2nd Edition

LEARNING MADE EASY

JavaProgramming
for Android Developers

Barry Burd, PhD
Author of Java For Dummies

[~ "~ Y

060

Java Programming
for Android
Developers

2nd edition

by Barry Burd

dummies
A Wiley Brand

Java® Programming for Android® Developers For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Java is a registered trademark of Oracle America, Inc. Android is a registered trademark of Google, Inc.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES
LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN
AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016954409
ISBN: 978-1-119-30108-0; 978-1-119-30109-7 (ebk); 978-1-119-30112-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies#_blank
http://booksupport.wiley.com
http://www.wiley.com
https://hub.wiley.com/community/support/dummies

Contents at a Glance

Introduction................. ..

Part 1: Getting Started with Java Programming

for Android Developers...................................
cHAPTER 1: All aboutJavaand Android
cHAPTER 22 Getting the Tools ThatYouNeed........... ...t
cHAPTER 3: Creating and Running an Android App.......ooovvvinen...

Part 2: Writing Your Own Java Programs..............
cHAPTER4: AN Odeto Code. ...t
cHAPTER 5: Java's Building Blocks,
cHapTer 6: Working with JavaTypes
cHapTER 7: Though These Be Methods, Yet There Is Madness in't........
cHAPTER 8: What Java Does(@andWhen)coviiiiiin ...

Part 3: Working with the Big Picture:

Object-Oriented Programming..........................
cHapTer 9: Why Object-Oriented Programming Is Like Selling Cheese
CcHAPTER 10: Saving Time and Money: Reusing Existing Code.............

Part 4: Powering Android with JavaCode
CHAPTER 11: The INSide STOry. .«
cHAPTER 12: Dealing with a Bunch of ThingsataTime...................
cHAPTER 13: AN Android Social Media Appo oo
CHAPTER 14: Hungry Burds: A Simple Android Game

Part5:ThePartofTens...................................

cHAPTER 15: Ten Ways to Avoid Mistakes,
cHAPTER 16: Ten Websites for Developers ...,

Table of Contents

INTRODUCTION ... 1
Howto Use ThiSBOOK.t e e e 1
Conventions Used in ThisBook. ..., 2
WhatYou DontHavetoRead oo, 2
Foolish ASSumptions.ttt e e 3
How This Book IsOrganizedo, 4

Part 1: Getting Started with Java Programming for Android
DVEIOPEIS . ettt e 4
Part 2: Writing Your Own Java Programs 5
Part 3: Working with the Big Picture: Object-Oriented
Programmingt e 5
Part 4: Powering Android withJavaCode 5
Part 5: The Partof Tens ...t i 5
Moreontheweb! 6
lconsUsedinThisBook ...t 6
Beyond the BooK.oviiii i e 7
Whereto GofromHere ... i 7

PART 1: GETTING STARTED WITH JAVA PROGRAMMING

CHAPTER 1:

CHAPTER 2:

FOR ANDROID DEVELOPERS ..., 9
All about Javaand Android 1
The Consumer Perspectiveouiiiniiin i, 12
The Many Faces of Androidt 13
The Developer Perspectiveouiiiniiin i, 15

JAVA L e 15
XML 18
LiNUX e e 19
From Development to Executionwithjava....................... 20
Whatisacompiler?. i 20
Whatis avirtualmachine?......... i 24
Java, Android, and Horticulture. i, 26
Getting the Tools That YouNeed 27
The StuffYOUNeed e 28
If You Don't Like to Read the Instructions 29
Getting This Book's Sample Programscoiivenn.... 32
Setting Up Java. ..o e 33
Setting Up Android Studio and the Android SDK 37
Launching the Android Studio IDE, 38
Opening One of This Book's Sample Programs 40

Table of Contents A"/

vi

Using Android Studio oo 42

STAMtING UP « vttt 42
The main Windowt e 43
Things You Might Eventually HavetoDo.............. ..ottt 48
Installing new versions (and older versions) of Android 49
Creating an Android virtual device, 50
cuarrer3: Creating and Running an Android App 55
Creating Your FirSt ApP. «« vt 56
Firstthings firsto 57
Launching your firstapp. ... ovvvvne e 61
If the Emulator Doesn'tBehave..............iiiiiiiiinn, 63
Running third-party emulators i i 64
Testing apps on a physical device............. ..., 65
The Project TOOIWINdOW oo v e e 68
The app/manifestsbranch............ o it 68
Theapp/javabranch...... ... i, 69
Theapp/resbranches.o, 69
The Gradle scriptsbranch i i i i, 70
Dragging, Dropping, and Otherwise Tweakingan App 70
Creating the “look”. ot e e e 71
Codingthebehavior oo i 83
What All That Java Code D0oeSo v ittt it e i 88
Finding the EditText and TextView components................ 88
Respondingtoabuttonclick.......... ... i, 90
Therestofthecode i 91
GOINE PrO oot e e 93
PART 2: WRITING YOUR OWN JAVA PROGRAMS........... 95
ciarrera: ANOdetoCode. ... 97
Hello, Android!. 97
The Java Class. ..o v e e e e e 99
Thenamesofclasses ...t 103
Why Java Methods Are Like Meals at a Restaurant 105
What does Mom's Restaurant have to do withJava?........... 106
Method declaration........... ... 106
Method call. o i 108
Method parameterst i 108
Thechickenortheegg i, 109
How many parameters? . ..ot 109
Method declarations and method calls in
an Android Programoo et e 111

Java Programming for Android Developers For Dummies

Punctuating Your Code.ot 116

Commentsareyourfriends........ ..., 119
What's Barry's @XCUSE? . ..ottt nn 122
All About Android Activities 123
Extendingaclass. ...t 124
Overridingmethodsc.ov it 124
An activity's workhorse methods oo, 125
CHAPTER 5: java’s Buﬂdlng Blocks................................. 129
INfols AsINfo DOeS . ..o v 130
Variablenames 133
TYPE NAMES ottt e 133
Assignments and initializations.o oo 134
Expressionsandliterals i 136
How to string characters together 139
Java's primitive types. 140
Things YouCan Do with Typesttt 142
Add lettersto numbers (HUh?) ..., 144
Java's exotic assignment operators. il 146
True DIt .. 147
Javaisn't like a game of horseshoes......................... 148
Use Java's logical operators, 150
Parenthetically speakingcooviiiiii i 155
ciarrere: Working with JavaTypes.............................. 157
Working with Strings. 157
Going from primitive typesto strings. 158
Going from strings to primitive types. 159
Getting input fromtheuser........ i 160
Practice Safe Typing ... v it 163
Widening is good; narrowingisbad......................... 165
Incompatible types 166
Using a hammer to bang apegintoahole................... 167
CHAPTER 7: ThOUgh These Be Methods, Yet There
IsMadnessin't 169
Minding Your Types When You CallaMethod 170
Method parameters and Javatypesccoovviiinn... 173
If at firstyou don'tsucceed, 174
RETUMN LY PES . o oot e e e 174
Thegreatvoid o 175
Displaying numbers 176
Primitive Types and Pass-byValue 177
What's a developerto do? ...t 181
Afinalword ... 183

Table of Contents vii

cuarrers: What Java Does (andWhen) 187

Making DeCISIONS. . . o vttt 187
Javaifstatements i 189
Choosing among many alternatives. 191
Some formalities concerning Java switch statements 198

Repeating Instructions Over and Over Again 199
Check, andthenrepeat. ... 200
Repeat,andthencheck o i i, 207
Count, count, CoOUNt. ..o ot e 211

What's Next?. . ..o 214

PART 3: WORKING WITH THE BIG PICTURE:
OBJECT-ORIENTED PROGRAMMING......................... 215
caerers: Why Object-Oriented Programming

Is Like SellingCheese 217

Classesand Objects ..ot i 219
Whatisaclass,really?. i 220
Whatisanobject?t 222
Creating 0bjectS. ...t 223
ReUSINg NAMES. . .. o e 227
Calling a constructor.oue it 230

More About Classes and Objects (Adding Methods to the Mix). 232
Constructors with parameters., 235
The default constructoro it 239
TRhiS IS It oo 240
Giving an object more responsibilityo 242
Membersofaclass.........coooiiiiiiiiiiiiii 245
Reference typesS . ..ottt 246
Passbyreference oo 247

Java's Modifiers 251
Public classes and default-access classes 251
Access for fieldsand methods.l 253
Using gettersand setters. ...t iiiinnennnn. 257
What does staticmean? ...t 260
B o e 10 FA o il [Y P 263
Abadexample. ... 264

What's Next?. . ..o e 265

cwaeter 10: S@Ving Time and Money: Reusing

ExistingCode ...l 267
The Last Word on Employees — Orlslt?. ..., 268
Extendingaclass........ocoviiniiinii i e 269
Overridingmethodso 272

viii Java Programming for Android Developers For Dummies

Java's superkeyword. 278

Javaannotations e 279

More about Java's Modifiers i i 281

Keeping Things Simple e 285
Usinganinterface.......ot 286

Some Observations about Android's Classes 291

Java's super keyword, revisited o i 292

Casting, @gaiN. .ottt e 293

PART 4: POWERING ANDROID WITH JAVA CODE.......... 295
carrer 11: The Inside StOI'y ... 297
AButton-Click Example o i 297
Thisisacallback 302

Android string resources (A slight detour). 302

Introducing Inner Classes.ot e 307

No Publicity, Please! i 309

Lambda EXPressions.t e 313
cuarer 12 Dealing with a Bunch of Things ata Time.......... 317
Creatinga Collection Class. . ..ot et 318

MOre Casting. . ..o vt e 320

Java BeNeriCS. .ot e 321

Java's wrapper Classes. e 325

Stepping Through a Collection i ... 326

Using aniteratorot 326

The enhanced for statement........ ..., .. 328
Acautionarytaleo i 329

Functional programming techniques........................ 331

Java's Many Collection Classes.ttt i, 332

AT Y S et e e 333

SEriNG FESOUICE ArTAYS. . vt vttt ettt ie e 336

JavA'S VArargs e 337

Using Collectionsinan Android App ...« 340

The listener. e 343

The adapter ... 343

cuarrer 13: AN Android Social Media App........................ 345
The Twitter App'sFilest e 346

The Twitterd) APljarfileo 346

The manifestfile ... i 348

The main activity's layoutfile................. 349

Table of Contents ix

How to Talk to the Twitter Server......... ..., 352

Using QAULN 353
Making a ConfigurationBuilder, 353
Getting OAuth keysand tokens.o, 355
The Application’s Main Activity ...t 357
TheonCreatemethod. 362
The button listener methods. o, 363
The troublewiththreads o, 363
Understanding Android's AsyncTaskc.oivvvun .. 366
My Twitter app’s AsyncTask classescovvviinennn... 368
Cuttingtothechase,atlast...........oiiiiiiniino.. 370
Java's EXCepions . ..ot e 372
Catch clauses 374
Afinallyclauseo 375
Passingthebucko i 376
cuaerer 14: Hungry Burds: A Simple Android Game............. 381
Introducing the Hungry Burds Game, 382
The Main ACtiVIty . . .ot e 385
The code, all the code, and nothing butthecode 388
Measuringthedisplay. ... 392
Constructinga Burd 395
Android animation 398
CreatiNng MeNUS . ..o ottt e 400
Shared preferences. ... 403
Informingtheuser. i i i 404
I'sBeen FuNn. ... 405
PART5: THEPARTOFTENS..................., 407
cuarrer 1s: T@N Ways to Avoid Mistakes.......................... 409
Putting Capital Letters Where They Belong...................... 409
Breaking Out of a switch Statement............................ 410
Comparing Values with a Double Equal Sign 410
Adding Listenersto Handle Events. 411
Defining the Required CONStructors.vvvuinveennnn.n. 411
Fixing Nonstatic References., 412
Staying within BoundsinanArrayccoiviiiiinen... 412
Anticipating Null Pointers. 412
USINg PermisSSiONS. . oottt e e 414
The Activity NotFound e 414

X Java Programming for Android Developers For Dummies

cuaerer 16: T€N Websites for Developers......................... 415

This BOOK'S WebSIteS. .. oot e e e e 415
The Horse's MoUth . ..ot e e e e e 416
Finding News and ReViews.oviiiiniiiii e 416
INDEX . . 417

Table of Contents Xi

Introduction

How to

ndroid is everywhere. In mid-2016, Android runs on 65 percent of all

smartphones in the United States, on 75 percent of all smartphones in

EU5 countries, and on 77 percent of all smartphones in China.! In a study
that spans the Americas, Europe, Asia, and the Middle East, GlobalWebIndex
reports that “Android is the most favored OS when it comes to tablets, being used
by almost a fifth of internet users and leading iPad by 5 points.”> More than
2.2 million apps are available for download at the Google Play store.3 And 9 million
developers write code using Java, the language that powers Android devices.4

If you read this book in a public place (on a commuter train, at the beach, or on the
dance floor at the Coyote Ugly saloon, for example), you can read proudly, with a
chip on your shoulder and with your head held high. Android is hot stuff, and
you’re cool because you’re reading about it.

Use This Book

You can attack this book in either of two ways: Go from cover to cover or poke
around from one chapter to another. You can even do both (start at the beginning,
and then jump to a section that particularly interests you). This book was designed
so that the basic topics come first, and the more-involved topics follow them. But
you may already be comfortable with some basics, or you may have specific goals
that don’t require you to know about certain topics.

1See www . kantarworldpanel .com/global/News/Android-Share-Growth-is-
Highest-in-EU5-in-Over-Two-Years. The EU5 countries are France, Germany,
Italy, Spain, and the United Kingdom.

2See www.globalwebindex.net/hubfs/Reports/GWI_Device_Report_-_Q3_2015_
Summary.pdf.

3See www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores.

4See www. java.com/en/about.

Introduction 1

http://www.kantarworldpanel.com/global/News/Android-Share-Growth-is-Highest-in-EU5-in-Over-Two-Years
http://www.kantarworldpanel.com/global/News/Android-Share-Growth-is-Highest-in-EU5-in-Over-Two-Years
http://www.globalwebindex.net/hubfs/Reports/GWI_Device_Report_-_Q3_2015_Summary.pdf
http://www.globalwebindex.net/hubfs/Reports/GWI_Device_Report_-_Q3_2015_Summary.pdf
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.java.com/en/about

In general, my advice is this:

¥ If you already know something, don't bother reading about it.

¥ If you're curious, don't be afraid to skip ahead. You can always sneak a peek at
an earlier chapter, if you need to do so.

Conventions Used in This Book

Almost every technically themed book starts with a little typeface legend, and Java
Programming for Android Developers For Dummies, 2nd Edition, is no exception.
What follows is a brief explanation of the typefaces used in this book:

¥ New terms are set in jtalics.

¥ If you need to type something that's mixed in with the regular text, the
characters you type appear in bold. For example: “Type MyNewProject in the
text field.”

¥ You also see this computerese font. | use computerese for Java code, file-
names, onscreen messages, and other such things. Also, if something you need
to type is really long, it appears in computerese font on its own line (or lines).

¥ You may need to change certain things when you type them on your own
computer keyboard. For instance, | may ask you to type

public void Anyname

which means that you type public void and then a name that you make up on
your own. Words that you need to replace with your own words are set in
italicized computerese.

What You Don’t Have to Read

Pick the first chapter or section that has material you don’t already know and start
reading there. Of course, you may hate making decisions as much as I do. If so,
here are some guidelines you can follow:

3 If you already know what kind of an animal Java is and you don’t care
what happens behind the scenes when an Android app runs: Skip
Chapter 1 and go straight to Chapter 2. Believe me — | won't mind.

2 JavaProgramming for Android Developers For Dummies

»

»

»

»

If you already know how to get an Android app running: Skip Part 1 and
start with Part 2.

If you have experience writing computer programs in languages other
than C and C++: Start with Part 2. You'll probably find Part Il to be easy
reading. When you get to Part 3, itll be time to dive in.

If you have experience writing computer programs in C or C++: Skim
Part Il and start reading seriously in Part 3. (Java is a bit different from C++in
the way it handles classes and objects.)

If you have experience writing Java programs: Come to my house and help
me write Java Programming for Android Developers For Dummies, 3rd Edition.

If you want to skip the sidebars and the paragraphs with Technical Stuff icons,
please do. In fact, if you want to skip anything at all, feel free.

Foolish Assumptions

In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are incor-

rect

»

»

... well, buy the book anyway.

I assume that you have access to a computer. Access to an Android device
is helpful but not absolutely necessary! All the software you need in order to
test Android apps on a laptop or desktop computer is freely available. You
simply download, install, and get going.

I assume that you can navigate your computer’'s common menus and
dialog boxes. You don't have to be a Windows, Macintosh, or Linux power
user, but you should be able to start a program, find a file, put a file into a
certain directory — that sort of thing. Much of the time, when you follow the
instructions in this book, you're typing code on the keyboard, not pointing and
clicking the mouse.

On those occasions when you need to drag and drop, cut and paste, or plug
and play, | guide you carefully through the steps. But your computer may be
configured in any of several billion ways, and my instructions may not quite fit
your special situation. When you reach one of these platform-specific tasks,
try following the steps in this book. If the steps don't quite fit, consult a book
with instructions tailored to your system. If you can't find such a book, send
me an email. (My address appears later in the Introduction.)

Introduction 3

3 | assume that you can think logically. That's all there is to application
development — thinking logically. If you can think logically, you've got it made.
If you don't believe that you can think logically, read on. You may be pleasantly
surprised.

3 | make very few assumptions about your computer programming
experience (or your lack of such experience). In writing this book, I've tried
to do the impossible: make the book interesting for experienced program-
mers yet accessible to people with little or no programming experience. This
means that | don't assume any particular programming background on your
part. If you've never created a loop or indexed an array, that's okay.

On the other hand, if you've done these things (maybe in Visual Basic, COBOL,
or C++), you'll discover some interesting plot twists in Java. The creators of Java
took the best ideas from object-oriented programming, streamlined them,
reworked them, and reorganized them into a sleek, powerful way of thinking
about problems. You'll find many new, thought-provoking features in Java. As
you find out about these features, many of them will seem quite natural to
you. One way or another, you'll feel good about using Java.

How This Book Is Organized

4

This book is divided into subsections, which are grouped into sections, which
come together to make chapters, which are lumped, finally, into five parts (like
one of those Russian matryoshka dolls). The parts of the book are described here.

Part 1: Getting Started with Java
Programming for Android Developers

Part 1 covers all the nuts and bolts. It introduces you to the major ideas behind
Java and Android software development and walks you through the installation of
the necessary software products. You also run a few simple Java and Android
programs.

The instructions in these chapters cover both Windows and Macintosh computers.
They cover many computer configurations, including some not-so-new operating
system versions, 32-bit systems and 64-bit systems, and situations in which you
already have some form of Java on your computer. But installing software is
always tricky, and you might have a few hurdles to overcome. If you do, check the
end of this chapter for ways to reach me (the author) and get some quick advice.
(Yes, I answer emails, tweets, Facebook posts, and notes sent by carrier pigeons.)

Java Programming for Android Developers For Dummies

Part 2: Writing Your Own Java Programs

Chapters 4 through 8 cover Java’s basic building blocks. These chapters describe
the things you need to know so that you can get your computer humming along.

If you’ve written programs in Visual Basic, C++, or any other language, some of the
material in Part 2 may be familiar to you. If so, you can skip sections or read this
stuff quickly. But don’t read too quickly. Java is a little different from some other
programming languages, and Java’s differences are worth noting.

Part 3: Working with the Big Picture:
Object-Oriented Programming

Part 3 has some of my favorite chapters. This part covers the all-important topic
of object-oriented programming. In these chapters, you find out how to map
solutions to big problems. (Sure, the examples in these chapters aren’t big, but the
examples involve big ideas.) You discover, in bite-worthy increments, how to
design classes, reuse existing classes, and construct objects.

Have you read any of those books that explain object-oriented programming in
vague, general terms? I’m very proud to say that Java Programming for Android
Developers For Dummies, 2nd Edition, isn’t like that. In this book, I illustrate each
concept with a simple-yet-concrete program example.

Part 4: Powering Android
with Java Code

If you’ve tasted some Java and want more, you can find what you need in Part 4 of
this book. This part’s chapters are devoted to details — the things you don’t see
when you first glance at the material. This part includes some fully functional
Android apps. So, after you read the earlier parts and write some programs on
your own, you can dive in a little deeper by reading Part 4.

Part 5: The Part of Tens

In The Part of Tens, which is a little Java candy store, you can find lists — lists of
tips for avoiding mistakes, tracking down resources, and finding all kinds of
interesting goodies.

Introduction 5

More on the web!

You’ve read the Java Programming for Android Developers book, seen the Java Pro-
gramming for Android Developers movie, worn the Java Programming for Android
Developers T-shirt, and eaten the Java Programming for Android Developers candy.
What more is there to do?

That’s easy. Just visit this book’s website: www.allmycode.com/JavadAndroid.
There you can find updates, comments, additional information, and answers to
commonly asked questions from readers. You can also find a small chat applica-
tion for sending me quick questions when I’m online. (When I’m not online, you
can contact me in other ways. See the end of this chapter for more info.)

Icons Used in This Book

6

TIP

®

WARNING

©

REMEMBER

If you could watch me write this book, you’d see me sitting at my computer, talk-
ing to myself. I say each sentence in my head. Most of the sentences I mutter
several times. When I have an extra thought, a side comment, or something else
that doesn’t belong in the regular stream, I twist my head a little bit. That way,
whoever’s listening to me (usually nobody) knows that I’m off on a momentary
tangent.

Of course, in print, you can’t see me twisting my head. I need some other way to
set a side thought in a corner by itself. I do it with icons. When you see a Tip icon
or a Remember icon, you know that I'm taking a quick detour.

Here’s a list of icons that I use in this book:

A tip is an extra piece of information — helpful advice that the other books may

forget to tell you.

Everyone makes mistakes. Heaven knows that I've made a few in my time.
Anyway, when I think people are especially prone to make a mistake, I mark the
text with a Warning icon.

Question: What’s stronger than a tip but not as strong as a warning?

Answer: A Remember icon.

Java Programming for Android Developers For Dummies

http://www.allmycode.com/Java4Android

&

CROSS-
REFERENCE

ON THE
WEB

-
T
TECHNICAL
STUFF

“If you don’t remember what such-and-such means, see blah-blah-blah,” or “For
more information, read blahbity-blah-blah.”

This icon calls attention to useful material that you can find online. (You don’t
have to wait long to see one of these icons. I use one at the end of this
introduction!)

Occasionally, I run across a technical tidbit. The tidbit may help you understand
what the people behind the scenes (the people who created Java) were thinking.
You don’t have to read it, but you may find it useful. You may also find the tidbit
helpful if you plan to read other (geekier) books about Java and Android.

Beyond the Book

In addition to what you’re reading right now, this book comes with a free access-
anywhere Cheat Sheet containing code that you can copy and paste into your own
Android program. To get this Cheat Sheet, simply go to www.dummies.com and type
“Java Programming for Android Developers For Dummies Cheat Sheet” in the
Search box.

Where to Go from Here

ON THE
WEB

If you’ve gotten this far, you’re ready to start reading about Java and Android
application development. Think of me (the author) as your guide, your host, your
personal assistant. I do everything I can to keep things interesting and, most
importantly, to help you understand.

If you like what you read, send me a note. My email address, which I created just
for comments and questions about this book, is javajandroid @allmycode.com. If
email and chat aren’t your favorites, you can reach me instead on Twitter
(@allmycode) and on Facebook (/allmycode). And don’t forget — for the latest
updates, visit this book’s website. The site’s address is www.allmycode.com/
Jjavadandroid.

Introduction 7

http://www.dummies.com/
mailto:java4android @allmycode.com
http://www.allmycode.com/java4android
http://www.allmycode.com/java4android

Getting Started
with Java
Programming
for Android
Developers

IN THIS PART ...

Downloading the software
Installing Java and Android
Creating dirt-simple Android apps

Testing Android apps on your computer

IN THIS CHAPTER

» The consumer’s view of the
Android ecosystem

» The ten-cent tour of Java and
Android technologies

Chapter 1

All about Java
and Android

ntil the mid-2000s, the word android represented a mechanical, human-
like creature — a rootin’-tootin’ officer of the law with built-in machine
guns or a hyperlogical space traveler who can do everything except speak

using contractions. And then in 2005, Google purchased Android, Inc. — a
22-month-old company creating software for mobile phones. That move changed
everything.

In 2007, a group of 34 companies formed the Open Handset Alliance. Its task is “to
accelerate innovation in mobile and offer consumers a richer, less expensive, and
better mobile experience”; its primary project is Android, an open, free operating
system based on the Linux operating system kernel.

Though HTC released the first commercially available Android phone near the end
of 2008, in the United States the public’s awareness of Android and its potential
didn’t surface until early 2010.

Since then, Android’s ecosystem has enjoyed steady growth. Kantar Worldpanel
ComTech reports (at www.kantarworldpanel.com/global/smartphone-os—
market-share/article): “The latest smartphone OS data. . . for the three months
ending March 2016 shows Android continuing to grow sales across the EU5, US,
and Urban China. There were solid gains in the EU5 (Great Britain, Germany,

CHAPTER 1 All about Java and Android 11

http://www.kantarworldpanel.com/global/smartphone-os-market-share/article
http://www.kantarworldpanel.com/global/smartphone-os-market-share/article

France, Italy, and Spain), up 7.1% points to 75.6%. In the US, Android share
increased 7.3% points to 65.5%, and in China, it rose nearly 6% points to
over 77%."1

The Consumer Perspective

A consumer considers the alternatives:

»

»

»

»

Possibility #1: No mobile phone
Advantages: Inexpensive; no interruptions from callers.

Disadvantages: No instant contact with friends and family; no calls to services
in case of emergencies.

Possibility #2: A feature phone

This type of mobile phone isn't a smartphone. Though no official rule defines
the boundary between feature phone and smartphone, a feature phone
generally has an inflexible menu of Home screen options, compared with a
smartphone’s "desktop" of downloaded apps.

Advantage: Less expensive than a smartphone.

Disadvantages: Less versatile than a smartphone, not nearly as cool as a
smartphone, and nowhere near as much fun as a smartphone.

Possibility #3: An iPhone
Advantages: Great-looking graphics.

Disadvantages: Little or no flexibility with the single-vendor iOS operating
system; only a handful of models to choose from.

Possibility #4: A Windows phone or another non-Android, non-Apple
smartphone

Advantage: Having a smartphone without having to belong to a crowd.

Disadvantage: The possibility of owning an orphan product when the
smartphone wars come to a climax.

1See www . kantarwor 1dpanel .com/global /smartphone-os-market-share/article.

12 PART 1 Getting Started with Java Programming for Android Developers

http://http//www.kantarworldpanel.com/global/smartphone-os-market-share/article
http://www.kantarworldpanel.com/global/smartphone-os-market-share/article

»

Possibility #5: An Android phone

Advantages: Using a popular, open platform with lots of industry support and
powerful market momentum; writing your own software and installing it on
your own phone (without having to post the software on a company’s
website); publishing software without having to face a challenging approval
process.

Disadvantages: Security concerns when using an open platform; dismay when
iPhone users make fun of your phone.

For me, Android’s advantages far outweigh its possible disadvantages. And you’re
reading a paragraph from Java Programming for Android Developers For Dummies,
2nd Edition, so you’re likely to agree with me.

The Many Faces of Android

Version numbers can be tricky. My PC’s model number is T420s. When I download
the users’ guide, I download one guide for any laptop in the T400 series. (No guide
specifically addresses the T420, let alone the T420s.) But when I have driver prob-
lems, knowing that I have a T420s isn’t good enough. I need drivers that are spe-
cific to my laptop’s 7-digit model number. The moral to this story: What
constitutes a “version number” depends on who’s asking for the number.

With that in mind, you can see a history of Android versions in Figure 1-1.

A few notes on Figure 1-1 are in order:

»

»

The platform number is of interest to the consumer and to the company
that sells the hardware.

If you're buying a phone with Android 5.1, for example, you might want to
know whether the vendor will upgrade your phone to Android 6.0.

The API level (also known as the SDK version) is of interest to the
Android app developer.

For example, the word MATCH_PARENT has a specific meaning in Android API
Levels 8 and higher. You might type MATCH_PARENT in code that uses API
Level 7. If you do (and if you expect MATCH_PARENT to have that specific
meaning), you'll get a nasty-looking error message.

CHAPTER 1 All about Java and Android 13

2008

2009

2010

2011

2012

2013

2011

2012

2013

2014

2015

FIGURE 1-1: 2016

Versions of
Android.

Platform
10

11
15
16
20
201
21
22

23
233

31
32

40
403

4.3

44

23
233
30
31
32
4.0
4.03
412

422

43

44

4.4W
50

51

60

70

APl Level Codename
1

Cupcake
Donut

Eclair

WO B wWwN

o

Froyo

Gingerbread
10 inee

117
12 | Honeycomb
13
147 Ice Cream
15 | sandwich

16]

17 | Jelly Bean

18

19 Kitkat

Gingerbread
10

117
12 | Honeycomb
13
147 Ice Cream
15 | sandwich

16]

17 | lelly Bean

18
19 Kitkat
20
21

Lollipop
22

23 Marshmallow

24 MNougat

Features

Maturing app market interface, better voice tools, 800x480

Better user interface, more screen sizes, more camera
functionality, Bluetooth 2.1 support, multi-touch support

Better performance with just-in-time (JIT) compiler, USB
tethering, 720p screen, ability to install apps to the 5D card

System-wide copy/paste, multi-touch soft keyboard, better
native code development, concurrent garbage collection

Designed for tablets, new soft keyboard, tabbed browsing,
igned widgets, "hol hic UI", interface fragments

Customizable launcher, screenshot capture, face unlock,
Chrome browser, near-field communication, Roboto font

Expandable notifications, Google Now, smoother drawing,
improved voice search

Immersive mode for apps, WebViews based on Chromium,
text messaging management, Ul transitions framework

System-wide copy/paste, multi-touch soft keyboard, better
native code development, concurrent garbage collection

Designed for tablets, new soft keyboard, tabbed browsing,
igned widgets, "helographic UI”, interface fragments

Customizable launcher, screenshot capture, face unlock,
Chrome browser, near-field communication, Roboto font

Expandable notifications, Google Now, smoother drawing,
improved voice search

Immersive mode for apps, WebViews based on Chromium,
text messaging management, Ul transitions framework

AP| for wrist watches (Android Wear)

Material Design has shadows and animations

New way of approving permissions, doze mode puts the
device on standby to save power

Apps can share the screen, virtual reality support

14 PART 1 Getting Started with Java Programming for Android Developers

Chapter 2. For more information about the use of Android’s API levels (SDK
versions) in your code, see Chapter 3. For even more information about

CROSS- Android API levels, visit
REFERENCE

@ You can read more about the Application Programming Interface (API) in

http://developer.android.com/guide/appendix/api-levels.html-level

¥ The code name is of interest to the creators of Android.

A code name refers to the work done by the creators of Android to bring
Android to the next official level. Android’s code names are desserts, working
in alphabetical order starting with Cupcake, Donut, Eclair, and so on. Picture
Google's engineers working for months behind closed doors on Project
Marshmallow.

In recent years, this naming scheme has become a lot more transparent. For
example, Google created an online poll to help decide on an N word as the
successor to Android Marshmallow. After a month of voting, Android Nougat
was announced.

established set of features. To plain o]’ Android 6.0 you can add the Google Play
Services (the ability to install apps from Google Play) and still be using platform

rememser 0.0. You can also add a special set of features tailored for various phone
manufacturers.

@ An Android version may have variations. For example, plain o]’ Android 6.0 has an

As a developer, your job is to balance portability with feature-richness. When you
create an app, you specify a minimum Android version. (You can read more about
this topic in Chapter 3.) The higher the version, the more features your app can have.
On the flip side, the higher the version, the fewer devices that can run your app.

The Developer Perspective

Android is a multifaceted beast. When you develop for the Android platform, you
use many toolsets. This section gives you a brief rundown.

Java

James Gosling of Sun Microsystems created the Java programming language in
the mid-1990s. (Sun Microsystems has since been bought by Oracle.) Java’s
meteoric rise in use stemmed from the elegance of the language and its well-
conceived platform architecture. After a brief blaze of glory with applets and

CHAPTER 1 All about Java and Android 15

http://developer.android.com/guide/appendix/api-levels.html#level

16

OLAOD,
TECHNICAL
STUFF

&

CROSS-
REFERENCE

the web, Java settled into being a solid, general-purpose language with a special
strength in servers and middleware.

In the meantime, Java was quietly seeping into embedded processors. Sun Micro-
systems was developing Java Mobile Edition (Java ME) for creating small apps to
run on mobile phones. Java became a major technology in Blu-ray disc players. So
the decision to make Java the primary development language for Android apps is
no big surprise.

An embedded processor is a computer chip that is hidden from the user as part of a
special-purpose device. The chips in cars are now embedded processors, and the
silicon that powers the photocopier at your workplace is an embedded processor.
Pretty soon, the flowerpots on your windowsill will probably have embedded
processors.

Figure 1-2 describes the development of new Java versions over time. Like Android,
each Java version has several names. The product version is an official name that’s
used for the world in general, and the developer version is a number that identifies
versions so that programmers can keep track of them. (In casual conversation,
developers use all kinds of names for the various Java versions.) The code name is
a more playful name that identifies a version while it’s being created.

The asterisks in Figure 1-2 mark changes in the formulation of Java product-
version names. Back in 1996, the product versions were Java Development Kit 1.0
and Java Development Kit 1.1. In 1998, someone decided to christen the product Java
2 Standard Edition 1.2, which confuses everyone to this day. At the time, anyone
using the term Java Development Kit was asked to use Software Development Kit
(SDK) instead.

In 2004 the 1. business went away from the platform version name, and in 2006,
Java platform names lost the 2 and the .0. For Java SE 9, the developer versions
stopped being numbers like 1.9 and became plain old 9.

By far the most significant changes for Java developers came about with J2SE 5.0
and Java SE 8. With the release of J2SE 5.0, the overseers of Java made changes to
the language by adding many new features — features such as generic types,
annotations, varargs, and the enhanced for statement. With Java SE 8 came new
functional programming features.

To see Java annotations in action, go to Chapter 10. For examples of the use of
generic types, varargs, and the enhanced for statement, see Chapter 12. To read
about functional programming features, see Chapter 11.

PART 1 Getting Started with Java Programming for Android Developers

Year Product Developer Codename Features
Version Version

1995 (Beta)

1996 JDK*1.0 1.0

1997 JDK 1.1 11 Inner classes, Java Beans, reflection

1998 J2SE* 1.2 1.2 Playground Collections, Swing classes for creation of GUI interfaces

1999

2000 J2SE 1.3 1.3 Kestrel Java Naming and Directory Interface (JNDI)

2001

2002 J2SE 1.4 1.4 Merlin New I/0, regular expressions, XML parsing

2003

2004 J2SES5.0* 1.5 Tiger Generic types, annotations, enum types, varargs, enhanced
for statement, static imports, new concurrency classes

2005

2006 JavaSE*6 1.6 Mustang Scripting language support, performance enhancements

2007

2008

2009

2010

2011 JavaSE7 1.7 Dolphin Strings in switch statement, catching multiple exceptions
try statement with resources , integration with JavaFX

2012

2013 JavaSE8 1.8 Lambda expressions and other functional programming
features

2014

2015

2016

2017 JavaSE9 9% Division of code into modules and an interactive environment

(known as a Read-eval-print loop or a REPL) to test code

FIGURE 1-2:
Versions of Java.

quickly

A code such as 8u91 stands for the 91st update of Java 8. For a novice Java developer,
these updates don’t make very much difference.

@ In addition to all the numbers in Figure 1-2, you’ll see codes like Java SE 8u9i.

TIP

CHAPTER 1 All about Java and Android 17

XML

If you find View Source among your web browser’s options one day and decide to
use it, you’ll see a bunch of HyperText Markup Language (HTML) tags. A tag is
some text, enclosed in angle brackets, that describes something about its
neighboring content.

For example, to create boldface type on a web page, a web designer writes
Look at this!
The b tags in angle brackets turn boldface type on and off.

The M in HTML stands for Markup — a general term describing any extra text that
annotates a document’s content. When you annotate a document’s content, you
embed information about the content into the document itself. For example, in
the previous line of code, the content is Look at this! The markup (information
about the content) consists of the tags and .

The HTML standard is an outgrowth of Standard Generalized Markup Language
(SGML), an all-things-to-all-people technology for marking up documents for
use by all kinds of processors running all kinds of software and sold by all kinds
of vendors.

In the mid-1990s, a working group of the World Wide Web Consortium (W3C)
began developing the eXtensible Markup Language, commonly known as XML.
The working group’s goal was to create a subset of SGML for use in transmitting
data over the Internet. It succeeded. XML is now a well-established standard for
encoding information of all kinds.

@ For an overview of XML, see the sidebar “All about XML files” in Chapter 3.

CROSS- Javais good for describing step-by-step instructions, and XML is good for describ-
REFERENCE . . .
ing the way things are (or the way they should be). A Java program says, “Do this

and then do that.” In contrast, an XML document says, “It’s this way and it’s that
way.” Android uses XML for two purposes:

¥ Todescribe an app’s data

An app's XML documents describe the layout of the app’s screens, the
translations of the app into one or more languages, and other kinds of data.

3 To describe the app itself

Every Android app has an AndroidManifest . xml file, an XML document that
describes features of the app. A device's operating system uses the

18 PART 1 Getting Started with Java Programming for Android Developers

&

CROSS-
REFERENCE

AndroidManifest.xml document's contents to manage the running of
the app.

For example, an app’s AndroidMani fest . xml file lists the screens that the
user sees during a run of the app and tells a device which screen to display
when the app is first launched. The same file tells the device which of the
app's screens can be borrowed for use by other apps.

For more information about the AndroidMani fest.xml file, see Chapter 4.

Concerning XML, I have bad news and good news. The bad news is that XML isn’t
always easy to compose. At best, writing XML code is boring. At worst, writing
XML code is downright confusing. The good news is that automated software tools
compose most of the world’s XML code. As an Android programmer, I know that
the software on your development processor composes much of your app’s XML
code. You often tweak the XML code, read part of the code for information from its
source, make minor changes, and compose brief additions. But you hardly ever
create XML documents from scratch.

Linux

An operating system is a big program that manages the overall running of a proces-
sor or a device. Most operating systems are built in layers. An operating system’s
outer layers are usually in the user’s face. For example, both Windows and Macin-
tosh OS X have standard desktops. From the desktop, the user launches programs,
manages windows, and does other important things.

An operating system’s inner layers are (for the most part) invisible to the user.
While the user plays Solitaire, for example, the operating system juggles pro-
cesses, manages files, keeps an eye on security, and generally does the kinds of
things that the user shouldn’t have to micromanage.

At the deepest level of an operating system is the system’s kernel. The kernel runs
directly on the processor’s hardware and does the low-level work required to
make the processor run. In a truly layered system, higher layers accomplish work
by making calls to lower layers. So an app with a specific hardware request sends
the request (directly or indirectly) through the kernel.

The best-known, best-loved general purpose operating systems are Windows,
Macintosh OS X (which is really Unix), and Linux. Both Windows and Mac OS X are
the properties of their respective companies. But Linux is open source. That’s one
reason why your TiVo runs Linux and why the creators of Android based their
platform on the Linux kernel.

