Linux

•	 Running a Kotlin program in the command line

•	 Creating and running a project in IntelliJ IDEA

This chapter introduces the Kotlin language and goes into some details on how

to set up a development environment. You will find instructions on how to install

Kotlin on macOS, Windows, and Linux. You’ll also find instructions on how to install a

Kotlin environment using just bare-bones command line. Each developer gravitates to

certain kind of setup, and yours truly is not an exception. Here’s the setup that I’ve used

throughout the book:

•	 IntelliJ 2018 running on macOS (High Sierra). I used this throughout

chapters 1 to 7

•	 Android Studio 3 on macOS (High Siera). I used this for the rest of

the book

You don’t need to follow my exact setup. We’ve taken pains to ensure that the

instructions in this book works in Linux and Windows just as well as they do in

macOS. Also, when I say Linux, I don’t mean all the distributions of Linux. The fact is,

I tested these codes only in Lubuntu 17. Why? Because that’s the Linux distro that I’m

most familiar with. I believe that most readers of this book (who use Linux) will also be

familiar with this Linux distro (or any of its close cousins).

4

Android Studio 3 and IntelliJ works on Windows 7, 8, and 10 (32- and 64-bit), but I

only tested the exercises on Windows 10 64-bit—this is the only machine I have access

to; and I believe that most readers who use Windows use this setup as well.

Lastly, let’s discuss the JDK version. At the time of writing, JDK 10 is in early access.

So the choices for JDK version was 8 or 9 (since JDK 7 ended its life sometime in 2015).

I went with 9—no special reason, I think 8 would have worked just as well.

�About Kotlin
Kotlin is a new language that targets the Java platform; its programs run on the JVM (Java

Virtual Machine), which puts it in the company of languages like Groovy, Scala, Jython,

and Clojure, to name a few.

Kotlin is from JetBrains, the creators of IntelliJ, PyCharm, WebStorm, ReSharper, and

other great development tools. In 2011, JetBrains unveiled Kotlin; the following year, they

open-sourced Kotlin under the Apache 2 license. At Google I/O 2017, Google announced

first-class support for Kotlin on the Android platform. If you’re wondering where the

name Kotlin came from, it’s the name of an island near St. Petersburg, where most of

the Kotlin team members are located. According to Andrey Breslav of JetBrains, Kotlin

was named after an island, just like Java was named after the Indonesian island of Java.

However, you might remember that the history of the Java language contains references

that it was named after the coffee, rather than the island.

Kotlin has many characteristics and capabilities as a language, and we have the

whole first part of this book to explore those, but here are a few things that makes it

interesting.

•	 Like Java, it’s object-oriented. So, all those long hours you’ve

invested in Java’s OOP and design pattern won’t go to waste. Kotlin

classes, interfaces, and generics look and behave quite a lot like

those of Java. This is definitely a strength because, unlike other JVM

languages (e.g., Scala), Kotlin doesn’t look too foreign. It doesn’t

alienate Java programmers; instead, it allows them to build on their

strengths.

•	 Statically and strongly typed. Another area that Kotlin shares with

Java is the type system. It also uses static and strong typing. However,

unlike in Java, you don’t have to always declare the type of the

variable before you use it. Kotlin uses type inference.

Chapter 1 Getting into Kotlin

5

•	 Less ceremonious than Java. We don’t (always) have to write a class;

top-level functions are OK. We don’t need to explicitly write getters

and setters for data objects; there are language features in Kotlin,

which allows us to do away with such boiler-plate codes. Also, the

natural way of writing codes in Kotlin prevents us from ever assigning

null to a variable. If you want to explicitly allow a value to be null, you

have to do so in a deliberate way.

•	 It’s a functional language. Functions are not just a named collection

of statements; you can use them anywhere you might use a variable.

You can pass functions from a parameter input to other functions,

and you can even return functions from other functions. This way

coding allows for a different way of abstraction.

•	 Interoperability with Java. Kotlin can use Java libraries, and you can

use it from Java programs as well. This lowers the barrier to entry in

Kotlin; the interoperability with Java makes the decision to start a

new project using Kotlin a less daunting enterprise.

There are many reasons to use Kotlin in your next project, but there are also counter-

arguments to it. We won’t list the pros and cons of why you should or why you shouldn’t

use Kotlin in your next project; but I’ll discuss one reason why I would advise you to slow

down and pause before you get all gung-ho about it.

It’s still relatively new. Some people are convinced that it’s approaching its “peak

of inflated expectation” and will soon enter the “trough of disillusionment.” Their main

argument is that if you bet on Kotlin right now, you’ll be saddled with learning curve

problems and you’ll be obligated to maintain that codebase—even if Kotlin disappears

in a puff of smoke. In other words, you might carry it as a technical debt.

Kotlin’s adoption will also come at some cost. You’ll have to train your team on how

to use it. No matter how experienced your team is, they will definitely lose some speed

along the way—and that’s a project management concern. Also, because Kotlin is new,

there is no “Effective Kotlin” guide post yet, while Java programmers will always have

their “Effective Java.”

It will all boil down to your bet. If you bet that Kotlin will go the distance instead of

quietly disappearing in the dark, then the bet would have paid off. If you’re wrong about

the bet, then you go down the arduous road of maintaining the codebase of a defunct

language—a technical debt. Either that or you rework it back to Java.

Chapter 1 Getting into Kotlin

6

Google has officially supported the language in Android Studio, and more and more

developers are getting on the bandwagon. Adoption is growing. These are good signs

that Kotlin won’t go down quietly and might actually go the distance. Plus, it’s a cool

language.

Note  “Peak of inflated expectation” and “Trough of disillusionment” are part
of the the “Hype cycle.” The hype cycle is a branded graphical presentation
developed and used by the American research, advisory, and information
technology firm Gartner, for representing the maturity, adoption, and social
application of specific technologies. You can read more about it at https://
gtnr.it/cycleofhype.

Let’s continue and build ourselves a dev environment.

�Installing the Java SDK
Before we can use Kotlin, we need to install the JDK. If you already have an existing

setup of the Java development kit, you can skip this section and jump to the next one

(Installing Kotlin). The JDK installer is available for Windows, Linux, and macOS. You

can download the currently stable version from the Oracle site, http://bit.ly/

java9download.1

Figure 1-1 shows the download page for Oracle JDK. Choose the installer appropriate

for your platform, then click the “Accept License Agreement” to proceed.

1�Available from http://www.oracle.com/technetwork/java/javase/downloads/jdk9-
downloads-3848520.html

Chapter 1 Getting into Kotlin

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Gartner
https://en.wikipedia.org/wiki/Technology
https://gtnr.it/cycleofhype
https://gtnr.it/cycleofhype
http://bit.ly/java9download
http://bit.ly/java9download
http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html

7

�Installing on macOS
To install the JDK on macOS, double-click the downloaded dmg file and follow the

prompts. The installer takes care of updating the system path, so you don’t need to

perform any further action after the installation.

When you’re done with the installation, you can test if the JDK has been installed by

launching the “Terminal.app” and trying out the Java command (see Listing 1-1).

Listing 1-1.  Test the JDK tools on a macOS Terminal

$ java –version

$ javac –version

You’ll know that you’ve installed the JDK without problems if the terminal outputs

the version of java and javac as shown in Figure 1-2.

Figure 1-1.  Oracle JDK download page

Chapter 1 Getting into Kotlin

8

Figure 1-2.  java and javac on the Terminal.app

Table 1-1.  JDK Configuration in Windows

1 Include JAVA_HOME/bin

to the system path
1. Click Start ➤ Control Panel ➤ System
2. �Click Advanced ➤ Environment Variables. There are two boxes

for variables, the upper box reads “User variables” and the lower

box reads “System variables,” the system PATH will be in the

“System variables” box.

3. �Add the location of the bin folder to the system PATH variable.

4. �It is typical for the PATH variable to look like this: C:\WINDOWS\

system32;C:\WINDOWS;C:\Program Files\Java\jdk-9\bin;

2 Create a CLASSPATH

definition in Windows

Environment Variables

While the Environment Variables window is still open, click the

“New” button on the “User variables” section. Another dialog window

will pop up with two text boxes that will allow you to add a new

variable. Use the values below to populate the textboxes.

1. Name ➤ CLASSPATH

2. �Value ➤ C:\WINDOWS\system32;C:\WINDOWS;C:\Program

Files\Java\jdk-9\jre\lib\rt.jar;

�Installing on Windows 10
You can install Android Studio 3 in Windows 7/8/10 (32- and 64-bit); but for the purpose

of this book, I only used Windows 10 64-bit.

To install the JDK on Windows, double-click the downloaded zipped file, and follow the

prompts. Unlike in macOS, you must perform extra configuration after the setup. You need

to (1) include java/bin in your system path and (2) include a CLASSPATH definition in the

Environment Variables of Windows. Table 1-1 walks you through the steps on how to do this.

Chapter 1 Getting into Kotlin

9

Close the Environment Variables window and get a cmd window so we can test

whether our changes have taken effect. When the cmd window is open, type the

commands as shown in Listing 1-2.

Listing 1-2.  Test the JDK tools on a Windows cmd shell

C:\Users\yourname>java –version

C:\Users\yourname>javac –version

If the cmd shell shows you the version of java and javac, then you have successfully

installed and configured the JDK. If, on the other hand, you saw an error message (e.g.,

“Bad command or file name”), it means that JAVA_HOME\bin is still not part of the

system path. You should revisit Table 1-1 and recheck your entries, then retest.

�Installing on Linux
If you are a Linux user, you may have seen the tar ball and rpm options on the download,

you may use that and install it like you would install any other software on your

Linux platform or you may install the JDK from the repositories (see Listing 1-3). This

instruction applies to Debian and its derivatives (e.g., Ubuntu, Mint, etc.).

Listing 1-3.  Installing the JDK in Ubuntu Using a PPA

sudo add-apt-repository ppa:webupd8team/java

sudo apt-get update

sudo apt-get install oracle-java9-installer

sudo update-alternatives --config java

When the download finishes, you can test the installation by trying out the java

and javac tools from the command line (see Listing 1-4). Open your favorite terminal

emulator (e.g., xterm, terminator, gnome-terminal, lxterminal, etc.).

Listing 1-4.  Test the JDK Tools on Linux

$ java –version

$ javac –version

If the install was successful, you should be able to see the version of java and javac in

your system. Once the JDK is up and running, we can now get Kotlin.

Chapter 1 Getting into Kotlin

10

�Installing Kotlin
There are a couple of ways to get started in Kotlin coding. You can use the online IDE,

which is the quickest because it won’t require you to install anything. You may also try to

download an IDE that has a plug-in for Kotlin (e.g., IntelliJ, Android Studio, or Eclipse).

Finally, you can download the command line tools for Kotlin. If you don’t want to install

a full-blown IDE and simply use your trusty favorite editor, you can certainly do that with

the command line tools. We won’t explore each and every one of these options, but we’ll

take a look at the command line tools and IntelliJ.

Note T his book is about Android Studio, so you might be wondering why we
won’t use Android Studio to try out Kotlin. That’s because this part of the book
is about Kotlin only and not about Android programming (yet). I thought it best to
focus more on the language and not be hampered by Android-specific topics when
we do some coding exercises. Android Studio is based on IntelliJ anyway, so any
IDE techniques we learn in this part of the book should carry over nicely when we
get to part 2.

�Installing the Command Line Tools
Even if you opt for the command line tools, there are a couple of choices for installation

method. We can install it by (1) downloading a zipped file; (2) using SDKMAN if your OS

and tooling supports it; or (3) using HomeBrew or MacPorts if you are on macOS. You

only need to pick which one of these methods you are most comfortable with and go

with that.

�HomeBrew or MacPort

If you are on macOS and already using either brew or port, see either Listing 1-5 or 1-6

for the terminal commands to get Kotlin.

Listing 1-5.  Install Kotlin Using HomeBrew

$ brew update

$ brew install kotlin

Chapter 1 Getting into Kotlin

11

Listing 1-6.  Install Kotlin Using MacPorts

$ sudo port install kotlin

�Using a Zipped Installer

If you go to the Kotlin website, http://kotlinglang.org then “learn” ➤ “tutorials” ➤

“getting started” ➤ “working with the command line compiler”, you’ll find a web page2

that might look like the one shown in Figure 1-3. The zipped installer can be downloaded

by following the link “GitHub releases” (also shown in Figure 1-3).

The link should take you to the GitHub page of JetBrains/Kotlin3 (Figure 1-4). At the

time of writing, Kotlin was on version 1.2.10; it might be a different version by the time

you are reading this, but just download the latest stable version.

2�Working with the command line compiler: https://kotlinlang.org/docs/tutorials/
command-line.html

3�JetBrains/Kotlin GitHub page: https://github.com/JetBrains/kotlin/releases/tag/v1.2.10

Figure 1-3.  Kotlin command line compiler page

Chapter 1 Getting into Kotlin

http://kotlinglang.org
https://kotlinlang.org/docs/tutorials/command-line.html
https://kotlinlang.org/docs/tutorials/command-line.html
https://github.com/JetBrains/kotlin/releases/tag/v1.2.10

12

When the download finishes, unzip the installer file and put it somewhere in your

system—preferably, a directory where you have read, write, and execute privileges. The

file should unzip to a folder named “kotlinc”. Next thing to do is to add the kotlinc/bin

folder to the system path variable. The following sections will demonstrate how to do

this on macOS, Linux, and Windows.

macOS and Linux

Copy the downloaded zipped file to your home directory and unzip it there. Listing 1-7

shows the command.

Listing 1-7.  Unzip Kotlin Installer

$ cd ~

$ unzip ~/kotlin-compiler-1.2.10.zip

Note T he unzip command is available in macOS by default, but for Linux
systems, you might have to get it from the repositories first. Listing 1-8 shows the
command on how to pull it from the repositories.

Figure 1-4.  GitHub page for the installer zipped file

Chapter 1 Getting into Kotlin

13

Listing 1-8.  Getting the Unzip Tool

$ sudo apt get update

$ sudo apt-get install unzip

The installer file should unzip to a folder named “kotlinc”, as shown in Figure 1-5.

Figure 1-5.  Unzipping the Kotlin installer

Before we can use the command line tools, we need to add the “kotlinc/bin” folder

to the system path variable as shown in Listing 1-9.

Listing 1-9.  Adding kotlinc/bin to the System Path

$ export PATH=~/kotlinc/bin:$PATH

Press ENTER and the kotlinc command should now work. You can add the line

shown in Listing 1-9 to your login script so that the Kotlin tools are available every time

you open a terminal window.

Chapter 1 Getting into Kotlin

14

Windows 10

Copy the Kotlin installer zipped file to your home directory and unzip it there. Use your

favorite archive tool for unzipping. It should unzip to the following folder: C:\Users\

yourname\kotlinc. Inside the kotlinc folder is the bin folder, which contains the various

script and batch files that we need to use for compilation. This bin folder is what we need

to add the Windows system path.

To add the kotlinc\bin folder to the system path, click the Windows Start button

➤ Control Panel ➤ System. Once the System dialog opens, click Advanced ➤

Environment Variables. There are two boxes for variables; the upper box reads “User

variables” and the lower box reads “System variables”. The system PATH will be in the

“System variables” box. Append kotlinc\bin the PATH variable. Close the system dialog

box to save your changes.

�Using SDKMAN

SDKMAN can be used on macOS, Linux, Cygwin (Windows), FreeBSD, and other UNIX

systems. If you have this already as part of your toolchain, you can use it to get the Kotlin

compiler. If you don’t have SDKMAN yet, it is simple to install. See Listing 1-10 to install

SDKMAN.

Important  Before you can install SDKMAN from the command line, you will need
to get the curl tool. If you don’t have it yet, use your platforms package manager
to get curl.

Listing 1-10.  Installing SDKMAN From the Command Line

$ curl -s "https://get.sdkman.io" | bash

Follow the on-screen instructions to complete the installation. You will need to close

the current terminal window and launch another one because the SDKMAN installer

made changes to the login script. In order for those changes to take effect, you will need to

open a new terminal window. When that’s done, we can now install kotlin. See Listing 1-11

for the installation command.

Chapter 1 Getting into Kotlin

15

Listing 1-11.  Installing Kotlin via SDKMAN

$ sdk install kotlin

�Coding With the Command Line Tools
Whichever way you chose to install the command line tools, by now you should already

have a working Kotlin compiler. To try it out, get a terminal window and enter the

command kotlinc. This will change your terminal prompt to a triple chevron (greater

than sign); see Listing 1-12.

Listing 1-12.  Kotlin REPL

$ kotlinc

Welcome to Kotlin version 1.2.10 (JRE 9.0.1+11)

Type :help for help, :quit for quit

>>>

This is the Kotlin REPL—short for Read, Eval, Print, Loop. It executes Kotlin

commands interactively and shows you the results immediately. If you have used the

console feature of modern browsers to enter JavaScript commands before, this is very

similar to that. The REPL is a good way to learn the language interactively. It’s also very

useful during development because it allows you to try out expressions and statements

without having to go through the full write-compile-run cycle. You might want to try out

a couple of expressions and statements (see Listing 1-13).

Listing 1-13.  Simple Expressions

>>> 5 * 3

15

>>> println("Hello there")

Hello there

for (i in 1 . . 3) {

. . .println(i)

. . .}

1

2

3

>>>

Chapter 1 Getting into Kotlin

16

The REPL is very useful for trying out statements and even short snippets like the

one shown in Listing 1-13, but if you need to try out longer programs, it will be more

convenient to write it in a program file, compile, and run it, as you would Java programs.

Let’s try to see what that looks like in Kotlin.

First, create a file and name it “hello.kt”—Kotlin source files have an extension of “.kt”.

The contents of hello.kt is shown in Listing 1-14.

Listing 1-14.  hello.kt

fun main(args: Array<String>) {

 print("Hello")

}

Kotlin has similarities with Java, so Listing 1-14 may look familiar, but you will also

quickly notice some obvious things, so let’s address those right now.

•	 There is no class construct. Kotlin doesn’t need a class to execute

function. The function, as shown in Listing 1-14, is known as a top-

level function; the main function is special because, like the public

static void main() of Java, the fun main() of Kotlin is the entry

point of the application. The runtime will look for this function when

you run a Kotlin file.

•	 Function main has a slight different syntax. Functions are defined

with the keyword fun. The type declaration comes after the identifier

(args); you’ll get used to it. Also, Kotlin doesn’t have a special syntax

to define an array. Arrays are just types in Kotlin.

•	 Function main has no return value. Actually, it has, we just didn’t

write it in the example. The default return value for a function is

Unit; it’s like void in Java.

•	 There is no semi-colon. These are not necessary anymore.

The next step is to compile and run our source file. Listing 1-15 shows the commands

to manage this.

Listing 1-15.  Compile and Run hello.kt

kotlin hello.kt –include-runtime –d hello.jar

java –jar hello.jar

Chapter 1 Getting into Kotlin

17

If you managed to type everything correctly as shown in the earlier listings and

examples, you should see the “Hello World” message in your screen.

If you feel that command-line tools are not to your liking and you’d rather use a more

feature-rich programming environment, you can try other IDEs like Eclipse, IntelliJ, or

Android Studio 3 (AS3). We’ll cover the installation and use of both IntelliJ and AS3 in

this book. The next section will walk you through the setup of IntelliJ IDEA.

�Installing IntelliJ
JetBrains created Kotlin, so as you would imagine it has excellent support for it. Android

Studio is based on JetBrain’s IntelliJ IDEA CE (Community Edition); however, Android

Studio is free and OSS and is maintained by Google, not JetBrains.

We could have used AS3 even for the first part of this book; however, doing that would

require that we deal with both Kotlin and Android components at the same time. I chose

not to do it and instead focus solely on Kotlin. AS3 is based on IntelliJ IDEA anyway, so

whatever learnings and skills we’ll acquire on IntelliJ will commute nicely to AS3.

You can download IntellijJ IDEA from the JetBrains website (http://www.jetbrains.

com) then come up to tools and come down to IntelliJ IDEA (see Figure 1-6). It will take

you to a page where you can choose the appropriate installer for your platform. You

will also be able to choose if you want to download the “Ultimate” or the “Community”

edition. We will download the community edition.

Figure 1-6.  IntelliJ IDEA download page

Chapter 1 Getting into Kotlin

http://www.jetbrains.com
http://www.jetbrains.com

18

If you are on Windows, you need to:

	 1.	 Double-click the ideaIC.exe that you downloaded

	 2.	 Follow the on-screen prompts to complete the installation

For macOS, do the following:

	 1.	 Double-click the ideaIC.dmg that you downloaded

	 2.	 Copy IntelliJ IDEA to the Applications folder

	 3.	 Run IntelliJ IDEA.

For Linux, the installation instruction is as follows:

	 1.	 Copy the tar.gz installer file into a directory where you have read,

write, and execute privileges; for our purposes, we’ll copy it into

the home folder (see Listing 1-16).

Listing 1-16.  Copy IntelliJ Installer to Your Home Folder

$ cd

$ cp ~/Downloads/ideaIC-2017.3.2.tar.gz .

	 2.	 Unpack the ideaIC.tar.gz, as shown in Listing 1-17.

Listing 1-17.  Untar the Installer

tar –xzvf ideaIC.tar.gz

	 3.	 Add the ideaIC/bin to the system path, as shown in Listing 1-18.

Listing 1-18.  Add ideaIC/bin to the System Path

$ export PATH=~/ideaIC-2017.3.2/bin:$PATH:.

	 4.	 Start IntelliJ IDEA by running idea.sh script, as shown in Listing 1-19.

Listing 1-19.  Start idea.sh

$ sh idea.sh

Chapter 1 Getting into Kotlin

19

�Creating a Project
Launch IntelliJ if you haven’t done so yet. It starts with a welcome screen, as shown in

Figure 1-7. To get started, let’s create a project.

Figure 1-7.  Welcome to IntellJ IDEA

Chapter 1 Getting into Kotlin

20

Clicking the “Create New Project” takes us to the “New Project” window (shown in

Figure 1-8). Choose “Kotlin/JVM” and then click the “Next” button.

Figure 1-8.  New Kotlin/JVM Project

This leads us to the second window of the “New Project” wizard where we need to

enter some information, but most of them are pre-filled with default entries already,

and we can simply accept the defaults. We do need to provide the “Project Name”, unless

you’d like to name your project “untitled” (which is the default value of the Project Name

field—probably not a good idea).

In Figure 1-9, I used “kotlinproject” as the Project Name. I didn’t change the default

project location, which is “IdeaProjects” under the home folder. I also did not make

any changes to the “Project SDK”, which was detected by IntelliJ during the time of

installation. To finish the project creation wizard, click the “Finish” button.

Chapter 1 Getting into Kotlin

21

You’ll be shown the “Tip of the Day” window (Figure 1-10) the very first time you

launch IntelliJ. Tips are very useful in learning the capabilities of the IDE, but I prefer

that they show up only when I summon them and not really pop up every time I launch

the IDE. You can disable the “Tip of the Day” window showing up during launch time by

unchecking the “Show tips on startup.” Let’s close it for now.

Figure 1-9.  New Project

Figure 1-10.  Tip of the day

Chapter 1 Getting into Kotlin

22

When the tip of the day dialog is dismissed, we can see more fully our newly created

project (Figure 1-11). The left-hand side of the IDE shows the “Project Tool window”; it

doesn’t have much right now because we haven’t created anything yet.

Figure 1-11.  Our Kotlin project in IntelliJ

The Project Tool window allows us to change “views.” All of the views show the same

project, but each view arranges the contents a bit differently. You can change the view of

the Project Tool window by clicking the dropdown button (see Figure 1-12). You should

try out a couple of the views to familiarize yourself with them.

Figure 1-12.  Project tool window, Views

For the rest of this section, we’ll use the “Project” view. This view shows our files in

a tree-like structure, pretty much like the file manager in your OS (see Figure 1-12). You

can drill down and expand to see the contents of the folders, as shown in Figure 1-13.

Chapter 1 Getting into Kotlin

23

The “src” folder (short for “source”) is where we will place our Kotlin source files.

Right-click on the src folder and choose New ➤ Kotlin File/Class, as shown in Figure 1-14.

Figure 1-13.  Project tool window. Project view

Figure 1-14.  New Kotlin file, from the Project tool window

Chapter 1 Getting into Kotlin

24

We’ll create a Kotlin file for now and name it “Hello”; we don’t have to write the “.kt”

extension the Name field (see Figure 1-15)—the extension will be automatically added

for us. Make sure that on the “Kind” field of the dialog window, the “File” option is

selected (see Figure 1-15). Click the OK button to create the file.

Figure 1-15.  New Kotlin File

When the source file is created, you will see it under the src folder in the Project Tool

window, and it will also be opened in the Main Editor window (see Figure 1-16).

Figure 1-16.  Hello.kt

Chapter 1 Getting into Kotlin

25

IntelliJ has excellent code hinting and autocomplete capabilities. When it recognizes

something that you are typing, it tries to be helpful by giving you suggestions and

hints (see Figure 1-15). As soon as you type enough character patterns that may be

Kotlin keywords or constructs, the IDE offers suggestions. You can accept the currently

suggested option (highlighted on pop-up window, shown in Figure 1-15) or use the

mouse or arrow key to choose other auto-completion options.

The full code listing for this example is shown in Listing 1-20.

Listing 1-20.  Hello.kt

fun main(args: Array<String>) {

 println("Hello World")

}

The next step is to run this program; you can manage this by invoking the Run menu

on the main menu bar of IntelliJ. The main menu bar sits on top of the IDE, the top-level

options are File, Edit, View all the way to Help. From the main menu bar, click Run ➤

Run. You will notice that there are two Run options on the main Run menu and that

the first Run option is greyed out. Choose the other Run option, which is located four

items down from the top. The first Run option is greyed out because we haven’t defined

any runtime configuration for the project. We could have edited the configuration and

supplied the name of the runtime class, but we don’t have to do it. Choosing the second

run option pops out a dialog window (see Figure 1-17) and will ask us for the name of the

runtime class for the current project. “HelloKt” is the class we will choose as the runtime

class for this project.

Note T he name of our source file is “Hello.kt” but the Kotlin compiler will not
generate “Hello.class”; instead, it will generate the byte code “HelloKt.class”. You
should keep this in mind when working with Kotlin class files.

Chapter 1 Getting into Kotlin

26

The IDE will compile “Hello.kt” into “HelloKt.class” and run afterward. The results

will be displayed in the “Run” tool window (see Figure 1-18).

Figure 1-17.  Running Hello.kt

Figure 1-18.  Result of Running Hello.kt

Chapter 1 Getting into Kotlin

27

Now that we’ve successfully run a top-level function, let’s add a class to the app and

do a more object-oriented version of the code sample. To add a class, right-click the “src”

folder on the Project tool window (Figure 1-19) and choose New ➤ Kotlin File/Class.

Figure 1-19.  Adding a new File/Class to the project

When the “New Kotlin File/Class” dialog window pops up, choose “Class” (Figure 1-20);

let’s name it “Greeter”.

Figure 1-20.  New Kotlin class

Chapter 1 Getting into Kotlin

28

Edit the Greeter class on the main editor window (Figure 1-21).

Figure 1-21.  Greeter class

Then edit Hello.kt as shown in Figure 1-22. After making the changes, run “Hello.kt”

again. From the main menu bar, Run ➤ Run; alternatively, you can use Shift + F10 to

run the code.

Figure 1-22.  Running main with the Greeter class

Chapter 1 Getting into Kotlin

29

Figure 1-21 shows the output of our updated code(s). That concludes all the coding

activities for this chapter. As you can probably tell by now, IntelliJ has excellent support

for the Kotlin language; you don’t have to use it if you prefer to code Kotlin programs

using a different editor. But if you choose to use it, we might as well take a quick tour of

the IDE so we can use it better. That’s what the next section is all about.

�The IntelliJ IDE
Figure 1-23 shows the various parts of the IDE. You need to have an open project for you

to see something similar on your desktop.

Figure 1-23.  IntelliJ IDEA IDE

Chapter 1 Getting into Kotlin

30

Table 1-2 discusses the parts of the IDE, as it relates to Figure 1-22.

Table 1-2.  IntelliJ IDE

Main Menu bar There are many ways to accomplish any task in the IDE; you can use

the various keyboard shortcuts or the context menus, but the most

comprehensive means of navigation will be on the main menu bar. This bar

sits on the very top of the IDE.

Tool Window bar The tool window bar runs along the perimeter of the IDE window. It contains

the individual buttons you need to activate specific tool windows.

Show/hide tool

window

This is a fast shortcut to view the various tool windows in IDEA. The tool

windows can also be viewed or hidden from the main menu bar, View ➤

Tool Windows.

Main Editor window This is the most prominent window, and it has the most screen real estate.

The editor window is where you can create and modify project files and

source files.

Tool bar The tool bar lets you do a wide range of actions (e.g., save files, run the app,

open the AVD manager, open the SDK manager, undo, redo actions, etc.).

Navigation bar It allows you to navigate the project files. This is just a more compact view

of the “Project files” window. It’s a horizontally arranged collection of arrow

boxes that resembles some sort of breadcrumb navigation that you can

find on some websites. You can open your project files either through the

navigation bar or the project tool window.

Project tool window Shows you the files in your project. If you want to open a particular file,

double-click that file from this window and it will be opened in the main

editor window. You can also use context menus on the items in this window.

Context menus allows for alternative ways to accomplish task in the IDE

(e.g., adding a class file, running codes, debugging, etc.).

Chapter 1 Getting into Kotlin

31

�Chapter Summary
•	 Kotlin is the newest programming language for Android, and it has

first-class support on Android Studio 3.

•	 There are many ways to install the Kotlin command line compiler and

runtime on macOS, Linux, and Windows.

•	 Various IDEs have support for the Kotlin language; on some of them,

you’ll have to get a plug-in, and on some, it’s supported out of the

box.

•	 Kotlin looks similar to Java, but it also has differences.

•	 IntelliJ has excellent support for Kotlin—well, JetBrains created

Kotlin after all.

In the next chapter, we’ll look at the following:

•	 Program elements (e.g., literals, variables, expressions, keywords,

operators, etc.) —all kinds of stuff that makes up our code

•	 What types of data can we use in Kotlin

•	 Why is there a Nullable type in Kotlin, and what is it in the first place?

•	 Control structures, so that you can loop and branch

•	 Exception handling and why you don’t have to write try-catch

anymore in Kotlin (spoilers)

Chapter 1 Getting into Kotlin

33
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_2

CHAPTER 2

Kotlin Basics
What we’ll cover:

•	 Program elements

•	 Basic types

•	 Immutability

•	 Strings

•	 Nullable types

•	 Control structures

•	 Exception handling

Kotlin isn’t all that different from Java. While it introduced quite a few features, you’ll

find that Kotlin and Java are more similar than they are different. This is good news to

Java programmers because it means the learning curve for Kotlin isn’t that steep.

You’ll need to get used to a few new things, like expressions and statements in Kotlin

(they are quite the reverse from Java; e.g., assignments are statements in Kotlin but they

are expressions in Java). In this chapter, we’ll cover some Kotlin basics that we can use as

foundation knowledge in the coming chapters.

�Program Elements
When learning a new language, a proper language, like French, Spanish, etc., you’ll

probably start with parts of speech and the rules that govern them. It’d be easier to

approach a language if we had some basic understanding of how its parts come together.

A Kotlin program contains literals, variables, expression, keywords, and a whole lot of

other things, we’ll explore some of them in this section.

34

�Literals
Kotlin provides literals for the basic types (numbers, character, Boolean, String).

Listing 2-1.  Literal Examples

var intLiteral = 5

var doubleLiteral = .02

var stringLiteral = "Hello"

var charLiteral = '1'

var boolLiteral = true

In Listing 2-1, the values 5, .02, "Hello", '1', and true are literals of Integer,

Double, String, Character, and Boolean types, respectively.

�Variables
A variable is something that we use to manipulate data or, more precisely, a value. Values

are things that you can store, manipulate, print, push, or pull from the network. For us to

be able to work with values, we need to put them inside variables. A variable in Kotlin is

created by declaring an identifier using the var keyword followed by the type, like in the

statement

var foo: Int

In this statement, foo is the identifier and Int is the type. Kotlin specifies types by

placing it to the right of the identifier and is separated from it by a colon.

Now that the variable is declared, we can assign a value to it, like so:

foo = 10

and then, use it in a function, like the following:

println(foo)

We can declare and define variables on the same line, like in Java. Here’s the var foo

example again.

var foo: Int = 10

println(foo)

Chapter 2 Kotlin Basics

35

We can still shorten the assignment statement above by omitting the type (Int).

See the sample code:

var foo = 10

println(foo)

We don’t always have to declare or write the type of the variables; Kotlin is smart

enough to figure out the type when you assign a literal value to variable; it’s called type

inference. On the occasions that we explicitly tell Kotlin the type of variable, notice that it

is on the right side of the variable name (foo), while in Java, it’s the other way around, the

variable type is on the left side of the identifier. The reason Kotlin did not follow the Java

convention of putting the type to the left of the identifier is because in Kotlin, we don’t

always write the type.

var foo = 10 // compiler knows 10 is an integer literal

var boo = .02 // double literal makes boo a double type

Kotlin uses another keyword to declare variables, the val keyword. Variables

declared with this keyword can be initialized only once within the execution block where

they were defined. That makes them effectively constants; think of val as the equivalent

of the final keyword in Java—once you initialize it to a value, you can’t change it

anymore, they’re immutable. While variables that were created using var are mutable,

they can be changed as many times as you want.

Val variables are declared and initialized just like var variables:

val a = 10 // declaration and initialization on the same line

They can also be declared and initialized at a later time, like the statements here:

val a: Int

a = 10

Just remember that variables that are declared with the val keyword are final and

cannot be re-assigned once you’ve initialized them to a value. The code snippet here will

not work:

val boo = "Hello"

boo = "World" // boo already has a value

If you think you need to change the value of the variable boo at a later time, change

the declaration from val to var.

Chapter 2 Kotlin Basics

36

IntelliJ Tip I f you try to re-assign the value of a variable that was declared
using the val keyword, IntelliJ will give you enough visual hints that “val cannot be
reassigned” even before you try to compile the code.

�Expressions and Statements
An expression is a combination of operators, functions, literal values, variables,

or constants and always resolves to a value. It also can be part of a more complex

expression. A statement can contain expressions, but in itself, a statement doesn’t

resolve to a value. It cannot be part of other statements. It’s always a top-level element in

its enclosing block.

For the most part, what you learned in Java about expressions and statements holds

true in Kotlin, but there are slight differences. As we go further along, I’ll point out the

differences between Java and Kotlin when it comes to statements and expressions. Some

of these differences are:

Assignments are expressions in Java, but they are statements in Kotlin. That means

you cannot pass assignment operations as argument to loop statements like while. See

Listing 2-2.

Listing 2-2.  Assignment Operation As Argument to While

while ((rem = a % b) != 0) {

 a = b

 b = rem

}

println(b)

Kotlin won’t let you compile because the while statement expects an expression and

assignments are not expressions. To make the previous code example (Listing 2-2) work

in Kotlin, you’ll have to write it another way, as shown in Listing 2-3.

Chapter 2 Kotlin Basics

37

Listing 2-3.  Using the While Loop in Kotlin

var foundGcf = false

while(!foundGcf) {

 rem = a % b

 if (rem != 0) {

 a = b

 b = rem

 }

 else {

 foundGcf = true

 }

}

println(b)

Listing 2-3 is a bit more verbose than what you may be used to (in Java), and it has

more characters to type but the intent of the code is clearer and plainer to see.

Another notable difference between Kotlin and Java when it comes to expressions

and statements is that in Kotlin, most control structures (except for, do, and do/while)

are expressions, while in Java they are statements.

�Keywords
Keywords are reserved terms that have special meaning to the compiler, and as such,

they cannot be used as identifiers for any program elements such as classes, variable

names, function names, and interfaces.

Kotlin has hard, soft, and modifier keywords. The hard keywords are always

interpreted as keywords and cannot really be used as identifiers. Some examples of these

are as, break, class, continue, do, else, false, while, this, throw, try,

super, and when.

Soft keywords act as reserved words in certain context where they are applicable;

otherwise, they can be used as a regular identifier. Some examples of soft keywords

are the following: file, finally, get, import, receiver, set, constructor,

delegate, get, by, and where.

Chapter 2 Kotlin Basics

38

Finally, there are modifier keywords. These things act as reserved words in modifier

lists of declarations; otherwise, they can be used as identifiers. Some examples of these

things are the following: abstract, actual, annotation, companion, enum, final,

infix, inline, lateinit, operator, and open.

IntelliJ Tip I f you use IntelliJ, you don’t have to memorize the list of keywords.
The IDE will give you enough visual hints if you accidentally use a keyword as an
identifier.

�Whitespace
Like Java, Kotlin is also a tokenized language; whitespace is not significant and can be

safely ignored. You can write your codes with extravagant use of whitespace, like

fun main(args: Array<String>) {

 println("Hello")

}

or you can write it with very little of it, like the following example:

fun main(args: Array<String>) {println("Hello")}

Either way, the compiler doesn’t care, so write your codes for the benefit of humans

who may be unlucky enough to maintain our codes. Forget the compiler—it doesn’t care

about whitespace anyway. Use whitespaces to prettify the code and make it readable,

probably something like

fun main(args: Array<String>) {

 println("Hello")

}

Chapter 2 Kotlin Basics

39

Table 2-1.  Kotlin Operators and Symbols

Operators or
Symbol

What It Means

+, -, *, /, % These are the usual mathematical operators—they do exactly what you

expect them to do. No difference with Java at all. But we need to note that the

asterisk or star symbol (*) is also used to pass an array to a vararg parameter.

= The equal symbol is used for the assignment statement (assignment is a

statement in Kotlin, while in Java, it’s an expression).

+=, -=, *=,

/=, %=

These are augmented assignment operators. The += can be used like this

a += 1, which is short for a = a + 1; the -= can be used like

a -= 1, which is short for a = a -1, and so on.

&&, ||, !

logical 'and',

'or', 'not'

operators

When you need to construct complex or compound logical operations, you will

use these operators.

The short-circuit and (&&) behaves similarly as in Java. When one of the

operands evaluates to false, the other operand will no longer be evaluated and

the whole expression evaluates to false. While logical 'and' does not perform

short-circuit evaluation; think of it as the equivalent of the & operator in Java.

The short-circuit or (||) acts the same as in Java. Kotlin doesn’t have the

single pipe operator; instead, it has the 'or' operator, which performs a

logical OR without short-circuiting.

(continued)

�Operators
Like in Java and other programming languages, Kotlin supports a variety of operators

and symbols that we can use to formulate expression and statements. Table 2-1 shows

some of them.

Chapter 2 Kotlin Basics

40

Table 2-1.  (continued)

Operators or
Symbol

What It Means

==, != These are equality operators. Since Kotlin doesn’t have primitive types (like in

Java), you can use these operators to compare any type, basic or otherwise:

fun main(args: Array<String>) {

var a = "Hello"

var b = "Hello"

if (a == b) { // this evaluates to true

println("$a is equal to $b")

}

}

In Java, we wouldn’t be able to do object comparisons like this using the

double equals operator. Objects (like Strings) should use the .equals()

method if we want to test for equality. In Kotlin, however, we don’t need to

worry about such things. We use the double equals operator to compare

Strings. Kotlin translates this internally to call to .equals() method.

===, !=== Referential equality is checked by the === operation (and its negated

counterpart !==). a === b evaluates to true if and only if a and b point to the

same object. For example,

var p1 = Person("John")

var p2 = Person("John")

if(p1 === p2) { // false

println("p1 == p2")

}

In the above example, p1 and p2 do not point to the same object; hence, the

triple equals will not evaluate to true.

<, >, <=, >= Comparison operators. Kotlin translates these to calls to compareTo()—no

primitive types, remember?

(continued)

Chapter 2 Kotlin Basics

41

�Blocks
Often, you may need to write a bunch of statements and you will need to group them

together. Blocks allow us to do just that. The lexical symbol for blocks are a pair of curly

braces; they are also sometimes called French or squiggly braces. Blocks can be found on

many Kotlin constructs such as classes, like the following code:

class Person(val name: String) {

}

when defining interfaces, such as

interface Human {

 fun walk()

 fun talk()

}

in functions, like

fun main(args: Array<String>) {

 greet("John")

}

Table 2-1  (continued)

Operators or
Symbol

What It Means

[]

[,]

Index access operators are used as a convenience way to access elements

of a list or the values of map. Instead of using the Java-style get(index) or

get(key), we can use array-indexing to retrieve the items.

fun main(args: Array<String>) {

val fruits = listOf("Apple", "Banana", "Orange")

println(fruits.get(2)) // Banana

println(fruits[2]) // Banana

}

Chapter 2 Kotlin Basics

42

fun greet(name:String) {

 println("Hello $name")

}

in looping constructs, like the while loop

var counter = 0

while (counter++ != 5) {

 println("counter $counter")

}

when using the try-catch construct

val num = "1"

val ans = try {

 Integer.parseInt(num)

}

catch(e:Exception) {

 e.printStackTrace()

}

and any other control structure that may need to group statements.

�Comments
Comments are useless to the compiler; it ignores them. But they are useful to other

people (and you) who will read the codes. This makes them an excellent tool to make

the code more understandable because you can use comments to dump your thought

processes at the time you are writing the code. It clarifies and conveys your intentions.

There are three ways to write comments, they are:

	 1.	 Single-line comments, also known as inline comments. These

are written using two forward slashes. The compiler will ignore

everything to the right of the slashes until the end of the line, see

the example:

// This statement will be ignored

var a = 0 // so will this line

Chapter 2 Kotlin Basics

43

	 2.	 Multiline comments, also known as C-style comments. They are

called as such because they came primarily from the C language. This

style is useful if your comments span multiple lines. See the example:

/*

 Everything inside the pair of these slashes

 and asterisks will be ignored by the

 compiler

*/

	 3.	 KDoc is like Javadoc, it starts with /** and it ends with */. This

form of commenting is very similar to the multiline comment

(above), but this is used to provide API documentation to Kotlin

codes. Listing 2-4 illustrates how to use the KDoc syntax.

Listing 2-4.  KDoc Syntax

/**

This is an example documentation using KDoc syntax

@author Ted Hagos

@constructor

*/

class Person(val name: String) {

 /**

 This is another KDoc comment

 @return

 */

 fun foo(): Int{

 }

}

Chapter 2 Kotlin Basics

44

IntelliJ Tip  You can comment on multiple lines of code in IntelliJ by selecting
the lines you want to comment on and use one of the the keyboard shortcuts to
comment out codes.

In Windows and Linux, these keys are:

CTRL + / — comment using //

CTRL + Shift + / — comment using /* */

In macOS, the keys are:

⌘ + / — comment using //

⌘ + ⌥ + / — comment using /* */

�Basic Types
Kotlin has some basic types, but they are not the same as Java’s primitive types because

all types in Kotlin are objects. They’re just called basic types because they are in very

common usage. These types are numbers, characters, booleans, arrays, and string—we’ll

look at them in this section.

�Numbers and Literal Constants
There are built-in types to handle numbers (shown in Table 2-2). They may be

represented as primitive values during runtime, but for all intents and purposes, they

don’t appear to the programmer as primitives. They appear as bona fide objects, with

member functions and properties.

Chapter 2 Kotlin Basics

45

Kotlin handles numbers very close to how Java handles them but with some notable

differences. For example, widening conversions are not implicit anymore; you will need

to perform the conversions deliberately.

var a = 10L // a is a Long literal, note the L postfix

var b = 20

var a = b // this won't work

var a = b.toLong() // this will work

When whole numbers are used as literal constants, they are automatically Ints. To

declare a Long literal, use the L postfix, like

var a = 100 // Int literal

var b = 10L // Long literal

You can use underscores in numeric literals to make them more readable. This

feature was introduced in Java 7 and its later versions.

var oneMillion = 1_000_000

var creditCardNumber = 1234_5678_9012_3456

Literals with decimal positions are automatically Doubles. To declare a float literal,

use the F postfix, like

var a = 3.1416 // Double literal

var b = 2.54 // Float literal

Table 2-2.  Kotlin’s Number Built-In Type

Type Bit Width

Double 64

Float 32

Long 64

Int 32

Short 16

Byte 8

Chapter 2 Kotlin Basics

46

Every number type can be converted to any of the number types. That means all

Double, Float, Int, Long, Byte, and Short types support the following member functions:

•	 toByte() : Byte

•	 toShort() : Short

•	 toInt() : Int

•	 toLong() : Long

•	 toFloat() : Float

•	 toDouble() : Double

•	 toChar() : Char

�Characters
Characters in Kotlin cannot be treated directly as numbers. You can’t do things like the

following:

fun checkForKey(keyCode:Char) {

 if (keyCode == 97) { // won't work, keyCode is not a number

 }

}

Character literals are created by using single quotes, like

var enterKey = 'a'

Like in Java, you can use escape sequences such as \t, \b, \n, \r, \", \", \\,

and \$ and if you need to encode any other character, you can use the Unicode syntax

(e.g., \uFF00).

Let’s not forget that Characters are objects in Kotlin, so you can call member

functions on them. Listing 2-5 shows a snippet that demonstrates some usage scenarios.

Listing 2-5.  Member Functions of the Character Type

val a = 'a'

println(a.isLowerCase()) // true

println(a.isDigit()) // false

Chapter 2 Kotlin Basics

47

println(a.toUpperCase()) // A

val b: String = a.toString() // converts it to a String

�Booleans
Booleans are represented by the literals true and false. Kotlin doesn’t have the notion

of truthy and falsy values, like in other languages such as Python or JavaScript. It means

that for constructs that expect a Boolean type, you have to supply either a Boolean literal,

variable, or expression that will resolve to either true or false.

var count = 0

if (count) println("zero") // won't work

if ("") println("empty") // won't work either

�Arrays
Kotlin doesn’t have an array object like the one created in Java using the square braces

syntax. The Kotlin array is a generic class—it has a type parameter. We’ve been using

Kotlin arrays for quite some time now because the small code snippets and the “Hello

World” example in the previous chapter have featured the use of Arrays. The argument to

the main function is actually an Array of String. Let’s see that main function again, just as

a refresher.

fun main(args:Array<String>) {

}

There are a couple of ways to create an array. They can be created using the

arrayOf() and arrayOfNulls() functions, and finally, they can be created using the

Array constructor. Listing 2-6 provides some sample codes on how to work with them.

Chapter 2 Kotlin Basics

48

Listing 2-6.  Working With the Array Type

fun main(args: Array<String>) {

 var emptyArray = arrayOfNulls<String>(2) ➊
 emptyArray[0] = "Hello" ➋
 emptyArray[1] = "World"

 for (i in emptyArray.indices) println(emptyArray[i]) ➌

 for (i in emptyArray) println(i) ➍

 var arrayOfInts = arrayOf(1,2,3,4,5,6) ➎
 arrayOfInts.forEach { e -> println(e) } ➏

 var arrayWords = "The quick brown fox".split(" ").toTypedArray() ➐
 arrayWords.forEach { item -> println(item) }

}

➊ We used the arrayOfNulls function to create an array that has two elements.

➋ We can assign values to specific elements of the array. We just need specify the position of the

element in the array using its index. This syntax of accessing the element of the array is the

same as in Java.

➌ We can use the for loop to traverse the contents of the array. In this example, we used the

indices to access the element of the array.

➍ This is a more direct way of accessing the element of the array. An Array object has an iterator,

so we can use that iterator to get to the array element right away.

➎ This creates an array of Ints using the arrayOf() function.

➏ This example uses the forEach function to traverse the elements of the array. Using the

forEach function is considered more idiomatic (and more efficient).

➐ This creates an array using an ArrayList(arrayWords). The List arrayWords was created by

invoking the split() member function of the String.

Chapter 2 Kotlin Basics

49

�Strings and String Templates
Much of what we’ve learned about Java Strings are still applicable in Kotlin; hence, this

section will be short.

The easiest way to create a String is to use the escaped string literal—escaped strings

are actually the kind of strings we know from Java. These strings may contain escape

characters like \n, \t, \b, etc. See the code snippet below.

var str: String = "Hello World\n"

Kotlin has another kind of string that is called a raw string. A raw string is created

by using triple quote delimiter. They may not contain escape sequences, but they can

contain new lines, like

var rawStr = """Amy Pond, there's something you'd

 better understand about me 'cause it's important,

 and one day your life may depend on it:

 I am definitely a mad man with a box!

 """

A couple more things we need to know about Kotlin strings are as follows:

	 1.	 They have iterators, so we can walk through the characters using a

for loop:

val str = "The quick brown fox"

for (i in str) println(i)

	 2.	 Its elements can be accessed by the indexing operator

(str[elem]), pretty much like Arrays

println(str[2)) // returns 'e'

	 3.	 We can no longer convert numbers (or anything else for that

matter) to a String by simply adding an empty String literal to it:

var strNum = 10 + "" // this won't work anymore

var strNum = 10.toString() // we have to explicitly convert now

Chapter 2 Kotlin Basics

50

We can still use String.format and System.out.printf in Kotlin; after all, we can

use Java codes from within Kotlin. It’s still possible to write programs like the code

snippet shown in Listing 2-7.

Listing 2-7.  Using String.format and printf

var name = "John Doe"

var email = "john.doe@gmail.com"

var phone = "(01)777-1234"

var concat = String.format("name: %s | email: %s | phone: %s", name, email,

phone)

println(concat)

// prints

// name: John Doe | email: john.doe@gmail.com | phone: (01)777-1234

The preferred way to do string composition in Kotlin is by using string templates, like

var concat = "name: $name | email: $email | phone: $phone"

println(concat)

// prints

// name: John Doe | email: john.doe@gmail.com | phone: (01)777-1234

Kotlin strings may contain template expressions. These are pieces of code that

are evaluated. The result of the evaluation is inserted (concatenated) into the String.

A template expression starts with a dollar sign ($) followed by an expression.

See Listing 2-8 for examples.

Listing 2-8.  Using Template Expressions

fun main(args:Array<String>) {

 var name = "John Doe"

 println("Hello $name") ➊
 println("The name '$name' is ${name.length} characters long") ➋
 println("Hello ${foo()}") ➌
}

fun foo(): String {

 return "Boo"

}

Chapter 2 Kotlin Basics

51

➊ Shows the basic use of a template string. The template expression is created by using the $

symbol immediately followed by an identifier. The value of the identifier is evaluated, resolved,

and finally inserted into the body of the String where the template expression is declared.

➋ In this example, the name.length is enclosed in curly braces. This is because the $ symbol

is right-associative—it will evaluate the expression that is immediately to its right. That won’t

work in our situation because we don’t want to evaluate the name variable; what we want to

resolve instead, is name.length—hence, the need to enclose it in curly braces.

➌ We’re not limited to simple variables; we can even write functions inside template expressions.

�Controlling Program Flow
Program statements are executed sequentially by default, one after the other, in a linear

fashion. There are constructs that can cause programs to deviate from a linear flow.

Some can cause the flow to fork or branch, and other constructs can cause the program

flow to go around in circles, like in a loop. These constructs are the subject of this

section.

�Using ifs
The basic form of the if construct is

if (expression) statement

where expression resolves to Boolean. If the expression is true, the statement will be

executed; otherwise, the statement will be ignored and program control will flow to the

next executable statement. When you need to execute more than one statement, you can

use a block with the if construct, like

if (expression) {

 statements

}

Chapter 2 Kotlin Basics

52

Let’s see how it looks in code.

val theQuestion = "Doctor who"

val answer = "Theta Sigma"

val correctAnswer = ""

if (answer == correctAnswer) {

 println("You are correct")

}

So far, the if construct in Kotlin behaves exactly as it does in Java. It also supports the

else if and the else clause, as shown in following snippet:

val d = Date()

val c = Calendar.getInstance()

val day = c.get(Calendar.DAY_OF_WEEK)

if (day == 1) {

 println("Today is Sunday")

}

else if (day == 2) {

 println("Today is Monday")

}

else if (day == 3) {

 println("Today is Tuesday")

}

The new thing about Kotlin’s if is that it’s an expression, which means we can do

things like

val theQuestion = "Doctor who"

val answer = "Theta Sigma"

val correctAnswer = ""

var message = if (answer == correctAnswer) {

 "You are correct"

}

else{

 "Try again"

}

Chapter 2 Kotlin Basics

53

The String on the first block of the if construct will be returned to the message

variable if the condition is true; otherwise, the String on the second block will be the

returned value. We can even omit the curly braces on the blocks, since the blocks contain

only single statements.

var message = if (answer == correctAnswer) "You are correct" else "Try

again"

The code example above would probably remind you of the ternary operator in Java.

By the way, Kotlin doesn’t support the ternary operator, but don’t worry since you don’t

need it. The if construct is an expression, if you feel you need to write code that requires

the ternary operator, just follow the preceding code example.

�The when Statement
Kotlin doesn’t have a switch statement, but it has the when construct. Its form and

structure is strikingly similar to the switch statement. In its simplest form, it can be

implemented like this:

val d = Date()

val c = Calendar.getInstance()

val day = c.get(Calendar.DAY_OF_WEEK)

when (day) {

 1 -> println("Sunday")

 2 -> println("Monday")

 3 -> println("Tuesday")

 4 -> println("Wednesday")

}

when matches the argument (the variable day) against all branches sequentially until

it encounters a match; note that unlike in switch statements, when a match is found, it

doesn’t flow through or cascade to the next branch—hence, we don’t need to put a break

statement.

Chapter 2 Kotlin Basics

54

The when construct can also be used as an expression, and when it’s used as such,

each branch becomes the returned value of the expression. See the code example:

val d = Date()

val c = Calendar.getInstance()

val day = c.get(Calendar.DAY_OF_WEEK)

var dayOfweek = when (day) {

 1 -> "Sunday"

 2 -> "Monday"

 3 -> "Tuesday"

 4 -> "Wednesday"

 else -> "Unknown"

}

Just remember to include the else clause when when is used as an expression. The

compiler thoroughly checks all possible pathways and it needs to be exhaustive, which is

why the else clause becomes a requirement.

You’re not limited to numeric literals; you can use a wide variety of types for the

branches, as shown in Listing 2-9.

Listing 2-9.  How to Write Branches Inside the When Construct

fun main(args: Array<String>) {

 print("What is the answer to life? ")

 var response:Int? = readLine()?.toInt() ➊

 val message = when(response){

 42 -> "So long, and thanks for the all fish"

 43, 44, 45 -> "either 43,44 or 45" ➋
 in 46 .. 100 -> "forty six to one hundred" ➌
 else -> "Not what I'm looking for" ➍
 }

 println(message)

}

Chapter 2 Kotlin Basics

55

➊ readLine() reads an input from the console. Don’t worry about the questions marks for now;

we’ll get to that in the coming sections.

➋ The branch conditions may be combined with a comma.

➌ We can check if it’s a member of a range or a collection.

➍ The else clause is required when when is used as an expression.

�The while Statement
The while and do . . while statements work exactly as they do in Java—and like in Java,

these are also statements and not expressions. We won’t spend too much time on while

and do . . while loops here.

A basic usage of the while loop is shown here, just as a refresher.

fun main(args: Array<String>) {

 var count = 0

 val finish = 5

 while (count++ < finish) {

 println("counter = $count")

 }

}

�for loops
Kotlin doesn’t have the traditional for loop of Java 7 and below—the one that looks like

the following:

for (int i = 0; i < 10; i++) {

 statements

}

Kotlin’s for loop, instead, works on things that have an iterator. If you’ve seen the for

each loop in JavaScript, C#, or Java 8, Kotlin’s is a lot closer to that. A basic example is

shown in Listing 2-10.

Chapter 2 Kotlin Basics

56

Listing 2-10.  Basic for Loop

fun main(args: Array<String>) {

 val words = "The quick brown fox".split(" ") ➊

 for(word in words) { ➋
 println(word) ➌
 }

}

➊ The split() method of the String class returns an ArrayList type, we can iterate over that.

➋ For each item (word) in the collection (words), we;

➌ print the item.

If you need to work with numbers on the for loop, you can use Ranges. A range is a

type that represents an arithmetic progression of integers. Ranges are created with the

rangeTo() function, but we usually use it in its operator form (. .). To create a range of

integers from 1 to 10, we write like this:

var zeroToTen = 0..10

We can use the in keyword to perform a test of membership.

if (9 in zeroToTen) println("9 is in zeroToTen")

To use ranges in for loops, we can start with something that looks like the code

shown in Listing 2-11.

Listing 2-11.  Using Ranges in for Loop

fun main(args: Array<String>) {

 for (i in 1..10) {

 println(i)

 }

}

Chapter 2 Kotlin Basics

57

�Exception Handling
Kotlin’s exception handling is very similar to Java: it also uses the try-catch-finally

construct. Whatever we’ve learned about Java’s exception handling commutes nicely

to Kotlin. However, Kotlin simplifies exception handling by simply using unchecked

exceptions. What that means is writing try-catch blocks is now optional. You may or may

not do it. Let’s consider the code shown in Listing 2-12.

Listing 2-12.  I/O Operations Without Try-Catch Blocks

import java.io.FileReader ➊

fun main(args: Array<String>) {

 var fileReader = FileReader("README.txt") ➋

 var content = fileReader.read() ➌
 println(content)

}

➊ We can use Java’s standard library in Kotlin.

➋ This one may throw the "FileNotFoundException".

➌ And this could throw the "IOException", but Kotlin happily lets us code without handling the

possible Exceptions that may be thrown.

Although Kotlin lets us get away with not having to handle exceptions, we still can do

that, and for some situations, we may really have to. When that happens, just write the

exception handling code the way you did in Java; see Listing 2-13 for an example.

Listing 2-13.  Kotlin’s Try-Catch Block

import java.io.FileNotFoundException

import java.io.FileReader

import java.io.IOException

fun main(args: Array<String>) {

 var fileReader: FileReader

Chapter 2 Kotlin Basics

58

 try {

 fileReader = FileReader("README.txt")

 var content = fileReader.read()

 println(content)

 }

 catch (ffe: FileNotFoundException) {

 println(ffe.message)

 }

 catch(ioe: IOException) {

 println(ioe.message)

 }

}

�Handling Nulls
A common source of bugs and expensive rework activities in Java may be attributed

to the way programmers handle null values. Some of us are really diligent, and such

defensive programmers that this discussion may not be necessary anymore. But not all

programmers are created equal, and for most of us, we need to be reminded to mind the

possibility of NullPointerExceptions. Handling of null values is such a big concern in Java

that Kotlin made a very deliberate decision to introduce the concept of a Nullable type.

In Kotlin, when we declare a variable like

var str: String = "Hello"

str = null // won't work

we will never be able to set the value of this variable to null. We may assign it a

different String value, but Kotlin guarantees that str will never be null. If, for some

reason, you really need this variable to be null, you have to explicitly tell Kotlin that str

is a Nullable type. To make a String (or any type) Nullable, we use the question mark

symbol as postfix to the type, like

var str: String? = "Hello"

After declaring a type as Nullable, we now have to do some things that Kotlin used

to do for us. For non-Nullable types, Kotlin ensures that it’s pretty safe to use them in

operations such as assignment, printing, inclusion in expressions, etc. When we make

Chapter 2 Kotlin Basics

59

types Nullable, Kotlin assumes that we know what we’re doing and that we’re responsible

enough to write the necessary guard conditions to prevent NullPointerExceptions. Kotlin

assumes we’d do something like the code shown in Listing 2-14.

Listing 2-14.  Demonstration of Nullable Types

fun main(args: Array<String>) {

 var a = arrayOf(1,2,3)

 printArr(null)

}

fun printArr(arr: Array<Int>?) { ➊
 if(arr != null) { ➋
 arr.forEach { i -> println(i) } ➌
 }

}

➊ We’re declaring Array<Int> to be Nullable. This means we can pass null to printArr().

➋ Because arr is no longer guaranteed to be non-null, we have to manually check for null values

before we do some operations that involve the arr local variable.

➌ If arr is not null, we can safely perform this operation.

Kotlin introduced an operator that we can use to handle Nullable types. It’s called the

safe-call operator, which is written as the question mark symbol followed by a dot ?.

We can replace the entire if block, which performs the null checking, with just one

statement:

arr?.forEach { i -> println(i) }

What the safe call does is to first check if arr is null; if it is, it won’t go through the

forEach operation. Only when arr is not null will the array be traversed.

Chapter 2 Kotlin Basics

60

Listing 2-15 shows the refactored code for Listing 2-14.

Listing 2-15.  Safe Call Operator

fun main(args: Array<String>) {

 var a = arrayOf(1,2,3)

 printArr(null)

}

fun printArr(arr: Array<Int>?) {

 arr?.forEach { i -> println(i) }

}

Kotlin’s default behavior regarding nullability of objects should prevent many of us

from doing things that will disgrace ourselves because it doesn’t allow variables to be

null by default. However, if we think we know what we’re doing and certain situations

would force us to use Nullable types, we can still do that. Just remember to use the safe

call operator; it’s idiomatic compared to performing null checks using ifs.

�Chapter Summary
•	 Kotlin’s program elements are not that different from Java; it also

has operators, blocks, statements, expressions, etc. In Kotlin,

however, some constructs that are considered statements in Java are

expressions in Kotlin, and some that were considered expressions in

Java are statements in Kotlin (e.g., the assignment operation).

•	 Kotlin’s basic types are not the same as primitive types of Java.

Everything in Kotlin is an object.

•	 There are two ways to declare a variable in Kotlin. When the var

keyword is used, the variable is mutable. When the val keyword is

used, the variable is immutable.

•	 Strings in Kotlin have iterators. Also, they’re easier to compose and

combine with the help of template expressions.

•	 When variables are declared in Kotlin, they are by default non-

Nullable, unless we declare them otherwise.

Chapter 2 Kotlin Basics

61

•	 Kotlin doesn’t have a switch statement, but it’s got a when construct.

•	 In Kotlin, we don’t have to write try-catch anymore because it

basically uses unchecked Exceptions.

In the next chapter, you’ll find out:

•	 How to (easily) create functions in Kotlin

•	 Why we don’t need to do tons of method overloads in Kotlin

•	 How we can move away from writing Utility functions and instead

use Kotlin’s Extension functions (Java doesn’t have this)

Chapter 2 Kotlin Basics

63
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_3

CHAPTER 3

Functions
What we’ll cover:

•	 Declaring functions

•	 Default parameters

•	 Named parameters

•	 Extension functions

•	 Infix functions

•	 Infix operators

Kotlin’s functions are almost the same as Java methods, although it’s closer in

behavior to functions in JavaScript, because in Kotlin, functions are more than just a

named collection of statements. In Kotlin, functions are first-class citizens; you can use

a function wherever you could use a variable. You can pass them as parameters to other

functions, and you can return functions from other functions as well. But before we can

dive into that topic, we need to start with the basics of Kotlin functions—for example,

how they are declared, how they treat parameters, how different (or similar) they are

from Java methods, plus a couple of other details. That’s what we’ll cover in this chapter.

�Declaring Functions
Functions can be written in three places. You can write them (1) inside a class, like

methods in Java—these are called member functions; (2) outside classes—these are

called top-level functions; and (3) they can be written inside other functions—these

64

are called local functions. Regardless of where you put the function, the mechanics of

declaring it doesn’t change much. The basic form a function is as follows:

fun functionName([parameters]) [:type] {

 statements

}

The function is declared using the reserved word fun followed by an identifier,

which is the function name. The function name includes the parentheses where you

can declare optional parameters. You may also declare the type of data the function will

return, but this is optional since Kotlin can infer the function’s return type by simply

looking at the function’s body declaration. What follows is the pair of curly braces with

some statements inside the function’s body.

You should name your functions following the same guidelines as if you are writing

Java methods—namely, the function name (1) shouldn’t be a reserved word; (2) mustn’t

start with a number; and (3) shouldn’t have special characters in them. And finally,

from a stylistic perspective, its name should contain a verb or something signifying an

action—as opposed to when you are naming a variable where the name contains a noun.

Listing 3-1 shows a basic declaration of a function that takes a String and Int parameters.

For purposes of comparison, Listing 3-3 shows the equivalent Java code for Listing 3-1.

Listing 3-1.  displayMessage Function

fun displayMessage(msg: String, count: Int) {

 var counter = 1

 while(counter++ <= count) {

 println(msg)

 }

}

The displayMessage() in Listing 3-1 is a non-productive function; it doesn’t return

anything—notice the absence of a return keyword in the body of the function. In Java,

when a function doesn’t return anything, we still indicate that the return type is void

(see Listing 3-3). In Kotlin, however, we don’t really have to do that since Kotlin is

capable of type inference—it can figure it out for itself. But as an academic exercise, let’s

rewrite Listing 3-1 verbosely to completely tell the compiler what kind of return type

displayMessage() has. See the code example in Listing 3-2.

Chapter 3 Functions

65

Listing 3-2.  displayMessage With an Explicit Return Type

fun displayMessage(msg: String, count: Int) : Unit {

 var counter = 1

 while(counter++ <= count) {

 println(msg)

 }

}

The only difference between Listing 3-1 and 3-2 is the Unit return type of the

displayMessage() function. Unit corresponds to Java’s void.

Listing 3-3.  DisplayMessage in Java

public class DisplayMessage {

 public static void main(String []args) {

 displayMessage("Hello", 3);

 }

 static void displayMessage(String msg, int count) {

 int counter = 1;

 while(counter++ <= count) {

 System.out.println(msg);

 }

 }

}

To invoke the displayMessage() function, we call it by its name and pass the

appropriate parameters, as shown in Listing 3-4.

Listing 3-4.  Calling the displayMessage Function

fun main(args: Array<String>) {

 displayMessage("Hello", 3) ➊ ➋
}

fun displayMessage(msg: String, count: Int) {

 var counter = 1

Chapter 3 Functions

66

 while(counter++ <= count) {

 println(msg)

 }

}

➊ "Hello" is passed to the msg argument of displayMessage()

➋ 3 is passed to the count argument of displayMessage(); like in Java, arguments passed to

a function are matched to its parameters in the order they were defined, starting from left going

to the right.

To make functions productive (return something), just put a return statement

somewhere in the body of the function and declare the function’s return type. See

Listing 3-5 for an example.

Listing 3-5.  getSum, A Productive Function

fun main(args: Array<String>) {

 println(getSum(listOf(1,2,3,4,5,6)))

}

fun getSum(values: List<Int>) : Int { // return type is Int

 var total = 0;

 for (i in values) total += i

 return total // return value

}

You can return anything from functions; we’re not limited to the basic types.

See Listing 3-6 for another example.

Listing 3-6.  Using Pairs As a Return Type

fun bigSmall(a: Int, b:Int) : Pair<Int, Int> { ➊

 if(a > b) return Pair(a,b) ➋
 else {

 return Pair(b,a) ➌
 }

}

Chapter 3 Functions

67

fun main(args: Array<String>) {

 var (x,y) = bigSmall(5,3) ➍

 println(x)

 println(y)

}

➊ This function is telling the compiler that it returns a Pair. A Pair is a data class that represents

a, well, generic pair. If you’ve used Python before, this might remind you of tuples.

➋ If parameter a is greater than b, then we create the Pair using parameter a as the first

component, and b as the second component, then we return it to the caller.

➌ If parameter a is less than b, then we create the Pair using parameter b as the first component,

and a as the second component, and then we return it to the caller.

➍ A Pair can be returned to two named variables on the left-hand side of the assignment

statement. This destructuring declaration allows us to save multiple values to multiple variables

all at once. In this case, variable x will receive the first component of the returned Pair and

variable y will receive the second component of the Pair.

�Single Expression Functions
Earlier in the chapter, we did say that functions follow the basic form

fun functionName([parameters]) [:type] {

 statements

}

There is a second form of writing functions in Kotlin that allows for a more concise

syntax. There are situations when we can omit (1) the return statement; (2) curly braces;

and (3) the return type altogether. This second form is called single expression functions.

As you may have inferred from its name, the function only contains a single expression,

as shown in the code snippet here:

fun sumInt(a: Int, b: Int) = a + b

A single expression function omits the pair of curly braces and instead uses an

assignment operator in its place. It also doesn’t need the return statement anymore

because the expression on the right-hand side of the assignment automatically becomes

Chapter 3 Functions

68

the returned value. Finally, a function like this doesn’t need an explicit return type

because the compiler can infer the type that’s returned from the value of expression. The

omission of the explicit return type is not in any way a hard rule. You may still write an

explicit return if that’s what you prefer, like so:

fun sumInt (a: Int, b: Int): Int = a + b

�Default Arguments
Function parameters can have default values in Kotlin, which allows the caller (of the

function) to omit some arguments on the call site. A default value can be added to

function’s signature by assigning a value to a function’s parameter. An example of such a

function is shown in Listing 3-7.

Listing 3-7.  connectToDb

fun connectToDb(hostname: String = "localhost",

 username: String = "mysql",

 password:String = "secret") {

}

Notice that “localhost”, “mysql”, and “secret” were assigned to hostname, username,

and password, respectively. This function can be invoked like this:

connectToDb("mycomputer","root")

Any and all arguments to call the connectToDb() function can be omitted because all

of its parameters have default values. But in this case, we omitted only the third one.

We can even call the function without passing any arguments to it, like so:

connectToDb()

Kotlin’s ability to provide default arguments to functions allows us to avoid creating

function overloads. We couldn’t do this in Java, which is why we had to resort to method

overloading. Overloading functions is still possible in Kotlin, but we’ll probably have

fewer reasons to do that now, all thanks to default parameters.

Chapter 3 Functions

69

�Named Parameters
Let’s go back to Listing 3-7. If we call that function and provided all the arguments, the

call might look like this:

connectToDb("neptune", jupiter", "saturn")

This is a valid call because all of the parameters of connectToDb() are Strings, and

we passed three String arguments. Can you spot the problem? It isn’t clear from the call

site which one is the username, the hostname, or the password. In Java, this problem of

ambiguity was solved by a variety of workarounds, including commenting the call site.

connectoToDb(/* hostname*/, "neptune,

 /* username*/ "jupiter",

 /*password*/ "saturn")

We don’t have to do this in Kotlin because we can name the argument at the call site.

connecToDb(hostname = "neptune",

 username = "jupiter",

 password = "saturn")

It’s important to remember that when we start specifying the argument name, we

need to specify the names of all the arguments after that in order to avoid confusion.

Besides, Kotlin wouldn’t let us compile if we did that. For example, a call like this

connectToDb(hostname = "neptune",

 username = "jupiter",

 "saturn")

isn’t allowed because once we name the second argument (username), we need to

provide the name of all the arguments that come after it. And in the example call above,

the second argument is named but not the third one. On the other hand, a call like this

connectToDb("neptune",

 username = "jupiter",

 password = "saturn")

is allowed. It’s okay that we didn’t name the first argument, because Kotlin would have

treated this as a regular function call and use the positional value of the argument to

resolve the parameter. And then we named all the remaining arguments.

Chapter 3 Functions

70

�Variable Number of Arguments
Functions in Kotlin, like in Java, can also accept an arbitrary number of arguments. The

syntax is a bit different from Java, instead of using three dots after the type ... , we use

the vararg keyword instead. Listing 3-8 shows an example on how to declare and call a

vararg function.

Listing 3-8.  Demonstration of a Variable Argument Function

fun<T> manyParams(vararg va : T) { ➊
 for (i in va) { ➋
 println(i)

 }

}

fun main(args: Array<String>) {

 manyParams(1,2,3,4,5) ➌
 manyParams("From", "Gallifrey", "to", "Trenzalore") ➍
 manyParams(*args) ➎
 manyParams(*"Hello there".split(" ").toTypedArray()) ➏
}

➊ The vararg keyword lets us accept multiple parameters for this function. In this example, we

declared a function that has a typed parameter; it’s generic. We didn’t have to declare it as

generic in order to work with variable arguments—we just chose to so that it could work with a

variety of types.

➋ This is a simple looping mechanism so that we can print each item in the argument.

➌ We can pass Ints, and we can pass as many as we want because manyParams accepts

variable number of arguments.

➍ It works with Strings as well.

➎ Like in Java, we can pass an array to a function that accepts variable arguments. We need to

use the spread operator * to unpack the array. It’s like passing the individual elements of the

array one by one, manually.

➏ The split() member function will return an ArrayList, you can convert it to an Array, then use

the spread operator so you can pass it to a vararg function.

Chapter 3 Functions

71

�Extension Functions
In Java, if we needed to add functionality to a class, we could either add methods to

the class itself or extend it by inheritance. An extension function in Kotlin allows us

to add behavior to an existing class, including the ones written in Java, without using

inheritance. It essentially lets us define a function that can be invoked as a member of

the class, but the function is implemented outside the class. To demonstrate this, let’s

start with a simple code, chanthofy, terminatorify (shown in Listing 3-9); it’s a contrived

application but it should set the grounds for us to explore extension functions.

Listing 3-9.  homerify, chanthofy, terminatorify

fun main(args: Array<String>) {

 val msg = "My name is Maximus Decimus Meridius"

 println(homerify(msg))

 println(chanthofy(msg))

 println(terminatorify(msg))

}

fun homerify(msg: String) = "$msg -- woohoo!"

fun chanthofy(msg: String) = "Chan, $msg , tho"

fun terminatorify(msg: String) = "$msg -- I'll be back"

The application in Listing 3-9 features three functions that take a String argument,

add some Strings to it, and then return them back to the caller; it’s simple. It is usable as

it is, but we can probably consolidate it a bit more by putting all the three functions in a

common class, which will become our utility class. Such a class might look something

like the code in Listing 3-10.

Listing 3-10.  Our Very Own StringUtil Class

fun main(args: Array<String>) {

 val msg = "My name is Maximus Decimus Meridius"

 val util = StringUtil()

 println(util.homerify(msg))

 println(util.chanthofy(msg))

 println(util.terminatorify(msg))

}

Chapter 3 Functions

72

/*

 The StringUtil class consolidates our three methods as member functions.

 This is a very common Java practice

*/

class StringUtil {

 fun homerify(msg: String) = "$msg -- woohoo!"

 fun chanthofy(msg:String) = "Chan, $msg , tho"

 fun terminatorify(msg: String) = "$msg -- I'll be back"

}

We can already use the code in Listing 3-10; in fact, this is a very common practice

in Java. It’s considered a good idea to consolidate methods that are somewhat

related into a utility class (like our very own StringUtil class in Listing 3-10), although

Java programmers might have implemented homerify(), chanthofy(), and

terminatorify() as static methods, and not instance methods, as we did here. That’s

a small matter, and we can safely ignore it. The point is, in Kotlin, instead of writing a

utility class for our three methods, we can rewrite our methods in a much simpler way

(see Listing 3-11).

Listing 3-11.  homerify As an Extension Function

fun String.homerify() = "$this -- woohoo!"

It looks deceptively simple, but this is really all it takes to write an extension

function. Extension functions introduce the concept of a receiver type and a receiver

object. In Listing 3-11, the receiver type is String; it’s the class to which we’d like to add

our extension function. The receiver object is the instance of that type, which in our

examples is “My name is Maximus Decimus Meridius”. When you attach an extension

function to a type, such as a String in our case, the extension function can reference

the receiver object using the keyword this. For all intents and purposes, an extension

functions appears to be just like any member function defined on the receiver type. So,

it makes sense for the extension function to be able to reference this. Listing 3-12 shows

the full code for our extended String class.

Chapter 3 Functions

73

Listing 3-12.  Extended String Class

fun main(args: Array<String>) {

 val msg = "My name is Maximus Decimus Meridius"

 println(msg.homerify())

 println(msg.chanthofy())

 println(msg.terminatorify())

}

fun String.homerify() = "$this -- woohoo!"

fun String.chanthofy() = "Chan, $this , tho"

fun String.terminatorify() = "$this -- I'll be back"

It’s perfectly alright to still write utility functions in Kotlin, but with extension

functions at our disposal, it seems more natural to use them because it increases the

semantic value of our code. It feels more natural to use extension function syntax.

�Infix Functions
“Infix” notation is one of the notations used in math and logical expressions. It’s the

placement of operator between operands (e.g., a + b; the plus symbol is “infixed”

because it’s between the operands a and b). In contrast, operations can follow “post

fixed” notation where the expression is written like so (+ a b) or they can be “post fixed,”

in which our expression is written like this (a b +).

In Kotlin, member functions can be “infixed,” which allow us to write codes like the

following:

john say "Hello World"

If john is a variable that points to an object of type Person (we’ll see the definition in

a little while) and say is a method that takes a String argument like "Hello World", then

the statement above is a more natural way of writing something like

john.say("Hello World")

To begin our exploration of infix functions, let’s start by implementing the codes that

will allow us to call the say() member function using the traditional dot notation. And

then we’ll write the codes that will let us use the infixed version. Listing 3-13 shows the

classic implementation of the Person class, which we can call using the dot notation.

Chapter 3 Functions

74

Listing 3-13.  Person Class Without infix Function

fun main(args: Array<String>) {

 val john = Person("John Doe")

 john.say("Hello World")

}

class Person(val name : String) {

 fun say(message: String) = println("$name is saying $message")

}

No surprises here, these kinds of call are where most of us cut our teeth in

Java programming. This doesn’t need any further commentary. Now, let’s see the

implementation that allows us to call the say method in an “infixed” way.

Listing 3-14.  Person Class With an infix Function

fun main(args: Array<String>) {

 val john = Person("John Doe")

 john say "Hello World"

}

class Person(val name : String) {

 infix fun say(message: String) = println("$name is saying $message")

}

The only thing you need to do in order to use the say() function in an “infixed” way

is to add the infix keyword in the beginning of the function, as shown in Listing 3-14.

Having said that, you cannot convert every function to become an infix. A function can

be converted to infix, only if

•	 it’s a member function (part of a class) or an extension function, and

•	 it accepts exactly one parameter (only). If you’re thinking of a

loophole like, “I could probably define a single parameter in my

function and use vararg,” that won’t work. Variable arguments are not

allowed to be converted to infix functions.

By the way, you cannot call an infix function using named parameters, like this

john say msg = "Hello World" // won't work

Chapter 3 Functions

75

Remember that infix functions take only a single argument; it doesn’t make much

sense to name the argument at the call site.

Infix functions, when used judiciously, allow for more intuitive coding because they

can hide program logic behind a keyword-like syntax. You can create some sort of a

meta-language with infix notation; just be careful not to overdo it.

�Operator Overloading
The topic of operator overloading may seem a bit out of place in a chapter that is all

about functions. But in Kotlin, this topic dovetails nicely into a discussion of infix

functions because of their shared mechanics in implementation, as we will see shortly.

Operator overloading allows us to appropriate the use of some standard operators,

like the math operators’ addition, subtraction, division, multiplication, and modulo.

For example, we can write a code that allows the use of the plus sign to, say, add two

Employee objects, or any other custom type. Consider the code in Listing 3-15.

Listing 3-15.  Adding Two Employee Objects

fun main(args: Array<String>) {

 var e1 = Employee("John Doe")

 var e2 = Employee("Jane Doe")

 var e3 = e1 + e2

 println(e3.name)

}

Somehow, we intuitively know what the statement e3 = e1 + e3 means; if we

add one employee object to another, then we should get the combined information or

state of employees e1 and e2—if that is the kind of thing you want to be able to do in

code. Programmatically, we know this statement should not work because the addition

operator doesn’t know anything about Employee objects, much less how to perform the

add operation on them. However, in Kotlin, we can teach the addition operator how to

add two Employee objects. This is shown in Listing 3-16.

Chapter 3 Functions

76

Listing 3-16.  class Employee

class Employee(var name: String) {

 infix operator fun plus(emp: Employee) : Employee { ➊
 this.name += "\n${emp.name}" //

 return this

 }

}

➊ This is very similar syntax to an infix function, as we’ve seen in previous section. The only thing

new here is the operator keyword.

We already know what the infix keyword will do to the function. The fact that plus is

an infix-ed function, allows us to write code like this (see Listing 3-16):

var e1 = Employee("John Doe")

var e2 = Employee("Jane Doe")

var e3 = e1 plus e2

However, the function name plus isn’t an ordinary function name. It isn’t just

another name that we thought about and made up. It has a special meaning to Kotlin.

The plus function name is a fixed identifier that corresponds to the math operator +. And

when this special function name is combined with the keywords infix and operator, it

allows us to write codes like this

var e3 = e1 + e2

Kotlin allows us to override quite a number of operators, and it’s not limited to just

math operators. Table 3-1 shows some of them. It’s not a complete list, but it should give

you an idea of how much you can overload.

Chapter 3 Functions

77

Operator overloading is a specific case of polymorphism where different operators,

like math operators, can have different implementations depending on the arguments

(or type of operands), as we’ve seen demonstrated in Listings 3-14 and 3-15. The use

of operator overloading, when done correctly, can produce codes that are easier to

understand because they are written in the language of the business or object domain.

They have higher semantic values.

Kotlin isn’t the first language to implement operator overloading. It’s been done by

languages like C++ before. It should be noted that the use or, more aptly, the overuse and

abuse of operator overloading has led to much criticism. Precisely because if you can

Table 3-1.  Operators That can be Overloaded and Their Corresponding Function

Names

Operator Function name Expression Translated to

+ Plus a + b a.plus(b)

- Minus a – b a.minus(b)

/ Div a / b a.div(b)

* Times a * b a.times(b)

% rem a % b a.rem(b)

.. rangeTo a .. b a.rangeTo(b)

++ inc a++ a.inc()

-- dec a-- a.dec()

+= plusAssign a += b a.plusAssign(b)

-+ minusAssign a -= b a.minusAssign(b)

/= divAssign a /= b a.divAssign(b)

*= timesAssign a *= b a.timesAssign(b)

%= remAssign a %= b a.remAssign(b)

> compareTo a > b a.compareTo(b) > 0

< compareTo a < b a.conpareTo(b) < 0

>= compareTo a >= a.conpareTo(b) >= 0

<= compareTo a<= b a.conpareTo(b) <= 0

Chapter 3 Functions

78

redefine the actions and behavior of well-known operators like plus, minus, etc., it can

lead to unwieldy code. So, exercise good judgment when you take the route of operator

overloading.

�Chapter Summary
•	 Kotlin functions can be written in three places. Like in Java, they can

be a member of the class, but they can also be written as a top-level

construct. Third, they can be written embedded in other functions—

we did not delve into local functions in this chapter, but we will

consider this topic at some length in later chapters.

•	 Kotlin makes it easier to declare and call functions by adding support

for default parameters, named parameters, and even variable

numbers of arguments. The combination of positional, named, and

default parameters allows us to move away from excessive use of

parametric overloading, like what we did in Java.

•	 Extension functions offer a new way to extend behaviors of existing

types. We can add the extra behavior outside the class but we can call

the extension function as if it was baked right into the class definition.

•	 Infix functions and Infix operators let us increase the semantic values

of our codes by allowing to us write function invocations without

using the dot notation. By allowing function calls to be infix-ed, the

resulting code becomes more expressive and closer to the language

of the domain.

In the next chapter, we’ll look the OOP side of Kotlin. We’ll learn how Kotlin deals

with classes, constructors, and interfaces. We’ll also learn about the new data classes in

Kotlin.

Chapter 3 Functions

79
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_4

CHAPTER 4

Working with Types
What we'll cover:

•	 Interfaces

•	 Classes

•	 Data classes

•	 Access modifiers

•	 Object declarations

Kotlin, like Java, is a class-based, object-oriented language. It uses interfaces and

classes to define custom types. The way Kotlin works with types will feel very similar to

the way we’ve worked in Java, but there are also some areas where Kotlin will not feel like

we’re in familiar ground. In this chapter, we’ll explore those similarities and differences.

�Interfaces
The basic form of an interface in Kotlin, like in Java, looks something like the code in

Listing 4-1.

Listing 4-1.  Interface Fax

interface Fax {

 fun call(number: String) = println("Calling $number")

 fun print(doc: String) = println("Fax:Printing $doc")

 fun answer()

}

80

It still uses the interface keyword, and it also contains abstract function(s). What’s

remarkable about Kotlin interfaces are that they can (1) contain properties and (2) have

functions with implementations—in other words, concrete functions. Although, Java

8 did allow for default implementations in Java, so that last one is no longer unique to

Kotlin, but still pretty useful, as we shall see later. Don’t worry too much about interfaces

having properties—you’ll get used to it. Although we won’t deal with properties in this

section (yet), we’ll get to them in a later section (classes). To implement an interface,

Kotlin uses the colon operator, as shown in Listing 4-2.

Listing 4-2.  class MultiFunction Implementing Fax

class MultiFunction : Fax { ➊
 override fun answer () { ➋

 }

}

➊ The colon operator is used, instead of Java’s implements keyword. The colon is used for

inheriting classes as well.

➋ We have to provide an implementation for the answer() function because it didn’t have

an implementation in the interface definition. On the other hand, we don’t have to provide

implementation for call() and print() because they have an implementation in the

interface definition. You may also note that we are using the override keyword in this

function. Its use is necessary in order to clarify to the compiler that we don’t intend to hide or

overshadow the answer() function in the interface definition. Rather, we intend to replace it,

so it can be polymorphic. We want to provide our own behavior for the answer() function in

this class.

You might be wondering why Kotlin would allow us to provide implementations

inside interfaces. Aren’t interfaces supposed to contain only abstract functions and leave

the implementations to the classes that will implement the interface? That way, you can

enforce contracts between types. Well, during the early days of Java, that was precisely

the way interfaces were used; they were purely an abstract construction. However, as of

Java 8, you can already provide default implementations on interfaces.

There are some practical reasons why this was allowed. Default implementations

on interfaces would allow us to evolve the interfaces over time. Imagine if we wrote

interface Foo today with member functions a(), b(), and c(), and this was released to

Chapter 4 Working with Types

81

other developers. In the future, if we added function d() to interface Foo, all codes that

used Foo would now break. However, if we provide a default implementation for d(),

then the existing codes don’t have to break. This is one of the use-cases where a function

implementation on an interface might be useful.

�Diamond Problem
A “diamond problem” happens when a class inherits from, say, two super types, and

both super types implement exactly the same function or method. See Listing 4-3 for a

code example.

Listing 4-3.  Diamond Problem

interface A {

 fun foo() {

 println("A:foo")

 }

}

interface B {

 fun foo() {

 println("B:foo")

 }

}

class Child : A, B {

}

The code shown in Listing 4-3 won’t compile because it’s not clear what will be

the behavior of function foo() when invoked from an instance of the Child class; foo()

is defined by interfaces A and B and both interfaces provide default implementation

for the function. This is known as the “diamond problem.” A class inherits from two

supertypes, and a behavior is defined on more than one of the types from where the class

descends. In Listing 4-3, if we invoked foo() from an instance of Child, it is ambiguous

which behavior it would exhibit—whether it would print “A:foo” or “B:foo”. In Kotlin, the

way to resolve this is to let the Child class provide an implementation of the conflicted

function—in this case, function foo(). Listing 4-4 shows the solution.

Chapter 4 Working with Types

82

Listing 4-4.  Diamond Problem, Solved

interface A {

 fun foo() {

 println("A:foo")

 }

}

interface B {

 fun foo() {

 println("B:foo")

 }

}

class Child : A, B {

 override fun foo () {

 println("Child:foo")

 }

}

fun main(args: Array<String>) {

 var child: Child = Child()

 child.foo()

}

�Invoking Super Behavior
Like Java, Kotlin’s functions can call the functions of its supertype if it has an

implementation. Also, like in Java, Kotlin uses the super keyword to accomplish this. The

super keyword in Kotlin means the same as it did in Java—it’s a reference to the instance

of the supertype. To invoke a function on a supertype, you’ll need three things: (1) the

super keyword; (2) name of the supertype enclosed in a pair of angle brackets; and (3)

the name of function you want to invoke on the supertype. It looks something like the

code snippet here:

super<NameOfSuperType>.functionName()

Let’s expand our Fax and Multifunction example from earlier in the chapter.

Chapter 4 Working with Types

83

Listing 4-5.  Printable, Fax, and MultiFunction

interface Printable {

 fun print(doc:String) = println("Printer:Printing $doc")

}

interface Fax {

 fun call(number: String) = println("Calling $number")

 fun print(doc: String) = println("Fax:Printing $doc")

 fun answer() = println("answering")

}

class MultiFunction : Printable, Fax {

 override fun print(doc:String) {

 println(“Multifunction: printing”)

 }

}

Listing 4-5 shows the Fax and MultiFunction example from earlier. We’ve added a

new interface called Printable, and it also defines a print() function. Our revised code

listing shows the MultiFunction class inheriting from both Fax and the new Printable

interfaces. The MultiFunction class overrides the print() function; it has to, because the

print() function is inherited from both Printable and Fax interfaces, and it has default

implementations on both.

The overridden print() function in MultiFunction has a simple println statement.

To demonstrate how to call a function on the supertype, we will invoke the print()

function on both supertypes from within the overridden print() in MultiFunction.

Listing 4-6 shows us how to do this.

Listing 4-6.  MultiFunction, Calling Functions on Supertype

class MultiFunction : Printable, Fax {

 override fun print(doc:String) {

 super<Fax>.print(doc)

 super<Printable>.print(doc)

 println("Multifunction: printing")

 }

}

Chapter 4 Working with Types

84

Now, when we invoke the print() function, it will call the print() in Fax, then

in Printable, and finally, whatever statements are left in the overridden print() in

MultiFunction. Listing 4-7 shows the full codes for this example.

Listing 4-7.  MultiFunction, Printable, and Fax

interface Printable {

 fun print(doc:String) = println("Printer:Printing $doc")

}

interface Fax {

 fun call(number: String) = println("Calling $number")

 fun print(doc: String) = println("Fax:Printing $doc")

 fun answer() = println("answering")

}

class MultiFunction : Printable, Fax {

 override fun print(doc:String) {

 super<Fax>.print(doc)

 super<Printable>.print(doc)

 println("Multifunction: printing")

 }

}

fun main(args: Array<String>) {

 val mfc = MultiFunction()

 mfc.print("The quick brown fox")

 mfc.call("12345")

}

�Classes
A class is defined using (1) the class keyword; (2) an identifier, which will be its name; (3)

an optional header; and (4) an optional body. Listing 4-8 shows a basic class.

Chapter 4 Working with Types

85

Listing 4-8.  A basic class in Kotlin

class Person() {

}

The header of the class is the pair of parentheses. The header may contain

parameters, but in this example, it doesn’t have any. The pair of curly braces comprises

the body of the class. Both the header and the class body are optional, but most of the

codes we will use this in book will include both of them.

To instantiate the Person class, we can write something like the following:

var person = Person()

If not for the noticeable absence of the new keyword, it looks a lot like how we would

create objects in Java. The pair of parentheses after the type name (Person) is a call to a

no-arg constructor (ctor). Let’s go back a bit to Listing 4-8 and take a closer look at the

header portion of the class definition. This is one of the few areas where Kotlin looks

and feels a bit different from Java. Java classes didn’t have headers, but Kotlin does. This

header is actually a constructor definition.

�Constructors
Kotlin classes can have more than one constructor in their definitions. This isn’t very

different from Java since its classes can also contain more than one ctor. However,

Kotlin makes a distinction between a primary ctor and a secondary one. A primary

ctor is written on the header part of the class, like the one you’ve seen in Listing 4-8,

while secondary ctor(s) are written in the body. Listing 4-9 shows a class with a primary

constructor.

Listing 4-9.  Person Class with Primary Constructor

class Person constructor(_name: String) { ➊
 var name:String ➋
 init { ➌
 name = _name ➍
 }

}

Chapter 4 Working with Types

86

➊ When a constructor is written on the class header, like this, it’s primary ctor. This way of writing

a ctor is essentially the same as in our example in Listing 4-8, except that Listing 4-8 doesn’t

contain the constructor keyword, and that in here (Listing 4-9), our ctor is taking in a parameter.

➋ This is a member variable that will hold the value of _name.

➌ This is an initializer block that is similar to Java’s initializer. This gets executed whenever an

instance of a class is created. You can have more than one initializer block in your class, and

when that happens, initializers will be executed in the order they were defined in the class.

An initializer block is a pair of curly braces prefixed by the keyword init You would normally

use them when the only constructor you have is a primary constructor, because primary

constructors cannot contain any code (whether statement or expressions).

➍ We can access arguments that were passed to the primary ctor from an initializer block.

When the primary ctor doesn’t have (or need) annotations or visibility modifiers, we

can omit the constructor keyword, like so:

class Person (_name: String) {

 var name:String

 init {

 name = _name

 }

}

We can further simplify and shorten the code by joining the init block and

declaration of the name variable in a statement. Kotlin is smart like that.

class Person (_name: String) {

 var name:String = _name

}

Constructors may also be defined inside the body of the class, just like the way it

was done in Java. When they are written as such, they are called secondary constructors.

Listing 4-10 shows a sample code with a secondary ctor.

Chapter 4 Working with Types

87

Listing 4-10.  Employee Class, with Secondary Constructor

class Employee {

 var name:String

 constructor(_name: String) {

 name = _name

 }

}

Notice in Listing 4-11 that we didn’t have to use the init block because the

initialization of the name member variable was done in constructor body. A secondary

ctor, unlike a primary ctor, can contain code.

Listing 4-11.  class Employee, with Two Secondary Constructors

class Employee {

 var name:String = "" ➊
 var empid:String = ""

 constructor(_name: String) : this(_name, "1001") ➋
 constructor(_name:String, _id: String) { ➌
 name = _name

 empid = _id

 }

}

➊ We have to initialize our member variables because Kotlin won’t be able to tell what we are

doing the initialization.

➋ A secondary constructor needs to have the constructor keyword. This ctor doesn’t have a body;

it’s okay to write it like that. Furthermore, this ctor invokes another ctor—one that accepts two

arguments.

➌ Another secondary constructor is defined for the Employee class. This one takes in two

parameters: a name and an employee id.

You can overload your constructors in Kotlin, like we did in Java, as you can see

in Listing 4-11. And also, as in Java, we can invoke other constructors using the this

keyword. The this keyword in Kotlin is the same as in Java, it refers to an instance

Chapter 4 Working with Types

88

of yourself—no surprises there. Notice, though, how we used the this construct to

delegate the call to another secondary constructor. You need to chain the this call to the

constructor definition using a colon (see bullet 2 of Listing 4-11).

While Kotlin allows us to do parametric polymorphism on constructors via

overloading, this isn’t really idiomatic Kotlin because the same result can be achieved

using Kotlin’s ability to provide default values for function parameters. See Listing 4-12

for a simplified version of the Employee class example.

Listing 4-12.  Simplified Employee class

class Employee (_name:String, _empid:String = "1001") {

 val name = _name

 val empid = _empid

}

The code in Listing 4-12 is shorter and more concise. Furthermore, by moving the

constructor parameters to the primary constructor, it allowed us to declare the member

variables using val rather than var. The use of immutable variables is a preferred

technique in Kotlin because it reduces coding errors overall. You can’t accidentally

change a property’s value if it’s immutable in the first place.

�Inheritance
Kotlin classes are final by default, as opposed to Java classes that are “open” or non-final.

The code, as shown in Listing 4-13, won’t compile because the Person class is final.

Listing 4-13.  Person and Employee class

class Person {

}

class Employee : Person() {

}

In order for our code sample to compile, we have to explicitly tell Kotlin that class

Person is open, which signifies that we intend for it to be extended or inherited (see

Listing 4-14). This default behavior of Kotlin classes is considered to be the correct

behavior and good practice. To paraphrase a quote from Joshua Bloch’s Effective Java

Chapter 4 Working with Types

89

(Addison-Wesley, 2008): “design and document for inheritance, otherwise prohibit it.”

This effectively means that all classes and methods that you don’t intend to be extended

or overridden ought to be declared as final. In Kotlin, this is the automatic behavior.

Listing 4-14 shows the Person class again, but this time, it has the open modifier, which

signifies that class Person can be extended.

Listing 4-14.  Person and Employee class

open class Person {

}

class Employee : Person() {

}

The behavior of being final as a default behavior isn’t just for classes; member

functions are like that too in Kotlin. When a function is written without the open

modifier, it is final.

Listing 4-15.  Method Overriding

open class Person(_name:String) {

 val name = _name

 open fun talk() { ➊
 println("${this.javaClass.simpleName} talking")

 }

}

class Employee(_name:String, _empid:String = "1001") : Person(_name) {

 val empid = _empid

 override fun talk() { ➋
 super.talk() ➌
 println("Hello")

 }

 override fun toString():String{ ➍
 return "name: $name | id: $empid"

 }

}

Chapter 4 Working with Types

90

➊ Functions need to be specifically marked as open so that they can be overridden by subtypes.

➋ Subtypes need to mark the function with the override keyword in order to make it polymorphic.

IntelliJ is smart enough to prevent compilation from happening when it senses that you are

defining a function on the subtype that has an exact signature on the supertype without using

the override keyword.

➌ We can call the super behavior from here; this effectively invokes the talk() function in class

Person.

➍ We’re overriding the toString() function. This behavior was inherited from the Person class,

which in turn it inherited from class Any. You can think of class Any as the analog for the java.
lang.Object.

You need to keep in mind that when a function has been marked as open, it will

remain open for overriding by its direct subtypes and even its indirect subtypes unless

the function is marked as final again. To illustrate this point, let’s consider Listing 4-16.

Listing 4-16.  class Person, Employee, and Programmer

open class Person(_name:String) {

 val name = _name

 open fun talk() { ➊
 println("${this.javaClass.simpleName} talking")

 }

}

open class Employee(_name:String, _empid:String = "1001") : Person(_name) {

 val empid = _empid

 override fun talk() { ➋
 super.talk()

 println("Employee overriding talk()")

 }

 override fun toString():String{

 return "name: $name | id: $empid"

 }

}

Chapter 4 Working with Types

91

class Programmer(_name:String) : Employee(_name) {

 override fun talk() { ➌
 super.talk()

 println("Programmer overriding talk()")

 }

}

➊ talk() function is marked as open for the first time.

➋ We can override talk() from here.

➌ We can still override talk() from here even if class Employee did not mark the function as

open. Function talk() stays implicitly open through the inheritance hierarchy, unless it will be

marked as final somewhere in the inheritance chain.

Listing 4-17 demonstrates how to make a function “closed” again in the midst of the

inheritance chain.

Listing 4-17.  How to Make a Function Final, Again

open class Person(_name:String) {

 val name = _name

 open fun talk() {

 println("${this.javaClass.simpleName} talking")

 }

}

open class Employee(_name:String, _empid:String = "1001") : Person(_name) {

 val empid = _empid

 override fun talk() {

 super.talk()

 println("Employee overriding talk()")

 }

 final override fun toString():String{ ➊
 return "name: $name | id: $empid"

 }

}

Chapter 4 Working with Types

92

class Programmer(_name:String) : Employee(_name) {

 override fun talk() { ➋
 super.talk()

 println("Programmer overriding talk()")

 }

}

➊ Seeing the final and override keyword on the same line does seem a bit odd, but it’s perfectly

legal. What it means is that we are overriding the function and at the same time “closing” it for

further inheritance. The final keyword in this function affects only subtypes of the Employee

class, but not the Employee class itself.

➋ This won’t compile anymore.

�Properties
A property in a class or object is traditionally created by defining a member variable

and providing accessor methods for it. These methods will usually follow some naming

conventions where the name of the member variable will be prefixed by get and set.

Listing 4-18.  Person Class in Java with a Single Property

class Person {

 private String name;

 public String getName() {

 return this.name;

 }

 public void setName(String arg) {

 this.name = arg;

 }

 public static void main(String []args) {

 Person person = new Person();

 person.setName("John Doe");

 System.out.println(person.getName());

 }

}

Chapter 4 Working with Types

93

Listing 4-18 shows a simple Java class that defines a single property called name. This

is done by defining a member variable that will be kept private so that access to this state

will only be controlled via the accessors—getName() and setName(). This kind of coding

is idiomatic in Java because it doesn’t have native language support for properties. We

can still follow this style of coding in Kotlin, but we don’t have to because Kotlin has

language support for properties.

If we were to re-write Listing 4-18 in Kotlin, it would look like the code in Listing 4-19.

Listing 4-19.  Person class With a Single Property

class Person(_name:String) { ➊
 val name:String = _name ➋
}

fun main(args: Array<String>) {

 var person = Person("John Smith")

 println(person.name) ➌
}

➊ A constructor takes in a parameter. This allows us to set the name of the object at the point of

creation.

➋ We have access to parameters from via the constructor from here.

➌ This may look like we are directly accessing the name member variable, but we are not. This

actually calls the get accessor method.

The Person class definition in Listing 4-19 can further be simplified to that in

Listing 4-20.

Listing 4-20.  Simplified Person class

class Person(val name:String)

fun main(args: Array<String>) {

 var person = Person("John Smith")

 println(person.name)

}

Chapter 4 Working with Types

94

The code here is the most concise way of defining a property in Kotlin. It’s also

considered idiomatic. Notice the changes we made in the code:

	 1.	 The parameter in the primary constructor now has a val

declaration. This effectively makes the constructor parameter a

property. We could have used var, and it would work just as well.

	 2.	 We no longer need to differentiate the identifier in the constructor

parameter with the member variable; hence we dropped the

leading underscore in the _name variable.

	 3.	 We can drop the entire body of the class since we don’t need

it anymore. The class body only contains the code to transfer

the value of the constructor parameter to the member variable.

Since Kotlin will automatically define a backing field for the

constructor parameter, we don’t have to do anything anymore in

the class body.

The code in Listing 4-20 shows the most basic way to define data objects in Kotlin

(Java programmers refer to them as POJOs or plain old java object). By simply using

either val or var in the primary constructor parameters, we can automagically define

properties with proper mutator methods. However, there will still be situations when

you will need to exercise more control over the “getting” and “setting” process of these

properties. Kotlin allows us to do that as well.

We can take over the automatic process of “getting” and “setting” by doing the

following:

	 1.	 Declare the property in the body of the class, not in the primary

constructor.

	 2.	 Provide getter and setter methods in the class body.

The full syntax for declaring a property is as follows:

var <property name>:[<property type>][=<initializer>]

 [<getter>]

 [<setter>]

Listing 4-21 shows some basic usage of custom accessor methods.

Chapter 4 Working with Types

95

Listing 4-21.  Custom Accessor Methods

class Employee {

 var name: String = "" ➊
 get() { ➋
 Log("Getting lastname") ➌
 return field ➍
 }

 set(value) { ➎
 Log("Setting value of lastname")

 field = value ➏
 }

}

fun Log(msg:String) {

 println(msg)

}

fun main(args: Array<String>) {

 var emp = Employee()

 emp.name = "John Doe" ➐
 println(emp.name) ➑
}

➊ We declare and define the property inside the class body, instead of capturing it as parameter in

the primary constructor. We initialize it to an empty String first.

➋ The syntax for get() looks a lot like the syntax for defining a function, except we don’t write

the fun keyword before it.

➌ This is where you write your custom code. This statement will be executed every time someone

tries to access the name property.

➍ The field keyword is a special one. It refers to the backing field, which Kotlin automatically

provides when we define a property called name. The name member variable isn’t a simple

variable; Kotlin makes an automatic backing field for it, but we don’t have direct access to that

variable. We can, however, access it via the field keyword, like what we did here.

➎ The value parameter corresponds to the value that will be assigned to the property after the

Employee object has been created (see bullet ➐).

Chapter 4 Working with Types

96

➏ After we’ve performed our custom logic, we can now set the value of the field.

➐ This will trigger our set accessor logic, see bullet ➎.

➑ This will trigger our get accessor logic, see bullet ➋.

You might be wondering why we use the field keyword in the getter and setter

method. Why couldn’t we just code the accessor methods like we did in Java (see

Listing 4-22)? This is the wrong way to code getter and setter for properties.

class Employee {

 var name: String = ""

 get() {

 Log("Getting lastname")

 return this.name ➊
 }

 set(value) {

 Log("Setting value of lastname")

 this.name = value ➋
 }

}

➊ This results in a recursive call, which will eventually throw StackOverflowError.

➋ So will this

In Listing 4-22, the expression this.name doesn’t really access the member variable

name. Instead, it calls the default accessor methods that Kotlin provides automatically

when you define a property for the class. So, calling this.name from within an accessor

function will result in a tailspin of recursive calls, and eventually the runtime will throw

a StackOverflowError. To prevent this from happening, you should use the field keyword

when referring to the backing field of a property name from within an accessor function.

�Data Classes
When POJOs are created, sometimes they get to be stored on collections (e.g., ArrayList,

HashMap, HashSet, etc.). And in order to utilize these POJOs correctly, in Java, we

needed to override the equals(), hashCode(), and toString() methods. Remember

Chapter 4 Working with Types

97

that in Java, so that we can use properly when they are stored in collections—specifically

collections that are sensitive to the hashCode.

In the previous section, we’ve seen how easily we can create the analog of POJOs

in Kotlin. We can simply define properties in our classes and we should be good to go.

For simple use-cases, the data objects that we created in the previous section should

be good enough. But when you need to do things like store value objects in collections

or compare objects with one another for content equality, you’ll find that classes with

properties aren’t enough. To utilize value objects properly from within collection objects,

we need to be able to compare objects with each other reliably. In Java, we use to solve

this kind of problem by overriding some methods of the java.lang.Object—namely,

the equals() and hashCode() methods. These methods are the key players when we’re

doing object comparison.

Listing 4-22.  Comparing Two Employee Objects

class Employee(val name:String)

fun main(args: Array<String>) {

 val e1 = Employee("John Doe")

 val e2 = Employee("John Doe")

 println(e1 == e2) // output is false

}

Remember that in Kotlin, the double equals operator actually invokes the equals()

function of the operands being compared—and since everything in Kotlin is an object,

they all have the equals() function since it’s inherited from the supertype Any. If we

let the Employee class stand as it does in Listing 4-22, it will use the implementation

of the equals() function from class Any, and it doesn’t know how to compare

Employee objects. To resolve this, we can override the equals() method and provide an

implementation on how to compare Employee objects.

Note  Like Java, Kotlin follows a single-rooted class inheritance. If we don’t
specify a superclass in a class definition, the class will implicitly extend Any. This
class is the supertype of all non-nullable types in Kotlin.

Chapter 4 Working with Types

98

To fix the code in Listing 4-22, we would normally have to override the equals() and

hashCode() functions as shown in Listing 4-23.

Listing 4-23.  Overriding the hashCode() and equals() Functions

import java.util.*

class Employee(val name:String){

 override fun equals(obj:Any?):Boolean { ➊
 var retval = false

 if(obj is Employee) { ➋
 retval = name == obj.name ➌
 }

 return retval

 }

 override fun hashCode(): Int { ➍
 return Objects.hash(name)

 }

}

fun main(args: Array<String>) {

 val e1 = Employee("John Doe")

 val e2 = Employee("John Doe")

 println(e1) ➎
 println(e1 == e2) ➏
}

➊ The equals() function in class Any is open, we can override it.

➋ We check first if we are comparing an Employee object to another Employee object. The is

keyword performs two functions: (1) it checks if obj is actually an instance of Employee, and (2)

it automatically casts obj to an Employee object.

➌ Obj is automatically casted to an Employee object. The is keyword already did that. Now, we

can safely compare the name member variables of the two objects.

Chapter 4 Working with Types

99

➍ Overriding the hashCode() function is usually needed if you intend to store this object in

collections where comparisons of hash code is material (e.g., HashSet, HashMap, etc.). For our

small example, it’s not necessary. But it’s a good practice to override the hashCode() function

whenever you override the equals() function.

➎ Invokes the toString() function of the Employee object. The toString() function is found

on the supertype Any. The default implementation of toString() gives us an output of

something like this "Employee@ae805cc4".

➏ Now, this prints "true".

This kind of coding practice is very common in Java, and for that reason, quite a

few IDEs have capabilities to generate the boilerplate code of toString(), equals(), and

hashCode(). While we can still do these things in Kotlin, we don’t have to. The only thing

we need to do in Kotlin is to make Employee a data class. Listing 4-24 shows us how.

Listing 4-24.  Employee Data Class

data class Employee(val name:String) ➊

fun main(args: Array<String>) {

 val e1 = Employee("John Doe")

 val e2 = Employee("John Doe")

 println(e1) ➋
 println(e1 == e2) ➌
}

➊ To make any class in Kotlin a data class, just use the keyword data on the class declaration.

➋ We get an added bonus of a nicer toString() output with data classes. This one now prints

“Employee(name=John Doe)”.

➌ Also, the equals() comparison returns true.

Chapter 4 Working with Types

100

�Visibility Modifiers
Kotlin uses almost the same keywords as Java for controlling visibility. The keywords

public, private, and protected mean exactly the same in Kotlin as they do in Java. But, the

default visibility is where the difference lies. In Kotlin, whenever you omit the visibility

modifier, the default visibility is public.

Listing 4-25.  Class Foo

class Foo {

 var bar:String = ""

 fun doSomething() {

 }

}

In Listing 4-25, class Foo and its members are visible publicly. If you want to change

the visibility to something less permissive, you have to declare that explicitly. In contrast,

Java’s default visibility is package-private, meaning it’s only available to classes that are

on the same package. Kotlin doesn’t have a package-private equivalent because Kotlin

doesn’t use packages as a way to manage visibility. Packages in Kotlin are simply a way to

organize files and prevent name clashes.

In place of Java’s package-private, Kotlin introduces the internal keyword, which

means it is visible in a module. A module is simply a collection of files, it can be (1) an

IntelliJ module or project; (2) an Eclipse project; (3) a Maven project; or (4) a Gradle

project. To demonstrate the some of the visibility modifiers in action, see Listing 4-26.

Listing 4-26.  Demonstrating Visibility Modifiers

internal open class Foo { ➊
 private fun boo() = println("boo")

 protected fun doo() = println("doo")

}

fun Foo.bar() { ➋
 boo() ➌
 doo() ➍
}

Chapter 4 Working with Types

101

fun main(args: Array<String>) {

 var fu = Foo()

 fu.bar()

}

➊ Class Foo is marked as internal, which makes it visible only in classes and top-level functions

that are within the same module and whose visibility are also marked internal.

➋ This is an error. The extension function is marked as public, but the receiver of the function

(Foo) is marked as internal. Class Foo is less visible than the extension function; hence, Kotlin

doesn’t allow us.

➌ boo() is private to the class, so we can’t reach it from here.

➍ doo() is protected, we can’t reach it from here.

To make Listing 4-26 run without problems, we need to fix the visibility errors.

Listing 4-27 shows the solution.

Listing 4-27.  class Foo, Corrected Visibility Errors

internal open class Foo {

 internal fun boo() = println("boo")

 internal fun doo() = println("doo")

}

internal fun Foo.bar() {

 boo()

 doo()

}

fun main(args: Array<String>) {

 var fu = Foo()

 fu.bar()

}

Chapter 4 Working with Types

102

�Access Modifiers
The access modifiers of Kotlin are final, open, abstract, and override. They affect

inheritance. We’ve used final, open, and override earlier in the chapter, so the only

keyword we haven’t used is abstract. The abstract keyword has the same meaning in

Kotlin as it does in Java. It’s applicable to classes and functions.

When you mark a class as abstract, it becomes implicitly open as well, so you don’t

need to use the open modifier, it becomes redundant. Interfaces don’t need to be

declared as abstract and open, since they are implicitly, already, abstract and open.

�Object Declarations
Java’s static keyword did not make the cut in Kotlin’s list of keywords. There is no static

equivalent in Kotlin; in its place, Kotlin introduces the object and companion keywords.

The object keyword allows us to define both a class and its instance all at the same

time. More specifically, it defines only a single instance of that class, which makes this

keyword a good way to define singletons in Kotlin. Listing 4-28 shows the basic usage for

the object keyword.

Listing 4-28.  Using the Object Keyword to Define a Singleton

object Util {

 fun foo() = println("foo")

}

fun main(args: Array<String>) {

 Util.foo() // prints "foo"

}

We substitute the object keyword in place of the class keyword. What this effectively

does is define the class and create a single instance of it. To invoke the functions defined

in this object, we prefix the dot (.) with the name of the object—pretty much like how we

would call static methods in Java.

Object declarations can contain most of the things you can write in class, like

initializers, properties, functions, and member variables. The only thing you cannot

write inside an object declaration is a constructor. The reason for this is because you

Chapter 4 Working with Types

103

don’t need a constructor. The object declaration creates an instance already at the point

of definition, so a constructor is not necessary. Listing 4-29 shows some basic usage and

definition for an object declaration.

Listing 4-29.  Initializers, Properties, Functions, and Member Variables in Object

Declarations

object Util {

 var name = ""

 set(value) {

 field = value

 }

 init {

 println("Initializing Util")

 }

 fun foo() = println(name)

}

fun main(args: Array<String>) {

 Util.name = "Bar"

 Util.foo() // prints "Bar"

}

�Chapter Summary
•	 Kotlin interfaces are almost similar to that of Java, except that you can

declare properties in interfaces, although they still are not allowed

to have backing fields. Like Java 8, Kotlin interfaces can have default

implementations.

•	 Kotlin classes are defined a bit differently than their Java

counterparts. Classes are, by default, final and public.

Chapter 4 Working with Types

104

•	 Kotlin has two kinds of constructors: you can define primary and

secondary constructors. Primary constructors are a good way to

create simple value objects. However, to create really useful value

objects, Kotlin’s data classes are a good way to go.

•	 Kotlin has almost the same mechanism for controlling visibility

like Java, except that Kotlin replaced Java’s package-private with the

internal keyword.

In the next chapter, we’ll dip our toes into the world of functional programming.

Chapter 4 Working with Types

105
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_5

CHAPTER 5

Lambdas and Higher
Order Functions
What we’ll cover:

•	 Higher order functions

•	 Lambda

•	 Closures

•	 With and apply

In Chapter 2, we discussed the mechanics of Kotlin functions, and you’ve already

seen how similar they are to Java functions; you’ve also seen how different they are.

In this chapter, we’ll get back to the discussion of functions, but a different kind of

function—the kind that supports functional programming. You may have used lambdas

in Java 8; similarly, Kotlin also has support for lambdas. In this chapter, we’ll explore

these two topics.

�Higher Order Functions
Higher order functions are functions that operate on other functions, either by taking

them in as parameters or by returning them. The term higher order functions comes from

the world of Math where there is a more formal distinction between functions and other

values.

Before we can get into a discussion about “Why would we need higher order

functions?” we’ll need to attend to its mechanics. We need to know how to write them

and what they look like. The discussion on the “why” of higher order functions may even

106

come in later chapters, when we get to Android programming where there are plenty of

opportunities to put higher order functions to good use.

Listing 5-1 below shows an example of a function that takes in another function as

parameter.

Listing 5-1.  A Function That Accepts Another Function

fun executor(action:() -> Unit) {

 action()

}

Notice how the parameter is written in Listing 5-1, action is the name of the

parameter and its type is written as ()-> Unit, which means that it’s type is function.

A function type is written with a pair of parentheses, followed by the arrow operator

(a dash plus the greater than sign) and then followed by a type that the function is

supposed to return. In our example in Listing 5-1, our function parameter doesn’t return

anything—hence it’s declared as Unit.

This may look strange at first, especially if you haven’t used a language where

functions are treated the same way that variables are treated. In Kotlin, like any language

that supports higher order functions, functions are first class citizens. We can pass (or

return) functions from anywhere we can pass (or return) variables. Wherever you can

use a variable, you can also use a function.

Let’s go back to Listing 5-1. If we wanted the action parameter to be of type String,

then we could have written something like that in Listing 5-2.

Listing 5-2.  If Action Was of Type String

fun executor(action:String) {

 action()

}

But that’s not the case; we want action to be of type function. In Kotlin, a function

isn’t just a named collection of statement, it’s also a type. So, just like String, Int, or Float,

we can declare a variable to be of type function. A function type has three components:

(1) the parenthesized parameter type list; (2) the arrow operator; and (3) the return type.

Chapter 5 Lambdas and Higher Order Functions

107

In Listing 5-1, the parenthesized parameter type list is empty, but it won’t always

be the case. It’s empty right now because the function we intend to pass to executor()

doesn’t accept any parameters. The return type of executor() is Unit because the

function we intend to pass to it doesn’t return any value—that also, will not always be the

case, you may want to return an Int or String sometimes.

Now that we understand how to declare a parameter to be of function type, let’s take

a look at how to declare and define a variable to be of function type. See Listing 5-3.

Listing 5-3.  How to Declare and Define a Function Type

val doThis:() -> Unit = {

 println("action")

}

The LHS (left-hand side) doesn’t require much explanation, we’re simply declaring a

variable named doThis to be of type function, and this function doesn’t return anything,

so it’s declared return type is Unit. The RHS (right-hand side) looks like a function

without a header (the fun keyword and the function name), this is a lambda. We’ll get to

lambdas in the next section. Going back to our code examples, Listing 5-4 shows how to

put executor() and doThis together.

Listing 5-4.  Complete Code for doThis and executor() Examples

val doThis:() -> Unit = { ➊
 println("action")

}

fun executor(action:() -> Unit) { ➋
 action() ➌
 action.invoke() ➍
}

fun main(args: Array<String>) {

 executor(doThis) ➎
}

Chapter 5 Lambdas and Higher Order Functions

108

➊ doThis is declared and defined as a function type. The implementation of the function is given

as a lambda expression on the RHS. The body of the function doesn’t return anything; hence the

return type specified for the function is Unit.

➋ executor() is a function that accepts another function as a parameter; this parameter is

named action and its type is function, which is written as () → Unit. More specifically, this

function type doesn’t return anything—that’s why it’s declared as Unit.

➌ By appending a pair of parentheses on the name of the parameter, we get to invoke the

function.

➍ This is another way of invoking the action function, but calling it like action()is more

idiomatic and, hence, preferred.

➎ Inside the main function, we get to call executor() and we pass doThis. Note that we’re

not passing doThis()with the parentheses. We don’t want to invoke doThis and then pass

the resulting value to executor(). What we want is to pass doThis not as a resulting

value, but as a function definition. The idea is to invoke doThis within the body of the

executor()function.

In Listing 5-4, we wrote doThis as a property whose value is a lambda. This is

perfectly fine, but it might not feel like a natural way to write functions. Another way to

write Listing 5-4 is shown in Listing 5-5.

Listing 5-5.  Another Way of Writing the doThis and executor() Examples

fun doThis() { ➊
 println ("action")

}

fun executor(action:() -> Unit) {

 action()

}

fun main(args: Array<String>) {

 executor(::doThis) ➋
}

Chapter 5 Lambdas and Higher Order Functions

109

➊ doThis is now defined in the usual way that we write functions, with the fun keyword and the

name of the function in the header.

➋ ::doThis is invoked with a double colon. This means we are resolving the function within the

current package.

�Lambda and Anonymous Functions
Lambdas and anonymous functions are called function literals. These are functions that

are not declared but, rather, passed immediately as an expression—more often than not,

to a higher order function. Because of this they don’t need a name. We’ve used lambda

expressions earlier in this chapter. In Listing 5-3, we defined a property called doThis

whose type is a function, but it’s a rather verbose way of working with a function type. We

actually don’t need to explicitly write the return type of the function because Kotlin can

infer it for us. Listing 5-6 shows a more concise version of Listing 5-3.

Listing 5-6.  Concise Version of Listing 5-3

val doThis = {

 println("action")

}

As you’ve seen in the previous section, this kind of code is intended to be passed

along as an argument to a higher order function. But you can actually use this without

passing it to a higher order function. To invoke it, you may do something like the

following—presumably inside function main or any other top-level function

doThis()

or something like this

doThis.invoke()

The former looks more natural; it’s also considered more idiomatic, so we should

probably use that. Anyway, lambda expressions aren’t meant to be used like this. They

really shine when used within the context of higher order functions. In Listing 5-5, we

used the full syntactic form of the lambda expressions when we passed a named lambda

Chapter 5 Lambdas and Higher Order Functions

110

expression to a higher order function. While you can certainly do that, it may not be

the usual way you’ll encounter lambda expressions in the wild. Listing 5-7 is a rewrite

of Listing 5-5, but this time, instead of declaring and defining a named lambda, we will

simply pass it as an argument to the higher order function executor, as seen in

Listing 5-7.

Listing 5-7.  Pass a lambda to a Higher Order Function

fun main(args: Array<String>) {

 executor(

 { println("do this") } ➊
)

}

fun executor(action:() -> Unit) {

 action()

}

➊ This is the function literal. In Listing 5-5, we passed doThis, which was a property whose

value was a lambda expression. In this example, we are passing the lambda expression itself

directly to the higher order function. A lambda expression is enclosed in a pair of curly braces—

just like the body of a function.

�Parameters in Lambda Expressions
Consider the code in Listing 5-8. If we were to write it as a lambda, it would look like

Listing 5-9.

Listing 5-8.  Simple Function to Display a String

fun display(msg:String) {

 println("Hello $msg")

}

Chapter 5 Lambdas and Higher Order Functions

111

Listing 5-9.  display Function Written As lambda

{ msg:String -> println("Hello $msg") }

You’ll notice that the entire function header, the keyword fun and the function name,

is completely gone, and the parameter list was relocated inside the lambda expression.

The whole expression is enclosed in a pair of curly braces. In a lambda expression, the

parameter list is written on the left-hand side of the arrow operator and the body of

the function is found on the right. You will also notice that the parameters in a lambda

expression don’t need to be inside a pair of parentheses because the arrow operator

separates the parameter list from the body of the lambda.

Also, in Listing 5-9, you can omit the type declaration of String in the parameter, so it

can be written like in Listing 5-10.

Listing 5-10.  Omitted Type Declaration in Parameter List

{ msg -> println("Hello $msg") }

In some cases where the lambda expression takes only one parameter, like our code

example shown in Listing 5-10, Kotlin allows us to omit the parameter declaration and even

the arrow operator. We can rewrite Listing 5-10 in an even shorter way (see Listing 5-11).

Listing 5-11.  The Implicit It

{ println("Hello $it") }

The it parameter name is generated if the context expects a lambda that has only

one parameter and if its type can be inferred. Listing 5-12 shows the full code on how to

declare and use a lambda expression within the context of a higher order function. Now

we have the functional programming version of the Hello World example.

Listing 5-12.  Full Code for the lambda Example

fun main(args: Array<String>) {

 executor({ println("Hello $it") })

}

fun executor(display:(msg:String) -> Unit) {

 display("World")

}

Chapter 5 Lambdas and Higher Order Functions

112

Writing and using lambdas with more than one parameter isn’t much different from

our single parameter example, as long as you write the parameter list on left side of the

arrow operator. See Listing 5-13 for an example.