CHAPTER 1 All about Java and Android 19

As a developer, your most intimate contact with the Android operating system is
via the command line, also known as the Linux shell. The shell uses commands
such as cd to change to a directory, 1s to list a directory’s files and subdirectories,
rm to delete files, and many others.

Google Play has plenty of free terminal apps. A terminal app’s interface is a
plain-text screen on which you type Linux shell commands. And by using one of
Android’s developer tools, the Android Debug Bridge, you can issue shell
commands to an Android device via your development computer. If you like
getting your virtual hands dirty, the Linux shell is for you.

From Development to Execution with Java

Before Java became popular, running a computer program involved one transla-
tion step. Someone (or something) translated the code that a developer wrote into
more cryptic code that a computer could actually execute. But then Java came
along and added an extra translation layer, and then Android added another layer.
This section describes all those layers.

What is a compiler?

A Java program (such as an Android application program) undergoes several
translation steps between the time you write the program and the time a proces-
sor runs the program. One of the reasons is simple: Instructions that are conve-
nient for processors to run are not convenient for people to write.

People can write and comprehend the code in Listing 1-1.

m Java Source Code

20

public void checkVacancy(View view) {
if (room.numCuests == @) {
label .setText("Available");
} else {
label.setText("Taken :-(");

The Java code in Listing 1-1 checks for a vacancy in a hotel. You can’t run the code
in this listing without adding several additional lines. But here in Chapter 1, those
additional lines aren’t important. What’s important is that, by staring at the code,

PART 1 Getting Started with Java Programming for Android Developers

squinting a bit, and looking past all its strange punctuation, you can see what the
code is trying to do:

If the room has no guests in it,

then set the label's text to "Available".
Otherwise,

set the label's text to "Taken :-(".

The content of Listing 1-1 is Java source code.

The processors in computers, phones, and other devices don’t normally follow
instructions like the instructions in Listing 1-1. That is, processors don’t follow
Java source code instructions. Instead, processors follow cryptic instructions like
the ones in Listing 1-2.

ICSTITEERN sove oytecode

0 aload_0
1 getfield #19 <com/allmycode/samples/MyActivity/room

Lcom/allmycode/samples/Room; >
4 getfield #47 <com/allmycode/samples/Room/numGuests I>
7 ifne 22 (#15)
10 aload_0
11 getfield #41 <com/allmycode/samples/MyActivity/label
Landroid/widget/TextView; >
14 ldc #54 <Available>
16 invokevirtual #56
<android/widget/TextView/setText
(Ljava/lang/CharSequence;)V>
19 goto 31 (+12)
22 aload_@
23 getfield #41 <com/allmycode/samples/MyActivity/label
Landroid/widget/TextView; >
26 1dc #6@ <Taken :-(»
28 invokevirtual #56
<android/widget/TextView/setText
(Ljava/lang/CharSequence;)V>

31 return

The instructions in Listing 1-2 aren’t Java source code instructions. They’re Java
bytecode instructions. When you write a Java program, you write source code
instructions. (Refer to Listing 1-1.) After writing the source code, you run a pro-
gram (that is, you apply a tool) to the source code. The program is a compiler: It
translates your source code instructions into Java bytecode instructions. In other

CHAPTER 1 All about Java and Android 21

REMEMBER

words, the compiler translates code that you can write and understand (again,
refer to Listing 1-1) into code that a processor can execute. (Refer to Listing 1-2.)

At this point, you might ask, “What will I have to do to get the compiler running?”
The answer to your question is “Android Studio.” All the translation steps
described in this chapter come down to using Android Studio — a piece of soft-
ware that you download for free using the instructions in Chapter 2. So when you
read in this chapter about compiling and other translation steps, don’t become
intimidated. You don’t have to repair an alternator in order to drive a car, and you
won’t have to understand how compilers work in order to use Android Studio.

No one (except for a few crazy developers in isolated labs in faraway places)
writes Java bytecode. You run software (a compiler) to create Java bytecode.
The only reason to look at Listing 1-2 is to understand what a hard worker your
computer is.

If compiling is a good thing, compiling twice is even better.

In 2007, Dan Bornstein at Google created Dalvik bytecode — another way to repre-
sent instructions for processors to follow. (To find out where some of Bornstein’s
ancestors come from, run your favorite map application and look for Dalvik in
Iceland.) Dalvik bytecode is optimized for the limited resources on a phone or a
tablet device.

Listing 1-3 contains sample Dalvik instructions.

* To see the code in Listing 1-3, I used the Dedexer program (from http://
dedexer .sourceforge.net).

m Dalvik Bytecode

22

.method public checkVacancy(Landroid/view/View;)V
.limit registers 4
; this: v2 (Lcom/allmycode/samples/MyActivity;)
; parameter[@] : v3 (Landroid/view/View;)
.line 30
iget-object
v@,v2,com/allmycode/samples/MyActivity.room
Lcom/allmycode/samples/Room;
; V@ : Lcom/allmycode/samples/Room; , v2
Lcom/allmycode/samples/MyActivity;
iget v@,v@,com/allmycode/samples/Room. numGuests I
; V@ : single-length , v@ : single-length
if-nez V0, 14b4

PART 1 Getting Started with Java Programming for Android Developers

http://dedexer.sourceforge.net
http://dedexer.sourceforge.net

; V@ : single-length

.line 31
iget-object
v@,v2,com/allmycode/samples/MyActivity.label
Landroid/widget/TextView;

; V@ : Landroid/widget/TextView; , v2 :
Lcom/allmycode/samples/MyActivity;
const-string vi,"Available"

; vl : Ljava/lang/String;
invoke-virtual
{v@,v1}, android/widget/TextView/setText
; setText(Ljava/lang/CharSequence;)V

; V@ : Landroid/widget/TextView; , v1 : Ljava/lang/String;

14b2:

.line 36
return-void

14b4:

.line 33
iget-object
v@,v2,com/allmycode/samples/MyActivity.label
Landroid/widget/TextView;

; V@ : Landroid/widget/TextView; , v2 :
Lcom/allmycode/samples/MyActivity;
const-string vi,"Taken ("

; vl 1 Ljava/lang/String;
invoke-virtual
{v@,v1}, android/widget/TextView/setText
setText(L java/lang/CharSequence;)V

; V@ : Landroid/widget/TextView; , v1 : Ljava/lang/String;
goto 14b2

.end method

When you create an app, Android Studio performs at least two compilations:

3> One compilation creates Java bytecode from your Java source files. The
source filenames have the . java extension; the Java bytecode filenames have
the .class extension.

3 Another compilation creates Dalvik bytecode from your Java bytecode
files. Dalvik bytecode filenames have the . dex extension.

But that’s not all! In addition to its Java code, an Android app has XML files, image
files, and possibly other elements. Before you install an app on a device, Android
Studio combines all these elements into a single file — one with the .apk

CHAPTER 1 All about Java and Android 23

24

LD,
TECHNICAL
STUFF

extension. When you publish the app on an app store, you copy that .apk file to
the app store’s servers. Then, to install your app, a user visits the app store and
downloads your .apk file.

To perform the compilation from source code to Java bytecode, Android Studio
uses a program named javac, also known as the Java compiler. To perform the
compilation from Java bytecode to Dalvik code, Android Studio uses a program
named dx (known affectionately as “the dx tool”). To combine all your app’s files
into one . apk file, Android Studio uses a program named apkbuilder.

What is a virtual machine?

In the section “What is a compiler?” earlier in this chapter, I make a big fuss about
phones and other devices following instructions like the ones in Listing 1-3. As
fusses go, it’s a nice fuss. But if you don’t read every fussy word, you may be mis-
guided. The exact wording is “. . . processors follow cryptic instructions like the
ones in Listing ‘blah-blah-blah.”” The instructions in Listing 1-3 are a lot like
instructions that a phone or tablet can execute, but computers generally don’t
execute Java bytecode instructions, and phones don’t execute Dalvik bytecode
instructions. Instead, each kind of processor has its own set of executable instruc-
tions, and each operating system uses the processor’s instructions in a slightly
different way.

Imagine that you have two different devices: a smartphone and a tablet computer.
The devices have two different kinds of processors: The phone has an ARM pro-
cessor, and the tablet has an Intel Atom processor. (The acronym ARM once stood
for Advanced RISC Machine. These days, ARM simply stands for ARM Holdings, a
company whose employees design processors.) On the ARM processor, the multi-
ply instruction is 000000. On an Intel processor, the multiply instructions are D8,
DC, F6, F7, and others. Many ARM instructions have no counterparts in the Atom
architecture, and many Atom instructions have no equivalents on an ARM proces-
sor. An ARM processor’s instructions make no sense to your tablet’s Atom proces-
sor, and an Atom processor’s instructions would give your phone’s ARM processor
a virtual headache.

What'’s a developer to do? Does a developer provide translations of every app into
every processor’s instruction set?

No. Virtual machines create order from all this chaos. Dalvik bytecode is similar to
the code in Listing 1-3, but Dalvik bytecode isn’t specific to a single kind of pro-
cessor or to a single operating system. Instead, a set of Dalvik bytecode

PART 1 Getting Started with Java Programming for Android Developers

©

REMEMBER

instructions runs on any processor. If you write a Java program and compile that
Java program into Dalvik bytecode, your Android phone can run the bytecode, your
Android tablet can run the bytecode, your Chromebook can run the bytecode, and
even your grandmother’s supercomputer can run the bytecode. (If your grand-
mother wants to do this, she should install Remix 0S, a special port of the Android
operating system, on her Intel-based machine. Tell her to visit www. jide.com/
remixos-for-pc.)

You never have to write or decipher Java bytecode or Dalvik bytecode. Writing
bytecode is the compiler’s job. Deciphering bytecode is the virtual machine’s job.

Both Java bytecode and Dalvik bytecode have virtual machines. Java bytecode’s
virtual machine is called (big surprise) the Java virtual machine (JVM). Dalvik byte-
code’s virtual machine is called the Android runtime (ART).

With the Android runtime, you can take a bytecode file that you created for one
Android device, copy the bytecode to another Android device, and then run the
bytecode with no trouble. That’s one of the many reasons Android has become
popular quickly. This outstanding feature, which lets you run code on many dif-
ferent kinds of processors, is called portability.

Imagine that you’re the Intel representative to the United Nations Security Coun-
cil, as shown in Figure 1-3. The ARM representative is seated to your right, and the
representative from Qualcomm is to your left. (Naturally, you don’t get along with
either of these people. You’re always cordial to one another, but you’re never sin-
cere. What do you expect? It’s politics!) The distinguished representative from
Dalvik is at the podium. The Dalvik representative speaks in Dalvik bytecode, and
neither you nor your fellow ambassadors (ARM and Qualcomm) understand a
word of Dalvik bytecode.

But each of you has an interpreter. Your interpreter translates from Dalvik byte-
code to Intel instructions as the Dalvik representative speaks. Another interpreter
translates from bytecode to “ARM-ese.” And a third interpreter translates byte-
code into “Qualcomm-speak.”

Think of your interpreter as a virtual ambassador. The interpreter doesn’t really
represent your country, but the interpreter performs one important task that a
real ambassador performs: It listens to Dalvik bytecode on your behalf. The inter-
preter does what you would do if your native language were Dalvik bytecode. The
interpreter, pretending to be the Intel ambassador, endures the boring bytecode
speech, taking in every word and processing each one in some way or another.

CHAPTER 1 All about Java and Android 25

http://www.jide.com/remixos-for-pc
http://www.jide.com/remixos-for-pc

FIGURE 1-3:
An imaginary
meeting of the
U.N. Security
Council.

Android runtimes

ﬁpﬂa

Java Dalvik
compiler dx tool
Java Java
source bytecode . ARM code
code
Intel code

Dalvik
iﬂualcomm code

bytecode

You have an interpreter — a virtual ambassador. In the same way, an Intel pro-
cessor runs its own bytecode-interpreting software. That software is the Dalvik
virtual machine — a proxy, an errand boy, a go-between. The Android runtime
serves as an interpreter between Dalvik’s run-anywhere bytecode and your
device’s own system. As it runs, the virtual machine walks your device through
the execution of bytecode instructions. It examines your bytecode, bit by bit, and
carries out the instructions described in the bytecode. The virtual machine inter-
prets bytecode for your ARM processor, your Intel processor, your Qualcomm
chip, or whatever kind of processor you’re using. That’s a good thing. It’s what
makes Java code and Dalvik code more portable than code written in any other
language.

Java, Android, and Horticulture

26

“You don’t see the forest for the trees,” said my Uncle Harvey. To which my Aunt
Clara said, “You don’t see the trees for the forest.” This argument went on until
they were both too tired to discuss the matter.

As an author, I like to present both the forest and the trees. The “forest” is the
broad overview, which helps you understand why you perform various steps. The
“trees” are the steps themselves, getting you from Point A to Point B until you
complete a task.

This chapter shows you the forest. The rest of this book shows you the trees.

PART 1 Getting Started with Java Programming for Android Developers

IN THIS CHAPTER

» Installing Java

» Downloading and installing the
Android software tools

» Checking your Android Studio
installation

» Getting the code in this book’s
examples

Chapter 2

Getting the Tools
That You Need

rgaliophile /sr go 1i 3 fai al/ noun 1. A lover of tools. 2. A person who visits

garage sales for rusty metal implements that might be useful someday but

probably won’t. 3. A person whose computer runs slowly because of the
daily, indiscriminate installation of free software tools.

Several years ago, I found an enormous monkey wrench (more than a yard long
and weighing 35 pounds) at a nearby garage sale. I wasn’t a good plumber, and to
this day any pipe that I fix starts leaking again immediately. But I couldn’t resist
buying this fine piece of hardware. The only problem was, my wife was sitting in
the car about halfway down the street. She’s much more sensible than I am about
these matters, so I couldn’t bring the wrench back to the car. “Put it aside and 1l
come back for it later,” I told the seller.

When I returned to the car empty-handed, my wife said, “I saw someone carrying

the world’s largest pipe wrench. I’m glad you weren’t the one who bought it.” And
I agreed with her. “I don’t need more junk like that.”

CHAPTER 2 Getting the Tools That You Need 27

So of course I returned later that day to buy the monkey wrench, and to this day
the wrench sits in our attic, where no one ever sees it. If my wife ever reads this
chapter, she’ll be either amused or angry. I hope she’s not angry, but I'm taking
the risk because I enjoy the little drama. To add excitement to my life, I'm turning
this trivial secret into a public announcement.

The Stuff You Need

This book tells you how to write Java programs, and before you can write them,
you need some software tools. Here’s a list of the tools you need:

»

»

»

»

The Java Development Kit (JDK)

This includes a Java virtual machine, the Java code libraries, and some
additional software for developing Java code.

An integrated development environment

You can create Android apps using geeky, keyboard-only tools, but eventually
you'll tire of typing and retyping commands. An integrated development
environment (IDE), on the other hand, is a little like a word processor: A word
processor helps you compose documents (memos, poems, and other works
of fine literature); in contrast, an IDE helps you compose instructions for
processors.

For composing Android apps, you need the Android Studio IDE.
The Android Software Development Kit

The Android Software Development Kit (SDK) includes lots and lots of prewritten,
reusable Android code and a bunch of software tools for running and testing
Android apps.

The prewritten Android code is the Android Application Programming Interface
(API). The APl comes in several versions — versions 21 and 22 (both
code-named Lollipop), version 23 (Marshmallow), version 24 (Nougat), and
so on.

Some sample Android code projects to help you get started

All examples in this book are available for download from www.allmycode.
com/Java4Android.

All these tools run on the development computer — the laptop or desktop computer
you use to develop Java programs and Android apps. After you create an Android

28 PART 1 Getting Started with Java Programming for Android Developers

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android

app, you copy the app’s code from the development computer to a target device —
a phone, a tablet, or (someday soon) a refrigerator that runs Android.

Here’s good news: You can download from the web all the software you need to
run this book’s examples for free. The software is separated into three
downloads:

¥ When you visitwww.oracle.com/technetwork/ java/javase/downloads,
you can click a button to install the Java JDK.

3 Abutton at the page http://developer.android.com/studio gives you
the Android Studio IDE download and the Android Software Development Kit.

¥ This book's website (www . al lmycode . com/Java4Android) has a link to all
code in this book.

software programs you download from these sites change, too. A specific instruc-
tion such as “Click the button in the upper-right corner” becomes obsolete (and

warning €ven misleading) in no time at all. So, in this chapter, I provide explicit steps, but
I also describe the ideas behind them. Browse the suggested sites and look for
ways to get the software I describe. When a website offers you several options,
check the instructions in this chapter for hints on choosing the best option. If your
Android Studio window doesn’t look quite like the one in this chapter’s figures,
scan your computer’s window for whatever options I describe. If, after all that
effort, you can’t find the elements you’re looking for, check this book’s website
(www.allmycode.com/Java4Android) or send an email to me at JavasAndroid@
allmycode.com.

' The Java and Android websites I describe in this chapter are always changing. The

If You Don't Like to Read
the Instructions...

I start this chapter with a brief (but useful) overview of the steps required in order
to set up the software you need. If you’re an old hand at installing software, and
if your computer isn’t quirky, these fast-track steps will probably serve you well.
If not, you can read the more detailed instructions in the next several sections.

1 . Visitwww.allmycode.com/Java4Android and download a file containing
all the program examples in this book.

The downloaded file is a . zip archive file. (See the sidebars entitled “Those
pesky filename extensions” and “Compressed archive files , later in this
chapter.”)

CHAPTER 2 Getting the Tools That You Need 29

http://www.oracle.com/technetwork/java/javase/downloads
https://developer.android.com/studio
http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
mailto:Java4Android@allmycode.com
mailto:Java4Android@allmycode.com
http://www.allmycode.com/Java4Android

2. Extract the contents of the downloaded file to a place on your computer’s
hard drive.

3. Visit www . oracle. com/technetwork/ java/javase/downloads and
download the Java Standard Edition JDK.

Choose a version of the software that matches your operating system
(Windows, Macintosh, or whatever) and your operating system’s word length
(32-bit or 64-bit).

4. Install the Java Standard Edition JDK.

Double-click the . exe file or the . dmg file that you downloaded in Step 3, and
proceed with whatever steps you usually take when you install software.

n

Visit http://developer.android.com/studio and download the Android
Studio IDE along with the Android Software Development Kit (SDK).

The combined download bundle is an . exe file, a .dmg file, or a . zip file
(or maybe something else).

6. Install the software that you downloaded in Step 5.

Double-click the downloaded file, accept all kinds of legal disclaimers, drag
things, drop things, and so on.

7. Launch the Android Studio application.

The first time you run a fresh, new copy of Android Studio, you see some
introductory screens.

8. click past the introductory screens until you see a screen with options
like Start a New Android Studio Project and Open an Existing Android
Studio Project.

On your phone, an app is an app and that’s all there is to it. But on your
development computer, all your work is divided into projects. For professional
purposes, you're not absolutely correct if you think of one app as equaling one
project. But for the examples in this book, the “one project equals one app”
model works just fine.

9. select the Open an Existing Android Studio Project option.
As a result, the Open dialog box appears.

10. Inthe Open dialog box, navigate to the folder containing the stuff that
you downloaded from this book'’s website.

That folder contains subfolders with names like 22_01,03_01, and 03_04.

30 PART 1 Getting Started with Java Programming for Android Developers

http://www.oracle.com/technetwork/java/javase/downloads
http://developer.android.com/studio

Q

TIP

You say “directory.” | say “folder.” Let's call the whole thing off because, in this
book, | use these two words interchangeably.

11 . Select the folder named 02_01 (or any of the other such folders) and
click OK.

After a brief pause (or maybe a not-so-brief pause), Android Studio’s main
window appears. This window displays all the stuff you need in order to work
with the Android app that's inside the 02_01 folder.

For details about any of these steps, see the next several sections.

THOSE PESKY FILENAME EXTENSIONS

The filenames displayed in File Explorer or in a Finder window can be misleading. You
may browse a directory and see the name MainActivity. The file's real name might be
MainActivity. java, MainActivity.class, Mortgage . somethingElse, or plain old
MainActivity. Filename endings such as .zip, .exe, .dmg, .app, .java, and .class
are filename extensions.

The ugly truth is that, by default, Windows and the Mac hide many filename extensions.
This awful feature tends to confuse people. If you don’t want to be confused, change
your computer's system-wide settings. Here's how to do it:

® In Windows 7: Choose Start = Control Panel=> Appearance and
Personalization => Folder Options. Then skip to the third bullet.

® In Windows 8: On the Charms bar, choose Settings = Control Panel. In the Control
Panel, choose Appearance and Personalization = Folder Options. Then proceed to
the following bullet.

® |n all versions of Windows (7 and newer): Follow the instructions in one of the
preceding bullets. Then, in the Folder Options dialog box, click the View tab. Look
for the Hide File Extensions for Known File Types option. Make sure that this check
box is not selected.

® In Mac OS X: On the Finder application’s menu, select Preferences. In the resulting
dialog box, select the Advanced tab and look for the Show All File Extensions option.
Make sure that this check box is selected.

CHAPTER 2 Getting the Tools That You Need

31

Getting This Book’s Sample Programs

To get copies of this book’s sample programs, visit www.allmycode.com/
Java4Android and click the link to download the programs in this book. Save the
download file (Java4Android_Projects.zip) to the computer’s hard drive.

In some cases, you can click a download link all you want but the web browser

@ doesn’t offer you the option to save a file. If this happens to you, right-click the
link (or control-click on a Mac). From the resulting contextual menu, select Save

TP Target As, Save Link As, Download Linked File As, or a similarly labeled menu item.

COMPRESSED ARCHIVE FILES

When you visit www.allmycode.com/Java4Android and you download this book's
examples, you download a file named Java4Android_Projects.zip. Azipfileis a
single file that encodes a bunch of smaller files and folders. For example, my
Java4Android_Projects.zip file encodes folders named ©2_01, @3_04, and so on.
The ©3_04 folder contains subfolders, which in turn contain files. (The folder named
©3_04 contains the code in Listing 3-4 — the fourth listing in Chapter 3. And because
Listings 3-1 and 3-4 belong to the same app, the folder named @3_04 also contains the
code in Listing 3-1.)

A .zip file is an example of a compressed archive file. Other examples of compressed
archives include . tar . gz files, . rar files, and . 7z files. When you uncompress a file,
you extract the original files and folders stored inside the larger archive file. (For a . zip
file, another word for uncompressing is unzipping.) Uncompressing normally re-creates
the folder structure encoded in the archive file. So, after uncompressing my
Java4Android_Projects.zip file, the hard drive has folders named ©2_01, 03_04,
with subfolders named gradle, build, and app, which in turn contain files named
proguard-rules.pro,build.gradle, and so on.

When you download Java4Android_Projects.zip, the web browser may uncom-
press the file automatically for you. If not, you can get your computer to uncompress
the file. Here's how:

® On a Windows computer, double-click the . zip file's icon. When you do this,
Windows File Explorer shows you the files and folders inside the compressed .zip
archive. Drag all these files and folders to another place on your computer’s hard
drive (a place that's not inside the archive file).

® On a Mac, double-click the . zip file's icon. When you do this, the Mac extracts the
contents of the archive file and shows you the extracted contents in a Finder window.

32 PART 1 Getting Started with Java Programming for Android Developers

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android

Setting

FIGURE 2-1:
Look for Java
Platform,
Standard
Edition, JDK.

Most web browsers save files to the Downloads directory on the computer’s
hard drive. But your browser may be configured a bit differently. One way or
another, make note of the folder containing the downloaded file Java4Android_
Projects.zip.

Up Java

You can get the latest, greatest version of Java by visiting www.oracle.com/
technetwork/ java/javase/downloads. Figure 2-1 shows that page circa June
2016. In the figure, I’ve circled the button that you should click.

The page that you see might not look exactly like the page in Figure 2-1.
In particular, you probably won’t see 8ug1/8u92 on your page. Instead, you might
see some other numbers, such as 8u105 or gui13. If so, that’s okay. A version code
such as 9u13 stands for the 13th update of Java 9. The version codes on Oracle’s
download page change all the time.

€ [www.oracle.com/tech kfjavafjavase/downloads/index.html

w W% M@=

Q

Training Partners About

Sign In/Register Help Country ~ Communities ~ lama... v |wantto.. v Search

ORACLE’

Products Solutions Downloads Store Support OTN

Oracle Technology Network > Java > Java SE > Downloads

Learn more +

= Installation Instructions JDK i Tutorials
DOWNLOAD *
+ Release Notes

= Oracle License
= Java SE Products
= Third Party Licenses

+ Certified System Configurations

Java SE Overview | Downloads | Documentation || Community || Technologies || Training LU B e T
Java EE))))) # Java SE
Java ME Java SE Downloads Java EE and Glassfsh
Java SE Support # Java ME
Java SE Advanced & Suite + Java Card
Java Embedded : < & NetBeans IDE
=2 Java ¢ NetBeans S
Java Mission Conirol
Web Tier
- # Java APls
Java TV Java Platform (JDK) Bu®1 / 8u92 NetBeans with JDK 8
New to U # Technical Articles
ew to Java
Java Platform, Standard Edition & Demos and Videos
Commurity ST
Java Magazine Java SE 8u91/ 8u9z $ Forums
: Java SE 8u91 includes important security fixes. Oracle strongly recommends that all Java SE 8 _ B
users upgrade to this release. Java SE 882 is a patch-set update, including all of Bug1 plus ¥ Java Magazine
additional features (described in the release notes). § Javanet

Server JRE

Developer Training

& Java.com

CHAPTER 2 Getting the Tools That You Need

33

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

34

©

REMEMBER

o
S5
TECHNICAL
STUFF

TIP

HOW TO PUT THE CART BEFORE THE HORSE

To run Android's app development software, you need software for creating Java pro-
grams. So normally, you install Java and then you install Android’s app development
software.

Of course, you may already have the required Java software on your laptop or desktop
computer. And Google sometimes bundles Java with the Android developer software.
You may get lucky and download Java and Android all in one big gulp.

So if you're in a hurry to get started, you can try skipping this “Setting Up Java” section
and go straight to the section entitled “Setting up Android Studio and the Android SDK.”
If you see error messages indicating that Java isn't installed on your computer, come
back to this section where you install a fresh, new copy of Java.

Look for the Standard Edition JDK. Don’t bother with the Enterprise Edition or any
other such edition. Don’t bother to get any other software such as NetBeans with
your download. Also, go for the JDK, not the JRE.

When you visit Oracle’s website, you choose between Java’s JRE download and
Java’s JDK download. Technically, the JRE has the software that you need in order
to run Java programs, but not to create new Java programs. The JDK has the
software that you need in order to create new Java programs.

There’s one tiny flaw in the wording on Oracle’s website. The site seems to give
you a choice between Java’s JRE and Java’s JDK. What the site really offers is a
choice between downloading only Java’s JRE and downloading both the JRE and
the JDK. When you choose the JDK option, you get both Java’s JRE and Java’s
JDK. That’s just fine.

Figure 2-2 shows you the page that you might see after you click the button in
Figure 2-1. The page in Figure 2-2 lists several versions of Java, each for a differ-
ent operating system.

PART 1 Getting Started with Java Programming for Android Developers

FIGURE 2-2:
Many Java JDK
downloads.

\u € | [} www.oracle.com/technetworkjjavafjavase/downloads/jdk8-downloads-2133151.html

Oracle Technology Network > Java > Java SE > Downloads

Java SE
Java EE

Java ME

Java SE Support

Java SE Advanced & Suite
Java Embedded

Java DB

Web Tier

Java Card

Java TV

New to Java

Community

Java Magazine

Overview

Downloads Documentation ‘Community Technologies Training

Java SE Develop t Kit 8 Dow d

Thank you for downloading this release of the Java™ Platform, Standard Edition Development Kit
(JDK™). The JDK is a development environment for building applications, applets, and components
using the Java programming language.

The JOK includes tools useful for developing and testing programs written in the Java programming
language and running on the Java platform.
See also:

- Java Developer Newsletter: From your Oracle account, select Subscriptions, expand
Technology, and subscribe fo Java.

. Java Developer Day hands-on workshops (free) and other events
= Java Magazine

JDK Bu81 Checksum
JDK 8u92 Checksum

Java SE Development Kit 8u91

You must accept the Oracle Binary Code License Agreement for Java SE to download this
ftware.

Accept License Agreement @ Decline License Agreement

o/l O a8 Mm@ =

Java SDKs and Tools

I

Java EE and Glassfish
Java ME

|

java Card
NetBeans IDE

o

Java Mission Control
Java Resources

& Java APIS

Technical Articles

+ Demos and Videos

I
@
&
&
El
3

Java Magazine
Java.net
Developer Training
Tutorials

java.com

[[[

Product / File Description File Size Download
Linux ARM 32 Hard Float ABI 77.72MB jdk-Bud1-linux-arm32-vip-hfit.tar.gz
Linux ARM 64 Hard Float ABI 74.69 MB jdk-Bu91-linux-armé4-vip-hiit.tar.gz

Linux x86 154.7T4MB__ jok-Bu91-linux-i586.rpm
Linux x86 17492 MB jdk-Bu91-linux-i586 tar.gz
Linux x64 15274 MB jdk-Bu@1-linux-x64.rpm
Linux x64 17297 MB jdk-8u@1-linux-x64.tar.gz
Mac 05 X 227.29MB _ jdk-Bu91-macosx-x64.dmg

Solaris SPARC 64-bit (SVR4 package)
Solaris SPARC 64-bit
Solaris x64 (SVR4 package)

139.59 MB __ jdk-BuS1-solaris-sparcv8.tar.Z
98.95MB jak-Bug1-solaris-sparcvd.tar.gz
140.29 MB jdk-Bu@1-solaris-x64.tar.Z

Solaris x64 96.78 MB _ jdk-Bu21-solaris-x64.lar.gz
Windows x86 18229 MB__ jdk-Bu31-windows-i586 exe
Windows x64 187.4MB jdk-Bu81-windows-x64 exe

A FISTFUL OF BITS

If you're a Windows user, the www. oracle.com/technetwork/ java/ javase/
downloads page offers you a choice between 32-bit Java and 64-bit Java. The 32-bit
alternative might have the digits 586 in its name. More sensibly, the 64-bit alternative
probably has the digits 64 in its name. So the question is, which version of Java should
you choose?

If you're like most computer users, you want the 64-bit version of Java. Most computers
sold in the past several years have 64-bit processors. If you're not sure which version of
Java to download, try the 64-bit version.

Some older computers have 32-bit processors, and some newer computers have 64-bit
processors with 32-bit operating systems. If your Windows computer falls into one of
these categories, an attempt to install 64-bit Java will generate an error message. At
best, the message says that this installation file isn't compatible with your version of
Windows. At worst, the message says that the thing you're trying to run isn't a valid
Windows program. In either case, you want the 32-bit version of Java.

If you want to be safe, you can check to find out how many bits your Windows system
has. Search for Control Panel in order to launch the Control Panel screen. In the Control
Panel's search field, type About. When you do, Windows offers System as one of its alter-
natives. After choosing this System option, you see a panel showing some of your com-
puter’s properties. Somewhere in this list of properties, you'll see either 32-bit or 64-bit.

CHAPTER 2 Getting the Tools That You Need 35

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

THE GREATEST? YES! THE LATEST?
MAYBE NOT!

In mid-2016, the page https: //developer .android.com/studio/install.html
observes ". . . known stability issues in Android Studio on Mac when using JDK 1.8. Until
these issues are resolved, you can improve stability by downgrading your DK to an
older version (but no lower than JDK 1.6)." To make things even trickier, I've tried run-
ning Android Studio with the soon-to-be-released Java 9 and it's a complete "no go." If
you're squeamish about Java versions, you might want to install Java 7 instead of what-
ever version is foremost on Oracle’s download page. Look for the words Archive or
Legacy on the www .oracle.com/technetwork/ java/javase/downloads page, and
follow the links to download older versions of the Java JDK.

Should you remove existing versions of Java before installing new versions? Not neces-
sarily. Different versions of Java can coexist on a single computer. But sometimes, when
you have more than one Java version, Android Studio can’t find the most appropriate
version. In this case, you can't install Android Studio. Or, if you can install Android
Studio, you can’t launch Android Studio. Instead, you get a message saying that your
computer has no version of the Java JDK or has the wrong version of the Java JDK. If that
happens, | recommend uninstalling all versions of Java except the one that you installed
most recently. Here's how:

® On Windows, search for Control Panel in order to launch the Control Panel screen.
In the Control Panel's search field, type Programs and Features or type Add or
Remove Programs. When you've reached the Programs and Features or Add or
Remove Programs screen, look for anything with the word Java in its name, such as
Java 8 Update 91 or Java SE Development Kit 8 Update 91. Try clicking, double-clicking,
or right-clicking any item that you want to uninstall.

® On a Mag, look for the Terminal app in the Utilities subfolder of your
Applications folder. On the Terminal app’s screen, type

cd /Library/Java/JavaVirtualMachines

In the computer's response, look for names like jdk-9. jdk, jdk1.8.0_06. jdk, or
1.7.0. jdk. Say, for the sake of argument, that you want to delete jdk1.8.0_06.
jdk in order to remove Java 8 from your Mac. Then type the following command in
the Terminal window:

sudo rm -rf jdk1.8.0_06. jdk

After you do so, the Terminal asks for your password. After typing your password
and pressing Enter, you're all set.

36 PART 1 Getting Started with Java Programming for Android Developers

https://developer.android.com/studio/install.html
http://www.oracle.com/technetwork/java/javase/downloads

Setting Up Android Studio
and the Android SDK

A

WARNING

FIGURE 2-3:
Downloading
Android Studio.

In the Android world, things change very quickly. The instructions that I write on
Tuesday can be out-of-date by Thursday morning. The folks at Google are always
creating new features and new tools. The old tools stop working and the old
instructions no longer apply. If you see something on your screen that doesn’t
look like one of my screen shots, don’t despair. It might be something very new,
or you might have reached a corner of the software that I don’t describe in this
book. One way or another, send me an email, a tweet, or some other form of com-
munication. (Don’t try sending a carrier pigeon. My cat will get to it before I find
the note.) My contact info is in this book’s introduction.

You download Android’s SDK and Android Studio in one big gulp. Here’s how:

1 . Visithttp://developer.android.com/studio.

Figure 2-3 shows you what this web page looks like in July of 2016 (commonly
known as “the good old days").

C B https://developer.android.com/studiofindex.html v/ @ % M % =

Q Android Studio FEATURES USER GUIDE Q, search

< Back to Developers

Android Studio

FEATURES

The Official IDE for Android

USER GUIDE

Android Studio provides the fastest tools for
building apps on every type of Android device.

World-class code editing, debugging,
performance tooling, a flexible build system, and

an instant build/deploy system all allow you to
focus on building unique and high quality apps

> Read the docs

> See the release notes

CHAPTER 2 Getting the Tools That You Need 37

http://developer.android.com/studio

The page has a big button for downloading Android Studio. The Android Studio
download includes the much-needed Android SDK.

By the time you read this book, the web page will probably have changed. But
you'll still see an Android Studio download.

N

Click the Download button on the web page.

w

Agree to all the legal mumbo-jumbo.
4. save the download to your local hard drive.

If you run Windows, the downloaded file is probably an . exe file. If you have a
Mac, the downloaded file is probably a . dmg file. Of course, | make no guaran-
tees. The downloaded file might be a . zip archive or maybe some other exotic
kind of archive file.

For more information on things like .exe and .dmg, refer to the sidebar
entitled “Those pesky filename extensions.” And, if you need help with .zip
CROSS- files, see the earlier sidebar “Compressed archive files.”

REFERENCE

What happens next depends on your computer’s operating system.

¥ In Windows: Double-click the . exe file’s icon.

When you double-click the . exe file's icon, a wizard guides you through the
installation.

¥ On a Mac: Double-click the . dmg file's icon.

When you double-click the . dmg file's icon, you see an Android Studio icon
(also known as an Android Studio.app icon). Drag the Android Studio icon to
your Applications folder.

Launching the Android Studio IDE

In the previous section, you download and install Android Studio. Your next task
(should you decide to accept it) is to launch Android Studio. This section has the
details.

3 In Windows: If your version of Windows has a Start button, click the Start
button and look for the Android Studio entry.

If you don't have a Start button, press Windows-Q to make a search field
appear. In the search field, start typing Android Studio. When your computer
offers the Android Studio application as one of the options, select that option.

38 PART 1 Getting Started with Java Programming for Android Developers

TIP

FIGURE 2-4:
Android Studio’s
Welcome screen.

¥ On a Mac: Press Command-space to make the Spotlight appear. In the
Spotlight's search field, start typing Android Studio. When your Mac makes the
full name Android Studio appear in the Spotlight's search field, press Enter.

If your Mac complains that Android Studio is from an unidentified developer,
look for the Android Studio icon in your Applications folder. Control-click the
Android Studio icon and select Open. When another “unidentified developer”
box appears, click the box's Open button.

When you launch Android Studio for the first time, you might see a dialog box
offering to import settings from a previous Android Studio installation. Chances
are, you don’t have a previous Android Studio installation, so you should firmly
but politely decline this offer.

Next, you might see a few dialog boxes with information about installing the
development environment (the Android SDK). Accept all the defaults and, if
Android Studio offers to download more stuff, let Android Studio do it.

When the dust settles, Android Studio displays a Welcome screen. The Welcome
screen has options such as Start a New Android Studio Project, Open an Existing
Android Studio Project, and so on. (See Figure 2-4.)

o

L

And_roid_Stq_d_iq__

%f Start a new Android Studio project

Open an existing Android Studio project
¥ Check out project from Version Control -
¥ Import project (Eclipse ADT, Gradle, etc.)

¥ Import an Android code sample

Configure - Get Help -

You’'ll see this Welcome screen again and again. Stated informally, the Welcome
screen says “At the moment, you’re not working on any particular project (any
particular Android app). So what do you want to do next?”

What you want to do next is to open this book’s first project. The next section has
all the details.

CHAPTER 2 Getting the Tools That You Need 39

Opening One of This Book's
Sample Programs

When you first launch Android Studio, you see the Welcome screen. It probably
looks something like the screen in Figure 2-4. But, because time passes between
my writing of this book and your reading the book, the screen might look a bit
different. One way or another, the Welcome screen affords you the opportunity to
open a full-fledged Android project. Here’s what you do:

1. Follow the steps in this chapter’s earlier section “Getting This Book’s
Sample Programs.”
2. Make sure that you've uncompressed the file from Step 1.

For details, refer to that “Getting This Book's Sample Programs” section.

Safari on a Mac generally uncompresses . zip archives automatically, and
@ Windows browsers (Internet Explorer, Firefox, Chrome, and others) do not
uncompress . zip archives automatically. For the complete scoop on archive
CROSS- files, see the earlier sidebar “Compressed archive files.”

REFERENCE
If you look inside the uncompressed download, you notice folders with names
such as@2_01,03_01,03_04, and so on. With a few exceptions, the names of
folders are chapter numbers followed by listing numbers. For example, in the
folder named ©3_04, the 03 stands for Chapter 3, and the @4 stands for the
fourth code listing in that chapter.

3. Launch Android Studio.
What you do next depends on what you see when you launch Android Studio.

4. If you see Android Studio’s Welcome screen (refer to Figure 2-4), select
Open an Existing Android Project.

If you see another Android Studio window with a File option on the main
menu bar, choose File=> Open in the main menu bar.