Listing 5-13.  lambdas With More Than One Parameter

fun main(args: Array<String>) {

 doer({ x,y -> println(x + y) })

}

fun doer(sum:(x:Int,y:Int) -> Unit) {

 sum(1,2)

}

There may be occasions when a higher order function will take in some other

parameters together with function types. Such a function could look like Listing 5-14.

Listing 5-14.  Higher Order Function With Multiple Parameters

fun executor(arg: String = "Mondo", display:(msg:String) -> Unit) {

 display(arg)

}

We can invoke this function with this

executor("Earth", {println("Hola $it")})

And since executor’s first parameter has a default value, we can still invoke it like this

executor({println("Hola $it")})

Kotlin allows us to be a bit more precise in our syntax with lambdas. In cases where

the lambda is expected as the last parameter in a higher order function, we can write the

lambda outside the parentheses of the invoking function, like this:

executor() { println("Hello $it")}

And if the lambda is the only parameter, we can even omit the parentheses entirely,

like this one:

executor { println("Hello $it")}

Chapter 5 Lambdas and Higher Order Functions

113

The simplification may not seem like a big deal right now, but I believe you’ll

appreciate the syntactical improvements later as you write more and more lambda

expressions. The Kotlin Standard library makes heavy use of these things.

�Closures
When you use a lambda expression inside a function, the lambda can access its closure.

The closure is comprised of the local variables in the outer scope as well as all the

parameters of the enclosing function. See Listing 5-15 for an example.

Listing 5-15.  lambda Accessing Its Closure

fun main(args: Array<String>) {

 executor(listOf(1..1000).flatten()) ➊
}

fun executor(numbers:List<Int>) {

 var sum = 0;

 numbers.forEach { ➋
 if (it % 2 == 0) {

 sum += it ➌
 }

 }

 println("Sum of all even numbers = $sum")

}

➊ We’re passing a list of Ints to the executor()function. Using the rangeTo function in operator

form (..) is a handy way to generate a list of integers from 1 up to 1000. But you’d have to

use the flatten() function to make it a list of Ints.

➋ forEach is a higher order function; it takes in a lambda, which allows us to walk through items

in the list. The forEach only has one parameter, and we can access that single parameter

using the implicit it parameter name.

➌ The sum variable is part of the closure; it’s within the function body where the lambda is

defined. Lambdas have access to their closures.

Chapter 5 Lambdas and Higher Order Functions

114

Note I n Java lambdas, you can only access a variable in its closure if that same
variable is final. There is no such restriction in Kotlin.

�with and apply
Lambdas are used heavily in Kotlin, they have their footprint all over Kotlin’s library. In

this section, we’ll take a look at the functions with and apply from the standard library,

specifically from Standard.kt. These functions demonstrate the capabilities of Kotlin’s

lambdas and what makes them stand out from their Java counterparts. Kotlin lambdas

have the ability to call methods of a different object without additional qualifiers in the

body of the lambda. These kinds of lambdas are called lambdas with receivers.

The functions with and apply are of particular interest not because they allow

us to perform multiple operations on the same object without repeating the object’s

name—which is a welcome feature-but because they look like they were baked into

the language, which they’re not. They simply are functions that were made special by

extension functions and lambdas.

Listing 5-16 shows the definition of a simple class and how to set some of its

properties. The creation of an Event instance and the setting of its various properties

are happening inside function main. Notice that for every property we set, we have to

explicitly resolve the property back to the object reference, and this might be just fine—

after all, this was how we coded in Java, this chore is, sort of, expected.

Listing 5-16.  class Event

import java.util.Date

data class Event(val title:String) {

 var date = Date()

 var time = ""

 var attendees = mutableListOf<String>()

 fun create() {

 print(this)

 }

}

Chapter 5 Lambdas and Higher Order Functions

115

fun main(args: Array<String>) {

 val mtg = Event("Management meeting")

 mtg.date = Date(2018,1,1)

 mtg.time = "0900H"

 mtg.attendees.add("Ted")

 mtg.create()

}

If we were to use the with function to refactor the code, it would look like one in

Listing 5-17.

Listing 5-17.  Using the With Function

fun main(args: Array<String>) {

 val mtg = Event("Management meeting")

 with(mtg) {

 date = Date(2018,1,1)

 time = "0900H"

 attendees.add("Ted")

 }

}

The with function takes in an object (mtg) and a lambda. Inside the lambda, we

can work with the mtg object without the need to explicitly reference it. This is made

possible because the mtg object was made into a receiver of the lambda—remember the

extension functions in Chapter 3? And because mtg is the receiver, inside the lambda,

the this keyword points to the mtg object. We could have explicitly referenced this in

our code, but that wouldn’t be any better than when we first started with this example.

By omitting the explicit reference to this, the resulting code is much cleaner. Also, the

convention to put the lambda outside the parentheses definitely works in this situation

because it makes the construct look as if with is a part of the Kotlin language.

The apply function can achieve the same thing; it’s almost very similar to the with

function except that it returns the receiver (the object passed to it)—the with function

doesn’t.

Chapter 5 Lambdas and Higher Order Functions

116

 fun main(args: Array<String>) {

 val mtg = Event("Management meeting")

 mtg.apply { ➊
 date = Date() ➋
 time = "0900H"

 attendees.add("Ted")

 }.create() ➌
}

➊ Apply is an extension function and the mtg object becomes its receiver.

➋ And because the mtg object is the receiver, this refers to the mtg object.

➌ When the lambda returns, it returns the receiver, which is a mtg object; hence, we can chain

some calls into it.

There are many more functions in Standard.Kt like run, let, also, etc., but these two

examples using with and apply should give us an idea of what lambdas are capable of.

�Chapter Summary
•	 Functions in Kotlin are more than just a named collection of

statements. They are also a type. A function type can be used

anywhere else that other types can be used—functions are first-class

citizens in Kotlin.

•	 Lambdas and anonymous functions are function literals. They’re like

regular functions, but they don’t have a name. They can be passed

around (to other functions) immediately as an expression.

•	 Kotlin lambdas, unlike their Java lambdas (at least Java 9, as of this

writing), can mutate variables in its closure.

•	 Higher order functions are functions that operate on other functions.

They can accept function types as parameters, or return function

types.

In the next chapter, we’ll explore Kotlin’s Collection classes.

Chapter 5 Lambdas and Higher Order Functions

117
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_6

CHAPTER 6

Collections and Arrays
What we’ll cover:

•	 Arrays

•	 Collections

•	 Filter and Apply

One of the real-world analogies for collections would be a purse or a pouch filled

with various things such as coins. The coins would be the items and the pouch itself is

the collection. So, based on this analogy, we can say that a collection is a container of

sorts that may have zero, one, or many items in it. You might remember that we already

have something like that—an array. The array fits this description exactly because it can

contain zero, one, or many items inside it. If this is the case, do we really need to learn

about other containers? In this chapter, we’ll take a look at arrays, collections, and some

of the functions within the Kotlin collections framework.

�Arrays
Coming from Java, you’ll need to step back a bit before working with Kotlin arrays. In

Java, these are special types; they have first-class support on the language level. In Kotlin,

arrays are just types; more specifically, they are parameterized types. If you wanted to

create an array of Strings, you might think that the following snippet might work:

var arr = {"1", "2", "3", "4", "5"}

This code wouldn’t make sense to Kotlin—it doesn’t treat arrays as a special type. If

we wanted to create an array of Strings like the example, we can do it in a couple of ways.

Kotlin has some library functions like arrayOf, emptyArray, and arrayOfNulls that we

118

can use to facilitate array creation. Listing 6-1 shows how to create and populate an array

using the emptyArray function.

Listing 6-1.  Using the emptyArray Function

var arr = emptyArray<String>();

arr += "1"

arr += "2"

arr += "3"

arr += "4"

arr += "5"

Adding elements to a Kotlin array isn’t as verbose as it is in Java, but don’t be fooled

by nice syntax. Arrays are still fixed-size at the time of creation, even here in Kotlin.

Adding an element to an array is done by creating a new array that is bigger than the old

array and then copying the elements of the old array into the new one. So, you see, it’s

still an expensive operation—even if we have a nice sugary syntax. Listing 6-2 shows how

to use the arrayOfNulls function to do the same thing.

Listing 6-2.  Using the arrayOfNulls Function

var arr2 = arrayOfNulls<String>(2)

arr2.set(0, "1")

arr2.set(1, "2")

The integer argument of the arrayOfNulls function is the size of the array to be

created. Unlike the empty array in Listing 6-1, this function gives you a chance to provide

a size for the array you’re about to create. By the way, you can still use bracket syntax for

Kotlin arrays, the get and set methods of Arrays are just convenience functions. Listing 6-3

shows the use of the bracket syntax together with the new get and set functions.

Listing 6-3.  Get and Set Methods of Array

var arr2 = arrayOfNulls<String>(2)

// arr2.set(0, "1")

// arr2.set(1, "2")

arr2[0] = "1"

arr2[1] = "2"

Chapter 6 Collections and Arrays

119

println(arr2[0]) // same as arr2.get(0)

println(arr2[1])

Another way to create an array is using the arrayOf function. Listing 6-4 shows the

snippet.

Listing 6-4.  Using the arrayOf Function

var arr4 = arrayOf("1", "2", "3")

This function is probably the closest syntax we can get to the Java array literal, which

is probably why it is used by programmers more commonly. You can pass a comma-

separated list of values to the function, and that automatically populates the newly

created array.

Finally, arrays can be created using the Array constructor. The constructor takes in

two arguments, the first of which is the size of the array to be created and the second

argument is a lambda function that can return an initial value of each element.

Listing 6-5.  Using the Array Constructor

var arr3 = Array<String>(5, {it.toString()})

In most situations when you need to work with arrays of numbers, using the Array

class should suffice. You need to remember, however, that Array<Int>, for example,

represents the ints as Integer objects rather than integer primitives. So, if you need to

squeeze a bit more performance juice out of your code and really use the primitive

number types, you can use the specialized array types of Kotlin.

The specialized classes like ByteArray, IntArray, ShortArray, and LongArray represent

arrays of primitive types (like the ones in Java). These types let you work with arrays

without the boxing and unboxing overhead of Arrays that uses the object counterparts

of the number primitives. These specialized types actually do not inherit from Array, but

they have the same sets of methods and properties. Also, they have specialized factory

functions that make them easier to work with. See Listing 6-6 for an example.

Listing 6-6.  Special Array Types

var z = intArrayOf(1,2,3)

var y = longArrayOf(1,2,3)

Chapter 6 Collections and Arrays

120

var x = byteArrayOf(1,2,3)

var w = shortArrayOf(1,2,3)

println(Arrays.toString(z))

println(Arrays.toString(y))

println(Arrays.toString(x))

println(Arrays.toString(w))

I used the Arrays.toString() function so that we’ll get a human-readable output

when printing the contents. If you simply print the array without the helper function, it

looks like gibberish, like this

println(z) // outputs [Ljava.lang.String;@6ad5c04e

Traversing arrays can be done in a couple of ways. First, you can use the trustworthy

for loop, as shown in Listing 6-7.

Listing 6-7.  Using a for Loop to Process Each Array Element

for (i in z) {

 println("$i zee")

}

Or you could use the forEach function, like so.

y.forEach { i -> println("$i why") }

If you need to keep track of both the index and the element of the array, you can use

the forEachIndexed function, as shown in Listing 6-8.

Listing 6-8.  Using the forEachIndexed Function to Traverse the Array

x.forEachIndexed { index, element ->

 println("$index : $element")

}

Before we leave the subject of arrays, we need to remember that if you don’t want

any duplication on the contents of the array, you’ll have to write that program logic

yourself. Uniqueness of contents is not something that arrays will guarantee.

While arrays are very useful in many situations, they do have limitations, as you’ve

seen in the previous discussions. Adding new elements to arrays, while the syntax is

Chapter 6 Collections and Arrays

121

friendly, is still an expensive operation. You can’t print them out without the use of

helper functions (although this is not a big deal). Finally, it doesn’t have a facility for

constraining the elements (e.g., enforcing uniqueness). For some situations these

limitations may not be a big deal, but for some situations, these may be deal-killers. So,

when we come up to the limitations of the arrays, we are coming up on the territory of

Collections—they help us deal with such limitations.

The availability of the collections framework as part of the development kit may

not be such a big deal for you. After all, you came from Java and it has an impressive

collections framework. But you need to remember that before languages like Java, C#,

Python, etc., there were no collections frameworks. Programmers had to write their own

program logic in order to deal with problems like resizable arrays, last-in first-out access,

hash tables or hash maps, etc. These aren’t simple storage issues, but rather, they are

data structure issues. It’s quite difficult to implement this data structure logic on your

own; there are a lot of edge cases to get right. Although there might still be legitimate

reasons to implement your own data structures (probably for performance reasons), in

most cases, you’d be better off to use the built-in collections framework.

�Collections
The Kotlin collections are actually direct instances of the collections in the JDK. There’s no

conversion of wrapping involved. So, if you didn’t skimp on your study of collections while

you were in Java, that will certainly come in handy now. Although Kotlin didn’t define

its own collections code, it did add quite a few convenience functions to the framework,

which is a welcome addition because it makes the collections easier to work with.

Before we go to the code examples and more details, something needs to be said

regarding why it is called a collections framework. The reason it’s called a framework

is because the data structures are very diverse, in and of themselves. Some of them put

constraints on how we go through the collection; they impose certain order of traversal.

Some of the collections constrain the uniqueness of the data elements; they won’t allow

you to put duplicates. And some of them let us work with the collections in pairs—like in

a dictionary entry, you’ll have a key with a corresponding value.

Chapter 6 Collections and Arrays

122

Figure 6-1 shows the hierarchy of the Kotlin collections framework. At the top of the

hierarchy are the interfaces Iterable and MutableIterable—they are the parents of all the

collection classes we will work with. As you may have noticed in the diagram, each Java

collection has two representations in Kotlin: a read-only one and a mutable one. The

mutable interfaces map directly to the Java interfaces while the immutable interfaces

lack all of the mutator methods of their mutable counterparts.

Kotlin doesn’t have a dedicated syntax for creating lists or sets, but it does provide us

with library functions to facilitate creation. Table 6-1 lists some of them.

Figure 6-1.  Collections Framework

Table 6-1.  Kotlin Collections and Their Creation Functions

Collection Read-Only Mutable

list listOf mutableListOf, arrayListOf

set setOf mutableSetOf, hashSetOf, linkedSetOf, sortedSetOf

map mapOf mutableMapOf, hashMapOf, linkedMapOf, sortedMapOf

Chapter 6 Collections and Arrays

123

Note A lthough the map class doesn’t inherit from either Iterable or
MutableIterable (Figure 6-1), it’s still represented in Kotlin as two distinct versions:
a mutable and an immutable one.

�Lists
A list is a type of collection that has a specific iteration order. It means that if we added a

couple of elements to the list, and then we stepped through it, the elements would come

out in a very specific order—it’s the order by which they were added or inserted. They

won’t come out in a random order or reverse chronology, but precisely in the sequence

they were added. It implies that each element in the list has a placement order, an index

number that indicates its ordinal position. The first element to be added will have its

index at 0, the second will be 1, the third will be 2, and so on. So, just like an array, it is

zero-based. Listing 6-9 shows the basic usage for a list.

Listing 6-9.  Basic Usage of Lists

fun main(args: Array<String>) {

 val fruits = mutableListOf<String>("Apple") ➊
 fruits.add("Orange") ➋
 fruits.add(1, "Banana") ➌
 fruits.add("Guava")

 println(fruits) // prints [Apple, Banana, Orange, Guava]

 fruits.remove("Guava") ➍
 fruits.removeAt(2) ➎

 println(fruits.first() == "Strawberries") ➏
 println(fruits.last() == "Banana") ➐

 println(fruits) // prints [Apple, Banana]

}

Chapter 6 Collections and Arrays

124

➊ Creates a mutable list, the constructor function allows us to pass a variable argument that will be

used to populate the list. In this case, we only passed one argument—we could have passed more.

➋ Adds an element to the list; “Orange” will come right after “Apple” since we did not specify the

ordinal position for the insertion.

➌ Adds another element to the list, but this time, we told it where exactly to put the element. This

one bumps down the “Orange” element and then inserts itself. Naturally, the ordinal position or

the index of all the elements that come after it will change.

➍ You can remove elements by name. When an element is removed, the element next to it

will take its place. The ordinal position of all the elements that comes after it will change

accordingly.

➎ You can also remove elements by specifying its position on the list.

➏ You can ask if the first() element is equal to “Strawberries”.

➐ You can also test if the last() element is equal to “Banana”.

�Sets
Sets are very similar to lists, both in operation and in structure, so all of the things

we’ve learned about lists apply to sets as well. Sets differ from lists in the way they put

constraints on the uniqueness of elements. They doesn’t allow duplicate elements or

the same elements within a set. It may seem obvious to many what the “same” means,

but Kotlin, like Java, has a specific meaning for “sameness.” When we say that two

objects are the same, it means that we’ve subjected the objects to a test for structural

equality. Both Java and Kotlin define a method called equals(), which allows us to

determine equivalence relationships between objects. This is generally what we mean by

“sameness.” Listing 6-10 shows some basic operations with sets.

Listing 6-10.  Basic Usage for Sets

val nums = mutableSetOf("one", "two") ➊
nums.add("two") ➋
nums.add("two") ➌
nums.add("three") ➍

println(nums) // prints [one, two, three]

Chapter 6 Collections and Arrays

125

val numbers = (1..1000).toMutableSet() ➎
numbers.add(6)

numbers.removeIf { i -> i % 2 == 0 } ➏

println(numbers)

➊ Creates a mutable set and initializes it by passing a variable argument to the creator function.

➋ This doesn’t do anything. It won’t add “two” to the set because the element “two” is already in

the set.

➌ No matter how many times you try to add “two,” the set will reject it because it already exists.

➍ This, on the other hand, will be added because “three” doesn’t exist in the elements yet.

➎ Creates a mutable set from a range. This is a handy way of creating a set (or a list) with many

numeric elements.

➏ This demonstrates how to use a lambda to remove all the even numbers in the set.

�Maps
Unlike lists or sets, maps aren’t a collection of individual values; rather, they are a

collection of pairs of values. Think of a map like a dictionary or a phone book. Its

contents are organized using a key-value pair. For each key in a map, there is one and

only one corresponding value. In a dictionary example, the key would be the term, and

its value would be the meaning or the definition of the term.

The keys in a map are unique. Like sets, maps do not allow duplicate keys. However,

the values in a map are not subjected to the same uniqueness constraints; two or more

pairs in map may have the same value. Listing 6-11 show some basic usage for maps.

Listing 6-11.  Basic Operations on a Map

val dict = hashMapOf("foo" to 1) ➊
dict["bar"] = 2 ➋

val snapshot: MutableMap<String, Int> = dict ➌
snapshot["baz"] = 3 ➍

println(snapshot) ➎
println(dict) ➏
println(snapshot["bar"]) // prints 2 ➐

Chapter 6 Collections and Arrays

126

➊ Ca mutable map

➋ Adds a new key and value to the map

➌ Assigns the dict map to a new variable. This doesn’t create a new map. It only adds an object

reference to the existing map.

➍ Adds another key-value pair to the map

➎ Prints {bar = 2, baz = 3, foo=1}

➏ Also prints {bar = 2, baz = 3, foo=1}, because both snapshot and dict points to the same map.

➐ Gets the value from the map using the key

Now that we’ve seen some examples of basic usage of collections, you probably have

noticed that they share some common characteristics—maybe not 100% as with the

map, but the list and the set have quite a lot of overlap. One good thing about working

with the collections framework is the uniformity or regularity of certain operations

throughout the entire collection. The skills and knowledge that we learn from working

with lists, for example, commutes or translates nicely across sets and maps as well.

Because of this, it’s a good idea to be familiar with the collections protocol. Table 6-2 lists

some of the more common operations on collections.

Table 6-2.  Common Operations on Collections

Function or Property Description

Size Tells you how many elements are in the collection. Works with lists, sets

and maps.

isEmpty() Returns True if the collection is empty, False if it’s not. Works with lists,

sets, and maps.

contains(arg) Returns True if arg is within the collection. Works with lists, sets, and maps.

add(arg) Add arg to the collection. This function returns true if arg was added—in

the case of a list, arg will always be added. In the case of a set, arg will be

added and return true the first time, but if the same arg is added the second

time, it will return False. This member function is not found on maps.

remove(arg) Returns True if arg was removed from the collection, returns False is the

collection is unmodified.

iterator() Returns an iterator over the elements of the object. This was inherited from

the Iterable interface. Works with lists, sets, and maps.

Chapter 6 Collections and Arrays

127

�Collections Traversal
By now, we already know how to work with basic collections. We know how to create

them and add and remove items from them. Another skill we will need to work

effectively with collections is the ability to loop through them or traverse them. To do

that, let’s go back to Figure 6-1 and recall the inheritance structure of the collections

framework.

In Figure 6-1, you’ll notice that Collections inherits the Iterable interface. An iterable

defines something that can be iterated over or stepped over. When a class inherits an

Iterable interface, whether directly or indirectly, it means we can pull an iterator out of it

and step through its elements one by one. And in each step, we can also pull the value of

each element—it’s up to your program logic what you want to do with those values; you

can transform them, use them in an arithmetic operation, or persist it in a storage, for

example.

We can use a variety of ways to step through the elements in a collection. We can use

the trusty while and for loops, if you prefer, but using the more modern forEach is more

idiomatic—and a bit in vogue. Listing 6-12 shows how to step through a list using while

and for loops.

Listing 6-12.  Using while and for Loops for Collections

val basket = listOf("apple", "banana", "orange")

var iter = basket.iterator()

while (iter.hasNext()) {

 println(iter.next())

}

for (i in basket) {

 println(i)

}

Listing 6-12 is probably something close to how you worked with collections in

Java, so it should look familiar. Listing 6-13 shows the equivalent codes when using the

forEach function.

Chapter 6 Collections and Arrays

128

Listing 6-13.  Using forEach

fruits.forEach { println(it) } ➊
nums.forEach { println(it) } ➋

// for maps

dict.forEach { println(it) } ➌
dict.forEach { t, u -> println("$t | $u") } ➍

➊ The lambda expression of the forEach has an implicit it parameter. The it parameter is the

value of the current element. What this statement means is for each item in fruits, do what’s

inside the lambda, which in our case is just println().

➋ Same thing works for sets

➌ Same thing works for maps

➍ This is a variation of bullet 3 above, but this one allows us to work with the key and value

separately.

�Filter and Map
Filter and map are part of the essential skills you need to master in order to work with

collections efficiently. Filtering allows us to work with the elements of a collection

selectively. It narrows down the field. It basically returns a subset of the original

collection. A map, on the other hand, allows us to transform either the elements or the

collection itself.

Let’s say, for example, that we have a list of numbers—integers to be precise, like this

val ints = (1..100).toList()

The variable ints contains a list of integers from 1 up until 100, in increments of 1.

If we wanted to work with only the even numbers in this list, we could do so by (1)

creating a new list; (2) iterating over the ints list and performing a modulo check for even

numbers; and then (3) if the current element being processed is an even number, we add

it to the new list. That code might look like Listing 6-14.

Chapter 6 Collections and Arrays

129

Listing 6-14.  Using a for Loop to Sieve Out the Even Numbers

val evenInts2 = mutableListOf<Int>()

for (i in ints) {

 if (i % 2 == 0) {

 evenInts2.add(i)

 }

}

Listing 6-14 is what might be called the “imperative” way of filtering out things.

Nothing wrong with it—it’s a little verbose, that’s all. But it’s perfectly readable, even by

someone just starting out in programming. However, in Kotlin, the more idiomatic way

of narrowing down collections is by using the filter function. If we were to do this using

filters, it would like this

val evenInts = ints.filter { it % 2 == 0 }

I do not even put a Listing label on it anymore because it’s unnecessary—it’s just one

line. The filter function is a standard function in the collections library. You already know

that the expression in the curly braces is a lambda. However, for filters, the more apt term

is a lambda predicate. A lambda predicate is also a function literal, but the expression

inside has to yield a Boolean value.

Going back to our example, the filter is invoked against a collection—for example,

a list of ints. The result of filter operation is a smaller list or a subset. The list is trimmed

down by iterating over each element and testing them against the condition specified in

the lambda predicate. Any item that passes the test of the predicate will be included in

the resulting subset.

Let’s continue our example and work with our smaller list of even integers. Let’s

say that what we want now is to square each element in our list of even integers. This

requires us to manipulate and transform each element in the list and then return a new

list that contains the transformed elements. If we were to solve this using a for loop, it

would look like Listing 6-15.

Chapter 6 Collections and Arrays

130

Listing 6-15.  Generate a List of Squared Ints Using a for Loop

val squaredInts2 = mutableListOf<Int>()

for (i in evenInts2) {

 squaredInts2.add(i * i)

}

println(squaredInts2)

Or we could have solved it using the forEach function in Collections. It would have

looked like Listing 6-16.

Listing 6-16.  Generate a List of Squared Ints Using forEach

val squaredInts2 = mutableListOf<Int>()

evenInts2.forEach { squaredInts2.add(it * it) }

This is actually looking much better, but transforming elements in a collection is

really the province of the map function. So, let’s solve the squared integers problem

using maps. Listing 6-17 shows the code.

Listing 6-17.  Using the Map Function

val squaredInts = evenInts.map { it * it}

println("Sum of squares of even nos <= 100 is ${squaredInts.sum()}")

The only relevant statement in Listing 6-17 is the first one. The second statement

just prints out the sum of all the even numbers from 1 up to 100. Also, the second line

showcases another built-in function in the collections framework, the sum() function.

It’s pretty obvious what it does—it sums up the values in the collection.

�Chapter Summary
•	 When working with a group of values, we can use either Arrays or

Collections. Use arrays for simple data structures, but when you

need to dynamically size your group of data or you need to put more

constraints to it, such as a uniqueness constraint, you might be better

served by Collections.

Chapter 6 Collections and Arrays

131

•	 Arrays in Kotlin are unlike the ones in Java; they don’t enjoy special

treatment. In Kotlin, Arrays are just classes.

•	 Kotlin provides specialized classes for arrays if you feel you need to

work with arrays without the overhead of boxing and unboxing.

•	 Kotlin Collections are very similar to Java collections, but each of the

Java collection classes is represented in two ways: a mutable and an

immutable one.

•	 Kotlin collections have built-in functions like filter, map, and sum,

which makes working with collections a bit easier.

In the next chapter, we’ll explore how Kotlin deals with Generics.

Chapter 6 Collections and Arrays

133
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_7

CHAPTER 7

Generics
What we’ll cover:

•	 Using generics

•	 Constraints

•	 Variance

•	 Reified generics

Ah, Generics. That devious topic that emerges even in beginner texts. This subject

trips up a lot of beginners because it’s tricky to understand and even trickier to

explain. But we need to deal with it because without Generics, it’s difficult to work with

Collections.

For the most part, Kotlin generics works the same way as Java generics; but they have

some differences. In this chapter, we’ll look at how to work with generics and how similar

(or different) Kotlin’s generics is from that of Java’s—also, don’t worry too much about

the complexities of generics, we won’t do anything too crazy in this chapter.

�Why Generics
Generics came to Java around 2004, when JDK 1.5 was released. Before generics, you

could write codes like that in Listing 7-1.

Listing 7-1.  Using a Raw List, Java

List v = new ArrayList();

v.add("test");

Integer i = (Integer) v.get(0); // Run time error

134

You might say, “But why would you do something as careless and patently idiotic as

that? You could clearly see from Listing 7-1 that we put a String in the ArrayList; so, just

don’t do any operation that’s not appropriate for a String. Problem solved.” It may not

always be as easy as that. The sample code is clearly contrived, and it’s easy to spot the

error right now, but if you’re doing something non-trivial, it may not always be obvious

what the List contains.

The other point to notice about the sample code—and it’s actually the main point—

is that the code will compile without problems. You’ll only discover the error at runtime.

There was no way for the compiler to warn us that we’re about to do something that isn’t

type-safe. This is the main problem that generics is trying to solve: type-safety.

Going back to Listing 7-1, we know that the variable v is a List. It would have been

more useful if we knew what kinds of things were stored on that list. It’s in these situations

where generics is helpful. It allows us to say things like “this is a list of Strings” or “this is a

list of Ints”—and the compiler knows that beforehand; and because the compiler knows

it, it can prevent us from doing inappropriate things like casting a String to an Int or

subtracting with Strings, etc. Listing 7-2 shows how to use generics in our code.

Listing 7-2.  List, with Generics: Java

List<String> v = new ArrayList<String>();

v.add("test");

Integer i = v.get(0); // (type error) compilation-time error

Now that the compiler has foreknowledge about what kinds of things are in the List,

it can prevent us from doing unsupported operations on the List.

The codes in Listings 7-1 and 7-2 are both valid in Java, which means you have the

option not to use generics in Collections (raw types). Java has to do this because it needs

to maintain backward compatibility with codes that were written prior to JDK 5. Kotlin,

on the other hand, doesn’t need to maintain any compatibilities with legacy codes. So,

in Kotlin, you cannot use raw types. All Kotlin Collections require type parameters. You

always have to use generics.

Chapter 7 Generics

135

1 1
2

2

3

3

Figure 7-1.  Type arguments and type parameters

➊ Angle brackets. When a class has angle brackets at the end of its name, it’s called a generic

class (there are also generic functions and interfaces).

➋ Type parameter. It defines the type of data that this class can work with. You can think of it as being

part of the class implementation. Right now, we’re using the letter T to symbolize the type parameter,

but this is arbitrary. You can call it anything you want, it can be any letter or a combination of letters;

I’d stick to T if I were you, because it’s the convention many developers follow. You can use T

throughout the code inside the class as if it’s a real type. It’s a placeholder for a type. In this example,

we used T as type for the item property and as return type for the getLeaf function.

➌ Type argument. In order to use the generic class, you to have provide the type argument. Now

that we’re creating an instance of the Node class, T will be substituted by type argument (Int
and String, in this illustration).

�Terminologies
Generic programming is a language feature of Kotlin. With it, we can define classes, functions,

and interfaces that accept type parameters. The parameterized type allows us to re-use

the algorithm to work with different types; it truly is a form of parametric polymorphism.

Figure 7-1 shows where the type parameters and type arguments are in a generic class.

Chapter 7 Generics

136

You’ve seen generics code in the previous chapters, specifically in Chapter 6

(Collections). All of Kotlin’s collections classes use generics. As I said before, there are

no raw types in Kotlin. It’s not possible to create just a List—you have to be specific what

kind of List it is (e.g., a “list of Strings” List<String> or “a list of Ints” List<Int>).

�Using Generics in Functions
To create a generic function, declare the type parameter before the function name. Then,

you can use the type parameter anywhere in the function.

Listing 7-3.  fooBar, Generic Function

fun <T> fooBar(arg:T) : String { ➊
 return "Heya $arg" // ➋
}

println(fooBar("Joe")) // prints "Heya Joe"

println(fooBar(10)) // prints "Heya 10"

➊ The type parameter T is used as the type of the function parameter arg.

➋ We’re just returning the arg concatenated in String.

That’s pretty simple to follow. We just used the type param in one place, and the

function is returning a String, no matter what type the param is. For another example,

see Listing 7-4.

Listing 7-4.  A More Complex fooBar Function

fun <T> fooBar(arg:T) : T { ➊
 var retval:T = 0 as T

 when (arg) {

 is String -> { ➋
 retval = "Hello world" as T ➌
 }

Chapter 7 Generics

137

 is Number -> {

 retval = 100 as T

 }

 }

 return retval

}

➊ In this example, we used the type parameter as a type for arg (parameter to fooBar function)

and as a return type of the function itself.

➋ We’re testing if arg is of String type. If it is, we’re also effectively casting it to a String; smart

cast, remember?

➌ We’re returning “Hello world”, and we are casting it (forcibly) as T. We cannot return a “String”

type right here, because fooBar expects to return type T to its caller, not String.

You can also use generics for extension functions. If you’re making a function that

works with Lists, you probably want it to work with any kind of List, not just Strings or

Ints. Listing 7-5 shows how to use generics in an extension function.

Listing 7-5.  Generics in Extension Function

fun <T> List<T>.getIt(index:Int): T { ➊
 return this[index] ➋
}

fun main(args: Array<String>) {

 val lfruits = listOf("Apples", "Bananas", "Oranges") ➌
 val lnumbers = listOf(1,3,5) ➍
 val lnumlist = (1..100).toList().filter { it % 5 == 0 } ➎

 println(lnumlist.getIt(5))

 println(lfruits.getIt(1))

}

Chapter 7 Generics

138

➊ You can use the type parameter in the receiver (List<T>) and the return type of the extension

function.

➋ Let’s not do anything fancy; let’s just return an item given an index. In a production code, you

might want to actually check if the index exists, before you return it. In case you forgot what

this refers to, it refers to the List itself (it’s the receiver object).

➌ Our extension function works with a list of Strings.

➍ It also works with a list of Ints.

➎ This one is a bit fancy, but in the end, it still returns a List, so our extension function should

still work.

�Using Generics in Classes
Like in Java, you can create Kotlin generic classes by putting a pair of angle brackets after

the name of the class and placing the type parameter between the angle brackets. After

that, you can use the type parameter anywhere in the class. Listing 7-6 shows, annotates,

and explains how to write a generic class.

Listing 7-6.  Writing a Generic Class

class Node<T>(val item:T) { ➊
 fun getLeaf() : T { ➋
 return item

 }

}

fun main(args: Array<String>) {

 val m = Node<Int>(1) ➌
 val n = Node(1) ➍
 val o = Node<String>("World") ➎
}

Chapter 7 Generics

139

➊ Type parameter is declared right after the name of the class, Node<T>. We’re using the T as

the type for parameter item.

➋ We’re also using T as the return value of the function getLeaf.

➌ We’re passing an Int to the constructor of Node. We can be verbose and specify Int as the as the

type parameter, Node<Int>.

➍ Node can infer what the type parameter is, so we can skip the angle brackets. It’s okay to write

it this way, too.

➎ And because it’s a generic class, it works with Strings too.

You can constrain or restrict the types that can be used as type arguments for a class

or function. Our Node class, at the moment, should work with any type, because the

default parent (or upper bound) for the type parameter, if you don’t specify a constraint,

is Any? (Nullable type, so the question mark is included).

When you specify an upper-bound constraint for a type parameter, that will limit

the types you can use to instantiate the class. For example, if we wanted our Node

class to accept only Ints, Doubles, or Floats, we could use Number as the upper-bound

constraint. See Listing 7-7 for the code sample.

Listing 7-7.  Node Class, with Constraint

class Node<T:Number>(val item:T) { ➊
 fun getLeaf() : T {

 return item

 }

}

fun main(args: Array<String>) {

 val m = Node<Int>(1) ➋
 val n = Node(1.0F) ➌
 val o = Node<String>("World") ➍
 val p = Node(1.0) ➎
}

Chapter 7 Generics

140

➊ Now we’re putting a constraint on the type parameter <T:Number>. The only types we can use

to instantiate this class has to be subtypes of Number.

➋ Int is subtype of Number, so it’s okay.

➌ Float is also okay.

➍ This wouldn’t work anymore; IntelliJ will tell you that “Type argument is not within bounds”.

➎ This should still work for Double, since it is a child class of number.

If you don’t have any restriction other than nullability of the type argument, you can

simply use Any as the upper-bound for the type parameter; see Listing 7-8.

Listing 7-8.  Prevent Null Type Arguments

class Node<T:Any>(val item:T) {

 fun getLeaf() : T {

 return item

 }

}

�Variance
We’ll need to review some of our object-oriented programming (OOP) basics to prepare

us for a discussion on variance. Hopefully, we can jog your memory and remember some

of the fundamental principles of OOP.

OOP is a boon to developers; because of it, we can write codes like Listing 7-9.

Listing 7-9.  Assign an Int Variable to Number Type

val a:Int = 1

val b:Number = a

println("b:$b is of type ${b.javaClass.name}")

We can also write functions like Listing 7-10.

Chapter 7 Generics

141

Listing 7-10.  Function That Accepts a Number Type

foo(1)

foo(100F)

foo(120)

fun foo(arg:Number) {

 println(arg)

}

The codes in Listings 7-9 and 7-10 are possible because of the Liskov Substitution

Principle (LSP). It’s one of the more important parts of OOP — where a parent type is

expected, you can use a subtype in its place. The reason we use a more generalized

type (like Number, in Listing 7-10), is so that in the future, if we need to, we can write

an implementation of a subtype and insert into an existing and working code. This is

the essence of the Open Closed Principle (which states that a class must be open to

extension but closed to modification).

Note T he Liskov Substitution Principle and Open Closed Principle are part of
the SOLID design principles. It’s one of the more popular sets of design principles
in OOP. SOLID stands for (S) Single Responsibility (O) Open Closed (L) Liskov
Substitution (I) Interface Segregation and (D) Dependency Inversion

Let’s take another example, see Listing 7-11.

Listing 7-11.  Employee, Programmer, and Tester

open class Employee(val name:String) {

 override fun toString(): String {

 return name

 }

}

class Programmer(name:String) : Employee(name) {}

class Tester(name:String) : Employee(name) {}

Chapter 7 Generics

142

fun main(args: Array<String>) {

 val employee_1 :Employee = Programmer("Ted") ➊
 val employee_2 :Employee = Tester("Steph") ➋

 println(employee_1)

 println(employee_2)

}

➊ employee_1 is of type Employee, we’re assigning a Programmer object to it. Which is okay.

Programmer is a subtype of Employee.

➋ Same thing here, the type Tester is a subtype of Employee, so the assignment should be okay.

No surprises here, the Liskov principle is still at work. Even if you put Programmer

and Employee on a List, the type relationship is preserved.

Listing 7-12.  Employee and Programmer in Lists

val list_1: List<Programmer> = listOf(Programmer("James"))

val list_2: List<Employee> = list_1

So far, so good. What about this next code; do you think it will work? (See Listing 7-13.)

Listing 7-13.  Group of Employees and Programmers

class Group<T>

val a:Group<Employee> = Group<Programmer>()

This is one of the tricky parts of generics. Listing 7-13, as it currently stands, won’t

work. Even if we know that Programmer is a subtype of Employee, and that what we’re

doing is type-safe, the compiler won’t let us through because the second statement in

the code has a problem.

When you’re working with generics, always remember that by default

Group<Employee>, Group<Programmer>, and Group<Tester> don’t have any type

relationship—even if we know that Tester and Programmer are subtypes of Employee. By

default, the type parameter in the class Group<T> is invariant. For the second statement

(in Listing 7-13) to work, Group<T> has to be covariant. We’ll solve in Listing 7-14.

Chapter 7 Generics

143

Listing 7-14.  Classes Employee, Programmer, Tester, and Group

class Group<out T> ➊

open class Employee(val name:String) {

 override fun toString(): String {

 return name

 }

}

class Programmer(name:String) : Employee(name) {}

class Tester(name:String) : Employee(name) {}

fun main(args: Array<String>) {

 val a:Group<Employee> = Group<Programmer>() ➋
}

➊ When you put the out keyword before the type parameter, that makes the type parameter

covariant.

➋ This code works because, Group<Programmer> is now a subtype of Group<Employee>,

thanks to the out keyword.

From these examples, we can now generalize that if type Programmer is a subtype

of Employee and Group<T> is covariant, then Group<Programmer> is a subtype

of Group<Employee>. Also, we can generalize that generic class, like Group, is

invariant on type parameter, if for the given types Employee and Programmer,

Group<Programmer> isn’t a subtype of Group<Employee>.
Now we’ve dealt with invariant and covariant. The last terminology we need to deal

with is contravariant. If the type parameter of Group<T> is contravariant, for the same

given types Employee and Programmer, then we can say that Group<Employee> is a

subtype of Group<Programmer>—it’s quite the reverse of covariant.

Listing 7-15.  Use the in Keyword for Contravariance

class Group<in T> ➊

open class Employee(val name:String) {

 override fun toString(): String {

 return name

Chapter 7 Generics

144

 }

}

class Programmer(name:String) : Employee(name) {}

class Tester(name:String) : Employee(name) {}

fun main(args: Array<String>) {

 val a:Group<Programmer> = Group<Employee>() ➋
}

➊ The in keyword makes the type parameter <T> contravariant, which means;

➋ Type Group<Employee> is now a subtype of Group<Programmer>.

Subclass vs Subtype
Alright. I suspect that what you’ve read in the last 10 minutes left a bitter taste

in your mouth. How can it happen that Programmer is a subtype of Employee,

List<Programmer> is a subtype of List<Employee>, but Group<Programmer> is not a

subtype of Group<Employee>? Let’s try to answer that by going back to the concept of

class, types, subclass, and subtypes.

We think of a class as somewhat synonymous to a type, and generally that’s true—for

non-generic classes at least, and for most of the time. We know that a class has at least

one type—it’s the same type as that of the class itself. Go back to that time when you

were first studying Java classes—your teacher, mentor or probably a favorite author must

have defined a type of an object like this: “It’s the sum total of all its public behavior,

otherwise known as the object’s methods or contract,” or something like that. Let’s just

say it’s the set of behavior that the object has.

Going back to “a class has at least one type,” well, it can have more. Just look at

Figure 7-2.

Chapter 7 Generics

145

Number

Int

Any

Employee

Programmer

CharSequence

String

Comparable Comparable

Figure 7-2.  Hierarchy for a bunch of classes and interfaces

From Figure 7-2, we can say:

•	 Any is at the top of the class chart; class Any is the equivalent of java.

lang.Object.

•	 Employee is a subclass of Any. Employee has two types: the one that

it inherited from Any, and itself—because the Employee class can

define its own set of behavior (methods), so that counts as one type.

•	 Programmer is a subclass of Employee, which is a subclass of Any,

which means Programmer has three types: one from Any, another

from Employee, and another coming from the Programmer class itself.

•	 Number is a subtype of Any, but it also implements the Comparable

interface. So, Number has three types: one from Any, another

one from itself, and another from the Comparable interface. We

can say that Number is a subtype of Any and it’s also a subtype

of Comparable—whatever you expect the Comparable to do, the

Number can do; whatever Any can do, Number can also do. This is

basic OOP.

•	 The String class has four types: one from Any, another from

Comparable, another one from CharSequence, and finally, from its

own class.

From the statements and the diagram, it’s okay to use subclass and subtype

interchangeably. There’s not much difference between the two. Their difference will

become apparent when we start considering nullable types.

The case of the nullable type is an example where a subclass is not the same as a

subtype. See Figure 7-3.

Chapter 7 Generics

146

Employee

Programmer

List<Employee>

List<Programmer>

Group<Employee>

Group<Programmer>

OK OK NOT SURE

Figure 7-4.  Generic types

When you put a question mark after the name of a type, it becomes the nullable

version of that type. In Kotlin, we can create two types from the same class: the

nullable and the non-nullable version. We can’t really say Programmer is a subclass

of Programmer? because there is just one class definition for Programmer, but

Programmer (the non-nullable version) is a subtype of Programmer? (the nullable

one). Similarly, Any is a subtype of Any? but Any? is not a subtype of Any—the reverse

direction isn’t true.

It’s okay to write

var j:Programmer? = Programmer("Ted") // assign non-null to nullable

Programmer

j = null. // then we assign a null to j

But it’s not okay to write

var i:Programmer = j // assign j (which is null) to non-nullable Programmer

Now we come to generics. Figure 7-4 should help us illustrate the next set of

concepts we need to grapple with.

Programmer?

Programmer

Any?

Any

Any

Any?

OK NOT OKOK

Figure 7-3.  Nullable types

Chapter 7 Generics

147

We know the first relationship Employee is the supertype of Programmer. We also

know List<Employee> will accept List<Programmer>; we tested this in Listing 7-12—

you’re probably not quite sure why it works, so I’ll circle back to this point after we deal

with the third set of boxes.

Now, given the codes

class Group<T>

val a:Group<Employee> = Group<Programmer>() // not sure

Why is it that we can’t reliably answer the question “Is Group<Employee> a

supertype of Group<Programmer>?”

It’s because while Group is a class, Group<Employee> is not, and by extension,

Group<Programmer> is not a subclass of Group<Employee>—if you’re thinking of

List<Employee> and List<Programmer> right now, stop. I did say I’ll circle back to that.

Stick with Group<Employee> and Group<Programmer> first. Table 7-1 should help us

summarize some of these things.

Table 7-1.  Class vs. Type

Is It Class Is It a Type

Programmer Yes Yes

Programmer? No Yes

List Yes Yes

List<Programmer> No Yes

Group Yes Yes

Group<Programmer> No Yes

Now we can establish that Group<Employee> has no type relationship with

Group<Programmer>, even if class Employee has a type relationship with Programmer.

The type parameter in Group<T> is, by default, invariant (no type relationship). In order

to change the variance of <T> you need to use either out (to make it covariant) or in (to

make contravariant) keyword.

Chapter 7 Generics

148

So, if we want Group<Programmer> to be a subtype of Group<Employee> we need to

write the Group class like this:

class Group<out T>

val a:Group<Employee> = Group<Programmer>() // this is ok now

Now we can circle back to List<Employee> and List<Programmer> question. Why

and how does it work? Why is it okay to write this?

var m:List<Employee> = listOf(Programmer("Ted"))

The simple answer lies in the definition of the List interface, I copied the source code

of the List interface in Listing 7-16 for your convenience; I stripped all the comments.

Listing 7-16.  Excerpt of the List Interface Source Code

public interface List<out E> : Collection<E> { ➊
 override val size: Int

 override fun isEmpty(): Boolean

 override fun contains(element: @UnsafeVariance E): Boolean

 override fun iterator(): Iterator<E>

 �override fun containsAll(elements: Collection<@UnsafeVariance E>):

Boolean

 public operator fun get(index: Int): E

 public fun indexOf(element: @UnsafeVariance E): Int

 public fun lastIndexOf(element: @UnsafeVariance E): Int

 public fun listIterator(): ListIterator<E>

 public fun listIterator(index: Int): ListIterator<E>

 public fun subList(fromIndex: Int, toIndex: Int): List<E>

}

➊ Type parameter is covariant. List uses the out keyword before the type parameter E.

The reason why it’s okay to assign List<Programmer> to List<Employee> is because

the type parameter on List<E> is covariant. Hence, if type Employee is a supertype

of Programmer, and List<E> is covariant, then List<Programmer> is a subtype of

List<Employee>.

Chapter 7 Generics

149

So, now that we understand types and subtypes a bit better, like in a Quentin

Tarantino movie, I’d like you to go back some 20 minutes ago and read the section on

“Variance” again.

�Reified Generics
Let’s deal with the meaning of “reify” first. It means “to make something real,” and the

reason we’re using rify and generics on the same statement is because of Java’s type

erasure.

Type erasure means exactly what you think it means. Java, and Kotlin as well, erases

generic type information at runtime. There are good reasons for this, but unfortunately,

we’re not going to discuss those reasons why the language design is like that—but we will

discuss its effects. Because of type erasure, you can’t perform any reflection activity and

you can’t do any runtime check on a type, if it’s generic. See Listing 7-17 for an example.

Listing 7-17.  Check for Type at Runtime

fun checkInfo(items:List<Any>) {

 if(items is List<String>) { ➊
 println("item is a list of Strings")

 }

 }

}

➊ This won’t compile. The error is “Cannot check for instance of erased type.”

The is keyword doesn’t work on generic types at runtime; the smart cast breaks

because of type erasure. If you have some confidence about what the runtime type of the

List will be, you can make a speculative decision and cast it using the as keyword, like

this:

val i = item as List<String>

The compiler will let you through, but this is a dangerous thing to do. Let’s consider

one more example where we can build a stronger case as to why we need to retain type

information at runtime.

Chapter 7 Generics

150

Let’s say I have a List of objects, Programmer and Tester objects. I want to create a

function where I can pass a type parameter and filter the list using that type parameter. I

want the function to return the filtered list. Listing 7-18 shows us a code sample on how

this might be done—the code sample won’t work of course, because of the type erasure

issue, but just read through it first, and we will fix it later.

Listing 7-18.  Filtering a List Using a Type Parameter

fun main(args: Array<String>) {

 val mlist = listOf(Programmer("Ted"), Tester("Steph")) ➊
 val mprogs = mlist.typeOf<Programmer>() ➋

 mprogs.forEach { ➌
 println("${it.toString()} : ${it.javaClass.simpleName}")

 }

}

fun <T> List<*>.typeOf() : List<T> { ➍

 val retlist = mutableListOf<T>() ➎
 this.forEach {

 if (it is T) { ➏
 retlist.add(it) ➐
 }

 }

 return retlist ➑
}

open class Employee(val name:String) {

 override fun toString(): String {

 return name

 }

}

class Programmer(name:String) : Employee(name) {}

class Tester(name:String) : Employee(name) {}

Chapter 7 Generics

151

➊ Let’s create a list of Programmer and Tester objects.

➋ Let’s call an extension function (of the List type) called typeOf. We’re passing Programmer as a

type argument, which means we want this function to return only a list of Programmers objects.

➌ We’re just iterating through each item of the list. We print the name property and the Java

simpleName.

➍ Now we come to the definition of the extension function. We’re defining a type parameter <T>,

we’re using T as the return type of this function. Also, we want this function to work with any

kind of List—hence the syntax.

➎ Let’s define a mutable list; we’ll use this to hold the filtered list.

➏ This is the code that won’t compile because we don’t know what kind of List this is anymore at

runtime. Kotlin, like Java, erases the type information. But let’s assume for a moment that Kotlin

does retain generic type information; if that’s the case, then this code is okay.

➐ If the condition is okay, let’s add the current item to the return value.

➑ Finally, let’s return the filtered list.

Listing 7-18 would have worked perfectly if only List.typeOf could remember, at

runtime, what kind of list it was. To solve this problem, we’ll use the inline and reified

keyword. Listing 7-19 shows us how to do this.

Listing 7-19.  How to Use Reified and Inline in a Function

inline fun <reified T> List<*>.typeOf() : List<T> { ➊

 val retlist = mutableListOf<T>()

 this.forEach {

 if (it is T) {

 retlist.add(it)

 }

 }

 return retlist

}

➊ Make the function inline and use the reified keyword before the type parameter. After doing

this, the function can retain type information at runtime.

Chapter 7 Generics

152

You can only reify inline functions. When you inline a function, the compiler will

replace every call to that function with its actual bytecode (not just the address of

the function). It’s like copying and pasting the bytecode of the function wherever the

function is called. This is how the compiler knows the exact type that you used as the

type argument. Hence, the compiler can generate the bytecode for the specific class that

was used as the type argument.

So, if we make a call like this:

val mprogs = mlist.typeOf<Programmer>()

If we reverse-engineer the bytecodes that compiler will generate for our reified

function, it might look like Listing 7-20.

Listing 7-20.  Reified Function

val retlist = mutableListOf<Programmer>()

this.forEach {

 if (it is Programmer) {

 retlist.add(it)

 }

}

return retlist

As you can see, we’re not testing if it is T anymore—we’re testing if it is Programmer.

The generated bytecode references a specific class (Programmer), not a type parameter (T).

This is the reason why reified functions are not affected by type erasure. This, of course,

will increase the size of your runtime program, so use it sparingly. Listing 7-21 shows the

full and revised code of the reified example.

Listing 7-21.  Filtering a List Using a Type Parameter

fun main(args: Array<String>) {

 val mlist = listOf(Programmer("Ted"), Tester("Steph"))

 val mprogs = mlist.typeOf<Programmer>()

 mprogs.forEach {

 println("${it.toString()} : ${it.javaClass.simpleName}")

 }

}

Chapter 7 Generics

153

inline fun <reified T> List<*>.typeOf() : List<T> {

 val retlist = mutableListOf<T>()

 this.forEach {

 if (it is T) {

 retlist.add(it)

 }

 }

 return retlist

}

open class Employee(val name:String) {

 override fun toString(): String {

 return name

 }

}

class Programmer(name:String) : Employee(name) {}

class Tester(name:String) : Employee(name) {}

�Chapter Summary
•	 Generic programming lets us reuse algorithms.

•	 All Collections in Kotlin uses generics.

•	 Kotlin doesn’t have raw types, like Java.

•	 There are three variances you need to know about: (1) invariance; (2)

covariance; and (3) contravariance.

•	 Kotlin, like Java, erases generic type information at runtime; but if

you want to retain type information, inline your functions and use

the reified keyword.

This is the end of book’s Kotlin part. In the next chapter, we’ll start our discussion

of Android programming. We’ll kick it of by setting up the Android Studio development

environment.

Chapter 7 Generics

PART II

Android Programming
with Kotlin

157
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_8

CHAPTER 8

Android Studio
Introduction and Setup
What we’ll cover:

•	 Overview of Android

•	 History

•	 Tooling

•	 Setup

Android could mean many things to different people, but since you’re holding this

book, I assume you’re interested in the part of Android that’s suited for developers.

Android is a platform that’s comprised of an operating system, software libraries,

application frameworks, software development kit, pre-built applications, and a reference

design. Both the platform and its development eco-system have evolved over time.

In this chapter, we’ll take a look at Android’s history and architecture. We’ll also

discuss Android Studio and how to set it up.

�History
Android came to life sometime in 2003 when a company named Android Inc. was

founded by Andy Rubin. At that time, Google was already backing Android Inc. but

didn’t own it yet. Google acquired Android Inc. sometime in 2005; then in 2007, the

Open Handset Alliance came to life, and the Android OS was officially opensourced.

During this time, Android had not reached version 1.0 just yet and it was far from

mainstream. Android reached version 1.0 in 2008—the dessert names weren’t part of the

culture just yet, but it wouldn’t be long before they were.

158

The following two years, 2009 to 2010, saw a torrent of rapid releases: Cupcake,

Donut, Froyo, éclair, and Gingerbread versions were released during this period.

2011 was a major milestone because up until that point, the Android OS remained

confined to mobile phones. Honeycomb, the successor to Gingerbread, was the

first Android version to be installed on tablets. There was a bit of controversy with

Honeycomb because Google did not release its code to open source immediately.

Table 8-1 shows a brief summary of Android’s history.

Table 8-1.  Android’s History

2003 Android Inc., founded by Andy Rubin and backed by Google, was born

2005 Google bought Android Inc.

2007 Android was officially open-sourced. Google turned over its ownership to the Open Handset

Alliance (OHA)

2008 version 1.0 was released

2009 versions 1.1, 1.5 (Cupcake), 1.6 (Donut), and 2.0 (Eclair) were released

2010 versions 2.2 (Froyo) and 2.3 (Gingerbread) were released

2011 versions 3.0 (Honeycomb) and 4.0 (Ice cream sandwich) were released

2012 version 4.1 (Jellybean) was released

2013 version 4.4 (KitKat) was released

2014 versions 5.0-5.1 (Lollipop) were released; Android became 64-bit

2015 version 6.0 (Marshmallow) was released

2016 versions 7.0-7.1.2 (Nougat) were released

2017 version 8 (Oreo) was released

2018 version 9 (Android P, beta) was released

�Architecture
The most visible part of Android, at least for developers, is its operating system (OS).

An OS is a complex thing, but for the most part, it is what stands between a user and the

hardware. That is an oversimplification, but it will suffice for our purposes. By “user,” I

don’t literally mean an end user or a person. What I mean by it is an application, a piece

of code that a programmer creates, like a word processor or an e-mail client.

Chapter 8 Android Studio Introduction and Setup

159

Take the e-mail app, for example: as you type each character on the keys, the app

needs to communicate to the hardware for the message to make its way to your screen

and hard drive, and eventually send it to the cloud via your network. It is a more involved

process than I describe it here, but that is the basic idea. At its simplest, an OS does three

things:

	 1.	 manages hardware on behalf of applications

	 2.	 provides services to applications like networking, security,

memory management, etc.

	 3.	 manages execution of applications; this is the part that allows us

to run multiple applications, seemingly, almost at the same time

Figure 8-1 shows the logical architecture of the Android platform.

Figure 8-1.  Android’s logical architecture

At the lowest level of the diagram is the Linux kernel. It’s responsible for interfacing

with the hardware, among other things. It’s also responsible for various services like

memory management and execution of processes.

Linux is a very stable OS and is quite ubiquitous; you can find this OS in wide use.

It can run on things as small as watches or as large as server farms. Android has an

embedded Linux inside it that handles hardware interfacing and some other kernel

functions.

Chapter 8 Android Studio Introduction and Setup

160

On top of the Linux kernel are low-level libraries like SQLite, OpenGL, etc. These

are not part of the Linux kernel but are still low level and, as such, are written mostly in

C/C++. On the same level, you will find the android runtime (android class libraries +

dalvik virtual machine), which is where Android applications are run.

Next up is the application framework layer. It sits on top of both the low-level

libraries and the android runtime because it needs both. This is the layer that we will

interact with as application developers because it contains all the libraries we need to

write apps.

Finally, on top is the application layer. This is where all our applications reside, both

the ones we write and the ones that come prebuilt. It should be pointed out that prebuilt

applications that come with the device do not have any special privileges over the ones

we will write. If you don’t like the e-mail app of the phone, you can write your own and

replace it. Android is democratic like that.

�Android Studio IDE
Developing applications for Android was not always as convenient as today. When

Android 1.0 was released sometime in 2008, what developers got by way of development

kit was no more than a bunch of command line tools and Ant build scripts. Building

apps with Vim, Ant, and other command line tools wasn’t so bad if you were used to that

kind of thing, but many developers were not used to that. The lack of IDE capabilities like

code hinting, project setups, and integrated debugging was somewhat a barrier to entry.

Thankfully, the android development tools (ADTs) for the Eclipse IDE was released,

also in 2008. Eclipse was, and still is, a favorite and dominant choice of IDE for many Java

developers. It felt very natural that it would also be the go-to IDE for Android developers.

From 2009 up until 2012, Eclipse remained the choice of IDE for development. The

android SDK has also undergone both major and incremental changes in structure

and in scope. In 2009, the SDK manager was released; we use this to download tools,

individual SDK versions, and android images that we can use for the emulator. In 2010,

additional images were released for the ARM processor and X86 CPUs.

2012 was a big year because Eclipse and ADT was finally bundled, this was a big deal

because until that time, developers had to install Eclipse and the ADT separately, and

the installation process wasn’t always smooth. So, the bundling of the two together made

it a whole lot easier to get started with Android development. 2012 is also memorable

because it marked the last year of Eclipse being the dominant IDE for android.

Chapter 8 Android Studio Introduction and Setup

161

In 2013 Android Studio was released; to be sure, it was still on beta, but the writing

on the wall was clear. It will be the official IDE for Android development. Android

Studio is based on JetBrains’s IntelliJ. IntelliJ is a commercial Java IDE that also has a

community (non-paid) version. It would be this version that would serve as the base for

Android Studio.

There are quite a few JVM languages, but Java has always been the go-to language for

Android development—until 2017, when it was announced at Google I/O that Android

will have first-class support for Kotlin. Android Studio 3 (AS3) automatically has support

for Kotlin.

�Setup
The JDK is a required software for Android Studio, but since we’ve already covered the

JDK installation in Chapter 1, we’ll proceed to the installation of AS3. The installer is

available for macOS, Windows, and Linux; the download page is at http://bit.ly/

getas3—the page should be able to detect what OS you are using and will display the

appropriate installer for you. You will be asked to agree to some terms and conditions

before you can proceed with the download. Read it, understand it, and agree to it so you

can carry on. After that, the AS3 installer will be downloaded in a zipped file.

For macOS, you need to do the following:

	 1.	 Unpack the installer zipped file.

	 2.	 Drag the application file into the Applications folder.

	 3.	 Launch AS3.

	 4.	 AS3 will prompt you to import some settings if you have a previous

installation. You can import that—it’s the default option.

Note  If you have an existing installation of Android Studio, you can keep using
that version and still install the preview edition. AS3 can coexist with your existing
version of Android Studio; its settings will be kept in a different directory.

Chapter 8 Android Studio Introduction and Setup

http://bit.ly/getas3
http://bit.ly/getas3

162

For Windows, you need to do the following:

	 1.	 Unzip the installer file.

	 2.	 Move the unzipped directory to a location of your choice, for

example C:\Users\myname\AndroidStudio

	 3.	 Drill down to the AndroidStudio folder; inside it, you’ll find

studio64.exe. This is the file you need to launch. It’s a good idea

to create a shortcut for this file—if you right-click on studio64.exe

and choose “Pin to Start Menu,” you can make AS3 available from

the Windows Start menu. Alternatively, you can also pin it to the

Taskbar.

The Linux installation requires a bit more work than simply double-clicking and

following the installer prompts. In future releases of Ubuntu and its derivatives, this

might change and become as simple and frictionless as its Windows and macOS

counterparts, but for now, we need to do some tweaking. The extra activities on Linux

are mostly because AS3 needs some 32-bit libraries and hardware acceleration.

Note T he installation instructions in this section are meant for Ubuntu 64-bit and
other Ubuntu derivatives (e.g., Linux Mint, Lubuntu, Xubuntu, Ubuntu MATE, etc.). I
chose this distribution because I assumed that it was a very common Linux flavor;
hence, readers of this book would be using that distribution.

If you are running a 64-bit version of Ubuntu, you will need to pull some 32-bit
libraries in order for AS to function well.

To start pulling the 32-bit libraries for Linux, run the following commands on a

terminal window:

sudo apt-get update && sudo apt-get upgrade -y

sudo dpkg --add-architecture i386

sudo apt-get install libncurses5:i386 libstdc++6:i386 zlib1g:i386

Chapter 8 Android Studio Introduction and Setup

163

When all the prep work is done, you need to do the following:

	 1.	 Unpack the downloaded installer file. You can unpack the file

using command line tools or using the GUI tools. You can, for

example, right-click on the file and select the “Unpack here”

option, if your file manager has that.

	 2.	 After unzipping the file, rename the folder to AndroidStudio.

	 3.	 Move the folder to a location where you have read, write and

execute privileges. Alternatively, you can also move it to /usr/

local/AndroidStudio.

	 4.	 Open a terminal window and go to the AndroidStudio/bin folder,

then run ./studio.sh.

	 5.	 At first launch, AS3 will ask you if you want to import some

settings. If you have installed a previous version of Android Studio,

you may want to import those settings.

�Android Studio Configuration
If this is the first time you’ve installed AS3, you might want to configure a couple of things

first before diving into coding work. In this section, I’ll walk you through the following:

•	 Getting some more software that we’ll need in order to create

programs that target specific versions of Android

•	 Making sure we have all the SDK tools we need; and optionally

•	 Changing the way we get updates for AS3

Launch AS3 if you haven’t done so yet, then click “Configure,” as shown in Figure 8-2.

Choose “Preferences” from the dropdown list.

Chapter 8 Android Studio Introduction and Setup

164

You will see the “Preferences” window, as shown in Figure 8-3. On the left-hand side

of the window, click “Android SDK.”

Figure 8-2.  Go to preferences from the AS3 opening screen

Chapter 8 Android Studio Introduction and Setup

165

When you get to the SDK window, enable the “Show Package Details” option so you

can see a more detailed view of each API level. We don’t need to download everything in

the SDK window. We will get only the items we need.

SDK levels or platform numbers are specific versions of Android. Android 8 or “Oreo”

is API levels 26 and 27, Nougat is API levels 24 and 25. You don’t need to memorize the

platform numbers, at least not anymore because AS3 shows the platform number with

the corresponding Android nickname.

You may download “Nougat” and “Oreo” if you wish; those are API levels 24, 25, 26,

and 27. For our purposes, please download “Marshmallow”—it is API level 23. This is the

version that we will mostly use throughout the book. Make sure that together with the

platforms, you will also download “Google APIs Intel x86 Atom_64 System Image.” We

will need those when we get to the part where we test run our applications.

Choosing an API level may not be a big deal right now, because at this point, we’re

simply working with practice apps. When you plan to release your application to the

public, you may not be able to take this choice lightly though. Choosing a minimum

Figure 8-3.  SDK platforms

Chapter 8 Android Studio Introduction and Setup

166

SDK or API level for your app will determine how many people will be able to use your

application. At the time of writing, 25% of all Android devices are using “Marshmallow,”

22% are using “Nougat,” and 4% are using “Oreo.” These stats are from dashboard page of

developer.android.com. It’s a good idea to check these statistics from time to time; you

can find it here http://bit.ly/droiddashboard.

Going back to our configuration, when you’re happy with your selection, enable the

tick boxes for the API and images that you’d like to download, then click “SDK Tools” —

it’s right next to the “SDK Platforms” button as shown in Figure 8-4.

Figure 8-4.  SDK tools

You don’t generally have to change anything on this window, but it wouldn’t hurt to

check if you have the tools, as shown in Table 8-2, marked as “Installed.”

Chapter 8 Android Studio Introduction and Setup

http://android.com
http://bit.ly/droiddashboard

167

Note  If you are on the Linux platform, you cannot use HAXM, even if you have an
Intel processor. KVM will be used in Linux instead of HAXM.

Once you’re happy with your selection, click the “OK” button to start downloading

the packages.

The last configuration check we will do is the “Update Channel.” It’s on the same

“Preferences” window. Click the “Updates” item on the right-hand side to show the

“Updates” settings, as shown in Figure 8-5.

Table 8-2.  SDK Tools

Tool Description

Android SDK

Build Tools

This contains important tools like adb, which will help us do diagnostics and

debugging; sqlite3, which we can use when we create applications that use

databases; plus a couple of other tools.

Android SDK

Platform Tools

This contains important tools like adb, which will help us do diagnostics and

debugging; sqlite3, which we can use when we create applications that use

databases; plus a couple of other tools.

Android SDK

Tools

This includes essential Android tools like ProGuard. You don’t need to deep dive

into the details of these tools (for now). Just make sure this box is ticked and

we’re good to go.

Android

Emulator

You will definitely use this. This is a device emulation tool. We will use this to test

our applications in a virtual device.

Support

Repository

If you want to write code that targets Android Wear, Android TV, or Google Cast,

you want to download this. This also contains local Maven repository for support

libraries. The support repository also allows you to use new features on older

Android versions.

HAXM Installer If you are using a macOS, or a PC with Intel processor, you can use this. It is an

accelerator for the Android Emulator.

Chapter 8 Android Studio Introduction and Setup

168

AS3, just like any Android Studio installation, is configured by default to get updates

from channel where you originally downloaded the installer. Since we downloaded the

installer from the stable channel, it will get its update from that channel by default. You

can change the channel to either one of these four:

•	 Canary channel: this is bleeding edge releases, it could be updated

every week. You don’t want to use this for production codes.

•	 Dev Channel: just like the Canary channel but a bit more stable. You

still don’t want to use this for production.

•	 Beta channel: this contains release candidates. The devs are basically

waiting for feedback before it gets fed to the stable channel.

•	 Stable Channel: this is official stable release and is suited for

production work.

Figure 8-5.  Updates

Chapter 8 Android Studio Introduction and Setup

169

�Hardware Acceleration
As you write your apps, it will be useful to test and run it from time to time in order to

get immediate feedback and find out if it is running as expected, or if it is running at all.

To do this, you will use either a physical or a virtual device. Each option has its pros and

cons, and you don’t have to choose one over the other. In fact, you will have to use both

options eventually.

An Android Virtual Device, or AVD, is an emulator where you can run your apps.

Running on an emulator can sometimes be slow—this is the reason why Google and

Intel came up with HAXM. It is an emulator acceleration tool that makes testing your

app a bit more bearable. This is definitely a boon to developers. That is if you are using a

machine that has an Intel processor that supports virtualization and that you are not on

Linux. But don’t worry if you’re not lucky enough to fall on that part of the pie; there are

ways to achieve emulator acceleration in Linux, as we’ll see later.

macOS users probably have it the easiest, because HAXM is automatically installed

with AS3. They don’t have to do anything to get it—the AS3 installer took care of that for

them.

Windows users can get HAXM either by:

•	 Downloading it from https://software.intel.com/en-us/android.

Install it like you would any other Windows software, double-click,

and follow the prompts.

•	 Alternatively, you can get HAXM via AS3’s SDK manager; this is the

recommended method.

For Linux users, the recommended software is KVM instead. KVM (Kernel-based

Virtual Machine) is a virtualization solution for Linux. It contains virtualization

extensions (Intel VT or AMD-V).

To get KVM, we need to pull some software from the repos. But before doing

anything else, you need to do two things:

	 1.	 Make sure that virtualization is enabled on your BIOS or UEFI

settings. Consult your hardware manual on how to get to these

settings. It usually involves shutting down the PC, restarting it,

and pressing an interrupt key like F2 or DEL as soon as you hear

the chime of your system speaker, but like I said, consult your

hardware manual.

Chapter 8 Android Studio Introduction and Setup

https://software.intel.com/en-us/android

170

	 2.	 Once you have made your changes, and rebooted to Linux,

find out if your system can run virtualization. This can be

accomplished by running the following command from a

terminal egrep –c '(vmx|svm)' /proc/cpuinfo. If the result is a

number higher than zero, that means you can go ahead with the

installation.

To install KVM, type the commands, as shown in Listing 8-1, on a terminal window.

Listing 8-1.  Commands to Install KVM

sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils

sudo adduser your_user_name kvm

sudo adduser your_user_name libvirtd

You may have to reboot the system to complete the installation.

�Chapter Summary
•	 Android is complete development platform. It includes an OS,

application framework, applications, software development kit, pre-

built applications, and a reference design

•	 The release cadence for Android is approximately 12 months; we get

a new version every year.

•	 AS3 automatically includes support for Kotlin.

•	 Hardware acceleration for the emulator is something you might want

to look into. It will shave off a lot of waiting time during development

and testing.

Here’s what’s in store for the next chapter:

•	 What’s inside an Android app? We’ll explore what makes up an app;

Android calls them components, and there are several of them. We’ll

take a look at each one of them.

Chapter 8 Android Studio Introduction and Setup

171

•	 We’ll create our first project. We’ll step through the processes (and

the screens) on how get a simple project up and running in Android

Studio.

•	 We’ll build an emulator—it’s what you use to test an app. Android

devs call it AVD, which is short for Android Virtual Device.

•	 We’ll look the some part of the Android Studio IDE. It’s always good

to know the nooks and crannies of your tools.

Chapter 8 Android Studio Introduction and Setup

173
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_9

CHAPTER 9

Getting Started
What we’ll cover:

•	 Android components

•	 Creating a project

•	 Creating an android virtual device

•	 The Android Studio IDE

Applications in android are not quite the same as apps written for the desktop. They

might have some striking similarities as far as appearances go, but structurally they differ

quite a lot. The EXE files contain all the routines and subroutines the application needs

within it. From time to time it may rely on some dynamically loaded library, but the

executable file is pretty much self-contained. Android apps are not quite like that, they

are made up of loosely coupled components that communicate with each other using a

message-passing mechanism that is quite unique to the Android platform.

In this chapter, we’ll take a closer look at what’s inside an Android application. We

will also try to familiarize ourselves with Android Studio 3 by creating and running a

sample application. Finally, we’ll take a brief tour of the Android Studio 3 IDE.

�What’s in an App
An android app is not a monolithic package like an EXE file in Windows. It is a bundle

of loosely assembled components and other resources and they are held together inside

an Android Package file or APK. Figure 9-1 shows the logical structure of a hypothetical

application.

174

The app depicted in Figure 9-1 is a big application—it’s got everything in it, including

the kitchen sink. Your applications don’t need to include all of these things, like our

hypothetical app in here; but yours will definitely include some of them.

Activities, Services, BroadcastReceivers, and ContentProviders are called Android

components. They are the key building blocks of an application. They are high-level

abstractions of useful things like showing a screen to a user, running a task in the

background, broadcasting an event so that interested applications may respond to them,

etc. Components are pre-coded or pre-built classes with very specific behavior, and we

use them in our application by extending them so that we can add the behavior that will

be unique to our application.

Building an Android app is a lot like building a house. Some people build houses the

traditional way—they assemble beams, struts, floor panels, etc. They build the doors and

other fittings from raw materials by hand, like an artisan. If we built android applications

this way, it could take us a long time and it might be quite difficult. The skill necessary

to build applications from the scratch could be out of reach for some programmers. In

Android, applications are built using components. Think of it as pre-fabricated pieces of

a house. The parts are manufactured in advance, and all it requires is assembly.

An Activity is where we put together things that the user can see. It’s a focused thing

that users can do. For example, an Activity may be purposely made to enable a user to

Figure 9-1.  What makes up an app

Chapter 9 Getting Started

175

view a single email or fill up a form. It’s where the user interface elements are glued

together. As you can see in Figure 9-1, inside the Activity, there are Views and Fragments.

Views are classes that are used to draw content into the screen; some examples of View

objects are buttons and textviews. A Fragment is similar to an Activity in that it’s also a

composition unit but a smaller one. Like Activities, they can also hold View objects. Most

modern apps use Fragments in order to address the problem of deploying their app on

multiple form factors. Fragments can be turned on or off depending on available screen

real estate and/or orientation.

Services are classes that allow us to run program logic without freezing up the user

interface. Services are codes that run in the background; they can be very useful when

your app is supposed to download a file from the web, or maybe play music.

BroadcastReceivers allow our application to listen for specific messages from either

the Android system or from other applications—yes, our apps can send messages and

broadcast systemwide. You might want to use BroadcastReceivers if you want to display

a warning message when the battery dips to below 10%, for example.

ContentProviders allow us to create applications that may be able to share data

to other applications. It manages access to some sort of central data repository. Some

ContentProviders have their own UI but some don’t. The main reason why you would

use this component is to allow other applications access to your app’s data without

them going through some SQL acrobatics. The details of database access are completely

hidden from them (client apps). An example of a pre-built application that is a

ContentProvider is the “Contacts” app in Android.

Your application may need some visual or audio assets; these are the kinds of things

we mean by “Resources” in Figure 9-1.

The AndroidManifest is exactly what its name implies—it’s a manifest and it’s in XML

format. It declares quite a few things about the application, like

•	 The name of app

•	 Which Activity will show up first when the user launches the app

•	 What kind of components are in the app. If it has activities, the

manifest declares them—names of classes and all. If the app has

services, their class names will also be declared in manifest.

•	 What kinds of things can the app do? What are its permissions? Is

it allowed to access the internet or the camera? Can it record GPS

locations? And so on.

Chapter 9 Getting Started

176

•	 Does it use external libraries?

•	 What version(s) of Android will this app run on?

As you can see, the manifest is a busy place, there’s a lot of things to keep an eye on.

But don’t worry too much about this file. Most of the entries here are automatically taken

care of by the creation wizards of AS3. One of the few occasions you will interact with it is

probably when you need to add permissions to your app.

�Component Activation
Android is gung-ho about loose coupling. An application is just a collection of

components held together by a manifest file. Each of these components can be activated

by sending a message to it. This approach to program interactivity is quite unique

because it’s very user-centric. It gives the user a lot of power to make choices on how

they manipulate and create data.

Let’s take a common usage scenario for an Android device. A user opens the

“Contacts” application and chooses the contact detail of John Doe, for example. This

contact could have an e-mail address, a mobile phone, and a twitter name, let’s say. The

user could tap on each and every one of John’s contact points, and each time, Android

will launch a different application; the default e-mail client, a dialer, and a downloaded

Twitter app. The user probably doesn’t care which application was launched or how

many applications are currently open; he just wants to send a message. If this user

doesn’t like the e-mail app or the default twitter client, he could delete these apps and

replace them with something else, and he should be back in business.

For this kind of program interaction to happen, Android needed to architect the

platform, focusing heavily on loose coupling and pluggability. A component, like the

Contacts app should not know any specific detail about what app it should use when

an e-mail address or a mobile phone number is tapped. The resolution for what kind

of app to use for a specific kind of data should not be hardwired into the Contacts app;

otherwise, the user won’t be able to exercise his choice on which app to use when

sending e-mails or tweets.

This is where Intents come in. When a component has data or information that is

beyond its capability to service, it can go out to the Android platform using Intents and

ask around if there’s any application that can (or wants) to fulfill the request. There are two

kinds of Intent: an implicit and an explicit one. The Intent we are talking about in the e-mail

and twitter example is called an explicit Intent. We’ll get into this a bit more in later chapters.

Chapter 9 Getting Started

177

Android Intents is a component activation mechanism. They are a message-passing

mechanism that you can use if you want to activate any Android component, be it an

Activity, Service, ContentProvider, or BroadcastReceiver. To activate any component,

you will need to create an Intent and pass it to the component you want to activate. In an

application that has more than one Activity, Intents are used to switch control or focus

from one Activity to another.

�Creating a Project
Now that we have some working idea about what goes inside an Android app, let’s try

to create a sample project and try out the IDE. Launch AS3 if it isn’t open yet. Figure 9-2

shows the Welcome screen of Android Studio 3.

Figure 9-2.  AS3 welcome screen

Chapter 9 Getting Started

178

Click “Start a new Android Studio Project,” as shown in Figure 9-2. It may be a good

idea to check if you have an internet connection. AS3 uses the Gradle build tool; when

the creation wizard finishes, Gradle will pull several files from internet repositories.

Figure 9-3 shows the next screen.

Figure 9-3.  Create new project

As you can see in Figure 9-3, you’ll need to fill in some information about the

project (e.g., app name, company domain, and project location). The default value for

application name is “My Application”; you can leave the default value.

I filled up the company domain; you can too, if you prefer. It’s usually the website of

your company. This information will be used in the project and will become its package

name in reverse-DNS notation. So, our class will be stored in a package named com.

example.ted.

The project location is the location of the folder where AS3 will store your project.

You can also leave this with the default value.

Chapter 9 Getting Started

179

It’s important that the “Include Kotlin support” tick box is enabled because we’re

going to use Kotlin as our programming language. Click “Next.”

Figure 9-4 shows the next screen. In here, you will be asked to choose the Android

version that your application is expected to run on. Tick only “Phone and Tablet” and

choose API 23.

Figure 9-4.  Target Android devices

Chapter 9 Getting Started

180

Figure 9-5 shows the next screen; a small pop-up might appear reminding you that

you need to install “Instant Apps.” Click “No” for now. “Instant Apps” is a Google Play

feature that allows users to use or try out apps without installing them. If the users like

the app, then they can purchase it, if necessary, from the App Store. We will completely

ignore this for now. Click “Next.”

Figure 9-5.  Instant apps

On the next screen, as shown in Figure 9-6, we are asked to add an Activity to the

app. You have a couple of choices, but for our purpose, choose “Empty Activity.” Click

“Next.”

Chapter 9 Getting Started

181

The last screen on the project creation wizard is shown in Figure 9-7. We’re asked

to fill in the activity name and the layout name. We’ll leave everything in their default

values. Click “Next.”

Figure 9-6.  Choose an activity

Chapter 9 Getting Started

182

Figure 9-8 shows our newly created project in the main Window of AS3. After

Clicking the “Next” button in Figure 9-7, it will take a while before things settle in

because the Gradle tool will build the project, and as it tries to do that, it will pull quite a

few files from the repositories.

Figure 9-7.  Configure activity

Figure 9-8.  Main AS3 with an open project

Chapter 9 Getting Started

183

We won’t try to change anything in this project right now. Our goal is to simply take

AS3 for a test drive and get acquainted with the various steps of project creation. The

project creation wizard generated an activity with a couple of views in it already.

The next step in our test drive is to run the project in an emulator. To do that, click the

Run icon in the toolbar (encircled in Figure 9-8).

When you click the Run icon, the “Select Deployment Target” screen will appear,

as shown in Figure 9-9. This screen shows all running Android Virtual Devices (AVDs).

It also shows all the connected physical Android Devices, if you plugged any.

Figure 9-9.  Select deployment target

As you can see, I’ve created a couple of virtual devices already. In your case, you

might not see anything under the “Available Virtual Devices” since you have a fresh

installation. Click “Create New Virtual Device.”

Chapter 9 Getting Started

184

In Figure 9-10, you can choose the form factor for your virtual device. I chose the

Nexus 5x. Click “Next.”

Figure 9-10.  Select hardware

Chapter 9 Getting Started

185

Figure 9-11 shows our options for the system image. A system image is a copy of the

Android OS that we can run on an emulator. Our project was created with the target SDK

value of API 23 (“Marshmallow”). It’s okay to choose a system image that is higher than

API 23, but for our purpose, let’s actually download the API 23 system image.

Click the middle tab that’s labeled “x86 Images,” as shown in Figure 9-11, and look

for API level 23, x86_64 with the Google APIs. Click the “Download” link.

Figure 9-11.  System image

Chapter 9 Getting Started

186

Figure 9-12 shows the Component installer window, it displays the progress of the

download. As soon as it finishes, click “Finish” to dismiss the window.

Figure 9-12.  Component installer

Chapter 9 Getting Started

187

We’re back to System Image window again, as shown in Figure 9-13. You’ll notice

that the “Download” link is no longer visible beside the “Marshmallow” label and that

the row is now selectable. While the Marshmallow row is selected, Click “Next.”

Figure 9-13.  System image

Chapter 9 Getting Started

188

Figure 9-14 shows the final configuration screen for the AVD creation. I’ll leave

everything in their default value, including the AVD name. Click “Finish.”

Figure 9-14.  Android Virtual Device

Chapter 9 Getting Started

189

We’re back to the “Select Deployment Target” screen (Figure 9-15), but this time

around, we have our newly created AVD (Nexus 5X API 23) showing up in “Available

Virtual Devices.” Select the AVD we just created and click “OK.”

AS3 might prompt you to install “Instant Run”, as shown in Figure 9-16. We want

to install this because it will speed up our development time. Instant run allows us to

push code changes to the AVD without building a new APK. That will save us time. Click

“Install and Continue.”

Figure 9-15.  Select deployment target

Figure 9-16.  Instant run

Chapter 9 Getting Started

190

AS3 will create the APK for the app and will push it to the AVD right after. When that’s

done, you should be able to see the app running in the AVD, as shown in Figure 9-17.

�The IDE
Let’s take some time to familiarize ourselves with the IDE. It’s best to get some bearings

before diving deep into coding. Android Studio is based on IntelliJ, and we used IntelliJ

for our Kotlin studies in the earlier chapters, so AS3 should look familiar. Figure 9-18

shows the AS3 IDE with an opened project.

Figure 9-17.  Android Virtual Device

Chapter 9 Getting Started

191

The Editor window is the most prominent window and has the most screen real

estate. The editor window is where you can create and modify project files. It changes its

appearance depending on what you are editing. If you’re working on a program source

file, this window will show just the source files. When you are editing layout files, you

may see either the raw XML file or a visual rendering of the layout.

Each project in Android Studio contains one or more modules with source code

files and resource files. The types of modules includes Android app modules, library

modules, and, sometimes, Google app modules. By default, AS3 displays the Project
Files in Android View, as shown in Figure 9-18. The Android View is organized by

modules to provide quick access to the project’s most relevant files. You change how you

view the project files by clicking the down arrow on top of the Project window, as shown

in Figure 9-19.

Figure 9-18.  AS3 IDE with an opened project

Chapter 9 Getting Started

192

The Navigation bar lets you navigate the project files. This is just a more compact

view of the “Project files” window. It’s a horizontally arranged collection of chevrons that

resembles some sort of breadcrumb navigation that you can find on some websites. You

can open your project files either through the navigation bar or the project tool window.

The Tool bar lets you do a wide range of actions (e.g., save files, run the app, open

the AVD manager, open the SDK manager, undo, redo actions, etc.).

The Tool windows gives you access to very specific tasks (e.g., look at the project

files, view all the TODO annotations, view the logcat window, access the profiler, etc.).

Each of the tool windows are expandable and collapsible. You can pop them open when

you need them, then tuck it away when you’re done.

The Tool window bar runs along the perimeter of the IDE window. It contains the

individual buttons you need to activate specific tool windows.

The Status Bar is that part of the IDE that shows what’s going on with your project

and with AS3 itself. It displays context-sensitive messages, such as error messages,

running processes, repository messages, etc.

�Main Menu
Android Studio offers many way of navigating the IDE, but the primary way of navigation

is the Main Menu. Figure 9-20 shows the AS3 Main Menu; it sits at the top of the IDE

and provides the most complete way of navigation. It contains commands for opening,

Figure 9-19.  How to switch views in the Project window

Chapter 9 Getting Started

193

creating projects, refactoring code, running and debugging apps, keeping files under

version control, and so much more.

Figure 9-20.  Main menu of Android Studio

�Keyboard Shortcuts
As your application grows, you may want to try a quicker way to navigate AS3. Here are

some keyboard shortcuts to get you started.

Table 9-1.  Some Keyboard Shortcuts

Task Linux and Windows macOS

Search within a file CTRL + F ⌘ + F

Search everywhere CTRL + Shift + F CTRL + ⌘ + F

Save all CTLR + S ⌘ + S

Override methods CTRL + O CTRL + O

Implement methods CTRL + I CTRL + I

Basic code completion CTRL + Space CTRL + Space

Build CTRL + F9 ⌘ + F9

Build and Run Shift + F10 CTRL + R

Apply changes (with Instant Run) CTRL + F10 CTRL + ⌘ + R

Chapter 9 Getting Started

194

The list of keyboard shortcuts shown in Table 9-1 is obviously not complete.

The Android Developer website maintains a page that has a comprehensive

list of Android Studio keyboard shortcuts; you can find it here http://bit.ly/

androidstudiokbshortcuts.

There are certain actions or option in AS3’s Main Menu that don’t have a default

mapping to the keyboard (e.g., entering a full screen view). In such cases, you may map a

keyboard shortcut of your own choosing to a menu action. You can do this in the keymap

settings for AS3.

To open the keymap setting, choose File ➤ Settings (on macOS, Android Studio

➤ Preferences) from the Main Menu and navigate to the keymap pane, as shown in

Figure 9-21.

•	 Keymaps dropdown lets you select the desired keymap, it switches

between the preset keymaps.

•	 Actions list. Right-click on an action to modify it. You can add

additional keyboard shortcuts for the action, add mouse shortcuts to

associate an action with a mouse click, or remove current shortcuts.

If you are using a preset keymap, modifying an action’s shortcuts

keycaps dropdown duplicate actions list search box search by shortcut

Figure 9-21.  Keymap settings

Chapter 9 Getting Started

http://bit.ly/androidstudiokbshortcuts
http://bit.ly/androidstudiokbshortcuts

195

will automatically create a copy of the keymap and add your

modifications to the copy.

•	 You can use the Search Box to search for a keyboard shortcut using

the action name.

•	 Search by shortcut. You can type the keyboard short cut in this

search window to find the action name.

�Customizing Code Style
On the same Settings (Preferences in macOS) window, you can also customize the coding

style and a lot more other settings like editor font and color scheme, etc.

To customize the coding style, open the preferences window, if it isn’t opened

yet. Click File ➤ Settings (on macOS, Android Studio ➤ Preferences) on the Main

Menu. The code style window is under the Editor menu on the right-hand side of the

Preferences window, as shown in Figure 9-22.

Figure 9-22.  Code style

Chapter 9 Getting Started

196

Now you can tune your editor whichever way you want. The settings are very self-

explanatory, just tweak it to your liking—or, if you are working on a team, tweak the

settings according the issued coding style guide.

�Chapter Summary
•	 An Android app is made up of components that are loosely

assembled that are held together by AndroidManifest.xml.

•	 You can set application permissions in the Android manifest file.

•	 An app may contain a combination of components such as Activities,

Services, BroadcastReceivers, and ContentProviders.

•	 Components communicate to each other using Intents.

In the next chapter, we will start looking at how to build user interfaces with

Activities and layouts. We’ll learn how Android uses XML as a layout resource and how

these XML resources get converted and rendered into objects at runtime using a process

called inflation—this, and so much more.

Chapter 9 Getting Started

197
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_10

CHAPTER 10

Activities and Layouts
What we’ll cover:

•	 Activities and layouts

•	 View and ViewGroup objects

•	 Activity lifecycle

•	 Kotlin Android Extension

Most programs need an entry point or a beginning routine where all execution

begins. Even the simple “Hello World” in previous examples required a main function

as an entry point. Android programs are the same, it also needs its own version of the

“function main.” But the entry point of an Android program isn’t just a function called

“main”—it’s a bit more involved than that. In this chapter, we’ll explore the structure of

a basic app. We’ll take a look at how to build a user interfaces and discover what makes

them tick.

�Application Entry Point
A simple app that shows a screen to the user requires at least three things. It needs (1)

an Activity class that acts as the main program file; (2) a layout file that contains all UI

definitions; and (3) a Manifest file, which ties all the project’s contents together. If you

still remember working with JavaBean’s manifest file, the Android manifest is a bit like

that. It describes the contents of the project.

When an application is launched, the Android runtime creates an Intent object and

inspects the manifest file. It’s looking for a specific value of the intent-filter node;

the runtime is trying to see if the application has a defined entry point, something like a

“main function.” Listing 10-1 shows an excerpt from a manifest file.

198

Listing 10-1.  Excerpt from AndroidManifest.xml

<activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

Listing 10-1 shows the declaration for one Activity. If the app has more than one

activity, you will see several definitions like Listing 10-1—one for each Activity. The first

line of the definition has an attribute called android:name. This attribute points to the

class name of an Activity. In this example, the name of the class is “MainActivity.”

The second line declares the intent-filter; when you see something like android.

intent.action.MAIN, on the intent-filter node, it means the Activity is the entry point for

the application. When the app is launched, this is the Activity that will interact with the user.

�Activity Class
The main Activity class is responsible for the initial interaction with the user. This is a

Kotlin class, and in it, we can, and often, do the following:

•	 Choose which UI file to use. When we call the setLayout(xml:file)

function from inside the Activity, it will bind the Activity to xml:file.

This is called “Layout binding.” When the Activity binds to the layout,

the screen will be filled with user interface elements that users can

touch or swipe.

•	 Get references to view objects. View objects are also called widgets

or controls. When we have a programmatic reference to the view

objects, we can manipulate them, change their properties, or

associate them with an event. This is called View binding.

The Activity class inherits from android.app.Activity in one way or another. In our

examples, they inherit from AppCompatActivity; this is a child of FragmentActivity,

which in turn is a child of android.app.Activity. We use the AppCompatActivity class so

we can put modern UI elements like ToolBars in our project, and still run them on older

versions of Android where ToolBars are otherwise unsupported—hence, the “Compat”

in the name AppCompatActivity.

Chapter 10 Activities and Layouts

199

When the runtime launches an app that eventually launches an Activity, it creates

and tracks what’s happening to the Activity. Each Activity has a very thorough life cycle,

and each life cycle event has an associated function that we can use to customize the

behavior of the application.

Figure 10-1 shows the stages of the Activity’s life cycle. Each box shows the state

of the Activity on a particular stage of existence. The name of the function calls are

embedded in the directional arrows that connect the stages.

Figure 10-1.  Activity Life Cycle

When the runtime launches the app, it calls the onCreate() function of the main

Activity, which brings the state of the Activity to “created.” You can use this function to

perform initialization routines like preparing event handling codes, etc.

The Activity will proceed to the next state, which is “started”; the Activity is visible to

the user at this point, but it’s not yet ready for interaction. The next state is “resumed”;

this is the state where the app is interacting with the user.

If the user clicks on anything that may launch another Activity, the runtime will

pause the current Activity and it will enter the “paused” state. From there, if the user goes

back to the Activity, the onResume() function is called and the Activity is running again.

On the other hand, if the user decides to open a different application, the runtime may

“stop” and eventually “destroy” the application.

Chapter 10 Activities and Layouts

200

�Layout File
A layout file contains view objects that are arranged in an XML hierarchy. The user

interface elements like buttons or text fields are written inside an XML file. Some people

may cringe at the thought of composing the UI by hand using only an XML editor. But

you don’t have to worry because AS3 makes it easy to compose user interfaces. We can

work with the layout file either in text mode (hand editing the XML), or we can work with

it in design mode (WYSIWYG).

Figure 10-2 shows a layout file displayed in two possible modes: text mode and

design mode. You can switch the modes by clicking on the tabs “Text” or “Design” on the

left lower part of the main editor window. When you change an element by editing the

XML, AS3 automatically updates the rendition of the design view. Similarly, when you

make a change in the design view, the XML file gets updated.

shown as tex t
shown in design

mode

You can view the layout file in tex t or design
view by click ing these tabs in the IDE

Figure 10-2.  Layout file shown in both text and design mode

Chapter 10 Activities and Layouts

201

Listing 10-2 shows a typical layout file. It’s what the project creation wizard will

produce if you chose to create an “empty” activity.

Listing 10-2.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

A simple layout file generally has two parts: a declaration of a container and the

declarations of each UI element inside of it. In Listing 10-2, the second line (which is also

the root of the XML document) is the container’s declaration. The TextView element is

declared as a child node of the container. This is how containers and UI elements are

arranged in a layout file.

�View and ViewGroup Objects
A view object is a composition unit. You build a UI by arranging one or more view objects

alongside each other, or sometimes embedded in each other. There are two kinds of

views as the Android library defines it, a “view” and a “view group.” An example of a View

object is a button or a text field. These objects are meant to be composed alongside other

views, but they are not meant to contain child views—they are meant to stand alone.

Chapter 10 Activities and Layouts

202

A ViewGroup, on the other hand, can contain child views—it’s the reason why they’re

sometimes called containers.

Figure 10-3 shows the class hierarchy of some of the more common UI elements.

Every item in a user interface is a child of the android.view.View class. We can use pre-

built user interface elements in the Android SDK such as TextView, Button, ProgressBars,

etc., or, if need be, we can construct custom controls (widgets or views are sometime

called “controls”) by either (1) sub-classing existing elements like TextViews; (2)

subclassing the View class itself and completely drawing a custom widget from scratch;

or (3) sub-classing the ViewGroup and embedding other widgets in it—this is known as a

composite view (the RadioGroup in Figure 10-3 is an example of such).

Figure 10-3.  ViewGroup class hierarchy

Each view object ultimately becomes a Java object at runtime, but we work with

them as XML elements during design time. We don’t have to worry about how Android

inflates the XML into Java objects because that process is invisible to us—it happens

behind the scenes. Figure 10-4 shows a logical representation of Android’s compilation

process.

Chapter 10 Activities and Layouts

203

The Kotlin compiler transforms the program source files into Java byte codes. The

resulting byte codes are combined with the Kotlin Standard Library to form a DEX file.

A DEX file is a Dalvik Executable—it’s the executable format that the Android Runtime

(ART) understands. Before the dex files and other resources gets wrapped into an

Android package (APK), it also produces as a side effect a special file named “R.class.”

We use the R.class to get a program reference to the UI elements that we defined in the

layout file.

�Containers
Apart from creating composite views, the ViewGroup class has another use. They form

as the basis for layout managers. A layout manager is a container that’s responsible for

controlling how child views are positioned on the screen, relative to the container and to

each other. Android comes with a couple of pre-built layout managers. Table 10-1 shows

us some of them.

Figure 10-4.  Android compilation process

Chapter 10 Activities and Layouts

204

Now that we have some working knowledge about activities and layouts, let’s explore

them at the code level in the next section.

�Hello World
Let’s create a new application with an empty activity. If you want to follow along and

work on the code examples, the project information is shown in Table 10-2.

Table 10-1.  Layout Managers

Layout Manager Description

LinearLayout positions the widgets in single row or column, depending on the selected

orientation. Each widget can be assigned a weight value that determines the

amount of space the widget occupies compared to the other widgets.

TableLayout arranges the widgets in a grid format of rows and columns

FrameLayout stacks child views on top of each other. The last entry on the XML layout file is

the one on top of the stack.

RelativeLayout Views are positioned relative to other views and the container by specifying

alignments and margins on each view.

ConstraintLayout The ConstraintLayout is the newest layout. It also positions widgets relative to

each other and the container (like RelativeLayout). But it accomplishes the layout

management by using more than just alignments and margins. It introduces the

idea of a “constraint” object which anchors a widget to target. This target could

be another widget or a container; or another anchor point. This is the layout we

will use for most of our examples in this book.

Chapter 10 Activities and Layouts

205

When the project is created, you will see a bunch of files in the project window, but

we’re only interested in three. Figure 10-5 shows the location of (1) the main program

file; (2) the manifest; and (3) the main layout file in the project file window.

Table 10-2.  Project Information for the Hello App

Project Detail Value

Application name CH10Hello

Company domain Use your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

main program file Android Main fest main layout file

Figure 10-5.  CH10Hello project

Chapter 10 Activities and Layouts

206

The main layout file, named activity_main.xml, is found in app ➤ res ➤ layout folder.

All user interface elements are written in a layout file.

The main program file, MainActivity.kt, is found in app ➤ java ➤ package name

folder. This is the Kotlin file that contains the class that extends an Android Activity. If

you want to do something as a reaction to a user-generated event, this is where we write

that program logic. Don’t let the “java” folder throw you off, all source files, whether Java

or Kotlin, are stored in the “java” folder. There is no “kotlin” folder.

The manifest file describes the essential information about the app to the Android

build tools: Android OS and Google play. Looking at Figure 10-5, it appears as if the

manifest file is in app ➤ manifests ➤ AndroidManifest.xml. You need to remember

that what we’re looking at is the “Android View” of the Project window. It’s a logical

representation of the project files, it’s not the literal arrangements of the files with respect

to the root folder of the project. If you want to see the actual location of the project files,

switch to “Project view,” as shown in Figure 10-6.

Switch to project view main program file main layout file Android Manifest

Figure 10-6.  CH10Hello, in project view

Chapter 10 Activities and Layouts

207

The Project view shows the actual location of all the project files. It looks a lot busier

than the “Android view,” but if you need to locate any file under the project, this view

could be useful. Now we can revert back to “Android view,” which is what we’ll use

throughout most of the book.

Let’s take a closer look at the generated layout and MainActivity files. The codes are

shown in Listings 10-3 and 10-4, respectively.

Listing 10-3.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout ➊
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

tools:context=".MainActivity">

 <TextView ➋
 android:id="@+id/hello"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toBottomOf="parent" ➌
 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

➊ Root node of layout file, which also declares what kind of layout manager is in effect. In this

case, we are using the ConstraintLayout manager

➋ Declaration of the a TextView object. It’s a child node of the layout manager.

➌ Defines one of the constraints of the TextView object. It says, there’s an anchor point to the

bottom of the TextView and it anchored to the bottom of the container.

Chapter 10 Activities and Layouts

208

Listing 10-4.  MainActivity.Kt

package com.example.ted.ch10hello

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) { ➊
 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main) ➋
 }

}

➊ The very first of the Activity life cycle methods. The runtime may or may not pass a Bundle

object to the function. A bundle object typically contains data from a previous Activity state (e.g.,

when you’re collecting data from the user, you may want to save them in a Bundle when the

Activity gets to a “paused” state so that if the user is interrupted—usually by another Activity—

you won’t have to ask the user to input the data again because it’s already in the Bundle).

➋ The setContent() function binds this Activity to a specific layout file. The “R” class was

generated by the aapt tool during the Android build process; it contains a programmatic

reference to everything we declared in the app ➤ res folder. In this statement, we’re associating

MainActivity.Kt with R.layout.activity_main.

Now that we know what the project wizard gave us, let’s make changes to the

application.

�Modifying Hello World
We’ll make some minor changes to both the layout file and the Activity. We’ll do the

following:

	 1.	 Change the text in the current TextView control.

	 2.	 Add a Button to the screen, we will put the button right below the

TextView.

Chapter 10 Activities and Layouts

209

	 3.	 Add a function to the Activity. The function will increment the

current value of the TextView.

	 4.	 We’ll associate our new function to the Button, so that every time

we click the button, the value of the TextView will increase by 1.

Figure 10-7 shows the general layout of our project inside AS3. Currently, we’re

looking at activity_main.xml in design mode. While in this mode, we can see the view

palette, design surface, and blueprint surface.

Blue print Design
surface surface

View
Palette

Drag controls from the
Palette to the Design

surface

Figure 10-7.  CH10Hello shown in design view

To add a Button control, drag and drop the Button from the View palette to the

design surface as shown in Figure 10-8—you can also drop it in the blueprint surface,

that will work as well.

Chapter 10 Activities and Layouts

210

The Button control doesn’t have any constraint yet because we didn’t put any.

Constraints are not automatically added when you add a control to the design surface.

The TextView has constraints because that was generated by the wizard when we created

the project. Figure 10-9 shows the runtime and design time rendition of our project as it

currently stands.

D
r ag

and
dr op

the
But ton

Figure 10-8.  Drag and drop controls from the view palette

Chapter 10 Activities and Layouts

211

The Hello TextView is nicely centered in the screen because it has four anchor

points (constraints). The Button appears right below the Hello text in design time, but in

runtime, it’s on position 0,0 (top left) of the screen—this is how controls are positioned at

runtime when they don’t have constraints.

Let’s start fresh. Remove all existing constraints in the design surface. You can do

this by selecting all the controls and clicking the “clear constraints” button, as shown in

Figure 10-10.

Constraints f or
Hello Button

Runtime Design time

Without constraints,
controls float to

position 0,0

Figure 10-9.  Button without constraint

Chapter 10 Activities and Layouts

212

When all the constraints are removed, reposition the controls on the design surface

in the way you would like them to appear during runtime. Next, select all the controls

again—you can do this by clicking and dragging the mouse around the controls.

To “magically” add all the constraints for our controls, click “Infer constraints,” as

shown in Figure 10-11. AS3 will try to best guess the needed constraints for the controls

that will match your arrangement in the design surface.

Clear
const r aints

Zoom cont r ols

Figure 10-10.  Clear constraints

Chapter 10 Activities and Layouts

213

The properties of the controls can be set in the “Attributes” window. We need to

change some properties of the TextView and the Button controls. The properties of an

object will appear on the attributes window when the object is selected in the design

surface, as shown in Figure 10-12.

Infer
constraints

Figure 10-11.  Inferred constraints

Chapter 10 Activities and Layouts

214

The attributes window contains all of the properties for the selected view object, but

it doesn’t show all of them by default. It shows only the properties we commonly use. To

view all the properties, click the “view all attributes” button, as shown in Figure 10-12.

Change the “ID” property of the TextView to “textHello”, as shown in Figure 10-12.

Next, change the “textApperance” to “Material.LARGE”—you have to scroll down a bit in

the attributes window, so you can see the “textApperance” property.

The ID property of a view object is important because it makes the view object

accessible from our code (the Activity class).

The next attribute we need to change is the Button’s onClick property. Select the

Button, then find the “onClick” property. You may have to show all the attributes of the

Button and scroll down until you get to the onClick property.

Attribute

Attribute
window

sh
ow

a
lla

ttrib
u

tes

Figure 10-12.  Attributes window

Chapter 10 Activities and Layouts

215

Type “addNumber” in the Button’s onClick property, as shown in Figure 10-13.

This action will associate the click event of the Button to the addNumber() function in

MainActivity class. Of course, we haven’t written the function yet, but it’s okay, because

we’ll implement it shortly.

We’ve finished our work in the layout file. Now we can work on MainActivity class.

Open MainActivity.Kt in the main editor and make the following changes as shown in

Listing 10-5.

Listing 10-5.  MainActivity.Kt

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 findViewById<TextView>(R.id.textHello).text = "1"

 }

}

Figure 10-13.  Button’s onClick property

Chapter 10 Activities and Layouts

216

No surprises here. The last statement in the onCreate() function gets the reference

to the textHello object and sets the text property to “1.” This is already a big improvement.

Remember that in Java, this statement would have looked like Listing 10-6.

Listing 10-6.  How to Set a Property During Runtime, in Java

TextView helloText = (TextView) findViewById(R.id.textHello);

helloText.setText("1")

In Kotlin, we get that nice getter and setter syntactic sugar. But we can still cut some

more boiler-plate code. AS3 comes automatically with the Kotlin Android Extensions

plug-in, and it’s already declared in the module level “build.gradle” file whenever a new

project is created. Figure 10-14 shows the build.gradle file and its contents.

Gradle has replaced Apache Ant as the build tool. You generally don’t need to

change anything in the gradle file because the default contents are just fine, most of the

time.

Figure 10-14.  build.gradle, module level

Going back to the code, Listing 10-7 shows the full program for MainActivity.Kt,

which implements the logic for incrementing the value of textHello whenever the Button

is clicked.

Listing 10-7.  MainActivity.Kt

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import android.widget.TextView

import kotlinx.android.synthetic.main.activity_main.* ➊

Chapter 10 Activities and Layouts

217

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 textHello.text = "1" ➋

 }

 fun addNumber(v: View) { ➌
 val currVal = textHello.text.toString().toInt() ➍
 val nextVal = currVal + 1

 textHello.text = nextVal.toString() ➎
 }

}

➊ This statement imports the Kotlin Android Extension. You may not have to type this yourself—

AS3 adds it automatically as soon as try to do view binding using the ID of a view object.

➋ We don’t have to use findViewById() anymore; we don’t even have to use the R.class to

qualify the ID of the view object. The Android Kotlin Extensions exposes the views to our code

with a lot less ceremony. This results in a much cleaner code. Notice also that we get the nice

getter and setter syntax that was added by Kotlin.

➌ The addNumber() function is associated with the onClick event of the Button control. This

function is an event handler—when the Button is clicked, this function will be called. It needs

to accept a View object as a parameter because that’s a requirement for an event handler. The

function needs to have access to the view object that raised the event.

➍ textHello.text returns the current value of textHello as CharSequence type. The

toString() converts it to a String type that we can convert to an Int using the toInt()

function. We need the value as Int because we will use it in a Math operation.

➎ This statement sets the text property of textHello to a new value.

When you’re done with the edits, run the application on an AVD. Figure 10-15 shows

the project running on an emulator.

Chapter 10 Activities and Layouts

218

�Chapter Summary
•	 The entry point for an Android application requires three files: the

manifest file, the layout file, and an Activity class

•	 The AndroidManifest file declares all the contents of the Android

project. The manifest may be able to designate an Activity class that

will serve as the application’s entry point.

•	 A layout file describes the UI structure of a screen. Each element

is described as an XML node, but the XML file is inflated

during runtime. The inflation process produces the Java object

representations of the UI elements.

•	 All UI elements inherits from the android.view.View class.

•	 Composite views can be constructed by inheriting from the

ViewGroup class.

Figure 10-15.  CH10Hello running on an emulator

Chapter 10 Activities and Layouts

219

•	 Layout managers provide ways to arrange UI elements in a screen.

The Android SDK has plenty of pre-built managers we can use out of

the box.

•	 The Kotlin Android Extensions allow us to simplify view-binding

codes by exposing the properties and functions of view elements. We

don’t need to use findViewById anymore.

In the next chapter, we’ll learn how to:

•	 Work with some basic View elements like Buttons and Toasts

•	 Use Kotlin’s Android Extensions to get references to View objects; it

replaces ButterKnife

•	 Handle clicks and long clicks; we’ll do both long-form using the full

syntax of object expressions and the short-cut way using lambda

expressions

Chapter 10 Activities and Layouts

221
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_11

CHAPTER 11

Event Handling
What we’ll cover:

•	 Listener objects

•	 Anonymous inner objects

•	 Use of lambdas in event handlers

In the last chapter, we already did some event handling. The part of the exercise

where we wrote a function that will increment the value of a text view each time a button

is clicked is an exercise on declarative event handling. To bind a function name to a click

event, we simply set a View’s android:onClick attribute to the name of a function. This

is a simple and low-ceremony way to handle events, but it is limited to only the “click”

event. When you need to handle events like long-clicks or gestures, you need to use

event listeners—this is the topic of this chapter.

�Introduction to Event Handling
The user interacts with your app by touching, clicking, swiping, or typing something. The

Android framework captures, stores, processes, and sends these actions to your app as

event objects. We can respond to these events by writing functions that are specifically

designed to handle them. Functions that handle events are written inside listener

objects—and there’s quite a few of them. Figure 11-1 shows a simplified model of how

user actions are handled by the Android framework and your app.

222

When a user does something with your app, like clicking a button, the Android

framework catches that action and turns it into an event object. An event object contains

data about the user’s action (e.g., which button was clicked, what was the location of

button when it was clicked, etc.) Android sends this event object to your application

and it calls a specific function that corresponds with the user’s action. If the user clicked

the button, Android will call the onClick() function on the Button object, if the user

clicks the same button but holds it a bit longer, then the onLongClick() function will

be called. View objects, like the Button, can respond to a range of events like clicks,

keypresses, touch or swipes, etc. Table 11-1 lists some of the common events and their

corresponding event handlers.

Button Listener .onClick()

(1) User clicks
a button

(2) Android captures
and processes the
action

(3) Android Framework
creates an event object
and sends it to the
onClick() function of the
Button control

(4) Android executes
whatever you wrote in
the overridden onClick()
function

Figure 11-1.  Simplified event handling model

Chapter 11 Event Handling

223

Table 11-1.  Common Listener Objects

Interface Function Description

View.OnClickListener onClick() This is called when the

user either touches and

holds the control (when in

touch mode), or focuses

upon the item with the

navigation keys then

presses the ENTER key

View.OnLongClickListener onLongClick() Almost the same as a

click, but only longer

View.OnFocusChangeListener onFocusChange() When the user navigates

onto or away from the

control

View.OnTouchListener onTouch() Almost the same as click

action but this handler

lets you find out if the

user swiped up or down.

You can use this to

respond to gestures

View.OnCreateContextMenuListener onCreateContextMenu() Android calls this when

a ContextMenu is being

built, as a result of a

sustained long click

To set up a listener, the View object can set or, more aptly, register a listener object.

Registering a listener means you are telling the Android framework which function to

call when the user interacts with the View object. Figure 11-2 shows an annotated code

for registering handlers.

Chapter 11 Event Handling

224

The setOnClickListener is a member function of the android.view.View class, which

means every child class of View has it. This function expects an OnClickListener object

as an argument—this object becomes the listener for the button control. When the

button is clicked, the codes inside the onClick function are run.

We created the listener object by creating an object expression that inherits from

View.OnClickListener. This type is declared as a nested interface in the View class.

Object expressions are the Kotlin equivalent of Java’s anonymous inner classes. In Java,

we wrote codes like thseat in Listing 11-1.

Listing 11-1.  onClick Listener in Java

button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 System.out.println("Hello click");

 }

}});

In Kotlin, an anonymous inner class is created using an object expression, as shown

in Listing 11-2.

Figure 11-2.  Annotated event registration and handling code

Chapter 11 Event Handling

225

Listing 11-2.  onClick Listener in Kotlin

button.setOnClickListener(object: View.OnClickListener {

 override fun onClick(v: View?) {

 println("Hello click")

 }

})

Listing 11-2 is actually a verbose way of writing an object expression. Kotlin’s support

for lambdas can simplify our existing code to something like that in Listing 11-3.

Listing 11-3.  onClick Listener Using lambdas

button.setOnClickListener {

 println("Hello")

}

Now that we have enough working knowledge about events, let’s explore them

further by creating a new project. Table 11-2 shows the project details.

Table 11-2.  Project Information for the

CH11EventAnonymousclass

Project Detail Value

Application name CH11EventAnonymousClass

Company domain Use your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility Yes. AppCompat

Chapter 11 Event Handling

226

This project will contain only two controls: the TextView that came with the project

when we used the wizard and a Button view, which we are yet to add. The Button will

intercept the events click and long-click using an anonymous inner object.

Open the activity_main.xml file in the main editor if it’s not open yet. You can find it

in the Project Explorer window under the app > res > layout folder.

Add a button to the design surface and add some constraints to it. You can add a

Button control to the layout by dragging it from the palette and onto the design surface,

as shown in Figure 11-3.

Figure 11-4.  Show warnings and error button

Drag and drop
the Button from
the pallete

While the Button is selected,
click “Infer constraints”

Figure 11-3.  Add a button control to the design surface

While the button control is selected, click the “Infer constraints” on the constraints

toolbar (also shown in Figure 11-3).

You might notice a yellow warning triangle somewhere in the upper-right corner of

the layout editor (shown in Figure 11-4). Click the warning box.

Chapter 11 Event Handling

227

Figure 11-5 shows the message tool window. It contains some explanation as to why

we got the warning and a button prompt for a suggested fix.

Figure 11-5.  Suggested fix

AS3 is complaining because the newly added Button has a hard-coded value in its

text property. Listing 11-4 shows (a snippet of) activity_main.xml before the “fix.” Right

now, the android:text property has a value of “Button,” a string literal.

Listing 11-4.  activity_main.xml, Button Element, Before the Fix

<Button

 android:id="@+id/button"

 android:text="Button"

/>

Androids prefer that we write attribute values, like the text property of the Button,

in a resource file, rather than hard-coding them. Click the “Fix” button so AS3 can

automatically extract the string resource. This action opens the Extract Resource window

(see Figure 11-6).

Chapter 11 Event Handling

228

Our project has a string resource file in app/res/values/strings.xml. It provides

textual resource values for the app. Android wants us to store all the string literals in this

resource file instead of hard-coding them as you’ve seen in Listing 11-4.

The “Resource name” becomes the “name” attribute of the newly created string

resource, and the “Resource value” becomes, well, the value of the string resource. This

value is what will show up in the Button’s text. Click “OK” to complete the action.

Listing 11-5 shows the content of activity_main.xml after the fix. The value of

android:text is now set to “@string/button.” The @ sign means we should not use the

value of this string directly but instead look up a resource named “button” in the strings

resource file.

Listing 11-5.  activity_main.xml, Button Element, After the Fix

<Button

 android:id="@+id/button"

 android:text="@string/button"

/>

<resources>
 < string name= "button">Button</string>
</ resources>

app/res/values/strings.xml

Figure 11-6.  Extract resource

Chapter 11 Event Handling

229

Last thing we need to do on the layout file is to assign an id attribute to the layout

container. The layout container, by default, doesn’t have an id attribute. We need to

assign an id to it because we will refer to it later in our code. Switch to design mode and

click somewhere inside the layout container (as shown in Figure 11-7). In the attributes

panel, edit the id property. In this example, the id of the layout container is “root_layout.”

Figure 11-7.  Change the id attribute of the layout container

Listing 11-6 shows the modified contents of our layout file.

Listing 11-6.  Complete Listing for activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.

android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/root_layout" ➊
 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

Chapter 11 Event Handling

230

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintVertical_bias="0.353" />

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="36dp"

 android:text="@string/button" ➋
 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/textView" />

</android.support.constraint.ConstraintLayout>

➊ The android:id of the layout container is now set to +@id/root_layout. Later in our code, we

can refer to this control as just root_layout .

➋ The android:text property now has a value of @string/button; it’s no longer hardcoded. It

now gets its value from the strings.xml resource file.

Now we can work on the program file. Open MainActivity.Kt in the main editor. You

can launch it by double-clicking on the file app/java/com.example…/MainActivity.Kt in

the Project window.

We want the button to respond to both clicks and long-clicks. To do this, we need to

set up two separate listeners for the same button—we could have created two buttons

and assigned a listener to each, but I feel that the exercise is more instructive if we bind

the two listeners to the same button.

Chapter 11 Event Handling

231

The Activity doesn’t need to be visible to the user before we set up the listeners;

it only needs to be on the “created” state. This is why we’ll set up the listeners in the

onCreate() callback function. Let’s deal with the click event first, then we’ll handle the

long-click. Listing 11-7 shows the code for the OnClickListener.

Listing 11-7.  OnClickListener

button.setOnClickListener(object : View.OnClickListener {

 override fun onClick(v: View?) {

 }

})

By the way, as you type these codes, you might see some errors or warnings, like the

one shown in Figure 11-8.

Click an ywhere in the “button” text, then
do a Quick Fix — OPTION + ENTER in
macOS or ALT + ENTER if you’re on
Windo ws or Linux

Figure 11-8.  AS3 hints

In the Figure 11-8, AS3 warned of an unresolved “button” reference. To fix this error,

we can either manually type the required import statements or we can use AS3’s “Quick

Fix” feature. To use the Quick Fix, click anywhere in unresolved reference—in our case,

the “button” identifier—then press the keys OPTION + ENTER if you’re on macOS; ALT
+ ENTER if you’re on Windows or Linux.

AS3 will present some options if there’s more than one way to resolve the issue. You

can scroll through the options and choose which one you want to use.

Figure 11-9 shows the options on how to the fix the unresolved reference error. We’ll

pick the last option—this import statement is the Kotlin Android Extensions (KAE).

KAE’s magic sauce is that it exposes the IDs of all the view elements in your layout as

Chapter 11 Event Handling

232

extension properties of the Activity class. So, if you have a Button view in activity_main.
xml whose ID is “button,” you can simply use that ID in the Activity class like a regular

variable—you don’t need to use findViewById() anymore.

Figure 11-10.  Convert to lambda hint

Figure 11-11.  Convert to lambda quick fix

Figure 11-9.  AS3 hinting on an import

Once you’ve typed the event handler as shown in Listing 11-7 and also in Figure 11-10,

you’ll notice that AS3 is hinting us to convert the listener object to a lambda expression.

To use the Quick Fix, click anywhere in “OnClickListener,” as shown in Figure 11-11,

and press OPTION + ENTER or ALT + ENTER, then choose “Convert to lambda.”

Chapter 11 Event Handling

233

The lambda-simplified version removed some of our codes—the parentheses of

setOnClickListener, the object expression, and the overridden onClick function are all

gone, leaving us with just the following code:

button.setOnClickListener { }

Next thing to do is to put a Toast message inside the onClick handler. Listing 11-8

shows a simple Toast message inside the click handler. A Toast is a small pop-up message

that automatically disappears after some time. You can use it to send small feedback

messages to the user. Listing 11-8 shows how to construct a Toast message inside the

OnClickListener.

Listing 11-8.  Toast Message

button.setOnClickListener {

 Toast.makeText(this, "Hello World", Toast.LENGTH_LONG).show()

}

Showing a Toast message is a two-step process. First step is to create a Toast

message using the makeText() function. It takes three parameters: (1) the Context of the

application, which in our case is the instance of MainActivity; (2) the message to show;

and (3) how long to show the message. Second step is to make it visible by calling the

.show() function.

Let’s move on to the long-click listener. The code for this listener is shown in

Listing 11-9.

Listing 11-9.  OnLongClickListener

button.setOnLongClickListener(object: View.OnLongClickListener {

 override fun onLongClick(v: View?): Boolean {

 return true

 }

})

Reducing the code in Listing 11-9 to its lambda version gives us the following code:

button.setOnLongClickListener { true }

Chapter 11 Event Handling

234

To test the long-click handler, let’s use SnackBar rather than Toast. SnackBar is

similar to Toast but it appears at the bottom of the screen. You can make it disappear

after some timeout too, like Toasts, or you can make the user swipe it. SnackBar is more

capable than Toast because you can include some actions in the message, like a small

dialog box.

Before you can use SnackBar in your project, you need to modify the project’s build.

gradle file. See Listing 11-10 for the changes you need to make.

Listing 11-10.  /app/build.gradle

dependencies {

 implementation 'com.android.support:design:27.1.1' ➊
 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"

 implementation 'com.android.support:appcompat-v7:27.1.1'

 implementation 'com.android.support.constraint:constraint-layout:1.1.2'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'com.android.support.test:runner:1.0.2'

 �androidTestImplementation 'com.android.support.test.espresso:espresso-

core:3.0.2'

}

➊ You need to add this to the project’s build.gradle file (app level) before you can use SnackBar.

After that, you need to “Sync” the gradle file. A yellow strip will appear on the upper

portion of the main editor, and on the upper-right corner, there will be a link to “Sync”

the file. Click it, as shown in Figure 11-12.

Figure 11-12.  Sync the build.gradle file

Chapter 11 Event Handling

235

After that, you can now use the SnackBar element. Listing 11-11 shows how to

construct a SnackBar inside a long-click handler.

Listing 11-11.  SnackBar Message Inside OnLongClickListener

button.setOnLongClickListener {

 Snackbar.make(root_layout, "Long click", Snackbar.LENGTH_LONG).show()

 true

}

SnackBar’s make function requires three parameters: (1) a parent view; root_layout

is the ID of our layout container; (2) a message to show; and (3) how long to show the

message.

The last line in OnLongClickListener is actually a return statement, but we omitted

the “return” because the handler is in lambda form—and in this form, the last expression

on the block is returned.

The onLongClick() callback function has a Boolean signature—it returns either true

or false. In our example, we returned true, which tells the Android runtime that the event

has already been consumed and there is no need for other event handlers (like onClick)

to handle it again. Had we returned false, the onClick handler would have kicked in right

after onLongClick. Listing 11-12 shows the full code for MainActivity.

Listing 11-12.  MainActivity.Kt, Annotated

package com.example.ted.ch11_event_anonymous_class ➊

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.support.design.widget.Snackbar

import android.test.ViewAsserts

import android.view.View

import android.widget.Toast

import kotlinx.android.synthetic.main.activity_main.* ➋

class MainActivity : AppCompatActivity() { ➌

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main) ➍

Chapter 11 Event Handling

236

 button.setOnClickListener {

 Toast.makeText(this, "Hello World", Toast.LENGTH_LONG).show()

 }

 button.setOnLongClickListener {

 Snackbar.make(root_layout, "Long click", Snackbar.LENGTH_LONG).show()

 true

 }

 }

}

➊ Package declaration for our project. This comes from the “company domain” entry during

project creation.

➋ Import statement for the Kotlin Android Extension (KAE). The KAE turns all the View elements in

activity_main.xml into an extension property. Hence, we can refer to any View element using just

their ID.

➌ We’re extending from AppCompatActivity, so we can use modern elements like SnackBar and

still run the app on earlier versions of Android.

➍ This statement binds MainActivity to activity_main.xml, our layout file.

If you run the app on the emulator, you’ll see something like Figure 11-13.

Chapter 11 Event Handling

237

Figure 11-13.  Completed project running in the emulator

�Chapter Summary
•	 You can set the android:onClick attribute to a name of a function if

you want to handle simple click events.

•	 Listener objects has to be registered to the Android runtime if you

want to intercept certain events.

•	 There are many kinds of listener objects, and they are listed as nested

interfaces in the View class.

Chapter 11 Event Handling

238

•	 Using the Kotlin Android Extension simplifies our coding. It exposes

the IDs of all the Views in the layout file as extension properties of

MainActivity—we don’t need to use findViewById() anymore.

•	 Lambdas cleans up our event handling codes.

In the next chapter, we’ll take a look at one of Android’s most important part: Intents.

Android, as an architecture, cannot exist without it. It’s the glue that binds together all

the loosely coupled components in Android.

Chapter 11 Event Handling

239
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_12

CHAPTER 12

Intents
What we’ll cover:

•	 Intent overview

•	 Explicit and implicit Intents

•	 Passing data between activities

•	 Returning results from Intents

Android’s architecture is quite unique in the way it builds application. It has this

notion of components instead of just plain objects. And the way that Android makes

these components interact is something that can only be found in the Android platform.