Either way, the aptly named Open File or Project dialog box appears.

5. Inthe Open File or Project dialog box, navigate to the folder containing
the project that you want to open.

For this experiment, | suggest that you navigate to the @2_01 folder. In the name
02_01, the 02 stands for Chapter 2. The @1 stands for this chapter’s first (and
only) Android project. (There's no code listed anywhere in this chapter. So, in
this unusual case, ©2_01 doesn't refer to a project whose code is in Listing 2-1.)

If you're unsure where to find the ©2_01 folder, look first in a folder named
Downloads. Then look in a subfolder named Java4Android_Projects.
TIP

40 PART 1 Getting Started with Java Programming for Android Developers

6. Cclick OK.

When you click OK, Android Studio may have to download the default Gradle

& wrapper from the Internet. If so, downloading this Gradle wrapper might take
some time. You may even think that your computer has stalled. Wait for
WARNING several minutes if that's what it takes.

Eventually, you see Android Studio’s main window. In the main window, you
find a project containing one of this book's examples. See Figure 2-5.

OHG: XOH QR ¢ NG B GaE L =L ? Q
02.01 [gapp) [src) [main) [java) 5] com | [allyourcode » [£1a02_01) (€ MainActivity
& B Android > €3 = - I~ ([© MainActivityjava X bl
E app package com.allyourcode.a@2_@1; v S
=i manifests g
» java import ...
" com.allyourcode.a02 01 | i puplic class MainActivity extends AppCompatActivity {
s £ b MainActivity
5 com.allyourcode.a02_01 (:;Ey:*rr':d; 14 onCreate(BundL sinst seate) ¢
= o rotected void onCreate{Bundle savedInstanceState,
:| som.3llyourcode-302_01 ¢ F super.onCreate({savedInstanceState);
v 4res setContentView(R. layout.activity_main);
2 Gradle Scripts. 3}
w T
3
~Nl
3 w
g z
3 2
> g
FIGURE 2-5: & b
Android Studio’s 0:Messages @] Terminal) 6: Android Monitor Jp 4:Run X TODO Wy Eventlog ¥ Gradle Console
main WindOW. [Instant Run re-installed and restarted the app / / (Dont show again) (today 8:27 PM) 7:1 LF# UTF-8% w F
If Android Studio’s main window looks fairly empty (that is, if you don't see all
@ the stuff in 2-5), look at the status bar on the bottom of Android Studio’s main
window. If the text in the status bar is changing, Android Studio is taking some
P time to figure out how the newly opened Android project works. If the status

bar is calm and Android Studio’s main window still looks mostly empty, look for
the word Project displayed vertically on the left edge of Android Studio’s
window. This word Project is the label on one of Android Studio’s tool buttons.
Click the Project tool button to reveal some of the stuff that you see earlier, in
Figure 2-5.

After opening an example from this book, you may see an error message indicat-

ing trouble syncing the Gradle project. If you do, stay calm. The most likely cause
is that the tools I used to create the example are older than the tools in your

CHAPTER 2 Getting the Tools That You Need 41

An

FIGURE 2-6:
droid Studio’s

Messages pane
provides a link to

fix a problem.

REMEMBER

version of Android Studio. You can probably find a link offering to fix the problem
in the bottommost pane of the Android Studio window. (See Figure 2-6.) “Fix
Gradle wrapper and re-import project Gradle settings,” says one such link.
“Install missing platform(s) and sync project,” says another such link. “Install
Build Tools 21.1.2 and sync project,” says yet another link.

Messages Gradle Sync

i| Failed to sync Gradle project'05_01_06'

v
- Gradle version 2.2 is required. Current version is 2.10. If using the gra

4= Build Varian

Ml vl

@ Error: Please fix the project's Gradle settings.

o
4+
’ Fix Gradle wrapper and re-import project
g I & Gradle settings
]
2 ?
&
~
i 6: Android Monitor | 0: Messages Terminal # TODO

Q Cradle sync failed: Gradle version 2.2 is required. Current version is 2.10. If using the gradle wrapper, try editi

Whatever link you see, click the link and accept any solutions that the link offers.
Keep your eye on the status bar at the bottom of the Android Studio window. When
the messages in the status bar stop changing, the error messages should be gone.

If the error messages don’t go away, you can always send me an email. My email
address is in this book’s introduction.

Using Android Studio

42

Android Studio is the Swiss army knife for Android app developers. Android Studio
is a customized version of Intelli] IDEA — a general-purpose IDE with tools for
Java development, C/C++ development, PHP development, modeling, project man-
agement, testing, debugging, and much more.

In this section, you get an overview of Android Studio’s main window. I focus on
the most useful features that help you build Android apps, but keep in mind that
Android Studio has hundreds of features and many ways to access each feature.

Starting up

Each Android app belongs to a project. You can have dozens of projects on your
computer’s hard drive. When you run Android Studio, each of your projects is
either open or closed. An open project appears in a window (its own window) on
your computer screen. A closed project doesn’t appear in a window.

PART 1 Getting Started with Java Programming for Android Developers

LD,
TECHNICAL
STUFF

TIP

©

REMEMBER

Several of your projects can be open at the same time. You can switch between
projects by moving from window to window.

I often refer to an open project’s window as Android Studio’s main window. This
can be slightly misleading because, with several projects open at a time, you have
several main windows open at a time. None of these windows is more “main”
than the others.

If Android Studio is running and no projects are open, Android Studio displays its
Welcome screen. (Refer to Figure 2-4.) The Welcome screen may display some
recently closed projects. If so, you can open a project by clicking its name on the
Welcome screen. For an app that’s not on the Recent Projects list, you can click the
Welcome screen’s Open an Existing Android Studio Project option.

If you have any open projects, Android Studio doesn’t display the Welcome screen.
In that case, you can open another project by choosing File=> Open or File=> Open
Recent in an open project’s window. To close a project, you can choose File=> Close
Project, or you can do whatever you normally do to close one of the windows on
your computer. (On a PC, click the X in the window’s upper-right corner. On a
Mac, click the little red button in the window’s upper-left corner.)

Android Studio remembers which projects were open from one run to the next. If
any projects are open when you quit Android Studio, those projects open again
(with their main windows showing) the next time you launch Android Studio. You
can override this behavior (so that only the Welcome screen appears each time you
launch Android Studio). In Android Studio on a Windows computer, start by
choosing Filew Settings > Appearance and Behavior=> System Settings. In Android
Studio on a Mac, choose Android Studio= Preferences= Appearance and Behav-
ior= System Settings. In either case, uncheck the Reopen Last Project on Startup
check box.

The main window

Android Studio’s main window is divided into several areas. Some of these areas
can appear and disappear on your command. What comes next is a description of
the areas in Figure 2-7, moving from the top of the main window to the bottom.

The areas that you see on your computer screen may be different from the areas
in Figure 2-7. Usually, that’s okay. You can make areas come and go by choosing
certain menu options, including the View option on Android Studio’s main menu
bar. You can also click the little tool buttons on the edges of the main window.

CHAPTER 2 Getting the Tools That You Need 43

FIGURE 2-7:
The main window
has several areas.

L4

ODHOG ¢4 XA AR ¢ > N G- +HE 0L GEEL 8L ? Q

02_01 app src main Jjava com allyourcode 202_01 | (£ MainActivity
i Android - @ = @ | © MainActivityjava x L3 bl
g app package com.allyourcode.a@2_@1; v 5
S manifests . g
" java inport
o com.allyourcode.a02 01 | & puplic class MainActivity extends AppCompatActivity {

5 £ s MainActivity
s com.allyourcode.a02_01 (@verride
& com.allyourcode.a02_01 { ® protected void onCreate{Bundle savec!Fns(anceState) {
N super.onCreate(savedInstanceState);
ird ares setContentView(R. layout.activity main);
& Gradle Scripts }

.,. }
8
s
a
5
G

L _______________]
g
£ Android Monitor - SEE
5
E T8 Emulator Nexus_5X_API_23_x86 Android 6.0, API 23 [com.allyourcode.a02_01 (2488) |~]
i 3 3
B3 arilogcat Monitors +* Verbose fg Q- Regex Show only selected application [

W eI/ 2uizii37.0UY £400-2%00/ LU d LLYUUTCUUEL GUZ_UL L7dT Ui WUL Cale=Enau iy ~ACHECR: JIL {atreauy ony .
£ [87-17 20:27:57.921 2488-2488/com.allyourcode.ad2_@1 W/System: ClassLoader referenced unknown path: /data/app/com.allyourcodey '™
g @ 5] ©7-17 20:28:07.882 2488-2488/com.allyourcode.a@2_@1 W/System: ClassLoader referenced unknown path: /data/app/com.allyourcodes z
s) ©07-17 20:28:08.116 2488-2488/com.allyourcode.ad2_@1 W/art: Before Android 4.1, method android.graphics.PorterDuffColorFilter s
=]] 4 ©7-17 28:28:08.298 2488-2922/com.allyourcode.ad2_@1 D/OpenGLRenderer: Use EGL_SWAP_BEHAVIOR_PRESERVED: true a
E =Y ©7-17 20:28:08.392 2488-2922/com.allyourcode.a@2_@1 I/OpenGLRenderer: Initialized EGL, version 1.4 g
o ©7-17 208:28:09.213 2488-2922/com.allyourcode.a@2_@1 D/gralloc_ranchu: Emulator without host-side GPU emulation detected. g

0:Messages [Terminal |) 6:Android Monitor B, 4:Run 3 TODO Wy Eventlog ¥ Gradle Console
[C] Instant Run re-installed and restarted the app // (Dont show again) (57 minutes ago) &1 LF: UTF-8% w &

The top of the main window

The topmost area contains the toolbar and the navigation bar.

3 The toolbar contains action buttons such as Open, Save All, Cut, Copy,
and Paste.

Near the middle of the toolbar, you'll find a rightward-pointing green arrow.
This arrow is the Run button. You can click that button to run the current
Android app.

3 The navigation bar displays the path to one of the files in your Android
project.

An Android project contains many files and, at any particular moment, you
work on one of these files. The navigation bar points to that file.

The Project tool window

Below the main menu and the toolbars you’ll see two different areas. The area on
the left contains the Project tool window. You use the Project tool window to navi-
gate from one file to another within your Android app.

PART 1 Getting Started with Java Programming for Android Developers

FIGURE 2-8:
Selecting the
Packages view.

©

REMEMBER

o
T
TECHNICAL
STUFF

At any given moment, the Project tool window displays one of several possible
views. For example, back in Figure 2-7, the Project tool window displays its
Android view. In Figure 2-8, I click the drop-down list and select the Packages
view (instead of the Android view).

® @ L MainActivity.java - 02_01
DHOi¢» XTMA AR
02_01 app src main java
-g i Android v D = %€

2 Project
- o
=4 Scratches
. Android L0l | g
é Project Files
2 Problems 101 (of
:I Production 101 (
7 Tests
Tests
@ Android Instrumentation Tests
g
L]

The Packages view displays many of the same files as the Android view, but in the
Packages view, the files are grouped differently. For most of this book’s instruc-
tions, I assume that the Project tool window is in its default view; namely, the
Android view.

If Android Studio doesn’t display the Project tool window, look for the Project tool
button — the little button displaying the word Project on the left edge of the main
window. Click that Project tool button.

Android Studio has lots of tool buttons on the edge of its main window — buttons
with labels such as Project, Structure, Captures, Build Variants, Message, Gradle,
and so on. I’'m going to be very blunt about the endless number of ways that you
can click and unclick these buttons: “For a complete discussion of all the things
you can possibly do to customize the Android Studio main window, read someone
else’s book!” (Editor’s note: Barry is tired of writing about tool button-clicking so
he’s being cantankerous. He also isn’t giving himself enough credit. He’s actually
written more about customizing Android Studio’s main window in his Android
Application Development All-in-One For Dummies, 2nd Edition book. However, you
don’t need all those main window tweaks in order to follow the examples in
this book.)

The Editor area

The area to the right of the Project tool window is the Editor area.

CHAPTER 2 Getting the Tools That You Need 45

46

&

CROSS-
REFERENCE

&

CROSS-
REFERENCE

What you see in the Editor area depends on the kind of file that you’re editing:

3 When you edit a Java program file, the editor displays the file’s text.
(Refer to Figure 2-7.)

You can type, cut, copy, and paste text as you would in other text editors.

The text editor can have several tabs. Each tab contains a file that's open for
editing. To open a file for editing, double-click the file's branch in the Project
tool window. To close the file, click the little x next to the file's name in the
Editor tab.

3 When you edit a layout file, the Editor area displays the Designer tool.

A typical Android app contains one or more layout files. A layout file describes
the buttons, text fields, and other components that appear on a device's
screen when a device runs your app. A layout file isn't written in Java.

The Designer tool presents a visual representation of the layout file to help
you arrange your app's buttons, text fields, and other components.

For a careful look at Android Studio’s Designer tool, see Chapter 3.

Continuing your tour of the areas in Figure 2-7. . ..

The lower area

Below the Project tool window and the editor is another area that contains several
tool windows. The tool window that I use most often is the Android Monitor tool
window. (Refer to the lower portion of Figure 2-7.)

The Android Monitor tool window displays information about the run of an
Android app. This tool window appears automatically when your app starts run-
ning on an Android device.

An Android device isn’t necessarily a real phone or a real tablet. Your development
computer can emulate the behavior of an Android device. For details, see this
chapter’s later section “Creating an Android virtual device.”

The Android Monitor tool window has the Logcat pane, the Monitors pane, and
possibly others. (Notice the tabs with these labels earlier, in Figure 2-7.) The pane
that I find most useful is the Logcat pane. In the Logcat pane, you see all messages
being logged by the Android device that’s running your app. If your app isn’t run-
ning correctly, you can filter the messages that are displayed and focus on the
messages that are most helpful for diagnosing the problem.

PART 1 Getting Started with Java Programming for Android Developers

FIGURE 2-9:
The Terminal tool
window on a Mac.

FIGURE 2-10:
The Run tool
window.

REMEMBER

You can force other tool windows to appear in the lower area by clicking tool but-
tons near the bottom of the Android Studio window. Here are two other useful tool
windows:

¥ The Terminal tool window displays a PC's MS-DOS command prompt, a Mac's
Terminal app, or another text-based command screen that you specify. (See
Figure 2-9.)

Terminal - SIS
4 CO2RL1PIFVHE:82 81 bburds [|

W 2: Favori

x

4x Build Variants
|SPOW ploJpuy 4k

0: Messages [g) Terminal & 6: Android Monitor P, 4:Run » TODO W EventLog [¥ Gradle Console

O instant Run re-installed and restarted the app // (Dont show again) (today 8:27 PM) 8:1 LF* UTF-8% = &

3 The Run tool window displays information about the launching of an Android
app. (In Figure 2-10, phrases such as Launching app refer to the movement
of an app from your development computer to the Android device.)

£ Run AVD: Nexus_5X_API_23_x86 |NERFLI - L
5
AR §
= " 87/17 20:27:21: Launching app
" m 3 s adb push /Users/bburd/Documents/book_JavadAndroid/Listings_FinalVersions/02_1/app/build/outputs/apk/app-debug.apk /data/localfs
- —, § adb shell pm install -r "/data/local/tmp/com.allyourcode.ad2 @1"

m = pkg: /data/local/tmp/com.allyourcode.ad2_81 "
= w
HEe = Success >
S @ 5
§ 7 @ <
= 3
=2 X _ s adb shell am start -n "com.allyourcode.a@2_81/com.allyourcode.ad2_@l.MainActivity" -a android.intent.action.MAIN -c android.intt &
2 o W comnected to process 2488 on device Nexus_SX_APL_23_x86 [emulator-5554] F
A Isart: Not late-enabling -Xcheck:jni (already on) 2

0:Messages [& Terminal . 6:Android Monitor | By 4:Run | “= TODO M1 EventLlog [¥) Gradle Console

[instant Run re-installed and restarted the app // (Dont show again) (moments ago) 18:1 LF: UTF-8% w &

A particular tool button might not appear when there's nothing you can do
with it. For example, if you're not trying to run an Android app, you might not
see the Run tool button.

Finishing your tour of the areas in Figure 2-7. . ..

The status bar

The status bar is at the very bottom of Android Studio’s window.

CHAPTER 2 Getting the Tools That You Need 47

FIGURE 2-11:
Hiding the Project
tool window area.

The status bar tells you what’s happening now. For example, if the cursor is on the
37th character of the 11th line in the editor, you see 11:37 somewhere on the status
line. When you tell Android Studio to run your app, you see Gradle: Executing
Tasks on the status line. When Android Studio has finished executing Gradle
tasks, you see Gradle Build Finished on the status line. Messages like these are
helpful because they confirm that Android Studio is doing what you want it to do.

The kitchen sink

In addition to the areas that I mention in this section, other areas might pop up as
the need arises. You can dismiss an area by clicking the area’s Hide icon. (See
Figure 2-11.)

== XD ARG DN R

02_01 app || Hide {(0®) (Click with “C to Hide Side) 1o
E. Android - B o= | I ﬂ"k) MainActivity java
g app package com)
Sl manifests ¥

Things You Might Eventually Have to Do

When you download Android Studio, you get the code library (the API) for the cur-
rent release of Android. You also get several developer tools — tools for compiling,
testing, and debugging Android code.

Here’s what you don’t get:

3 You don't get older Android APIs or older versions of the developer tools.

Sometimes you have to work with older versions of Android. By the time you
read this book, the version of Android that | used to create the book’s
examples will already be an older version. You'll open one of the examples
that you download from this book’s web page, and you'll see Android Studio
prompting you to install an older Android API. You'll accept the prompt's
advice and you'll be well on your way to running the apps that | describe in
this book.

3 You don't get future Android APIs or future versions of the developer
tools. (You couldn’t possibly get those things.)

Google updates Android frequently, and you might want to follow the latest
trends. So, in the near future, you might install a newer release of Android
than the release you have now.

48 PART 1 Getting Started with Java Programming for Android Developers

REMEMBER

FIGURE 2-12:
The Android SDK
Manager.

You can get older software and newer software by clicking links in Android Stu-
dio’s notifications, but you can also be proactive and reach out for different ver-
sions of Android’s tools and APIs. To help you do this, you have two useful
“manager” tools — the SDK Manager and the AVD Manager. The next few sec-
tions cover these tools in depth.

When you first install Android Studio, you can probably skip the next two sections.
Return to these sections when Google releases updated versions of Android or
when you work on a project that requires older versions of Android (versions that
you haven’t already installed).

Installing new versions (and older versions)
of Android

The Android SDK Manager lists the versions of Android and helps you download and
install the versions that you need on your development computer. Figure 2-12
shows the SDK Manager with the manager’s SDK Platforms tab open.

Q Appearance & Behavior > System Settings > Android SDK
Appearance & Behavior Manager for the Android SDK and Tools used by Android Studio
Appearance Android SDK Location: | /Users/bburd/Library/Android/sdk Edit
pcusaccclbars SDK Platforms SDKTools _ SDK Update Sites
System Settings
> = Each Android SDK Platform package includes the Android platform and sources pertaining to
ST an API level by default. Once installed, Android Studio will automatically check for updates,
HTTP Proxy Check "show package details" to display individual SDK components.
Updates Name APILevel | Revision Status
Usage Statistics Andrn!d 7.0 (Nr.Jugar) 24 1 Nat-lnslefl\ed
- B Android N Preview N 3 Partially installed
Al Android 6.0 (Marshmallow) 23 3 Update available
Notifications Android 5.1 (Lollipop) 22 2 Installed
Quick Lists Android 5.0 (Lollipop) 21 2 Partially installed
Path Variables Android 4.4W (KitKat Wear) 20 2 Not installed
Android 4.4 (KitKat) 19 4 Not installed
Keymap Android 4.3 (elly Bean) 18 3 Not installed
Editor Android 4.2 (Jelly Bean) 17 3 Not installed
Plugins Android 4.1 (Jelly Bean) 16 5 Not installed
EalE i Ep 0 Android 4.0.3 (IceCreamSandwich) 15 5 Not installed
R e P Android 4.0 (IceCreamSandwich) 14 4 Not installed
Tools Android 3.2 (Honeycomb) 13 1 Not installed
Android 3.1 (Honeycomb) 12 3 Not installed
Android 3.0 (Honeycomb) 11 2 Not installed
Android 2.3.3 (Cingerbread) 10 2 Not installed
Android 2.3 (Gingerbread) 9 2 Not installed
Amadanid 33 (Famuimd a 5 Mimsimenlindd
Show Package Details
Launch Standalone SDK Manager
? Cancel [_OK_]

To open the SDK Manager, go to Android Studio’s main menu bar and choose
Tools= Android=> SDK Manager.

CHAPTER 2 Getting the Tools That You Need 49

In truth, Android has two SDK managers. The one that I describe in this section is
=) embedded inside Android Studio’s Settings dialog box. The other runs on its own,
\J with no help from the Android Studio IDE. The two SDK managers perform roughly
TecHnicaL the same tasks.
STUFF
In the Android SDK Manager, you see tabs labeled SDK Platforms, SDK Tools, and
SDK Update Sites.

9 The SDK Platforms tab lists versions of Android.

In Figure 2-12, the list includes Nougat, a preview release of Nougat when it
was called Android N, two versions of Android Lollipop, and many others. The
list's rightmost column tells you which Android versions are installed (either
fully or partially) on your development computer. The rightmost column may
also indicate that an update to an Android version is available for download-
ing. Adding a check mark next to a version tells the SDK Manager to install
that version on your computer.

3 The SDK Tools tab lists software tools that are already installed, and
some that aren’t installed but are available for download.

3 The SDK Update Sites tab lists the URLs of the places where SDK
Manager looks for updates.

To run this book’s examples, you may have to visit the SDK Platforms tab. But you
probably won’t visit the SDK Tools tab. And you’re very unlikely to need the SDK
Update Sites tab.

Sometimes, you need a version of Android that’s not already installed on your
development computer. Somebody sent you a project that requires Android 3.2 and
you haven’t yet installed Android 3.2 on your machine. Then put a check mark
next to Android 3.2 in the SDK Platforms tab of the Android SDK Manager. Click
OK and watch Android 3.2 being installed.

Creating an Android virtual device

You might be itching to run some code, but first you must have something that
can run an Android program. By something, I mean either a physical device or an
emulated device.

3 A physical device is a piece of hardware that's meant to run Android. It's a
phone, a tablet, an Android-enabled toaster — whatever.

Another name for a physical device is a real device.

50 PART 1 Getting Started with Java Programming for Android Developers

3 An emulated device is a picture of a phone or a tablet on your develop-
ment computer’s screen.

With an emulated device, Android is made to run on your development
computer’s processor. The emulated device shows you how your code will
probably behave when you later run your code on a real phone, a real tablet,
or another Android device.

MIMICKING A PHYSICAL DEVICE

An emulated device is really three pieces of software rolled into one:

® A system image is a copy of one version of the Android operating system.

For example, a particular system image might be for Android Marshmallow (API
Level 23) running on an Intel x86_64 processor.

® An emulator bridges the gap between the system image and the processor on
your development computer.

You might have a system image for an Atom_64 processor, but your development
computer runs a Core i5 processor. The emulator translates instructions for the
Atom_64 processor into instructions that the Core i5 processor can execute.

® An Android Virtual Device (AVD) is a piece of software that describes a real
(physical) device’s hardware.

An AVD contains a bunch of settings, telling the emulator all the details about the
device to be emulated. What's the screen resolution of the device? Does the device
have a physical keyboard? Does it have a camera? How much memory does it have?
Does it have an SD card? All these choices belong to a particular AVD.

Android Studio’s menus and dialog boxes make it easy to confuse these three items.
When you download a new AVD, you often download a new system image to go with
that AVD. But Android Studio’s dialog boxes blur the distinction between the AVD and
the system image. You'll also see the word emulator, when the correct term is AVD. If the
subtle differences between system images, emulators, and AVDs don't bother you, don’t
worry about them.

A seasoned Android developer typically has several system images and several AVDs on
the development computer, but only one Android emulator program.

CHAPTER 2 Getting the Tools That You Need 51

FIGURE 2-13:

The opening page

52

of the AVD
Manager.

An AVD is a piece of software that tells your development computer all about a
particular phone, a particular tablet, or some other kind of device. When you
install Android Studio, the installer creates an AVD for you to use. But you can cre-
ate several additional AVDs and use several different AVDs to run and test your
Android apps.

You use the AVD Manager tool to create and customize your Android virtual
devices. To open the AVD Manager, go to Android Studio’s main menu bar and
choose Tools= Android= AVD Manager.

Figures 2-13 through 2-16 show the dialog boxes that you might find in the AVD
Manager.

I’m reluctant to list instructions for using the AVD Manager, because the look of
the AVD Manager tool is constantly in flux. Chances are, what you see on your
computer’s screen doesn’t look much like the mid-2016 screen shots in
Figures 2-13 to 2-16.

é Your Virtual Devices

M Android Studio

Type Name Resolution API Target CPUJABI Size on Disk Actions
[T] NexusSXA.. 1080x192.. 23 Android6.0... xB6 2B s~
? + Create Virtual Device... @&

Instead of giving explicit instructions, my general advice when creating a new
AVD is to select the newer phones or tablets and the higher-numbered API levels,
and to accept defaults whenever you’re tempted to play eeny-meeny-miney-mo.
Just keep clicking Next until you can click Finish. If you don’t like the AVD that
you’ve created, you can always reopen the AVD Manager and select different
options to create another AVD. When you reach the level of proficiency where
you’re finicky about your AVD’s characteristics, you’ll probably know your way
around many of the AVD Manager’s options and you’ll be able to choose wisely.

PART 1 Getting Started with Java Programming for Android Developers

FIGURE 2-14:
The first page
in creating
anew AVD.

FIGURE 2-15:
The second
page in creating
anew AVD.

Select Hardware

Android Studio

Choose a device definition
a-
[] Nexus 6
Category Name * | Size Resolution | Density
™v Nexus S 4.0" 480x800 hdpi
Wear Nexus One 3.7 480x800 hdpi o
size: large
Phone Nexus 6P 5.7 1440x2... 560dpi S
Tablet Nexus 6 5.96" 1440x2... 560dpi
Nexus 5X 5.2 1080x1.. 420dpi
5.96" 2560px
Nexus 5 4.95" 1080x1... xxhdpi
Nexus 4 4.7 768x1280 xhdpi
Galaxy Nexus 465" 720x1280 xhdpi
5.4" FWVGA 5.4 480x854 mdpi
New Hardware Profile Import Hardware Profiles %) Clone Device...
? Cancel previous (NN Finish

System Image

H Android Studio

Select a system image
Rec led x86 Images Other Images
2 2 Marshmallow
Release Name AP Level ~ | ABI Target
Marshmallow 23 x86 Android 6.0 (with Goog
Marshmallow 2 x86_64 Android 6.0 (with Goos ey :';""
Lollipop Download 22 %86 Android 5.1 (with Goo| =
Loilipop Download 22 x86_64 Android 5.1 (with Goo| '? b arie
6.0
q ! Google Inc.
System Image
x86_64
These images are recommended because they run
the fastest and include support for Google APls
Questions on API level?
See the API level distribution chart
%)
? Cancel previous (MM | Finish

CHAPTER 2 Getting the Tools That You Need

53

Android Virtual Device (AVD)
H Android Studio

Verify Configuration
AVD Name Nexus 6 APl 23 AVD Name

T Nexus 6 5.96 1440x2560 xxhdpi Change...

e et The name of this AVD.

7.+ Marshmallow Android 6.0 x86_64 Change...

Startup orientation D
Portrait Landscape

Emulated .) S
e Graphics: Automatic

Device Frame Enable Device Frame
FIGURE 2-16:
The final page
in creating

Show Advanced Settings

Cancel P Next
anew AVD. — e

And that does it! You're ready to run your first Android app. I don’t know about
you, but I’m excited. (Sure, I’'m not watching you read this book, but I’'m excited

on your behalf.) Chapter 3 guides you through the running of an Android applica-
tion. Go for it!

54 PART 1 Getting Started with Java Programming for Android Developers

IN THIS CHAPTER

» Creating an elementary Android app

» Running an app on an emulator or
a physical device

» Adding buttons, text fields, and
other components to an app

Chapter 3

Creating and Running an
Android App

n a quiet neighborhood in south Philadelphia, there’s a maternity shop named

Hello World. I stumbled onto the store on my way to Pat’s (to get a delicious

Philly cheesesteak, of course), and I couldn’t resist taking a picture of the
store’s sign.

Computer geek that I am, I'd never thought of Hello World as anything but an app.
A Hello World app is the simplest program that can run in a particular program-
ming language or on a particular platform.* Authors create Hello World apps to
show people how to get started writing code for a particular system.

So, in this chapter, you make an Android Hello World app. The app doesn’t do
much. (In fact, you might argue that the app doesn’t do anything!) But the exam-
ple shows you how to create and run new Android projects.

* For an interesting discussion of the phrase Hello World, visit www.mz1labs.com/

JMPubs/HelloWorld.pdf. To see Hello World apps for more than 450 different
programming languages, visit www.helloworldcollection.de.)

CHAPTER 3 Creating and Running an Android App 55

http://www.mzlabs.com/JMPubs/HelloWorld.pdf
http://www.mzlabs.com/JMPubs/HelloWorld.pdf
http://www.helloworldcollection.de/

Creating Your First App

A typical gadget comes with a manual. The manual’s first sentence is “Read all 37
safety warnings before attempting to install this product.” Don’t you love it? You
can’t get to the good stuff without wading through the preliminaries.

Well, nothing in this chapter can set your house on fire or even break your elec-
tronic device. But before you follow this chapter’s instructions, you need a bunch
of software on your development computer. To make sure that you have this soft-
ware and that the software is properly configured, return to Chapter 2. (Do not
pass Go; do not collect $200.)

When at last you have all the software you need, you’re ready to launch Android
Studio and create a real, live Android app.

56 PART 1 Getting Started with Java Programming for Android Developers

In the Android developer’s world, things change quickly. If your screens don’t
look like the screens that I describe in this chapter, Google may have updated
parts of Android Studio. If you have trouble figuring out what to do in any new

rememeer versions of Android Studio, send me an email. The address is Java4Android@
allmycode.com.

First things first

To start the IDE and create your first app, you start, naturally, at the beginning:

1. Launch Android Studio.
For details on launching Android Studio, see Chapter 2.

CROSS What you do next depends on what you see on your screen.

REFERENCE .) i A , A
2. If you see a project’s main window, go to the window’s main menu bar

and select File > New > New Project.
If you see the Welcome screen, select Start a New Android Studio Project.

As a result, the New Project dialog box appears, as shown in Figure 3-1. The
New Project dialog box has fields for the application name, your company
domain, and your project location. These fields contain some default values,
such as My Application for the application name, and example.com for the
company domain. You can change the values in these fields, as | do in
Figure 3-1. But if you accept the defaults, you'll be just fine.

&

New Project

M Android Studio

Configure your new project

Application name: 03 _01

Company Domain: allyourcode.com

m

Package name: com.allyourcode.ad3_01

Include C++ Support

Project location: /Users/bburd/AndroidStudioProjects /03_01

FIGURE 3-1:
Configure your
new project.

Cancel previous ([| Finist

CHAPTER 3 Creating and Running an Android App 57

mailto:Java4Android@allmycode.com
mailto:Java4Android@allmycode.com

FIGURE 3-2:
Select form
factors and
minimum SDKs.

TIP

CROSS-
REFERENCE

3.

In the New Project window, click Next.

Doing so brings up the Target Android Devices window, as shown in Figure 3-2.
This window has check boxes for Phone and Tablet, Wear, TV, Android Auto,
and Glass. The window also has a number of Minimum SDK drop-down lists.

—
’*) Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SDKs

Phone and Tablet

Minimum SDK API 15: Android 4.0.3 (IceCreamSandwich) 2]
Lower APl levels target more devices, but have fewer features available.
By targeting API 15 and later, your app will run on approximately 97.4% of the devices
that are active on the Google Play Store.
Help me choose
Wear
Minimum SDK AP 21: Android 5.0 (Lollipop) H
™
Minimum SDK API 21: Android 5.0 (Lollipop) B
Android Auto
Glass
Minimum SDK Glass Development Kit Preview (API 19) B

Cancel provious ([T | Finish

In this example, | guide you through the creation of a Phone and Tablet app,
so you can accept the minimum SDK value offered in the Phone and Tablet
drop-down list. Of course, if you want to try creating a TV, Wear, or Glass app,
or if you want to change the choice in the Minimum SDK drop-down list, feel
free to do so.

For a minimum SDK, you can select any API level that's available in the
drop-down list. You need a phone, a tablet, or an Android Virtual Device (AVD)
that can run your chosen API level, but you probably don't have to worry about
that. If you've recently downloaded Android Studio, the installation created an
appropriate AVD. For example, if the installation of Android Studio created an
AVD that runs Android 6.0, that AVD can handle projects whose minimum SDK
is Android 6.0, Android 5.1, Android 5.0, Android 4.4, Android 4.0.3, Android
3.2, and so on. Looking from the other direction, a project whose minimum
SDK is Android 4.0.3 can run on a phone or an AVD that has Android 4.0.3,
Android 4.4, Android 5.0, Android 5.1, Android 6.0, and so on.

For an overview of Android versions, see Chapter 1. To find out about installing
AVDs, see Chapter 2.

58 PART 1 Getting Started with Java Programming for Android Developers

REMEMBER

FIGURE 3-3:
Add an activity.

4.

Click Next.

As a result, the Add an Activity to Mobile window appears. (See Figure 3-3.) On
this page, you tell Android Studio to create some Java code for you. The Java
code describes an Android activity. The options for the kind of Android activity
include Basic Activity, Empty Activity, Fullscreen Activity, and so on.

Select the Empty Activity option.

This is important: In Android developer lingo, an activity is one “screenful” of
components. Each Android application can contain many activities. For
example, an app’s initial activity might list the films playing in your neighbor-
hood. When you click a film'’s title, Android covers the entire list activity with
another activity (perhaps an activity displaying a relevant film review).

H' Add an Activity to Mobile

Add No Activity

Basic Activity Empty Activity Fullscreen Activity
Google AdMob Ads Activity Google Maps Activity Login Activity Master/Detail Flow
[I PR
Carcel | Previous (ST

Finish

When you select Empty Activity in the Add an Activity to Mobile window,
Android Studio writes the Java code for an activity with no bells or whistles. The
newly created activity has a text field that displays the words Hello World! and
not much more. Unlike other choices, Empty Activity has no options menu, no
floating action button, no scrollbar, no Google Maps — nothing of the sort. To

learn Java, you don't need all that stuff.

Click Next again.

You see the Customize the Activity page. (What a surprise!) On this page,
you make up the names of things associated with your activity, as shown
in Figure 3-4. Again, | recommend the path of least resistance — accepting

the defaults.

CHAPTER 3 Creating and Running an Android App

59

Choose options

A Customize the Activity

Creates a new empty activity
Activity Name: MainActivity
Generate Layout File

Layout Name: | activity_main

Backwards Compatibility (AppCompat)

Empty Activity

FIGURE 3-4: The name of the activity class to create

for your new

o Cancel Previous Next
activity.
7. Click Finish.
The Customize the Activity page goes away. Android Studio displays its main
window, as shown in Figure 3-5.
e
DHO ¢« XOH QR ¢ N(Cap- PH B LGEIL SitrL ? Q
[203.01) [aapp) [src) [m\n:) (=] jav::) E1com) hxl\your(ode:_) (] .03701:_) € MainActivity |
i Android v @ = - 1 B actvity_mainxml X | (€ MainActivity java x @
£ v [aape package com.allyourcede.a03_01; V|2
= [FImanifests . %
» Djava “import ...
o E'EEM'EIIV““'EUdE'EOE—Ol & public class MainActivity extends AppCompatActivity {
£ (2% MainActivity
E [com.allyourcode.a03_01 o @ﬂ‘til’l’é:: i onCreate (Bundl dInst state) <
a protec vo: onCreate(Bundle savedInstanceState,
:\ E1com.allyourcode.a03_01 super.cnCreate(savedInstanceState);
b+ Cares setContentView(R. layout.activity_main);
(& Cradle Scripts. T
. ¥
2
S
®
:\
1
B '
- >
: g
= S
= a
2 g
FIGURE 3-5:) g
. . L]
Android Studio’s I 0: Messages [@ Terminal i 6: Android Monitor & TODO Eventlog [¥ Gradle Console
main window [0 Gradle build finished in 125 634ms (4 minutes ago) 1:1 LF: UTF-82 Context:<nocontext> & &

60

PART 1 Getting Started with Java Programming for Android Developers

WARNING

FIGURE 3-6:

The Select
Deployment
Target dialog box.

TIP

The first time you create a project, you may have to wait a l-o-n-g time for
Android Studio to build the Gradle project info (whatever that is). You see a
pop-up dialog box indicating that Android Studio is downloading something.
Be prepared to wait several minutes for any signs of life on your screen.

Launching your first app

You’ve started up Android Studio and created your first project. The project doesn’t
do much except display Hello World! on the screen. Even so, you can run the project
and see it in action. Here’s how you start:

1.

Take a look at Android Studio’s main window.

Refer to Figure 3-5. In Android Studio, your new app consumes the entire main
window. If, for some reason, more than one Android Studio window is open,
make sure that the window you're looking at is the one containing your newly
created Android app.

In Android Studio’s main menu, choose Run > Run ‘app’.

The Select Deployment Target dialog box appears, as shown in Figure 3-6.

‘Connected Devices

Nexus 5X APl 23 x86 {Android 6.0, AP 23)

[] Select Deployment Target

Create New Virtual Device Don't see your device?
Use same selection for future launches Cancel “

In the Select Deployment Target dialog box, you see a list of devices (both
physical and emulated) that can run your newly created app. One of them is
the AVD that you created when you installed Android Studio. In Figure 3-6, that
AVD is named Nexus 5X APl 23 x86. On your screen, that AVD probably has a
different name.

If the Select Deployment Target dialog box doesn’t appear, your computer
might be skipping the Select Deployment Target dialog box and going straight to
an AVD or a physical device that's the default for this app. If this happens, your
app (after a long wait) probably starts running in the emulator window. That's
okay, but if you don't like skipping the Select Deployment Target dialog box, visit
the section “Testing apps on a physical device,” later in this chapter.

CHAPTER 3 Creating and Running an Android App

61

3.

&

CROSS- 4.

REFERENCE

Choose an item in the Select Deployment Target dialog box's list.

If the drop-down list is empty, refer to the section in Chapter 2 on creating an
Android Virtual Device.

Click OK.

When you do, several things happen, though they don't happen all at once. If
you wait long enough, you should see your new app running on a device. The
device may be a phone that's connected to your development computer. More
likely, the device is an emulator window that appears on your development
computer’s screen. (See Figure 3-7.) The emulator window runs whichever AVD
you chose in Step 3.

FIGURE 3-7:
Your Hello World
app in action.

WARNING

5554:Nexus_5X_API_23_x86

Android's emulator may take a very long time to get going. For example, my
primary development computer has a 3.1GHz processor with 16GB of RAM.
On that computer, the emulator takes 75 seconds to start up and run my app.
On another computer with a 2.6GHz processor with 8GB of RAM, the emulator
takes a few minutes to mimic a fully booted Android device. On yet another
computer of mine, one with less than 8GB of RAM, the emulator doesn't even
run. If your computer has less than 16GB of RAM, you may need lots of
patience when you deal with Android’s emulator. If you have trouble getting
the emulator to run, consider attaching a real physical device to your

62 PART 1 Getting Started with Java Programming for Android Developers

development computer, or running a third-party emulator. For more details,
refer to this chapter’s later section “If the Emulator Doesn’t Behave.”