Android uses Intents as a way for its components to communicate—it uses it to pass

messages across components. In this chapter, we’ll look at Intents: what they are and

how we use them.

�What Intents Are
An Intent is “an abstract description of an operation to be performed.1” It’s a uniquely

Android concept because no other platform uses the same thing as a means of

component activation. In the earlier chapters, we looked at what’s inside an Android

application. You might remember that an app is just a bunch of “components” (see

Figure 12-1) that are loosely held together, and each component is declared in a

manifest file.

1�https://developer.android.com/reference/android/content/Intent

https://developer.android.com/reference/android/content/Intent

240

What if youl need your components to talk to each other (e.g., launch another

Activity)? How do you think we should manage that? If you have any experience with

desktop programming, you might do something like the code in Listing 12-1.

Listing 12-1.  Wrong Way to Activate Another Activity

class MainActivity : AppCompatActivity {

 button.setOnClickListener(object: View.OnClickListener {

 override fun onClick(v: View?) {

 SecondActivity(). // Won't work

 }

 })

}

class SecondActivity : AppCompatActivity {}

Listing 12-1 may appear to be a simple and direct way to launch another Activity,

but unfortunately, it’s wrong and it won’t work. An Activity is not a simple object—it’s

Figure 12-1.  Logical representation of an Android App

Chapter 12 Intents

241

a component. You cannot activate a component just by instantiating it. To launch an

Activity, you need to create an Intent object and launch it using the startActivity()

function. The code is shown in Listing 12-2.

Listing 12-2.  How to Activate Another Activity

button.setOnClickListener {

 val intent = Intent(this@MainActivity, SecondActivity::class.java) ➊ ➋
 startActivity(intent) ➌
}

➊ this@MainActivity The first parameter of the Intent constructor is a Context object. We

passed this@MainActivity because the Activity class is a subclass of Context, so we can

use that. Alternatively, we also could have used getApplicationContext(); an Application

context would have been accepted just as well.

➋ SecondActivity::class.java. The second parameter is a Class object. It’s the class of the

Component to which we want to deliver the message. This a reflection syntax. As you may

already know, reflection allows us inspect the structure of our programs during runtime.

SecondActivity::class would refer to the runtime reference of SecondActivity if it were

a Kotlin class (KClass), but it’s not. SecondActivity is a Java class (Android libraries are still in

Java), hence we refer to it as SecondActivity::class.java

➌ We launch the Activity by calling startActivity() and passing the intent object to it.

The Android platform is gung-ho on loose coupling, and component activation

is smacked in the middle of its architecture. An application is just a collection of

components held together by a manifest file, and each of these components can be

activated by sending a message to it. The basic idea is that none of the components

talks directly to another. If one component, like an Activity, wants to talk to another

component, it needs to send a request to the Android runtime and let the runtime

resolve that request. You can think of an Intent as a message-passing mechanism within

Android: it glues the components together.

Chapter 12 Intents

242

�Loose Coupling
You might be tempted to think that Android was over-architected because, why go to

these lengths just to launch another screen? Why couldn’t we just create an instance of

an object and be done with it—it is a well-known programming idiom already. Why do

we have to replace this with component activation?

Well, Android’s approach to program interactivity is quite unique because it’s very

user-centric. It gives the user a lot of power to make choices on how they manipulate and

create data. Mobile users are generally task-focused rather than app-focused; they don’t

really care which application does what, as long as it gets done.

Let’s take a common usage scenario for an Android device. A user opens the

“Contacts” application and chooses the contact detail of Ted Hagos, for example. This

contact could have an e-mail address, a mobile phone, and a twitter name, let’s say.

The user could tap on each of Ted’s contact points, and each time, Android will launch

a different application; the default e-mail client, a dialer, and a downloaded Twitter

app. The user probably doesn’t care which application was launched or how many

applications are currently open; he just wants to send a message. If this user doesn’t like

the e-mail app or the default twitter client, he could delete these apps and replace them

with something else, and he should be back in business. Figure 12-2 shows a simple

storyboard on using the Contacts app.

CONTACTS

Ted Hagos

John Doe

Jane Doe

632 111 111

tedhagos@gmail.com

Dialer

SMS

Email app

(1) User opens the
Contacts app. Taps on a
contact

(2) Contact details has
info on mobile number
and email address

(3) Taps on mobile icon,
launches the dialer app

(4) Taps on message
icon, launches the SMS
app

(5) Taps on envelope
icon, launches the email
app

Figure 12-2.  How a user interacts with the Contacts app

Chapter 12 Intents

243

For this kind of program interaction to happen, Android needed to architect the

platform, focusing heavily on loose coupling and pluggability. A component, like the

Contacts app, should not know any specific detail about what app it should use when

an e-mail address or a mobile phone number is tapped. The resolution for what kind

of app to use for a specific kind of data should not be hardwired into the Contacts app;

otherwise, the user won’t be able to exercise his choice on which app to use when

sending e-mails or tweets.

This is where Intents come in. When a component needs to complete a task that is

beyond its capability to service, it can go out to the Android platform using Intents and

ask around if there’s any application that can (or wants to) fulfill the request.

�Two Kinds of Intent
There are two kinds of Intent: an implicit and an explicit one. An analogy might be

helpful to illustrate the difference between these two kinds of Intent. Let’s say that

we’ll ask someone to buy some sugar. If we gave an instruction like “could you please

buy some sugar,” with no further details, this would be equivalent to an implicit Intent

because that person could buy the sugar anywhere. On the other hand, if we gave

instructions like “could you please go to the ABC store on third street and buy some

sugar,” this would be equivalent to an explicit Intent. The earlier code sample in

Listing 12-2 is an example of an explicit Intent.

Implicit Intents are very powerful because they allow your application to take

advantage of other applications. Your app can gain functionalities that you did not write

yourself. You can, for example, create an Intent that opens the Camera, shoots and save a

photo—without writing any Camera specific code.

�Intents Can Carry Data
Intents can do much more than launch other Activities; you can also send and receive

data with it. Assuming we have two Activities named MainActivity and SecondActivity

and when a Button View object is clicked within MainActivity, we want to launch and

send some data to SecondActivity. To send data to SecondActivity, you need to:

	 1.	 Create an Intent—for the purposes of our example here, it will be

an explicit Intent.

	 2.	 Add data to the intent using the putExtra method.

Chapter 12 Intents

244

	 3.	 Launch the other Activity by calling the startActivity method; at

this point, the Android runtime will launch SecondActivity.

	 4.	 Within the onCreate method of SecondActivity, we can extract the

data from the Intent by using the getExtra method.

Figure 12-3 shows a simple sequence diagram on how this all works.

Note  Most of the function calls in Android like startActivity, onCreate, etc. are
asynchronous—that’s why the arrows used in the sequence diagram are half-stick
arrows. The sequence of calls as shown in Figure 12-3 (and in the other sequence
diagrams) are approximations only, they may not actually happen in that order.

To represent these steps in code, it might look like Listing 12-3.

Listing 12-3.  Code Snippet from MainActivity

button.setOnClickListener {

 val intent = Intent(this@MainActivity, SecondActivity::class.java)

 intent.putExtra("main_activity_data", editText.text.toString())

 startActivity(intent)

}

Main Activity Android Runtime Second Activity

start Activity()

onCreate()

intent.putExtra()

intent.getExtra()

Figure 12-3.  How to send data to another Activity

Chapter 12 Intents

245

The parameters of the putExtra method is a key-value pair; the first parameter is the

key or name and the second parameter is the value. The name parameter will always be

of String type but the second parameter (value) may not be of String type always. The

putExtra method is overloaded, it can accept a range of types for the second parameter.

If you type slowly enough in Android Studio, you might see the options shown in the

code hinting while you are typing the putExtra method; see Figure 12-4.

In Listing 12-3, we put a String in the second parameter of putExtra; we can use

other types as well (e.g., basic types like Int, Byte, Char, Float, Short, etc.). We can also

use Bundles, Parcelables, or Serializables.

After calling the putExtra method on the Intent, the next step is to call startActivity.

That will trigger the Intent resolution mechanism of the Android runtime and will

eventually launch the SecondActivity.

Now we move on to SecondActivity. Naturally, you’d like to extract the data we sent

from MainActivity. You need to do two things to achieve that. You need to:

	 1.	 Get a reference to Intent object; and

	 2.	 Call the getExtra function from the Intent. That code might look

like this:

val myintent = getIntent()

val data = myintent.getStringExtra("main_activity_data")

Figure 12-4.  Code hinting in AS3 showing the overloaded putExtra()

Chapter 12 Intents

246

But because of Kotlin’s magic with getters and setters, the getIntent() function

becomes the intent property. So, we can rewrite it like this:

val data = intent.getStringExtra("main_activity_data")

�Getting Back Results from Another Activity
In the previous section, we managed to launch a second Activity and send data to it. In

this section, we’ll build on our previous example, but this time, we will also send some

data back to MainActivity. To do that, we need to:

	 1.	 Create an explicit Intent.

	 2.	 Add data to the intent using the putExtra method.

	 3.	 Launch the other Activity by calling the startActivityForResult

method. Like the startActivity method, we need to pass an Intent

object to this method as a parameter. In addition, we also need

to pass a request code to it. A request code acts as some sort of a

token. When we start an Activity and we expect some results back,

any other Activity can send back any result. If we have a couple

of Activities within a project, it could get confusing when we get

back the results. We need a way to track who’s sending back those

results, and the request code will help us do that. Once we call

startActivityForResult, the SecondActivity will launch.

	 4.	 Within the onCreate method of SecondActivity, we can extract the

data from the Intent by using the getExtra method.

	 5.	 We can do some computation within SecondActivity. When we

are ready to send back data, we’ll do the following:

	 a.	 Get a reference to the Intent object.

	 b.	 Add data to the Intent using the putExtra method.

	 c.	 Call the setResult method of SecondActivity. There are two

things we need to do in here: (1) set the status of Intent call, if

there are no errors, you can set it to Activity.RESULT_OK; and

(2) pass the intent object containing the extras as the second

parameter.

Chapter 12 Intents

247

	 d.	 Call finish() from within SecondActivity. This will stop the

SecondActivity and effectively send the Intent to whichever

component called SecondActivity, which is MainActivity

	 6.	 Back to MainActivity, whatever results we expect back from

SecondActivity—or any other Activity, for that matter—can be

received from within the onActivityResult callback. This method

has three things in its parameter: it has the request code, result

code, and the Intent object that was sent back by SecondActivity.

Figure 12-5 shows a sequence diagram on how to send and get back results from

another Activity.

When you send data to another Activity and you expect to get some data back, you

need to use startActivityForResult instead of startActivity. The code to do that looks

like this:

startActivityForResult(intent, SECOND_ACTIVITY)

Like startActivity, you pass the Intent object to startActivityForResult, in addition to

the Intent object, you also need to pass a request code (SECOND_ACTIVITY). This request

code is important for MainActivity because we will use it to track from whom we are

getting the data back. The request code is an Int that you need to define. It doesn’t matter

Main Activity Android Runtime Second Activity

startActivityForResult()

onCreate()

intent.putExtra()

intent.getExtra()

intent.putExtra()
setResult()
finish()onRestart()

onPause()

onResume()

onActivityResult()intent.getExtra()

onStop()

Figure 12-5.  Sequence diagram for getting back results from another Activity

Chapter 12 Intents

248

what number you will use for it, as long as if you have multiple request codes, each is

different. If you send and expect data back from a couple of Activities, you will use the

request code to track which of the other Activities are sending data back to you. This way,

when the results come back, we can tell what we were trying to do in the first place.

In SecondActivity, when we are ready to send data back, we need to create another

Intent object and load it with data using the putExtra method. After that, we call the

setResult method of SecondActivity. The setResult method takes two parameters: a

result code and the Intent object. If everything is going fine in the app, use Activity.

RESULT_OK; otherwise use Activity.RESULT_CANCELLED. RESULT_OK is actually

-1 and RESULT_CANCELLED is 0, but please don’t use the Int literals, always use the

supplied class constants.

When you call the finish method on SecondActivity, it will enter the stopped state

and MainActivity will emerge to the foreground again—so, it will restart and resume.

Whatever data was sent back by SecondActivity, we should be able to pick it up within

the onActivityResult callback of MainActivity. Listing 12-4 shows a typical overridden

onActivityResult callback.

Listing 12-4.  onActivityResult

override fun onActivityResult(requestCode: Int, resultCode: Int, data:

Intent?) {

 super.onActivityResult(requestCode, resultCode, data)

 �if((requestCode == SECOND_ACTIVITY) and (resultCode == Activity.RESULT_

OK)) {

 // extract data here

 }

}

Note H ow do you know when you are supposed to override the onActivityResult
callback? If you launch another Activity using startActivityForResult, you should
override the onActivityResult callback—it’s where you can pick up whatever data
was sent back to you.

Chapter 12 Intents

249

�Implicit Intents
What we’ve seen in the previous sections are all examples of explicit Intents. An explicit

Intent tells the Android runtime precisely which component to Activate. Going back to

our analogy, it’s like telling somebody to go to the grocery store on 3rd street to buy some

sugar. An implicit Intent, on the other hand, simply will give the instruction to “get some

sugar”—it doesn’t matter where or how. An implicit Intent specifies only the action.

When you use an implicit Intent, the general idea is that you’d like to use a

functionality that doesn’t exist within your app—if it did exist within your app, you

would have used an explicit Intent in the first place;—so, you’re asking the Android

runtime to find an application somewhere on the device that can service your request.

We know from the previous examples that Intents can carry data; we did that with

Extras. Extras are one of four things that an Intent can have; the other three are Action,

Data, and Category. An Action is the operation that you want to do (e.g., VIEW, DIAL,

ANSWER, CALL, etc.). The Data pertains to what kind of information the Action has to

work with (is it a URI, a Phone number, a picture, etc.), and Category pertains to what

components are eligible to deal with this Intent. Sometimes the runtime needs the

Category to filter out or select only those components that can respond to our Intent. You

can send Intents to Activities, BroadcastReceivers, and Services, but in this chapter, we’ll

deal only with Activities.

There’s generally four things you need to do to get an implicit Intent off the ground.

You need to:

	 1.	 Create the Intent object

	 2.	 Set its action (e.g., “view a map,” “call a number,” “take a picture,”

etc.)

	 3.	 Set its data; and

	 4.	 Launch the intent

Listing 12-5 shows us how all this might look like in code.

Chapter 12 Intents

250

Listing 12-5.  Example Intent to Launch a Web Browser

val m_intent = Intent() ➊
m_intent = setAction(Intent.ACTION_VIEW) ➋
m_intent = setData(Uri.parse("https://workingdev.net")) ➌
startActivity (m_intent) ➍

➊ Create the Intent using the no-arg constructor.

➋ Set the Intent action. In this example, we’d like to view something; it could be a contact,

a web page, a map, a picture somewhere, etc. At this point the Android runtime doesn’t

know yet what you want to view. ACTION_VIEW is one of the many Intent Actions you can

use. You can find other kinds of Action in the official Android’s website (http://bit.ly/

androidcommonintents).

➌ Set its data. At this point, the Android runtime has a pretty good idea what you’re up to. In this

example, the Uri is a web page. Android is pretty smart to figure out that we’d like to view a

web page.

➍ Android will search every app on the device that will best match this request. If it finds more

than one app, it will let the user choose which one. If it finds only one, it will simply launch that

app.

We can simply the codes in Listing 12-16 into something like this

m_intent = Intent(Intent.ACTION_VIEW, Uri.parse("https://workingdev.net"))

startActivity(m_intent)

The ACTION and DATA can be passed as arguments to the Intent’s constructor.

Any component that can answer to our Intent does not need to be running in order

to receive the Intent. Remember that all applications need to have a manifest file. Each

application declares its capabilities in the manifest file, specifically through the <intent-

filter> section. Android’s package manager has all the info of all the applications

installed on the device. Android’s runtime only needs the information on the manifest

file to see which among the apps are capable and/or eligible to respond to the Intent.

In the following sections, we’ll explore implicit and explicit Intents in more details.

We’ll set up example projects so you can practice on them.

Chapter 12 Intents

http://bit.ly/androidcommonintents
http://bit.ly/androidcommonintents

251

�Demo 1: Launch an Activity
We won’t do anything fancy with this project. We will simply create two Activities:

MainActivity and SecondActivity. We will launch the SecondActivity from MainActivity

when a Button is clicked. The project details are shown in Table 12-1.

Table 12-1.  Project Detail for Demo App

Project Detail Value

Application name CH12LaunchAnotherActivity

Company domain Your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility Yes. AppCompat

When the project opens in the Main window, create the SecondActivity. One of the

ways you can do that is to select the “app” the Project tool window as shown in

Figure 12-6, then from the Main toolbar click File ➤ New ➤ Activity ➤ Empty Activity.

Figure 12-6.  Select “app” in the Project tool window

Chapter 12 Intents

252

Let’s give it the name “SecondActivity,” as shown in Figure 12-7.

Next, go to activity_main.xml (design view). Remove the TextView element and

replace it with a Button view. Position the Button approximately to the center of the

layout, then use the “infer constraint” button, as shown in Figure 12-8.

Next, open activity_second.xml, also in design view, then add a Button view and

center it in the layout, just like what you did in activity_main.

Figure 12-7.  New Android activity

Chapter 12 Intents

253

At this point, you should have the following View elements and classes to work with:

•	 MainActivity.Kt and its associated activity_main.xml, this is from the

project creation wizard

•	 SecondActivity.Kt. and its associated activity_second.xml, this is from

the Activity creation wizard

•	 A Button view object in activity_main whose id is “button”—it’s the

default id for the first Button element in the project

•	 Another Button view object in activity_second whose id is

“button2”—it’s the default id for the second Button element in the

project

Listings 12-6 and 12-7 show the codes for activity_main and activity_second,

respectively; you may use them as reference or for comparison in case you tried to build

the project yourself.

Listing 12-6.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

(1) Select the Button element
and change the text to “Go to
Second Activity”

(2) Click the “infer constraints”

Figure 12-8.  Center the Button view on the layout

Chapter 12 Intents

254

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="80dp"

 android:text="Button"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Listing 12-7.  /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".SecondActivity">

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="88dp"

 android:text="Button"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Listings 12-8 and 12-9 show the annotated codes for MainActivity.Kt and

SecondActivity.Kt, respectively.

Chapter 12 Intents

255

Listing 12-8.  Full Listing and Annotated Code of MainActivity.Kt

import android.content.Intent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_main.*

import java.util.logging.Logger

class MainActivity : AppCompatActivity() {

 val Log = Logger.getLogger(MainActivity::class.java.name) ➊

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 Log.info("onCreate") ➋

 button.setOnClickListener { ➌
 val m_intent = Intent(this@MainActivity, SecondActivity::class.java) ➍
 startActivity(m_intent) ➎
 }

 }

 override fun onPause() {

 super.onPause()

 Log.info("onPause")

 }

 override fun onRestart() {

 super.onRestart()

 Log.info("onRestart")

 }

 override fun onResume() {

 super.onResume()

 Log.info("onResume")

 }

}

Chapter 12 Intents

256

➊ We’re defining a simple Logger object. We could have used the android.util.Log class, but I

would think that most of you who will read this book will come from a Java background, so

this should look familiar. The parameter MainActivity::class.name is roughly equivalent

to Java’s getClass().getName(). Alternatively, you can also just pass any String to the

getLogger() method—e.g., getLogger("My Project")—but the usual practice is to

use the name of class for the Logger object.

➋ We’re just creating a log entry saying that we’re on the “onCreate” callback of MainActivity.

➌ This is a basic setup for a Button’s click listener; you’ve done this already.

➍ This line creates an Intent object. First parameter of the Intent object is a Context object; you

can use an Application Context here, but in our case, we used an Activity context. this@

MainActivity is a reference to MainActivity’s context. The second parameter is the Intent’s

target object. This is a specific instruction to Android runtime that we want to activate this

object. The second parameter should be of type Class. The notation for MainActivity’s class

object is MainActivity::class.java.

➎ We launch the Intent.

Listing 12-9.  SecondActivity.Kt

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_second.*

import java.util.logging.Logger

class SecondActivity : AppCompatActivity() {

 val Log = Logger.getLogger(SecondActivity::class.java.name)

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_second)

 Log.info("onCreate")

Chapter 12 Intents

http://class.name

257

 button2.setOnClickListener {

 finish() ➊
 }

 }

 override fun onStart() {

 super.onStart() ➋
 Log.info("onStart")

 }

 override fun onStop() {

 super.onStop()

 Log.info("onStop")

 }

}

➊ When we call this, SecondActivity will be on a “stopped” state.

➋ When SecondActivity enters the onStart callback, it will be visible to the user. Whatever

Activity was in the foreground, will now be moved to the background; MainActivity will enter a

“paused” state.

When you call startActivity from MainActivity, the runtime will activate

SecondActivity. When SecondActivity becomes visible to the user, which should happen

during onStart of SecondActivity, MainActivity will enter the “paused” state.

When you call finish() from SecondActivity, it will enter the “stopped” state.

MainActivity will be brought to the foreground, so it will re-enter the “resume” and

“restart” states. This interaction is shown in Figure 12-9.

Chapter 12 Intents

258

I’ve overridden some of the life cycle callbacks for both MainActivity and

SecondActivity. You can inspect the logs to see the timing and sequence of when the life

cycle methods are called. You can use the Logcat tool window to inspect the application

and system logs, as shown in Figure 12-10.

Main Activity Android Runtime Second Activity

startActivity() onCreate()

onPause()

finish()

onStop()

onResume()

onRestart()

Figure 12-9.  Sequence diagram for MainActivity, SecondActivity, and the
runtime

Figure 12-10.  Logcat tool window

Chapter 12 Intents

259

�Demo 2: Send Data to an Activity
In this project, we will continue to explore the basic mechanics of explicit Intents.

However, instead of just launching another Activity, we will also send some data to it.

We’ll go through the details on how to put an “Extra” in the Intent and how to extract it.

Again, if you want to code along, the details of the project is shown in Table 12-2.

Table 12-2.  Project Details

Project Detail Value

Application name CH12SendDataToAnotherActivity

Company domain Your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility Yes. AppCompat

Like in the previous section, we also need to create another Activity. Create another

Activity and name it “SecondActivity.”

Go back to activity_main and open it in design view. Remove the “Hello” TextView

from the layout, then add an EditText and a Button view, as shown in Figure 12-11. Align

the elements, center them in the layout, and use the “infer constraint,” just like what we

did in the previous demo project.

Chapter 12 Intents

260

Next, open activity_second in design view, then add A TextView element to it. Use

the “infer constraint” (as usual) and adjust some of the attributes like the textSize and

text Alignment, as shown in Figure 12-12.

Figure 12-11.  activity_main.xml, design view

Figure 12-12.  activity_second.xml, design mode

Chapter 12 Intents

261

By now, you should have the following View elements and classes to work with:

•	 MainActivity.Kt and its associated activity_main.xml; this is from the

project creation wizard.

•	 SecondActivity.Kt. and its associated activity_second.xml; this is from

the Activity creation wizard.

•	 An EditText and a Button view object in activity_main whose ids are

“editText” and “button,” respectively. editText is the default id for the

first PlainText element in the project.

•	 A TextView view object in activity_second whose id is “textView”—it’s

the default id for the first TextView element in the project.

Listings 12-10 and 12-11 show the code for activity_main.xml and activity_two.xml,

respectively.

Listing 12-10.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="31dp"

 android:text="Button"

 app:layout_constraintEnd_toEndOf="@+id/editText"

 app:layout_constraintStart_toStartOf="@+id/editText"

 app:layout_constraintTop_toBottomOf="@+id/editText" />

Chapter 12 Intents

262

 <EditText

 android:id="@+id/editText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="49dp"

 android:ems="10"

 android:inputType="textPersonName"

 android:text="Name"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Listing 12-11.  /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".SecondActivity">

 <TextView

 android:id="@+id/textView"

 android:layout_width="324dp"

 android:layout_height="wrap_content"

 android:text="TextView"

 android:textAlignment="center"

 android:textSize="36sp"

 tools:layout_editor_absoluteX="35dp"

 tools:layout_editor_absoluteY="78dp" />

</android.support.constraint.ConstraintLayout>

Listings 12-12 and 12-13 show the annotated codes for MainActivity and

SecondActivity, respectively.

Chapter 12 Intents

263

Listing 12-12.  MainActivity

import android.content.Intent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener {

 val m_data = editText.text.toString() ➊
 val m_intent = Intent(this@MainActivity, SecondActivity::class.java) ➋
 m_intent.putExtra("main_activity_data", m_data) ➌
 startActivity(m_intent) ➍
 }

 }

}

➊ We’re getting the value of whatever the user has typed in the EditText object. The syntax to do

this is actually editText.getText().toString() but Kotlin makes our lives easier with

the syntactic sugars of getters and setters. We can use the property “text” to either set or get

the runtime value of the EditText view. We had to call the toString() function because the

return type of EditText.getText() is Editable or CharSequence. I needed it to be a of

type String because the putExtra does not take an Editable nor a CharSequence; it takes in

Strings.

➋ We’re creating an explicit Intent and its target is SecondActivity.

➌ Now we get to put some data to piggyback on the Intent. The two parameters of putExtra look

like a key-value pair; and they are. The key is the first parameter, “main_activity_data” and

thevalue is the runtime content of the EditText—converted to String, of course.

➍ We’re sending off the Intent object.

Chapter 12 Intents

264

Listing 12-13.  SecondActivity

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_second.*

class SecondActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_second)

 val m_data = intent.getStringExtra("main_activity_data") ➊ ➋
 textView.setText(m_data) ➌
 }

}

➊ We’re getting a reference to the Intent object that’s associated with SecondActivity, we’re not

creating a new Intent object here. The syntax is actually getIntent() but because of Kotlin’s

magic sauce, we get to reference it as simply intent

➋ The getStringExtra method of the Intent object is doing what you think it does. It’s extracting

some data from the Intent object using a map idiom; you give it a key, you’d get a value. In this

case, we gave it the key “main_activity_data—this is the same key we used in MainActivity.

We used the getStringExtra method because we know that it contains a String. The get-
er should correspond to the put-er. If you put Byte, Array, or Bundle then you should get it

getByteExtra, getArrayExtra, and getBundleExtra, respectively.

➌ We’re changing the runtime value of the TextView. We’re setting it to whatever we got from the

Intent extra.

Run the program and try typing on the EditText. When you click on the Button, the

TextView on SecondActivity should display whatever you typed.

Chapter 12 Intents

265

�Demo 3: Send and Get Data Back to and
from an Activity
In this project, we’ll ask the user to input his weight and height and then we’ll

calculate his BMI (body mass index). The project has two Activities: MainActivity and

SecondActivity.

We’ll ask the user to input his height and weight on MainActivity. We will send that

data to SecondActivity via an Intent. In SecondActivity, we will extract the data from

the Intent that was sent to us by MainActivity. We will use the height and weight data to

calculate the BMI and then send it back to MainActivity.

If you want to follow along, I’ve listed the project details in Table 12-3.

This project, like the previous demos, also has two Activities, but it has a few more

View elements to it. Create the two Activities like how you created them in the previous

demos.

The MainActivity has a couple of View elements: two EditTexts for the user input, a

Button, and a TextView that we will use to display the BMI. You can find the details for

the View objects like id, height, and text size in Listing 12-14; it’s the complete code for

activity_main.xml.

Table 12-3.  Project Details for Demo App

Project Detail Value

Application name CH12SendAndGetDataBackFromActivity

Company domain Your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility Yes. AppCompat

Chapter 12 Intents

266

I gave the Views a very simple arrangement—I simply packed and centered all of

them vertically. I also did not bother much with the layout constraint. After eye-balling

an arrangement I thought wasn’t so repulsive, I used the “infer constraints” button to

automagically fix all the layout constraints, just like what we did in the previous demos.

Figure 12-13 illustrates how to manage the layout for activity_main.

The sample code doesn’t go out of its way to validate inputs programmatically, so

we’ll put some validation mechanism on the EditTexts. The weight and height input

fields should take in only numbers—specifically, Float numbers; we can enforce this by

setting the inputType attribute of the EditText views. Here’s how to do it:

	 1.	 While editing activity_main on design view, select one the

EditText views.

	 2.	 On the attributes tool window, click “inputType.”

	 3.	 Select “numberDecimal.”

	 4.	 Repeat steps 1-3 for the other EditText.

Figure 12-14 illustrates this process.

(1) Select all View objects

(2) Get everything centered

(3) Use the “infer
constraints” button

Figure 12-13.  Basic layout for activity_main

Chapter 12 Intents

267

That should take care of MainActivity’s UI. Listing 12-14 shows the complete code for

activity_main.xml

Listing 12-14.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <EditText

 android:id="@+id/input_weight"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="68dp"

 android:ems="10"

 android:inputType="numberDecimal"

 android:text="Name"

 app:layout_constraintEnd_toEndOf="@+id/input_height"

Figure 12-14.  Put a validation constraint on the EditText

Chapter 12 Intents

268

 app:layout_constraintStart_toStartOf="@+id/input_height"

 app:layout_constraintTop_toTopOf="parent" />

 <EditText

 android:id="@+id/input_height"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="23dp"

 android:ems="10"

 android:inputType="textPersonName"

 android:text="Name"

 app:layout_constraintEnd_toEndOf="@+id/btn_send_data"

 app:layout_constraintStart_toStartOf="@+id/btn_send_data"

 app:layout_constraintTop_toBottomOf="@+id/input_weight" />

 <Button

 android:id="@+id/btn_send_data"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="21dp"

 android:text="calculate BMI"

 app:layout_constraintEnd_toEndOf="@+id/txt_bmi"

 app:layout_constraintStart_toStartOf="@+id/txt_bmi"

 app:layout_constraintTop_toBottomOf="@+id/input_height" />

 <TextView

 android:id="@+id/txt_bmi"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="33dp"

 android:text="TextView"

 android:textSize="36sp"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/btn_send_data" />

</android.support.constraint.ConstraintLayout>

Chapter 12 Intents

269

You can use the context menu in AS3 to create SecondActivity. Right-click on

the “app” in the project folder, then New ➤ Activity ➤ Empty Activity, as shown in

Figure 12-15.

Figure 12-15.  Create a new empty activity

Fill up the details for the new Activity, as shown in Figure 12-16. Make sure that

the name of the new Activity is SecondActivity and that you’re creating it in the same

package as MainActivity.

Chapter 12 Intents

270

SecondActivity has two View elements: a TextView to display the contents of the

Intent that was passed to it and a Button to trigger the calculation of the BMI.

Figure 12-17 show what the UI of SecondActivity looks like. Center the elements in the

layout and use the “infer constraints” to anchor the elements into position. You can also

adjust textAlign and textSize attributes of the TextView to fit your liking.

Figure 12-16.  Create SecondActivity

Chapter 12 Intents

271

Listing 12-15 shows the full code for activity_second.xml

Listing 12-15.  /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".SecondActivity">

 <TextView

 android:id="@+id/txt_intentdata"

 android:layout_width="346dp"

 android:layout_height="wrap_content"

 android:layout_marginTop="109dp"

 android:text="TextView"

 android:textAlignment="center"

 android:textSize="24sp"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

Figure 12-17.  activity_second.xml

Chapter 12 Intents

272

 <Button

 android:id="@+id/btn_calculate"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="29dp"

 android:text="calc bmi"

 app:layout_constraintEnd_toEndOf="@+id/txt_intentdata"

 app:layout_constraintStart_toStartOf="@+id/txt_intentdata"

 app:layout_constraintTop_toBottomOf="@+id/txt_intentdata" />

</android.support.constraint.ConstraintLayout>

Let’s zoom in on MainActivity’s onCreate method. As soon as the application opens,

the EditText will wait for user inputs. As soon the user clicks the Button, our app will

collect the inputs and send it off with an Intent.

Listing 12-16 shows the annotated snippet of MainActivity that contains the event

handling code when the Button is clicked.

Listing 12-16.  onCreate Method of MainActivity

val SECOND_ACTIVITY = 1000 ➊

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 input_weight.setHint("weight (lbs)") ➋
 input_height.setHint("height (inches)")

 btn_send_data.setOnClickListener {

 val m_intent = Intent(this@MainActivity, SecondActivity::class.java) ➌
 val m_bundle = Bundle() ➍

 m_bundle.putFloat("weight", input_weight.text.toString().toFloat()) ➎
 m_bundle.putFloat("height", input_height.text.toString().toFloat())

 m_intent.putExtra("main_activity_data", m_bundle) ➏

 startActivityForResult(m_intent, SECOND_ACTIVITY) ➐
 }

}

Chapter 12 Intents

273

➊ We’re declaring and defining a property that will act as some sort of constant. This is what

we’ll use as the request code later on in the code.

➋ We’re setting the hint attribute of the Plain Text view. A hint appears as greyed place holders

for text. If you’ve used the placeholder attribute in HTML 5, the hint attribute is similar to that.

You can use hints as a replacement for labels.

➌ We’re defining an explicit Intent, this@MainActivity is the Context and the Intent target is a

class object (SecondActivity::class.java).

➍ We need to send two data points to SecondActivity, when you need to send more than one pair

of key-value pair, it’s better to use Bundles.

➎ The Bundle object, like the Intent, also lets us add data to it in a couple of ways. I used

putFloat()in this example because I wanted to work with Float numbers. If you need to

work String, Byte, Char, Int, etc., just use the appropriate putXXX method.

➏ We’re loading to bundle to the Intent object. Using bundles with Intents allows us to work with

more complex data structures.

➐ We’re sending off the Activity, but this time around, we’re telling the runtime that we expect

some data back—that’s why we used startActivityForResult. This signals the runtime to

invoke MainActivity’s onActivityResult callback whenever other Activities calls their finish()

method. The second parameter of startActivityForResult is the request code. The request code

will help us route the program logic when we receive the results back. In this call, we used the

class constant SECOND_ACTIVITY as the request code for launching SecondActivity, which

means when SecondActivity calls its finish() method, this request code will also be sent

back to MainActivity.

The next stage of the exercise happens on the onCreate callback of SecondActivity.

After we’ve sent the height and weight data to the receiving Activity, we must extract and

work with that data. Listing 12-17 shows the annotated snippet for that code.

Listing 12-17.  onCreate Method of SecondActivity

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_second)

 val bundle = intent.getBundleExtra("main_activity_data") ➊

Chapter 12 Intents

274

 val height = bundle.getFloat("height") ➋
 val weight = bundle.getFloat("weight")

 txt_intentdata.text = "Height: $height | Weight: $weight" ➌

 btn_calculate.setOnClickListener {

 val m_intent = Intent() ➍
 val m_bmi = 703 * (weight / (height * height)) ➎
 m_intent.putExtra("second_activity_data", m_bmi) ➏
 setResult(Activity.RESULT_OK, m_intent) ➐
 finish() ➑
 }

}

➊ We need to get a reference to the Intent object that’s associated with SecondActivity. This

is the same Intent object that we launched from MainActivity. It’s also the same Intent that

activated SecondActivity. To get the associated Intent object, we should call getIntent(),

but because we’re using Kotlin, instead of using the method getIntent(), we simply refer

to it as intent—a property instead of a method. Just remember that we’re not creating a new

Intent here, we are simply getting a reference to the Intent associated with SecondActivity. We

sent a bundle in MainActivity, so we should use getBundleExtra get the data.

➋ Now that we got the bundle out, we need to start getting more data out of the bundle. We

used putFloat to put data into the bundle, so, we need to use getFloat to get it out.

➌ We’re setting the text attribute of the TextView to the concatenated height and weight string.

➍ In this line, we are creating a new Intent object. This Activity will send some data back to

MainActivity. We need a new Intent to do that.

➎ This is a simplistic way to calculate the BMI, but it should work.

➏ Now that we’ve calculated the BMI, let’s load it up to our newly created Intent object.

➐ The setResult method takes in two parameters:

a. �resultCode. This is either 0 or -1. Generally, if something went wrong, you’d want to return -1,

or if everything went well, you’d return 0. But it’s a good idea to use the class constants in

the Activity class. Activity.RESULT_OK is -1 and Activity.RESULT_CANCELLED is 0.

b. intent. This is the Intent object the contains the calculated BMI.

➑ Finally, to return the result of the calculation to MainActivity, we need to call finish().

Chapter 12 Intents

275

The next part of the Intent’s journey is back on MainActivity. After SecondActivity

calls finish, the runtime will call the onActivityResult callback on MainActivity—it’s on

this callback that we get the chance to work with whatever data the SecondActivity sent

us. Listing 12-18 shows us the annotated snippet of MainActivity’s onActivityResult.

Listing 12-18.  Annotated onActivityResult of MainActivity

override fun onActivityResult(requestCode: Int, resultCode: Int, data:

Intent?) {

 super.onActivityResult(requestCode, resultCode, data)

 if((requestCode == SECOND_ACTIVITY) and (resultCode == Activity.RESULT_

OK)) { ➊
 val bmi = data?.getFloatExtra("second_activity_data", 1.0F) ➋
 txt_bmi.setText(bmi.toString()) ➌
 }

}

➊ There are two tests in this expression:

1. �requestCode == SECOND_ACTIVITY. We’re asking if the data is coming from

SecondActivity.

2. �Activity.RESULT_OK. We’re trying to see if SecondActivity called setResult and actually

called finish.

➋ Now that we know that the data came from SecondActivity and everything went well, we

can extract the data from the Intent. We used getFloatExtra because we know it contains

a Float—we put it there after all. We had to use the safe call (question mark) in data?.

getFloatExtra() because the signature of the Intent object as it was passed to

onActivityResult is a Nullable type.

➌ We can display the calculated BMI value.

If you’re coding along, you should be able to piece the whole application together by

now.

Listing 12-19 shows the full code of MainActivity. You might notice some differences

between this full listing and Listings 12-16 and 12-18. I omitted a couple of other details

in Listings 12-16 and 12-18, for purposes of brevity and clarity. In Listing 12-19, I put

back all the omissions, and they’re annotated so you can spot them more readily.

Chapter 12 Intents

276

Listing 12-19.  Full Code Listing for MainActivity

import android.app.Activity

import android.content.Intent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 val SECOND_ACTIVITY = 1000

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 input_weight.setHint("weight (lbs)")

 input_height.setHint("height (inches)")

 btn_send_data.setOnClickListener {

 val m_intent = Intent(this@MainActivity, SecondActivity::class.java)

 val m_bundle = Bundle()

 m_bundle.putFloat("weight", input_weight.text.toString().toFloat())

 m_bundle.putFloat("height", input_height.text.toString().toFloat())

 m_intent.putExtra("main_activity_data", m_bundle)

 startActivityForResult(m_intent, SECOND_ACTIVITY)

 }

 }

 override fun onResume() {

 super.onResume()

 clearInputs() ➊
 }

Chapter 12 Intents

277

 �override fun onActivityResult(requestCode: Int, resultCode: Int, data:

Intent?) {

 super.onActivityResult(requestCode, resultCode, data)

 �if((requestCode == SECOND_ACTIVITY) and (resultCode == Activity.RESULT_

OK)) {

 val bmi = data!!.getFloatExtra("second_activity_data", 1.0F) ➋
 val bmiString = "%.2f".format(bmi)

 input_height.setText("")

 input_weight.setText("")

 txt_bmi.setText("BMI : $bmiString ${getBMIDescription(bmi)}")

 }

 }

 private fun getBMIDescription(bmi: Float) : String { ➌

 return when (bmi) {

 in 1.0..18.5 -> "Underweight"

 in 18.6..24.9 -> "Normal weight"

 in 25.0..29.9 -> "Overweight"

 else -> "Obese"

 }

 }

 private fun clearInputs() { // ➍
 input_weight.setText("")

 input_height.setText("")

 }

}

➊ Let’s clear out the input field. We’re placing this call inside the onResume callback so that

every time the Activity becomes visible to the user, the input fields are clear. You might

remember that the onResume life cycle method could be called several time within the life

time of the Activity. It will be called for the first time when the app is started. It will be called

the second time when SecondActivity calls finish, the MainActivity will be popped out from the

back stack, and so on.

Chapter 12 Intents

278

➋ Instead of using data?.getExtra(), which would return a Nullable type, I used data!!.

getExtra(), which returned a non-Nullable type. I did this to simplify our codes inside the

gerBMIDescriptionfunction, which expects a non-Nullable type. We could have worked with

Nullables inside getBMIDescription, but I chose to use the simpler approach of working with

non-Nullable types.

➌ This function takes in a BMI Float value and returns a weight description.

➍ Implementation of initializeInputs(). We’re simply setting the text property of the

EditTexts to an empty String.

�Demo 4: Implicit Intents
Our last demo app features implicit Intents. In this section, we’ll deal with three types

of data: a web URI, a geographic coordinate, and a phone number. Hopefully, these

three examples will give you enough insights and footing to continue your exploration of

implicit Intents. Like always, if you want to code along, the project details are shown in

Table 12-4.

Table 12-4.  Project Details for Demo App

Project Detail Value

Application name CH12ImplicitIntents

Company domain use your website name

Kotlin support Yes

Form factor Phone and Tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backward compatibility Yes. AppCompat

Chapter 12 Intents

279

The app has a simple setup, the only thing I did on activity_main.xml is to remove

the “Hello World” TextView. I used the Options Menu to facilitate the user’s choices for

launching the three sample intents. The Options Menu is on the ActionBar, as shown in

Figure 12-18.

There is nothing to do in UI part so there’s no need to show activity_main’s XML

listing. Everything we need to do is done inside MainActivity.

In earlier chapters, we built the Menu using an XML resource; I built the menu a bit

differently in this example. I didn’t use an XML resource—instead, I built all the menu

items dynamically. Listing 12-20 shows the full and annotated code for MainActivity.

Listing 12-20.  MainActivity

import android.content.Intent

import android.net.Uri

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.Menu

import android.view.MenuItem

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 }

Figure 12-18.  MainActivity’s menu

Chapter 12 Intents

280

 override fun onCreateOptionsMenu(menu: Menu?): Boolean { ➊
 menu?.add("Web") ➋
 menu?.add("Map")

 menu?.add("Phone number")

 return super.onCreateOptionsMenu(menu)

 }

 override fun onOptionsItemSelected(item: MenuItem?): Boolean { ➌

 var m_uri: Uri

 var m_intent: Intent = Intent()

 when (item?.toString()) { ➍
 "Web" -> {

 m_uri = Uri.parse("https://www.apress.com")

 m_intent = Intent(Intent.ACTION_VIEW, m_uri) ➎
 }

 "Map" -> {

 m_uri = Uri.parse("geo:40.7113399,-74.0263469")

// This would have worked as well

// �m_uri = Uri.parse("https://maps.google.com/maps

?q=40.7113399,-74.0263469")

 m_intent = Intent(Intent.ACTION_VIEW, m_uri)

 }

 "Phone number" -> {

 m_uri = Uri.parse("tel:639285083333")

 m_intent = Intent(Intent.ACTION_DIAL, m_uri)

 }

 startActivity(m_intent)

 return true

 }

}

Chapter 12 Intents

281

➊ The onCreateOptionsMenu callback will be called sometime after the onCreate method

is called. Before API 11 (Honeycomb), onCreateOptionsMenu is called only when the user

clicks the Options button of the phone, but starting from Honeycomb, it’s now called onCreate.

The main reason for this change of behavior is because the ActionBar was introduced starting

with API 11. Since we are using API 23, we can take advantage of this behavior to build a

simple menu.

➋ We’re adding a Menu Item to dynamically.

➌ Whenever the user clicks on one of the Menu Items, the onOptionsItemSelected is called.

This is where we will handle the menu clicks.

➍ The item parameter can tell us which Menu Item was clicked. We’re converting it to String so

that we can use it to route our program logic inside the when expression.

➎ This is a shortened version of creating an Intent.

Figure 12-19 shows the runtime snapshots of our app.

Figure 12-19.  Implicit intent, running

Chapter 12 Intents

282

�Chapter Summary
•	 Intents are used for component activation.

•	 There are two kinds of Intents: implicit and explicit ones.

•	 Explicit Intents let us work with multiple activities. You can activate a

specific Activity using an explicit Intent.

•	 Implicit Intent extends the functionality of your application. It lets

your application do things that are outside the functionality of your

app.

•	 You can send and receive data via Intents.

In next chapter, we will:

•	 Peek and dip briefly into Material design (not a lot).

•	 See how to create and apply Styles and Themes in our app.

•	 Learn how add menus in the ActionBar.

Chapter 12 Intents

283
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_13

CHAPTER 13

Themes and Menus
What we’ll cover:

•	 Themes and colors

•	 Menus

There are nearly 3.5 million apps in the Google Play Store. That’s a lot of apps to

choose from, which is good for users, but for the developers, that’s a lot of competition.

If you will publish an app, you need to polish it—even if it’s just cosmetically—so it

doesn’t come across as shabby. Even if you have a killer app, you should also think about

how it looks (and feels) to the user. Remember that no matter how great your code is, the

user doesn’t see the code, he sees the UI.

Google has published a set of guidelines on user interfaces. They called it Material

Design, you can read more about it at http://material.io. Material Design is a big

topic, it can fill whole books on its own and we don’t intend to cover it all, but in this

chapter, we’ll look at Themes and how to add an AppBar to your apps.

�Styles and Themes
The Android platform has concepts like “styles” and “themes”. A style is a collection

of attributes where you can control how a View looks, what’s the background and

foreground color, font size, and much more. A theme, on the other hand, is a style that

applies to the whole app, not just a single View. When you apply a style as a theme, every

View in the app follows the theme. A theme is applied to the application in the Android

Manifest’s application node, as shown in the following snippet:

android:theme="@style/AppTheme"

http://material.io

284

In this example, “AppTheme” is the name of the style. Styles are written as an XML

file in app ➤ res ➤ styles.xml—the filename is usually style.xml, but it can change, it’s not

a hard requirement. Listing 13-1 shows the current styles.xml; this is what we get after

the project creation wizard.

Listing 13-1.  app/res/values/styles.xml

<resources>

 <!-- Base application theme. -->

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

 <!-- Customize your theme here. -->

 <item name="colorPrimary">@color/colorPrimary</item>

 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>

 <item name="colorAccent">@color/colorAccent</item>

 </style>

</resources>

The root node of styles (styles.xml) is “resources,” you can define as many styles

as you want under this node. A style node has the attributes “name” and “parent.”

The name attribute is something that you choose, like the name of a variable, class, or

function. The parent attribute is something you need to choose from a set of existing

Themes. AS3 will you help you out using hints, as shown in Figure 13-1.

Figure 13-1.  Code hinting while editing styles.xml

Chapter 13 Themes and Menus

285

Once you have defined a style node, you can start customizing the colors for the app.

The colors are defined as “item” entries inside the “style” element.

Google’s Material design brings your brand identity to life by using primary and

accent colors that are used throughout the app. These colors are defined as follows:

•	 colorPrimary: The color of the app bar

colorPrimaryDark: The color of the status bar and contextual

app bars; this is the dark version of colorPrimary

•	 colorAccent: The color of Views like check boxes, radio buttons, and

edit text boxes

•	 windowBackground: The color of the screen background

•	 textColorPrimary: The color of UI text in the app bar

•	 statusBarColor: The color of the status bar

•	 navigationBarColor: The color of the navigation bar

You don’t have to define all of these in styles.xml, but you can if you want to. You may

have noticed that the values of the color items are not themselves defined in the styles.

xml file but instead are redirected to another resource file. In styles.xml, when you see an

entry like this

<item name="colorPrimary">@color/colorPrimary</item>

It means that the actual value for “colorPrimary” can be found on the colors.xml file,

which is in the app ➤ res ➤ values folder. Listing 13-2 shows the current contents of

colors.xml.

Listing 13-2.  app/res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="colorPrimary">#3F51B5</color>

 <color name="colorPrimaryDark">#303F9F</color>

 <color name="colorAccent">#FF4081</color>

</resources>

Chapter 13 Themes and Menus

286

�Customizing the Theme
You can edit the colors in two ways. You can either edit the colors.xml file directly or

make the color changes using the AS3’s theme editor. To use the Theme Editor, open

the styles.xml file in the main editor, then click the “Open editor” link in the upper-right

corner, as shown in Figure 13-2.

Figure 13-2.  Launch “open editor”

This area shows how the
various controls will

look like in the current
color scheme

Click these
swatches to
launch the
color picker

 colorPrimary is the
background color of the

Toolbar.
 textColorPrimary is the

foreground color

colorPrimary is the color of UI controls
Shows the name of the theme you are

currently editing

Figure 13-3.  Theme Editor

The Theme editor lets you change the color values for the app. It also shows you

how the app will look in a given color scheme. Figure 13-3 shows the various parts of the

Theme Editor.

Chapter 13 Themes and Menus

287

To change a color, click the swatch next to the Material color (as shown in Figure 13-3).

That will launch the color picker (shown in Figure 13-4).

Figure 13-4.  Color picker

Google published documentation on Material Design at http://bit.ly/

materialdesigndox; it’ll be good to read it before making changes to the color scheme.

Another web resource you can use is materialPalette.com; it’s geared toward Android

Material Design. Figure 13-5 shows a screen grab from their website.

Chapter 13 Themes and Menus

http://bit.ly/materialdesigndox
http://bit.ly/materialdesigndox

288

The basic idea is to choose two colors, and the site builds a palette for you. Now you

can simply copy the hex values of primary, dark primary, accent, light primary colors,

and others.

�Menus
Menus are very important in UI design. They allow the user to get to the application’s

functionality. Traditionally, menu systems are organized hierarchically in intro groups,

which means before a user can get to his target action, he needs to traverse the hierarchy

of the menu. Android’s menu system, at some point in time, has behaved exactly like

Figure 13-5.  Screen grab from https://www.materialpalette.com

Chapter 13 Themes and Menus

https://www.materialpalette.com

289

that—grouped and hierarchical. But that was in the past. Android’s approach to menus

has changed dramatically over the course of its lifetime.

Menus prior to Android Honeycomb relied on hardware buttons, like the ones

shown in Figure 13-6.

Figure 13-6.  Menus on older Android hardware

Back then, we could always rely that the “home” and “option” buttons would always

be present on any Android phone. We built our apps based on these assumptions

because they were reasonable at the time.

Well, times have changed and so has the Android hardware. Screen resolutions

have increased dramatically, and the hardware buttons have disappeared. Fortunately,

Android’s approach to menus has also changed and kept up with the state of hardware

capabilities.

When Honeycomb came out, a new kind of menu system was added to Android.

Applications whose minimum target SDK is API 11 are now able to use the “ActionBar.”

Chapter 13 Themes and Menus

290

The ActionBar, shown in Figure 13-7, is a dedicated area at the top of the screen and

is persistent throughout the app. It’s a lot like the main menu bar of AS3 if you think

about it.

You can use the ActionBar to display the most important features of your app and

make them accessible in a predictable way (e.g., like putting a permanent Search widget

on top, etc.). It creates a cleaner look by removing clutter in your menus, and in cases

where not all items in the menu fit on the screen, the ActionBar displays an overflow

icon. The overflow icon is a vertical ellipsis—three dots arranged vertically, which is

always found on the far right of the bar. It also displays the name of the application, so it

reinforces brand identity of the app.

Nowadays, the ActionBar has fallen a bit out of fashion and has been eclipsed by the

Toolbar. The Toolbar is more versatile because it’s not permanently clipped on top of the

screen—you can place it anywhere you want—and it has a few more capabilities. The

ActionBar, however, remains a viable solution for simple menu systems; in fact, nothing

stops you from using both the ActionBar and the Toolbar in your apps. Just work with the

best tools you have.

In Android API level 10 or lower, the menu options will appear at the bottom of the

screen when the user presses the hardware menu button. In Android API 11 and higher,

items from the options menu are available in the app bar. By default, the system places

all items in the action overflow, which the user can reveal with the action overflow icon

on the right side of the app bar.

To add a menu to an app, you need to do the following:

	 1.	 Create a menu resource file. We will create a menu folder in the

app/res folder. Then, we’ll create a menu resource file inside it.

	 2.	 Inflate the menu resource in the main program. We will

override the onCreateOptionsMenu of MainActivity and call the

inflate function of the Menu object.

Figure 13-7.  App with an ActionBar

Chapter 13 Themes and Menus

291

	 3.	 Add event handlers to the menu items. We’ll override the

onOptionsItemSelected function of MainActivity, and route the

user action depending on which menu item was clicked.

	 4.	 Optionally, add vector images to the menu.

Let’s create a demo app so we can explore menus. The details of the project are

shown in Table 13-1.

Table 13-1.  Project Details for Demo App

Project Detail Value

Application name CH13AppBar

Company domain use your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backward compatibility Yes. AppCompat

We won’t put any additional View elements in this app because they won’t be

needed, but we will add and android:id to our layout container. Notice the sixth line

in Listing 13-3: that ID attribute is not present by default, you’ll need to put it in. The

IDs of each View element are more important to us now because the Kotlin Android

Extension depends on it. The Extension won’t be able to synthesize the View IDs if they

don’t have one.

Listing 13-3.  excerpt from activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

Chapter 13 Themes and Menus

292

 xmlns:tools=http://schemas.android.com/tools

 android:id="@+id/root_layout"

 tools:context=".MainActivity">

</android.support.constraint.ConstraintLayout>

We also need to edit the module-level build.gradle file. In order to use the Snackbar

widget, we need to include the “com.android.support:design” dependency in the

gradle file. Figure 13-8 shows you the location of the gradle file in the Project window.

Figure 13-8.  module-level build.gradle

You need to add the “com.android.support:design” line, as shown in Listing 13-4.

Listing 13-4.  excerpt from build.gradle

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"

 implementation 'com.android.support:appcompat-v7:27.1.0'

 implementation 'com.android.support.constraint:constraint-layout:1.1.2'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'com.android.support.test:runner:1.0.2'

Chapter 13 Themes and Menus

293

 �androidTestImplementation 'com.android.support.test.espresso:espresso-

core:3.0.2'

 implementation 'com.android.support:design:27.1.0'

}

AS3 will sense that something has changed in build file and it will ask you to “sync”

the gradle file. This prompt will appear as a yellow strip on the upper part of the main

editor. Click “sync” so you can proceed.

Now we’re ready to create the menu file, but before we can do that, let’s create a

menu folder. Right-click on the app ➤ res folder in the Project window, as shown in

Figure 13-9. Choose New ➤ Android Resource Directory.

Figure 13-9.  Create a new Android Resource Directory

Give the newly created folder a name, like the one shown in Figure 13-10.

Figure 13-10.  New menu folder

Chapter 13 Themes and Menus

294

Now that that we have a menu folder, right-click on it and create a new menu

resource file, as shown in Figure 13-11.

Figure 13-11.  New menu resource file

Let’s give the newly created menu file a name, like how it’s shown in Figure 13-12.

Figure 13-12.  main_menu resource file

Let’s add some items in our menu file. Open the file app/res/menu/main_menu.
xml in the main editor and add the menu items as shown in Listing 13-5.

Listing 13-5.  app/res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/menuFile"

 android:title="@string/menuFile"

 />

 <item android:id="@+id/menuEdit"

Chapter 13 Themes and Menus

295

 android:title="@string/menuEdit"

 />

 <item android:id="@+id/menuHelp"

 android:title="@string/menuHelp"

 />

 <item android:id="@+id/menuExit"

 android:title="@string/menuExit"

 />

</menu>

Each item element in Listing 13-5 represents one menu item. Each element is

comprised of two attributes: an android:id and an android:title. The title is what you

will see on the menu itself and the id is a programmatic reference to the menu item. We

will use this id later when we want to refer to a menu item from our program.

The android:id is written in @+id notation so that it will be created in case it doesn’t

exist yet. The android:title is written in @string notation so that the value of the title

is resolved in the app/res/values/strings.xml file. We could have hard-coded the menu

titles like this:

<item android:id="@+id/menuFile"

 android:title="File" />

But that would be a bad way of doing it. The convention in Android programming is

to store and retrieve your string literals in strings.xml resource file. Storing your strings in

/app/res/values/strings.xml also makes it easier for you to release your app in a non-

English version. Imagine if you created a French or Italian version of your app. You’d

have to replace all those hard-coded strings manually. But if you stored your strings in

the xml file, you would only need to replace it in one file, which makes localization and

internationalization a bit easier.

As soon as you’re done typing the menu file, you will notice that AS3 complains

about the newly created menu items. The android:title entries cannot be resolved or

cannot be found in strings.xml. Of course AS3 can’t find it—we haven’t created it yet.

We can either add the new entries to strings.xml manually, or we can use AS3’s Quick

Fix to resolve the error. Let’s use the Quick Fix. While the main_menu.xml is still on the

editor, click on the @string/menuExit, as shown in Figure 13-13, then press OPTION +
ENTER or ALT + ENTER.

Chapter 13 Themes and Menus

296

Type the resource value for the item and repeat the steps for each android:title

attribute. The resource values will be stored in app ➤ res ➤ values ➤ strings.xml—

contents of strings.xml are shown in Listing 13-6.

Listing 13-6.  app/res/values/strings.xml

<resources>

 <string name="app_name">CH13AppBar</string>

 <string name="menuExit">Exit</string>

 <string name="menuHelp">Help</string>

 <string name="menuEdit">Edit</string>

 <string name="menuFile">File</string>

</resources>

The next step is to associate the menu with the MainActivity. To do this, we need to

inflate the menu file by overriding the onCreateOptionsMenu in MainActivity.

Open MainActivity.Kt in the main editor and start adding a top-level function. As

soon as you begin typing the first few characters of the onCreateOptionsMenu, AS3 will

assist you by giving code hints. Use the autocompletion feature as shown in Figure 13-14

to complete the skeleton of the function.

Figure 13-13.  Add the menu titles to strings.xml

Chapter 13 Themes and Menus

297

Copy the codes in Listing 13-7 to complete the onCreateOptionsMenu.

Listing 13-7.  onCreateOptionsMenu

override fun onCreateOptionsMenu(menu: Menu?): Boolean {

 menuInflater.inflate(R.menu.main_menu, menu)

 return super.onCreateOptionsMenu(menu)

}

The inflate() function creates the menu items using the menu XML file we created

earlier (first parameter) and attaches it to the Menu object (second parameter of

the inflate function). The Android runtime will pass the Menu to us when it invokes

onCreateOptionsMenu callback function.

Figure 13-15 shows the menu during runtime; the picture on left shows the overflow

icon—it’s the three white dots arranged like a vertical ellipsis. Menu items are revealed

by clicking or touching the overflow icon. The picture on the right shows our app with all

the menu items revealed.

Figure 13-14.  Autocompleting the onCreateOptionsMenu

Figure 13-15.  CHAppBar menus

Chapter 13 Themes and Menus

298

Right now, the menu items show up, but they don’t do anything yet. To handle the

events for each menu item, we will override the onOptionsItemSelected() function in

MainActivity.

Listing 13-8 shows the code for an overridden onOptionsItemSelected. The Android

runtime calls this method each time a menu item is clicked by the user. The runtime

passes a MenuItem object to the function that represents the menu item clicked.

Listing 13-8.  onOptionsItemSelected

override fun onOptionsItemSelected(item: MenuItem?): Boolean {

 return true

}

We can use the MenuItem to route our program logic by comparing its itemId

property to the four menu items we defined in main_menu.xml. Listing 13-9 shows how

to test if the itemId is equal to one of the menu items in our XML file.

Listing 13-9.  comparing itemId with R.id.menuFile

override fun onOptionsItemSelected(item: MenuItem?): Boolean {

 if(item?.itemId == R.id.menuFile) {

 showMessage(“File Menu “) // user defined function

 return true

 }

}

Notice how we are using the safe-call operator (?.) during the test. We need to use

the safe-call because MenuItem is declared as nullable in onOptionsItemSelected—also,

the function should return a Boolean value. In our example, we returned true, which

tells the Android runtime that we’ve consumed this event, and there is no need for other

listeners to handle the event any further. We can keep using the if-else construct to route

program logic, but the when construct might be more appropriate in this situation.

Listing 13-10 shows how to use when to handle program logic. You might remember

from Chapter 3 that Kotlin doesn’t have a switch statement—the when construct is the

equivalent of Java’s switch.

Chapter 13 Themes and Menus

299

Listing 13-10.  using when to route program logic

override fun onOptionsItemSelected(item: MenuItem?): Boolean {

 when(item?.itemId) {

 R.id.menuFile -> {

 showMessage("File menu")

 return true

 }

 R.id.menuEdit -> {

 showMessage("Edit menu")

 return true

 }

 R.id.menuHelp -> {

 showMessage("Help menu")

 return true

 }

 R.id.menuExit -> {

 showMessage("Exit")

 return true

 }

 }

Listings 13-11, 13-12, and 13-13 show the full codes for MainActivity, activity_main,

and the build.gradle, respectively. You may use for it reference in case you’re coding along.

Listing 13-11.  complete code for MainActivity.Kt

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.support.design.widget.Snackbar

import android.view.Menu

import android.view.MenuItem

import kotlinx.android.synthetic.main.activity_main.*

Chapter 13 Themes and Menus

300

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 }

 override fun onCreateOptionsMenu(menu: Menu?): Boolean {

 menuInflater.inflate(R.menu.main_menu, menu)

 return super.onCreateOptionsMenu(menu)

 }

 override fun onOptionsItemSelected(item: MenuItem?): Boolean {

 when(item?.itemId) {

 R.id.menuFile -> {

 showMessage("File menu")

 return true

 }

 R.id.menuEdit -> {

 showMessage("Edit menu")

 return true

 }

 R.id.menuHelp -> {

 showMessage("Help menu")

 return true

 }

 R.id.menuExit -> {

 showMessage("Exit")

 return true

 }

 }

Chapter 13 Themes and Menus

301

 return super.onOptionsItemSelected(item)

 }

 private fun showMessage(msg:String) {

 Snackbar.make(root_layout, msg, Snackbar.LENGTH_LONG).show()

 }

}

Listing 13-12.  complete code for activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:id="@+id/root_layout"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Chapter 13 Themes and Menus

302

Listing 13-13.  app/build.gradle

apply plugin: 'com.android.application'

apply plugin: 'kotlin-android'

apply plugin: 'kotlin-android-extensions'

android {

 compileSdkVersion 27

 defaultConfig {

 applicationId "com.thelogbox.ch13appbar"

 minSdkVersion 23

 targetSdkVersion 27

 versionCode 1

 versionName "1.0"

 �testInstrumentationRunner "android.support.test.runner.

AndroidJUnitRunner"

 }

 buildTypes {

 release {

 minifyEnabled false

 �proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

 }

 }

}

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"

 implementation 'com.android.support:appcompat-v7:27.1.0'

 implementation 'com.android.support.constraint:constraint-layout:1.1.2'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'com.android.support.test:runner:1.0.2'

 �androidTestImplementation 'com.android.support.test.espresso:espresso-

core:3.0.2'

 implementation 'com.android.support:design:27.1.0'

}

Chapter 13 Themes and Menus

303

�Chapter Summary
•	 Using Styles and Themes can add pizzazz to your app quite instantly.

It’s the easiest thing to do level up your app’s game.

•	 Menus in the ActionBar can display the most important features of

your app.

In the next chapter, we will:

•	 Look at Fragments. You can use them to make your app adapt to

different form factors and device orientation (portrait vs landscape).

•	 We’ll also look at how we can make Fragments talk to each other.

Chapter 13 Themes and Menus

305
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_14

CHAPTER 14

Fragments
What we’ll cover:

•	 Introduction to fragments

•	 Landscape and portrait orientation

•	 Interfragment communication

In the early days of Android, when it ran only on phones and there weren’t any

high-resolution screens, activities were sufficient as a way of composing the UI and

interacting with the user. Then came the tablets and high-resolution screens, and it

became increasingly difficult to create applications that could run well on both phones

and tablets. Developers were faced with hard choices. Either you choose the least

capable hardware as the target and make it like the least common denominator or make

the app adapt to a range of form factors by removing and adding UI elements in response

to the device’s capability—which proved to be very difficult to do manually. When API 11

(Honeycomb) came out, Android solved this problem with Fragments.

�Introduction to Fragments
Fragments are quite an advanced concept, and beginning programmers may approach

it with trepidation, but the basic concept behind it is quite simple. If we think of an

activity as a composition unit for our UI, think of a fragment as a mini-activity—it’s a

smaller composition unit. You will usually show (and hide) fragments during runtime in

response to something that a user did (e.g., tilting the device or switching from portrait

to landscape orientation, thus making more screen space available). You may even

use fragments as a strategy to adapt to device form factors; when the app is running on

smaller screen, you will show only some of the fragments.

306

A fragment, like an activity, is comprised of two parts: a Java program and a layout

file. The idea is almost the same—define the UI elements in an XML file and then inflate

the XML file in a program file so that all the view objects in the XML will become an

object. After that, we can reference each view object in the XML using the R.class. Once

we’ve wrapped our brains around that concept, just think of a fragment as an ordinary

view object that we can drag and drop on the main layout file—except of course,

fragments aren’t ordinary Views, but they are Views.

To create a Fragment, we generally do the following:

	 1.	 Create an XML resource file, put in the /app/res/layout folder,

just like where we put activity_main.xml .

	 2.	 Give the new resource file a descriptive name—say,

fragment_booktitles.

	 3.	 Create the Fragment class. We used to choose between two classes

when creating Fragments—either we inherit from the native

android.app.Fragment or android.support.v4.app.Fragment.

You use the former if your target SDK is API 11 or higher and

the latter for apps targeted at anything lower than Android 3

(Honeycomb). You can still use android.app.Fragment, but as a

heads up, you need to know that Android P (a.k.a. Android 9) has

deprecated native Fragments. If you still want to use Fragments,

use the support library so you can get consistent behaviors across

all API levels.

	 4.	 Next, hook up the Fragment class with the XML resource layout.

You can do this by inflating the XML resource file in the onCreate

method of the Fragment class.

	 5.	 Add the newly created Fragment.

Let’s do them in Android Studio. First, create a project with an empty Activity, just

like all the other projects we’ve created.

Now, create an XML resource file and put it in /app/res/layout, as shown

in Figure 14-1.

Chapter 14 Fragments

307

Use the context menu, right click on the /app/res/layout folder in the Project tool

window (Figure 14-1). Choose New ➤ Layout Resource File. This layout resource file

will contain all the View elements of our Fragment. You will see a “New Resource File”

dialog window; enter the name of the resource file—for the purpose of the exercise,

I named it “book_titles.”

Figure 14-1.  New layout resource file

You can put whatever View element you need. This fragment resource file is no

different than any of the activity resources files we’ve worked on before. Whatever you

can put in an Activity resource file, you can also put in the fragment resource file.

Next, let’s create the Fragment class. Use the context menu again to create the class,

as shown in Figure 14-2.

Figure 14-2.  Create new Kotlin class

If you right-clicked on java ➤ net.workingdev.fragmentstest when you created the

new Kotlin class, the newly created class will belong to the same package as the rest of

your codes. If you right-click just on the java folder when you created the new Kotlin

class, that class will be on the default package; when that happens, you’ll need to add the

package statement to the class yourself.

Chapter 14 Fragments

308

You’ll be asked what kind of Kotlin file to create. Choose Class from the drop-down

menu, as shown in Figure 14-3.

Figure 14-3.  Give the Kotlin class a name

The Fragment class can be associated with the UI resource file by inflating the

resource file and returning it from within the onCreateView callback. Listing 14-1

contains the annotated and explained snippet of MainActivity; it shows how to wire the

Fragment class with the UI resource file. Bullet ❸, specifically, is the code responsible for

associating the Fragment class with the UI resource file.

Listing 14-1.  BookTitle Fragment

import android.support.v4.app.Fragment ❶

...

class BookTitle : Fragment() {

 �override fun onCreateView(inflater: LayoutInflater, container:

ViewGroup?, savedInstanceState: Bundle?): View? { ❷

 val v = inflater.inflate(R.layout.book_titles, container, false) ❸

 return v

 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 ❹

 }

}

Chapter 14 Fragments

309

❶ We’re using the Fragment class from the Support library because android.app.Fragment
was deprecated by Android 9. Even if we’re usually targeting API 23, it’s best to always use

supported libraries from now on.

❷ The onCreateView callback is similar to the onCreate of the Activity. But be careful not to

refer to any View element in here—they won’t be available just yet. If you try to refer to an UI

element in here (e.g., a Button or TextField), it will return null.

❸ In this example, the name of the UI resource file is book_titles. So, presumably, you have

a file named /app/res/layout/book_titles.xml. Inflate the XML resource file and return it,

so that MainActivity can compose the UI on its end. The reason you cannot refer to any UI

element while you’re inside onCreateView is because you haven’t inflated the XML resource

yet, so none of your UI elements exist at this point. The Android runtime passes the inflater
and container objects to the onCreateView method. We need these object to inflate the UI

resource.

❹ The runtime calls onViewCreated method when all of the UI elements are ready. This is where

you can start using and referring to UI elements.

Note T o “inflate” a UI resource file means to take in a UI definition (in XML),
create the actual View and ViewGroup objects, and render them. After the inflation
process, you will be able to refer to the View objects programmatically.

The final step is to add the Fragment to the Activity. You can add Fragments to

an Activity in two ways: during runtime or during design time. For now, we’ll add the

Fragment during design time.

Open the UI resource file for MainActivity, if it isn’t opened yet. From the Project tool

window, double-click /app/res/layout/activity_main.xml. Open it in “Design” mode.

In the Palette, go to Common, look for <fragment>, as shown in Figure 14-4.

Chapter 14 Fragments

310

Drag the <fragment> element and drop it anywhere in the Activity, just like dragging

and dropping any View element. A Fragments dialog will pop up; you’ll need to select

which Fragment class you would like to add to activity_main layout. In our case, there’s

only one Fragment class—choose the BookTitle fragment.

That’s it, we can now run our un-interesting and uninspired Fragment sample. If you

run it, it looks like Figure 14-5 in an emulator.

Figure 14-5.  FragmentsTest, running

Figure 14-4.  Drag a fragment element into activity_main

Uninteresting as it is, it should ground you well enough on the basics of Fragments.

Now, we’re ready for something a bit more interesting. In the next section, we’ll create a

demo project with two fragments.

Chapter 14 Fragments

311

�Book Title and Description, a Fragments Demo
What we’d like to do:

	 1.	 Use two fragments in our MainActivity.

	 2.	 One of the fragments contains a list of books; we’ll let the user

choose a book by clicking one of the radio buttons.

	 3.	 The other fragment contains a description of the book that’s

currently selected.

	 4.	 The fragments will re-arrange themselves depending on how the

user is holding the device—portrait or landscape orientation.

At runtime, the app looks like Figure 14-6 when the device is oriented vertically.

book_description
fragment

book_title
fragment

rotate left

rotate right

Figure 14-6.  Book titles app, oriented vertically (portrait)

Chapter 14 Fragments

312

When the user holds the device in landscape mode, it looks like Figure 14-7.

book_description
fragment

book_title
fragment

Figure 14-7.  Oriented horizontally, landscape

We already know how to create fragments and how to add them to an Activity, but in

order to complete this demo project, we’ll need to hash a couple more details.

	 1.	 How can we use radio buttons as a selector, such that when

one button is selected, the others are deselected? We’ll use a

radiogroup and collect all the radio buttons under this group.

	 2.	 Where will we store the text definition of each book? We will use

an XML file and then load it into an array. Each element of the

array will contain a book’s definition.

	 3.	 How are we going to synchronize the information between the
two fragments? We’ll explore interfragment communication. We

won’t let the fragments communicate with each other directly

(although we could, but that’s not considered good practice). We

will manage the synchronization via the Activity.

Chapter 14 Fragments

313

	 4.	 How are we going to handle the changes in the device
orientation? We will create another layout folder in /app/res

specifically for landscape layout. It will be named /app/res/
layout-land; this is where we will put our layout files when the

device is oriented in landscape.

Let’s get to work then. I created a new project for this demo; the details are

in Table 14-1.

Table 14-1.  Project Details

Project Detail Value

Application name CH14FragmentsBooks

Company domain use your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Let’s create the XML resource file that will hold the text for book descriptions. To do

this, you can:

	 1.	 Use the context menu, right-click on /app/res/values in the

Project tool window, then

	 2.	 Click New ➤ XML ➤ Values XML file, as shown in Figure 14-8.

	 3.	 Name it “bookdescriptions”—don’t type the .xml extension;

Android Studio will take care of that.

Chapter 14 Fragments

314

Open the bookdescriptions.xml in the editor and copy the contents of Listing 14-2

into it.

Listing 14-2.  /app/res/values/bookdescriptions.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string-array name="bookdescriptions">

 <item>

 �How to use Android Studio 3, but also teaches you how basic

Android programming. And hey, in case you're also a beginner in Java,

that's covered too.

 </item>

 <item>

 This book is also about how to use Android Studio. Like the first one,

 it also teaches you the basics of the IDE and Android programming; but

Figure 14-8.  Create new XML values file

Chapter 14 Fragments

315

 this time around, you'll use Kotlin. The newest kid in the JVM block

 </item>

 <item>

 Minimum Android Programming is the book that got me started. I wrote

 in an age when even the Eclipse ADT doesn't exist yet. So, this means

 you'll use the Android SDK in all the glory of the CLI tools

 </item>

 </string-array>

</resources>

Now we can work on the fragments. Let’s create the book_titles fragments first. Create

a new layout resource file and name it “book_titles.”

Listing 14-3 shows the content of /app/res/layout/book_titles.xml

Listing 14-3.  /app/res/layout/book_titles.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.

android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:layout_editor_absoluteY="81dp">

 <RadioGroup ❶

 android:id="@+id/radioGroup"

 android:layout_width="354dp"

 android:layout_height="wrap_content"

 tools:layout_editor_absoluteX="16dp"

 tools:layout_editor_absoluteY="75dp">

 <RadioButton ❷

 android:id="@+id/rlas3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_weight="1"

Chapter 14 Fragments

316

 android:text="Learn Android Studio 3"

 android:textSize="18sp" />

 <RadioButton ❸

 android:id="@+id/rlas3kotlin"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_weight="1"

 android:text="Learn Android Studio 3 with Kotlin"

 android:textSize="18sp" />

 <RadioButton ❹

 android:id="@+id/rminandroid"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_weight="1"

 android:text="Minimum Android Programming"

 android:textSize="18sp" />

 </RadioGroup>

</android.support.constraint.ConstraintLayout>

❶ Get a RadioGroup View.

❷ Add the first radio button as a child node of the RadioGroup.

❸ Do the same for the second radio button.

❹ Do the same for the third radio butto.n

Next, let’s create the Fragment class for the book_titles UI. Use the context menu,

right-click on /app/java/net.workingdev.ch14fragmentbooks, then choose New ➤

Kotlin File/Class. Create a class and name it BookTitle. In this class, we need to do the

following:

	 1.	 It’s a fragment, so it needs to inherit the Fragment class.

	 2.	 Override the onCreateView callback, inflate the UI resource file,

and return it.

Chapter 14 Fragments

317

	 3.	 Handle the click events for the radio buttons. There are a couple

ways to do this. One way is to set up a listener for the radioGroup,

and the other way is to set up a click listener for each radio button;

we’re going for the latter.

The annotated (and explained) BookTitle class is shown in Listing 14-4.

Listing 14-4.  BookTitle Fragment Class

import android.support.v4.app.Fragment

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

class BookTitle : Fragment(), View.OnClickListener { ❶

 �override fun onCreateView(inflater: LayoutInflater, container:

ViewGroup?, savedInstanceState: Bundle?): View? { ❷

 val v = inflater.inflate(R.layout.book_titles, container, false) ❸

 return v

 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 rlas3.setOnClickListener(this) ❹

 rlas3kotlin.setOnClickListener(this)

 rminandroid.setOnClickListener(this)

 }

 override fun onClick(v: View?) { ❺

 var index:Int = 0

 when(v?.id) {

 R.id.rlas3 -> { ❻

 index = 0 ❼

 }

 R.id.rlas3kotlin -> {

 index = 1

 }

Chapter 14 Fragments

318

 R.id.rminandroid -> {

 index = 2

 }

 }

 }

}

❶ We extend the Fragment class from the support library. We’re also implementing the View.
OnClickListener interface. We will use the class as the onClick listener object for the three

radio buttons.

❷ The runtime calls onCreateView method to compose the UI of the Fragment. At this point,

none of UI elements of the Fragment are accessible. You cannot make any UI changes or

initialization here.

❸ This will return a View object to the runtime. We’re inflating the UI resource file. The inflate

method takes on three arguments:

1. UI Resource file. The XML layout for the fragment, we will use R.layout.book_titles .

2. This is the would-be parent of the fragment, or root. We will just use container for this.

3. �attachToRoot. This is a Boolean value. This value will decide whether the inflated View

should be attached to the root parameter? If false, root is only used to create the correct

subclass of LayoutParams for the root view in the XML.

❹ We’re saying that the listener object for the radio button is an instance of the BookTitle class,

this class.

❺ The onClick callback is from the View.OnClickListener interface. When one of the radio

buttons is clicked, the runtime will call this method and pass along the actual View object that

was clicked. This is where we route our program logic. We’ll which radiobutton was actually

clicked.

❻ The when construct is a good fit for routing program logic. We’re testing for the runtime value

of View.id here; R.id.rlas3, R.id.rlas3kotlin, and R.id.rminandroid are the declared ids of the

radio button in book_title.xml .

❼ We’re assigning a zero value to rlas3 because the description for rlas3 is found on the 0th

element of the book description array (we have yet to create this array). Similarly, rlas3kotlin’s

definition is the 1st element and rminandroid’s is the 2nd element of the book description array.

Chapter 14 Fragments

319

Now that the two components of the book_titles fragment are complete, we can work

on the book_description fragment. You already know how to create a fragment, so I’ll

skimp on the instructions and jump straight to the codes.

Create a new UI resource and name it book_description, and make sure it’s in

/app/res/layout folder. As the for the fragment class, name it BookDescription.

Listings 14-5 and 14-6 show the codes for book_description.xml and

BookDescription class, respectively.

The book_description fragment is simple. It only has a single TextView element. Note

that we’re not using a ConstraintLayout for this fragment—we could have, but using a

LinearLayout is much simpler. We want the TextView’s width to occupy the whole width

of the screen. You can simply copy Listing 14-5 and overwrite the contents of your

book_description.xml, if you’re trying to follow the exercise.

Listing 14-5.  /app/res/layout/book_description.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical">

 <TextView

 android:id="@+id/txtdescription"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="TextView"

 android:textSize="24sp" />

</LinearLayout>

Listing 14-6.  BookDescription class

class BookDescription : Fragment() {

 lateinit var arrbookdesc: Array<String>

 var bookindex = 0

 override fun onCreateView(inflater: LayoutInflater, container:

ViewGroup?, savedInstanceState: Bundle?): View? {

Chapter 14 Fragments

320

 val v = inflater.inflate(R.layout.book_description, container, false)

 arrbookdesc = resources.getStringArray(R.array.bookdescriptions) ❶

 return v

 }

 fun changeDescription(index:Int) : Unit { ❷

 bookindex = index

 txtdescription?.setText(arrbookdesc[bookindex]) ❸

 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 changeDescription(bookindex)

 }

}

❶ This statement reads the file /app/res/values/bookdescriptions.xml and creates an array

out of it.

❷ We created a small function that will take care of changing the text in the description TextView.

It takes an Int value, which we will use as the selector for the description. Each element of the

array contains a description of a book.

❸ arrbookdesc[bookindex] gets a description from the array and then sets the text attribute of

the TextView to it.

Now that the two fragments are built, we can focus on the MainActivity. It needs to

do three things:

	 1.	 Hold the two fragments together;

	 2.	 Act as a messenger for each fragment. When the user selects a

book in book_titles fragment, we need to look up the description

of that book in bookdescriptions array and change the text

description accordingly in the book_description fragment; and

	 3.	 Adjust the arrangements of the two fragments depending on the

orientation of the device. If the device is oriented vertically, the two

fragments will be arranged stacked from top to bottom. When the

device is oriented horizontally, the stacking will be from left to right.

Chapter 14 Fragments

321

Let’s work on goal no. 3 first. Right now, we only have one layout folder, the

/app/res/layout folder is the default location where Android will look for a layout

resource. This is the reason why we’ve always put our activity_main.xml in this folder.

There is a convention that if we create a folder named /app/res/layout-land, Android

will look for a layout file in this folder when the device is in landscape mode. We will use

this convention to achieve our goal.

Also, we need to solve the top-to-bottom and left-to-right stacking order. The

easiest way to achieve this is to change activity_main’s layout from ConstraintLayout to

LinearLayout. The idea is to provide identical activity_main xml file for /app/res/layout

and /app/res/layout-land, but we will change the LinearLayout orientation such that in

the default layout folder, the orientation is vertical (the default) and in the layout-land

folder, the orientation is horizontal. We’ll make a couple more changes, but we’ll get to

that in a while.

To convert activity_main’s layout to LinearLayout, do the following:

	 1.	 Open activity_main.xml in design view.

	 2.	 In the “Component Tree” tool window, right-click on

“ConstraintLayout, as shown in Figure 14-9.

Figure 14-9.  Convert activity_main to LinearLayout

Chapter 14 Fragments

322

	 3.	 Choose Convert View.

	 4.	 A dialog box will appear; choose LinearLayout, as shown in

Figure 14-10.

Figure 14-10.  Convert to LinearLayout

Listing 14-7 shows the code of the revised activity_main (after the conversion to

LinearLayout).

Listing 14-7.  Code of activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent" ❶

 android:layout_height="match_parent" ❷

 android:orientation="vertical" ❸

 tools:context=".MainActivity">

</LinearLayout>

❶ layout_width:“match_parent” means the layout will span the whole width of the screen.

❷ \This means the layout will span the whole height of the screen.

❸ orientation:“vertical” means whatever Views we’ll put in this layout will be arranged top to

bottom.

Chapter 14 Fragments

323

Next, add the two fragments to activity_main. Open activity_main in design mode, go

to the Palette ➤ Common, then find the <fragment>, as shown in Figure 14-11. Add the

BookTitle fragment first. Repeat the process and add BookDescription.

Figure 14-11.  Drag a fragment element into activity_main

Listing 14-8 shows activity_main.xml with the two fragments added.

Listing 14-8.  activity_main With book_titles and book_description Fragments

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context=".MainActivity">

 <fragment

 android:id="@+id/fragmentbooktitle"

 android:name="net.workingdev.ch14fragmentsbooks.BookTitle"

 android:layout_width="match_parent" ❶

 android:layout_height="0px" ❷

 android:layout_weight="1" /> ❸

Chapter 14 Fragments

324

 <fragment

 android:id="@+id/fragmentbookdescription"

 android:name="net.workingdev.ch14fragmentsbooks.BookDescription"

 android:layout_width="match_parent" ❹

 android:layout_height="0px" ❺

 android:layout_weight="1" /> ❻

</LinearLayout>

❶ We’d like the top fragment to span the whole width.

❷ Just set the height to 0px. We’ll let the runtime determine the height for us. We’re using layout

weights anyway.

❸ Let’s give a weight of “1.” It doesn’t matter what number you use here, as long as the other

fragment has the same weight.

❹ We’d also like the bottom fragment to span the whole width.

❺ We’re letting the runtime determine the height; set this one to 0px as well.

❻ We want the top and bottom fragments to have equal heights. So, we’re setting the weight

here to be “1” as well.

That takes care of the default portrait orientation. Now, let’s work on the landscape

orientation. To control the appearance and behavior of our app when the device is

oriented horizontally, we need to do four things. They’re outlined as follows:

	 1.	 Create the folder /app/res/layout-land.

	 2.	 Create another UI resource file inside layout-land; we will name

activity_main as well.

	 3.	 Copy the content of /app/res/layout/activity_main to /app/res/

layout-land/activity_main.

	 4.	 Make the necessary orientation changes in /app/res/layout-land/

activity_main.

First, you need to switch the view of the Project tool window. Right now we’re using

“Android View,” and we need to go to “Project View.” Go to the upper area of the Project

tool window, click on the downward arrow (as shown in Figure 14-12), then choose

“Project.”

Chapter 14 Fragments

325

Create the folder layout-land inside the /app/res folder. Right-click on the /app/

res folder, then choose New ➤ Android Resource Directory. Name the new directory

“layout-land,” as shown in Figure 14-13.

Figure 14-12.  Change from Android view to Project view

Figure 14-13.  New resource directory

Chapter 14 Fragments

326

Right-click on the newly created layout-land folder, then choose New ➤ Layout
Resource File.

Name the file “activity_main” and choose LinearLayout for the “Root Element,” as

shown in Figure 14-14.

Figure 14-14.  New layout resource file

Copy the content of /app/res/layout/activity_main.xml to this newly created

activity_main in layout-land, and make the appropriate changes, as shown in Listing 14-9.

Listing 14-9.  /app/res/layout-land/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="horizontal" ❶

 tools:context=".MainActivity">

 <fragment

 android:id="@+id/fragmentbooktitle"

 android:name="net.workingdev.ch14fragmentsbooks.BookTitle"

 android:layout_width="0px" ❷

 android:layout_height="match_parent" ❸

 android:layout_weight="1" /> ❹

Chapter 14 Fragments

327

 <fragment

 android:id="@+id/fragmentbookdescription"

 android:name="net.workingdev.ch14fragmentsbooks.BookDescription"

 android:layout_width="0px"

 android:layout_height="match_parent"

 android:layout_weight="1" />

</LinearLayout>

❶ We’re in landscape mode, so this needs to be “horizontal”. With this setting, the fragments will

be arranged from left to right, instead of top to bottom.

❷ In portrait mode, the layout_width is set to “match_parent and layout_height is set to “0px”.

We will reverse those settings in landscape mode. So set the layout_width to “0px”.

❸ Set the layout_height to “match_parent”.

❹ As always, we want to the two fragments to have equal weights, so use “1” in here. Make sure

that the layout_weight in the other fragment is also “1.”

The last piece of this project is synchronizing the two fragments. Figure 14-15

reminds us of what our small project is supposed to do.

Figure 14-15.  Synchronized fragments

Chapter 14 Fragments

328

When the user clicks one of the radio buttons in book_titles fragment, the

book_description fragment should change and display the description for the currently

selected book. Earlier, we wrote the changeDescription function in the BookDescription

class; we could simply call this function from the BookTitle class, but that’s not

considered good practice. Why? Because if we did that, the BookTitle class will know

a lot about the BookDescription class—it makes the former depend on the latter.

Developers call that “tight coupling,” and you should avoid that most of the time.

If we won’t call changeDescription directly from BookTitle, how are we going to do

it? Figure 14-16 shows us show.

Book Title Main Activity Book Description

onBookChanged()

changeDescription()

onClick()

Runtime

Figure 14-16.  Communication between fragments

The idea is to course the action through MainActivity. In the sequence diagram,

BookTitle calls the onBookChanged function in the Activity, then the Activity calls the

changeDescription function in BookDescription. The astute reader might note that

we’re simply shifting the dependency away from BookDescription and into MainActivity,

and that would make BookTitle dependent on (and tightly coupled with) MainActivity.

You would be correct, if we were to couple MainActivity specifically with BookTitle. We

won’t. We’ll use an interface instead; this approach gives us some degree of indirection.

It won’t be tightly coupled anymore—at least, not that tight. Here’s what we’ll do.

Chapter 14 Fragments

329

	 1.	 Create a coordinator interface—let’s name it Coordinator, why

don’t we?

	 2.	 Implement the Coordinator interface in MainActivity.

	 3.	 Use the Coordinator type from within BookTitle. When we need

to call the coordinator method within BookTitle, we’ll make it

against the Coordinator type—not against MainActivity.

To create an interface, right-click on your project’s package in the Project tool

window (as shown in Figure 14-17), then click New ➤ Kotlin File/Class.

Figure 14-17.  Create new Kotlin file/class

Chapter 14 Fragments

330

Listing 14-10 shows the code for the Coordinator interface.

Listing 14-10.  Coordinator.Kt

interface Coordinator { ❶

 fun onBookChanged(index:Int) ❷

}

❶ Declare an interface.

❷ Declare an abstract method. It takes an Int parameter. This param stands for the element

number in the bookdescriptions array. Whatever value we receive here, we’ll use it to call the

changeDescription method in the BookDescription fragment. By the way, we don’t have to

explicitly declare this method as public and abstract—that’s the default for all methods in an

interface.

Next, let’s implement this interface in MainActivity. Listing 14-11 shows the

annotated code.

Name it “Coordinator” as shown in Figure 14-18, then change the “kind” to

“Interface.”

Figure 14-18.  New interface

Chapter 14 Fragments

331

Listing 14-11.  MainActivity, Annotated

import android.os.Bundle

import android.support.v7.app.AppCompatActivity

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity(), Coordinator { ❶

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 }

 override fun onBookChanged(index:Int) { ❷

 val frag = fragmentbookdescription ❸

 if (frag is BookDescription) { ❹

 frag.changeDescription(index) ❺

 }

 }

}

❶ Let’s implement the Coordinator interface.

❷ Override the onBookChanged method. This was declared as abstract in the Coordinator

interface; we have to override it in MainActivity so we can provide the concrete behavior.

❸ Let’s get a reference to the BookDescription fragment; fragmentbookdescription is the id

of the fragment. This call returns a Fragment class; NOT yet the BookDescription class. If

you worked with Fragments before, using Java, you might remember that we needed to use

findFragmentById for doing this kind of thing. We don’t have to do it anymore. The Kotlin

Android Extensions let us refer to the fragments by id, directly—it’s already synthesized in

the MainActivity.

❹ We’re casting frag (which is still a Fragment class) to BookDescription. The is operator in

Kotlin is smart enough to perform the cast automatically for us. We don’t have to perform an

explicit cast anymore. This is one more difference between Java and Kotlin; in the former,

you to have to cast explicitly. In Kotlin, the is operator not only functions as the equivalent of

instanceof, it also performs as smart cast for us.

❺ Now, we can call the changeDescription method of the BookDescription class.

Chapter 14 Fragments

332

What’s left to do is to make the changes in the BookTitle class. When a radiobutton is

clicked, we’ll do the following:

	 1.	 Find out which button was clicked.

	 2.	 Depending on the radiobutton’s value at the time of the click, we’ll

assign a value to an index variable; 0–“Learn Android Studio 3”;

1– Learn Android Studio 3” with Kotlin; and 2–“Minimum

Android Programming.” The integers 0,1, and 2 correspond to the

three array elements of bookdescriptions.xml.

	 3.	 Get a reference to MainActivity using the Coordinator type; then

	 4.	 Call the onBookChanged method.

Listing 14-12 shows how all this looks in code.

Listing 14-12.  BookTitle, Annotated

class BookTitle : Fragment(), View.OnClickListener {

 �override fun onCreateView(inflater: LayoutInflater, container:

ViewGroup?, savedInstanceState: Bundle?): View? {

 val v = inflater.inflate(R.layout.book_titles, container, false)

 return v

 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 rlas3.setOnClickListener(this)

 rlas3kotlin.setOnClickListener(this)

 rminandroid.setOnClickListener(this)

 }

 override fun onClick(v: View?) {

 var index:Int = 0

 when(v?.id) { ❶

 R.id.rlas3 -> { ❷

 index = 0

 }

 R.id.rlas3kotlin -> {

 index = 1

Chapter 14 Fragments

333

 }

 R.id.rminandroid -> {

 index = 2

 }

 }

 val activity = getActivity() ❸

 if (activity is Coordinator) { ❹

 activity.onBookChanged(index) ❺

 }

 }

}

❶ Let’s find out which button is clicked.

❷ If it’s the button for “Learn Android Studio 3,” we’ll set the value of index to 0, and we’ll

set the value of index accordingly for rlas3kotlin and rminandroid. The when construct is

essentially translating the runtime value of the radiobutton to an Int, which we can use as an

index to our array.

❸ Let’s get a reference to the currently running Activity, which is MainActivity. Note that

getActivity() does not return the specific instance of MainActivity; it just returns the supertype

of MainActivity (FragmentActivity).

❹ Let’s cast activity to the Coordinator type.

❺ Finally, call the onBookChanged method.

We’ve connected all the dots. Now we can:

•	 Display books using radiobuttons in one fragment;

•	 Display a description of the currently selected book in another

fragment; and

•	 Adapt the layout of the fragments in response to changes in device

orientation.

Try to run the app in an emulator. Click a few buttons and then try to change the

orientation from portrait to landscape. Try to cycle through the radiobuttons in between

changes from portrait to landscape mode. Use rotation buttons on the emulator (shown

in Figure 14-19) if you want to switch from landscape to portrait and vice versa.

Chapter 14 Fragments

334

rotate left

rotate right

Figure 14-19.  Device rotation buttons, emulator

You might have noticed that the two fragments go out of sync when you change the

device orientation. The book_description fragment always goes back to the description

of “Learn Android Studio 3” (the first element on the bookdescription array).

The two fragments stay in sync as long as you don’t change the device’s orientation.

Something happens in the fragments when you change the orientation.

As the orientation of the device changes, something happens to MainActivity and

its fragments. Remember that an Activity has a life cycle? Fragments have life cycles

too—they are similar to that of the Activity but there are notable differences. We won’t

get into the details of Fragments life cycle nor will we discuss how the Activity life cycle

affects the life cycle of Fragments. I’ll just point out that as you shift the orientation of the

Chapter 14 Fragments

335

device, the Activity, together with the Fragments, will be torn down and rebuilt again.

The Activity may enter and transition through the following states (callbacks):

	 1.	 Activity.onSaveInstanceState. Fragment’s onSaveInstanceState

will be called.

	 2.	 Activity.onPause. Fragment’s onPause will be called.

	 3.	 Activity.onStop. Fragment’s onStop will also be called.

	 4.	 Activity.onCreate. Fragment’s onCreate ➤ onCreateView ➤

onViewCreated will be called.

	 5.	 Activity.onStart. Fragments onStart will be called.

	 6.	 Activity.onRestoreInstanceState

	 7.	 Activity.onResume. Fragment’s onRestoreInstance will be called.

What’s important to take away here is that as you change orientation, the fragments

lose their current state. We need to find a way to save the value of the array index (in

BookDescription class) before it gets torn down and rebuilt again. Luckily, we know that

the runtime will call the Activity’s onSaveInstanceState, and by extension, it also calls

the Fragment’s onSaveInstanceState; this method lets us save values in a Bundle, so

we’ll use that to save whatever is the value of the array index when the device is rotated.

Listing 14-13 shows the complete and annotated code for the BookDescription class.

Listing 14-13.  Complete Code for BookDescription, Annotated

import android.os.Bundle

import android.support.v4.app.Fragment

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import kotlinx.android.synthetic.main.book_description.*

class BookDescription : Fragment() {

 lateinit var arrbookdesc: Array<String>

 var bookindex = 0

Chapter 14 Fragments

336

 override fun onCreateView(inflater: LayoutInflater,

container: ViewGroup?, savedInstanceState: Bundle?): View? {

 val v = inflater.inflate(R.layout.book_description, container, false)

 arrbookdesc = resources.getStringArray(R.array.bookdescriptions)

 bookindex = if(savedInstanceState?.getInt("bookindex") == null) 0 ❶

 else { savedInstanceState.getInt("bookindex")} ❷

 return v

 }

 override fun onSaveInstanceState(outState: Bundle) { ❸

 outState.putInt("bookindex", bookindex)

 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 changeDescription(bookindex)

 }

 fun changeDescription(index:Int) : Unit {

 bookindex = index

 println("BOOK INDEX = $bookindex")

 txtdescription?.setText(arrbookdesc[bookindex])

 println(arrbookdesc[bookindex])

 }

}

❶ We need to check if the “bookindex” key isn’t null. It will be null the first time we launch the

app, because the app hasn’t called onSaveInstanceState just yet. If it’s null, let’s make the

default bookindex = 0; we go with the first description in the array.

❷ If it isn’t null, we’ve already saved a value in the “bookindex” key; so, get the value of

“bookindex” and set the value of the bookindex variable to it.

❸ Just before the Activity and Fragments are torn and rebuilt, the runtime calls

onSaveInstanceState. This method gives us access to a Bundle object; this is the same

Bundle object that we get during the onCreateView callback. Save the current value of

bookindex to the Bundle using the key “bookindex”.

Chapter 14 Fragments

337

�Fragments Demo, Dynamic
Now that we know how to work with fragments during design time, let’s see how we can

work with fragments dynamically. To add fragments dynamically, we generally have to

do the following:

	 1.	 Create the layout resource and the corresponding Kotlin class for

the fragment; just like what we did in the previous project.

	 2.	 In MainActivity, we create an instance of the fragment class.

	 3.	 Create an instance of a FragmentManager and a

FragmentTransaction object.

	 4.	 Create placeholders for the fragments in our Activity’s layout file.

The placeholders are where we’ll put the fragments later on.

	 5.	 Using the FragmentTransaction object, add the fragment to the

Activity.

This project is almost the same as the previous one. The only difference is the way

we’ll add the fragments. I think it’s best to create a new project for this, so you can keep

the previous project untouched for future reference.

Create a new project with the following details (Table 14-2).

Table 14-2.  Project Details

Project Detail Value

Application name CH14FragmentsBooksDynamic

Company domain use your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Chapter 14 Fragments

338

For the most part, you’ll just copy and paste the files from the previous project. I

suggest that you don’t copy the whole project folder. Create a new project and recreate

your steps in the previous project; create the same classes, interfaces, xml resources, and

UI resources using exactly the same file names as in the previous project. Then, copy the

contents of the file from the previous project and onto the corresponding files in the new

project.

Having done that, Table 14-3 shows which file stays unchanged and which file will

change in this current project.

Table 14-3.  Summary of Changes in the New Project

File Description

MainActivity.Kt Changes = Yes. We need to add FragmentManager and

FragmentTransaction codes .

activity_main.xml Changes = Yes. We’ll remove the <fragment> element and replace it

with a placeholder.

book_description.xml Changes = No. Stays as is. You can copy and paste and then leave it alone.

BookDescription.Kt Changes = No. Copy, paste, then leave it alone.

book_titles.xml Changes = No. Copy as is.

BookTitle.Kt Changes = No. Copy as is.

bookdescriptions.xml Changes = No. Copy as is.

Coordinator.Kt Changes = No. Copy as is.

As you can see, the changes are all contained in the main activity files. Listing 14-14

shows the full code and annotates the changes in activity_main.xml.

Listing 14-14.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

Chapter 14 Fragments

339

 android:orientation="vertical"

 tools:context=".MainActivity">

 <LinearLayout ❶

 android:id="@+id/fragtop" ❷

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_weight="1"

 android:orientation="horizontal">

 </LinearLayout>

 <LinearLayout ❸

 android:id="@+id/fragbottom" ❹

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_weight="1"

 android:orientation="horizontal">

 </LinearLayout>

</LinearLayout>

❶ We added a LinearLayout container; and

❷ we named this first container fragtop. This is the placeholder for the BookTitles fragment.

❸ We added another LinearLayout container; and

❹ named this one fragbottom. This is the placeholder for the BookDescription fragment.

You’ll notice that activity_main doesn’t contain <fragment> elements anymore.

Instead, we’ve put two LinearLayout containers that act as placeholders for the

fragments. When we make the call to add the fragments to our Activity, we’ll put them in

these placeholders. That’s the extent of the changes on UI resource layout. Most of the

change will actually be on MainActivity.

In the previous project where we added the fragments to the Activity statically, we

didn’t do much as far as fragments were concerned; but now that we will add fragments

dynamically, we’ll need to add the necessary codes to add the fragments at runtime.

Chapter 14 Fragments

340

To work with fragments dynamically, you’ll need two objects: a FragmentManager

and a FragmentTransaction. You can use the FragmentManager for doing a lot of things

like finding fragments by Id and by tag; but for our purpose, we’ll only use it as to get a

FragmentTransaction object.

A FragmentTransaction is what’s responsible for adding, attaching, detaching, and

removing fragments at runtime. For our purpose, we will only use it to add fragments.

The full code for MainActivity is shown in Listing 14-15.

Listing 14-15.  MainActivity, Annotated

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

class MainActivity : AppCompatActivity(), Coordinator {

 lateinit var fragBookDescription: BookDescription

 lateinit var fragBookTitle: BookTitle

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 fragBookTitle = BookTitle() ❶

 fragBookDescription = BookDescription() ❷

 val fragTransaction = supportFragmentManager.beginTransaction() ❸

 fragTransaction.add(R.id.fragtop, fragBookTitle) ❹

 fragTransaction.add(R.id.fragbottom, fragBookDescription) ❺

 fragTransaction.commit() ❻

 }

 override fun onBookChanged(index:Int) { ❼

 fragBookDescription.changeDescription(index) ❽

 }

}

Chapter 14 Fragments

341

❶ Create an instance of the BookTitle fragment.

❷ Create an instance of the BookDescription fragment.

❸ Let’s get a FragmentTransaction object. The supportFragmentManager is made

available to us as a convenience feature of Android Studio and Kotlin. The actual call is

getSupportFragmentManager(), but it’s synthesized for us already so we don’t have to use

the actual method. Next, the beginTransaction() call is a factory method that gives us a

FragmentTransaction object.

❹ Let’s use the FragmentTransaction to add a fragment. The add method takes two arguments:

1. �A n id of a View object. This is the id the LinearLayout placeholder that we added in

activity_main.xml (fragtop).

2. A n instance of a fragment (fragBookTitle)

❺ Similarly, let’s add the book description fragment.

❻ We have to call the commit() method of the FragmentTransaction to finalize all changes in

FragmentTransaction. If you don’t call this method, nothing will happen—the fragments won’t

be added.

❼ You remember this method, when the user clicks one of the radiobuttons in BookTitle

fragment, that fragment will call the onBookChanged() method in MainActivity.

❽ In the previous project, we had to find the id of the book_description fragment and then cast

it a BookDescription object before we called changeDescription. We don’t have to do that

anymore, since we can refer to the instance of the BookDescription fragment directly.

That concludes the exercise and the chapter. We barely scratched the surface on

Fragments—there’s more to them than what’s presented here; but hopefully, this gives

you a good foundation when you further explore them.

�Chapter Summary
•	 Fragments, like Activities, can contain View elements. They are also a

composition unit, but smaller.

•	 You can use Fragments to respond to different device orientation,

form factor, or size.

•	 Fragments, like Activities, also have life cycle callbacks.

Chapter 14 Fragments

342

•	 The life cycles of Activities have an effect on Fragments.

•	 When you change the device’s orientation, Activities (and Fragments)

get torn down and rebuilt again. They go through a series of life cycle

callbacks.

•	 Android P deprecated android.app.Fragments. So, if you want to use

Fragments, use the class from the support library.

In the next chapter, we’ll learn something about what Android calls “jank” and how

to avoid it in your code.

Chapter 14 Fragments

343
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_15

CHAPTER 15

Running in the
Background
What we’ll cover:

•	 The UI thread

•	 Threads and runnables

•	 Handlers and messages

•	 AsyncTask

•	 Anko’s doAsync

No one wants to use slow applications. Users want their apps crisp and snappy.

Every developer wants this also—no one sets out to build their app and say, “This app

is too fast, maybe I should slow it down a bit”; nobody does that. So, how come there

are apps that move like molasses? You’ve probably seen some of these apps I’m talking

about—you know those where you try to scroll through a recycler view or a list and then

it starts, stops, and sputters. Sluggish.

We can list a number of reasons why some apps are sluggish, but I bet one of the top

10 reasons is that there’s too much going on the main thread. It’s probably saddled by an

I/O routine or a complex calculation—or both—and that’s bad.

Does that mean you shouldn’t make any I/O calls or do any complex calculation in

your app? Not at all. But you should know where to put I/O calls or complex calculation;

and it’s not on the main thread.

In this chapter, we’ll take a look at ways on how to keep slow-moving codes away

from the main thread so that apps can respond crisply and snappily.

344

�Basic Concepts
A process is created when an app is launched. It’s allocated some resources, like memory

and some other things that it needs so it can do its job. It’s also given at least one thread.

A thread, loosely speaking, is a sequence of instructions. It’s the thing that actually

executes your code. During the time that the app is alive, the thread will utilize the

process’ resources. It may read or write data to the memory, to the disk, or, sometimes,

even the network I/O. While the thread is interacting with all these, it really is just

waiting. It can’t take advantage of CPU cycles while it’s waiting. We can’t let all those

CPU cycles go to waste. Can we? What we can do is to create other threads so that

when one or more threads are waiting for something, the other threads can utilize the

CPU. This is the case for multi-threaded applications.

When the runtime created an instance of the app, that process was given one thread.

It’s called the main thread; some developers call it the UI thread. The runtime gave us

just the one thread and no more. But the good news is we can create more. The UI thread

is allowed to spawn other threads.

�The UI Thread
Before we dive into the details of spawning or creating child threads, let’s talk about the

UI thread first. It’s the one responsible for launching the main activity and inflating the

layout xml so that all the View elements in it turn into actual Java objects (e.g., buttons,

text views, etc.). In short, it’s the one responsible the UI.

When you make a call like setText or setHint, it will be done on the main thread;

if you thought that these calls executed immediately, that would be wrong. Whatever

statements you write in the app will generally follow these steps:

	 1.	 The statements will be placed in a MessageQueue, and there it will

stay, until

	 2.	 a Handler picks it up for execution; and finally

	 3.	 it gets executed on the main thread.

You might say, “This is all nice to know, but so what?”. Well, you should care about

this because the main thread is not only used for drawing UI elements. It’s also used for

everything else that happens in your app. Remember that the Activity has other methods

like onCreate, onStop, onResume, onCreateOptionsMenu, onOptionsItemSelected,

Chapter 15 Running in the Background

345

and other similar methods; whenever the code is running on these blocks, the Android

runtime cannot process any message in the queue. It’s in a blocked state; a blocked

state is a concurrency jargon that developers use when they mean to say that the app

is waiting for something to finish before it can continue to go about its business. Never

mind the jargon—just remember that blocking can be bad for the user-experience.

How can this happen? The answer is “because we only have one thread to do all

these things.” The solution for this problem is to create a background thread or a child

thread and do our non-UI tasks in there—but not always. If you think the call is cheap

enough in terms of processing resources, say 1 ms to 15 ms, then go ahead and just do it

on the main thread. If it’s going to take more than 16 ms and up, you should probably do

it on background thread.

The 16-ms threshold is a guideline from “Project Butter,” which was released at the

time of Android 4.1 (Jellybean). It was meant to improve the performance of Android

apps. When the runtime senses that you’re doing too much on the main thread, it will

start dropping frames. When you’re not making expensive calls, the app performs at a

smooth 60 FPS (frames per second). If you tie up the main thread, you’ll start noticing

sluggish performance, or what the Android team refers to as “jank.” I don’t have a

clear-cut guideline that can tell you what’s an expensive call and what’s a cheap one.

What I can do, though, is to show you examples of both calls; hopefully, you’ll get an idea

what an expensive versus cheap call looks like.

Listing 15-1 is a cheap call even if it sets the text attribute to a calculated value. The

calculation is simple enough, the UI thread won’t break a sweat.

Listing 15-1.  Set Text Attribute to a Calculated Value: A Cheap Call

button.setOnClickListener {

 txtsecondnumber.setText((2 * 2 * 2).toString())

}

Listing 15-2 might seem complicated because it calculates the GCF. What if the

numbers are large—wouldn’t that be too taxing for the main thread? Not really. Listing

15-2 uses the Euclidian algorithm for finding the GCF. The algorithm performs at

constant time or O(1); that’s another jargon that developers use when they talk about

the time complexity of an algorithm or how long it will take for the code to finish. O(1) or

constant time means that the algorithm will perform the same whether the input is large

or small; the time complexity doesn’t change much whether we’re finding the GCF of 12

and 15 or 16,848,662 and 24. So, it’s quite okay to put this in the main thread.

Chapter 15 Running in the Background

346

Note T ime complexity of algorithms can be expressed as either O(1), O(N), O(N2),
O(2N), or O(log N), where N stands for the size of the input. This is a called Big O
notation. It’s good to know something about it—especially if you want to write
performant codes.

Listing 15-2.  Calculate GCF: Still a Cheap Call

button.setOnClickListener {

 val numfno = txtfirstnumber.text.toString().toInt()

 val numsno = txtsecondnumber.text.toString().toInt()

 var numbig = if(numfno > numsno) numfno else numsno

 var numsmall = if(numfno < numsno) numfno else numsno

 var rem = numbig % numsmall

 while(rem != 0) {

 numbig = numsmall

 numsmall = rem

 rem = numbig % numsmall

 }

 �Toast.makeText(this@MainActivity, "GCF is $numsmall", Toast.LENGTH_LONG).

show()

}

Listing 15-3 is considered expensive because it makes a call to the network

I/O. The code, in fact, won’t even compile at all because it will result in a

NetworkOnMainThreadException. The IDE won’t even let us through the compilation

process. As a rule of thumb, if your code will make I/O calls, whether local file or the

network, you should do it in a background thread.

Chapter 15 Running in the Background

347

Listing 15-3.  Read Something from GitHub: Expensive Call

button.setOnClickListener {

 val url = "https://api.github.com/users/tedhagos"

 println("inside doGetHttp")

 val client = OkHttpClient()

 val request = Request.Builder().url(url).build()

 val response = client.newCall(request).execute()

 val bodystr = response.body().string()

}

Listing 15-4 doesn’t do any I/O, but the function killSomeTime simulates an

expensive call.

Listing 15-4.  Do Something That Blocks: Expensive Call

button.setOnClickListener {

 killSomeTime()

 }

}

private fun killSomeTime() {

 for (i in 1..20) {

 textView.text = i.toString()

 println("i:$i")

 Thread.sleep(2000)

 }

}

The Thread.sleep call in Listing 15-4 is a dead giveaway that the code will block, but

it can simulate something that can take 2 seconds to complete. At first glance, you might

think that the textView will update every 2 seconds to show the current value of i, but

that won’t happen because the runtime will drop the framerates already. The UI thread

can’t update the textView because it’s tied up waiting for the Thread to wake up and

resume.

Imagine if you have a code like Listing 15-5—it doesn’t have any I/O call or Thread.
sleep, but it won’t update the text field (in the second level of the loop) like you

expect—again, because the main thread is busy calculating the Cartesian product.

Chapter 15 Running in the Background

348

Listing 15-5.  Deeply Nested Calculation: Expensive Call

button.setOnClickListener {

 for (i in 1..100000) {

 for (j in 1..10000) {

 txtfirstnumber.setText((i*j).toString())

 for (k in 1..10000) {

 println("i: $i | j: $j | k$k | i*j*k = ${i*j*k}")

 }

 }

 }

}

Note A Cartesian product is a mathematical set that is the result of multiplying
other sets.

In earlier versions of Android, before Project Butter, the codes shown in

Listings 15-3, 15-4, and 15-5 may have resulted in the ANR error (Android Not

Responding). Nowadays, they may not draw the ANR anymore, but the bigger concern is

jank. To avoid jank, we should move those expensive calls to a background thread. There

are many ways to do that in Android. Some solutions are found on the framework level

like the Loader API or AsyncTaskLoader; however, these things were deprecated starting

with API 28, so it’s best to stay away from them. There’s also a couple of low-level ways to

do some task in the background, they are:

•	 Threads and Runnables, from Java

•	 AsyncTask, this is part of Android framework

•	 Handlers and Messages, also part of the Android framework

•	 Anko’s doAsync, Anko is a third-party library written in Kotin

Chapter 15 Running in the Background

349

�Threads and Runnables
Let’s use Listing 15-14 as a use-case for our exploration. To run that code, you’ll need a

UI that looks like Figure 15-1; the xml code for our basic UI is in Listing 15-6.

Listing 15-6.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

id: textView
textSize: 30sp

id: button

Figure 15-1.  Our basic activity_main layout

Chapter 15 Running in the Background

350

 android:layout_marginStart="16dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/textView" />

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="16dp"

 android:layout_marginTop="32dp"

 android:text="TextView"

 android:textSize="30sp"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

If you try to run Listing 15-4 as it stands right now, it will run; but it won’t run well.

You will notice the following:

	 1.	 You expect that the textView will refresh every 2 seconds to show

the current value of i. It won’t. The frames are going to drop, so

you won’t see any UI activity.

	 2.	 But you will see the value of I as it gets updated every 2 seconds in

the Logcat window. This is because println isn’t affected by the

reduction in framerate—the output is in the console, not in the UI.

	 3.	 You might see a message like this from the runtime’s

Choreographer:

07-31 15:51:29.646 13403-13403/net.workingdev.

ch15scratchasynctask I/Choreographer: Skipped 2402 frames!

The application may be doing too much work on its main

thread.

Chapter 15 Running in the Background

351

Though the app didn’t draw an ANR, it significantly slowed down. You can definitely

feel some jank. To fix this, let’s move the janky code to a background thread.

To create a thread and start it, you need to do the following:

	 1.	 Create a class that implements the Runnable type.

	 2.	 Anything that you want to run in the background, put it inside the

overridden run method.

	 3.	 Create a Thread object, then pass the Runnable object that you

just created in step 1 to the Thread’s constructor.

	 4.	 Call the start method of Thread.

	 5.	 Every time the value of the variable i changes, we update the

TextView.

In code, it looks like the following (see Listing 15-7).

Listing 15-7.  Threads and Runnables

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener {

 val runnable = Worker()

 val thread = Thread(runnable)

 thread.start()

 }

 }

 inner class Worker : Runnable {

 override fun run() {

 killSomeTime()

 }

 }

Chapter 15 Running in the Background

352

 private fun killSomeTime() {

 for (i in 1..20) {

 Thread.sleep(2000)

 println("i: $i")

 }

 }

}

By now, in Chapter 15 of this book, you already know about anonymous objects,

lambdas, and how to chain function calls. We should be able to whip up something like this:

 button.setOnClickListener {

 Thread(Runnable { ❶ ❷

 killSomeTime()

 }).start() ❸

}

❶ A Runnable anonymous object is created using Kotlin lambda expressions. It’s passed to the

constructor of a Thread class.

❷ We don’t have to write the run method anymore. Runnable is a SAM class (a class with a

Single Abstract Method). You don’t need to explicitly write the name of the abstract method

when you use a SAM class in a lambda expression.

❸ Calling start kicks the thread into high gear.

Our code should work fine right now if all we want to do is println to the console. But

remember that we need to set the value of the TextField to the current value of i.

A background thread is not allowed to change anything in the UI. That responsibility

belongs only to the UI thread. So, the next problem we need to solve is how to come back

to the UI thread so we can update the TextView. There are a couple of ways to do that,

but the simplest is to call the runOnUiThread method of Activity class.

Chapter 15 Running in the Background

353

The runOnUiThread method takes a Runnable object and executes the code of

the Runnable object in the main thread. Listing 15-8 shows the full, annotated, and

explained code for MainActivity.

Listing 15-8.  Full Code of MainActivity, With Annotations

import android.os.AsyncTask

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener {

 Thread(Runnable { ❶

 killSomeTime() ❷

 }).start() ❸

 }

 }

 private fun killSomeTime() {

 for (i in 1..20) {

 runOnUiThread(Runnable{ ❹

 textView.text = i.toString()

 })

 println("i:$i")

 Thread.sleep(2000)

 }

 }

}

Chapter 15 Running in the Background

354

❶ To create a background thread, you need to create an instance of Runnable type (Thread) and

start it. The Thread constructor takes a Runnable type and executes whatever is inside the

run method. I used an object expression in this line to create an instance of a Runnable type

without creating a named subclass—kinda like Java’s anonymous classes.

❷ We are inside the Runnable’s run method now. We’re in a background thread.

❸ Don’t forget to call start on the Thread object.

❹ One of the limitations of a background thread is that it cannot do anything that modifies the

UI. Any UI modification code has to run from the original thread that created the UI—which is

the UI Thread. If you need to change the UI from a background thread (like this), you can call

the runOnUiThread method of the Activity class. It takes a Runnable type (again), you can put

all the UI modification code on the run method of this Runnable type.

When you run this code, you should see the updated value of the variable i every 2

seconds. The Choreographer will also stop bugging us about dropped frames because

we’re back to the buttery smooth rate of 60 FPS.

�Using the Handler Class
The Handler class, unlike the Thread, is part of the Android framework—not part of Java.

Handler objects are used mainly to manage threads. Remember the discussion earlier

about your code being put in MessageQueue; it waits there until it gets picked up and

executed—it’s the Handler that does the picking and the executing.

The basic idea is to get a reference to the Handler of the main thread, then, while

we’re inside the background thread (where we can’t make any UI changes), send a

Message to the handler object. Use the Message object to convey data between the

background thread and the main thread.

To use a Handler object, you need to do the following:

	 1.	 Get the Handler object that’s associated with the UI Thread.

	 2.	 Somewhere in your code, when you’re about to do something that

may cause jank, run that instead on a background thread.

Chapter 15 Running in the Background

355

	 3.	 While you’re inside the background thread, when you need to

change something in the UI, do the following:

a. � Create a Message object, best way to do this is to call Message.
obtain().

b. � Send a message to the Handler object by calling the

sendMessage method. Message objects can carry data. The

data attribute of the Message object is a Bundle object, so you

can use the various putXXX() methods on it (e.g., putString,
putInt, putBundle, putFloat, etc.).

	 4.	 You can do the UI changes in the handleMessage callback of the

Handler object.

Listing 15-9 shows how all these come together in code.

Listing 15-9.  Full Listing for MainActivity, Annotated and Explained

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.os.Handler

import android.os.Message

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 lateinit var mhandler: Handler ❶

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 mhandler = object : Handler() { ❷

 override fun handleMessage(msg: Message?) {

 textView.text = msg?.data?.getString("counter") ❸

 }

 }

Chapter 15 Running in the Background

356

 button.setOnClickListener {

 Thread(Runnable {

 killSomeTime() ❹

 }).start()

 }

 }

 private fun killSomeTime() {

 for (i in 1..20) {

 var msg = Message.obtain() ❺

 msg.data.putString("counter", i.toString()) ❻

 mhandler.sendMessage(msg) ❼

 Thread.sleep(2000)

 }

 }

}

❶ Declare a Handler object as a property of the class. We need access to this from two of our

top-level functions. We’re using lateinit here because were not yet ready to define the object.

❷ We’re defining the Handler object now. We’re getting the Handler object that’s associated with

the UI Thread.

❸ It’s safe to make UI changes in here. This is the Handler that’s associated with the UI

Thread. The handleMessage callback will be called by the runtime when we invoke the

sendMessage. The Message parameter of this method carries the data.

❹ killSomeTime is representative of any I/O or time-consuming task. Always run it in a

background thread to avoid jank.

❺ Create a Message object. This is what we will send to the Handler later.

❻ The data property of the Message object is like a Bundle—you can put things in it. It’s like

a dictionary, each item is a pair—a key and a value. We passed two things to the putString()

method, these are:

1.  "counter", the key
2.  i.toString(), the value

❼ Send the Message to the Handler object.

When you run this code, it performs just as well as our earlier Thread example.

Chapter 15 Running in the Background

357

�AsyncTask
Another way to run codes in the background is to use the AsyncTask class. AsyncTask,

like the Handler class, is part of the Android framework. Like the Handler, it has a

mechanism for doing the work on the background, and it also provides a (cleaner) way

to update the UI.

To use the AsyncTask, you generally need to do the following:

	 1.	 Extend the AsyncTask class.

	 2.	 Override AsyncTask’s doInBackground method so you can

accomplish the background work.

	 3.	 Override a couple more of AsyncTask’s life cycle methods so

you can update the UI and report on the overall status of the

background task.

	 4.	 Create an instance of AsyncTask subclass and call the

execute—that’s how you kickstart the background operation.

One of the reasons why AsyncTask is less preferred than simple Threads is that it

uses generics. The AsyncTask class is parameterized. You have to specify three types

before you can use it. Listing 15-10 shows us how to subclass the AsyncTask class.

Listing 15-10.  Subclassing the AsyncTask

AsyncTask<Void, String, Boolean> { ❶

 override fun doInBackground(vararg p0: Void?) : Boolean { ❷

 // statement

 publishProgress("status of anything") ❸

 }

 override fun onProgressUpdate(vararg values: String?) {

 // update the UI ❹

 }

 override fun onPostExecute(result: Boolean?) {

 println(result) ❺

 }

}

Chapter 15 Running in the Background

358

❶ The AsyncTask is a parameterized class. You have to specify three types before you can use it.

The three types, in the order they appear, are the following:

a. �Params. This is the information you need to pass to the AsyncTask so that it can do the

background task. It could be anything, like a list of URLs, View object(s), or String(s). To

make it a bit more challenging for us, it’s a vararg parameter. Typically, developers use this

parameter to pass the View elements so the AsyncTask can reference the View objects of

the Activity. But in our example, I will make the AsyncTask an inner class—that way, it can

refer to any View element in MainActivity  (this is reason why I used Void as the first type

parameter—I simply don’t need it).

b. �Progress. The type of information that you want the background thread to pass to the UI

thread so you can tell the user what’s going on.

c. �Result. The kind data you want to indicate the result of the background operation; most of the

time, this is either true or false. If the operation succeeds, then it’s true, otherwise it’s false.

❷ This is the only mandatory function to override. As the name suggests, this is where you’ll do

things in the background. Whenever you need to read/write to a file or a network I/O, you’d

want to do it here. This function takes in a vararg Void parameter, it corresponds to the first

type parameter we defined for our class. If you made the first type parameter as String, then

doInBackground should take a String. Notice also that this method returns a Boolean; that’s

because we passed a Boolean as the third parameter type.

❸ Periodically, you may want to inform the user of what’s going on in your app, especially if

it’s a lengthy operation. The publishProgress method lets you do that. While you are inside

doInBackground, you cannot make any changes to the UI. UI changes needs to happen on the

UI Thread. When you call publishProgress, the Android runtime will call onProgressUpdate—

that’s where you can make UI changes. Whatever argument you pass to publishProgress, the

onProgressUpdate receives it.

❹ When you’re inside this method, all the statements will be executed on the UI Thread. This

is where you make changes to your View objects. The method takes a String parameter

because we passed String as the second type parameter of the AsyncTask class, and it

corresponds to that. This method will be called after we’ve invoked publishProgress from the

doInBackground method; whatever data you pass to publishProgress will be received by

onProgressUpdate.

❺ When doInBackground finishes, the runtime will call this method. The result parameter was

returned by doInBackground.

Chapter 15 Running in the Background

359

Now that were acquainted with the structure of the AsyncTask, let’s see how we can

use it for our counting example. Listing 15-11 shows the full and annotated code for

AsyncTask when used within MainActivity.