Figure 3-7 shows the running of Android’s Hello World app. (The screen even
has Hello World! on it.) Android’s development tools create this tiny app when
you create a new Android project.

Android's Hello World app has no buttons to click and no fields to fill in. The
app doesn't do anything interesting. But the appearance of an app on the
Android screen is a very good start. Following the steps in this chapter, you can
start creating many exciting apps.

Don't close an Android emulator unless you know you won't be using it for a while.

@ The emulator is quite reliable after it gets going. While the emulator runs, you can
modify your Android code and tell Android Studio to run the code again. When
TIP you do, Android Studio implements your changes on the running emulator.

While your app runs, you see the Logcat pane (part of the Android Monitor tool
window) along the bottom of Android Studio’s main window, as shown in

Figure 3-8.

5 Android Monitor - SEE
H

2 B Emulator Nexus_S5X_API_23_x86 Android 6.0, API 23 & com.allyourcode.a03_01 (12951) |~]

~N|

* afii logcat | Monitors +* Verbose [8] Q- Regex Show only selected application [

@7-17 22:37:25.201 12951-12951/com.allyourcode.a@3_@1 W/System: ClassLoader referenced unknown path: /data/app/com.allyourced %'

FIGURE 3-8: E [' 07-17 22:37:20.539 12051-12951/com.allyourcode.ad3_01 W/System: ClassLoader referenced unknown path: /data/app/com.allyourcod 3

s [F ©7-17 22:37:29.683 12951-12951/com.allyourcode.ad3_@1 W/art: Before Android 4.1, method android.graphics.PorterDuffColorFilte E

The I_Ogcat pane g ©7-17 22:37:29.848 12951-13819/com.allyourcode.a@3_@1 D/OpenGLRenderer: Use EGL_SWAP_BEHAVIOR_PRESERVED: true &

. . E ©7-17 22:37:29.950 12951-13019/com.allyourcode.a@3_@1 I/OpenGLRenderer: Initialized EGL, version 1.4 g

in the Android 'y 87-17 22:37:30.517 12951-13019/com.allyourcode.ad3_01 D/gralloc_ranchu: Emulator without host-side GPU emulation detected. S
Monitor tool 0:Messages [@ Terminal | 6:Android Monitor ~ , 4:Run > TODO Event Log Gradle Console

window.] _Gradle build finished in 155 692ms (6 minutes ago) 81 LFt UTF-8¢ w &

The Logcat pane displays diagnostics about the running of your app.

You can make parts of Android Studio’s window appear and disappear. For exam-
ple, if you don’t see the Logcat pane, look for a tab labeled logcat in the lower-left
portion of the Android Studio window. (Refer to Figure 3-8.) If you don’t see the

rememeer logcat tab, look for the Android Monitor tool button in the lower-left corner of the
Android Studio window. Click that tool button.

If the Emulator Doesn’t Behave

The emulator that comes with Android Studio swallows up lots of resources on
your development computer. If you’re like me and you don’t always have the
latest, most powerful hardware, you may have trouble running apps in the emu-
lator. This section provides some helpful tips.

CHAPTER 3 Creating and Running an Android App 63

If, after five minutes or so, you don’t see Android’s home screen and you don’t see
your app running, here are several things you can try:

¥ Lather, rinse, repeat.

Close the emulator and launch your application again. Sometimes, the second
or third time's a charm. On rare occasions, my first three attempts fail, but my
fourth attempt succeeds.

¥ If you have access to a computer with more RAM, try running your
app onit.

Horsepower matters.
¥ Try a different AVD.

The “Creating an Android virtual device” section, back in Chapter 2, tells you
how to add a new AVD to your system. An AVD with an x86 system image is
better than an AVD with an armeabi image. (Fortunately, when a dialog box
lets you choose between x86 and armeabi, you don't have to know what x86 or
armeabi means.)

In my experience, AVDs with lower resolution and screen density consume
fewer resources on your development computer. So, if the AVD that you're
running drags you down, follow the instructions in the “Creating an Android
virtual device” section to make yourself a lower-resolution AVD (one that
satisfies your app’s minimum SDK requirement). Then, when you run an app,
Android Studio prompts you with the Select Deployment Target dialog box. Pick
the lower-resolution AVD from the dialog box's list, and you'll be on your way.

This section’s bulleted list describes a few remedies for problems with Android
Studio’s emulator. Unfortunately, none of the bullets in this list is a silver bullet.
If you’ve tried these tricks and you’re still having trouble, you might try abandon-
ing the emulator that comes with Android Studio. The next two sections have the
details.

Running third-party emulators

Android’s standard emulator and AVDs (the software that you get when you install
Android Studio) don’t run flawlessly on every computer. If you don’t have at least
16GB of RAM, the emulator’s start-up may be very slow. Even after start-up, the
emulator’s response may be painfully sluggish. If you don’t like the standard
emulator, you can try one of the third-party emulators.

¥ Atwww.genymotion.com, you can download an alternative to the
standard Android emulator.

64 PART 1 Getting Started with Java Programming for Android Developers

http://www.genymotion.com/

REMEMBER

This alternative is available for Windows, Macintosh, and some Linux systems.
Genymotion’s product is free for personal use, but costs $135 per year for
commercial use.

¥ Atwww.visualstudio.com/en-us/features/msft-android-emulator-
vs.aspx, you can download Visual Studio Emulator for Android.

This alternative is free to use, but it runs only on Windows computers.

If you have trouble running the emulator that comes with Android Studio, these
third-party emulators are definitely worth considering.

Testing apps on a physical device

You can bypass emulators and test your apps on a real phone, a tablet device, or
even an Android-enabled coffee pot. To do so, you have to prepare the device,
prepare your development computer, and then hook together the two. This section
describes the process.

Your device’s Android version must be at least as high as your project’s minimum
SDK version.

To test your app on a physical device, follow these steps:

1. on your Android device, find the USB Debugging option:

If your Android device runs version 3.2 or older, choose Settings =
Applications = Development.

If your Android device runs version 4.0, 4.0.3, or 4.1, choose
Settings = Developer Options.

If your Android device runs version 4.2 or higher, choose Settings > About.
In the About list, tap the Build Number item seven times. (Yes, seven
times.) Then press the Back button to return to the Settings list. In the
Settings list, tap Developer Options.

Now your Android device displays the Development list (also known as the
Developer Options list).

2. Inthe Development (or Developer Options) list, turn on USB debugging.
Here's what one of my devices displays when | mess with this setting:
USB debugging is intended for development purposes.

Use it to copy data between your computer and your device,
install apps on your device without notification, and read log data.

CHAPTER 3 Creating and Running an Android App 65

https://www.visualstudio.com/en-us/features/msft-android-emulator-vs.aspx
https://www.visualstudio.com/en-us/features/msft-android-emulator-vs.aspx

3.
4,
5.
6.
7.

©

REMEMBER

The stewards of Android are warning me that the USB Debugging option can
expose my device to malware.

On my device, | keep USB debugging on all the time. But if you're nervous
about security, turn off USB debugging whenever you're not using the device
to develop apps.

(For Windows users only:) Visit https://developer .android.com/
studio/run/ocem-usb.html to download your Android device’'s Windows
USB driver. Install the driver on your Windows development computer.

When you start running an app, make sure that your development
computer displays the Select Deployment Target dialog box.

If you don't see the Select Deployment Target dialog box, from Android Studio’s
main menu choose Run = Edit Configurations. On the left side of the resulting
dialog box, select Android Application = App. In the main body of the dialog
box, under Deployment Target Options, choose the Open Select Deployment
Target Dialog option and deselect the Use Same Device for Future Launches
check box. Seal the deal by clicking OK.

Make sure that your Android device’s screen is illuminated.

This particular step might not be necessary, but I've scraped so many knuckles
trying to get Android devices to connect with computers that | want every
advantage | can possibly get.

While you follow the next step, keep an eye on your Android device's screen.
With a USB cable, connect the device to the development computer.

Not all USB cables are created equal. Some cables have wires and metal in
places where other cables (with compatible fittings) have nothing except
plastic. Try to use whatever USB cable came with your Android device. If, like
me, you can't find the cable that came with your device or you don't know
which cable came with your device, try more than one cable. When you find a
cable that works, label that able cable. (If the cable always works, label it Stable
Able Cable.)

When you plug in the cable, you see a pop-up dialog box on the Android
device's screen. The pop-up asks: Allow USB Debugging?

In response to the Allow USB Debugging? question, click the screen’s OK
button.

If you're not looking for it, you can miss the Allow USB Debugging? pop-up
dialog box. Be sure to look for this pop-up when you plug in your device. If you
definitely don't see the pop-up, you might be okay anyway. But if the message
appears and you don't respond to it, you definitely won't be okay.

66 PART 1 Getting Started with Java Programming for Android Developers

https://developer.android.com/studio/run/oem-usb.html
https://developer.android.com/studio/run/oem-usb.html

In Android Studio, run your project.

Android Studio offers you the Select Deployment Target dialog box. Select your
connected device, and (lickety-split) your app starts running on your Android
device.

CHECKING THE CONNECTION AND
BREAKING THE CONNECTION

To find out whether your physical device is properly connected to your development
computer, follow these steps:

1. Find your computer’s ANDROID_HOME directory.

What | call your computer's ANDROID_HOME directory is the directory containing the
Android SDK. To find your computer's ANDROID_HOME directory, select File => Project
Structure in Android Studio’s main menu bar. On the left side of the resulting dialog
box, select SDK Location. Then, in the main body of the dialog box, look for a sec-
tion labeled Android SDK Location. On my Windows computer, the text field in that
section points to C: \Users\barry\AppData\Local \Android\Sdk. On my Mac,
the text field points to /Users/bburd/Library/Android/sdk.

2. Select the Terminal tool button at the bottom of Android Studio’s main
window.

When you do, the lower portion of the main window turns into a command window
for your computer's operating system. (On Windows, it's like running cmd. On a Mac,
it's like running the Terminal app.)

3. In the command window, use the cd command to navigate to the plat form—
tools subdirectory of your computer’s ANDROID_HOME directory.

I'm a rootin’-tootin’ two-fisted computer user. On my PC, | type the following, and
then press Enter.

cd \Users\barry\AppData\Local \Android\Sdk\platform-tools
On my Mag, | type the following, and then press Enter.
cd /Users/bburd/Library/Android/sdk/platform-tools/

4. Type adb devices, and then press Enter. (On a Mac, type ./adb devices, and then
press Enter.)

(continued)

CHAPTER 3 67

(continued)

If your computer's response includes a very long hexadecimal number (such as
2885046445FF0Q97), that number represents your connected device. For example,
with one particular phone connected, my computer’s response is

emulator-5554 device
emulator-5556 device
2885046445FF097 device

If you see the word unauthorized next to the long hexadecimal number, you proba-
bly didn't answer OK to the Allow USB Debugging? question in Step 7 of the earlier
section “Testing apps on a physical device.”

If your computer’s response doesn't include a long hexadecimal number, you might
have missed the boat on one of the other steps in the “Testing apps on a physical
device"” section.

Eventually, you'll want to disconnect your device from the development computer. If
you get the dreaded Not Safe to Remove Device message, then, in the Terminal tool
window, type adb kill-server. (On a Mac, type ./adb kill-server.) After that, you get the
friendly Safe to Remove Hardware message.

The Project Tool Window

68

CROSS-
REFERENCE

A bare-bones Android project contains over 1,000 files in nearly 500 folders.
That’s a lot of stuff. If you expand some of the branches in Android Studio’s
Project tool window, you see the tree shown in Figure 3-9.

To follow this book’s examples, you can forget about 99 percent of the stuff in the
Project tool window. You can focus on only a few of its branches. I describe them
in this section.

The app/manifests branch

The app/manifests branch contains the AndroidManifest.xml file. (Refer to
Figure 3-9.) The AndroidManifest.xml file provides information that a device
needs in order to run the app. For example, an app may contain several activities.
The AndroidMani fest.xml file tells Android which of these activities to run when
the user launches the app.

You can read more about AndroidMani fest.xml files in Chapter 4.

PART 1 Getting Started with Java Programming for Android Developers

FIGURE 3-9:

The Project tool

window displays
some parts of an
Android app.

4

i Android - (%]
app
manifests
= AndroidManifest.xml
java
com.allyourcode.a03_01
com.allyourcode.a03_01 {(androidTest)
com.allyourcode.a03_01 (test)
ares
drawable
layout
= activity_main.xml
mipmap
ic_launcher.png (5)
ic_launcher.png (hdpi)
ic_launcher.png (mdpi)
ic_launcher.png (xhdpi)
ic_launcher.png (xxhdpi)
ic_launcher.png (xxxhdpi)

#-

% 1: Project

«] 7: Structure

& Captures

values
= colors.xml
dimens.xml (2)
= strings.xml
= styles.xml
& Gradle Scripts
build.gradle (Project: 03_01)
build.gradle (Module: app)
sl gradle-wrapper.properties (Gradle Version)

2: Favorites

X

@r Build Variants

=| proguard-rules.pro (ProCuard Rules for app)
ies (Pri ties)

The app/java branch

The app/ java branch contains your app’s Java code. In fact, the branch contains
several versions of your app’s Java code. Earlier, in Figure 3-9, you see three

branches:

3 Thecom.allyourcode.a@3_01 branch contains the code that the user’s

device will run.

¥ Thecom.allyourcode.a@3_01 (androidTest) and com.allyourcode.
a03_01 (test) branches contain extra code that you can use to test the

app on your development computer.

In this book, you don’t bother with the code in the androidTest or test branches.

The app/res branches

The word res stands for resources. The res branch contains extra items — items

that your app uses other than its own Java code:

3 Theapp/res/drawable branch contains any regular-size images that

your app uses.

CHAPTER 3 Creating and Running an Android App

69

»

»

»

The app/res/layout branch contains files that describe the look of your
app's activities.

You deal with just such a file in this chapter’s later section “Creating the ‘look.”

The app/res/mipmap branch contains some additional images — the
images of your app’s icons.

The term mipmap stands for multum in parvo mapping. And the Latin phrase
multum in parvo means “much in little.” A mipmap image contains copies of
textures for many different screen resolutions.

The app/res/values branch contains other kinds of information that an
app needs when it runs.

For example, the branch’s strings.xml file may contain strings of characters
that your app displays. When you first create an app, the strings.xml file
may contain the line

<string name="app_name">My Application</string>

If you want Romanian users to enjoy your app, you can right-click or control-
click the strings.xml file's branch and select Open Translations Editor. In

Android Studio’s Translations Editor, you can create an additional app/res/
values branch (astrings.xml (ro) branch) containing the following line:

<string name="app_name">Aplicatia mea</string»

The Gradle scripts branch

Gradle is a software tool. When the tool runs, it takes a whole bunch of files and
combines them to form a complete application — a single file that you can post on
Google Play. Of course, Gradle can combine files in many different ways, so to get
Gradle to do things properly, someone has to provide it with a script of some kind.
The heart of that script is in the build.gradle (Module:
Project tool window. That branch describes your app’s version number, minimum
SDK, and other goodies.

Dragging, Dropping, and Otherwise
Tweaking an App

70

At the start of this chapter, you create a brand-new Android app. The app displays
the words Hello World! on the device’s screen.

PART 1 Getting Started with Java Programming for Android Developers

app) branch of the

TIP

Wow! I'll bet you’re really impressed! "=

In this section, I explore new frontiers. I show you how to add components to your
app — simple components that copy the user’s text. The new app isn’t very use-
ful. You wouldn’t spend money for this app at Google Play. But with this app, you
find out how to get input from the user and how to display text on the user’s
screen.

Creating the “look”

A general guideline in app development tells you to separate logic from presenta-
tion. In less technical terms, the guideline warns against confusing what an app
does with how an app looks. The guideline applies to many aspects of life. For
example, if you’re designing a website, have artists do the layout and have geeks
do the coding. If you’re writing a report, get the ideas written first. Later, you can
worry about fonts and paragraph styles. (I wonder whether this book’s copy editor
would agree with me about fonts and styles.)

The literature on app development describes specific techniques and frameworks
to help you separate form from function. But in this chapter I do the simplest
thing — I chop an app’s creation into two sets of instructions. The first set is
about creating an app’s look; the second set is about coding the app’s behavior.

To add buttons, boxes, and other goodies to your app, do the following:

1. Follow the steps earlier in this chapter, in the “First things first” section.

When you're finished with these steps, you have a brand-new project with an
empty activity. The project appears in Android Studio’s main window.

2. Inthe new project’s app/res/layout branch (in the main window's
Project tool window), double-click activity_main.xml.

As a result, Android Studio’s Designer tool displays the contents ofactivity_
main.xml. The Designer tool has two modes: Design mode for drag-and-drop
visual editing and Text mode for XML code editing. So the bottom of the
Designer tool has two tabs: a Design tab and a Text tab.

3. Clickthe Design tab.

In Design mode, you see the palette, the component tree, two preview screens,
and the Properties pane. (See Figure 3-10.)

For details about Android Studio’s Design mode, check out the earlier sidebar
“Android Studio’s Designer tool.”

If you don't see the palette, look for the little Palette button on the left edge of
the Designer tool. If you click that button, the palette should appear.

CHAPTER 3 Creating and Running an Android App 71

72

FIGURE 3-10:
The Designer
tool's Design

mode.

FIGURE 3-11:
Running this
section’s app.

PART 1 Getting Started with Java Programming for Android Developers

The component tree has a branch labeled TextView - "Hello World!" This branch
represents the text Hello World! that appears automatically as part of your app.

You don't need this text in your app.

& activity_main.xml %

@ RadioButtan
v/ CheckedTextView
:‘Spinner
== ProgressBar (Large)
== ProgressBar
== ProgressBar (Small)
== ProgressBar (Horizont
101 SeekBar
4= QuickContactBadge
7 RatingBar
o Switch
{.ispace

[Text Fields
I |Plain Text
1 |Passward
1 |Password (Numeric)
L [E-mail

Component Tree

Design | Text

ac(ivityfmain (Constrai
At TextView - "Hello W¢

Palette e %I |H
[Widgets @ g
[t TextView E
0 Button
— ToggleButtan
@Checkﬂox

100

200

200

.
.

©) MainActivity java X
&~ [Nexus 4~ mn- (PappTheme ELanguage- | [J -

[CEF JORFI |

AL

X

0

200

400

Properties Pl S |
O —

v

v

> <<

~

~
layout_w... none E
layout_h... none s
TextView
contentD... l:l

textAp... Material Sma

4. select the TextView — "Hello World!" branch in the component tree,
and then press Delete.

The "Hello World!" branch disappears from the component tree, and the

words Hello World! disappear from the preview screen.

The next several steps guide you through the creation of the app shown in

Figure 3-11.

5554:Nexus_5X_API_23_x86

Greetings from Javaland!

COPY

LD,
TECHNICAL
STUFF

TIP

The app's layout has three different kinds of components, and each kind of
component goes by several different names. Here are the three kinds of
components:

EditText (also known as Plain Text): A place where the user can edit a
single line of text.

A common name for this kind of component is a text field.
Button: A button is a button is a button.
Do you want to click the button? Go right ahead and click it.

TextView (also known as Plain TextView, Large Text, Medium Text,
and so on): A place where the app displays text.

Normally, the user doesn't edit the text in a TextView component.

To be painfully precise, Android's Edi tText, Button, and TextView compo-
nents aren’t really different kinds of components. Every EditText component
is a kind of TextView, and every Button is also a kind of TextView. In the
language of object-oriented programming, the EditText class extends the
TextView class. The Button class also extends the TextView class. You can
read all about classes extending other classes in Chapter 10 of this book. With
or without that chapter, this book's examples don't make use of the relation-
ships between EditText, Button, and TextView. You can forget that you ever
read this paragraph, and everything will be okay.

Drag a Plain Text (that is, EditText) item from the palette’s Widgets
group to either of the preview screens.

The Plain Text item may land in an ugly-looking place. That's okay. You're not
creating a work of art. You're learning to write Java code.

My book Android Application Development All-in-One For Dummies, 2nd Edition
(published by Wiley), has advice on refining the look of your Android layouts.

Repeat Step 5, this time putting a Button item on the preview screen.

| suggest putting the Button component below the Plain Text (EditText)
component. Later, if you don't like where you put the Button component, you
can easily move it by dragging it elsewhere on the preview screen.

Repeat Step 6, this time putting a TextView component on the preview
screen.

| suggest putting the TextView component below the Button component but,
once again, it's up to you.

In the remaining steps of this section, you change the text that appears in each
component.

CHAPTER 3 Creating and Running an Android App 73

8. select the Button component on the preview screen or in the component
tree.

As a result, the Designer tool's Properties pane displays some of the Button
component's properties. (See Figure 3-12.)

Properties P glE - T |
W
> <
~
layout_... p_content g8

layout_... p_content g8

Button ‘
style anStyle oy
backgro...
backgro... l:l o
stateLis... o
LI

elevation
visibility none H
onClick none H
FIGURE 3-12:
Setting the TextView
properties of a | text -

button. & port

!

After selecting the Button component, you may see the word TextView in the

@ Properties pane. Don't confuse this with the TextView component that you
dragged from the palette in Step 7. With the button selected, all the fields in
TP the Properties pane refer to that Button component. If the appearance of the

word TextView in the Properties pane confuses you, refer to the Technical Stuff
icon in Step 4. (If the word TextView doesn't confuse you, don’t bother reading
the Technical Stuff icon!)

9. Inthe Properties pane, in the field labeled text, type the word COPY.
(Refer to Figure 3-12.)

When you do, the word COPY appears on the face of the Button component.
You can check this by looking at the wysiwyg preview screen.

74 PART 1 Getting Started with Java Programming for Android Developers

Q

TIP

FIGURE 3-13:
Preview screens
containing

the three
components.

In the Properties pane, you may see two fields labeled text. If so, one is for
testing and the other is for running the app. When in doubt, it doesn't hurt to
type the word COPY in both of those fields.

10. Repeat Steps 8 and 9 with your activity’s EditText and TextView compo-
nents, but this time, don’t put the word COPY into those components.
Instead, remove the characters from these components.

When you're finished, the preview screens look similar to the screens in

Figure 3-13. If your preview screens don't look exactly like Figure 3-13, don't
worry about it. Your components may be scattered in different places on the
preview screens, or the creators of Android Studio may have changed the way
the preview screens look since the time | wrote this book. As long as you have
an EditText component, a Button component, and a TextView component,
you're okay.

11. choose File=> Save Al to save your work so far.

With this section’s steps, you edit your app visually. Behind the scenes, Android
Studio is editing the text in your app’s activity_main.xml document. You can see
what changes Android Studio has made to your app’s activity_main.xml docu-
ment by selecting the Text tab at the bottom of Android Studio’s editor. My
activity_main.xml document is reproduced in Listing 3-1. Your activity_main.
xml document’s contents may be different.

CHAPTER 3 Creating and Running an Android App 75

76

ANDROID STUDIO’S DESIGNER TOOL

A typical Android app has at least one layout file. A layout file describes the look of an
Android device's screen. A layout file also describes the positions of text fields, buttons,
images, and other items. The layout file can describe other properties of components
on the screen. For example, a layout file can indicate the piece of Java code that Android
calls when the user clicks a particular button.

Layout files aren’t written in Java. They're written in XML. So you don't do anything excit-
ing with layout files in this book. But you can do some simple, fun things with layouts by
dragging and dropping components (buttons, text fields, and so on) in Android Studio’s

Designer tool.

One of the layout files in a typical Android app is named activity_main.xml.You may
also see a file named content_main.xml. When you expand the app/res/layout
branches in the Project tool window and you double-click theactivity_main.xml

item inside those branches, Android Studio displays its Designer tool. The Designer tool
has two modes: Design mode and Text mode. (Refer to Figure 3-10 and the figure in this
sidebar.) So the bottom of the Designer tool has two tabs: a Design tab and a Text tab.

€ MainActivityjava X [activity_main.xml x Preview - 2|
: : Nexus 4~ MEN- OApnTheme

4D e T
sEIF- IR d 2

= ©

I Palette

Layout
ttp://schemas.android.com/apk/res/android"”
xmlns:app="http: //schemas.android.com/apk/res-auto"
xmlns:too] ttp://schemas.android.com/tools"
android:id="@+id/activity_main"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context="com.allyourcode.ad3_01.MainActivity">

i he
<EditText R
android:layout_width="wrap_content" 03_01

android:layout_height="wrap_content"

android:inputType="textPersonName"

android:ems="10"

android:id="@+id/editText" ooy
app:layout_constraintLeft_tolLeftOf="@+id/activity_main" I
app:layout_constraintTop_toTopOf="@+id/activity_main"
app:layout_constraintRight_toRightOf="@+id/activity_maif®

app:layout_constraintBottom_toBottom @+id/activity_mai
app:layout_constraintVertical_bias="0.068080002" />
/>

<Button
android: text="COPY"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android id/button”
android:onClick="onButtonClick"
app:layout_constraintLeft_toLeftOf:
app:layout_constraintTop_toBottomD:
app:layout_constraintRight_toRightOf:

<TextView
android:layout_width="wrap_content"

Design Text

[B ora o rama il b oan. EmwAna PR = I

PART 1 Getting Started with Java Programming for Android Developers

In Design mode, you edit the layout by dragging and dropping components onto one of
the Designer tool's preview screens. In Text mode, you edit the same layout by typing
text in the XML file.

In Design mode, shown in Figure 3-10, the Designer tool has five parts:
® The leftmost preview screen is a place to drop new components onto your

app's screen.

| call this leftmost preview screen the wysiwyg (“what you see is what you get”)
preview screen.

® To the right of the wysiwyg preview screen is the blueprint preview screen.

The blueprint screen is good for adjusting the positions of components. However,
you can drop new components onto both the wysiwyg and blueprint screens. You
can also adjust the positions of components on both the wysiwyg and blueprint
screens. Whatever you do to a component on one preview screen automatically
changes that same component on the other preview screen.

® The palette on the left side of the Designer tool is a place to get the compo-
nents that you drop onto the preview screens.

The palette has components such as TextView, Button, CheckBox, and many
others.

® The component tree (immediately below the palette) lists all components on
your activity’s screen.

When you create a project and select Empty Activity, Android Studio places a few of
these components on your activity’s screen. You may have dropped other compo-
nents from the palette.

Some components can live inside other components. That's why the component
tree isn't a simple list. Instead, it's a tree with branches within branches.

® The Properties pane on the right displays facts about the components in
your layout. You can change the layout by modifying the values that you find
here.

In Text mode (shown in this sidebar’s figure), the Designer tool has two parts:

® The left half of the Text mode Designer tool is an editor.

In the editor, you see the XML file describing the layout of your app.

(continued)

CHAPTER 3

77

(continued)

® In the right half of the Text mode Designer tool is yet another preview screen.

The Text mode's preview screen is only a viewer. It's not an editor. You can't modify
the layout by dragging and dropping items on this preview screen.

If Android Studio’s Designer tool is in Text mode and you don't see the preview,
click the Preview tool button. You'll find this button on the rightmost edge of the
main window.

When you drag and drop components on Design mode’s preview screens, Android
Studio automatically updates the XML file. And it works both ways: When you edit the
XML file, Android Studio keeps the preview screens up-to-date.

When you go to the Project tool window and double-click a file that's not a layout file,
Android Studio dismisses the Designer tool and replaces it with the plain, old editor area.

m The activity_main.xml Document

<?xml version="1.0" encoding="utf-8"?»
<android.support.constraint.ConstraintlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/activity_main"
android: layout_width="match_parent"
android: layout_height="match_parent"

tools:context="com.allyourcode.a@3_01.MainActivity">

<EditText
android:layout_width="wrap_content"
android: layout_height="wrap_content"
android: inputType="textPersonName"
android:ems="10"
android:id="@+id/editText"
app: layout_constraintLeft_tolLeftOf="@+id/activity_main"
app: layout_constraintTop_toTopOf="@+id/activity_main"
app: layout_constraintRight_toRightOf="@+id/activity_main"

app: layout_constraintBottom_toBottomOf="@+id/activity_main

app: layout_constraintVertical_bias="0.06"/>

78 PART 1 Getting Started with Java Programming for Android Developers

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools

REMEMBER

<Button
android:text="COPY"
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android:id="@+id/button"
app: layout_constraintLeft_tolLeftOf="@+id/editText"
app: layout_constraintTop_toBottomOf="@+id/editText"
app: layout_constraintRight_toRightOf="@+id/editText"/>

<TextView
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android:id="@+id/textView"
app: layout_constraintLeft_tolLeftOf="@+id/button"
app: layout_constraintTop_toBottomOf="@+id/button”
app: layout_constraintRight_toRightOf="@+id/button"/>

</android.support.constraint.ConstraintLayout>

The code in a something_or_other.xml file isn’t Java code. It’s XML (eXtensible
Markup Language) code. You don’t have to type any XML code in an app’s
activity_main.xml file. For most of this book’s examples, you can create the
XML code indirectly by dragging and dropping components, and tweaking prop-
erties in Android Studio’s Designer tool. That’s what this section’s instructions
are all about. Of course, it’s helpful to know something about XML code. That’s
why I wrote this section’s “All about XML files” sidebar.

ALL ABOUT XML FILES

The acronym XML stands for eXtensible Markup Language. Every Android app consists
of some Java code files, some XML files, and some other files.

Listing 3-1 contains an XML document. You might already be familiar with HTML
documents — the bread and butter of the World Wide Web. Like an HTML document,
every XML document consists of tags (angle-bracketed descriptions of various pieces
of information). But unlike an HTML document, an XML document doesn’t necessarily
describe a displayable page.

(continued)

CHAPTER 3 Creating and Running an Android App 79

(continued)

80

PART 1

Here are some facts about XML code:

® A tag consists of text surrounded by angle brackets.

For example, the code in Listing 3-1 consists of three tags: The first tag is the

<android.support.constraint.ConstraintLayout ... > tag. The second
tagisthe <EditText ... /> tag. The remaining tags are the <Button ... />
tag, the <TextView ... /> tag, andthe </android.support.constraint.

ConstraintlLayout> tag.

With its question marks, the first line in Listing 3-1, <?xml version="1.0"
encoding="utf-8"?>, doesn't count as a tag.

An XML document may have three different kinds of tags: start tags, empty
element tags, and end tags.

A start tag begins with an open angle bracket and a name. A start tag's last charac-
ter is a closing angle bracket.

The first tag in Listing 3-1 (the <android.support.constraint.
ConstraintLayout ... > tagon lines 2 through 9)is a start tag. Its name is
android.support.constraint.ConstraintLayout.

An empty element tag begins with an open angle bracket followed by a name. An
empty element tag's last two characters are a forward slash followed by a closing
angle bracket.

The second tag in Listing 3-1 (the <EditText ... /> tagonlines 11 through 18 in
the listing) is an empty element tag. Its name isEditText. The <Button ... />
and <TextView ... /> tags are also empty element tags.

An end tag begins with an open angle bracket followed by a forward slash and a
name. An end tag's last character is a closing angle bracket.

The last tag in Listing 3-1 (the </android.support.constraint.
ConstraintlLayout> tag on the last line of the listing) is an end tag. Its name is
android.support.constraint.ConstraintLayout.

An XML element has both a start tag and an end tag or it has an empty
element tag.

In Listing 3-1, the document's android. support.constraint.
ConstraintlLayout element has both a start tag and an end tag. (Both the start
and end tags have the same name, android.support.constraint.
ConstraintlLayout, so the name of the entire element is android. support .
constraint.ConstraintlLayout.)

In Listing 3-1, the document's EditText element has only one tag: an empty
element tag. The same is true of the Button and TextView elements.

® Either elements are nested inside one another or they have no overlap.

For example, in the following code, a TablelLayout element contains two
TableRow elements:

<Tablelayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<TableRow>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/name" />
</TableRow>
<TableRow>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/address" />
</TableRow>
</TablelLayout>

The preceding code works because the first TableRow ends before the second
TableRow begins. But the following XML code is illegal:

<!-- The following code isn't legal XML code. -->

<TableRow>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/name" />
<TableRow>
</TableRow>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/address"/>
</TableRow>
(continued)
CHAPTER 3 Creating and Running an Android App 81

http://schemas.android.com/apk/res/android

(continued)

With two start tags followed by two end tags, this new XML code doesn’t pass
muster.

Each XML document contains a root element — one element in which all other
elements are nested.

In Listing 3-2 (a little later in this chapter), the root element is the android.
support.constraint.ConstraintLayout element. The listing's other
elements (the EditText, Button, and TextView elements) are nested inside
thatandroid.support.constraint.ConstraintLayout element.

Different XML documents use different element names.

In every HTML document, the
 element stands for line break. But in XML,
names such as android.support.constraint.ConstraintlLayout and
EditText are particular to Android layout documents. And the names portfolio
and trade are particular to financial product XML (FpML) documents. The names
prompt and phoneme are peculiar to voice XML (VoiceXML). Each kind of document
has its own list of element names.

The text in an XML document is case-sensitive.
For example, if you change EditText to eDITtEXT in Listing 3-2, the app won't run.
Start tags and empty element tags may contain attributes.

An attribute is a name-value pair. Each attribute has the form name="value". The
quotation marks around the value are required.

In Listing 3-1, the start tag (@android. support.constraint.ConstraintLayout)
has seven attributes, and the empty element tag (EditText) has seven of its own
attributes. For example, in the EditText empty element tag, the text
android:layout_width="wrap_content" is the first attribute. This attribute has
the name android: layout_width and the value "wrap_content".

A non-empty XML element may contain content.

For example, in the app/res/values branch in Android Studio’s Project tool
window, you can find a file named strings.xml. In that strings.xml file, you
may see

<string name="app_name">03_01</string>

In the string element, the content ®3_01 is sandwiched between the start tag
(<string name="app_name">)and the end tag (</string>).

82 PART 1 Getting Started with Java Programming for Android Developers

FIGURE 3-14:
The component
tree.

Q

TIP

Coding the behavior

Assuming you’ve followed the instructions in the earlier section “Creating the
“ook,’” what’s next? Well, what’s next depends on how much you want to work.
This section describes the easy way. If you read the later section “Going Pro,”
you’ll find out how to do it the not-so-easy way.

Android 1.6 (also known as Donut) introduced an android:onClick attribute that
streamlines the coding of an app’s actions. Here’s what you do:

1.
2.

Follow the steps in this chapter’s earlier section “Creating the ‘look.”

If you don’t see the Designer tool with its preview screens, double-click
the app/res/layout/activity_main.xml branch in the Project tool
window. When the Designer tool appears, select the Design tab.

"

For details, refer to Steps 2 and 3 in the “Creating the ‘look™ section.

Make note of the labels on the branches in the component tree.

The component tree is on the left side of the Designer tool, immediately below
the palette. Notice the labels on the branches of the tree. Each element on the
screen has an id (a name to identify that element). In Figure 3-14, the ids of
some of the screen’s elements are editText, button, and textView.

= Phone
R - e
" Component Tree
s [Iflactivity_main (ConstraintLayout)
editText
button - "COPY"
AbltextView
Design Text
[@=] Terminal P 4:Run "2 TODO

You may be wondering why, in place of the word “identification,” | use the strange
lowercase abbreviation id instead of the more conventional English language
abbreviation /D. To find out what's going on, select the Text tab in Android Studio’s
designer tool. In the XML code for the activity's layout you'll find lines such as
android:id="@+id/textView".In Android's XML files, id is a code word.

When you drop a component onto the preview screen, Android Studio assigns
that component an id. You can experiment with this by dropping a second
TextView component onto the preview screen. If you do, the component tree
has an additional branch, and the label on the branch (the id of the new
component) is likely to be textView?2.

CHAPTER 3 Creating and Running an Android App 83

REMEMBER

LD,
TECHNICAL
STUFF

FIGURE 3-15:
Setting the
button’s
onClick value.

84

Java is case-sensitive, so you have to pay attention to the way words are
capitalized. For example, the word EditText isn't the same as the word

editText. In this example, the word EditText stands for a kind of component
(a kind of text field), and editText stands for a particular component (the text

field in your app — the text field that you dropped onto the preview screen).

You can change a component’s id, if you want. (For example, you can change
the name editText to thatTextThingie.) In this example, | recommend
accepting whatever you see in the component tree. But before proceeding to
the next step, make note of the ids in your app’s component tree. (They may
not be the same as the ids in Figure 3-14.)

To change a component'’s id, select that component on the preview screen or
in the component tree. Then, in the Properties pane on the right side of the

Designer tool, look for an ID field. Change the text that you find in this ID field.

(Yes. In the Properties pane, ID has capital letters. Don't blame me. It's not my
fault.)

4. onthe preview screen or in the component tree, select the COPY button.
(Refer to Figure 3-14.)

As a result, the Properties pane displays information about your button
component.

5. Inthe Properties pane, type onButtonClick in the onClick field. (See
Figure 3-15.)

Actually, the word you type in the onClick field doesn't have to be
onButtonClick. But in these instructions, | use the word onButtonClick.
So please indulge me and use the same word that | use. Thank you!

elevation

visibility none ﬁ

onClick |]

TextView

text “copy

text

contentDes... |
textAppe... at.W d}';t"'..:‘:.!f:f]'lﬂ\ |

6. Inside the app/ java branch of the Project tool window, double-click
MainActivity.

Of course, if you didn't accept the default activity name (MainActivity)when
you created the new project, double-click whatever activity name you used.

PART 1 Getting Started with Java Programming for Android Developers

In the Project tool window, the MainActivity branch is located in a branch
that's labeled with your app’s package name. (The package name is com.
example.myapplication or com.allyourcode.a@3_01 or something like

REMEMBER that.) That package name branch is directly in the java branch, which is, in
turn, in the app branch.

When you're finished with double-clicking, the activity's code appears in
Android Studio's editor.

7. Modify the activity’s code, as shown in Listing 3-2.
The lines that you type are set in boldface in Listing 3-2.

For some hints about typing code, see the later sidebar “Make Android Studio

do the work.”
RECF:gé'S‘-CE In Listing 3-2, | assume that the branches on your app’s component tree have
the same labels as the tree pictured in Figure 3-14. In other words, | assume that
& your app’s components have the ids editText, button, and textView. If your
app’'s components have different ids, change the code in Listing 3-2 accordingly.
ARG For example, if your first EditText component has the id editText2, change

your first findViewById call to findViewById(R.id.editText2).

m A Button Responds to a Click

package com.allyourcode.a@3_01;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
EditText editText;

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

editText = (EditText) findViewById(R.id.editText);
textView = (TextView) findViewById(R.id.textView);
}

(continued)

CHAPTER 3 Creating and Running an Android App 85

public void onButtonClick(View view) {
textView.setText(editText.getText());
}

8. Runthe app.

9. Whenthe app starts running, type something (anything) in your app’s
EditText component. Then click the button.

When you click the button, Android copies the text from your EditText
component to your TextView component. The running app is shown in
Figure 3-11.

If your app doesn’t run, you can ask me for help via email. The address is Java4
Android@allmycode.com.