Listing 15-11.  Full Code for MainActivity, Annotated and Explained

import android.os.AsyncTask

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener {

 Worker().execute() ❶

 }

 }

 inner class Worker : AsyncTask<Void, String, Boolean>() { ❷

 override fun doInBackground(vararg p0: Void?) : Boolean {

 for (i in 1..20) {

 publishProgress(i.toString()) ❸

 Thread.sleep(2000) ❹

 }

 return true

 }

 override fun onProgressUpdate(vararg values: String?) {

 textView.text = values[0] ❺

 }

Chapter 15 Running in the Background

360

 override fun onPostExecute(result: Boolean?) {

 println(result)

 }

 }

}

❶ Create an instance of Worker, then execute it.

❷ Define an AsyncTask as an inner class, so we can refer to the View objects of the enclosing

MainActivity. The type parameters are explained below.

a. Void. I don’t really need to pass anything to the AsyncTask, so, Void.

b. �String. The onProgressUpdate method will update the TextView. Since we’ll use this

second Type to update the value TextView, String seems like a good choice.

c. �Boolean. When we’re done with doInBackground, we want to set a status to indicate

failure or success; Boolean seems to be good choice for that.

❸ Let’s tell the user what the current value of i is. The onProgressUpdate takes a String

argument; that’s why we’re converting i to an Int.

❹ This simulates a length operation.

❺ Now that were in the UI Thread, we can safely set the text attribute of TextView to the current

value of i. We only passed one parameter from publishProgress, so if we want to get that, it’s

the 0th element of the values parameter.

The AsyncTask, like the Handler and the Thread classes, will free up the UI thread.

When you run this, the app purrs at a smooth 60 FPS.

�Anko’s doAsync
Anko is an Android library written in Kotlin by JetBrains (the same company that

created Kotlin). You can use it for a wide variety of tasks, but for our purpose, we only

need the doAsync portion. As its name implies, Anko’s doAsync will let us run codes

asynchronously or in the background.

Before you can use Anko, you need to add it to the dependencies of the project’s

Gradle file, as shown in Listing 15-12.

Chapter 15 Running in the Background

361

Listing 15-12.  /app/build.gradle

dependencies {

 implementation 'org.jetbrains.anko:anko-common:0.9'

}

The syntax for using doAsync is shown in Listing 15-13.

Listing 15-13.  Syntax for doAsync

doAsync {

 // do things in the background ❶

}

❶ In here, you can read or write to large files, download a file from the internet, or do a task

that will take a long time to complete. This block will execute in a background thread.

The next challenge is how to go back to the UI Thread. Remember that a background

thread is not allowed to change anything in the UI. Anko’s approach is probably the

simplest of all the other options we’ve discussed in the previous sections. Listing 15-14

shows a sample code on how doAsync runs code in the background and how it gets back

to the UI thread.

Listing 15-14. doAsync and activityUiThread

doAsync {

 // do things in the background ❶

 activityUiThread {

 // make changes to the UI ❷

 textView.text = "Hello"

 }

}

❶ Background processing.

❷ Now, you’re back to the UI Thread. It’s that simple. Whenever you need to go back to the UI

Thread, you can do it inside the activityUiThreadblock.

Chapter 15 Running in the Background

362

Listing 15-15 shows the full code example for MainActivity. It uses Anko’s doAsync to

perform a long computation and then write something back to the UI.

Listing 15-15.  Full Code for MainActivity Using doAsync, Annotated and Explained

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_main.*

import org.jetbrains.anko.activityUiThread

import org.jetbrains.anko.doAsync

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener { ❶

 doAsync {

 for(i in 1..15) { ❷

 Thread.sleep(2000) ❸

 activityUiThread {

 textView.text = i.toString() ❹

 }

 }

 }

 }

 }

}

❶ Let’s set up a basic OnClickListener. This will trigger the background task.

❷ Let’s just count from 1 to 15.

❸ This simulates a long running task. Our loop will come around 15 times, so the task will take a

total of 30 seconds to complete.

❹ Let’s tell the user what’s going on with the app. Update the TextView object with the current

value of i.

Chapter 15 Running in the Background

363

The doAsync, like the Thread, Handler, and AsyncTask examples before it, should

perform equally well. When you run this code, the app will run smoothly at 60 FPS.

You’ve seen four low-level techniques to execute tasks in the background. Hopefully

the code examples gave you enough ideas to continue on your own.

�A Real-World Example
Before we close the chapter, let’s work on something that you might actually use in your

projects. Let’s pull some user info from GitHub using their public API. GitHub allows

anyone access to https://api.github.com/users/<username>. If you have a GitHub

account, try calling this URL using you GitHub login so you can be familiar with what it

returns. Listing 15-16 shows a partial output of the HTTP call using my own GitHub id

(tedhagos).

Listing 15-16.  Sample JSON Response from GitHub API

{

 "login": "tedhagos",

 "id": 1287584,

 "node_id": "MDQ6VXNlcjEyODc1ODQ=",

 "avatar_url": "https://avatars1.githubusercontent.com/u/1287584?v=4",

 "gravatar_id": "",

 "url": "https://api.github.com/users/tedhagos",

 "html_url": "https://github.com/tedhagos",

 "followers_url": �"https://api.github.com/users/tedhagos/followers",

 "following_url": �"https://api.github.com/users/tedhagos/following{/other_

user}",

 "gists_url": "https://api.github.com/users/tedhagos/gists{/gist_id}",

 "starred_url": �"https://api.github.com/users/tedhagos/starred{/owner}{/

repo}",

 "subscriptions_url": �"https://api.github.com/users/tedhagos/

subscriptions",

 "organizations_url": "https://api.github.com/users/tedhagos/orgs",

 "repos_url": "https://api.github.com/users/tedhagos/repos",

 "events_url": "https://api.github.com/users/tedhagos/events{/privacy}",

Chapter 15 Running in the Background

https://api.github.com/users/<username>

364

 "received_events_url": �"https://api.github.com/users/tedhagos/received_

events",

 "type": "User",

 "site_admin": false,

 "name": "Ted Hagos",

 "company": null,

 "blog": "https://workingdev.net",

 "location": null,

 "email": null,

 "hireable": null,

 "bio": �"Currently CTO and Data Protection Officer of RenditionDigital

International. Sometimes a writer and tech trainer."

}

What we’d like to do is as follows:

	 1.	 Prompt the user to input a GitHub account; it’s the login id. We’ll

use the hint attribute of the EditText to tell the user what to input.

	 2.	 Compose the HTTP request using the login id we got from the

user. We can DIY our approach to this by using low-level java.net

classes, but that will distract us from the main topic, so we’ll use

OkHttp. It’s a third-party library, but it’s very easy to use—and,

most importantly, easy to understand.

	 3.	 Make an HTTP call to GitHub API and run it in a background

thread. We’ll use Anko’s doAsync for this project. It’s the easiest to

use. Don’t you think?

	 4.	 The HTTP call returns a JSON object, as you can see from Listing

15-16. We’ll parse the JSON message and get only the value of the

name property.

	 5.	 We’ll go back to UI thread by using the method activityUiThread,

and there, we’ll update the textView with the value of the name

property (the one we got from the JSON object).

Chapter 15 Running in the Background

365

Table 15-1 shows the details of the demo project.

id: txtsearchuser

id: txtusername
textSize: 30sp

id: button

Figure 15-2.  UI for CH15GetGitHubInfo

Table 15-1.  Project Details

Project Detail Value

Application name CH15GetGitHubInfo

Company domain use your website name

Kotlin support Yes

Form factor Phone and Tablet only

minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Backwards compatibility Yes. AppCompat

A screenshot of the UI is shown in Figure 15-2. We’ll use an EditText to take the user’s

input and we’ll use a TextView to display the name attribute of the returned JSON file.

Chapter 15 Running in the Background

366

Listing 15-17 shows the full listing for activity_main.xml

Listing 15-17.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 tools:layout_editor_absoluteY="81dp">

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="8dp"

 android:text="Button"

 app:layout_constraintStart_toStartOf="@+id/txtusername"

 app:layout_constraintTop_toBottomOf="@+id/txtusername" />

 <TextView

 android:id="@+id/txtusername"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="8dp"

 android:text="TextView"

 android:textSize="30sp"

 app:layout_constraintStart_toStartOf="@+id/txtsearchuser"

 app:layout_constraintTop_toBottomOf="@+id/txtsearchuser" />

 <EditText

 android:id="@+id/txtsearchuser"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="31dp"

Chapter 15 Running in the Background

367

 android:layout_marginTop="30dp"

 android:ems="10"

 android:inputType="textPersonName"

 android:text="Name"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Before you can use OkHttp and the Anko library, you need to add their dependencies

to the project’s module level gradle file. Listing 15-18 shows what you need to add to the

dependencies section of /app/build.gradle.

Listing 15-18.  Add OkHttp and Anko to /app/build.gradle

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"

 implementation 'com.android.support:appcompat-v7:28.0.0-alpha3'

 implementation 'com.android.support.constraint:constraint-layout:1.1.2'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'com.android.support.test:runner:1.0.2'

 �androidTestImplementation 'com.android.support.test.espresso:espresso-

core:3.0.2'

 implementation 'com.squareup.okhttp:okhttp:2.5.0' ❶

 implementation 'org.jetbrains.anko:anko-common:0.9' ❷

}

❶ You need to add this in order to use OkHttp.

❷ You need to add this so you can use Anko’s doAsync.

After you’ve added Anko and OkHttp in the gradle file, you have to sync the file.

Click the “Sync Now” link, which is in the upper-right corner of the screen, as shown in

Figure 15-3.

Chapter 15 Running in the Background

368

The OkHttp website has a sample code that shows the basic usage—it’s shown in

Listing 15-19. It’s in Java, but it’s easy to adapt it for our use.

Listing 15-19.  Sample Code from http://square.github.io/okhttp/

OkHttpClient client = new OkHttpClient();

String run(String url) throws IOException {

 Request request = new Request.Builder()

 .url(url)

 .build();

 Response response = client.newCall(request).execute();

 return response.body().string();

}

Listing 15-20 shows our Kotlin version of OkHttp’s code sample.

Listing 15-20.  Our Kotlin Version of OkHttp Code

private fun fetchGitHubInfo(login_id: String): String {

 val url = https://api.github.com/users/$login_id

 val client = OkHttpClient()

 val request = Request.Builder().url(url).build()

 val response = client.newCall(request).execute()

 val bodystr = response.body().string() // this can be consumed only once

 return bodystr

}

Figure 15-3.  Sync the gradle file after making your edits

Chapter 15 Running in the Background

http://square.github.io/okhttp/

369

That’s close enough. By the way, I hope you noticed the second to the last line of

Listing 15-20—I even commented it. When you call response.body.string, you can

consume it only once, so you can’t make calls like this:

println(response.body.string()) // consumes the content

val bodystr = response.body().string(). // no more JSON file here

The response.body.string call is not idempotent. You can’t make repetated calls to it

and expect that it will return the same results on each call.

Now that we’ve got everything we need, it’s time to code the MainActivity.

Listing 15-21 shows the full and annotated code for MainActivity.

Listing 15-21.  MainActivity, Annotated and Explained

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import com.squareup.okhttp.OkHttpClient

import com.squareup.okhttp.Request

import kotlinx.android.synthetic.main.activity_main.*

import org.jetbrains.anko.activityUiThread

import org.jetbrains.anko.doAsync

import org.json.JSONObject

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener {

 doAsync { ❶

 val mgithubinfo = fetchGitHubInfo(txtsearchuser.text.toString()) ❷

 val jsonreader = JSONObject(mgithubinfo) ❸

 activityUiThread { ❹

 txtusername.text = jsonreader.getString("name") ❺

 }

 }

 }

 }

Chapter 15 Running in the Background

370

 private fun fetchGitHubInfo(login_id: String): String {

 val url = "https://api.github.com/users/$login_id"

 val client = OkHttpClient()

 val request = Request.Builder().url(url).build()

 val response = client.newCall(request).execute()

 val bodystr = response.body().string() // this can be consumed only once

 return bodystr

 }

 override fun onResume() {

 super.onResume()

 txtsearchuser.setText("")

 txtsearchuser.setHint("Enter GitHub username")

 }

}

❶ Anko’s doAsync block starts here. Everything inside this block will run in a background thread.

❷ Let’s pass the current value of the txtsearchuser EditText to fetchGitHubInfo and assign the

resulting JSON object to the mgithubinfo variable.

❸ Let’s parse mgithubinfo with the built-in JSONObject.

❹ Now we need to go to back to the UI thread so we can write the result of the http call to the UI.

❺ The activityUiThread block lets us come back to the UI thread and make some changes.

We’re setting the text attribute of txtusername to the name property of the JSON file.

One more thing to do before we can run the app: we need the add the INTERNET

permission to the manifest file.

Listing 15-22.  AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="net.workingdev.ch15getgithubinfo">

 <uses-permission android:name="android.permission.INTERNET"/> ❶

Chapter 15 Running in the Background

371

 <application

 </application>=

</manifest>

❶ You should add this to the project’s AndroidManifest file.

Figure 15-4 shows the running application.

Figure 15-4.  CH15GetGitHubInfo on an emulator

�Chapter Summary
•	 What is jank? When you try to do too much on the UI Thread, the

Android runtime will start dropping frames. When your app’s FPS

drops, the UI will stutter, it will be sluggish and annoying to use. This

is jank.

•	 How do we avoid it? Don’t try to do too much on UI Thread. Don’t:

•	 Read from a large file, or write a large amount of info to a file.

•	 Connect to the network and read from it (or write).

•	 Compute a complex routine Do these things in background

thread.

•	 What is the UI Thread? It’s the original Thread that’s responsible

for creating (and modifying) View elements in your app. Some

developers refer to UI Thread as the “Main Thread.”

Chapter 15 Running in the Background

372

•	 What is a background thread? Any thread that isn’t the UI Thread.

You generally create a background thread for your app.

•	 What are the ways to create a background thread? Java Threads,

Handlers, AsyncTask, and Anko’s doAsync

In the next chapter:

•	 We’ll learn about the kinds of errors that devs face day-to-day.

•	 We’ll also get some tips on how to avoid them.

•	 We will learn what to do if we get knee-deep in errors.

Chapter 15 Running in the Background

373
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_16

CHAPTER 16

Debugging
What we’ll cover:

•	 Kind of errors you will encounter

•	 Logging debug statements

•	 Walk through codes with the inteactive debugger

Very soon, you will outgrow the simple structure of the example codes presented

in this book. Your programs will grow in complexity, number of files, and number of

components. As that happens, the number of errors you will face will also grow; and they

might be harder to detect by then.

In this chapter, we’ll look at the three main types of errors you might encounter and

what kinds of tools or techniques could help cope.

�Syntax Errors
Syntax errors are exactly what you thought they were: errors in the syntax. It happens

because you wrote something in the code that’s not allowed in the set-rules of the

Kotlin compiler. In other words, the compiler doesn’t understand it. This could be as

benign as forgetting the closing curly brace or closing parenthesis in an expression.

It can also be slightly more complex, such as passing the wrong type of argument to

a function or a parameterized class when using generics. In the early days of Android

development when all you had to work with the was the bare SDK, you can only know

if you have syntactic error when you try to compile your code—this is the reason why

other programmers also call this kind of error a “compile time” error. Of course, Android

development has come a long way since. We have a very competent IDE that can spot

and point out syntax errors even before you try to compile your code. It’s almost as if the

IDE is continuously reading the code and compiling it.

374

Figure 16-1 shows a snippet of an inner AsyncTask subclass. The IDE draws your

attention to it by highlighting the offending code in red squiggly lines.

Figure 16-1.  AsyncTask class, missing a constructor

Figure 16-2.  AsyncTask class missing a mandatory implementation

Hover the mouse long enough in the area where the squiggly lines appear, and you

should see AS3’s balloon tips. It says the AsyncTask class has a type constructor that must

be initialized. To fix it, put the constructor call—a paired parentheses—next to the class

definition, as shown in Figure 16-2.

The squiggly lines are disappearing one by one. That’s a good sign—it means we’re

fixing the errors, but we’re not done yet. Did you notice line 15 in Figure 16-2? We still

have an error. It says our class doesn’t implement a base class member. The AsyncTask

class is abstract; it declares the abstract method doInBackground. We have to override

Chapter 16 Debugging

375

this method and write our implementation, unless we make class Worker an abstract

class also—that’s not our intention. Use Android Studio’s Quick Fix feature (option +
Enter in Mac, alt + Enter in Windows and Linux) to solve the problem, as shown in

Figure 16-2.

Figure 16-3 shows the Quick Fix in action. It’s offering some suggestions on how

we can fix it. The first option is what we want—to implement and override the abstract

member of AsyncTask.

Figure 16-3.  Quick fix on the AsyncTask class

Click OK. What follows next is the dialog window for implementing members,

as shown in Figure 16-4. AsyncTask only has one abstract member that needs to be

overridden by child classes. Choose doInBackground and click OK to proceed.

Figure 16-4.  Implement members

Chapter 16 Debugging

376

Android Studio will give you a structural skeleton of the doInBackground function.

Now, you can write your implementation.

There will be times when the error isn’t very obvious, even with help of the squiggly

lines. Figure 16-5 shows you an example of this problem.

Figure 16-5.  Nested blocks

The code between lines 14 and 27 in Figure 16-5 shows a deeply nested block.

This can happen sometimes when you use anonymous objects, as you can see from

the structure of the example code.

Chapter 16 Debugging

377

If you try to Make the project (from the main menu bar ➤ Build ➤ Make) the IDE

will give you more information, lots more, as you can see in Figure 16-6; but it may not

give you more insights. This is one of those situations where you really need to do the

heavy lifting. You have to inspect the code structure manually. Notice that the squiggly

line appears at the tail-end of class (line 27 in Figure 16-6) and the error message that

tells us we’re missing a curly brace; start there and inspect the pairs of curly braces

manually. This problem has something to do with how we structure our codes. You just

need to be careful with those braces—Python programmers are probably gloating right

now saying, “That’s what you get for using braces, indentation rocks.”

�Runtime Errors
Runtime errors happen when your code encounters a situation it doesn’t expect; and as

its name implies, that errant condition is something that appears only when the program

is running—it’s not something you or the compiler can see at the time of compilation.

Your code will compile without problems, but it may stop running when something

Figure 16-6.  Code with error

Chapter 16 Debugging

378

in the runtime environment doesn’t agree with what your code wants to do. There are

many examples of these things, for example:

•	 The app gets something from the Internet—a picture or a file, etc.

—so it assumes that the Internet is available and there is network

connection. Always. Experience should tell you that isn’t always the

case. Network connections go down sometimes, and if you don’t

factor this in your code, it may crash.

•	 The app needs to read from a file. Just like our first case earlier, your

code assumes that the file will always be there. Sometimes, files get

corrupted and may become unreadable. This should also be factored

in the code.

•	 The app performs Math calculations. It uses values that are input by

users, and sometimes it also uses values that are derived from other

calculations. If your code happens to perform a division and in one

of those divisions the divisor is zero, that will also cause a runtime

problem.

Here are some code samples that may look okay at first glance—and will compile—

but when it encounters a condition in the runtime that it’s not prepared for, you will get

runtime error.

Listing 16-1 shows the basic code for opening a file and reading its contents to a

String variable. If the code tries to open a file that exists, there’s no problem—the code

will work fine and as expected. The problem will come if it tries to open a file that isn’t

there or is unreadable for some reason.

Listing 16-1.  Possible FileNotFoundException or Other IOException

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener {

 openFile("doesnotexist.txt")

 }

}

Chapter 16 Debugging

379

private fun openFile(file: String) {

 val strFile = File(file).readText()

}

Listing 16-2 may look contrived, but imagine if you were getting the input from a user

or you’re reading the inputs from somewhere else and the divisor becomes zero. You will

encounter an ArithmeticException error.

Listing 16-2.  Possible ArithmeticException

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener {

 divide(10, 0)

 }

}

private fun divide(a:Int, b:Int) : {

 return a / b

}

By the way, the ArithmeticException is thrown only for Integer values. It doesn’t

happen for Floats and Doubles. If you try to divide a Float number by zero, it will just

yield an Infinity value, but it won’t throw an exception.

Another example of a code that will encounter a runtime problem is shown in

Listing 16-3. It looks contrived right now because you can obviously see that there’s no

fifth element of the array. But imagine if you’re reading the array from an API (you didn’t

create the array, somebody else did) and you’re not using Integer literals to access the

array; instead you’re using variables. The error won’t be so obvious by then.

Listing 16-3.  ArrayIndexOutOfBounds Exception

val arr = arrayOf(1,2,3,4)

println(arr[5])

Chapter 16 Debugging

380

The only way to address runtime errors is to:

	 1.	 Know your code. You need to know what calls may encounter a

runtime exception; and

	 2.	 Use proper exception handling in your codes.

Like Java, Kotlin also uses the try-catch structure for handling exceptions; but unlike

Java, all of Kotlin’s exceptions are unchecked. Exception handling is effectively optional

in Kotlin—throws isn’t even a keyword in Kotlin, but the throw keyword still is. This may

be a good or a bad thing, depending on how you look at it; and there’s a lively discussion

about this topic on popular coding forums. The opinion of the Kotlin team regarding

checked exceptions can be found on the Kotlin docs online (https://kotlinlang.org/

docs/reference/exceptions.html).

According to the Kotlin team, Kotlin is aimed at large development projects,

and there is little evidence that using checked Exceptions contributes to developer

productivity; quite the contrary, it lessens it.

Exception handling in Kotlin is, for the most part, exactly like the way you would do it

in Java. You can do it with a try-catch or try-catch-finally. In Java 7, the concept of

try-with-resources was introduced. Kotlin doesn’t have try-with-resources, but it does

have the use extension; it’s the equivalent of try-with-resources.

Just to jog our memories, the basic form of a try-catch block is shown in Listing 16-4.

Listing 16-4.  The Try-Catch-Finally Structure

try {

 ... ➊
}

catch(mexception: theException) { ➋
 ... ➌
 throw mexception ➍
}

finally {

 ... ➎
}

Chapter 16 Debugging

https://kotlinlang.org/docs/reference/exceptions.html
https://kotlinlang.org/docs/reference/exceptions.html

381

➊ This is the body of the try block. This is where you should write calls that may throw Exceptions.

➋ You have to provide, as much as possible, the exact type of Exception in the catch clause (e.g., if

you’re dealing with FileNotFoundException, then that is what you should write in here in place of

theException).

➌ This is the body of the catch clause. This is where you should write the things you want to do

when an exception happens (e.g., log to a file, ask the user repeat the input, etc.).

➍ Occasionally, you may not want to handle the Exception. You can throw it back to the caller of

the function (next level up the call-stack), and let it be their problem.

➎ The body of the finally clause is where you put codes that you want to execute whether or not

an exception happens. The body of finally clause is guaranteed to be executed always.

Now, let’s see how we can use try-catch to prevent a crash when opening a file. See

Listing 16-5.

Listing 16-5.  How to Handle the FileNotFoundException

private fun openFile(file: String) {

 try { ➊
 File(file).useLines {

 println(it)

 }

 }

 catch (fe: FileNotFoundException) { ➋
 println("do your error handling here")

 }

}

➊ The File constructor can actually throw a FileNotFoundException, so we put them inside a

try-catch block.

➋ We know that FileNotFoundException can be thrown by File constructor, so that’s what we put

in the catch clause. If you want to match a more general type of Exception, you may also use

IOException in here. IOException is the parent class of FileNotFoundException.

Chapter 16 Debugging

382

Listing 16-6 shows how to prevent a crash when working with Integer arithmetic.

Listing 16-6.  How to Handle the ArithmeticException

 private fun divideInt(a:Int, b:Int): Int {

 var result = 0

 try {

 result = a /b

 }

 catch (ae: ArithmeticException) {

 println("handle your exception here")

 }

 finally {

 return result

 }

 }

�Logic Errors
Logic errors are the hardest to find. As its name suggests, it’s an error on your logic.

When your code is not doing what you thought it should be doing, that’s logic error.

There are many ways to cope with it, but in this section, we’ll take a look at two: printing

debugging statements in certain places of your code and code walkthrough using

breakpoints.

As you inspect your codes, you will recognize certain areas where you’re pretty

sure what’s going on, and then there are areas where you are less sure—you can place

debugging statements in these areas. It’s like leaving breadcrumbs for you to follow.

There are a couple of ways to print debugging statements. You can either use println,

Log, or the Logger class in Java.

Figure 16-7 shows the output of a println statement in Logcat tool window.

Chapter 16 Debugging

383

println is the simplest and the easiest thing you can do to print debugging

statements, but remember that you will only see these statements in Logcat if Logcat’s

mode is set to “verbose,” “info,” or “debug.” If you set the mode to anything else, like

warn, error, or assert, you won’t see println statements.

When you set Logcat’s mode to verbose, info, or debug, you will see all the messages

that Android’s runtime generates. If you only want to see warn messages or errors, then

you need to use either the Log or the Logger class.

The Log class has five static methods; the usage is shown below.

Log.v(tag, message) // verbose

Log.d(tag, message) // debug

Log.i(tag, message) // info

Log.w(tag, message) // warning

Log.e(tag, message) // error

In each case, tag is a String literal or variable. You can use the tag for filtering the

messages in the Logcat window. The message is also String literal or variable, which

contains what you actually want to see in the log. Listing 16-7 shows a sample code on

how to use the Log class.

Listing 16-7.  How to Use the Log Class

 val TAG = this@MainActivity::class.toString() ➊

 private fun divideInt(a:Int, b:Int): Int {

 var result = 0

 try {

Figure 16-7.  println as shown in the Logcat tool window

Chapter 16 Debugging

384

 Log.d(TAG, "Inside the try") ➋
 result = a /b

 }

 catch (ae: ArithmeticException) {

 Log.w(TAG, "Sample log message") ➌
 }

 finally {

 return result

 }

 }

➊ You can define the TAG anywhere in the class, but in this example, it’s defined as class

property.

➋ We’re printing a DEBUG message.

➌ We’re printing a WARN message.

Alternatively, we can also use the Logger class from Java; as shown in Listing 16-8.

Listing 16-8.  How to Use the Logger Class

val Log = Logger.getLogger(MainActivity::class.java.name)

private fun divideInt(a:Int, b:Int): Int {

 var result = 0

 try {

 Log.info("inside try")

 result = a /b

 }

 catch (ae: ArithmeticException) {

 Log.warning("Sample log message")

 println("handle your exception here")

 }

 finally {

 return result

 }

}

Chapter 16 Debugging

385

When you run your app, you can see the Log messages in the Logcat tool window.

You can launch it either by clicking its tab in the menu strip at the bottom of the AS3

window or from the main menu bar, View ➤ Tool Windows ➤ Logcat. Figure 16-8

shows the Logcat Tool Window.

Figure 16-8.  Logcat Tool Window

�Walking Through Code
AS3 includes an interactive debugger that allows you to walk and step through your code

as it runs. With the interactive debugger, we can inspect snapshots of the application—

values of variables, running threads, etc.—at specific locations in the code and at specific

points in time. These specific locations in the code are called breakpoints; you get to

choose these breakpoints.

To set a breakpoint, choose a line that has an executable statement, then click its line

number in the gutter. When you set a breakpoint, there will be a pink circle icon in the

gutter, and the whole line is lit in pink, as shown in Figure 16-9.

Chapter 16 Debugging

386

After the breakpoints are set, you have to to run the app in debug mode. Stop the app

if it is currently running, then from the main menu bar, click Run ➤ Debug App.

Note R unning the app in debug mode isn’t the only way to debug the app. You
can also attach the debugger process in a currently running application. There are
situations where this second technique is useful—for example, when the bug you
are trying to solve occurs on very specific conditions, you may want to run the app
for a while, and when you think you are close to the point of error, you can then
attach the debugger.

Use the application as usual. When the execution comes to a line where you set a

breakpoint, the line turns from pink to blue. This is how you know code execution is at

your breakpoint. At this point, the debugger window opens, the execution stops, and AS3

Break points

Watch WindowDebugger toolbar

Figure 16-9.  Debugger window

Chapter 16 Debugging

387

gets into interactive debugging mode. While you are here, the state of the application

is displayed in the Debug tool window. During this time, you can inspect values of

variables and even see the threads running in the app.

You can even add variables or expression in the Watch window by clicking the plus

sign with the spectacles icon. There will be a text field where you can enter any valid

expression. When you press Enter, Android Studio will evaluate the expression and

show you the result. To remove a watch expression, select the expression and click the

minus sign icon on the watch window.

To resume program execution, you can click the “Resume program” button at the

top of the debugger toolbar—it’s the green arrow pointing to the right. Alternatively, you

can also resume the program from the main menu bar, Run ➤ Resume Program. If you

want to halt the program before it finishes naturally, you can click the “Stop app” button

on the debugger toolbar—it’s the red square icon. Alternatively, you can do this also from

the main menu bar, Run ➤ Stop app

�Other Notes
In the early days of Android development, when there were no IDEs yet, developers

used a tool called “adb,” which is short for Android Debug Bridge. It’s a nifty command-

line tool that lets you communicate with Android devices (virtual or real). It lets you do

things like:

•	 install apps

•	 debug apps

•	 gets you access to shell terminal; Remember that Android is based

on Linux, having access to a terminal can be very handy (e.g., when

you’re doing some white-box testing on a sqlite database, etc.).

Android Studio has taken over some of the things that adb used to do (e.g.,

displaying logs, installing apps, debugging apps, etc.). But, if you need to do things at

a linux command line level, you really have to use adb—you can find this tool in the

ANDROID_HOME/sdk/platform-tools folder; where ANDROID_HOME is the folder

where you installed the Android SDK.

Another tool we didn’t cover in this chapter is the Android Profiler, it’s new in

Android Studio 3.0. It replaced a tool called Android Device Monitor. You can use this

Chapter 16 Debugging

388

tool to look at your app’s real-time data. You can find out how much CPU, memory,

network, and I/O resources your app consumes. You can capture heap dumps, view

memory allocations, and inspect the details of network-transmitted files.

�Chapter Summary
•	 The three kinds of errors you may encounter are compile type or

syntax errors, runtime errors, and logic errors.

•	 Syntax errors are the easiest to fix. Android Studio itself bends over

backward for you so you can quickly spot syntax errors. There are

various ways to fix syntax errors with AS3, but most of the time, the

Quick Fix should do it.

•	 Kotlin doesn’t have checked Exceptions like Java does. The Kotlin

team has good reasons for doing this. If you’re a beginner in Kotlin

but quite an old hat in Java, then this shouldn’t affect you—use

your knowledge of the old Java APIs when dealing with possible

exceptions. If you’re a newcomer to both Kotlin and Java, you should

invest a little bit more time in learning about unit testing; that way,

you get to see the “happy path” and the “not-so-happy path” of your

apps; then you can act accordingly.

•	 Logic errors are the toughest to find, but Android Studio makes this

activity more bearable because of the tools available for us—you can

literally walk through the code and inspect things while the program

is running.

In the next chapter, we’ll look at the following:

•	 How to save data using SharedPreferences.

•	 We’ll work with the Bundle object so we can save some basic types

into a file.

•	 We’ll also look at how we can pass data around among Activities.

Chapter 16 Debugging

389
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_17

CHAPTER 17

SharedPreferences
What we’ll cover:

•	 Introduction to SharedPreferences

•	 How to put and get data from a preferences file

•	 How to share a preferences file between Activities

Android apps do not persist your data by default. It’s your responsibility to make

the data durable and resilient throughout the app’s life cycle. Let’s say you’re collecting

data from the user, then midway into your workflow, the application gets interrupted by

another app. There is no guarantee that whatever data the user has already input will be

there when your app comes back.

Making data durable means storing data in one form or another. You can store data

in a couple of ways. They’re listed below:

•	 SharedPreferences. This is the simplest option. It’s just a dictionary

object, it uses the familiar key-value pair mechanics. This is useful

if your data is simple enough to be structured as a key-value pair.

Android stores these files internally as XML files. You can only store

simple data types, like String and basic types. This is usually used for

storing user’s preferences like sort order on a list, the last page you

were reading on an ebook application, etc.

•	 Internal or external storage. Uses the internal or media storage in

the device (e.g., sdcard). You can use this to store data that has more

complexity in structure (e.g., audio or video files). If you worked with

File I/O before, this is no different from that.

390

•	 SQLite database. This one uses a relational database. If you have

worked with other databases before like MS SQL server, MySQL,

PostgreSQL, or any other relational database, this is essentially the

same. Data is stored in tables, and you need to use SQL statements to

create, read, update, and delete data.

•	 Network Storage. If you can assume that your users will always

have internet access and you have a database server that is hosted

on the Internet, then you can use this option. This setup can get

a bit complicated because you will need to host the database

somewhere (Amazon, Google, any other cloud provider), provide a

REST interface for the data, and use an HTTP library as a client in the

Android app. We won’t cover this topic in this book.

•	 ContentProviders. Content Provider is another component on

the Android platform; it’s right up there with Activities, Services,

and BroadcastReceivers. This component makes data available to

applications other than itself. Think of it like a database that has

public HTTP API layer. Any application that communicates over

HTTP can read and write data to it. By the way, ContentProviders use

SQLite databases internally—they just wrap and serve the data in

neat HTTP API. If you’ve worked on RESTful apps that expose some

underlying data via API, this is kinda like that.

In this chapter, we’ll take a look at SharedPreferences.

A SharedPreferences object lets you store and retrieve data in the form of key-value

pairs, like a dictionary. It uses XML files for storage. Using a SharedPreferences object to

store basic data can be done with the following steps:

	 1.	 Get SharedPreferences object. You can do this by calling the

getPreferences method from within an Activity.

	 2.	 Next, we get a SharedPrefences.Editor object by using a factory

method of the SharedPreferences object.

	 3.	 Now we can insert data with the editor object.

	 4.	 Finally, to store the data permanently, we use either the commit

or apply method on the editor.

Chapter 17 SharedPreferences

391

Listing 17-1 shows how all these look in code.

Listing 17-1.  Basic Steps to Save Data

val pref = getPreferences(Context.MODE_PRIVATE) ➊
val editor = pref.edit() ➋

editor.putString("lastname", "Breslav") ➌
editor.putString("firstname", "Andrey")

editor.apply() ➍

➊ The Activity.getPreferences method gives us a SharedPreferences object that’s private to the

Activity. We’re using the Context.MODE_PRIVATE because we’d like the preferences file to

allow access only to our app—other apps are off limits.

➋ We need a SharedPreferences.Editor object, we can get it by calling edit method on a

SharedPreferences object.

➌ Now, we can use the various putXXX methods to store key-value pairs. The first parameter is

the key, this should be a String. The second parameter can be any of the basic types like Int,

Float, Double, String, etc.

➍ None of our putString calls will be stored permanently to a file if we don’t call apply.

Alternatively you can also call commit. The apply method saves the data asynchronously, while

commit does it synchronously. So, to persist the data, call either apply or commit.

In case you’re wondering about the other Context mode options, here they are.

•	 MODE_PRIVATE: the default mode, where the created file can only

be accessed by the calling application. This is probably what you

want most of the time.

•	 MODE_WORLD_READABLE: Any application can read the

preference data. This may cause security holes in applications.

Unless you have a very good reason, stay away from this. If you want

to make the data available to any application, consider building a

ContentProvider instead.

Chapter 17 SharedPreferences

392

•	 MODE_WORLD_WRITEABLE: Any application can edit the

preference data. This may cause security holes in applications. Again,

unless you have a good reason, stay away from this.

•	 MODE_APPEND: This will append the new preferences with the

already existing preferences.

Let’s make a small demo project for this. Table 17-1 shows the details for the project.

Table 17-1.  Details for the Demo Project

Project Detail Value

Application name CH17Preferences

Company domain use your website name

Kotlin support Yes

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

What we want to do:

	 1.	 Let the user input his lastname and firstname—we’ll use two

EditTexts for this.

	 2.	 When the user clicks the “Save” button, we’ll store the lastname

and firstname to the preferences file.

	 3.	 When the user clicks the “Load” button, we’ll read the lastname

and firstname from the preferences file.

	 4.	 We’ll display them in a TextView object.

Figure 17-1 shows a screenshot of the running app.

Chapter 17 SharedPreferences

393

Listing 17-2 contains the full code for the XML layout file, so you can see the

attribute settings of the View objects. Listing 17-3 shows the full and annotated code for

MainActivity.

Listing 17-2.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <EditText

 android:id="@+id/txtfirstname"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="16dp"

 android:layout_marginTop="36dp"

 android:ems="10"

 android:inputType="textPersonName"

 android:text="Name"

Figure 17-1.  Snapshot of our project, running

Chapter 17 SharedPreferences

394

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <EditText

 android:id="@+id/txtlastname"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="16dp"

 android:layout_marginTop="16dp"

 android:ems="10"

 android:inputType="textPersonName"

 android:text="Name"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/txtfirstname" />

 <TextView

 android:id="@+id/txtoutput"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginBottom="183dp"

 android:layout_marginStart="16dp"

 android:text="TextView"

 android:textSize="36sp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintStart_toStartOf="parent" />

 <Button

 android:id="@+id/btnsave"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="16dp"

 android:text="save"

 app:layout_constraintBaseline_toBaselineOf="@+id/btnload"

 app:layout_constraintStart_toStartOf="parent" />

 <Button

 android:id="@+id/btnload"

Chapter 17 SharedPreferences

395

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="11dp"

 android:layout_marginTop="27dp"

 android:text="load"

 app:layout_constraintEnd_toEndOf="@+id/txtlastname"

 app:layout_constraintTop_toBottomOf="@+id/txtlastname" />

</android.support.constraint.ConstraintLayout>

Listing 17-3.  MainActivity, Annotated

import android.content.Context

import android.content.SharedPreferences

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.widget.Toast

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 val pref = getPreferences(Context.MODE_PRIVATE) ➊

 btnsave.setOnClickListener {

 val editor = pref.edit() ➋

 editor.putString("lastname", txtlastname.text.toString()) ➌
 editor.putString("firstname", txtfirstname.text.toString())

 editor.apply() ➍

 Toast.makeText(this, "Saved data", Toast.LENGTH_LONG).show()

 }

 btnload.setOnClickListener {

 val mlastname = pref.getString("lastname", "") ➎
 val mfirstname = pref.getString("firstname", "")

Chapter 17 SharedPreferences

396

 val moutput = "$mfirstname $mlastname" ➏

 txtoutput.text = moutput ➐
 }

 }

 override fun onResume() { ➑
 super.onResume()

 txtfirstname.setText("")

 txtlastname.setText("")

 txtfirstname.setHint("first name")

 txtlastname.setHint("last name")

 txtoutput.setText("")

 }

}

➊ Get a SharedPreferences object.

➋ Get a SharedPreferences.Editor object.

➌ Save the runtime value of the EditText (txtlastname); let’s use “lastname” as key.

➍ Save the data asynchronously by calling apply instead of commit.

➎ We’re inside the “Load” button listener now. Let’s get the value of the “lastname” key and save

it to a temporary variable.

➏ Concatenates the lastname and firstname variables

➐ Sets the text attribute of the TextView (txtoutput) to the concatenated lastname and firstname

➑ Inside the onResume callback, we initialized the text attributes of txtlastname, txtfirstname, and

txtoutput. We also set the hint attributes of the textfields.

Android will create an XML file to store the preference, and it will be named after the

Activity that created it; in our case, it’s MainActivity.

If you want to inspect the file, you can download it using the Device File Explorer

(it used to be called Android Device Monitor). Go to the main menu bar, then View ➤

Tool Windows ➤ Device File Explorer. You should see a screen similar to Figure 17-2.

Chapter 17 SharedPreferences

397

Next, drill down to data ➤ data ➤ fullyQualifiedNameOfProject (which in my case

is net.workingdev.ch17preferences; substitute your own project name); then, drill down

further to shared_prefs ➤ MainActivity.xml, as shown in Figure 17-2.

If you double-click the MainActivity.xml file, Android Studio will display its contents

in the main editor. Alternatively, you can also download it to your PC. Use the context-

sensitive menu (right-click) on MainActivity.xml, as shown in Figure 17-3, then “Save

As.” You can then open the XML file with your program editor.

Figure 17-2.  MainActivity.xml file in Device File Explorer

Figure 17-3.  Save the XML file to a computer

Chapter 17 SharedPreferences

398

Listing 17-4 shows the contents of the MainActivity.xml preferences file.

Listing 17-4.  Contents of MainActivity.xml

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>

<map>

 <string name="lastname">hagos</string>

 <string name="firstname">ted</string>

</map>

Keep in mind that the preference file we created here can only be accessed by the

MainActivity class. If you need to share the preference file with other Activities in the

app, you need to create an application level preferences.

�Sharing Data Between Activities
To make a preference file available to all Activities in app, we only need to make a minor

change in our code.

Listing 17-5.  How to Create an Application Level Preferences File

val filename = "$packageName TESTFILE" ➊
val pref = getSharedPreferences(filename, Context.MODE_PRIVATE) ➋
val editor = pref.edit()

editor.putString("lastname", "Breslav")

editor.putString("firstname", "Andrey")

editor.apply()

➊ packageName is actually a call to getPackageName(). We’re just constructing a file name in

this line.

➋ This is the only change we need to make; instead of calling getPreferences, let’s use

getSharedPreferences. This function takes in two parameters. You already know the second

one, and it’s easy to guess what the first parameter is for. The first parameter specifies a

filename for the preferences file.

Chapter 17 SharedPreferences

399

Actually, getPreferences (our example in the previous section) is just a wrapper call

to getSharedPreferences, the former simply passes the name of current Activity as the

first parameter to the latter.

To retrieve data from the shared preferences file, use the getSharedPreferences

again, specifying which file to read from, then use the getString methods, as shown in

Listing 17-6.

Listing 17-6.  How to Read From an Application Preferences File

val pref = getSharedPreferences("$packageName TESTFILE", Context.MODE_

PRIVATE) ➊

val mlastname = pref.getString("lastname", "") ➋
val mfirstname = pref.getString("firstname", "")

➊ Get a SharedPreferences object. Specify the name of the preferences file by passing it as a the

first parameter.

➋ First parameter is the key; it’s the name of the preference to retrieve. The second parameter is

a default value, in case the key doesn’t exist.

Let’s do another small demo project for this. Table 17-2 shows the project details.

Table 17-2.  Project Details

Project Detail Value

Application name CH17SharedPreferences

Company domain use your website name

Kotlin support Yes

Form factor Phone and Tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Chapter 17 SharedPreferences

400

What we want to do:

	 1.	 Let the user input his lastname and firstname; we’ll use two

EditTexts for this.

	 2.	 When the user clicks the “Go to 2nd Activity” button, we’ll create an

Intent that will launch “SecondActivity.”

	 3.	 Before MainActivity enters the paused state, we’ll save the

lastname and firstname data into the specified preferences file.

	 4.	 We’ll display the “Click LOAD DATA” hint into a TextView, as the

SecondActivity comes to the user’s view.

	 5.	 As the “Load Data” button is clicked, we’ll retrieve the preferences

file and display it as the text attribute of the TextView.

Figure 17-4 shows us a basic storyboard for our app.

Main Activity Second Activity Second Activity

Figure 17-4.  Snapshot of our project, running

Listings 17-7 and 17-8 show the full codes for activity_main.xml and activity_second.

xml, so you can see the attributes of the View objects.

Chapter 17 SharedPreferences

401

Listing 17-7.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 tools:layout_editor_absoluteY="81dp">

 <EditText

 android:id="@+id/txtlastname"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="16dp"

 android:layout_marginTop="40dp"

 android:ems="10"

 android:inputType="textPersonName"

 android:text="Name"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <EditText

 android:id="@+id/txtfirstname"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="16dp"

 android:layout_marginTop="15dp"

 android:ems="10"

 android:inputType="textPersonName"

 android:text="Name"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/txtlastname" />

Chapter 17 SharedPreferences

402

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="24dp"

 android:layout_marginTop="57dp"

 android:text="Go to 2nd Activity"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/txtfirstname" />

</android.support.constraint.ConstraintLayout>

Listing 17-8.  /app/res/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".SecondActivity"

 tools:layout_editor_absoluteY="81dp">

 <Button

 android:id="@+id/btnloaddata"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="34dp"

 android:layout_marginTop="33dp"

 android:text="Load data "

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/txtoutput" />

 <TextView

 android:id="@+id/txtoutput"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Chapter 17 SharedPreferences

403

 android:layout_marginStart="34dp"

 android:layout_marginTop="87dp"

 android:text="TextView"

 android:textSize="30sp"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

That takes care of the layout. In MainActivity, all we need to do are the following:

	 1.	 Take some input from the user, the lastname and firstname.

	 2.	 When the button is clicked, launch SecondActivity using an

explicit Intent.

	 3.	 Before MainActivity gets into the “paused” state, let’s save the

preferences file.

Listing 17-9 shows the full and annotated code for MainActivity.

Listing 17-9.  MainActivity, Annotated

import android.content.Context

import android.content.Intent

import android.content.SharedPreferences

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.widget.Toast

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 button.setOnClickListener {

 val intent = Intent(this@MainActivity, SecondActivity::class.java) ➊
 startActivity(intent)

 }

 }

Chapter 17 SharedPreferences

404

 override fun onPause() {

 super.onPause()

 saveData() ➋
 }

 private fun saveData() { ➌

 val filename = "$packageName TESTFILE"

 val pref = getSharedPreferences(filename, Context.MODE_PRIVATE)

 val edit = pref.edit()

 edit.putString("lastname", txtlastname.text.toString())

 edit.putString("firstname", txtfirstname.text.toString())

 edit.apply()

 Toast.makeText(this, "Saved data", Toast.LENGTH_LONG).show() ➍
 }

 override fun onResume() { ➎
 super.onResume()

 txtfirstname.setText("")

 txtlastname.setText("")

 txtfirstname.setHint("first name")

 txtlastname.setHint("last name")

 }

}

➊ We’re creating an explicit Intent that will launch SecondActivity. We won’t save the preferences

file in here—we’ll do that later in the onPause callback.

➋ Let’s call the saveData function from here. The onPause function will be called by the

Android runtime before MainActivity disappears from the user’s view, and eventually enter the

“paused” state.

➌ The saveData function is where we do the actual persisting of the preferences file. You’ve seen

all these codes before, so we won’t annotate them anymore.

Chapter 17 SharedPreferences

405

➍ A simple Toast message to tell the user that we’ve saved the data

➎ Android runtime will call the onResume function before MainActivity becomes fully visible to

the user again, if it’s coming from a “paused” state. I thought it was best to reinitialize all the UI

elements in here.

That’s all we need to do in MainActivity. In SecondActivity, we need to read the

specified preferences file when the button is clicked. Listing 17-10 shows the full and

annotated code for SecondActivity.

Listing 17-10.  SecondActivity

import android.content.Context

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_second.*

class SecondActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_second)

 btnloaddata.setOnClickListener {

 val filename = "$packageName TESTFILE"

 val pref = getSharedPreferences(filename, Context.MODE_PRIVATE) ➊

 val mlastname = pref.getString("lastname", "") ➋
 val mfirstname = pref.getString("firstname", "")

 txtoutput.text = "$mfirstname $mlastname " ➌
 }

 }

 override fun onResume() {

 super.onResume()

 txtoutput.text = "Click 'LOAD DATA'"

 }

}

Chapter 17 SharedPreferences

406

➊ When the button is clicked, let’s read the specified preferences file.

➋ Let’s extract the lastname (and the firstname as well).

➌ Concatenate the lastname and firstname data, and show it as the text attribute of the TextView.

That should get you started with SharedPreferences. Before we close the chapter,

I’d like to leave you with a couple more pieces of information about the

SharedPreferences.Editor object. You already know that it’s commit or apply function

is the one responsible for actually persisting the file. It also has other functions such as

clear and remove. Here’s what they do:

•	 remove(String parameter). This call deletes a named

preference. The String parameter stands for the key. So, a call

like remove("lastname") will remove the lastname key from the

preferences file.

•	 clear(). Removes all the keys in the preference file.

I’ll leave it up to you to experiment on these two Editor functions.

�Chapter Summary
•	 Android has a couple of ways to persist data. It ranges from simple

mechanisms SharedPreferences up until the robust and a couple

more complicated ContentProviders and HTTP databases like

FireBase.

•	 SharedPreferences uses a dictionary-like or a Map-like idiom. It

stores the data in key-value pairs.

•	 You can make a preference file private to an Activity, or you can make

it available to all Activities in the app.

In the next chapter, we’ll look at another way to save data into files; however, it won’t

be limited to basic types. You’ll learn how to work with file without an imposed structure

(like key-value pairs).

Chapter 17 SharedPreferences

407
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_18

CHAPTER 18

Internal Storage
What we’ll cover:

•	 Introduction to file I/O of Android

•	 Internal vs External storage

•	 How to use internal storage

We learned how to use the preferences file in the previous chapter.

SharedPreferences use a dictionary-like structure, you can save rows of data in

key-value format; but you can only save basic types in it. When you need to work with file

structures that are not limited to key-value pair and basic types, you can use the good ole

file classes from Java I/O (input/output). That’s the topic of this chapter.

�Overview of File Storage
When you need to work with video, audio, json, or just plain text files, you can use the

Java file I/O for local files. You’ll use the same File, InputStream, and OutputWriter

and other I/O classes in Java—if you’ve worked with them before. What will be different

in Android is where you save them. In a Java desktop application, you can put your files

practically anywhere you want. That’s not the case in Android. Just like in a Java web

application, Android apps are not free to create and read files just about anywhere. There

are certain places where your app has read and write access.

Don’t worry if you haven’t used Java I/O before, we won’t use any codes that

are difficult to follow. All I/O routines we will use will be within the capabilities of a

beginner.

408

�Internal and External Storage
Android differentiates between internal and external storage. The internal storage refers

to that part of a flash drive that’s shared among all installed applications. The external

storage refers to a storage space that can be mounted by the user—it’s typically an

sdcard, but it doesn’t have to be. As long as it can be mounted by the user, it could be

anything; it could even be a portion of the internal flash drive.

Each option has pros and cons, so you need to consider your app’s needs and the

limitation of each option. The following list shows some of these pros and cons.

Internal storage

•	 The memory is always available to your app. There is no danger of a

user unmounting the sdcard or whatever device. It’s guaranteed to be

there always.

•	 The storage space will be smaller in size than an external storage

because your app will be allocated only a portion of the flash storage

that is shared by all the other apps. This was a concern in earlier

versions of Android, but it’s less of a concern now. According to the

Android Compatibility Definition, as of Android 6.0, an Android

phone or tablet must have at least 1.5 GB of non-volatile space

reserved for user space (the/data partition). This space should be

plenty for most apps. You can read the compatibility definition here

https://bit.ly/android6compatibilitydefinition.

•	 When your app creates files in this space, only your app can access

them. Except when the phone is rooted, but most users don’t root

their phones, so generally, it isn’t much of a concern.

•	 When you uninstall your app, all the files it created will be deleted.

External Storage

•	 It typically has more space than internal storage; but

•	 it may not always be available (e.g., when the user removes the

sdcard or if it’s mounted as USB drive.

Chapter 18 Internal Storage

https://bit.ly/android6compatibilitydefinition

409

•	 All files in here are visible to all applications and to the user. Anybody

and any app can create and save files here. They can also delete files.

•	 When an app creates a file in this space, it can outlive the app; by that

I mean when you uninstall the app, the file won’t be removed.

�Cache Directory
Whether you choose internal or external storage, you may still have to make one more

decision on file location. You can put your files on a cache directory or somewhere more

permanent. Files in a cache directory may be reclaimed by the Android OS or third-

party apps, if the space will be needed. All files that are not in the cache directory are

pretty safe, unless you delete them manually. In this chapter, we won’t work with cache

directories or external storage. We will use only the internal storage, and we’ll put the

files in the standard location.

�How to Work with Internal Storage
As said earlier, working with file storage in Android is like working with the usual classes

in Java I/O. There are few options to use like openFileInput() and openFileOutput(), or

some other ways where you can use InputStreams and OutputStreams. You just need

to remember that these calls will not let you specify the file paths. You can only provide

the filename, if you’re not concerned with that, go ahead and use them—it’s what we

will use in this chapter, actually. If, on the other hand, you need more flexibility, you can

use the getFilesDir() or getCacheDir() to get a File object that points to the root of your

file locations—use getCacheDir() if you want to work with the cache directories of the

internal storage. When you have a File object, you can create your own directory and file

structure from there.

That’s the general lay of the territory when it comes to Android file storage. Again, in

this chapter, we’ll only work with internal storage in the standard location (not cache).

Writing to a file requires a few simple steps. You need to:

	 1.	 Decide on a file name

	 2.	 Get a FileOutputStream object

	 3.	 Convert your content to a ByteArray

Chapter 18 Internal Storage

410

	 4.	 Write the ByteArray using the FileOutputStream

	 5.	 Don’t forget to close the file

Listing 18-1 shows us how it looks in code.

Listing 18-1.  How to Save to a File

val filename = "ourfile.txt"

val out = openFileOutput(filename, Context.MODE_PRIVATE) ➊
out.use { ➋
 out.write(txtinput.text.toString().toByteArray()) ➌
}

➊ openFileOutput returns a FileOutputStream; we need this object so we can write to a file. The

first parameter of the call is the name of the file you want to create. The second parameter is

a Context mode; you already know this from the previous chapter. We’re using MODE_PRIVATE

because we want the file to be private to the app.

➋ The use extension means I don’t have to close the file explicitly or manually. As soon as we’re

done using it, the Android runtime will close it for us. This is pretty handy considering that a lot

of developers forget to close files. Leaving a file handle open until the app terminates causes

memory leak. The use extension is Kotlin’s equivalent of Java’s try-with-resources.

➌ The write method expects a ByteArray. So, we need to convert the Editable (data type of

EditText) to a String, then convert it to a ByteArray.

Reading from a file involves more steps than writing to it. You generally need to do

the following:

	 1.	 Get a FileInputStream

	 2.	 Read from the stream, one byte at a time

	 3.	 Keep on reading until there’s nothing more to read. You’ll know

when you’re at the end of the file if the value of the last byte you’ve

read is -1. It’s time to stop by then.

	 4.	 As you work your way to the end of the file, you need to store the

bytes you’re taking from the stream into a temporary container.

A StringBuilder or a StringBuffer should do the trick. Building a

Chapter 18 Internal Storage

411

String object using the plus operator is wasteful and inefficient

because Strings are immutable. Each time you use the plus

operator, it creates a new String object; if your file has 2,000

characters in it, you would have created 2,000 String objects.

This will be the case if you’re reading a text file. If you’re reading

something else like an audio or video file, you’ll use a different

data structure.

	 5.	 When you reach the end of the file, stop reading. Do what you

need to do with what you’ve read and don’t forget to close the file.

Listing 18-2 shows us how this looks in code.

Listing 18-2.  How to Read From a File

val filename = "ourfile.txt"

val input = openFileInput(filename) ➊

input.use {

 var buffer = StringBuilder() ➋
 var bytes_read = input.read() ➌
 while(bytes_read != -1) { ➍
 buffer.append(bytes_read.toChar()) ➎
 bytes_read = input.read() ➏
 }

 println(buffer.toString()) ➐
}

➊ openFileInput returns a FileInputStream; this is the object we need so can read from a file. The

only parameter it takes is the name of the file to read.

➋ We won’t be able to read the entire file in one fell swoop. We’ll read it by chunks. As we get

some chunks, we’ll store them inside the StringBuilder object.

➌ The read method reads a byte of data from the input stream and returns it as an integer. We

need to keep reading from the stream one byte at a time until we reach the end of file (EOF)

marker.

➍ When there are no more bytes to read from the stream, the EOF is marked as -1. We will use this

as the condition for the while loop. Until bytes_read isn’t equal to -1 yet, just keep on reading.

Chapter 18 Internal Storage

412

➎ The read method returns an int; it’s the ASCII value of each letter in the file, returned as integer.

We have to convert it to a Char before we can put it in the StringBuilder.

➏ If we’re not at EOF yet, let’s read another byte.

➐ When we run out of bytes to read, we’ll get out of the loop and print the content of StringBuilder.

Of course, we’ll do small demo project. It solidifies our learning. Table 18-1 shows

the details for the demo project.

Table 18-1.  Project Details

Project Detail Value

Application name CH18InternalStorage

Company domain use your website name

Kotlin support Yes

Form factor Phone and Tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

What we want to do:

	 1.	 We’ll set up two activities: MainActivity and SecondActivity.

	 2.	 In MainActivity, the user can freely type text in a multiline

EditText.

	 3.	 When the button “2nd Activity” is clicked, we’ll launch an explicit

Intent to open SecondActivity.

	 4.	 But before we leave MainActivity, we’ll create a file and save

the contents of the EditText to that file. This call isn’t terribly

expensive, but we’ll run this code in background thread because

it’s an I/O call. You can never be sure if an I/O call will be more or

less than 16 ms, so err in the side of caution.

Chapter 18 Internal Storage

413

	 5.	 In SecondActivity, as soon as it becomes visible to the user,

we will read the contents of the file (that one we just saved in

MainActivity) and show it to the user using a multiline TextEdit.

	 6.	 Still in SecondActivity, when the user clicks the button “1st

Activity,” we’ll launch an explicit Intent to go back to the

MainActivity.

	 7.	 In MainActivity’s onResume, we’ll try to read the file and make it

available for editing.

Figure 18-1 shows the two screens of our app.

MainActivity SecondActivity

Figure 18-1.  The app, at runtime

Chapter 18 Internal Storage

414

Listings 18-3 and 18-4 show the full codes for activity_main.xml (UI for MainActivity.

Kt) and activity_second.xml (UI for SecondActivity.Kt), respectively.

Listing 18-3.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <EditText

 android:id="@+id/txtinput"

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:layout_marginTop="34dp"

 android:ems="10"

 android:inputType="textMultiLine"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <Button

 android:id="@+id/btnsecondactivity"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginBottom="16dp"

 android:layout_marginTop="8dp"

 android:text="2nd Activity"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/txtinput"

 app:layout_constraintVertical_bias="0.963"

 tools:layout_editor_absoluteX="16dp" />

</android.support.constraint.ConstraintLayout>

Chapter 18 Internal Storage

415

Next comes the xml definition for activity_second.

Listing 18-4.  /app/res/layout/activity_second.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".SecondActivity">

 <Button

 android:id="@+id/btnmainactivity"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginBottom="18dp"

 android:layout_marginStart="16dp"

 android:text="1st activity"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintStart_toStartOf="parent" />

 <TextView

 android:id="@+id/txtoutput"

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:layout_marginTop="29dp"

 android:inputType="textMultiLine"

 android:text="TextView"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

There’s a couple of things going on for MainActivity. Before we look at the full code,

let’s look at its important sections first.

Chapter 18 Internal Storage

416

When MainActivity opens, we run some code that checks if “ourfile.txt” (the name of

the file) already exists. If it does, we’ll read it and display the contents in the EditText, so

the user can edit it. This code is inside the onResume() callback, this is a good place to

put the code because the runtime calls it as soon as the Activity is visible to the user.

Listing 18-5 shows the onResume callback and the loadData function. I annotated

three points only—from where to call loadData and the beginning/ending lines of all the

codes related to file input/output. You’re already familiar with the rest of the codes since

they’ve been explained earlier in this chapter and/or in earlier chapters.

The code is straightforward, but it may be structurally challenging for a beginner. So,

let’s take it step by step.

Listing 18-5.  loadData Function

val Log = Logger.getLogger(MainActivity::class.java.name)

override fun onResume() {

 super.onResume()

 loadData() ➊
}

private fun loadData() {

 val filename = "ourfile.txt"

 Thread(Runnable{

 try {

 val input = openFileInput(filename) ➋
 input.use {

 var buffer = StringBuilder()

 var bytes_read = input.read()

 while(bytes_read != -1) {

 buffer.append(bytes_read.toChar())

 bytes_read = input.read()

 }

 runOnUiThread(Runnable{

 txtinput.setText(buffer.toString())

 })

 } ➌
 }

Chapter 18 Internal Storage

417

 catch(fnfe:FileNotFoundException) {

 Log.warning("file not found, occurs only once")

 }

 catch(ioe: IOException) {

 Log.warning("IOException : $ioe")

 }

 }).start()

}

➊ Let’s call loadData() as soon as the Activity is visible to the user; this happens inside the

onResume callback.

➋ Start of I/O code

➌ End of I/O code. The rest is boiler-plate for Threading and Exception.

Focus on the codes between points ➋ and ➌ of Listing 18-5. They are the only

ones important for reading the file. The Thread, Runnable, runOnUiThread, try,
and catch are all housekeeping codes. They’re there because we’re trying to code

defensively. We’re running in the background because the I/O code might take some

time to complete. We’re using the try-catch block because the I/O codes might throw an

Exception. We used the runOnUiThread because we can’t write anything to the UI while

we’re inside a background thread. Those are the reasons for the structural acrobatics.

Listing 18-6 shows the loadData function again, but this time without the I/O codes.

You only get to see the housekeeping codes.

Listing 18-6.  loadData Without the I/O Codes

Thread(Runnable {

 ... ➊

 try {

 ... ➋

 runOnUiThread(Runnable {

 ... ➌
 })

 }

Chapter 18 Internal Storage

418

 catch(ioe:IOException) {

 ... ➍
 }

}).start() ➎

➊ Run your background code here. All of our file input/out codes are here.