REMEMBER

MAKE ANDROID STUDIO DO THE WORK

When you type code in Android Studio, the editor guesses what you're trying to type
and offers to finish typing it for you. In the first sidebar figure, | start to type the word
EditText. When | type the letters Ed, Android Studio displays a drop-down list with entries
such as EditText, EdgeEffectCompat, and EdgeEffect. (See the first sidebar figure.)
| can select one of these by double-clicking the entry in the pop-up menu. Alternatively,

| can select an entry from the pop-up menu and then press Enter or Tab.

import ...
43 public class MainActivity extends AppCompatActivity {
E

EditText {(android.widget)
EdgeEffectCompat

E/'a EdgeType

Another cool feature of Android Studio’s editor is intention actions. You're minding your
own business, typing code, and having a good time — and suddenly you see some com-
motion in the Editor window. (See the second sidebar figure.) A callout signals the pres-

ence of one or more intention actions — proposals to make small changes in order to

86 PART 1 Getting Started with Java Programming for Android Developers

mailto:Java4
Android@allmycode.com
mailto:Java4
Android@allmycode.com

improve your code. In response to the callout's appearance, you press Alt+Enter. Doing
so may add an import line at the top of your code or make another beneficial change.

import android.support.v7.app.AppCompatActivity;
~ import android.os.Bundle;
&1 7 android.widget.EditText? \C<? |
vity' m puslic cuass mainActivity extends AppCompatActivity {
je.myapplic EditText editText;

penyaRelig @verride

=t nentnctad uadd anCeantalBuindla cauadTactancaSaral §

You can tweak Android Studio’s settings so that you get the import lines at the top of
Listing 4-2 without even pressing Alt+Enter. Lines of this kind can appear automatically
whenever you type words like View or EditText. Here's how:

1. If you have a Windows PC, choose File => Settings. If you have a Mac, choose
Android Studio > Preferences.

A dialog box appears. (The dialog box's title is either Settings or Preferences.
Whatever!)

2. In the panel on the left side of the dialog box, expand the Editor branch.

In the subbranch labeled General, select Auto Import.

Several options appear in the main body of the dialog box. (See the third sidebar
figure.)

4. In the drop-down list labeled Insert Imports on Paste, select All.

5. Put a check mark in the Optimize Imports on the Fly check box.

6. Put a check mark in the Add Unambiguous Imports on the Fly check box.
7.

Click OK to commit to these changes.

Now, when you type a line like TextView textView, Android Studio automatically adds
the required import android.widget.TextView line to your code. That's nice.

Path Variables Java
Keymap Insert imports on paste: All d
Editor)

@ show import popup

General

[Optimize imports on the fly
Auto Import

[@kkdd unambiguous imports on the fly
Appearance

Code Completion [Show import suggestions for static methods and fields

Code Folding Exclude from Import and Completion

CHAPTER 3 Creating and Running an Android App

What All That Java Code Does

©

REMEMBER

You may be curious about the code in Listing 3-2. If so, a few words of explanation
are in order.

Finding the EditText and TextView
components

In Listing 3-2, the lines

EditText editText;

TextView textView;

alert Java to the fact that you use the names editText and textView in your code.
The line

EditText editText;
says that the name editText refers to an EditText type of component (a place
where the user can type some text). This line might seem redundant, but it’s not.
You can modify the second word on the line this way:

EditText userTypesTextHere;

But if you make this change, you have to change the name editText in other parts
of Listing 3-2.

In Listing 3-2, you can change the name editText to another name, but you can’t
change EditText (starting with an uppercase letter E) to another name. In an
Android program, the name EditText (starting with an uppercase letter E) stands
for a place where the user can type a single line of text. Similarly, the name Button
stands for a button, and TextView stands for a place where Android displays text.

In Listing 3-2, the line
editText = (EditText) findViewById(R.id.editText);

finds the EditText component that you create in the steps in the earlier section
“Creating the ‘look.””

Wait a minute! What does it mean to “find” a component, and how does a line of
code in Listing 3-2 accomplish that task? Figure 3-16 illustrates the situation.

88 PART 1 Getting Started with Java Programming for Android Developers

activity_main.xml

<EditText
R.java e
public final class R “/// android:id= "@+id/editText"
public static final class id {
public static final int editText=0x7£0c0051; o
<Button

android:onClick="onButtonClick"

MainActivity.java

e X
editText = (EditText) findViewById(R.id.editText)
FIGURE 3-.16: public void onButtonClick (View view) {
Connecting e AN
XML code with
Java code.
When you follow the directions in the earlier section “Creating the ‘look,”” you
end up with a file like the one in Listing 3-1. This file contains these lines:
<EditText
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android:id="@+id/editText"
.
The EditText component’s XML code contains a cryptic @+id/editText attribute.
Android Studio sees this @+id/editText attribute and takes it as an instruction to
add a line to one of your app’s Java files:
public final class R {
public static final class id {
public static final int editText=0x7f0c0051;
The file that contains this code is named R. java. You don’t see the R. java file in
06" Android Studio’s Project view unless you select Project or Project Files instead of
Android in the drop-down list above the Project tool window. Even if you can see
tecunicar theR. java file, you should never type any of your own changes in theR. java file.
STUFF

Because of this Java code, the name R.id.editText stands for the number
0x7f0c0051.

CHAPTER 3 Creating and Running an Android App 89

90

LD,
TECHNICAL
STUFF

So, if you look again at Figure 3-16, you see how a line of Java code says the
following:

Look for something that has id number 2131492945. Treat whatever you find as if
it's an EditText component, and from here on, in this Java code, refer to that thing
by the name editText.

This is how Android connects a component that you create in the Designer tool
with a name in your app’s Java code.

In Listing 3-2, the line
textView = (TextView) findViewById(R.id.textView);

serves the same purpose for the TextView component that you add when you
follow the instructions in the earlier section “Creating the ‘look.””

The characters 0x7f0c0051 might not look much like a number but, in a Java pro-
gram, the characters 0x7f0c0051 form the hexadecimal representation of what we
ordinarily call 2131492945. If this number 2131492945 for a little EditText com-
ponent seems arbitrary, don’t worry. It’s supposed to be arbitrary. Android Studio
generates the R. java file automatically from the things that you name in places
like Listing 3-1. All the numbers in the R. java file are arbitrary. There’s no reason
for them not to be arbitrary.

Responding to a button click

The onButtonClick code in Listing 3-2 fulfills the promise that you make in
Step 5 of the earlier section “Coding the behavior.” Setting the button’s onClick
property to onButtonClick gets Android Studio to add the additional line
android:onClick="onButtonClick" to the code in Listing 3-1. As a result,
Android calls the onButtonClick code in Listing 3-2 whenever the user clicks the
button.

In Listing 3-2, the lines
public void onButtonClick(View view) {

textView.setText (editText.getText());
}

form a method whose name is onButtonClick. The first line is the method’s
header:

public void onButtonClick(View view)

PART 1 Getting Started with Java Programming for Android Developers

The header has the method’s name — onButtonClick. This is the name you typed
when you set the button’s onClick property in Step 5 of the earlier section “Coding
the behavior.”

Below the header comes the instruction to be performed whenever the user clicks
the button. Figure 3-17 describes what the instruction tells Android to do when
the user clicks the button.

textView.setText (editText.getText());
[|

Get the text that's in your
activity's editText
component, and ...

FIGURE 3-17:)
An instruction to ... setthe textin the textView componentto
copy text. whatever you got from the editText component.

You don’t have much leeway in the way you create the button click’s method
header. Instead of public void onButtonClick(View view), you can write some-
thing like public void whenClicked(View veryNiceView), but then you must
rememser Use the words whenClicked and veryNiceView consistently throughout your code.

I confess. I'm getting ahead of myself with this section’s talk about a Java method.
To read more about Java methods, see Chapters 4 and 7.

CROSS-
REFERENCE

The rest of the code

Most of the code in Listing 3-2 is standard stuff. Android Studio composes the
code automatically, and you use this code in almost every app that you create.
Much of the time, you don’t pay attention to this code that Android Studio gener-
ates. When you stare at Listing 3-2, you concentrate on the boldface lines and not
much else. You take the other lines for granted.

Of course, the boilerplate code in Listing 3-2 isn’t magic. In later chapters, I
describe lots of Java’s features and help you to understand the inner workings of
the listing’s code. But in this section, I provide only a brief description of that
code’s purpose. The description is in Listing 3-3.

CHAPTER 3 Creating and Running an Android App 01

m A Guide to Listing 3-2

package com.allmycode.a@3_03; // The code in this file belongs to

// a package named com.allmycode.a@3_03.

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle; // This code uses things that are coded in
import android.view.View; // other packages -- packages such as

import android.widget.EditText; // android.widget.EditText, android.os.View,

import android.widget.TextView; // and others.

public class MainActivity extends AppCompatActivity {
// This code defines a class.
// The class's name is MainActivity.
// This code inherits all the features described in
// Android's built-in AppCompatActivity code.
// An AppCompatActivity is a kind of Activity.
// An Activity is one screenful of stuff that the
// user sees. So, this code describes one screenful
// for the user.

EditText editText;

TextView textView;

@0verride

protected void onCreate(Bundle savedInstanceState) {
// When an Android device
// creates this screenful
// of stuff...

super .onCreate(savedInstanceState); // ... the device recovers
// relevant info from the
// last time this screenful

// appeared, and ...

setContentView(R.layout.activity_main); // ... displays the layout
// that's described in
// Listing 3-1.

editText = (EditText) findViewById(R.id.editText);

textView = (TextView) findViewById(R.id.textView);

public void onButtonClick(View view) {
textView.setText(editText.getText());

92 PART 1 Getting Started with Java Programming for Android Developers

If you go to Android Studio’s editor and paste the voluminous code of Listing 3-3
in place of Listing 3-2, your app will still run. That’s because Listing 3-3 makes
use of Java’s comment feature. When Android runs this code, Android doesn’t act
on any text that appears on a line after the double slash (//). Text such as // The
code in this file belongs to is for humans to read and appreciate.

@ You can find out more about Java comments in Chapter 4.

CROSS-
REFERENCE

Going Pro

This chapter’s “Coding the behavior” section describes a way to make your app
respond when the user clicks a button. The story isn’t complicated: You type a
name in the button’s onClick field in the Properties pane, and then you use that
name in the app’s Java code. That’s the easy way.

The problem with the easy way is that hard-core Android developers don’t do
things that way. Using a button’s onClick property doesn’t work well for more
complicated apps. So professional Android developers use a technique that comes
from the Java desktop programming world.

In most of this book’s examples, I use the easy way to respond to button clicks.
But if you want to use the more professional way, read on:
1. Follow the steps in this chapter’s “Creating the ‘look™ section.

2. Make note of the labels on the branches in the component tree, but don't
follow any other instructions in the “Coding the behavior” section.

In particular, don't bother setting the button’'s onClick property.
3. Modify the activity’s code, as shown in Listing 3-4.

The lines that you type are set in boldface in Listing 3-4. Use the labels that you
found in Step 2. For example, if your TextView component’s id is textView?2,
modify a line in Listing 3-4 as follows:

textView = (TextView) findViewById(R.id.textView2);

4. Runthe app.

CHAPTER 3 Creating and Running an Android App 93

m Event Handling (the Traditional Java Way)

94

package com.allyourcode.a@3_04;

import android.support.vT7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity
implements View.OnClickListener {
EditText editText;
Button button;

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main)

editText = (EditText) findViewById(R.id.editText);
button = (Button) findViewById(R.id.button);
textView = (TextView) findViewById(R.id.textView);

button.setOnClickListener(this);

@0Override

public void onClick(View view) {
textView.setText(editText.getText());

Listing 3-4 uses Java’s traditional event-handling pattern. The button registers
your activity as its click-event listener. In a sense, the setOnClickListener line
in Listing 3-4 replaces the button’s onClick property in this chapter’s “Coding
the behavior” section. Your activity declares itself to be an OnClickListener and
makes good on this click-listener promise by implementing the onClick method.

The technique that I use in Listing 3-4 involves a callback, and callbacks aren’t
the easiest things to understand. That’s why I wait until Chapter 11 to describe
what’s going on in Listing 3-4. In the meantime, you can start reading about
Java’s wonderful features in Chapter 4. Enjoy!

PART 1 Getting Started with Java Programming for Android Developers

Writing Your
Own’java
Programs

IN THIS PART ...

Writing your first Java programs
Assembling Java's building blocks

Changing course as your program runs

IN THIS CHAPTER

» Understanding how an Android
activity works

» Creating classes and methods
» Adding comments to your code

» Watching the flow in an Android
activity

Chapter4
An Ode to Code

Hello, hello, hello, . . . hello!
—THE THREE STOOGES IN DIZZY DETECTIVES AND OTHER SHORT FILMS

n Chapter 3, you create a Hello World app for Android. You do this with the help
of Android Studio and, in the process, Android Studio composes some Java code
for you. In Chapter 3, you examine a bit of this Java code.

But in Chapter 3, you only scratch the code’s surface. In this chapter, you begin to

examine the code in depth. When you understand how the code works, you can
forge ahead to create bigger and better Android apps.

Hello, Android!

When you create a new Android app and you select Empty Activity in the Add an
Activity dialog box, Android Studio creates the Java code shown in Listing 4-1.

CHAPTER 4 An Ode to Code 97

A Small Android Java Program

package com.allyourcode.a@4_01;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

In Android developer lingo, an activity is one “screenful” of components. Each

Android application can contain many activities. For example, an app’s initial

activity might be a login screen. After the user logs on, Android covers the entire
rememser login activity with another, more interesting activity.

When you run the app that Android Studio creates automatically, you see the
words Hello World!, as shown in Figure 4-1. Now, I admit that writing and running
a Java program just to make Hello World! appear on a device’s screen is a lot of
work, but every endeavor has to start somewhere.

5554:Nexus_5X_API_23 x86

FIGURE 4-1:
Running Android
Studio’s Blank
Activity app.

Figure 4-2 provides hints about the meaning of the code in Listing 4-1.

The next several sections present, explain, analyze, dissect, and otherwise demystify
the Java code shown in Listing 4-1.

98 PART 2 Writing Your Own Java Programs

FIGURE 4-2:
What you do in
Listing 4-1.

Inside of a package named
package com.allyourcode.a04_01;] org.allyourcode.a04_01...

...you tell Java that, in this program, you'll be using (importing) some

/— code that's already defined in the Android library, and then...

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;

/— ...you create a class named MainActivity.

public class MainActivity extends AppCompatActivity {

Inside the MainActivity class, you make a list

l_/ of instructions (a method) named onCreate.
@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;
} LN Inside that onCreate list, you put two
} statements: one statement calls the

super .onCreate method; another statement
calls the setContentView method.

The Java Class

CROSS-
REFERENCE

(= =
SiS
TECHNICAL
STUFF

Java is an object-oriented programming language. As a Java developer, your pri-
mary goal is to describe classes and objects. A class is a kind of category, like the
category of all customers, the category of all accounts, the category of all geomet-
ric shapes, or, less concretely, the category of all MainActivity elements, as
shown in Listing 4-1. Just as the listing contains the words class MainActivity,
another piece of code to describe accounts might contain the words class Account.
The class Account code would describe what it means to be (for example) one of
several million bank accounts.

The previous paragraph briefly describes what it means to be a class. For a more
detailed description, see Chapter 9.

The code in Listing 4-1 describes a brand-new Java class. When I create a program
like this one, I get to make up a name for my new class. When I created the project,
I accepted the default name MainActivity in Android Studio’s Customize the Activ-
ity dialog box. That’s why you have the words class MainActivity in Listing 4-1.
(See Figure 4-3.)

The code inside the larger box in Figure 4-3 is, to be painfully correct, the declara-

tion of a class. (This code is a class declaration.) I'm being slightly imprecise when
I write in the figure that this code is a class. In reality, this code describes a class.

CHAPTER 4 An Ode to Code 99

FIGURE 4-3:

A simple Android
Java program

100

is a class.

A\

WARNING

The package declaration

!

package com.allyourcode.a04 01;

import declarations

!

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;

setContentView (R.layout.activity main) ;

T

The MainActivity class

The declaration of a class has two parts: The first part is the header, and the rest —
the part surrounded by curly braces, or {} —is the class body, as shown in
Figure 4-4.

The word class is a Java keyword. No matter who writes a Java program, class is
always used in the same way. On the other hand, MainActivity in Listing 4-1 is
an identifier — a name for something (that is, a name that identifies something).
The word MainActivity, which Android Studio made up while I was writing a new
project, is the name of a particular class — the class that I’'m creating by writing
this program. When I created the new project, Android Studio gave me the
opportunity to type a new name in place of the name MainActivity. In place of
MainActivity, I could have typed StartHere or EatMoreCheese. It wouldn’t have
mattered as long as Android Studio had used the new name consistently through-
out the project. (The class’s name, whatever it is, appears in several places in the
new Android project’s code.)

In the previous paragraph, I raise the possibility of giving the class in Listing 4-1
an unusual name. I do this to call attention to the difference between Java key-
words (such as the word class), and identifiers (such as the word MainActivity).
I don’t mean to suggest that creating strange identifiers (such as EatMoreCheese)
is — in any way, shape, or form — a good idea. Strange identifiers confuse other
programmers. Even slightly nonstandard identifiers, such as StartHere in place

PART 2 Writing Your Own Java Programs

FIGURE 4-4:
Aclass
declaration’s
header and body.

&

CROSS-
REFERENCE

WARNING

of the more commonly used MainActivity, make other developers’ lives more
difficult. So, when you create your own app, use names that other developers will
easily recognize. If there’s a default name for a particular item in a program, use
that default name.

package com.allyourcode.a04 01; The class header

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;

—_

public class MainActivity extends AppCompatActivity|

@Override

protected void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;

}
}

|

The class body

In Listing 4-1, the words package, import, public, extends, protected, and
super are also Java keywords. No matter who writes a Java program, package and
class and the other keywords always have the same meaning. For more jabbering
about keywords and identifiers, see the nearby sidebar, “Words, words, words.”

To find out what the words public, static, and void mean, see Chapters 7 and 9.

tHE jJAVA PROGRAMMING LANGUAGE IS cASe-sEnsITiVE. FOR EXAMPLE, iF YOU
CHANGE A lowercase LETTER IN A WORD TO UPPERCASE OR CHANGE AN UPPER-
CASE WORD TO lowercase, YOU CHANGE THE WORD’S MEANING AND CAN EVEN
MAKE THE WORD MEANINGLESS. iN THE FIRST LINE OF lISTING 4-1, FOR
EXAMPLE, IF YOU TRIED TO REPLACE class WITH Class, THE WHOLE PROGRAM
WOULD STOP WORKING.

The same holds true, to some extent, for the name of a file containing a particular
class. For example, the name of the class in Listing 4-1is MainActivity, with two
uppercase letters and ten lowercase letters. So the code in the listing belongs in a
file named MainActivity. java, with exactly two uppercase letters and ten low-
ercase letters in front of . java.

CHAPTER 4 An Ode to Code 101

102

PART 2

WORDS, WORDS, WORDS

The Java language uses two kinds of words: keywords and identifiers. You can tell which
words are keywords, because Java has only 50 of them. Here's the complete list:

abstract continue for new switch

assert default goto package synchronized
boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient
catch extends int short try

char final interface static void

class finally long strictfp volatile
const float native super while

As arule, a keyword is a word whose meaning never changes (from one Java program to
another). For example, in English, you can’t change the meaning of the word if. It doesn’t
make sense to say, "l think that | shall never if / A poem lovely as a riff." The same con-
cept holds true in a Java program: You cantype if (x > 5) to mean "If x is greater
than 5," but whenyou typeif (x > if), the computer complains that the code
doesn’t make sense.

In addition to the keywords, Java has other words that play special roles in the language.
You can't make up your own meanings for the words false, null, and true, but, for
technical reasons, these words aren’t considered keywords. And the words module,
requires, exports, dynamic, to, uses, provides, and with are restricted keywords.
You can make up meanings for them in some parts of your Java code, but not in other

parts.

In Listing 4-1, the words class, package, import, public, extends, protected, and
super are keywords. Almost every other word in that listing is an identifier, which is gen-
erally a name for something. The identifiers in the listing include MainActivity,

AppCompatActivity, onCreate, and a bunch of other words.

In programming lingo, words such as Wednesday, Barry, and university in the following
sentence are identifiers, and the other words (If; it’s, is, at, and the) are keywords:

If it's Wednesday, Barry is at the university.

As in English and most other spoken languages, the names of items are reusable. For
example, a recent web search turns up four people in the United States named Barry
Burd (with the same uncommon spelling). You can even reuse well-known names.

(A fellow student at Temple University had the name_John Wayne, and in the 1980s two
different textbooks were titled Pascalgorithms.) The Android APl has a prewritten class
named MainActivity, but that doesn’t stop you from defining another meaning for
the name MainActivity.

Of course, having duplicate names can lead to trouble, so intentionally reusing a well-
known name is generally a bad idea. (If you create your own thing named
MainActivity, you'll find it difficult to refer to the prewritten MainActivity classin
Android. As for my fellow Temple University student, everyone laughed when the
teacher called roll.)

The names of classes

I’'m known by several different names. My first name, used for informal conver-
sation, is Barry. A longer name, used on this book’s cover, is Barry Burd. The legal
name that I use on tax forms is Barry A. Burd, and my passport (the most official
document I own) sports the name Barry Abram Burd.

In the same way, elements in a Java program have several different names. For
example, the class that’s created in Listing 4-1 has the name MainActivity. This
is the class’s simple name because, well, it’s simple and it’s a name.

Listing 4-1begins with the line package org.allyourcode.a@4_01. The first line is
a package declaration. Because of this declaration, the newly created MainActivity
isinside a package namedorg.allyourcode.a@4_01.Soorg.allyourcode.ad4_01 .
MainActivity is the class’s fully qualified name.

If you’re sitting with me in my living room, you probably call me Barry. But if
you’ve never met me and you’re looking for me in a crowd of a thousand people,
you probably call out the name Barry Burd. In the same way, the choice between a
class’s simple name and its fully qualified name depends on the context.

In Listing 4-1, the lines

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;
are two import declarations. An import declaration uses a class’s fully qualified

name. In Android’s API, the Bundle class is in the android.os package, and the
AppCompatActivity class is in the android.support.v7.app package.

CHAPTER 4 An Ode to Code 103

104

OLAOD,
TECHNICAL
STUFF

Q

TIP

Can you do without these import declarations? Yes, you can. Here’s how:
package com.allyourcode.a04_01_B;
public class MainActivity extends android.support.vT7.app.AppCompatActivity {

@0verride

protected void onCreate(android.os.Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main)

}

This new code is in the com.allyourcode.a@4_01_B package, but the Bundle and
AppCompatActivity classes aren’t in the com.allyourcode.a@4_01_B package. In
a way, the Bundle and AppCompatActivity classes are foreign to this com.
allyourcode.a@4_01_B package code. This revised code doesn’t start with the
import declarations. So, to compensate, the code must use Bundle and AppCompat
Activity class’s fully qualified names.

If your Java code file doesn’t have an import android.support.vT.app.AppCompat
Activity declaration, and you refer to the AppCompatActivity class several times
in the file, you must use the fully qualified name android.support.v7.app.
AppCompatActivity each and every time.

An import declaration, such as
import android.support.v7.app.AppCompatActivity;

announces that you intend to use the short name AppCompatActivity later in the
file’s code. The declaration clarifies what you mean by the short name AppCompat
Activity. (You mean android.support.v7.app.AppCompatActivity.)

In an import declaration, an asterisk (*) means “all the classes in that package.”
For example, the android.support.v7.app package contains about 20 different
classes. You can import all these classes with a single import declaration. Simply
write import android.support.v7.app.x*; near the top of your Java file.

The details of this import business can be nasty, but (fortunately) Android Studio
has features to help you write import declarations. Chapter 3 has the details.

PART 2 Writing Your Own Java Programs

Why Java Methods Are Like Meals
at a Restaurant

I'm a fly on the wall at Mom’s Restaurant in a small town along Interstate 80.
I see everything that goes on at Mom’s: Mom toils year after year, fighting against
the influx of high-volume, low-quality restaurant chains while the old-timers
remain faithful to Mom’s menu.

I see you walking into Mom’s. Look — you’re handing Mom a job application.
You’'re probably a decent cook. If you get the job, you’ll get carefully typed copies
of every one of the restaurant’s recipes. Here’s one:

Scrambled eggs (serves 2)
5 large eggs, beaten

¥4 cup 2% milk

1 cup shredded mozzarella
Salt and pepper to taste

A pinch of garlic powder

In a medium bowl, combine eggs and milk. Whisk until the mixture is smooth,
and pour into preheated frying pan. Cook on medium heat, stirring the mixture
frequently with a spatula. Cook for 2 to 3 minutes or until eggs are about halfway
cooked. Add salt, pepper, and garlic powder. Add cheese a little at a time, and
continue stirring. Cook for another 2 to 3 minutes. Serve.

Before your first day at work, Mom sends you home to study her recipes. But she
sternly warns you not to practice cooking. “Save all your energy for your first
day,” she says.

On your first day, you don an apron. Mom rotates the sign on the front door so
that the word Open faces the street. You sit quietly by the stove, drumming your
fingers. Mom sits by the cash register, trying to look nonchalant. (After 25 years
in business, she still worries that the morning regulars won’t show up.)

At last! Here comes Joe the barber. Joe orders the breakfast special with two
scrambled eggs.

CHAPTER 4 An Ode to Code 105

106

(= =)
T
TECHNICAL
STUFF

(= =
oiS
TECHNICAL
STUFF

©

REMEMBER

What does Mom'’s Restaurant
have to do with Java?

When you drill down inside the code of a Java class, you find these two important
elements:

3 Method declaration: The “recipe”
"If anyone ever asks, here's how to make scrambled eggs."
3 Method call: The “customer’s order”

Joe says, "Il have the breakfast special with two scrambled eggs." It's time for
you to follow the recipe.

Almost every programming language has elements akin to Java’s methods. If you’ve
worked with other languages, you may recall terms like subprogram, procedure,
function, subroutine, subprocedure, and PERFORM statement. Whatever you call a method
in your favorite programming language, it’s a bunch of instructions, collected in
one place and waiting to be executed.

A method declaration is a plan describing the steps that Java will take if and when
the method is called into action. A method call is one of those calls to action. As a
Java developer, you write both method declarations and method calls. Figure 4-5
shows you a method declaration and some method calls.

Figure 4-5 doesn’t contain a complete Java program, so you can’t run the figure’s
code in Android Studio. But the figure illustrates some facts about method decla-
rations and method calls.

If I’'m being lazy, I refer to the code in the upper box in Figure 4-5 as a method.
If I’'m not being lazy, I refer to it as a method declaration.

Method declaration

Like one of Mom’s recipes, a method declaration is a list of instructions: “Do this,
then do that, and then do this other thing.” And, like each of Mom’s recipes, each
method has a name. In Figure 4-5, the method declaration’s name is shout. You
won’t find the shout method in any of Android’s API documentation. I made up
the shout method especially for this chapter.

Another term for an instruction in a Java program is a Java statement, or simply a
statement. In Figure 4-5, the shout method’s declaration contains two statements.
The first statement tells Java to append a message to the text in a particular compo-
nent (whatever component the name textView refers to). The second statement
tells Java to append three asterisks and a blank space to the text in that component.

PART 2 Writing Your Own Java Programs

FIGURE 4-5:
Declaring and
calling the shout
method.

FIGURE 4-6:

The shout
method's header
and body.

REMEMBER

The shout method’s declaration

l

void shout (String message) {

textView.append (message) ;
textView.append("!!! ");

shout ("Help") ;
shout ("I'm trapped inside a smartphone") ;

T

Two method calls, each invoking the shout method

A method declaration has two parts: the method header and the method body, as

shown in Figure 4-6.

The shout method’s header

void shout (String message) || {

textView.append (message) ;
textView.append("!!! ");

The shout method’s body

The method’s header has the name of the method and a parameter list. (See
Figure 4-7.)

Package declarations, import declarations, and method declarations are all called
declarations, but they don’t have much in common. A package declaration is typi-
cally one line of code — a line at the very beginning of a program, starting with
the word package. After one package declaration, a file may contain several import
declarations, each consuming one line of code. On the other hand, a typical method
declaration is a bunch of lines of code, and those lines don’t usually appear at the
beginning of a program.

CHAPTER 4 An Ode to Code 107

FIGURE 4-7:

Anatomy of a
method header.

FIGURE 4-8:

Anatomy of a

108

method call.

CROSS-
REFERENCE

The method’s name

One or more words (to be The method declaration’s
described in later chapters) parameter list
sl , |
void shout (String message)

Method call

A method call includes the name of the method being called followed by a parameter
list. (See Figure 4-8.)

The method call's
The method’s name parameter list

h

|
shout ("Help")

A method call is like a customer order at Mom’s Restaurant. The call in Figure 4-8
says, “It’s time to execute whatever instructions are inside the shout method. And
in those instructions, use the string "Help".”

Method parameters

A method’s declaration has a parameter list, and a method call also has a param-
eter list. What a coincidence! (Refer to Figures 4-6 and 4-7.)

Of course, it’s no coincidence. When Java encounters a method call, Java passes
the value in the call’s parameter list to the declaration’s parameter list. The dec-
laration may use that value in its body’s instructions. See Figure 4-9.

A method call parameter conveys specific information — information that may be
different from one method call to another. For example, the code shown earlier, in
Figure 4-5, contains two method calls. One call conveys the information "Help".
The other call conveys different information — namely, "I'm trapped inside a
smartphone".

A method call’s parameter list doesn’t look exactly like a method declaration’s
parameter list. You can see this by looking at Figure 4-9. The call’s parameter list
contains one thing — namely, the string "Help". But the declaration’s parameter
list contains two things: the word String and the word message. The stuff in the

PART 2 Writing Your Own Java Programs

FIGURE 4-9:
Passing a value
fromacalltoa

declaration.

declaration’s parameter list says, “When you call this method, send a String of
characters. I'll refer to that String by the name message.” The word String is the
name of a Java type. To read more about Java types, see Chapter 5.

shout ("Help") ;
L 1

\

void shout (String message) { Appends the word Help to whatever

already appears in the textView
i component.

textView.append (message) ;<---""~
textView.append ("!!! "); <« ___

~

} Adds three exclamation points and a
blank space after the word Help

The chicken or the egg

Which comes first, the method call or the method declaration? Look again at
Figure 4-9. The figure contains a call to the shout method. The call makes Android
execute the statements inside the shout method’s body.

But the statements inside the shout method’s body are themselves method calls.
They’re calls to a method named append. In the shout method’s body, the first
append call adds the word Help to the textView component’s text. The second
append call adds three exclamation points and a blank space to the textView
component’s text.

You don’t see the append method’s declaration, because the append method is part

of Android’s built-in APIL. As an Android developer, you don’t deal directly with
the method’s declaration. All you do is call the method when you need it.

How many parameters?

In Java, double quotation marks denote a string of characters. So the call
shout("I'm trapped inside a smartphone")

contains one parameter. That single parameter is a string of characters.

Some functions have one parameter. Other functions have more than one param-

eter. Still other functions have no parameters. Listing 4-2 has an example.

CHAPTER 4 An Ode to Code 109

Overloading a Method

shout("Help");

shout("I'm trapped inside a smartphone");

shout("Put down the phone and start living life", "x");

shout();

void shout(String message) {
textView.append(message);
textView.append("!!! ");

}

void shout(String message, String emphasis) {
textView.append(message);
textView.append(emphasis);
textView.append(emphasis);
textView.append(emphasis);

}

void shout() {

}

Like Figure 4-5, the code in Listing 4-2 doesn’t contain a complete Java program,
so you can’t run the figure’s code in Android Studio. But Listing 4-2 illustrates the
notion of method overloading. When you overload a method, you provide several
declarations for the method. Each declaration has its own, unique parameter list.

Listing 4-2 contains three shout method declarations — one with a single param-
eter, another with two parameters, and a third with no parameters.

Listing 4-2 also has four calls to the shout method. For each call, Java decides
which declaration to use by matching up the call’s parameter list with a declara-
tion’s parameter list. Here’s what happens when Java executes the shout method
calls in Listing 4-2:

3 The first call, shout("Help"), has only one parameter, so Java uses the
shout(String message) declaration.
Java appends Help!!! to the text in the textView component.

¥ Thesecond call, shout("I'm trapped inside a smartphone"), also has only

one parameter. So, again, Java uses the shout(String message) declaration.

110 PART 2 Writing Your Own Java Programs

Java adds I'm trapped inside a smartphone!l! to the textView component.

¥ The third call, shout ("Put down the phone and start living life",
"x"), has two parameters. A comma separates the parameters from one
another. Java uses the shout (String message, String emphasis)
declaration because that declaration also has two parameters.

Java adds Put down the phone and start living life*** to the textView component.

3 The fourth call, shout(), has no parameters. The call has a pair of parenthe-
ses, but the pair is empty. Java uses the declaration at the end of Listing 4-2,
the shout () declaration, because that declaration also has no parameters.

In this section’s code, you may wonder why the name textView isn’t one of the

parameters that I pass to the shout method. The short answer is, I want the name

textView to refer to the same component anywhere in my MainActivity class’s

CROSS- code — not exclusively inside the shout method’s declaration. So I declare TextView

REFERENCE textview; outside of any method. For more information about this topic, you can
read about fields in Chapter 9.

Method declarations and method calls
in an Android program

The figures and listing in the previous sections contain shout method declara-
tions and shout method calls, but they don’t contain a complete Java program.
Listing 4-3 contains a complete program using these shout methods. The pro-
gram’s output is shown in Figure 4-10.

All the Code That's Fit to Print

package com.allyourcode.a@4_03;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R.layout.activity_main)
(continued)

CHAPTER 4 An Ode to Code 111

LISTING 4-3: (continued)

textView = (TextView) findViewById(R.id.textView);
textView.setText("");

shout("Help");

shout("I'm trapped inside a smartphone");

shout();

void shout(String message) {
textView.append(message);
textView.append("!!! ");

}

void shout() {

}

{3 The code in Listing 4-3 belongs in an Android project — a project containing
many other files. You can download the entire project from this book’s website:
www.allmycode.com/Java4Android.

ON THE
WEB
5554:Nexus_5X_API_23_x86
FIGURE 4-10:
Running the app
in Listing 4-3.
The code in Listing 4-3 describes an activity — one screenful of stuff on the
Android device’s screen. When an activity first appears, Android calls the activity’s
onCreate method. That’s why Listing 4-3 declares an onCreate method.
Android’s internal code contains a call to an activity’s onCreate method. You
never write a call to the onCreate method. In fact, you probably never even see a
call to the onCreate method.
REMEMBER

112 PART 2 Writing Your Own Java Programs

http://www.allmycode.com/Java4Android

CROSS-
REFERENCE

Here’s what happens when Android calls the onCreate method in Listing 4-3:

»

»

»

»

»

»

»

All in all, the code in Listing 4-3 contains ten (count ’em, ten) method calls. The
three shout method calls invoke code that’s declared right inside Listing 4-3. But
the calls to super .onCreate, setContentView, findViewById, setText, and append
invoke methods that aren’t declared in Listing 4-3. These methods are declared in

If a previous run of this activity was interrupted, the call to super.
onCreate(savedInstanceState) sets the activity back the way it was
immediately before the interruption.

Interruptions can occur when the user takes a phone call, when the user
switches to a different activity, or even when the user rotates the phone!

You might wonder why a method named onCreate contains an instruction to
execute the instructions inside a method named super .onCreate. The
onCreate and super .onCreate methods are related to one another, but
they're two different methods. For details about the use of the keyword
super, see Chapter 10.

The call to setContentView assigns a layout to the activity's screen.
To read all about layouts and how layouts are created, refer to Chapter 3.

The call to findViewById associates the name textView with a particular
component on the screen.

To read more about findViewById, see Chapter 3.

The call textView.setText("") clears the textView component of any
text that may already appear in it.

Two quotation marks with nothing between them is the empty string. This
statement puts the empty string in the textView component.

The shout("Help") call makes Java execute the instructions in the first
of the two shout declarations.

This time, the message that's added to the textView component is Help. In
addition, the shout method's body adds three exclamation points and a blank
space to the stuff in the textView component.

The shout("I'm trapped inside a smartphone") call makes Java
execute the instructions in the first of the two shout declarations again.

This time, the message that's added to the textView componentis I'm
trapped inside a smartphone.

The shout () call makes Java execute the instruction in the second of the
two shout declarations.

This time, there's no particular message — only a bunch of exclamation points.

Android’s standard API.

CHAPTER 4 An Ode to Code

REMEMBER

REMEMBER

FIGURE 4-11:

What happens,

and when.

Listing 4-3 can be deceiving. In Listing 4-3, every statement contains a method
call. But in most Java programs, many statements don’t contain method calls. The
remaining chapters have many such statements.

In a fit of pedagogical zeal, I started making a diagram to illustrate the flow of
control from statement to statement in Listing 4-3. When I finished making the
diagram, I realized that the diagram may be quite intimidating. Some pictures are
worth a thousand words, but this picture may be worth a thousand screams. Any-
way, I leave it up to you. If Figure 4-11 helps you understand what happens in
Listing 4-3, spend some time staring at the figure. But if Figure 4-11 makes you
want to give up Android app development and learn modern dance instead, ignore
Figure 4-11. You can understand Listing 4-3 without bothering about that figure.

Android programs aren’t simple. You’re in Chapter 4 and, even if you’ve read
every word up to this point, you haven’t yet read enough to understand all the
code in Listing 4-3. That’s okay. The next several chapters fill in the gaps.

I

\2
protected void onCreate (Bundle savedInstanceState) { :
I

Calling to Android
supey.onCreate (savedInstanceState) ; <- - - - === = = = = — — — — — — — L—>

setCdntentView (R.layout.activity main); <- - - - - - - - - - - - - - - =>
1
textiew = (TextView) findViewById(R.id.textView); <------- :— ->
1
textYiew.setText ("") ; €= = = = = = = = = = = & = & = & = — — — - - — - — :_ —->
1 i
shout ("Help") ; | a]
1 Q-‘
g
! -
shout ("I'm trapped inside a smartphone") ; ! S_,
1
1
Y |
shout () ; 1
1
1
Y |
} stop |
1
1
1
1
void shout (String message) { :
1
textViey.append (message); <- - — — — — — — — — — — — — | RN S E N
1
1
textView.append("!!! "); <-=-=------ /_\ —————— e e e e
} H— :
N \
1
1
. 1
L5 void shout() { X
Co> I
1
textView.append ("!!I1111M); € - oo oo oo oo oo oo :_ >
) < |

PART 2 Writing Your Own Java Programs

A CHICKEN IN EVERY DOT

If you look back at Listing 4-3, you see statements such as
textView.setText("");
and
textView.append("!!! ");
In these statements, what's the dot all about?
Java is an object-oriented programming language. When you write Java code, you deal
with things called classes and objects. | don't start describing classes and objects in detail

until Chapter 9, so at this point | have to blur the terminology. | refer to classes and
objects as object-oriented things.

In Java, every method belongs to an object-oriented thing.
That's important, so I'll type it again:

In Java, every method belongs to an object-oriented thing.
To call a method, you write

the_thing_to_which_the_method_belongs . simple_name_of_the_method
For example, in Android, each TextView component has hundreds of methods. One
of them is named setText, and another is named append. So, in Listing 4-3, the
textView variable has methods named setText and append. That's why you use a
dot to call the textView.setText and textView.append methods.