➋ This is where you write codes that can throw Exceptions. Java I/O calls can throw

Exceptions—that’s why we need to put them here.

➌ If you need to update the UI, you have to come back to the UI Thread. You cannot make changes

to the UI while in a background thread.

➍ If an Exception does happen, do whatever you need to do here so the app can recover. At the

very least, log something here, so you’ll see what errors occurred when you look at the logs later.

The benefit of handling Exceptions explicitly (like this) is that the app won’t crash if it encounters

something unfavorable during runtime. This way, you have a chance to recover gracefully.

➎ The start method kicks the Thread into high gear. It gets the Thread, well, started.

Points ➊ to ➎ contain everything that’s running in a background thread. The basic

structure of that overstretched statement is this Thread(Runnable { ... }).start().

All the I/O codes and the try-catch block are written in place of the ellipsis.

Next, when the app is fully visible to the user, it waits for input. The user can add

text in the multiline EditText. If the user clicks the “2nd Activity” button, we’ll launch

SecondActivity with an explicit Intent. MainActivity transitions from “running” to

“paused” state, but before that happens, the runtime will call MainActivity’s onPause

method. This is where we’ll write our codes to save the data to a file. Listing 18-7 shows

the annotated saveData function.

Listing 18-7.  annotated saveData function

private fun saveData() {

 val filename = "ourfile.txt"

 Thread(Runnable { ➊
 try {

 val out = openFileOutput(filename, Context.MODE_PRIVATE) ➋
 out.use {

 out.write(txtinput.text.toString().toByteArray()) ➌
 }

Chapter 18 Internal Storage

419

 runOnUiThread(Runnable { ➍
 Toast.makeText(this, "Saved", Toast.LENGTH_LONG).show()

 })

 }

 catch(ioe:IOException) {

 Log.warning("Error while saving ${filename} : ${ioe}")

 }

 }).start()

}

override fun onPause() {

 super.onPause()

 saveData()

}

➊ We’ll run in a background thread because it’s an I/O call.

➋ Let’s open a file for input. This gives us a FileInputStream. Pass the name of the file as first

parameter and the context mode for the second parameter.

➌ Now we can write to the file. Remember that you can only write an array of bytes in a

FileInputStream object, so you have to convert the runtime value of the EditText to a ByteArray.

➍ Now we have to go back to the UI thread, even if we’re only going to show a Toast message.

Hopefully that clarifies the structure of MainActivity. SecondActivity is much simpler

but it also follows the same structural flow as MainActivity. Listings 18-8 and 18-9 show

the complete and annotated codes for MainActivity and SecondActivity, respectively.

Listing 18-8.  MainActivity, Annotated

import android.content.Context

import android.content.Intent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.widget.Toast

import kotlinx.android.synthetic.main.activity_main.*

import java.io.FileNotFoundException

import java.io.IOException

Chapter 18 Internal Storage

420

import java.util.logging.Logger

class MainActivity : AppCompatActivity() {

 val Log = Logger.getLogger(MainActivity::class.java.name)

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 btnsecondactivity.setOnClickListener {

 startActivity(Intent(this, SecondActivity::class.java)) ➊
 }

 }

 private fun saveData() { ➋
 val filename = "ourfile.txt"

 Thread(Runnable {

 try {

 val out = openFileOutput(filename, Context.MODE_PRIVATE)

 out.use {

 out.write(txtinput.text.toString().toByteArray())

 }

 runOnUiThread(Runnable {

 Toast.makeText(this, “Saved", Toast.LENGTH_LONG).show()

 })

 }

 catch(ioe:IOException) {

 Log.warning("Error while saving ${filename} : ${ioe}")

 }

 }).start()

 }

 override fun onPause() { ➌
 super.onPause()

 saveData()

 }

Chapter 18 Internal Storage

421

 override fun onResume() { ➍
 super.onResume()

 loadData()

 }

 private fun loadData() {

 val filename = "ourfile.txt"

 Thread(Runnable{

 try {

 val input = openFileInput(filename)

 input.use {

 var buffer = StringBuilder()

 var bytes_read = input.read()

 while(bytes_read != -1) {

 buffer.append(bytes_read.toChar())

 bytes_read = input.read()

 }

 runOnUiThread(Runnable{

 txtinput.setText(buffer.toString())

 })

 }

 }

 catch(fnfe:FileNotFoundException) {

 Log.warning("file not found, occurs only once")

 }

 catch(ioe: IOException) {

 Log.warning("IOException : $ioe")

 }

 }).start()

 }

}

Chapter 18 Internal Storage

422

➊ When the button is clicked, we’ll simply launch an explicit Intent to open SecondActivity. We

won’t do any I/O codes here.

➋ The saveData function contains all the I/O code to write the runtime contents of the EditText to

a file.

➌ Before MainActivity enters the “paused” state and disappears from the user’s view, the runtime

will call onPause; this is where we’ll call saveData.

➍ When MainActivity first comes to the user’s view, the runtime calls onResume. This is where

we’ll call the loadData function. It’ll read the file and show its contents in a TextView object.

Let’s move on to SecondActivity.

Listing 18-9.  SecondActivity, Annotated

import android.content.Intent

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_second.*

class SecondActivity : AppCompatActivity() {

 override fun onResume() { ➊
 super.onResume()

 loadData()

 }

 private fun loadData() { ➋
 val filename = "ourfile.txt"

 Thread(Runnable {

 val input = openFileInput(filename)

 input.use {

 var buffer = StringBuilder()

 var bytes_read = input.read()

 while(bytes_read != -1) {

 buffer.append(bytes_read.toChar())

 bytes_read = input.read()

 }

 runOnUiThread(Runnable{

Chapter 18 Internal Storage

423

 txtoutput.setText(buffer.toString())

 })

 }

 }).start()

 }

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_second)

 btnmainactivity.setOnClickListener { ➌
 startActivity(Intent(this, MainActivity::class.java))

 }

 }

}

➊ When SecondActivity comes to the user’s view, we’ll call loadData.

➋ You’ve seen this code before. This is the same code in MainActivity. It reads the file and shows

its contents using the TextView object. I suppose we could have refactored the code and

abstracted this function somewhere so that we could follow the DRY (don’t repeat yourself)

principle, but that means we have more code and concept to explain. I violated the DRY principle

in here in favor of readability. Just remember not to do this on production code.

➌ When the “1st Activity” button is clicked, we go back to the MainActivity. We could have called

finish() in here as well, but I didn’t want to completely destroy SecondActivity, so I used an

explicit Intent to go back to MainActivity instead.

That draws the chapter to a close. I’ve said this a couple of times in the chapter, but

it’s worth repeating. The I/O codes are not the ones that are difficult—it’s the boiler-plate

codes that makes the program look more complicated than it really is. But you can’t get

away with that, you need the threading and exception handling codes to observe good

housekeeping in your codes.

Chapter 18 Internal Storage

424

�Chapter Summary
•	 When your need for storage exceeds the simple structure of key-value

pairs and basic data type, use the Java I/O classes.

•	 You can store your file either in the always-available-but-limited

internal storage or in the larger-but-may-be-dismounted external

storage.

•	 Even if you think the I/O call will be less than 16 ms, run the codes in

background thread. You never know what can happen in an I/O call.

•	 Java I/O calls throw Exceptions; handle them appropriately.

In the next chapter, we’ll look at another important component of Android apps:

BroadcastReceivers. They actually do, what you think they do—receive broadcasts. We’ll

look at some types of broadcast, and as always, we’ll do a small demo project on it.

Chapter 18 Internal Storage

425
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_19

CHAPTER 19

BroadcastReceivers
What we’ll cover:

•	 Introduction to BroadcastReceivers

•	 Custom and system broadcasts

•	 Manifest and context registered receivers

Android’s application model is unique in many ways, but what makes it stand out

is the way it lets you build an app using the functionalities of other apps that you didn’t

make yourself—I don’t mean just libraries, I mean full apps. You already know about

Intents—what they are and what they can do. We’ve looked at how to use Intents to

launch other components, and we even used it to pass data around and in-between

components.

There’s one more way we can use Intents. We can use it to send a broadcast to all

components. A broadcast is an Intent that is sent either by the Android runtime or other

apps (your own apps included) so that every application or component can hear it.

Most applications will ignore the broadcast but you can make your app listen to it. You

can tune in to the message so you can respond to the broadcast. That is the topic of this

chapter.

�Introduction to BroadcastReceivers
So, we can launch Intents that are sent (broadcasted) to all apps and components.

But what good does that do? To answer that, we need to jog our memories a bit and

talk about Android’s philosophy on interoperability and pluggability. Remember in

Chapter 12 when we first talked about Intents? We looked at the picture in Figure 19-1.

426

The user doesn’t care which app to use to send an e-mail, SMS, or make a phone

call. When a user clicks on the e-mail, it launches an implicit intent that says, “Hey,

I wanna send an e-mail. Who’s interested?” every app in the device will hear this

but only those who are tuned-in will be able to respond. That’s the whole idea about

BroadcastReceivers—a message is published to all and if some apps are subscribed to it,

then they can respond. It uses a publish-subscribe model.

�System Broadcast vs. Custom Broadcast
An Intent broadcast can be sent either by the OS (system broadcast) or by applications

(custom broadcast). A system broadcast is sent by the OS whenever something

interesting happens (e.g., when WiFi is turned on [or off], when the battery goes down to

a specified threshold, a headset is plugged, or the device was switched to airplane mode,

etc.). Some examples of broadcast actions from the system are as follows:

•	 android.app.action.ACTION_PASSWORD_CHANGED

•	 android.app.action.ACTION_PASSWORD_EXPIRING

•	 android.bluetooth.a2dp.profile.action.CONNECTION_STATE_

CHANGED

•	 android.bluetooth.a2dp.profile.action.PLAYING_STATE_CHANGED

CONTACTS

Ted Hagos

John Doe

Jane Doe

632 1 11 111

tedhagos@gmail.com

Dialer

SMS

Email app

(1) User opens the
Contacts app. Taps on a
contact

(2) Contact details has
info on mobile number
and email address

(3) Taps on mobile icon,
launches the dialer app

(4) Taps on message
icon, launches the SMS
app

(5) Taps on envelope
icon, launches the email
app

Figure 19-1.  How a user interacts with the Contacts app

Chapter 19 BroadcastReceivers

427

•	 android.bluetooth.adapter.action.CONNECTION_STATE_CHANGED

•	 android.intent.action.BATTERY_CHANGED

•	 android.intent.action.BATTERY_LOW

•	 android.intent.action.BATTERY_OKAY

There’s about 150+ of these listed on the documentation. You can find them on the

BROADCAST_ACTIONS.TXT file in the Android SDK.

A custom broadcast, on the other hand, is something you make up. These are intents

that you send in order to notify some of your app’s components (or other apps that are

tuned in) that something “interesting” happened (e.g., a file has finished downloading or

you’ve finished calculating prime numbers, etc.).

�Manifest Registration vs. Context Registration
If you want to do something as a response to a broadcast, you need to listen for it, and

in order to do that, you need to register a receiver. There are two ways to register: via the

manifest and via the context.

A receiver registered in the manifest looks like Listing 19-1.

Listing 19-1.  BroadcastReceiver Declared in AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="net.workingdev.ch19broadcastreceiverdosomething">

<application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

Chapter 19 BroadcastReceivers

428

 </intent-filter>

 </activity>

 <receiver ➊
 android:name=".MyReceiver" ➋
 android:enabled="true"

 android:exported="true">

 <intent-filter> ➌
 <action android:name="com.workingdev.DOSOMETHING"/>

 </intent-filter>

 </receiver>

</application>

➊ Just like an Activity, a BroadcastReceiver needs to be declared in the manifest. You have

to declare it in its own node. Like an Activity declaration, it needs to be a child node of

application.

➋ “.MyReceiver” is the name of the BroadcastReceiver class. So, presumably, there is a class

in your app named MyReceiver and it inherits BroadcastReceiver. We simply write it as

“.MyReceiver,” just like the Activity above it, “.MainActivity”. The complete form is actually

net.workingdev.ch19broadcastreceiverdosomething.MyReceiver, but we can use the

short form because the package name is already declared earlier; look at the second line

of the manifest, and you’ll find the complete name of the package. Any subsequent classes

that need to be declared in the manifest can simply use the short form, like “.MyReceiver” or

“.MainActivity”.

➌ The intent-filter is how we actually register. We’re telling the OS that we’re interested in the

event com.workingdev.DOSOMETHING. In case that Intent is sent as a broadcast, this app

would like to respond to it.

Receivers that were registered via the manifest don’t need to be currently running in

order to respond to the broadcast. The fact that a receiver is registered on the manifest is

enough to resolve an intent.

When a receiver is programmatically registered—via a Context object—it looks like

Listing 19-2.

Chapter 19 BroadcastReceivers

429

Listing 19-2.  How to Register and Unregister a BroadcastReceiver

val Log = Logger.getLogger(javaClass.name)

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 val action_filter = IntentFilter("com.workingdev.DOSOMETHING") ➊
 val receiver = MyReceiver()

 btnregister.setOnClickListener {

 registerReceiver(receiver, action_filter) ➋
 }

 btnunregister.setOnClickListener {

 try {

 unregisterReceiver(receiver) ➌
 }

 catch(iae:IllegalArgumentException) {

 Log.warning("IllegalArgument\n ${iae}")

 }

 catch(e:Exception) {

 Log.warning("IllegalArgument\n ${e}")

 }

 }

}

inner class MyReceiver : BroadcastReceiver() { ➍
 override fun onReceive(context: Context?, intent: Intent?) {

 println("got it");

 Toast.makeText(this@MainActivity, "Got it", Toast.LENGTH_LONG).show()

 }

}

Chapter 19 BroadcastReceivers

430

➊ This is the programmatic equivalent of the <intent-filter> node we’ve seen earlier. To

create an IntentFilter object, pass a broadcast action to its constructor. The broadcast action

is the event you’d like to subscribe to. In this case, we’d like to be notified when the Intent

whose action is com.workingdev.DOSOMETHING is sent out; this Intent is an example of a

custom broadcast, not a system broadcast.

➋ Use the registerReceiver method of the Activity to register the receiver. The method takes two

arguments:

a. A n instance of BroadcastReceiver, and

b. A n instance of an IntentFilter

➌ When you register a receiver programmatically, make sure you also unregister it. That’s what

we’re doing here. It’s inside a try-catch structure because it can throw an exception. If you try

to unregister a receiver that isn’t registered yet (or a receiver that’s been unregistered already),

the runtime will throw the IllegalArgumentException. I didn’t do this for the registration part

because registerReceiver doesn’t throw any exception, even if you (accidentally) register

the same receiver more than once. Once a receiver is registered, the runtime will ignore any

further attempts to register the same.

➍ This is the bare-bones definition of a BroadcastReceiver class.

Receivers that are registered programmatically can only respond to broadcasts while

the app (which was used to register the receiver) is still running.

�Basics of BroadcastReceivers
There are a couple of steps to follow when creating broadcast receivers. They are:

	 1.	 Decide which broadcast action you’d like to tune into. Do you

want to listen to a system broadcast or a custom broadcast?

Custom broadcast is typically used if you’d like to facilitate some

messaging between your app’s components. One use-case for

using a BroadcastReceiver is when you use the DownloadManager

system service to download large files, the service sends out a

broadcast when it finishes the download—you’d want to listen to

that so you can take action right after.

Chapter 19 BroadcastReceivers

431

	 2.	 Decide how you will register the receiver, via the context or

through the manifest? You can listen to custom broadcasts either

way (manifest or context), but there are some broadcast actions

that are restricted—you cannot listen to them via manifest

registration. We will discuss this shortly.

	 3.	 Create a class that inherits from the BroadcastReceiver class.

	 4.	 Override and implement the onReceive method of the new

class. When a broadcast is sent, the intent-filter is matched with

the action, the OS resolves the Intent to your app, and eventually

the specific BroadcastReceiver class, the runtime calls the

onReceive method. The onReceive method is the meat and

potatoes of the BroadcastReceiver class. Whatever you want to do

when the broadcast is matched, this is the place where you need

to write it.

Generally, you can listen to broadcasts if you register a BroadcastReceiver either via

the Android manifest or via a Context object. Let’s segue a little bit. Earlier, I used the

term “register via the context” and “register programmatically”—they are one and the

same, they mean the same. “Register via the context” means to call the registerReceiver

method on the Context object. So the statement

registerReceiver(receiver, intent_filter)

is the same as the statement

this.registerReceiver(receiver, intent_filter)

They are both called on Context of the current Activity—the Activity class actually

inherits from the Context object, and so does the Service class. So, you can call the

registerReceiver method from within an Activity or Service. If you’re inside a class that

doesn’t inherit from Context, you may still be able to register a receiver by getting the

Application’s context. The code looks something like this:

getApplicationContext().registerReceiver(receiver, intent_filter) // or

applicationContext.registerReceiver(receiver, intent_filter)

Going back to manifest versus context registration, there are some broadcast actions

that you cannot register in the manifest; but you can register them via the Context.

Chapter 19 BroadcastReceivers

432

One example is android.intent.action.TIME_TICK, this is a protected intent that can

only be sent by the system. It’s sent every 60 seconds and you can only listen to it if you

registered via the Context.

In earlier versions of Android, there were already a couple of broadcast that were

off limits from the manifest. At the time of this writing, Android 9 (or API level 28)

came out. In this book, we’ve always used API level 23 as the target, but you will benefit

from reading the behavior changes documents for each Android version. I’ve listed

some links to the official Android documentation below. These documentations affect

BroadcastReceivers in one way or another.

•	 Android 9 (API 28) behavior changes. http://bit.ly/

behaviorchanges9. Talks about all the changes in the API that

developers should know if we want to target Android 9. This doc has

something to say about BroadcastReceivers.

•	 Background execution limits. http://bit.ly/bgexeclimit. This

talks about the things your app can and can’t do while it’s running

in the background. Don’t think that because you’re not in the UI

thread, you can run around and do whatever you want. This doc talks

about those limitations; it also talks about the limitations imposed on

BroadcastReceivers.

•	 BroadcastReceiver exceptions. http://bit.ly/

broadcastexceptions. Starting with Android 8 (continuing to 9), all

implicit broadcast actions are now off-limits from the manifest, with

the exception of some. This document itemizes those actions that are

exempted. If you want to know which implicit broadcast actions can

still be registered via the manifest, read this doc.

�Implicit vs. Explicit Broadcast Actions
Android makes a distinction between implicit and explicit broadcast actions. It defines

an explicit broadcast as something that target just one application, no matter how many

other apps are listening for it. An explicit broadcast, on the other hand, can be heard

by any app that registered for it. For our purpose and to make our lives simpler, the

documentation is telling us not to listen to system broadcast via the manifest. Starting

Chapter 19 BroadcastReceivers

http://bit.ly/behaviorchanges9
http://bit.ly/behaviorchanges9
http://bit.ly/bgexeclimit
http://bit.ly/broadcastexceptions
http://bit.ly/broadcastexceptions

433

Android 8, all implicit broadcasts (with the exception of those listed at

http://bit.ly/broadcastexceptions) cannot be heard by receivers that were

registered via the manifest. But you may still listen for these broadcast actions if you

register via the context.

The main reasons for all the new restrictions have to do with performance

optimization and saving power. Consider this: when a device’s WiFi connectivity goes

up or down, the CONNECTIVITY_ACTION broadcast is sent. If there are a dozen apps

listening for this broadcast, all of them will wake up and take action. This is going to

happen every time the WiFi drops and reconnects. Remember that manifest-registered

receivers don’t need to be alive to receive the broadcast; in fact, they will come alive

when they get the broadcast. This behavior can cause significant power drain. If your

app doesn’t need to be informed on WiFi connectivity when it’s not running, it’s more

responsible to do the registration via the context.

�Demo App: Custom Broadcast
Let’s build a small project so you can try the BroadcastReceivers yourself. Table 19-1

shows the details for this project.

Table 19-1.  Project Details

Project Detail Value

Application name CH19ContextRegistration

Company domain use your website name

Kotlin support Yes

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Chapter 19 BroadcastReceivers

http://bit.ly/broadcastexceptions

434

What want to do:

	 1.	 Create a BroadcastReceiver that will respond to an implicit

custom broadcast

	 2.	 We’ll register the receiver as soon as the Activity becomes visible

to the user; and

	 3.	 We’ll unregister the receiver before the Activity gets into the

“paused” state.

	 4.	 The MainActivity’s UI will only have one button. When the button

is clicked, it will send a custom broadcast intent.

Listing 19-3 shows minimalistic code for the UI.

Listing 19-3.  /app/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.

android.com/apk/res/android

 xmlns:app=http://schemas.android.com/apk/res-auto

 xmlns:tools=http://schemas.android.com/tools

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="26dp"

 android:layout_marginTop="43dp"

 android:text="send broadcast"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Chapter 19 BroadcastReceivers

435

We need to add a class that inherits from BroadcastReceiver. One way to do this is

from the main menu bar File ➤ New ➤ Kotlin File/Class. Alternatively, we can also use

the context menu from the app ➤ java folder of the Project tool window, as shown in

Figure 19-2. From there, you can go to New ➤ Other ➤ BroadcastReceiver.

You need to fill in the name of the class. In this example, I named the class

“MyReceiver.”

We won’t do anything special in the receiver. We’ll simply display at toast message

print something in the Logger. Listing 19-4 shows the code for MyReceiver.

Figure 19-2.  New BroadcastReceiver

Chapter 19 BroadcastReceivers

436

Listing 19-4.  MyReceiver.java

import android.content.BroadcastReceiver

import android.content.Context

import android.content.Intent

import android.widget.Toast

import java.util.logging.Logger

class MyReceiver : BroadcastReceiver() {

 val Log = Logger.getLogger(javaClass.name)

 override fun onReceive(context: Context, intent: Intent) { ➊
 Toast.makeText(context, "Got it", Toast.LENGTH_LONG).show()

 Log.info("Got it")

 }

}

➊ When a broadcast intent is matched to a receiver, the OS calls the BroadcastReceiver’s

onReceive method. This is where you should write your app’s business logic for the receiver

(e.g., save a file, route program logic depending on WiFi conditions, etc.).

In MainActivity, we will do the following:

	 1.	 Create an instance of MyReceiver. We need to do this only once.

That’s why we will create the instance inside the onCreate

callback.

	 2.	 Register the receiver each time it becomes visible to the user. We’ll

put this code inside the onResume callback of MainActivity.

	 3.	 Unregister the receiver when the user is no longer interacting with

MainActivity.

	 4.	 When the button is clicked, we’ll send a custom broadcast intent.

Listing 19-5 shows the full and annotated code for MainActivity.

Chapter 19 BroadcastReceivers

437

Listing 19-5.  MainActivity.java

import android.content.Intent

import android.content.IntentFilter

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import kotlinx.android.synthetic.main.activity_main.*

import java.util.logging.Logger

class MainActivity : AppCompatActivity() {

 lateinit var receiver:MyReceiver ➊
 val Log = Logger.getLogger(javaClass.name) ➋

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 receiver = MyReceiver() ➌

 button.setOnClickListener {

 val intent = Intent("com.workingdev.DOSOMETHING") ➍
 sendBroadcast(intent) ➎
 }

 }

 override fun onResume() { ➏
 super.onResume()

 val filter = IntentFilter("com.workingdev.DOSOMETHING")

 registerReceiver(receiver, filter)

 Log.info("Registered receiver")

 }

 override fun onPause() { ➐
 super.onPause()

 try {

 unregisterReceiver(receiver)

 Log.info("Unregistered receiver")

 }

Chapter 19 BroadcastReceivers

438

 catch(iae: IllegalArgumentException) {

 Log.warning(iae.toString())

 }

 }

}

➊ The receiver variable holds the instance of the MyReceiver class (our BroadcastReceiver).

We’re declaring the variable as a property because we will refer to it in the onResume and

onPause methods. We used the lateinit keyword because we won’t define it just yet.

➋ Let’s use a basic Logger object.

➌ Now that we’re inside onCreate, let’s define the MyReceiver object.

➍ When the button is clicked, we’d like to create a broadcast intent and set its action to

DOSOMETHING.

➎ Launch the intent.

➏ We’re inside the onResume callback. The OS will call this method every time MainActivity

is becomes visible to the user. This is good place to register the receiver. We only want to be

notified when we’re using the app.

➐ We’re inside onPause, the OS calls this method before MainActivity enters a “paused” state

and then disappears from the user’s view. This is a good place to unregister the receiver. We

don’t want to be notified when we’re not using the app.

Chapter 19 BroadcastReceivers

439

Another way to send a broadcast intent is via the Android Debug Bridge or adb,
for short. It’s a command-line tool that lets you communicate to a device—physical

or emulated. The adb can do quite a range of things like installing/uninstalling APKs,

displaying logs, running Linux commands on the device, simulating phone calls, and

many more. For our purpose, we’ll use to send out a broadcast intent.

adb is in the platform tools folder of the Android SDK. Open a command-line

window and switch to the directory of the Android SDK. If you’ve forgotten where it is,

go to Android Studio’s Settings (Windows and Linux) or Preferences (macOS). You can do

that by the pressing the keys CTRL + ALT + S, for Windows and Linux, or Command + ,
(comma) for macOS.

From there, go to Appearance and Behavior ➤ System Settings ➤ Android SDK, as

shown in Figure 19-4. The Android SDK location is found there.

Figure 19-3.  Our app, running

Chapter 19 BroadcastReceivers

440

Go back to the command-line window, and switch to the Android SDK folder. From

there, switch to the platform-tools folder, then run the following command:

adb shell am broadcast -a com.workingdev.DOSOMETHING

If you’re on macOS or Linux, you may have to prepend the command with dot and

forward slash, like this:

./adb shell am broadcast -a com.workingdev.DOSOMETHING

�Demo App: System Broadcast
The next project will be similar to the previous project, but we’ll listen for a system

broadcast. We will listen for the ACTION_TIME_TICK, which is sent out by the system

every 60 seconds. This is a protected intent, so we really have to register the receiver at

runtime. Table 19-2 shows the details for this project.

Figure 19-4.  Preferences, Android SDK

Chapter 19 BroadcastReceivers

441

The app is very simple. There are no UI elements to set up. Here’s what we’d like

to do:

	 1.	 Create a BroadcastReceiver that will listen for the ACTION_TIME_

TICK intent. We’ll implement this one as an inner class—the

only reason for this is to make the presentation of the code a bit

more compact. You can definitely implement the receiver class as

stand-alone class if you wish.

	 2.	 We want to listen to broadcast only when the user is interacting

with the app. So we will register the receiver in the onResume

callback of MainActivity; we’ll unregister it in the onPause

callback.

	 3.	 Whenever the ACTION_TIME_TICK is received, we’ll simply print

out a message to the console and also to the user screen using a

Toast object.

Table 19-2.  Project Details for System Broadcast

Project Detail Value

Application name CH19SystemBroadcast

Company domain use your website name

Kotlin support Yes

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

Chapter 19 BroadcastReceivers

442

Listing 19-6.  MainActivity

import android.content.BroadcastReceiver

import android.content.Context

import android.content.Intent

import android.content.IntentFilter

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.widget.Toast

import java.util.logging.Logger

class MainActivity : AppCompatActivity() {

 lateinit var intentfilter:IntentFilter

 lateinit var timereceiver:TimeReceiver

 var current_count = 0

 val Log = Logger.getLogger(javaClass.name)

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 timereceiver = TimeReceiver() ➊
 intentfilter = IntentFilter(Intent.ACTION_TIME_TICK) ➋
 }

 override fun onResume() {

 super.onResume()

 Log.info("App is resuming")

 registerReceiver(timereceiver,intentfilter) ➌
 }

 override fun onPause() {

 super.onPause()

 Log.info("App is paused")

 try {

Chapter 19 BroadcastReceivers

443

 unregisterReceiver(timereceiver) ➍
 }

 catch(iae:IllegalArgumentException) {

 Log.warning(iae.toString())

 }

 }

 inner class TimeReceiver : BroadcastReceiver() { ➎
 override fun onReceive(context: Context?, intent: Intent?) {

 current_count += 1

 var message = "Counter:${current_count}"

 Log.info(message)

 Toast.makeText(this@MainActivity, message, Toast.LENGTH_LONG).show()

 }

 }

}

➊ Creates an instance of the BroadcastReceiver

➋ Creates the intentfilter that’ll listen for the ACTION_TIME_TICK broadcast

➌ Register the receiver inside onResume; this method is called by the runtime when the app is

seen by the user.

➍ Unregister the receiver before the app goes to a "paused" state. This way, the receiver only

listens for broadcast whenever our app is in view of the user. When the app is no longer in the

user’s view, we don’t want to be notified of any broadcast.

➎ Here’s the class definition for the BroadcastReceiver. It’s implemented as inner class, and it’s

just as effective. This works for us because we’re not trying to do anything substantial in the

onReceive callback. If the program logic gets too involved or complex, the BroadcastReceiver

might be better implemented outside MainActivity.

�Other Notes
BroadcastReceivers and Intents do an effective job of making decoupled components

talk to each other. It’s good to use BroadcastReceivers if you want to facilitate

communication between apps; they’re a good solution for inter-process communication.

Chapter 19 BroadcastReceivers

444

But if the communication is limited among the components of your own app,

BroadcastReceivers are an expensive solution. It’s not appropriate to use global

broadcast.

If you simply want to facilitate some messaging between your app’s components,

you might want to consider a LocalBroadcastManager class. When you use this, the

broadcast data doesn’t leave your application. It’s not interprocess. Unfortunately,

LocalBroadcastManager won’t be discussed in this chapter. But hopefully you’ve gained

some good grounding on the concept and use of BroadcastReceivers.

�Chapter Summary
•	 You can use BroadcastReceivers and Intents to create truly decoupled

apps.

•	 You can make your app listen to a specific broadcast and do

something interesting when the broadcast is sent.

•	 BroadcastReceivers can be used to route program logic in your

app. You can make the app behave in certain ways as a response to

the changes in the runtime environment (e.g., low battery, no WiFi

connection).

•	 BroadcastReceivers can be registered via the manifest or via a

Context object. If you will target Android 9.0, make sure to read

on the broadcast actions that are allowed to be registered via the

manifest. There is a push from the Android team that discourages

apps to register via the manifest and use context registration instead.

In the next chapter, you’ll learn how to prepare your app for distribution.

Chapter 19 BroadcastReceivers

445
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0_20

CHAPTER 20

App Distribution
What we’ll cover:

•	 Cleaning up

•	 Preparing for release

•	 Signing the app

•	 Google Play

At some point, you might want to distribute your application to a wide audience.

Android apps can be distributed quite freely and without much restriction; you can

make it available as a download on your website or even e-mail the app directly to the

users, but many developers choose to distribute their app on a market place like Google

Play Store or Amazon App Store to maximize reach. Regardless of how you intend to

distribute, there are things you need to do before you release the app.

Publishing an app can be a very involved activity, and it's not limited to the

technical and procedural aspects of app distribution such as creating an account on

developer.android.com, making polished icons, and signing your app. It may also

involve creating copy and promotional text, social media activities, and many other

things that have nothing to do with tech at all. This chapter will only focus on the

technical requirements of app distribution.

Generally, there are two stages when you publish an app:

	 1.	 Prepare the app for release. This is where we do some clean up.

You’ll need to sanitize the app before the release. This is where

we remove all debug information and other settings or log what

we used during development. You certainly don’t want your users

accidentally seeing all those “got it” or “I am here” breadcrumbs

you left for yourself while you were coding. You may also want to

think about icons and other visual assets for the app. It’s a good

http://android.com

446

idea to invest on an actual device at this stage and test your app

on it. Most importantly, in this stage, we’ll build a developer

certificate.

	 2.	 Releasing the app. You’ll need to publicize the app, sell it, and

distribute it. If you will release the app in the Google Play Store,

you will need to sign up for a publisher account and use developer

console of Google play to publish.

�Preparing the App for Release
The three major things we need to do here are:

	 1.	 Prepare the material and assets for release

	 2.	 Configure the app for release

	 3.	 Build a release-ready app

�Prepare Materials and Assets for Release
No matter how nifty or clever your codes are, the user will never see it. What he will see

are your View objects, the icons, and other graphical assets of the app. Make sure they

are polished.

You’d be remiss if you didn’t think about your app’s icon. This icon helps users

identify your app as it sits on the home screen. This icon also appears on a couple

of other areas such as the launcher window, the downloads section, and, more

importantly, if you are publishing your app in the Google marketplace, this icon

will be displayed there too. The app icon may play a major role in creating the first

impressions to your would-be users, so it is a good idea to put some work into this

and to read Google's guidelines for app icons, which can be found at http://bit.ly/

androidreleaseiconguidelines.

Other things to consider if you will publish the app in Google's marketplace are

graphical assets, like screen captures and the text for promotional copy. Make sure to

read Google's guideline for graphical assets, which can be found at http://bit.ly/

androidreleasegraphicassets

Chapter 20 App Distribution

http://bit.ly/androidreleaseiconguidelines
http://bit.ly/androidreleaseiconguidelines
http://bit.ly/androidreleasegraphicassets
http://bit.ly/androidreleasegraphicassets

447

�Configure the App for Release
This is the part where you clean-up and sanitize the app. The things we mention here

are by no means mandatory, but it’s a good idea to go through them before building a

release version.

�Check the Package Name

In previous chapters, you have used “com.example.myapp” for package names. That’s

alright for test or practice apps, but that’s not alright when you will release the app to the

public. The package name makes the app unique across the marketplace, and once you

decide on a package name, you can’t change it anymore. So, give it some thought.

�Remove Logging and Debug Information

Debug and log information are useful—indispensable even—during development,

but you must not let your users see them. Before releasing the app, strip your app of all

debug and log information.

The debugging information is easy enough to deal with, you simply need to remove

the android:debuggable attribute in the <application> tag of the Manifest file. The

same cannot be said about the logging information, unfortunately.

There are various approaches to the log issue; the solutions can be as simple (but

tedious) as manually removing all Log statements or as sophisticated as writing sed or

awk programs to automatically strip away the Log calls. Some people deal with the log

issues by configuring ProGuard (which is outside the scope of this book), and some

others would go as far as using a third-party library like Timber (a GitHub project) to

replace Android's Log class. Regardless of what approach you take, just be mindful that

you need to strip away the Log statements before you build for release.

�Check the Application Permissions

Sometime during development, you may have experimented on some features of the

application and you may have set permissions on the manifest like permission to use

the network, write to external storage, etc. Review the <uses-permission> tag on the

manifest and make sure that you don't grant permissions that the application does not

need.

Chapter 20 App Distribution

448

�Remote Servers and URLs

If your application relies on web APIs or cloud services, make sure that the release

build of the app is using production URLs and not test paths. You may have been given

sandboxes and test URLs during development; you need to switch them up to the

production version.

�Build a Release-Ready Application
All of the projects and samples we did in this book were deployed in the emulator with

a simple procedure. We clicked the Run button. Android Studio built and assembled

the app into an APK, which was deployed in the target device. After that, the app ran.

Throughout this process, there was one step that Android Studio did for us, and you

didn’t know it. You weren’t aware of it at all.

Android Studio performed a very important task that is required before any APK

can be delivered or installed on any device (emulated or actual device). Android Studio

signed that APK.

Before you can install and run an app in any device, the application’s APK has to

be signed digitally. Android Studio automatically signs all apps when we click the Run

button. But it uses a debug certificate, which is good only for development and testing.

You cannot use the same certificate when you release the app. Most app stores, including

Google, won’t accept an application that is signed with a debug certificate.

Before we distribute the app, we have to sign it with a proper certificate—not a debug

certificate. We don’t need to go to a certificate authority like Thawte or Verisign for

this—a self-signed certificate will do.

Launch Android Studio, if it isn’t open yet. Open your project. From the main menu

bar, go to Build ➤ Generate Signed APK, as shown in Figure 20-1.

Chapter 20 App Distribution

449

Click the “Next” button. You should see the “Keystore” dialog, as shown in Figure 20-2.

The Key store path is asking where our Java Keystore (JKS) file is. At this point, you

don’t have it yet. So, click Create New. You’ll see the dialog window for creating a new

Keystore, as shown in Figure 20-3.

Figure 20-1.  Generate signed APK

Figure 20-2.  Keystore dialog

Chapter 20 App Distribution

450

Note I n Java, a keystore is a repository of security certificates—either
authorization certificates or public key certificates.

Table 20-1 shows the description for the input items of the Keystore.

Figure 20-3.  New Keystore

Chapter 20 App Distribution

451

When you’re done filling up the New Keystore dialog, click “OK.” This will bring you

back to the Generate Signed APK window, as shown in Figure 20-4; but now, the JKS file

is created and Keystore dialog is populated with it.

Table 20-1.  Keystore Items and Description

Keystore items Description

Keystore path The location where you want to keep the keystore. This is entirely up to. Just make

sure you remember this location.

Password This is the password for the keystore.

Alias This alias identifies the key. It’s just a friendly name for it.

(Key) Password This is the password for the key. This is NOT the same password as the keystore’s

(but you can use the same password if you like).

Validity, in years The default is 25 years; you can just accept the default. If publish on Google Play,

the certificate must be valid until October of 2033—so, 25 years should be fine.

Other

information

Only the first and last name fields are required.

Figure 20-4.  Generate signed APK, populated

Chapter 20 App Distribution

452

Click “Next.”

Figure 20-5.  Signed APK, APK destination folder

Next, we choose the destination of the signed APK, as shown Figure 20-5. You need

to remember this location. This is where Android Studio will store the signed APK. Also,

make sure that the Build type is set to “release.”

When you click Finish, Android Studio will generate the signed APK for your app.

This is the file that you will submit to Google Play. You can even sell this APK on your

website or some other marketplace—it ready for release.

�Releasing the App
Before you can submit an app to Google Play, you’ll need a developer account. If you

don’t have one yet, you can sign up at https://developer.android.com. There’s a lot of

assumptions I’m making about the next activities. I’m assuming that:

	 1.	 You already have a Google account (Gmail);

	 2.	 You’re using Google Chrome to go to https://developer.

android.com; and

	 3.	 You’re Google account is logged on to Chrome.

Chapter 20 App Distribution

https://developer.android.com
https://developer.android.com
https://developer.android.com

453

If you’re Google account isn’t logged on to Chrome, you might see something like

Figure 20-6. Chrome will ask you go select an account (or create one).

Figure 20-6.  Choose an account

When you get your Google account sorted out, you’ll be taken to the developer.

android.com website, as shown in Figure 20-7.

Note T he screenshots shown here are as they appear at the time of writing.
Google makes changes to the websites from time to time. The Google Play website
may not look like these screenshots anymore by the time you read this book.

Chapter 20 App Distribution

454

Click Launch Play Console, as shown in Figure 20-8.

Click Google Play, as shown in Figure 20-7.

Figure 20-7.  developer.android.com

Figure 20-8.  Launch Play Console

Chapter 20 App Distribution

455

Figure 20-9.  Google Play console, sign up

You need to go through four steps to complete the registration (shown in Figure 20-9):

	 1.	 Sign-in with your Google account.

	 2.	 Accept the developer agreement.

	 3.	 Pay the registration fee.

	 4.	 Complete your account details.

Once you have completed the registration and payment, you will now have access to

the Google Play console, as shown in Figure 20-10.

Chapter 20 App Distribution

456

This is where you can start the process of submitting your app to the store. Click the

“Create application” button to get started.

�Chapter Summary
•	 Your codes may be great, but the user will never see them. Pay

attention (also) to the things the user will see, like icons and other

graphical assets.

•	 Clean up your code before you release them. Remove all those log

and debug info.

•	 Code-review your own work. If you have buddies or other people who

can review the code with you, that’s much better. If your app uses

servers, RESTful URLs, etc., make sure they are production-ready and

not sandboxes.

•	 You can’t use debug certificates if you want to release your app into

marketplaces like Google Play or Amazon.

Figure 20-10.  Play Console

Chapter 20 App Distribution

457

•	 You’ll need a Google Play account if want to sell your apps on Google

Play. I paid a one-time fee of $25 USD, but that was a couple of years

ago.

•	 Don’t forget to test your app on a real device.

•	 We tried to distill and simplify the process of putting your app in the

Play Store,\ but this chapter isn’t a subsitute to Android Developer’s

launch checklist. You should still read that. You can find at https://

bit.ly/appstorelaunchchecklist.

Chapter 20 App Distribution

https://bit.ly/appstorelaunchchecklist
https://bit.ly/appstorelaunchchecklist

459
© Ted Hagos 2018
T. Hagos, Learn Android Studio 3 with Kotlin, https://doi.org/10.1007/978-1-4842-3907-0

Index

A
Access modifiers, 102
Accessor methods, 94–96
ADTs, see Android development

tools (ADTs)
Android

architecture of, 158–160
history, 157–158
Studio (see Android Studio)

Android app
AndroidManifest, 175–176
AS3 IDE (see AS3 IDE)
components

activities, 174
BroadcastReceivers, 174–175
Contacts app, 176
ContentProviders, 174–175
Intents, 176–177
Services, 174–175

EXE files, 173
logical structure, APK, 173
project creation

AS3 welcome screen, 177–178
AVDs, 183, 188, 190
choosing activity, 181
Component installer, 186
configure activity, 182
“Include Kotlin support”

tick box, 179
Instant apps, 180

Instant run, 189
launching AS3, 177
location, 178
main AS3, 182–183
new project, 178
package name, 178
Run icon, 183
Select Deployment Target

screen, 183, 189
selecting hardware, 184
system image, 185, 187
target Android devices, 179

Android Debug Bridge (adb), 387, 439
Android development tools (ADTs), 160
Android Device Monitor, 387
Android Honeycomb, 289
Android Not Responding (ANR), 348
Android Studio

in 2013, 161
ADTs, 160
AS3 installer, 161
AVD, 169
32-bit libraries, Linux, 162
commercial Java IDE, 161
configuration

API levels, 165
changes, channel, 168
coding, 163
SDK tools, 166–167
SDK window, 165
updates, 167–168

https://doi.org/10.1007/978-1-4842-3907-0

460

HAXM, Windows users, 169
IDE, 160, 171
JDK, 161
JVM languages, 161
KVM, Linux users, 169
Linux installation, 162
macOS, 161
macOS users, 169
SDK manager, 160
Window, 162

Android Studio 3 (AS3), 17
IntelliJ IDEA (see IntelliJ IDEA)

Android Virtual Devices
(AVDs), 169, 183, 188, 190

App configuration
cloud services, 448
debugging information, 447
log issue, 447
package name, 447
permissions, 447
ProGuard, 447
web APIs, 448

App distribution
Android apps, 445
developer.android.com, 445
Google Play Store, 446
publishing App, 445
release preparation

app’s icon, 446
configuration (see App configuration)
Google marketplace, 446
graphical assets, 446

release-ready application
(see Release-ready application)

releasing App
developer account, 452
developer.android.com, 453–454

Google account, 453
Google Play, 452, 454–456
payment, 455
registration, 455

Application entry point
Activity Class

Kotlin, 198
life cycle, 199

containers, layout managers, 204
layout file, 200–201
manifest file, 197
View, ViewGroup objects, 202–203

Arrays
arrayOf function, 119
arrayOfNulls function, 118
constructor, 119
emptyArray function, 118
forEachIndexed function, 120
get function, 118
limitations, 120–121
set function, 118
specialized classes, 119–120
strings, 117
traversing arrays, 120

AS3 IDE
customizing code style, 195–196
Editor window, 191
keyboard shortcuts

keymap settings, 194–195
list, 193–194

main menu, 192–193
Navigation bar, 192
opened project, 190–191
Project Files, 191
Status Bar, 192
Tool bar, 192
Tool window bar, 192
Tool windows, 192

Android Studio (cont.)

Index

461

B
Backround app

Anko’s doAsync
build.gradle, 360–361
code, 362

AsyncTask
code, MainActivity, 359–360
doInBackground method, 357–358
params, 358
progress, 358
publishProgress method, 358
result, 358
subclass, 357–358
type parameters, 360

handler class
code, 355–356
handler object, 354
putString() method, 356

process, 344
threads and runnables, 344

activity_main.xml, 349–350
basic UI, 349
code, 351–353
creation, 351
Logcat window, 350
runOnUiThread method, 353–354
single abstract method, 352

UI thread
ANR error, 348
blocked state, 345
cheap call, 345
GCF, 345–346
GitHub, expensive call, 347
killSomeTime function, 347
nested calculation, expensive

call, 348
NetworkOnMainThread

Exception, 346

steps, 344
Thread.sleep call, 347

BroadcastReceivers
Android 9 (API 28), 432
Application’s context, 431
broadcast action, 430
BROADCAST_ACTIONS.TXT

file, 427
class creation, 431
CONNECTIVITY_ACTION, 433
custom broadcast App, 427

activity_main.xml, 434
adb, 439
Android SDK, 439–440
BroadcastReceiver, 435
context menu, 435
details, 433
lateinit keyword, 438
MainActivity.java, 437
MainActivity’s UI, 434
MyReceiver.java, 436
onCreate callback, 436
onReceive method, 436
onResume callback, 436
platform-tools, 440

exceptions, 432
execution limits, 432
implicit vs. explicit broadcast

actions, 432–433
Intents, 425
LocalBroadcastManager class, 444
manifest vs. context registration

AndroidManifest.xml, 427–428
context register, 429
IllegalArgumentException, 430
intentfilter, 428, 430
MyReceiver class, 428
registerReceiver method, 430–431

Index

462

onReceive method, 431
publish-subscribe model, 426
register, 431
system broadcast App, 426

ACTION_TIME_TICK, 440–441
vs. custom broadcast, 426–427
intentfilter, 443
MainActivity, 442
onResume callback, 441
paused state, 443
project details, 441

TIME_TICK, 432
user interaction, 426

C
Classes

basic class, 84
constructor, 85–88
custom accessor

methods, 95–96
header, 85
inheritance, 89–92
single property, 92–94

Collections, container, 117
Collections framework

common operations on, 126–127
data structure, 121
filter and map, 128–130
forEach function, 128
hierarchy of, 122
Iterable interface, 127
library functions, 122–123
lists, 123–124
maps, 125–126
sets, 124–125
while loops, 127

Color
current colors.xml, 285
defined, 285

Command line tools
hello.kt, 16
installing

HomeBrew/MacPort, 10–11
SDKMAN, 14
zipped installer (see Zipped installer)

REPL, 15–16
Constructor, 85–88

D
Data classes, 96–99
Data storage

content providers, 390
internal or external storage, 389
network storage, 390
SharedPreferences, 389
SQLite database, 390

Debugging
logic errors

breakpoints, 385–386
Logcat tool window, 383, 385

runtime errors
ArithmeticException, 379, 382
code for opening a file, 378
examples, 378
exception handling, 380
try-catch block, 380–381

syntax errors
AsyncTask class, 374–375
code with error, 377
nested blocks, 376

Diamond problem, 81–82
displayMessage() function, 65
Don’t repeat yourself (DRY) principle, 423

BroadcastReceivers (cont.)

Index

463

E
End of file (EOF), 411
Event handling

activity_main.xml, 228–230
Android framework, 221
annotated code, registering

handlers, 223
AS3 hints, 231–232
build.gradle file, 234
button control, design surface, 226
convert to lambda hint, 232
convert to lambda quick fix, 232
event objects, 221
Extract Resource, 227–228
id attribute of layout container, 229
KAE, 231
listener objects, 221, 223
MainActivity.Kt, 230, 235
OnClickListener, 224, 231
OnLongClickListener, 233
project information, 225
project running, emulator, 236–237
setOnClickListener, 224
simplified model, 222
SnackBar, OnLongClickListener, 235
suggested fix, 227
text property, 227
Toast message, 233
user’s action, 222
View.OnClickListener

Lava, 224
Kotlin, 225
lambdas, 225

warnings and error button, 226
Exception handling, 57–58
Extension functions

chanthofy, 71
homerify, 71–73

String class, 72–73
StringUtil class, 71–72
terminatorify, 71

F
File storage

cache directory, 409
external storage, 408
internal storage, 408
Java file I/O, 407

for loops statement, 55–56
Fragments

activity_main, element, 309–310
BookTitle, 308
book title and description, demo

activity_main.xml, 322
BookDescription

class, 319–320, 335, 337
book_description fragments, 323–324
book_description.xml, 314–315, 319
BookTitle class, 316–318
BookTitle, code, 332–333
book_titles fragments, 323–324
book_titles.xml, 315–316
callbacks, 335
changeDescription function, 328
communication, 328
coordinator interface, 328–330
device orientation, 334
emulator, 333–334
horizontal orientation, 312, 324
inflate method, 318
Kotlin file/class, 329
layout-land, 326–327
layout resource file, 326
linearLayout, 321–322
MainActivity, 320–321, 331–332
onBookChanged method, 331

Index

464

onCreateView method, 318
onSaveInstanceState

method, 335–336
project details, 312–313
project view, 324–325
radiobutton, 332
resource directory, 325
synchronization, 327
vertical orientation, 311
view.id, 318
XML values file, 313–314

creation, 306
defined, 306
dynamic demo

activity_main.xml, 338–339
beginTransaction() method, 341
commit() method, 341
FragmentManager, 337
FragmentTransaction object, 337
getSupportFragmentManager()

method, 341
MainActivity, 339–341
onBookChanged() method, 341
project, changes, 338
project details, 337

FragmentsTest, 310
Kotlin class, 307–308
onCreateView method, 309
resource file, 306–307
XML file, 306

Functional language, 5
Functions

declaration, 63
displayMessage, 64–65
getSum, a productive

function, 66–67
using pairs, 66–67

default arguments, connectToDb, 68
infix, 73–75
named parameters, 69
operator overloading, 75–78
variable number of arguments, vararg

function, 70

G
Generic programming

class, 138–140
extension function, 137–138
fooBar function, 136–137
Java, 133–134
parametric polymorphism, 135–136
reified function, 149, 151–153
variance

class, 144–145
contravariance, 143–144
generics type, 146–147
list interface, 148
LSP, 141–142
nullable types, 145
OOP, 140
open closed principle, 141

GitHub API
activity_main.xml, 366–367
AndroidManifest.xml, 370–371
GetGitHubInfo, 365
JSON response, 363–364
MainActivity, 369–370
OkHttp, 367–369
project details, 365

H
Hello world application

attributes window, 214
clear constraints, 212

Fragments (cont.)

Index

465

design view, 209
inferred constraints, 213
MainActivity class, 215–217
MainActivity files, 207
manifest file, 206
modification, 208
project information, 205
project view, 207
running on an emulator, 217
view palette, 210

Higher order functions
action, type String, 106
declare and define, 107
description, 105
doThis and executor(), 107–109
function type, 106
parameter, 106

Hype cycle, 6

I
if statement, 51, 53
Inheritance, 89–92
IntelliJ IDEA

creating project
Hello.kt, 24–29
Kotlin/JVM, 20
kotlinproject, 20–21
Project Tool window, 22–23
tip of the day, 21–22
welcome screen, 19

download page, 17
IDE, 29–30
Linux, 18
macOS, 18
Windows, 18

Intents
Android app, 239–240

defined, 239
explicit, 243
getApplicationContext(), 241
getExtra method, 244, 246
getIntent() function, 246
implicit, 243, 249

MainActivity, 279–281
project details, 278
snapshots, 282

launching activity
activity_main.xml, 253–254
activity_second.xml, 254
button view, 252–253
logcat tool window, 258
MainActivity.Kt, 255–256
project detail, 251
project tool window, 251
SecondActivity.Kt, 256–257

loose coupling, 242–243
MainActivity, 243–244
onActivityResult, 247–248
onCreate method, 244, 246
putExtra method, 243, 245–246
SecondActivity, 243, 252
send and get data, project

activity_main.xml, 268–269
activity_second.xml, 270–272
EditText views, 266–267
empty activity, creation, 269
finish() method, 273
gerBMIDescriptionfunction, 278
getStringExtra method, 264
layout, 266
MainActivity, oncreate

method, 272–273
project details, 265
SecondActivity, creation, 269–270
setResult method, 274

Index

466

send data, project
activity_main.xml, 259–260
activity_second.xml, 260, 262
MainActivity, 263, 275–278
project details, 259
SecondActivity, 264

sequence diagram, 247, 257–258
setResult method, 246
startActivityForResult method, 246–247
startActivity method, 244
this@MainActivity, 241
web browser, launching, 249–250

Interfaces
basic form, 79–80
default implementations, 80
diamond problem, 81–82
MultiFunction class, 80
super keyword, 82–84

Internal storage
activity_main.xml, 414–415
activity_second.xml, 415
context mode, 410
DRY principle, 423
EOF marker, 411
exception handling, 418, 423
explicit Intent, 412–413
getCacheDir(), 409
housekeeping codes, 417
loadData function, 416–417
MainActivity, 419, 421
MODE_PRIVATE, 410
multiline EditText, 412–413
onPause method, 418
onResume callback, 416
openFileInput(), 409
openFileOutput(), 409
project details, 412

read file, 410–411
read method, 411
runOnUiThread, 417
saveData function, 418–419, 422
save file, 410
SecondActivity, 422–423
start method, 418
TextView object, 423
threading, 423
try-catch block, 417
UI thread, 419
use extension, 410
write method, 410
writing file, 409

Iterable interface, 127

J
Java

interoperability with, 5
methods, 63
OOP, 4
type erasure, 149

Java SDK, install
Linux, 9
macOS, 7
Oracle JDK download page, 6
Windows 10, 8

Java Virtual Machine (JVM), 4
JetBrains, 4

K
Kernel-based Virtual Machine (KVM), 169
Kotlin

type inference, 35
types

arrays, 47–48

Intents (cont.)

Index

467

Booleans, 47
characters, 46
literal constant, 45
numbers, 44
strings, 49–50
template, 50–51

Kotlin Android Extension (KAE), 231, 236

L
Lambdas

and anonymous functions
closures, 113
doThis, 109
higher order function, 109–110
parameters, 110–113

with and apply, 114–116
Liskov Substitution Principle (LSP),

141–142
Lubuntu 3, 17

M
Menus

with ActionBar, 290
add to an app, 290–291
Android Honeycomb, 289
creating Demo App

Android Resource Directory, 293
attributes, 295
build.gradle file, 292–293, 302
CHAppBar menus, 297
MainActivity codes, 299–301
onCreateOptionsMenu, 297
project details, 291
resource file, 294

inflate()function, 297
on older Android hardware, 289

N
Nullable types, 59–60
Null value, handling, 58–60

O
Object declarations, 102–103
Open closed principle, 141
Operator overloading

class employee, 75–76
employee objects, 75
function names, 77
polymorphism, 77

P, Q
Parametric polymorphism, 135–136
Preferences, AS3 opening screen, 164
Program elements

blocks, 41–42
comments, 42–43
expressions and statements, 36–37
keywords, 37
literals, 34
operators and symbols, 39–41
variables, 34–35
whitespace, 38

Program flow, control
for loops statement, 55–56
if statement, 51, 53
when statement, 53–55
while statement, 55

Project, see GitHub API

R
Read, Eval, Print, Loop (REPL), 15
Reified generics, 149, 151–153

Index

468

Release-ready application
Android Studio, 448
APK, 448
Build type, 452
debug certificate, 448
JKS file, 451
keystore dialog, 449
Keystore items, 451
Key store path, 449
signed APK, 449, 451–452

S
Safe call operator, 59–60
SDKMAN, 14
SharedPreferences

Activities, sharing data
activity_main.xml, 401–402
activity_second.xml, 402–403
application level preferences

file, 398
clear()function, 406
getPreferences function, 399
getSharedPreferences function, 399
getString method, 399
MainActivity, 403–404
onPause function, 404
onResume function, 405
project details, 399
remove function, 406
saveData function, 404
SecondActivity, 405–406
SharedPreferences.Editor, 406
storyboard, 400

device file explorer, 396–397
getPreferences method, 390

key-value pairs, 390
MainActivity class, 395–396, 398
MainActivity.xml file, 397–398
MODE_APPEND, 392
MODE_PRIVATE, 391
MODE_WORLD_READABLE, 391
MODE_WORLD_WRITEABLE, 392
project details, 392
putString, 391
save data, 391
SharedPreferences.editor, 396
TextView object, 392
XML layout file, 393–395

Single Abstract Method (SAM), 352
Single expression functions, 67–68
Single property, 92–94
SOLID design principles, 141
startActivity() function, 241
Style

current styles.xml, 284
definition, 283

Super keyword, 82–84

T, U
Theme

customizing
color picker, 287
palette, 288
Theme editor, 286

Traversing arrays, 120
Type erasure, 149

V
Visibility modifiers, 100–102

Index

469

W, X, Y
when statement, 53–55
while statement, 55
Windows 4,

8–10, 14

Z
Zipped installer

GitHub releases, 11–12
unzip command, 12–13

Windows 10, 14

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part I: The Kotlin Language
	Chapter 1: Getting into Kotlin
	About Kotlin
	Installing the Java SDK
	Installing on macOS
	Installing on Windows 10
	Installing on Linux

	Installing Kotlin
	Installing the Command Line Tools
	HomeBrew or MacPort
	Using a Zipped Installer
	macOS and Linux
	Windows 10

	Using SDKMAN

	Coding With the Command Line Tools
	Installing IntelliJ

	Creating a Project
	The IntelliJ IDE
	Chapter Summary

	Chapter 2: Kotlin Basics
	Program Elements
	Literals
	Variables
	Expressions and Statements
	Keywords
	Whitespace
	Operators
	Blocks
	Comments

	Basic Types
	Numbers and Literal Constants
	Characters
	Booleans
	Arrays
	Strings and String Templates

	Controlling Program Flow
	Using ifs
	The when Statement
	The while Statement
	for loops

	Exception Handling
	Handling Nulls
	Chapter Summary

	Chapter 3: Functions
	Declaring Functions
	Single Expression Functions

	Default Arguments
	Named Parameters
	Variable Number of Arguments
	Extension Functions
	Infix Functions
	Operator Overloading
	Chapter Summary

	Chapter 4: Working with Types
	Interfaces
	Diamond Problem
	Invoking Super Behavior

	Classes
	Constructors
	Inheritance
	Properties

	Data Classes
	Visibility Modifiers
	Access Modifiers
	Object Declarations
	Chapter Summary

	Chapter 5: Lambdas and Higher Order Functions
	Higher Order Functions
	Lambda and Anonymous Functions
	Parameters in Lambda Expressions
	Closures

	with and apply
	Chapter Summary

	Chapter 6: Collections and Arrays
	Arrays
	Collections
	Lists
	Sets
	Maps
	Collections Traversal

	Filter and Map
	Chapter Summary

	Chapter 7: Generics
	Why Generics
	Terminologies
	Using Generics in Functions
	Using Generics in Classes
	Variance
	Subclass vs Subtype
	Reified Generics
	Chapter Summary

	Part II: Android Programming with Kotlin
	Chapter 8: Android Studio Introduction and Setup
	History
	Architecture
	Android Studio IDE
	Setup
	Android Studio Configuration
	Hardware Acceleration
	Chapter Summary

	Chapter 9: Getting Started
	What’s in an App
	Component Activation

	Creating a Project
	The IDE
	Main Menu
	Keyboard Shortcuts
	Customizing Code Style

	Chapter Summary

	Chapter 10: Activities and Layouts
	Application Entry Point
	Activity Class
	Layout File
	View and ViewGroup Objects
	Containers

	Hello World
	Modifying Hello World

	Chapter Summary

	Chapter 11: Event Handling
	Introduction to Event Handling
	Chapter Summary

	Chapter 12: Intents
	What Intents Are
	Loose Coupling
	Two Kinds of Intent
	Intents Can Carry Data
	Getting Back Results from Another Activity

	Implicit Intents
	Demo 1: Launch an Activity
	Demo 2: Send Data to an Activity
	Demo 3: Send and Get Data Back to and from an Activity
	Demo 4: Implicit Intents
	Chapter Summary

	Chapter 13: Themes and Menus
	Styles and Themes
	Customizing the Theme

	Menus
	Chapter Summary

	Chapter 14: Fragments
	Introduction to Fragments
	Book Title and Description, a Fragments Demo
	Fragments Demo, Dynamic
	Chapter Summary

	Chapter 15: Running in the Background
	Basic Concepts
	The UI Thread
	Threads and Runnables
	Using the Handler Class
	AsyncTask
	Anko’s doAsync
	A Real-World Example
	Chapter Summary

	Chapter 16: Debugging
	Syntax Errors
	Runtime Errors
	Logic Errors
	Walking Through Code

	Other Notes
	Chapter Summary

	Chapter 17: SharedPreferences
	Sharing Data Between Activities
	Chapter Summary

	Chapter 18: Internal Storage
	Overview of File Storage
	Internal and External Storage
	Cache Directory

	How to Work with Internal Storage
	Chapter Summary

	Chapter 19: BroadcastReceivers
	Introduction to BroadcastReceivers
	System Broadcast vs. Custom Broadcast
	Manifest Registration vs. Context Registration
	Basics of BroadcastReceivers
	Implicit vs. Explicit Broadcast Actions
	Demo App: Custom Broadcast
	Demo App: System Broadcast
	Other Notes
	Chapter Summary

	Chapter 20: App Distribution
	Preparing the App for Release
	Prepare Materials and Assets for Release
	Configure the App for Release
	Check the Package Name
	Remove Logging and Debug Information
	Check the Application Permissions
	Remote Servers and URLs

	Build a Release-Ready Application

	Releasing the App
	Chapter Summary

	Index