Imagine that your app's screen has two TextView components:

textView = (TextView) findViewById(R.id.textView);
textView2 = (TextView) findViewById(R.id.textView2);

To put Boo! in the first of these components, you write
textView.setText("Boo!");

To put the words Buy another copy of this book in the second of these components, you
write

textView2.setText("Buy another copy of this book");

(continued)

CHAPTER 4 115

(continued)

The first component, textView, has a setText method, and the second component,
textView2, has its own setText method.

What about the shout method in Listing 4-3? Does the shout method belong to any-
thing? It does. The enclosing code (the rest of Listing 4-3) defines an object-oriented
thing. Because the shout method's declaration is in Listing 4-3, the shout method
belongs to that object-oriented thing.

So now you want to write

the_thing_defined_in_all_of_Listing_4-3 . shout
But to do that, you have to know the name of the thing defined in all of Listing 4-3.
What's the name of the object-oriented thing that's defined in Listing 4-3? You might
think that its name isMainActivity, but the story is a bit more complicated than that.
In Chapter 9, you settle the issue by reading about classes and objects. But in this
chapter, you have to gloss over the whole concept.
Here's the quick-and-dirty (and only partly accurate) story: Inside of Listing 4-3, the thing
that Listing 4-3 defines goes by the name this. And when there's no confusion, you can
omit the word this.

You can revise these three statements in Listing 4-3:

this.shout("Help");
this.shout("I'm trapped inside a smartphone");

this.shout();

Alternatively, you can do as | did in Listing 4-3 and omit the word this.

Punctuating Your Code

In English, punctuation is vital. If you don’t believe me, ask this book’s copy
editor, who suffered through my rampant abuse of commas and semicolons in the
preparation of this manuscript. My apologies to her — I'll try harder in the next

edition.

Anyway, punctuation is also important in a Java program. This list lays out a few

of Java’s punctuation rules:

116 PART 2 Writing Your Own Java Programs

3 Enclose a class body in a pair of curly braces.

For example, in Listing 4-3, the MainActivity class's body is enclosed in curly
braces.

public class MainActivity extends AppCompatActivity {

TextView textView;

void shout() {

}

The placement of a curly brace (at the end of a line, at the start of a line, or on
a line of its own) is unimportant. The only important aspect of placement is
consistency. The consistent placement of curly braces throughout the code
REMEMBER makes the code easier for you to understand. And when you understand your
own code, you write far better code. When you compose a program, Android
Studio can automatically rearrange the code so that the placement of curly
braces (and other program elements) is consistent. To make it happen, click
the mouse anywhere inside the editor and choose Code => Reformat Code.

3 Enclose a method body in a pair of curly braces.

In Listing 4-3, the onCreate method'’s body is enclosed in curly braces, and the
bodies of the two shout methods are enclosed in curly braces.

public class MainActivity extends AppCompatActivity {

TextView textView;

@Override

protected void onCreate(Bundle savedInstanceState) {

void shout(String message) {

void shout() {

CHAPTER 4 An Ode to Code 117

» A)ava statement ends with a semicolon.

Notice the semicolons in this excerpt from Listing 4-3:

super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

textView = (TextView) findViewById(R.id.textView);
textView.setText("");

¥ A package declaration ends with a semicolon. An import declaration also
ends with a semicolon.

In Listing 4-3 each of the first four lines ends with a semicolon.

package com.allyourcode.methoddemo;

import android.support.vT7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;
3 In spite of the previous two rules, don't place a semicolon immediately
after a closing curly brace (}).
In Listing 4-3, there’s no semicolon after any of the close curly braces.

3 Use parentheses to enclose a method'’s parameters, and use commas to
separate the parameters.

Listing 4-2 has some examples:

shout("Help");

shout("I'm trapped inside a smartphone");
shout("Put down the phone and start living life", "x");
shout();

3 Use double quotation marks ("") to denote strings of characters.

The previous bullet contains four strings — namely, "Help", "I'm trapped
inside a smartphone", "Put down the phone and start living
life", and, finally, "x".

3 Use dots to separate the parts of a qualified name.

The fully qualified name of the class in Listing 4-3 is com.allyourcode.
ak4_03.MainActivity.

118 PART 2 Writing Your Own Java Programs

FIGURE 4-12:
The folders
containing a Java
program.

The setText and append methods belong to a component named textView.
So, in Listing 4-3, you write textView.setText and textView.append.

For details, refer to the earlier section “The names of classes” and the earlier
sidebar named “A chicken in every dot.”

3 Use dots within a package name.

The most blatant consequence of a package name's dots is to determine a
file's location on the hard drive. For example, because of its package name,
the code in Listing 4-3 must be in a folder named a@4_03, which must be in a
folder named allyourcode, which in turn must be in a folder named com, as
shown in Figure 4-12. Fortunately, Android Studio creates all these folders for
you and puts the code in the right place. You don't have to worry about a
thing.

v B 04_03
v [app
[3 build
libs
v sre
> androidTest
v main
v java
v com
v allyourcode
v [a04_03
L] MainActivity.java

Comments are your friends

Listing 4-4 has an enhanced version of the code in Listing 4-1. In addition to all
the keywords, identifiers, and punctuation, Listing 4-4 has text that’s meant for
human beings (like you and me) to read.

Three Kinds of Comments

/%
x Listing 4-4 in
x "Java Programming for Android Developers For Dummies, 2nd Edition"
%
x Copyright 2016 Wiley Publishing, Inc.
x All rights reserved.
*/
(continued)

CHAPTER 4 An Ode to Code 119

LISTING 4-4: (continued)

package com.allyourcode.ad4_04;

import android.support.vT7.app.AppCompatActivity;

import android.os.Bundle;

/x%

x MainActivity displays Hello World! on the screen.
%

% @author Barry Burd

* @version 1.0 Q7/07/16

*/
public class MainActivity extends AppCompatActivity {

/x%
x Called when Android creates this activity.
%
% @param savedInstanceState
%
*/
@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState); // Restores any previous state
setContentView(R.layout.activity_main); // Makes activity_main.xml be
} // the layout file

A comment is a special section of text inside a program whose purpose is to help
people understand the program. A comment is part of a good program’s
documentation.

The Java programming language has three kinds of comments:

3 Block comments: The first seven lines in Listing 4-4 form one block comment.
The comment begins with /x and ends with x/. Everything between the
opening /* and the closing */ is for human eyes only. No information about
"Java Programming for Android Developers For Dummies" orWiley
Publishing, Inc. istranslated by the compiler.

To read about compilers, see Chapter 1.

CROSS-
REFERENCE

120 PART 2 Writing Your Own Java Programs

FIGURE 4-13:
Javadoc
comments,
generated from
the code in
Listing 4-4.

Lines 2 through 6 in Listing 4-4 have extra asterisks (x). | call them extra
because these asterisks aren't required when you create a comment. They
only make the comment look pretty. | include them in the listing because, for
some reason that | don't entirely understand, most Java programmers insist
on adding these extra asterisks.

¥ Line comments: The text // Restores any previous state in Listing 4-4
is a line comment — it starts with two slashes and goes to the end of a line of
type. Once again, the compiler doesn't translate the text inside a line
comment.

In Listing 4-4, the text // Makes activity_main.xml be is asecond line
comment, and thetext // the layout fileis a third.

¥ Javadoc comments: A Javadoc comment begins with a slash and two
asterisks (/xx). Listing 4-4 has two Javadoc comments — one with the text
MainActivity displays Hello ... and another with the textCalled
when Android creates....

A Javadoc comment is a special kind of block comment: It's meant to be read
by people who never even look at the Java code.

Wait — that doesn’t make sense. How can you see the Javadoc comments in
Listing 4-4 if you never look at the listing?

Well, with a few points and clicks, you can find all the Javadoc comments in
Listing 4-4 and turn them into a nice-looking web page, as shown in
Figure 4-13.

PACKAGE TREE DEPRECATED INDEX HELP

PREVCLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
com.allyourcode.a04_04
Class MainActivity
Java.lang.Object

com allyourcode.a04_04.MainActivity

public class MainActivity
extends java.lang.Object

MainActivity displays Hello World! on the screen.

Method Summary

e

Modifier and Type Method and Description

protected void onCreate(Bundle savedInstanceState)
Called when Android creates this activity.

Methods inherited from ¢lass java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyall, tostring, wait, wait, wait

Method Detail

CHAPTER 4 An Ode to Code

121

122

©

REMEMBER

To make documentation pages for your own code, follow these steps:

1. Put Javadoc comments in your code.

2. From the main menu in Android Studio, choose Tools > Generate
JavaDoc.

As a result, a dialog box with an awkward title appears. The title is Specify
Generate JavaDoc Scope.

3. Inthe Specify Generate JavaDoc Scope dialog box, browse to select an
Output directory.

The computer puts the newly created documentation pages in that directory.
4. click OK.

As a result, the computer creates the documentation pages.

If you visit the Destination directory and double-click the new index.html file’s
icon, you see your beautiful (and informative) documentation pages.

You can find the documentation pages for Android’s built-in API classes by
visiting https: //developer .android.com/reference/packages.html. Android’s
API contains thousands of classes, so don’t memorize the names of the classes
and their methods. Instead, you simply visit these online documentation pages.

What's Barry’'s excuse?

For years, I’ve been telling my students to put all kinds of comments in their code,
and for years, I’ve been creating sample code (such as the code in Listing 4-3)
containing few comments. Why?

Three little words: “Know your audience.” When you write complicated, real-life
code, your audience consists of other programmers, information technology
managers, and people who need help deciphering what you’ve done. But when I
write simple samples of code for this book, my audience is you — the novice Java
programmer. Rather than read my comments, your best strategy is to stare at my
Java statements — the statements that Java’s compiler deciphers. That’s why I
put so few comments in this book’s listings.

Besides, I’'m a little lazy.

PART 2 Writing Your Own Java Programs

https://developer.android.com/reference/packages.html

All About Android Activities

If you look in the app/mani fests branch in Android Studio’s Project tool window,
you see an AndroidMani fest.xml file. The file isn’t written in Java; it’s written in
XML. I don’t write much about XML files in this book. Still, I have to write some-
thing about an app’s mani fest file.

Listing 4-5 contains some code from an AndroidMani fest.xml file to accompany
Listing 4-1. With minor tweaks, this same code could accompany almost any
example in this book.

The activity Element in an AndroidManifest.xml File

<activity android:name=".MainActivity">

<intent-filter»

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter»

</activity»

For a quick introduction to the niceties of XML code, refer to Chapter 3.

CROSS- Here’s what the code in Listing 4-5 “says” to your Android device:

REFERENCE

»

»

The code’s action element indicates that the activity that's set forth in
Listing 4-1 (the MainActivity class) is MAIN.

Being MAIN means that the program in Listing 4-1 is the starting point of an
app's execution. When a user launches the app described in Listing 4-1, the
Android device reaches inside the Listing 4-1 code and executes the code’s
onCreate method. In addition, the device executes several other methods
that don't appear in Listing 4-1.

The code’s category element adds an icon to the device’s Application
Launcher screen.

On most Android devices, the user sees the Home screen. Then, by touching
one element or another on the Home screen, the user gets to see the
Launcher screen, which contains several apps’ icons. By scrolling this screen,
the user can find an appropriate app's icon. When the user taps the icon, the
app starts running.

In Listing 4-5, the category element’s LAUNCHER value makes an icon for
running the MainActivity class available on the device's Launcher screen.

CHAPTER 4 An Ode to Code

123

124

REMEMBER

So there you have it. With the proper secret sauce (namely, the action and
category elements in the AndroidManifest.xml file), an Android activity’s
onCreate method becomes an app’s starting point of execution.

Extending a class

In Listing 4-1, and in other listings throughout this book, the words extends and
@0Override tell an important story — a story that applies to all Java programs, not
only to Android apps.

Most of this book’s examples contain the lines
import android.support.vT.app.AppCompatActivity;
public class MainActivity extends AppCompatActivity {

When you extend the android.support.v7.app.AppCompatActivity class, you
create a new kind of Android activity. In Listing 4-1, and in so many other listings,
the words extends AppCompatActivity tells Java that aMainActivity is, in fact,
an example of an Android AppCompatActivity. That’s good because an AppCompat
Activity is a certain kind of Android activity. The folks at Google have already
written thousands of lines of Java code to describe what an Android AppCompat
Activity can do. Being an example of an AppCompatActivity in Android means
that you can take advantage of all the AppCompatActivity class’s prewritten code.

When you extend an existing Java class (such as the AppCompatActivity class),
you create a new class with the existing class’s functionality. For details of this
important concept, see Chapter 10.

Overriding methods

In Listing 4-1, and in many other listings, a MainActivity is a kind of Android
AppCompatActivity. So a MainActivity is automatically a screenful of compo-
nents with lots and lots of handy, prewritten code.

Of course, in some apps, you might not want all that prewritten code. After all,
being a Republican or a Democrat doesn’t mean believing everything in your
party’s platform. You can start by borrowing most of the platform’s principles
but then pick and choose among the remaining principles. In the same way, the
code in Listing 4-1 declares itself to be an Android AppCompatActivity, but then
overrides one of the AppCompatActivity class’s existing methods.

PART 2 Writing Your Own Java Programs

FIGURE 4-14:

| don't like the
prewritten
onCreate
method.

CROSS-
REFERENCE

If you bothered to look at the code for Android’s built-in AppCompatActivity
class, you’d see the declaration of an onCreate method. In Listing 4-1, the word
@0verride indicates that the listing’s MainActivity doesn’t use the AppCompat
Activity class’s prewritten onCreate method. Instead, the MainActivity contains
a declaration for its own onCreate method, as shown in Figure 4-14.

Activity

onCreate(Bundle : savedInstanceState)
onStart()

onResume()

onPause()

onStop()

onDestroy()

MainActivity

onGreate{Bundle—savedinstanceState} oncCreate(Bundle : savedinstancestate)
onStart()
onResume()

onPause()
onStop()
onDestroy()

In particular, Listing 4-1's onCreate method calls setContentView(R.layout.
activity_main), which displays the material described in the res/layout/
activity_main.xml file. The AppCompatActivity class’s built-in onCreate
method doesn’t do those things.

For an introduction to the res/layout/activity_main.xml file, see Chapter 3.

An activity’'s workhorse methods

Every Android activity has a lifecycle — a set of stages that the activity undergoes
from birth to death to rebirth, and so on. In particular, when your Android device
launches an activity, the device calls the activity’s onCreate method. The device
also calls the activity’s onStart and onResume methods. See Figure 4-15.

CHAPTER 4 An Ode to Code 125

In most of this book’s listings, I choose to declare my own onCreate method, but
I don’t bother declaring my own onStart and onResume methods. Rather than
override the onStart and onResume methods, I silently use the AppCompat
Activity class’s prewritten onStart and onResume methods.

@ To find out why you’d choose to override onResume, see Chapter 14.

CROSS-
REFERENCE ACthlty
starts
onCreate()
User navigates
back to the

activity onStart() onRestart()

- onResume()

Process is
< killed >
Activity is
running
The activity
comes to the
Another activity comes foreground
in front of the activity
Y The activity
Other applications comes to the
need memory onPause) foreground
The activity is no longer visible)
onStop()
onDestroy()
FIGURE 4-15:

The life, death, Activity is
and rebirth of an shut doywn
Android activity.

126 PART 2 Writing Your Own Java Programs

When an Android device ends an activity’s run, the device calls three additional
methods: the activity’s onPause, onStop, and onDestroy methods. So, one com-
plete sweep of your activity, from birth to death, involves the run of at least six
methods: onCreate, then onStart, and then onResume, and later onPause, and
then onStop, and, finally, onDestroy. As it is with all life forms, “ashes to ashes,
dust to dust.”

Don’t despair. For an Android activity, reincarnation is a common phenomenon.
For example, if you’re running several apps at a time, the device might run low on
memory. In this case, Android can kill some running activities. As the device’s
user, you have no idea that any activities have been destroyed. When you navigate
back to a killed activity, Android re-creates the activity for you and you’re none
the wiser. A call to super.onCreate(savedInstanceState) helps bring things
back to the way they were before Android destroyed the activity.

Here’s another surprising fact. When you turn a phone from Portrait mode to
Landscape mode, the phone destroys the current activity (the activity that’s in
Portrait mode) and re-creates that same activity in Landscape mode. The phone
calls all six of the activity’s lifecycle methods (onPause, onStop, and so on) in
order to turn the activity’s display sideways. It’s similar to starting on the trans-
porter deck of the Enterprise and being a different person after being beamed down
to the planet (except that you act like yourself and think like yourself, so no one
knows that you’re a completely different person).

Indeed, methods like onCreate in this book’s examples are the workhorses of
Android development.

CHAPTER 4 An Ode to Code 127

IN THIS CHAPTER

» Assigning values to things

» Making things store certain types
of values

» Applying operators to get new
values

Chapter 5
Java's Building Blocks

've driven cars in many cities, and I’m ready to present my candid reviews:

¥ Driving in New York City is a one-sided endeavor. A New York City driver
avoids hitting another car but doesn't avoid being hit by another car. In the
same way, New York pedestrians do nothing to avoid being hit. Racing into the
path of an oncoming vehicle is commonplace. Anyone who doesn't behave
this way is either a New Jersey driver or a tourist from the Midwest. In
New York City, safety depends entirely on the car that's moving toward a
potential target.

¥ Adriver in certain parts of California will stop on a dime for a pedestrian who's
about to jaywalk. Some drivers stop even before the pedestrian is aware of
any intention to jaywalk.

¥ Boston's streets are curvy and irregular, and accurate street signs are rare.
Road maps are outdated because of construction and other contingencies. So
driving in Boston is highly problematic. You can't find your way around Boston
unless you already know your way around Boston, and you don’t know your
way around Boston unless you've already driven around Boston. Needless to
say, | can't drive in Boston.

¥ London is quite crowded, but the drivers are polite (to foreigners, at least).
Several years ago, | caused three car accidents in one week on the streets of
London. And after each accident, the driver of the other car apologized to me!

CHAPTER 5 Java's Building Blocks 129

I was particularly touched when a London cabby expressed regret that an accident
(admittedly, my fault) might stain his driving record. Apparently, the rules for
London cabbies are quite strict.

This brings me to the subject of the level of training required to drive a taxicab in
London. The cabbies start their careers by memorizing the London street map.
The map has over 25,000 streets, and the layout has no built-in clues. Rectangular
grids aren’t the norm, and numbered streets are quite uncommon. Learning all
the street names takes several years, and the cabbies must pass a test in order to
become certified drivers.

This incredibly circuitous discussion about drivers, streets, and my tendency to
cause accidents leads me to the major point of this section: Java’s built-in types
are easy to learn. In contrast to London’s 25,000 streets, and the periodic table’s
100-some elements, Java has only eight built-in types. They’re Java’s primitive
types, and this chapter describes them all.

Info Is As Info Does

FIGURE 5-1:

An extreme
close-up of eight
black-and-white
screen pixels.

Reality! To Sancho, an inn; to Don Quixote, a castle; to someone else,

whatever!
— MIGUEL DE CERVANTES, AS UPDATED FOR “MAN OF LA MANCHA”

When you think a computer or some other kind of processor is storing the letter J,
the processor is, in reality, storing 01001010. For the letter K, the processor stores
01001011. Everything inside the processor is a sequence of 0s and 1s. As every
computer geek knows, a 0 or 1 is a bit.

As it turns out, the sequence 01001010, which stands for the letter J, can also stand
for the number 74. The same sequence can also stand for 1.0369608636003646 x
1043, In fact, if the bits are interpreted as screen pixels, the same sequence can be
used to represent the dots shown in Figure 5-1. The meaning of 01001010 depends
on the way the software interprets this sequence of 0s and 1s.

000060 e

130 PART 2 Writing Your Own Java Programs

So how do you tell Java what 01001010 stands for? The answer is in the concept
of type.

The type of a variable is the range of values that the variable is permitted to store.
Listing 5-1 illustrates this idea.

m Goofing Around with Java Types

CROSS-
REFERENCE

package com.allmycode.a@d5_01;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main)

int anlnteger = 74;
char aCharacter = 74;

System.out.println(anInteger);
System.out.println(aCharacter);

You can download the Android Studio project for Listing 5-1, or you can create it
yourself from scratch. To find out how to download the project — as well as how
to open the project in Android Studio — see Chapter 2. For info on creating the
project from scratch, see Chapter 3.

When you run the code in Listing 5-1, you don’t see anything interesting on the
emulator screen. But if you scroll around in Android Studio’s Logcat pane, you see
two interesting lines: one containing the text I/System.out: 74 and another con-
taining the text I/System.out: J. (Refer to Figure 5-2.)

In Java, System.out.println is the name of a method. The System.out.println
method tells your development computer to display something in Android Stu-
dio’s Logcat pane. Someone holding an Android device (a phone, a tablet, a watch,
or whatever) doesn’t see the stuff in Android Studio’s Logcat pane, so this output
isn’t useful in a finished app. But the output can be useful while you’re developing
a new app to help you see how well the app is running.

CHAPTER 5 Java's Building Blocks 131

FIGURE 5-2:
Some output

from the code in

132

Listing 5-1.

(= =)
T
TECHNICAL
STUFF

CROSS-
REFERENCE

A\

WARNING

Android Monitor
Emulator Nexus_5X_API_23_x86 Android 6.0, AP 23 a com.allmycode.a05_01 (12428

Yuitors —* Verbose a Q- Re

LLiJ£i90s £0% LLWL0=1£%£0] CUINT o LUy CUUE: @UJ_UL W/ JySLENE ClaSS00ausr TETErer

[8
s
3
i
o
-
=]
n
~
r
S
n
@
=
=
N
i
]
@
i
N
i
]
@
~
o
=1
H
o
e,
=
5
=
a
o
a
o
o
S
O
e
-
=
u
3
I
5
o
3
o
c
a
-
rs

e 07—]9 1]:52:4@.624 12428—12593/c0m.aLLmycode.aGS_1 D/OpenGLRenderer Use EGL_SWA
o @7-19 11:52:40.717 12428-12503/com.allmycode.a@5_@T
@7-19 11:52:41.468 12428-12583/com.allmycode.a@5_@1 D/fgralloc_ranchu: Emulator wi
@7-19 11:58:52.117 12428-12434/com.allmycode.a@d5_01 W/art: Suspending all threadq

The words System.out.println tell Java to display something in a text-only
pane. In Android Studio, this text-only pane happens to be the Logcat pane, but in
other situations, your text-only pane might be something different. For example,
if a Java program is meant to run on a desktop or laptop computer, the text-only
pane might be the command prompt in Windows or the Terminal application on
a Mac.

To read about Android Studio’s Logcat pane, check out Chapter 2.

If you visit https://source.android.com/source/code-style.html, you find
guidelines describing the kind of code that can and cannot be published on Google
Play. The guidelines specifically prohibit the use of System.out.println in any
code that’s distributed on the store. So, for professional Android developers, the
code in Listing 5-1 is an anathema. If you show Listing 5-1 on a PowerPoint slide
at an Android developers’ conference, you’ll be booed off the stage. But System.
out.println is part of Java’s API. And apps that can sell on Google Play aren’t
necessarily the best learning tools. In this chapter, System.out.println allows
me to describe certain ideas about Java types — ideas that would be hopelessly
muddled if I stuck to Google’s guidelines. So bear with me and examine the
System.out.println examples in this chapter. When you finish this chapter, you
can rip out the chapter’s pages and burn them, if you like. Just remember to read
the guidelines mentioned above (yes, available at https: //source.android.com/
source/code-style.html) and never use System.out.println in code that you
publish on Google Play.

In Figure 5-2, Java interprets 01001010 two different ways. On one line, Java inter-
prets 01001010 as a whole number. And on the next line, Java interprets the same
01001010 bits as the representation of the character J. The difference stems from
the two type declarations in Listing 5-1:

int anlnteger = 74;

char aCharacter = 74;

Each of these declarations consists of three parts: a variable name, a type name,
and an initialization. The next few sections describe these parts.

PART 2 Writing Your Own Java Programs

https://source.android.com/source/code-style.html
https://source.android.com/source/code-style.html
https://source.android.com/source/code-style.html

TIP

CROSS-
REFERENCE

Variable names

The identifiers anInteger and aCharacter in Listing 5-1 are variable names, or
simply variables. A variable name is a nickname for a value (like the value 74).

I made up both variable names for the example in Listing 5-1, and I intentionally
made up informative variable names. Instead of anInteger and aCharacter in
Listing 5-1, I could have chosen flower and goose. But I use anInteger and
aCharacter because informative names help other people read and understand
my code. (In fact, informative names help me read and understand my own code!)

Like most of the names in a Java program, variable names can’t have blank spaces.
The only allowable punctuation symbol is the underscore character (_). Finally,
you can’t start a variable’s name with a digit. For example, you can name your
variable close2Call, but you can’t name it 2Close2Call.

If you want to look like a seasoned Java programmer, start every variable name
with a lowercase letter and use uppercase letters to separate words within the
name. For example, numberOfBunnies starts with a lowercase letter and separates
words by using the uppercase letters O and B. This mixing of upper- and lowercase
letters is called camel case because of its resemblance to a camel’s humps.

Experienced Android programmers begin many variable names with the lower-
case letter m. For more info on that, refer to Chapter 9.

Type names

In Listing 5-1, the words int and char are type names. The word int (in the first
type declaration) tells Java to interpret whatever value anInteger has as a “whole
number” value (a value with no digits to the right of the decimal point). And the
word char (in the second type declaration) tells Java to interpret whatever value
aCharacter has as a character value (a letter, a punctuation symbol, or maybe
even a single digit). So in Listing 5-1, the line

System.out.println(anlnteger);

tells Android to display the value of anInteger, and Android displays the number 74.
(Refer to Figure 5-2.) And then the line

System.out.println(aCharacter);

tells Android to display the value of aCharacter, and Android displays the letter J.

CHAPTER 5 Java's Building Blocks 133

134

REMEMBER

In Listing 5-1, the words int and char tell Java what types my variable names
have. The names anInteger and aCharacter remind me, the programmer, what
kinds of values these variables have, but the names anInteger and aCharacter
provide no type information to Java. The declarations int rocky = 74 and char
bullwinkle = 74 would be fine, as long as I used the variable names rocky and
bullwinkle consistently throughout Listing 5-1.

Assignments and initializations

Both type declarations in Listing 5-1 end with an initialization. As the name
suggests, an initialization sets a variable to its initial value. In both declarations,
I initialize the variable to the value 74.

You can create a type declaration without an initialization. For example, I can turn
two of the lines in Listing 5-1 into four lines:

int anlnteger;
char aCharacter;
anlnteger = 74;

aCharacter = 74;

A line like

int anlnteger;

is a declaration without an initialization. A line like

anlnteger = 74;

is called an assignment. An assignment changes a variable’s value. An assignment
isn’t part of a type declaration. Instead, an assignment is separate from its type
declaration (maybe many lines after the type declaration).

You can initialize a variable with one value and then, in an assignment statement,
change the variable’s value.

int year = 2008;

System.out.println(year);

System.out.println("Global financial crisis");

year = 2009;

System.out.println(year);

System.out.println("Obama sworn in as US president");
year = 2010;

System.out.println(year);

System.out.printin("0il spill in the Gulf of Mexico");

PART 2 Writing Your Own Java Programs

CROSS-
REFERENCE

Sometimes, you need a name for a value that doesn’t change during the program’s
run. In such situations, the keyword final signals a variable whose value can’t be
reassigned.

final int NUMBER_OF_PLANETS = 9;

A final variable is a variable whose value doesn’t vary. (As far as I know, no one
has ever seriously suggested calling these things invariables.)

You can initialize a final variable’s value, but after the initialization, you can’t
change the variable’s value with an assignment statement. In other words, after
you declare final int NUMBER_OF_PLANETS = 9, this assignment statement isn’t
legal:

NUMBER_OF_PLANETS = 8;

If Pluto is no longer a planet, you can’t accommodate the change without chang-
ing the 9 in the final int NUMBER_OF_PLANETS = 9 declaration.

In Java, the word final is one of Java’s modifiers. A modifier is like an adjective in
English. A modifier causes a slight change in the meaning of a declaration. For
example, in this section, the word final modifies the NUMBER_OF _PLANETS decla-
ration, making the value of NUMBER_OF _PLANETS unchangeable.

For more information about Java’s modifiers, see Chapters 9 and 10.

You use final variables, as a rule, to give friendly names to values that never (or
rarely) change. For example, in a Java program, 6 . 626068e-34 stands for 6.626068 x
10734, which is the same as this:

0. 00000000000AVVAVAVVVAVVAVAAVVAVE626068

In a quantum physics application, you probably don’t want to retype the number
6.626068e-34 several times in your code. (You can type the number wrong or
even make a mistake when you copy-and-paste.) To keep errors from creeping
into your code, you declare

final double PLANCK_CONSTANT = 6.626068e-34;

From that point on, rather than type 6.626068e-34 multiple times in your code,
you can type only the name PLANCK_CONSTANT when needed.

CHAPTER 5 Java's Building Blocks 135

136

TECHNICAL
STUFF

REMEMBER

You can use lowercase letters in any variable, including final variables. But Java
programmers seldom write code this way. To keep from looking like a complete
newbie, use only uppercase letters and digits in a final variable’s name. Use
underscores to separate words.

A loophole in the Java language specification allows you, under certain circum-
stances, to use an assignment statement to give a variable its initial value. For a
variable, such as amount, declared inside of a method’s body, you can write final
int amount; on one line and then write amount = ©; on another line. Want my
advice? Ignore this loophole. Don’t even read this Technical Stuff icon!

Expressions and literals

In a Java program, an expression is a bunch of text that has a value. In Listing 5-1
each occurrence of 74 is an expression, each occurrence of anInteger is an expres-
sion, and each occurrence of aCharacter is an expression. Listing 5-1 is unusual in
that all six of these expressions have the same value, namely, the numeric value 74.

If I use the name anInteger in ten different places in my Java program, then
I have ten expressions, and each expression has a value. If I decide to type
anInteger + 17 somewhere in my program, then anInteger + 17 is an expres-
sion because anInteger + 17 has a value.

A literal is a kind of expression whose value doesn’t change from one Java program
to another. For example, the expression 74 means “the numeric value 74” in every
Java program. Likewise, the expression 'J' means “the tenth uppercase letter in
the Roman alphabet” in every Java program, and the word true means “the oppo-
site of false” in every Java program. The expressions true, 74, and 'J' are
literals. Similarly, the text "Global financial crisis" isaliteral because, in any
Java program, the text "Global financial crisis" stands for the same three
words.

In Java, single quotation marks stand for a character. You can change the second
declaration in Listing 5-1 this way:

char aCharacter = 'J';

With this change, the program’s run doesn’t change. The second I/System.out
line in Figure 5-2 still contains the letter J.

In Java, a char value is a number in disguise. In Listing 5-1, you get the same
result if the second type declaration is char aCharacter = 'J'.You can even do
arithmetic with char values. For example, in Listing 5-1, if you change the second
declaration to char aCharacter = 'J' + 2, you get the letter L.

PART 2 Writing Your Own Java Programs

THE 01000001 01000010 01000011S

What does 01001010 have to do with the number 74 or with the letter J?

The answer for 74 involves the binary number representation. The familiar base-10
(decimal) system has a 1s column, a 10s column, a 100s column, a 1000s column, and
so on. But the base-2 (binary) system has a 1s column, a 2s column, a 4s column, an

8s column, and so on. The figure shows how you get 74 from 01001010 using the binary
column values.

The connection between 01001010 and the letter J might seem more arbitrary. In
the early 1960s, a group of professionals devised the American Standard Code for
Information Interchange (ASCI). In the ASCII representation, each character takes
up 8 bits. You can see the representations for some of the characters in the sidebar
table. For example, our friend 01001010 (which, as a binary number, stands for 74)
is also the way Java stores the letter J. The decision to make A be 01000001 and to
make J be 01001010 has roots in the 20th century’s typographic hardware. (To
read all about this, visit http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.96.678.)

In the late 1980s, as modern communications led to increasing globalization, a group of
experts began work on an enhanced code with up to 32 bits for each character. The
lower 8 Unicode bits have the same meanings as in the ASCII code, but with so many
more bits, the Unicode standard has room for languages other than English. A Java
char value is a 16-bit Unicode number, which means that, depending on the way you
interpret it, a char is either a number between 0 and 65535 or a character in one of the
many Unicode languages.

In fact, you can use non-English characters for identifiers in a Java program. The sidebar
figure shows an Android program with identifiers in Yiddish.

(continued)

CHAPTER 5 137

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.678
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.678

(continued)

package com.allmycode.yiddish;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

@0override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);

int o = 1;

int miy = 2;

int "7 = D1N + iy
System.out.print("wovwy : ");
System.out.println('T);

}
¥

Bits When When Bits When When

Interpreted | Interpreted Interpreted | Interpreted

As an int As a char As an int As a char
00100000 | 32 space 00111111 | 63 ?
00100001 | 33 1 01000000 | 64 @
00100010 | 34 g 01000001 | 65 A
00100011 | 35 # 01000010 | 66 B
00100100 | 36 $ 01000011 | 67 C
00100101 | 37 %
00100110 | 38 &
00100111 | 39 U etc. etc. etc.
00101000 | 40 (01011000 | 88 X
00101001 | 41) 01011001 | 89 Y
00101010 | 42 * 01011010 | 90 A
00101011 | 43 1t 01011011 | 91 [

138 PART 2 Writing Your Own Java Programs

Bits When When Bits When When
Interpreted | Interpreted Interpreted | Interpreted
As an int As a char As an int As a char
00101100 | 44 , 01011100 | 92 \
00101101 | 45 = 01011101 | 93]
00101110 | 46 . 01011110 | 94 A
00101111 | 47 / 01011111 | 95 _
00110000 | 48) 01100000 | 96 >
00110001 | 49 1 01100001 | 97 a
00110010 | 50 2 01100010 | 98 b
00110011 | 51 3 01100011 | 99 c
00110100 | 52 4
00110101 | 53 5
00110110 | 54 6 etc. etc. etc.
00110111 | 55 7 01111000 | 120 X
00111000 | 56 8 01111001 | 121 y
00111001 | 57 9 01111010 | 122 z
00111010 | 58 g 01111011 | 123 {
00111011 | 59 g 01111100 | 124 |
00111100 | 60 < 01111101 | 125 1
00111101 | 61 = 01111110 | 126 ~
00111110 | 62 > 01111111 | 127 Delete

How to string characters together

In Java, a single character isn’t the same as a string of characters. Compare the
character 'J' with the string "Bullwinkle J. Moose". A character literal has
single quotation marks; a string literal has double quotation marks.

CHAPTER 5 139

140

CROSS-
REFERENCE

LD,
TECHNICAL
STUFF

In Java, a string of characters may contain more than one character, but a string
of characters doesn’t necessarily contain more than one character. (Surprise!) You
can write

char aCharacter = 'J';

because a character literal has single quotation marks. And because String is one
of Java’s types, you can also write

String myFirstName = "Barry";

initializing the String variable myFirstName with the String literal "Barry".
Even though "A" contains only one letter, you can write

String myMiddleInitial = "A";
because "A", with its double quotation marks, is a String literal.

But in Java, a single character isn’t the same as a one-character string, so you
can’t write

//Don't do this:
char thelastlLetter = "Z";

Even though it contains only one character, the expression "Z" is a String value,
so you can’t initialize a char variable with the expression "Z".

Java's primitive types

Java has two kinds of types: primitive and reference. Primitive types are the
atoms — the basic building blocks. In contrast, reference types are the things you
create by combining primitive types (and by combining other reference types).

This chapter covers (mostly) Java’s primitive types. Chapter 9 introduces Java’s
reference types.

Throughout this chapter, I give some attention to Java’s String type. The String
type in reality belongs in Chapter 9 because Java’s String type is a reference type,
not a primitive type. But I can’t wait until Chapter 9 to use strings of characters in
my examples. So consider this chapter’s String material to be an informal (but
useful) preview of Java’s String type.

Table 5-1 describes all eight primitive Java types.

PART 2 Writing Your Own Java Programs

TABLE 5-1 Java’s Primitive Types
Type Name What a Literal Looks Like Range of Values
Integral types
byte (byte)42 -1281t0 127
short (short)42 -32768 to 32767
int 42 -2147483648 to 2147483647
long 421 -9223372036854775808 to
9223372036854775807

Character type (which is, technically, an Integral type)

char A’ Thousands of characters, glyphs,
and symbols

Floating-point types

float 42 .0F -3.4x10®1t03.4x 1038

double 42.0 or@.31415%1 -1.8x10%% t0 1.8 x 1038

Logical type

boolean true true, false

You can divide Java’s primitive types into three categories:

¥ Integral

The integral types represent whole numbers — numbers with no digits to the
right of the decimal point. For example, the number 42 in a Java program
represents the int value 42, as in 42 cents or 42 clowns or 42 eggs. A family
can't possibly have 2.5 children, so an int variable is a good place to store the
number of kids in a particular family.

The thing that distinguishes one integral type from another is the range of
values you can represent with each type. For example, a variable of type int
represents a number from -2147483648 to +2147483647.

When you need a number with no digits to the right of the decimal point, you
can almost always use the int type. Java's byte, short, and long types are
reserved for special range needs (and for finicky programmers).

CHAPTER 5 Java's Building Blocks 141

3 Floating-point

The floating-point types represent numbers with digits to the right of the
decimal point, even if those digits are all zeroes. For example, an old wooden
measuring stick might be 1.001 meters long, and a precise measuring stick
might be 1.000 meters long.

The double type has a much larger range than the float type and is much
more accurate.

In spite of their names, Java programmers almost always use double rather
than float, and when you write an ordinary literal (such as 42.0), that literal
is a double value. (On the off chance that you want to create a float value,
write 42.0F.)

¥ Logical

Aboolean variable has one of two values: true or false. You can assign 74
to an int variable, and you can assign true (for example) to a boolean
variable:

int numberOfPopsicles;
boolean arelLemonFlavored;
numberOfPopsicles = 22;

arelLemonFlavored = true;

You can do arithmetic with numeric values, and you can do a kind of “arithme-
tic” with boolean values. For more information, see the next section.

Things You Can Do with Types

142

You can do arithmetic with Java’s operators. The most commonly used arithmetic
operators are + (addition), — (subtraction), * (multiplication), / (division), and %
(remainder upon division).

3 When you use an arithmetic operator to combine two int values, the
result is another int value.

For example, the value of 4 + 15is 19. The value of14 / 5is 2 (because 5
“goes into” 14 two times, and even though the remainder is bigger than %2,

the remainder is omitted). The value of 14 % 5 is 4 (because 14 divided by
5 leaves a remainder of 4).

The same kinds of rules apply to the other integral types. For example, when
you add a long value to a long value, you get another long value.

PART 2 Writing Your Own Java Programs

3 When you use an arithmetic operator to combine two double values, the
result is another double value.

For example, the value of 4.0 + 15.0is 19.0. The value of 14.0 / 5.0is 2.8.

The same kind of rule applies to float values. For example, a float value
plus a float value is another float value.

3 When you use an arithmetic operator to combine an int value with a
double value, the result is another double value.

Java widens the int value in order to combine it with the double value. For
example, 4 + 15.0isthesameas4.0 + 15.0, whichis 19.0.And14 / 5.0
isthesame as14.0 / 5.0, whichis 2.8.

This widening also happens when you combine two different kinds of integral
values or two different kinds of floating-point values. For example, the
number 9000000000000000000 is too large to be an int value, so

9000000000000000000L + 1
is the same as

0000000000000000000L + 1L
which is

9000000000000V L

Two other popular operators are increment ++ and decrement —. The most com-
mon use of the increment and decrement operators looks like this:

W=
But you can also place the operators before the variables:

+HX;

-y

Placing the operator after the variable is called postincrementing (or postdecrement-
ing). Placing the operator before the variable is called preincrementing (or
predecrementing).

Both forms (before and after the variable) have the same effect on the variable’s
value; namely, the increment ++ operator always adds 1 to the value, and the
decrement —- operator always subtracts 1 from the value. The only difference is
what happens if you dare to display (or otherwise examine) the value of something
like x++. Figure 5-3 illustrates this unsettling idea.

CHAPTER 5 Java's Building Blocks 143

FIGURE 5-3:
Preincrement and
postincrement.

Q

TIP

(= =)

T
TECHNICAL

STUFF

@Override
protected void onCreate (Bundle savedInstanceState)

Displays 11 because the value of ++x
is the same as the value of x+1

{

super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;

int x = 10;

System.out.println (++x); Displays 11 because ++x (in the

/ previous statement) added 1 to x
System.out.println(x) ;

Displays 11 (SURPRISE!) because the value
of x++ is the same as the value of x

System.out.println(x) ;
} \ Displays 12 (SURPRISE!) because x++ (in

the previous statement) added 1to x

System.out.println (x++) ;

In practice, if you remember only that x++ adds 1 to the value of x, you’re usually
okay.

The curious behavior shown in Figure 5-3 was inspired by assembly languages of
the 1970s. These languages have instructions that perform increment and decre-
ment operations on a processor’s internal registers.

Add letters to numbers (Huh?)

You can add String values and char values to other elements and to each other.
Listing 5-2 has some examples.

m Java's Versatile Plus Sign

package com.allmycode.ad5_02;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R.layout.activity_main)

144 PART 2 Writing Your Own Java Programs

REMEMBER

FIGURE 5-4:
A run of the code
in Listing 5-2.

int x = 74;
System.out.printin("Hello, " + "world!");
System.out.println("The value of x is " +x + ".");
System.out.printin("The second letter of the alphabet is " + 'B' + ".");
System.out.printin("The fifth prime number is " + 11 + '.');
System.out.println

("The sum of 18 and 21 is " + 18 + 21 + ". Oops! That's wrong.");
System.out.println

("The sum of 18 and 21 is " + (18 + 21) + ". That's better.");

The String type more appropriately belongs in Chapter 9 because Java’s String
type isn’t a primitive type. Even so, I start covering the String type in this
chapter.

When you run the code in Listing 5-2, you see the output shown in Figure 5-4.

ifi logcat | Monitors -+ Verbose d Q- Regex Show only selected applicatio

U/=1Y LZ138117.88Z J1ZuB-31284/CoM.aLImyCoae. ava_vZ W/SysTem: LlassLoader reTerenced UNKNown patn: /oata/app/com.aLunycose.ae
@7-19 12:34:18.168 31288-31288/com.allmycode.ad5_02 W/art: Before Android 4.1, method android.graphics.PorterDuffColorFilter
@7-19 12:34:18.266 31288-31288/com.allmycode.a®d5_02 I/System.out: Hello, world!

@7-19 12:34:18.266 31288-31288/com.allmycode.al5_02 I/System.out: The value of x is 74.

@7-19 12:34:18.266 31288-31288/com.allmycoede.ad5_02 I/System.out: The second letter of the alphabet is B.

@7-19 12:34:18.266 31288-31288/com.allmycode.al5_02 I/System.out: The fifth prime number is 11.

@7-19 12:34:18.266 31288-31288/com.allmycode.al5_02 I/System.out: The sum of 18 and 21 is 1821. Oops! That's wrong.

_02 I/System.out: The sum of 18 and 21 is 39. That's better.

=

7= ©7-19 12:34:18.266 31288-31288/com.allmycode.ad5_o2
P g7-10 12:34:18.208 31288-31432/com.allmycode.ad5_02 D/OpenGLRenderer: Use EGL_SWAP_BEHAVIOR_PRESERVED: true
I/0penGLRenderer: Initialized EGL, version 1.4

51 87-19 12:34:18.341 31288-31432/com.allmycode.a@5_g2
... @7-19 12:34:19.028 31288-31432/com.allmycode.a@5_02 D/gralloc_ranchu: Emulater without host-side GPU emulation detected.

Here’s what’s happening in Figure 5-4:
3 When you use the plus sign to combine two strings, it stands for string
concatenation.

String concatenation is a fancy name for what happens when you display one
string immediately after another. In Listing 5-2, the act of concatenating
"Hello, " and"world!" yields the string

"Hello, world!"

3 When you add a string to a number, Java turns the number into a string
and concatenates the strings.

In Listing 5-2, the x variable is initialized to 74. The code displays "The value
of x is " + x(astring plus an int variable). When adding the string "The
value of x is " tothe number 74, Java turns the int 74 into the string "74".

CHAPTER 5 Java's Building Blocks 145

146

LD,
TECHNICAL
STUFF

»

»

So "The value of x is " + x becomes "The value of x is " + "74",
which (after string concatenation) becomes "The value of x is T4".

This automatic conversion of a number into a string is handy whenever you
want to display a brief explanation along with a numeric value.

Java's internal representation of the number 74 is 00000000000000000000000
001001010 (with 1 in the 64s place, 1 in the 8s place, and 1 in the 2s place). In
contrast, Java's internal representation of the string " 74" is 000000000011011
10000000000110100. (For some clues to help you understand why these bits
represent the "74" string, see the table accompanying this chapter’s earlier
sidebar, “The 01000001 01000010 01000011s."”) The bottom line, as far as Java
is concerned, is that the number 74 and the string " 74" aren't the same.

When you add a string to any other kind of value, Java turns the other
value into a string and concatenates the strings.

The third System.out .println call in Listing 5-2 adds the char value 'B'
to a string. The result, as you can see in Figure 5-4, is a string containing the
letter B.

The order in which Java performs operations can affect the outcome.

The last two System.out . println calls in Listing 5-2 illustrate this point. In
the next-to-last call, Java works from left to right. Java starts by combining
"The sum of 18 and 21 is " with18, getting "The sum of 18 and

21 is 18".Then, working its way rightward, Java combines "The sum of
18 and 21 is 18" with 21 getting the screwy string "The sum of 18 and
21 is 1821".

In the last System.out .println call, | fix these problems by grouping 18 and
21 in parentheses. As a result, Java starts by adding 18 and 21 to get 39. Then
Java combines "The sum of 18 and 21 is " with 39, getting the more
sensible string "The sum of 18 and 21 is 39".

Java's exotic assighment operators

In a Java program, you can add 2 to a variable with a statement like this:

numberOfCows = numberOfCows + 2;

To a seasoned Java developer, a statement of this kind is horribly gauche. You
might as well wear white after Labor Day or talk seriously about a “nucular”
reactor. Why?

PART 2 Writing Your Own Java Programs

(=3
S
TECHNICAL
STUFF

Because Java has a fancy compound assignment operator that performs the same
task in a more concise way. The statement

numberOfCows += 2;

adds 2 to numberOfCows and lets you easily recognize the programmer’s intention.
For a silly example, imagine having several similarly named variables in the same
program:

int numberOfCows;

int numberOfCrows;
int numberOfCries;
int numberOfCrays;

int numberOfGrays;

Then the statement

numberOfCrows += 2;

doesn’t force you to check both sides of an assignment. Instead, the += operator
makes the statement’s intent crystal-clear.

Java’s other compound assignment operators include -=, x=, /=, %=, and others.
For example, to multiply numberOfCows by numberOfDays, you can write

numberOfCows = numberOfDays;

A compound assignment, like numberOfCrows += 2, might take a tiny bit less time
to execute than the cruder numberOfCows = numberOfCows + 2. But the main
reason for using a compound assignment statement is to make the program easier
for other developers to read and understand. The savings in computing time, if
any, is usually minimal.

True bit

A boolean value is either true or false. Those are only two possible values,
compared with the thousands of values an int variable can have. But these two
values are quite powerful. (When someone says “You’ve won the lottery” or “Your
shoe is untied,” you probably care whether these statements are true or false.
Don’t you?)

When you compare things with one another, the result is a boolean value. For
example, the statement

System.out.printin(3 > 2);

CHAPTER 5 Java's Building Blocks 147

148

©

REMEMBER

&

CROSS-
REFERENCE

puts the word true in Android Studio’s Logcat pane. In addition to Java’s > (greater
than) operator, you can compare values with < (less than), >= (greater than or
equal), and <= (less than or equal).

You can also use a double-equal sign (==) to find out whether two values are equal
to one another. The statement

System.out.println(15 == 9 + 9);

puts the word false in the Logcat pane. You can also test for inequality. For
example, the statement

System.out.println(15 != 9 + 9);

puts the word true in the Logcat pane. (A computer keyboard has no = sign. To
help you remember the != operator, think of the exclamation point as a work-
around for making a slash through the equal sign.)

An expression whose value is either true or false is a condition. In this section,
expressions suchas 3 > 2and15 != 9 + 9 are examples of conditions.

The symbol to compare for equality isn’t the same as the symbol that’s used in an
assignment or an initialization. Assignment or initialization uses a single equal
sign (=), and comparison for equality uses a double equal sign (==). Everybody
mistakenly uses the single equal sign to compare for equality several times in
their programming careers. The trick is not to avoid making the mistake; the trick
is to catch the mistake whenever you make it.

It’s nice to display the word true or false in Android Studio’s Logcat pane, but
boolean values aren’t just for pretty displays. To find out how boolean values can
control the sequence of steps in your program, see Chapter 8.

Java isn't like a game of horseshoes

When you use a double equal sign, you have to be careful. Figure 5-5 shows you
what happens in a paper-and-pencil calculation to convert 21 degrees Celsius to
Fahrenheit. You get exactly 69.8.

But when you add the following statement to a Java program, you see false, not
true:

System.out.printin(9.0 / 5.0 x 21 + 32.0 == 69.8);

PART 2 Writing Your Own Java Programs

FIGURE 5-5:
An exact
Celsius-to-
Fahrenheit
conversion.

©

REMEMBER

&

CROSS-
REFERENCE

FIGURE 5-6:
A division
problem that
never ends.

31.8
21 5)189.0
3 @Y
189 39
35
40
0

No remainder

Why isn’t9.0 / 5.0 = 21 + 32.0 the same as 69.8? The answer is that Java’s
arithmetic operators don’t use the decimal system — they use the binary system.
And in binary arithmetic, things don’t go as well as they do in Figure 5-5.

Figure 5-6 shows you how Java divides 189.0 by 5. You might not understand (and
you might not want to understand) how Java computes the value
100101.110011001100110011 . . ., but when you stop after 64 bits or so, this answer
isn’t exactly 37.8. It’s more like 37.800000000000004, which is slightly inaccu-
rate. In a Java program, when you ask whether9.0 / 5.0 x 21 + 32.0 is exactly
equal to 69. 8, Java says “No, that’s false.”

Avoid comparing double values or float values for equality (using ==) or for
inequality (using !=). Comparing strings for equality (as in the expression
"passw@rd" == "passw@rd") is also unadvisable.

For details about comparing strings, see Chapter 8.

100101.110011001100110011 ... etc.
101)10117101,000000000
101
0111
0101
1001
0101
1000
0101
110
101
1000
0101
110
101
1000

CHAPTER 5 Java's Building Blocks 149

Use Java's logical operators

Real-life situations might involve complicated chains of conditions. To illustrate
that fact, look at the kinds of real-life prose I find myself forced to read late on the
evening of April 14 almost every year:

Household income for the purpose of premium tax credit is the sum of [IRC 36B(d)(2); Reg.
1.36B-1(e)]:

1. he individuat's modified adjusted gross income (MAGI) and the aggregate MAGI of
all other individuals taken into account for determining family size who are required
to file a tax return. Individuals not required to file, but filing to claim a refund are
not included in the calculation.

2. MAGI for this purpose is the adjusted gross income as reported on Line 37 of Form
1040 increased by the foreign earned income exclusion, tax-exempt income received
or accrued and that portion of an individual’s social security benefits not included
in income.

The good news is that an app’s conditions are not formulated by the same folks
who came up with the U.S. tax code — the conditions can be expressed using
Java’s &&, | | and ! operators. The story begins in Listing 5-3. Here, the listing’s
code computes the price of a movie theater ticket.

m Pay the Regular Ticket Price?

150

package com.allmycode.a@5_03;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R.layout.activity_main)

int age;
boolean chargeRegularPrice;

age = 17;
chargeRegularPrice = 18 <= age 8&& age < 65;
System.out.println(chargeRegularPrice);

PART 2 Writing Your Own Java Programs

FIGURE 5-7:
Three people go
to the movies.

CROSS-
REFERENCE

REMEMBER

age = 18;
chargeRegularPrice = 18 <= age && age < 65;
System.out.println(chargeRegularPrice);

age = T75;
chargeRegularPrice = 18 <= age 8&& age < 65;
System.out.println(chargeRegularPrice);

Figure 5-7 shows part of the Logcat pane when you run the code in Listing 5-3.
At first, with the value of age set to 17, the value of chargeRegularPrice is false.
So the first I/System.out line says that chargeRegularPrice is false. Then the
value of age becomes 18, and chargeRegularPrice becomes true. So the second
1/System.out line says that chargeRegularPrice is true. Finally, the code sets
the value of age to 75, and once again chargeRegularPrice becomes false.

ifik logcat | Monitors " Verbose d Q- Regex

87-19 12:46:51.375 4954-496@/7 E/fart: Failed sending reply to debugger: Broken pipe

87-19 12:46:51.375 4954-496@8/7 I/art: Debugger is no longer active

©87-19 12:46:57.940 4954-4954/com.allmycode.a@5_@3 W/System: ClassLoader referenced unknown path:
©87-19 12:46:58.114 4954-4954/com.allmycode.a@5_@3 W/art: Before Android 4.1, method android.grap
87-19 12:46:58.221 4954-4954/com.allmycode.a@5_@3 I/System.out: false

87-19 12:46:58.221 4954-4954/com.allmycode.a@5_@83 I/System.out: true

@87-19 12:46:58.221 4954-4954/com.allmycode.a@5_@3 I/System.out: false

E}’ 87-19 12:46:58.270 4954-5@97/com.allmycode.a@5_@3 D/0OpenGLRenderer: Use EGL_SWAP_BEHAVIOR_PRESER
. A7-19 12:46:5R.337 4054-5097 /com.allmveade. a@5 83 T/0nenGl Renderer: Tnitialized FGI . wersion 1.4

& Bk

This section’s example might look peculiar because the code sets the value of age
and then tests something about the value of age. Maybe the program’s output
should be “If you already know the value of age, why are you asking me if it’s
between 18 and 65?” The answer to that smart-aleck question is that the code for
having the user type an age value isn’t the world’s simplest stuff. I don’t want to
muddy my discussion of logical operators with lots of user input code. If you want
to know how to get input from the user, see Chapter 6.

In Listing 5-3, the value of chargeRegularPrice is true or false depending on
the outcome of the 18 <= age && age < 65 condition test. The && operator stands
for a logical and combination, s0o 18 <= age &R& age < 65 is true as long as age
is greater than or equal to 18 and age is less than 65.

To create a condition like 18 <= age && age < 65, you have to use the age variable

twice. You can’t write 18 <= age < 65. Other people might understand what
18 <= age < 65 means, but Java doesn’t understand it.

CHAPTER 5 Java's Building Blocks 151

In the earlier section “Java isn’t like a game of horseshoes,” I warn against using
@ the == operator to compare two double values with one another. If you absolutely
must compare double values with one another, give yourself a little leeway. Rather

TIP than write fahrTemp == 69.8, write something like this:

(69.7779 < fahrTemp) & (fahrTemp < 69.8001)

Listing 5-4 illustrates Java’s | | operator. (In case you’re not sure, you type the | |
operator by pressing the | key twice.) The | | operator stands for a logical or com-
bination, soage < 18 || 65 <= age is true as long as age is less than 18 or age
is greater than or equal to 65.

m Pay the Discounted Ticket Price?

package com.allmycode.ad5_04;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R.layout.activity_main)

int age;
boolean chargeDiscountPrice;

age = 17;
chargeDiscountPrice = age < 18 || 65 <= age;
System.out.printin(chargeDiscountPrice);

age = 18;
chargeDiscountPrice = age < 18 || 65 <= age;
System.out.println(chargeDiscountPrice);

age = 75;
chargeDiscountPrice = age < 18 || 65 <= age;
System.out.printin(chargeDiscountPrice);

152 PART 2 Writing Your Own Java Programs

A run of the code from Listing 5-4 is shown in Figure 5-8. A run of Listing 5-4
looks a lot like a run of Listing 5-3. But where Listing 5-3 outputs true, Listing 5-4
outputs false. And where Listing 5-3 outputs false, Listing 5-4 outputs true.

ifi logcat Monitors —+* Verbose E Q- Regex

P e s mr o mma rormE r Emrd W MRy UM MMe_w o ayww B TR S

©87-19 12:51:18.383 7417-7417/com.allmycode.a@5_84 W/System: Classloader referenced unknown path
87-19 12:51:24.058 7417-7417/com.allmycode.aB5_84 W/System: ClassLoader referenced unknown path
©87-19 12:51:24.235 7417-7417/com.allmycode.a@5_84 W/art: Before Android 4.1, method android.grg
87-19 12:51:24.327 7417-7417/com.allmycode.a@5_84 I/System.out: true

FIGURE 5-8: 7-19 12:51:24.327 7417-7417/com.allmycode.a®5_d4 I/System.out: false

N

To be young 87-19 12:51:24.327 7417-7417/com.allmycode.ad5_@4 I/System.out: true
in' T b @87-19 12:51:24,39@ 7417-7553/com.allmycode.a@5_084 D/OpenGLRenderer: Use EGL_SWAP_BEHAVIOR_PRESH
again: fo be 87-19 12:51:24.475 7417-7553/com.allmycode. a85_g4 I/OpenGLRenderer: Initialized EGL, wersion 1
Old at Iast‘ A7.10 12:851:25 210 TATT7T55/rnm al Ilmurnda aB5 A4 N/arallac ranchis Fminlatare withaot hactacida

i
RS

Listing 5-5 adds Java’s ! operator to the logical stew. If you’re unfamiliar with
languages like Java, you have to stop thinking that the exclamation point means
“Yes, definitely.” Instead, Java’s ! operator means not. In Listing 5-5, where
isSpecialShowing is true or false, the expression !isSpecialShowing stands
for the opposite of isSpecialShowing. That is, when isSpecialShowing is
true, !isSpecialShowing is false. And when isSpecialShowing is false,
lisSpecialShowing is true.

m What about Special Showings?

package com.allmycode.ad5_05;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main)

int age;
boolean isSpecialShowing;
boolean chargeDiscountPrice;

age = 13;
isSpecialShowing = false;

chargeDiscountPrice = (age < 18 || 65 <= age) & !isSpecialShowing;
System.out.printin(chargeDiscountPrice);

(continued)

CHAPTER 5 Java's Building Blocks 153

isSpecialShowing = true;

FIGURE 5-9:
Ticket prices for
two movie
showings.

FIGURE 5-10:
Finding the value
of a boolean
expression.

chargeDiscountPrice = (age < 18 || 65 <= age) & !isSpecialShowing;

System.out.println(chargeDiscountPrice);

A run of the code from Listing 5-5 is shown in Figure 5-9.

@87-19
@7-19
@7-19
@67-19
07-19
@87-19
@67-19
07-19

= B8

M
Y

In Listing 5-5, the assignment of a value to chargeDiscountPrice grants the
discount price to kids and to seniors as long as the current feature isn’t a “special
showing” — one that the management considers to be a hot item, such as the first
week of the run of a highly anticipated movie. When there’s a special showing,
no one gets the discounted price. Figure 5-10 shows you in detail how

21:
21:
21:
21:
21:
21:
21:
21:

ifi logcat Monitors

13:
13:
13:
13:
13:
13:
13:
13:

15.
19.
19.
19.
19.
19.
19.
19.

159
114
249
293
293
310
339
958

16258-16258/com.
16258-16258/com.
16258-16258/com.
16258-16258/com.
16258-16258/com.
16258-16384/com.
16258-16384/com.
16258-16384/com.

Verbose

allmycode.
allmycode.
allmycode.
allmycode.
allmycode.
allmycode.
allmycode.
allmycode.

a05_es
a05_es
a0s5_es
a05_es
av5_es
a0s_es
a05_es
a0s_es

E Q- Regex

W/System: ClassLoader referenced unknown pa
W/System: ClassLoader referenced unknown pa
W/art: Before Android 4.1, method android.g
I/System.out: true

I/System.out: false

D/0OpenGLRenderer: Use EGL_SWAP_BEHAVIOR_PRE!
I/0penGLRenderer: Initialized EGL, version
D/gralloc_ranchu: Emulator without host-sid

chargeDiscountPrice gets its values.

chargeDiscountPrice = (age < 18 || 65 <= age) && !isSpecialShowing
| S— | E— L]
13 . 13 X false
_ 1
true false true
L 1
true
L 1
true
chargeDiscountPrice = (age < 18 || 65 <= age) && !isSpecialShowing
| S— | E— L]
13) X 13, X true)
true false false
L 1
true
L 1
false

154 PART 2 Writing Your Own Java Programs

7

7

TIP

For any condition you want to express, you always have several ways to express it.
For example, rather than test numberOfCats != 3, you can be more long-winded
and test ! (numberOfCats == 3). Rather than test myAge < yourAge, you can get
the same answer by testing yourAge > myAge or !(myAge >= yourAge). Rather
thantypea != b & ¢ != d,you can get the same result with ! (a == b || ¢ == 4).
(A guy named Augustus DeMorgan told me about this last trick.)

Parenthetically speaking...

The big condition in Listing 5-5 (the condition (age < 18 || 65 <= age) &&
lisSpecialShowing) illustrates the need for (and the importance of) parentheses
(but only when parentheses are needed (or when they help people understand
your code)).

When you don’t use parentheses, Java’s precedence rules settle arguments about
the meaning of the expression. They tell you whether the line

age < 18 || 65 <= age && !isSpecialShowing

stands for the expression

(age < 18 || 65 <= age) && !isSpecialShowing
or for this one:

age < 18 || (65 <= age && !isSpecialShowing)

According to the precedence rules, in the absence of parentheses, Java evaluates
&& before evaluating | | . If you omit the parentheses, Java first checks to find out
whether 65 <= age && !isSpecialShowing. Then Java combines the result with
a test of the age < 18 condition. Imagine a 16-year-old kid buying a movie ticket
on the day of a special showing. The condition 65 <= age && !isSpecialShowing
is false, but the condition age < 18 is true. Because one of the two conditions on
either side of the || operator is true, the whole nonparenthesized condition is
true — and, to the theater management’s dismay, the 16-year-old kid gets a
discount ticket.

Sometimes, you can take advantage of Java’s precedence rules and omit the paren-
theses in an expression. But I have a problem: I don’t like memorizing precedence
rules, and when I visit Java’s online language specifications document (https://
docs.oracle.com/ javase/specs/jls/se8/html), I don’t like figuring out how
the rules apply to a particular condition.

CHAPTER 5 Java's Building Blocks 155

https://docs.oracle.com/javase/specs/jls/se8/html
https://docs.oracle.com/javase/specs/jls/se8/html

When I create an expression like the one in Listing 5-5, I almost always use
parentheses. In general, I use parentheses if I have any doubt about the way Java
behaves without them. I also add parentheses when doing so makes the code eas-
ier to read.

Sometimes, if I’m not sure about stuff and I’m in a curious frame of mind, I write
a quick Java program to test the precedence rules. For example, I run Listing 5-5
with and without the condition’s parentheses. I send a 16-year-old kid to the
movie theater when there’s a special showing and see whether the kid ever gets a
discount ticket. This little experiment shows me that the parentheses aren’t
optional.

156 PART 2 Writing Your Own Java Programs

IN THIS CHAPTER

» Getting input from the user

» Displaying all kinds of values

» Converting from one type of value
to another

Chapter 6
Working with Java Types

« ou can’t fit a square peg into a round hole,” or so the saying goes. In Java

programming, the saying goes one step further: “Like all other develop-

ers, you sometimes make a mistake and try to fit a square peg into a round
hole. Java’s type system alerts you to the mistake and prevents you from running
the flawed code.”

Working with Strings

Chapter 5 introduces int values, double values, String values, and other kinds of
values. Android doesn’t let you mix these values willy-nilly. You can’t plop an int
value into a TextView component and expect things to go smoothly. TextView
components want their contents to be String values.

But values don’t live in vacuums. Sometimes you want to display a number such
as an int value on the user’s screen. So what can you do?

You can check some of the ideas in this section. That’s what you can do.

CHAPTER 6 Working with Java Types 157

158

CROSS-
REFERENCE

REMEMBER

Going from primitive types to strings

Chapter 5 gives you one way to get a String value from a numeric value: Put a plus
sign between the numeric value and some other String value. For example, the
expression

"+ 81

doesn’t stand for the numeric value 81 (the amount eighty-one). Instead, it stands
for the string "81" — a string consisting of the two digit characters, '8' followed
by '1'.

Another way to go from a primitive type to a string is with one of Java’s toString
methods. Imagine that, in your code, the variable amountTextView refers to a
TextView component that appears on the user’s screen and that the variable
howMany refers to an int value such as 21 or 456. To display the number howMany
in the TextView component, you write

amountTextView.setText(Integer.toString(howMany));

If howMany refers to the number 21, the expression Integer.toString(howMany)
refers to the Java String value "21", and you can set a TextView component’s text
to the String value "21".

For an introduction to TextView components, see Chapter 3.

The same kind of thing works for other primitive type values. For example, if the
double variable howMuch refers to the value 32.785, then the expression Double.
toString(howMuch) refers to the String value "32.785". If the boolean variable
isGood refers to the value true, then Boolean.toString(isGood) refers to the
String value "true". If the char variable onelLetter refers to the single letter 'x',
then the expression Character.toString(onelLetter) refers to the String
value "x".

The words Integer, Double, Boolean, and Character are the names of wrapper
types. These types wrap the primitive types in additional functionality. For more
information about wrapper types, see Chapter 12.

Java’s System.out.println displays just about any kind of value, including
String values, int values, double values, and others. But the display doesn’t
appear on an Android device’s screen. To display a value on a device’s screen, you
have to put the value into something like a TextView component or an EditText
component. And Android’s components can’t directly display int values or double
values. Fortunately, Android’s components can directly display String values.

PART 2 Writing Your Own Java Programs

REMEMBER

A\

WARNING

FIGURE 6-1:
Getting an int
value from a text
field.

To turn an int value into a String, you don’t use int.toString. Instead, you use
Integer.toString. Similarly, you don’t use double.toString, boolean.
toString, or char.toString. Instead, you use Double.toString, Boolean.
toString, and Character.toString.

Java’s calculations with double values isn’t always dead-on accurate. When you
think your double variable howMuch refers to the value 32.785, the expression
Double.toString(howMuch) might yield a string like "32.78500001".

Going from strings to primitive types

In the previous section, you put an int value, a double value, or some other prim-
itive type value into a TextView component. What about going in the opposite
direction? You want to add 10 to some number that the user types in an EditText
component. How do you get the value from the EditText component and turn it
into an int value? You do it with a toString method and with one of Java’s parse
methods.

For example, imagine that the variable amountEditText refers to an EditText
component that appears on the user’s screen, and that howMany is an int variable.
As long as the amountEditText contains a whole number, you can make howMany
refer to that number with the following code:

howMany = Integer.parselnt(amountEditText.getText().toString());

Figure 6-1 shows you what kinds of values you have when you obtain an int value
from an EditText component.

howMany = Integer.parselnt(amountEditText.getText ().toString());

Editable

I
1
1
1
1
1
1
: String
1

1

| J
int

If the user types 21 into the amountEditText, the expression amountEditText.
getText() refers to those two digits, 21. Unfortunately, amountEditText.
getText() isn’t quite a Java String value. It’s an Editable value (whatever that

CHAPTER 6 Working with Java Types 159

160

TIP

means). To get a String value from an Editable value, you apply toString. So
the expression amountEditText.getText().toString() is the String value
"21". Then, to get an int value from a String, you apply Integer.parselnt. The
expression

Integer.parselnt(amountEditText.getText().toString())
refers to an int value, and if you want, you can add 10 to that int value.

The same kind of thing works for other primitive type values. For example, if the
user types 105. 796 into the sizeEditText, the expression

Integer.parseDouble(sizeEditText.getText().toString())
refers to the double value 105. 796.

If the user types 3.14159 or cat into an EditText component and you hit
that component with the statement in Figure 6-1, your program crashes.
Unfortunately, neither 3.14159 nor cat is a whole number, so the Integer.
parselnt part of the statement simply explodes. Oops! You can prevent this
calamity by using the Number and Number (Signed) items from the palette of
Android Studio’s Designer tool. (See Figure 6-2.) The Number item is an
EditText component that accepts whole numbers with no sign. The Number
(Signed) item is an EditText component that accepts positive, negative, and
zero whole numbers. There’s also a Number (Decimal) item for double values.
Of course, it’s a good idea for your code to do some extra checking to make sure
that the stuff the user types in the EditText component is something that
Integer.parselnt or Double.parselnt can handle. For this, you need Java’s
if statements or Java’s exception handling features. To find out about i f state-
ments, see Chapter 8. And for some good reading about exception handling, see
Chapter 13.

Getting input from the user

In Chapter 5, I promise that I can make meaningful use of Java’s logical operators.
With some information from the previous section, I can fulfill that promise. In
Listing 6-1, the app gets two pieces of information from the user. The app gets a
person’s age, and gets a check or no-check, indicating a movie’s special showing
status.

PART 2 Writing Your Own Java Programs

E activity_main.xml x C) MainActivity.java 3
Palette @ - I+
o Switch
{"iSpace
1 Text Fields
Plain Text
Password
Password (Numeric)
E-mail
Phone
Postal Address
Multiline Text
Time
Date
Number
Number (Signed)
Number (Decimal)
 AutoCompleteTextView
2= MultiAutoCompleteTextView
[Layouts
[HiConstraintLayout
[T GridLayout
DFrameLayout
[["]LinearLayout (horizontal)
Ely e L

Afiink®anl

= [= == === == = =E

FIGURE 6-2:
Some special text
fields.

m Going Back and Forth Between Strings and Primitives

package com.allmycode.a@6_01;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.CheckBox;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
EditText ageEditText;
CheckBox specialShowingCheckBox;

TextView outputTextView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

ageEditText = (EditText) findViewById(R.id.ageEditText);
specialShowingCheckBox =
(CheckBox) findViewById(R.id.specialShowingCheckBox);
(continued)

CHAPTER 6 Working with Java Types 161

outputTextView = (TextView) findViewById(R.id.outputTextView);
}

public void onButtonClick(View view) {
int age = Integer.parselnt(ageEditText.getText().toString());

boolean isSpecialShowing = specialShowingCheckBox.isChecked();

boolean chargeDiscountPrice = (age < 18 || 65 <= age) && !isSpecialShowing;
outputTextView.setText(Boolean.toString(chargeDiscountPrice));

}

There’s more to the app in Listing 6-1 than the code in Listing 6-1. To create this

app, you have to design the layout with its text fields, its check box, and its button.

You also have to set the button’s onClick property to "onButtonClick". I've
SRoss- described the steps for designing layouts and setting properties in Chapter 3.

Figures 6-3 and 6-4 show runs of the code in Listing 6-1.

5554:Nexus_bX_API_23_x86

[special showing

FIGURE 6-3: DISCOUNT PRICE?
Getting a true
discounted movie
ticket.

In Listing 6-1, the age variable gets its value using the tricks that I describe earlier
in this chapter, in the “Going from strings to primitive types” section. And the
String value for the outputTextView comes from the techniques earlier in this
chapter, in the “Going from primitive types to strings” section.

Every check box has an isChecked method, and, in Listing 6-1, the
isSpecialShowing variable gets its value from a call to the isChecked method. In
Figure 6-3, the user hasn’t selected the check box. So, when Android executes the
code in Listing 6-1, the expression specialShowingCheckBox.isChecked() has
the value false. But, in Figure 6-4, the user has selected the check box. So for

162 PART 2 Writing Your Own Java Programs

Figure 6-4, when Android executes the code in Listing 6-1, the expression
specialShowingCheckBox.isChecked() has the value true.

5554:Nexus_5X_API_23_x86

Special showing

F‘IGURE 6-4: DISCOUNT PRICE?
Paying the full
price for a movie false
ticket.

To make the code in Listing 6-1 work, you have to associate the variable names
ageEditText, specialShowingCheckBox, and outputTextView with the correct
thingamajigs on the device’s screen. The findViewById statements in Listing 6-1

CROSS- help you do that. For details, refer to Chapter 3.
REFERENCE

Practice Safe Typing

In the previous section, you convert primitive values to String values and String
values to primitive values. It’s very useful, but the story about converting values
doesn’t end there. Java is fussy about the types of its values. In Java, you can’t even
move seamlessly among the different kinds of primitive values. Here’s an example:

By one measure, the average number of children per family in the United States in
2010 was 1.16. But by 2010, the Duggar family (featured on a well-known cable
television show in the United States) had 19 children. Measuring the average fam-
ily size in a population of 300 million people is tricky. But, no matter how you
measure it, the average number of children has digits to the right of the decimal
point. In my Java program, the average number of children is a double value. In
contrast, the number of children in a particular family is an int value.

In Figure 6-5, I try to calculate the Duggar family’s divergence from the national
average. I don’t even show you a run of this program, because the program doesn’t
work. It’s defective. It’s damaged goods. As cousin Jeb would say, “This program
is a dance party on a leaky raft in a muddy river.”

CHAPTER 6 Working with Java Types 163

FIGURE 6-5:

Trying to fita
square peg into a

164

round hole.

©) MainActivityjava x g AndroidManifestxml x (& app x
package com.allmycede.stats; L

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

© public class MainActivity extends AppCompatActivity {
EditText averageKidsEditText;

TextView textView;

TextView textView2;

@0verride

al protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);

averageKidsEditText = (EditText) findvViewById(R.id.editText);
textView = (TextView) findViewById(R.id.textView);
textView2 = (TextView) findViewById(R.id.textView2);

¥

public void onButtonClick{View view) {
double averageNumberOfKids;
int number0fDuggarkKids;
double difference;
int anotherDifference;

averageNumber0fKids = Double.parseDouble(averageKidsEditText.getText().toString());

number0fDuggarKids = 19; -
difference = number0fDuggarKids - averageNumberOfKids;

Incompatible types.
Required: int o
Found: double

textView. setText(Double. toString(difference));
textView2.setText(Integer. toString(anotherDifference));

The code in Figure 6-5 deals with double values (such as theaverageNumberOfKids
variable) and int values (such as the numberOfDuggarKids variable). You might
plan to type 1 in the app’s averageKidsEditText. But, because of the declaration

double averageNumberOfKids;

the value stored in the averageNumberOfKids variable is of type double. The
user’s typing 1 instead of 1.@ doesn’t scare Java into storing anything but adouble
in the averageNumberOfKids variable.

The expression numberOfDuggarKids - averageNumberOfKids is an int minus a
double, so (according to my sage advice in Chapter 5) the value of numberOf
DuggarKids - averageNumberOfKids is of type double. Sure, if you type 1 in the
averageKidsEditText, then numberOfDuggarKids - averageNumberOfKids is
18.0, and 18.0 is sort of the same as the int value 18. But Java doesn’t like things
to be “sort of the same.”

Java’s strong typing rules say that you can’t assign a double value (like 18.0) to an
int variable (like anotherDifference). You don’t lose any accuracy when you
chop the .o off 18.0. But with digits to the right of the decimal point (even with o
to the right of the decimal point), Java doesn’t trust you to stuff a double value

PART 2 Writing Your Own Java Programs

A\

WARNING

into an int variable. After all, rather than type 1.0 in the averageKidsEditText,
you can type 0.9. Then you’d definitely lose accuracy, from stuffing 18.1 into an
int variable.

You can try to assure Java that things are okay by using a plain, old assignment
statement, like this:

double averageNumberOfKids;

averageNumberOfKids = 1;

When you do, numberOfDuggarKids - averageNumberOfKids is always 18.0. Even
S0, Java doesn’t like assigning 18.0 to the int variable anotherDifference. This
statement is still illegal:

anotherDifference = numberOfDuggarKids - averageNumberOfKids;

When you put numbers in your Java code (such as 1 in the previous paragraph or
the number 19 in Figure 6-5), you hardcode the values. In this book, my liberal use
of hardcoding keeps the examples simple and (more importantly) concrete. But in
real applications, hardcoding is generally a bad idea. When you hardcode a value,
you make it difficult to change. In fact, the only way to change a hardcoded value
is to tinker with the Java code, and all code (written in Java or not) can be brittle.
It’s much safer to input values in a dialog box than to change a value in a piece of
code. If getting a value from a dialog box doesn’t suit your needs, you can create a
name for the value using Java’s final keyword. (See Chapter 5.) You can even read
the value from the device’s SD card.

Remember to do as I say and not as I do. Avoid hardcoding values in your
programs.

Widening is good; narrowing is bad

Java prevents you from making any assignment that potentially narrows a value,
as shown in Figure 6-6. For example, with the declarations

int numberOfDuggarKids = 19;
long lotsAndLotsOfKids;

the following attempt to narrow from a long value to an int value is illegal:

numberOfDuggarKids = lotsAndLotsOfKids; //Don't do this!

An attempt to widen from an int value to a 1ong value, however, is fine:

lotsAndLotsOfKids = numberOfDuggarKids;

CHAPTER 6 Working with Java Types 165

widening

| double |

FIGURE 6-6:
Widening and
narrowing.

Earlier, in fact, in Figure 6-5, I subtract a double value from an int value with no
trouble at all:

double averageNumberOfKids;
int numberOfDuggarKids;

double difference;
difference = numberOfDuggarKids - averageNumberOfKids;

Combining a double value with an int value is legal because Java automatically
widens the int value.

Incompatible types

Aside from the technical terms narrowing and widening, there’s another possibility —
plain, old incompatibility — trying to fit one element into another when the two have
nothing in common and have no hope of ever being mistaken for one another. You
can’t assign an int value to a boolean value or assign a boolean value to an int
value:

int numberOfDuggarKids;

boolean islLarge;

numberOfDuggarKids = islLarge; //Don't do this!
isLarge = numberOfDuggarKids; //Don't do this!

You can’t do either assignment, because boolean values aren’t numeric. In other
words, neither of these assignments makes sense.

166 PART 2 Writing Your Own Java Programs

Java is a strongly typed programming language. It doesn’t let you make assign-
ments that might result in a loss of accuracy or in outright nonsense.

REMEMBER

Using a hammer to bang a peg into a hole

In some cases, you can circumvent Java’s prohibition against narrowing by casting
a value. For example, you can create the long variable lotsAndLotsOfKids and
make the assignment numberOfDuggarKids = (int) lotsAndLotsOfKids, as
shown in Listing 6-2.

m Casting to the Rescue

package com.allmycode.ad6_02;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

TextView numberTextView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
numberTextView = (TextView) findViewById(R.id.numberTextView);

public void onButtonClick(View view) {
long lotsAndLotsOfKids = 2147483647;
int numberOfDuggarKids;

numberOfDuggarKids = (int) lotsAndLotsOfKids;

numberTextView.setText(Integer.toString(number0fDuggarKids));

In Listing 6-2, the type name (int) in parentheses is a cast operator. It tells Java
that you’re aware of the potential pitfalls of stuffing a 1ong value into an int vari-
able and that you’re willing to take your chances.

CHAPTER 6 Working with Java Types 167

168

When you run the code in Listing 6-2, the value of lotsAndLotsOfKids might be
between -2147483648 and 2147483647. If so, the assignment numberOfDuggar
Kids = (int) lotsAndLotsOfKids is just fine. (Remember: An int value can be
between —2147483648 and 2147483647. Refer to Table 5-1 in Chapter 5.)

But if the value of lotsAndLotsOfKids isn’t between -2147483648 and
2147483647, the assignment statement in Listing 6-2 goes awry. When I run the
code in Listing 6-2 with the different initialization

long lotsAndLotsOfKids = 2098797070970970956L ;
the value of numberOfDuggarKids. becomes —287644852 (a negative number!).
When you use a casting operator, you’re telling Java, “I’'m aware that I’m doing

something risky but (trust me) I know what I’m doing.” And if you don’t know
what you’re doing, you get a wrong answer. That’s life!

PART 2 Writing Your Own Java Programs

IN THIS CHAPTER

» Matching Java types

» Calling methods effectively

» Understanding method parameters

Chapter 7

Though These Be
Methods, Yet There s
Madness in't

n Chapter 4, I compare a method declaration to a recipe for scrambled eggs. In

this chapter, I compute the tax and tip for a meal in a restaurant. And in

Chapter 9 (spoiler alert!), I compare a Java class to the inventory in a cheese
emporium. These comparisons aren’t far-fetched. A method’s declaration is a lot
like a recipe, and a Java class bears some resemblance to a blank inventory sheet.
But instead of thinking about methods, recipes, and Java classes, you might be
reading between the lines. You might be wondering why I use so many food
metaphors.

The truth is, my preoccupation with food is a recent development. Like most men
my age, I've been told that I should shed my bad habits, lose a few pounds, exer-
cise regularly, and find ways to reduce the stress in my life. (I've argued to my
Wiley editors that submission deadlines are a source of stress, but so far the edi-
tors aren’t buying a word of it. I guess I don’t blame them.)

Above all, I’ve been told to adopt a healthy diet: Skip the chocolate, the cheese-

burgers, the pizza, the fatty foods, the fried foods, the sugary snacks, and every-
thing else that I normally eat. Instead, eat small portions of vegetables, carbs, and

CHAPTER 7 Though These Be Methods, Yet There Is Madnessin't 169

protein, and eat these things only at regularly scheduled meals. Sounds sensible,
doesn’t it?

I’'m making a sincere effort. I’ve been eating right for about two weeks. My feel-
ings of health and well-being are steadily improving. I’'m only slightly hungry.
(Actually, by “slightly hungry,” I mean “extremely hungry.” Yesterday I suffered
a brief hallucination, believing that my computer keyboard was a giant Hershey’s
bar. And this morning I felt like gnawing on my office furniture. If I start trying to
peel my mouse, I’ll stop writing and go out for a snack.)

One way or another, the gustatory arena provides many fine metaphors for Java
programming. A method’s declaration is like a recipe. A declaration sits quietly,
doing nothing, waiting to be executed. If you create a declaration but no one ever
calls your declaration, then — like a recipe for worm stew — your declaration
goes unexecuted.

On the other hand, a method call is a call to action — a command to follow the
declaration’s recipe. When you call a method, the method’s declaration wakes up
and follows the instructions inside the body of the declaration.

In addition, a method call may contain parameters. You call

textEdit.setText("Don't vote for that narcissist!");

with the parameter "Don't vote for that narcissist!".The parameter, "Don't
vote for that narcissist!" tells Android exactly what to display in the
textEdit component on the user’s screen. In the world of food, you might call
meatLoaf(6), which means, “Follow the meatloaf recipe, and make enough to
serve six people.”

Minding Your Types When You
Call a Method

170

In Chapter 4, I introduce method parameters. And in Chapters 5 and 6, I make a
big fuss about Java types. In this section, I pull those two ideas together.

A method call involves values going both ways — from the call to the running
method and from the running method back to the call. Consider the code in
Listing 7-1.

PART 2 Writing Your Own Java Programs

m Parameter Types and Return Types

package com.allmycode.a@7_01;

import android.os.Bundle;
import android.support.vT.app.AppCompatActivity;
import android.view.View;

import android.widget.TextView;
import java.text.NumberFormat;

public class MainActivity extends AppCompatActivity {

TextView paymentView;

@override
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

paymentView = (TextView) findViewById(R.id.paymentView);

public void onButtonClick(View view) {
double principal = 100000.00, ratePercent = 5.25;
double payment;
int years = 30;

String paymentString;
payment = monthlyPayment(principal, ratePercent, years);

NumberFormat currency = NumberFormat.getCurrencyInstance();
paymentString = currency. format(payment);

paymentView.setText(paymentString);

double monthlyPayment(double dPrincipal, double dRatePercent, int dYears) {
double rate, effectiveAnnualRate;

int paymentsPerYear = 12, numberOfPayments;

rate = dRatePercent / 100.00;
numberOfPayments = paymentsPerYear x dYears;
effectiveAnnualRate = rate / paymentsPerYear;
(continued)

CHAPTER 7 Though These Be Methods, Yet There Is Madness in't 171

return dPrincipal * (effectiveAnnualRate /

(1 - Math.pow(1 + effectiveAnnualRate, -numberOfPayments)));

Figure 7-1 shows a run of the code in Listing 7-1.

$552.20

FIGURE 7-1:
Pay it and weep.

In Listing 7-1, I choose the parameter names principal and dPrincipal,
ratePercent and dRatePercent, and years and dYears. I use the letter d to dis-
tinguish a declaration’s parameter from a call’s parameter. I do this to drive home
the point that the names in the call aren’t automatically the same as the names in
the declaration. In fact, there are many variations on this call/declaration naming
theme, and they’re all correct. For example, you can use the same names in the
call as in the declaration:

//In the call:

payment = monthlyPayment(principal, ratePercent, years);

//In the declaration:

double monthlyPayment(double principal, double ratePercent, int years) {
You can use expressions in the call that aren’t single variable names:

//In the call:
payment = monthlyPayment(amount + fees, rate % 100, 30);

//In the declaration:
double monthlyPayment(double dPrincipal, double dRatePercent, int dYears) {

172 PART 2 Writing Your Own Java Programs

REMEMBER

FIGURE 7-2:
Each value fits
like a glove.

When you call a method from Java’s API, you don’t even know the names of param-
eters used in the method’s declaration. And you don’t care. The only things that mat-
ter are the positions of parameters in the list and the compatibility of the parameters.
The value of the call’s leftmost parameter becomes the value of the declaration’s left-
most parameter, no matter what name the declaration’s leftmost parameter has. The
value of the call’s second parameter becomes the value of the declaration’s second
parameter, no matter what name the declaration’s second parameter has. And so on.

In this section’s example, I hardcode the values of the variables principal,
ratePercent, and years, making Listing 7-1 useless for anything except one
particular calculation. The only people who hardcode values are book authors and
bad programmers. In a real app, you’d probably get values for these variables from
EditText components on the user’s screen. If you didn’t have EditText compo-
nents, you’d manage to get the values for principal, ratePercent, and years
some other way.

Method parameters and Java types

Listing 7-1 contains both the declaration and a call for the monthlyPayment
method. Figure 7-2 illustrates the type matches between these two parts of the
program.

double principal = 100000.00, ratePercent = 5.25;
double payment;
int years = 30;

payment :ImonthlyPayment(|principa1|,|ratePercentl,

Pl SR,

~ return!dPrincipal * (effectiveAnnualRate / !
- - ! (1 - Math.pow(1 + effectiveAnnualRate, —numberOfPayments)))“

In Figure 7-2, the monthlyPayment method call has three parameters, and the
monthlyPayment declaration’s header has three parameters. The call’s three
parameters have the types double and then double and then int:

double principal = 100000.00, ratePercent = 5.25;

int years = 30;

payment = monthlyPayment(principal, ratePercent, years);

CHAPTER 7 Though These Be Methods, Yet There Is Madnessint 173

174

And sure enough, the declaration’s three parameters have the types double and
then double and then int:

double monthlyPayment(double dPrincipal, double dRatePercent, int dYears) {

The expressions in the call must have types that are compatible with the corre-
sponding parameters in the method’s declaration. But “compatible” doesn’t nec-
essarily mean “exactly the same.” You can take advantage of widening, which I
describe in Chapter 6. For example, in Listing 7-1, the following call would be
okay:

payment = monthlyPayment(100000, 5, years);

You can pass an int value (like 100000) to the dPrincipal parameter, because the
dPrincipal parameter is of type double. Java widens the values 100000 and 5 to
the values 100000.0 and 5.0. But, once again, Java doesn’t narrow your values.
The following call causes a squiggly red underline in Android Studio’s editor:

payment = monthlyPayment(principal, ratePercent, 30.0);

You can’t stuff a double value (like 30.9) into the dYears parameter, because the
dYears parameter is of type int.

If at first you don’t succeed ...

If you don’t like the types of the parameters in a method declaration, you can take
matters into your own hands. You can create another method declaration with the
same name but with different parameter types. For example, in Listing 7-1, you
can add a method with the following header:

double monthlyPayment(String lenderName, String borrowerName, double amount) {
In other words, you can overload a method name. Java figures out which method

declaration to use by looking for a match with the types of parameters in the
method call. For more information about overloading, refer to Chapter 4.

Return types
A method declaration’s header normally looks like this:

maybeSomeWords returnType methodName(parameters) {

PART 2 Writing Your Own Java Programs

For example, Listing 7-1 contains a method declaration with the following header:

double monthlyPayment(double dPrincipal, double dRatePercent, int dYears) {

In this header, the returnType is double, the methodName is monthlyPayment, and
the parameters are double dPrincipal, double dRatePercent, int dYears.

An entire method call can have a value, and the declaration’s returnType tells
Java what type that value has. In Listing 7-1, the returnType is double, so the call

monthlyPayment(principal, ratePercent, years)
has a value of type double. (Refer to Figure 7-2.)

I hardcoded the values of principal, ratePercent, and years in Listing 7-1. So
when you run Listing 7-1, the value of the monthlyPayment method call is always
552.20. The call’s value is whatever comes after the word return when the method
is executed. And in Listing 7-1, the expression

return dPrincipal * (effectiveAnnualRate /

(1 - Math.pow(1 + effectiveAnnualRate, -numberOfPayments)));

always comes out to be 552.20. Also, in keeping with the theme of type safety, the
expression after the word return is of type double.

In summary, a call to the monthlyPayment method has the return value 552.20 and
has the return type double.

The great void

A method to compute a monthly mortgage payment naturally returns a value.
But some methods have no reason to return a value. Consider, for example, the
onButtonClick method in Listing 7-1. This method’s purpose is to make text
appear in the paymentView. That’s not what you’d call a calculation, and it’s not
the kind of work that ends up with an answer of some kind. So, in Listing 7-1, the
onButtonClick method doesn’t return a value of any kind.

In Listing 7-1, the onButtonClick method doesn’t return a value, so the method’s

body has no return statement. And, in place of a return type, the header in the
method’s declaration contains the word void.

CHAPTER 7 Though These Be Methods, Yet There Is Madness in't 175

LD,
TECHNICAL
STUFF

FIGURE 7-3:

Displaying the
euro symbol and
a comma for the

176

decimal
separator.

To be painfully precise, you can put a return statement in a method that doesn’t
return a value. When you do, the return statement has no expression. It’s just one
word, return, followed by a semicolon. When Java executes this return state-
ment, Java ends the run of the method and returns to the code that called the
method. This form of the return statement works well in a situation in which you
want to end the execution of a method before you reach the last statement in the
method’s declaration.

Displaying numbers
Here are a few lines that are scattered about in Listing 7-1:

import java.text.NumberFormat;

NumberFormat currency = NumberFormat.getCurrencyInstance();

paymentString = currency. format(payment);

Taken together, these statements format numbers into local currency amounts.
On my phone, when I call getCurrencyInstance() with no parameters, I get a
number (like $552.20) formatted for United States currency. (Refer to Figure 7-1.)
But if your phone is set to run in Germany, you see the payment amount shown in
Figure 7-3.

552,20 €

A country, its native language, or a variant of the native language is a locale. And
by adding a parameter to the getCurrencylInstance call, you can format for
locales other than your own. For example, by calling

NumberFormat .getCurrencyInstance(Locale.GERMANY)
anyone in any country can get the message box shown in Figure 7-3.
You can even cobble together a locale from a bunch of pieces. For example, one
variant of the Thai language uses its own, special digit symbols. (See Figure 7-4.)

To form a number with Thai digits, you write

NumberFormat . getCurrencyInstance(new Locale("th", "TH", "TH"))

PART 2 Writing Your Own Java Programs

In the list ("th", "TH", "TH"), the lowercase "th" stands for the Thai language.
The first uppercase "TH" stands for the country Thailand. The last uppercase "TH"
indicates the language variant that uses its own digit symbols.

FIGURE 7-4:
Thai digit THB&&w.wo
symbols.

Primitive Types and Pass-by Value

Java has two kinds of types: primitive and reference. The eight primitive types are
the atoms — the basic building blocks. In contrast, the reference types are the
things you create by combining primitive types (and by combining other reference
types).

I cover Java’s primitive types in Chapter 5, and my coverage of Java’s reference
types begins in Chapter 9.

CROSS-
ReFERENCE Here are two concepts you should remember when you think about primitive types

and method parameters:

3 When you assign a value to a variable with a primitive type, you're
identifying that variable name with the value.

The same is true when you initialize a primitive type variable to a particular
value.

3 When you call a method, you're making copies of each of the call’s
parameter values and initializing the declaration’s parameters with
those copied values.

This scheme, in which you make copies of the call’s values, is named pass by value.
Listing 7-2 shows you why you should care about any of this.

m Rack Up Those Points!

package com.allmycode.a@7_02;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

(continued)

CHAPTER 7 Though These Be Methods, Yet There Is Madness in't 177

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
textView = (TextView) findViewById(R.id.textView);

int score = 50000;
int points = 1000;
addPoints(score, points);

textView.setText(Integer.toString(score));

void addPoints(int score, int points) {

score += points;

In Listing 7-2, the addPoints method uses Java’s compound assignment operator
to add 1000 (the value of points) to the existing score (which is 50000). To make
things as cozy as possible, I’'ve used the same parameter names in the method call
and the method declaration. (In both, I use the names score and points.)

So what happens when I run the code in Listing 7-2? I get the result shown in
Figure 7-5.

FIGURE 7-5:
Getting 1000
more points?

But wait! When you add 1000 to 50000, you don’t normally get 50000. What’s
wrong?

178 PART 2 Writing Your Own Java Programs

With Java’s pass-by value feature, you make a copy of each parameter value in a
call. You initialize the declaration’s parameters with the copied values. So, imme-
diately after making the call, you have two pairs of variables: the original score
and points variables in the onCreate method and the new score and points
variables in the addPoints method. The new score and points variables have
copies of values from the onCreate method. (See Figure 7-6.)

PERILS AND PITFALLS OF PARAMETER
PASSING

How would you like to change the value of 2 + 2? What would you like 2 + 2 to be? Six?
Ten? Three hundred? In certain older versions of the FORTRAN programming language,
you could make 2 + 2 be almost anything you wanted. For example, the following chunk
of code (translated to look like Java code) would display 6 for the value of 2 + 2:

void increment(int score) {
score++;

}

increment(2);
print(2 + 2);

When computer languages were first being developed, their creators didn't realize how
complicated parameter passing can be. They weren't as careful about specifying the
rules for copying parameters’ values or for doing whatever else they wanted to do with
parameters. As a result, some versions of FORTRAN indiscriminately passed memory
addresses rather than values. Though address-passing alone isn't a terrible idea, things
become ugly if the language designer isn't careful.

In some early FORTRAN implementations, the computer automatically (and without
warning) turned the literal 2 into a variable named two. (In fact, the newly created vari-
able probably wasn't named two. But in this story, the actual name of the variable
doesn't matter.) FORTRAN would substitute the variable name two in any place where
the programmer typed the literal value 2. But then, while running this sidebar’s code,
the computer would send the address of the two variable to the increment method.
The method would happily add 1 to whatever was stored in the two variable and then
continue its work. Now the two variable stored the number 3. By the time you reached
the print call, the computer would add to itself whatever was in two, getting 3 + 3,
which is 6.

If you think parameter passing is a no-brainer, think again. Different languages use all

different kinds of parameter passing. And in many situations, the minute details of the
way parameters are passed makes a big difference.

CHAPTER 7 Though These Be Methods, Yet There Is Madnessint 179

onCreate
score points
- 50000 1000
addPoints T
score points
~ 50000 1000 4
FIGURE 7-6:
Java makes
copies of the
values of
variables.
The statement in the body of the addPoints method adds 1000 to the value stored
in its score variable. After adding 1000 points, the program’s variables look like
the stuff shown in Figure 7-7.
onCreate
score points
50000 1000
addPoints
score points
FIGURE 7.7- 51000 1000
Java adds 1000 to
only one of the
two score
variables.

180 PART 2 Writing Your Own Java Programs

Notice how the value of the onCreate method’s score variable remains unchanged.
After returning from the call to addPoints, the addPoints method’s variables
disappear. All that remains is the original onCreate method and its variables. (See

Figure 7-8.)
onCreate
score points
50000 1000

FIGURE 7-8:

The variable with
value 51000 no
longer exists.

Finally, in Listing 7-2, Java calls textView.setText to display the value of the
onCreate method’s score variable. And (sadly, for the game player) the value of
score is still 50000.

What's a developer to do?

The program in Listing 7-2 has a big, fat bug. The program doesn’t add 1000 to a
player’s score. That’s bad.

You can squash the bug in Listing 7-2 in several different ways. For example, you
can avoid calling the addPoints method by inserting score += points along with
the other code in the onCreate method.

int score = 50000;
int points = 1000;
score += points;

textView.setText(Integer.toString(score));

CHAPTER 7 Though These Be Methods, Yet There Is Madnessin't 181

But that’s not a satisfactory solution. Methods such as addPoints are useful for
dividing work into neat, understandable chunks. And avoiding problems by skirt-
ing around them is no fun at all.

A better way to get rid of the bug is to make the addPoints method return a value.
Listing 7-3 has the code.

m A New-and-Improved Scorekeeper Program

182

package com.allmycode.a@7_03;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
textView = (TextView) findViewById(R.id.textView);

int score = 50000;
int points = 1000;
score = addPoints(score, points);

textView.setText(Integer.toString(score));

int addPoints(int score, int points) {

return score + points;

In Listing 7-3, the new-and-improved addPoints method returns an int value —
namely, the value of score + points. So the value of the addPoints(score,
points) callis 51000. Finally, I change the value of score by assigning the method
call’s value, 51000, to the score variable.

PART 2 Writing Your Own Java Programs

Java’s nitpicky rules ensure that the juggling of the score variable’s values is reli-

e able and predictable. In the statement score = addPoints(score, points),
6 there’s no conflict between the old value of score (50000 in the addPoints
Tecunica parameter list) and the new value of score (51000 on the left side of the assign-

STUFF ment statement).
A run of the code in Listing 7-3 is shown in Figure 7-9. You probably already know
what the run looks like. (After all, 50000 + 1000 is 51000.) But I can’t bear to finish
this example without showing the correct answer.
FIGURE 7-9:
At last, a higher
score!
Making addPoints return a value isn’t the only way to correct the problem in
Listing 7-2. At least two other ways (using member variables and passing objects)
cross. are among the subjects of discussion in Chapter 9.
REFERENCE

A final word

The program in Listing 7-4 displays the total cost of a $100 meal.

m Yet Another Food Example

package com.allmycode.aQ7_04;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;

import android.widget.TextView;
import java.text.NumberFormat;
public class MainActivity extends AppCompatActivity {

TextView totalView;
(continued)

CHAPTER 7 Though These Be Methods, Yet There Is Madness in't 183

@0Override

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R.layout.activity_main)
totalView = (TextView) findViewById(R.id.totalView);

public void onButtonClick(View view) {
NumberFormat currency = NumberFormat.getCurrencylnstance();
totalView.setText(currency. format(addAl1(100.00, .05, 0.20)));

double addAll(double bill, double taxRate, double tipRate) {
bill *= 1 + taxRate;
bill *= 1 + tipRate;

return bill;

A run of the program in Listing 7-4 is shown in Figure 7-10.

% w100

FIGURE 7-10:
Support your
local eating
establishment.

$126.00

Listing 7-4 is nice, but this code computes the tip after the tax has been added to
the original bill. Some of my less generous friends believe that the tip should be
based on only the amount of the original bill. (Guys, you know who you are!) They
believe that the code should compute the tax but that it should remember and
reuse the original $100.00 amount when calculating the tip. Here’s my friends’
version of the addA11 method:

184 PART 2 Writing Your Own Java Programs

FIGURE 7-11:
A dollar saved is a
dollar earned.

double addAll(double bill, double taxRate, double tipRate) {
double originalBill = bill;
bill %= 1 + taxRate;
bill 4= originalBill % tipRate;

return bill;

}

The new (stingier) total is shown in Figure 7-11.

$125.00

The revised addAl1 method is overly complicated. (In fact, in creating this exam-
ple, I got this little method wrong two or three times before getting it right.)
Wouldn’t it be simpler to insist that the bill parameter’s value never changes?
Rather than mess with the bill amount, you make up new variables named tax
and tip and total everything in the return statement:

double addAll(double bill, double taxRate, double tipRate) {
double tax = bill x taxRate;
double tip = bill % tipRate;
return bill + tax + tip;

}

When you have these new tax and tip variables, thebill parameter always stores
its original value — the value of the untaxed, untipped meal.

After developing this improved code, you make a mental note that the bill vari-
able’s value shouldn’t change. Months later, when your users are paying big bucks
for your app and demanding many more features, you might turn the program
into a complicated, all-purpose meal calculator with localized currencies and tip-
ping etiquette from around the world. Whatever you do, you always want easy
access to that original bill value.

After your app has gone viral, you’re distracted by the need to count your earn-
ings, pay your servants, and maintain the fresh smell of your private jet’s leather

CHAPTER 7 Though These Be Methods, Yet There Is Madness in't 185

186

seats. With all these pressing issues, you accidentally forget your old promise not
to change the bill variable. You change the variable’s value somewhere in the
middle of your 1000-line program. Now you’ve messed everything up.

But wait! You can have Java remind you that the bill parameter’s value doesn’t
change. To do this, you add the keyword final (one of Java’s modifiers) to the
method declaration’s parameter list. And while you’re at it, you can add final to
the other parameters (taxRate and tipRate) in the addAll method’s parameter
list:

double addAll (final double bill, final double taxRate, final double tipRate) {
double tax = bill % taxRate;
double tip = bill % tipRate;
return bill + tax + tip;

}

With this use of the word final, you’re telling Java not to let you change a param-
eter’s value. If you plug the newest version of addAl1l into the code in Listing 7-4,
bill becomes 100.00 and bill stays 100.00 throughout the execution of the
addAll method. If you accidentally add the statement

bill += valetParkingFee;

to your code, Android Studio flags that line as an error because a final param-
eter’s value cannot be changed. Isn’t it nice to know that, with servants to manage
and your private jet to maintain, you can still rely on Java to help you write a good
Android app?

PART 2 Writing Your Own Java Programs

IN THIS CHAPTER

» Making decisions with Java
statements

» Repeating actions with Java
statements

Chapter S
What Java Does
(and When)

uman thought centers around nouns and verbs. Nouns are the “stuff,” and

verbs are the stuff’s actions. Nouns are the pieces, and verbs are the glue.

Nouns are, and verbs do. When you use nouns, you say “book,” “room,” or
“stuff.” When you use verbs, you say “do this,” “do that,” “tote that barge,” or
“lift that bale.”

Java also has nouns and verbs. Java’s nouns include int and String, along with
Android-specific terms such as AppCompatActivity, EditText, and TextView.
Java’s verbs involve assigning values, choosing among alternatives, repeating
actions, and taking other courses of action.

This chapter covers some of Java’s verbs. (In the next chapter, I bring in the nouns.)

Making Decisions

When you’re writing Java programs, you’re continually hitting forks in roads. Did
the user type the correct password? If the answer is yes, let the user work; if it’s
no, kick the bum out. The Java programming language needs a way to make a
program branch in one of two directions. Fortunately, the language has a way: It’s
the if statement. The use of the i f statement is illustrated in Listing 8-1.

CHAPTER 8 What Java Does (and When) 187

m Using an if Statement

package com.allmycode.a@8_01;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.CheckBox;

import android.widget.EditText;

import android.widget.TextView;

import java.text.NumberFormat;

public class MainActivity extends AppCompatActivity {
EditText ageEditText;
CheckBox specialShowingCheckBox;

TextView outputView;

@override
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

ageEditText = (EditText) findViewById(R.id.ageEditText);
specialShowingCheckBox =

(CheckBox) findViewById(R.id.specialShowingCheckBox);
outputView = (TextView) findViewById(R.id.outputView);

public void onButtonClick(View view) {
int age = Integer.parselnt(ageEditText.getText().toString());
boolean isSpecialShowing = specialShowingCheckBox.isChecked();
double price;

NumberFormat currency = NumberFormat.getCurrencyInstance();

if ((age < 18 || 65 <= age) & !isSpecialShowing) {

price = 7.00;
} else {
price = 10.00;

outputView.setText(currency. format(price));

188 PART 2 Writing Your Own Java Programs

Listing 8-1 revives a question that I pose in Chapters 5 and 6: How much should a
person pay for a movie ticket? Most people pay $10. But when the movie has no
special showings, youngsters (under 18) and seniors (65 and older) pay only $7.

In Listing 8-1, a Java if statement determines a person’s eligibility for the
discounted ticket. If this condition is true:

(age < 18 || 65 <= age) && !isSpecialShowing

the price becomes 7.00; otherwise, the price becomes 10.00. In either case, the
code displays the price in a TextView component. (See Figure 8-1.)

[] special showing

PRICE?

FIGURE 8-1: $7.00
Checking the
ticket price.

Java if statements

An i f statement has this form:
if (condition) {
statements to be executed when the condition is true

} else {
statements to be executed when the condition is false

In Listing 8-1, the condition being tested is
(age < 18 || 65 <= age) && !isSpecialShowing

The condition is either true or false — true for youngsters and seniors when
there’s no special showing and false otherwise.

CHAPTER 8 What Java Does (and When) 189

190

CROSS-
REFERENCE

Conditions in if statements

The condition in an if statement must be enclosed in parentheses. The condition
must be a boolean expression — an expression whose value is either true or
false. For example, the following condition is okay:

if (numberOfTries < 17) {

But the strange kind of condition that you can use in other (non-Java) languages —
languages such as C++ — is not okay:

if (17) { //This is incorrect.

See Chapter 5 for information about Java’s primitive types, including the boolean
type.

Omitting braces

You can omit an if statement’s curly braces when only one statement appears
between the condition and the word else. You can also omit braces when only one
statement appears after the word else. For example, the following chunk of code
is right and proper:

if ((age < 18 || 65 <= age) && !isSpecialShowing)

price = 7.00;
else
price = 10.00;

The code is correct because only one statement (price = 7.00) appears between
the condition and the else, and only one statement (price = 10.00) appears
after the word else.

An if statement can also enjoy a full and happy life without an else part. The
following code snippet contains an assignment statement followed by a complete
if statement:

price = 10.00;
if ((age < 18 || 65 <= age) && !isSpecialShowing)
price = 7.00;

Compound statements

An if statement is one of Java’s compound statements because an if statement
normally contains other Java statements. For example, the if statement in
Listing 8-1 contains the two assignment statements price = 7.00 and price =
10.00.

PART 2 Writing Your Own Java Programs

FIGURE 8-2:
Running a tiny
calculator app.

A compound statement might even contain other compound statements. In this
example:

price = 10.00;
if (age < 18 || 65 <= age) {
if (!isSpecialShowing) {
price = 7.00;
}

one if statement (with the condition age < 18 || 65 <= age) contains another
i f statement (with the condition ! isSpecialShowing).

Choosing among many alternatives

A Java i f statement creates a fork in the road: Java chooses between two alterna-
tives. But some problems lend themselves to forks with many prongs. What’s the
best way to decide among five or six alternative actions?

For me, multipronged forks are scary. In my daily life, I hate making decisions.
(If a problem crops up, I would rather have it be someone else’s fault.) So, writing
the previous sections (on making decisions with Java’s i f statement) knocked the
stuffing right out of me. That’s why my mind boggles as I begin this section on
choosing among many alternatives.

This section’s example is a tiny calculator. The user types in two numbers and
then presses one of four buttons. I label the buttons with the symbols of the four
common arithmetic operations. See Figure 8-2.

16.5+10.0

CHAPTER 8 What Java Does (and When) 191

When I create the four buttons, I give each button an id value. How about the
names buttonAdd, buttonSubtract, buttonMultiply, and buttonDivide for the
buttons’ id values? That sounds good.

For a reminder about id values, refer to Chapter 3.
CROSS- I also give each button an onClick attribute. In fact, I set each button’s onClick
REFERENCE . . .
attribute to the name onButtonClick. So if the user clicks one of the buttons,
Android calls my activity’s onButtonClick method.
But wait! Any of the four buttons sends Android to my activity’s onButtonClick

method. How does my code know which of the buttons the user clicked? Listing 8-2
has the answer.

m Switching from One Button to Another

package com.allmycode.a@8_02;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
EditText numberLeftEditText, numberRightEditText;

TextView operatorView, resultView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

numberLeftEditText = (EditText) findViewById(R.id.numberLeftEditText);
numberRightEditText = (EditText) findViewById(R.id.numberRightEditText);
operatorView = (TextView) findViewById(R.id.operatorView);

resultView = (TextView) findViewById(R.id.resultView);

public void onButtonClick(View view) {
double numberlLeft =
Double.parseDouble(numberLeftEditText.getText().toString());
double numberRight =
Double.parseDouble(numberRightEditText .getText().toString());

102 PART 2 Writing Your Own Java Programs

String operatorSymbol = "";

double result;

switch (view.getId()) {

case R.id.buttonAdd:
operatorSymbol = "+";
result = numberLeft + numberRight;
break;

case R.id.buttonSubtract:
operatorSymbol = "-";
result = numberLeft - numberRight;
break;

case R.id.buttonMultiply:
operatorSymbol = "x";
result = numberLeft % numberRight;
break;

case R.id.buttonDivide:
operatorSymbol = "/";

result = numberLeft / numberRight;

break;
default:
operatorSymbol = "?";
result = 0;
break;

operatorView.setText(operatorSymbol);

resultView.setText(Double.toString(result));

In Figure 8-2, the user enters the numbers 16.5 and 10.0 in the two Edi tText com-
ponents. Then the user clicks the button that has a plus sign on its face. As a result,
Android calls the onButtonClick method in Listing 8-2. What happens next?

The program enters the switch statement in Listing 8-2. The switch statement
starts with the line

switch (view.getId()) {

That line contains the expression view.getId(). The name view (a parameter
of the onButtonClick method) refers to whatever component the user clicked.
That component’s get Id method returns the component’s id. For example, if the
user clicks the plus-sign button, the value of view.getId() is the same as the

CHAPTER 8 What Java Does (and When) 193

194

value of R.id.buttonAdd. If the user clicks the times-sign button, the value of
view.getId() is the same as the value of R.id.buttonMultiply. And so on.

A switch statement contains case clauses, followed (optionally) by adefault clause.
In Listing 8-2, Java compares the value of view.getId() withR. id.buttonAdd (the
value in the first of the case clauses). If the user clicked the plus-sign button, the
value of view.getId() is the same as the value of R. id. buttonAdd, and the program
executes the statements after the words case R.id.buttonAdd.

In Listing 8-2, the statements immediately after case R.id.buttonAdd are

operatorSymbol = "+"
result = numberLeft + numberRight;
break;

The first two statements set the values of operatorSymbol and result in prepa-
ration for displaying these values on the user’s screen. The third statement
(the break statement) jumps out of the entire switch statement, skipping past all
the other case clauses and past the default clause to get to the last part of the
program.

After the switch statement, the statements

operatorView.setText (operatorSymbol);

resultView.setText(Double.toString(result));

display the operatorSymbol and result values in TextView components on the
user’s screen. (Refer to Figure 8-2.)

Take a break

This news might surprise you: The end of a case clause (the beginning of another
case clause) doesn’t automatically make the program jump out of the switch
statement. If you forget to add a break statement at the end of a case clause, the
program finishes the statements in the case clause and then continues executing the
statements in the next case clause. Imagine that I write the following code (and omit
the R.id.buttonAdd case’s break statement):

case R.id.buttonAdd:
operatorSymbol = "+"
result = numberLeft + numberRight;
case R.id.buttonSubtract:
operatorSymbol = "-";
result = numberLeft - numberRight;
break;

. etc.

PART 2 Writing Your Own Java Programs

REMEMBER

With this modified code (and with view.getId() equal to R.id.buttonAdd), the
program sets operatorSymbol to "+", setsresult to numberLeft + numberRight,
sets operatorSymbol to "-", sets result to numberLeft - numberRight, and,
finally, breaks out of the switch statement (skipping past all other case clauses
and the default clause). The upshot of the whole thing is that operatorSymbol
has the value "-" (not "+") and that result is numberLeft - numberRight (not
numberLeft + numberRight).

This phenomenon of jumping from one case clause to another (in the absence of
a break statement) is called fall-through, and, sometimes, it’s useful. Imagine a
dice game in which 7 and 11 are instant wins; 2, 3, and 12 are instant losses; and
any other number (from 4 to 10) tells you to continue playing. The code for such a
game might look like this:

switch (roll) {

case T:

case 11:
message = "win";
break;

case 2:

case 3:

case 12:
message = "lose";
break;

case 4:

case 5:

case 6:

case 8:

case 9:

case 10:
message = "continue";
break;

default:
message = "not a valid dice roll";

break;

If youroll a 7, you execute all statements immediately after case 7 (of which there
are none), and then you fall-through to case 11, executing the statement that
assigns "win" to the variable message.

Every beginning Java programmer forgets to put a break statement at the end of
a case clause. When you make this mistake, don’t beat yourself up about it. Just
remember what’s causing your program’s unexpected behavior, add break state-
ments to your code, and move on. As you gain experience in writing Java

CHAPTER 8 What Java Does (and When) 195

196

LD,
TECHNICAL
STUFF

OLAOD,
TECHNICAL
STUFF

programs, you’ll make this mistake less and less frequently. (You'll still make the
mistake occasionally, but not as often.)

In this section, I harp on the use of the break statement as if it’s the only way to
avoid fall-through. But in truth, there are other ways. You can see another way in
this chapter’s later section “Take a break from using the break statement.” With
or without these other ways, reminding yourself about fall-through by thinking
“break, break, break!” is a good idea.

Java selects a case clause

When you run the code in Listing 8-2, you can click any of the four buttons. If you
click the times-sign button, Java looks for a match between the times-sign
button’s id and the values in the case expressions. Java skips past the statements
in the case R.id.buttonAdd clause and then skips past the statements in the
R.id.buttonSubtract clause. The program hits pay dirt when it reaches the case
R.id.buttonMultiply clause and executes that clause’s statements, making
operatorSymbol be "x" and making result be numberLeft * numberRight. Then
the case R.id.buttonMultiply clause’s break statement makes the program
skip the rest of the stuff in the switch statement.

The default clause

A switch statement’s optional default clause is a catchall for values that don’t
match any of the case clauses’ values. You might enhance the calculator app by
adding a square root button to the activity’s screen but then forget to create a case
clause for the new button. Then, if you run the app and click the square root but-
ton, Java doesn’t fix on any of the case clauses. Java skips past all the case clauses
and executes the code in the default clause, making operatorSymbol be "?" and
making result be 0.

When you create a switch statement, your switch statement doesn’t have to have
a default clause. But if it doesn’t, you probably haven’t planned for all possible
contingencies. You should always plan for contingencies. Good planning makes a
good, sturdy app, and a good, sturdy app gets high ratings on Google Play.

The last break statement in Listing 8-2 tells Java to jump to the end of the switch
statement, skipping any statements after the default clause. But look again.
Nothing comes after the default clause in the switch statement! Which state-
ments are being skipped? The answer is none. I put a break at the end of the
default clause for good measure. This extra break statement doesn’t do any-
thing, but it doesn’t do any harm, either.

PART 2 Writing Your Own Java Programs

Oops!

Figures 8-3 and 8-4 show you what happens when the app in Listing 8-2 divides
a number by zero.

W 1m

91.43/0

FIGURE 8-3:
Dividing almost
any number
by zero.

Infinity

4w 11:00

FIGURE 8-4:
Dividing zero
by zero.

Dividing a number by zero might give you Infinity — an inspiring value. But divid-
ing zero by zero gives you NaN, which stands for Not a Number. In general, you
probably don’t want the user to divide by zero, so you can add code that makes
dividing by zero a “no-no.” Here’s the code:

if (Double.isInfinite(result) || Double.isNaN(result)) {
resultView.setText("Bad value!");

} else {
resultView.setText(Double.toString(result));

}
The Double.isInfinite and Double.isNaN methods do what their names

advertise. If the user becomes frisky and tries to crash your app with a zero divi-
sor, your app tells the user to behave.

CHAPTER 8 What Java Does (and When) 197

198

TIP

In this book, I create examples with the novice developer in mind. In some cases,
I break with recommended Android coding guidelines to keep the code simple and
readable. For example, in an industrial-strength Android program, you should
avoid statements such as

resultView.setText("Bad value!");

This statement displays the English language phrase Bad value! on every device,
even if the device’s language setting is for German or Chinese. To create an app
that adapts to non-English languages, you don’t put String values in the app’s
setText method calls. Instead, you put references to string resources in the
setText method calls.

At this point, you may ask “What’s a reference to string resource?” To that ques-
tion I reply “See Chapter 11.”

Some formalities concerning
Java switch statements

A switch statement has the following form:

switch (expression) {
case constant1:
statements to be executed when the
expression has value constanti
case constant2:
statements to be executed when the
expression has value constant2

case ...

default:
statements to be executed when the
expression has a value different from

any of the constants

You can’t put any old expression in a switch statement. The expression that’s
tested at the start of a switch statement must have
¥ One of these primitive types: char, byte, short, or int
or
3 One of these wrapper types: Character, Byte, Short, or Integer

or

PART 2 Writing Your Own Java Programs

¥ TheString type
or

3 Anenum type

@ For some words of wisdom concerning Java’s wrapper types, see Chapter 12.

aRoss. An enum type is a type whose values are limited to the few that you declare. For
example, the line

enum TrafficSignal {GREEN, YELLOW, RED}

defines a type whose only values are GREEN, YELLOW, and RED. Elsewhere in your
code, you can write

TrafficSignal signal;
signal = TrafficSignal.GREEN;

to make use of the TrafficSignal type.

Repeating Instructions
Over and Over Again

In 1966, the company that brings you Head & Shoulders shampoo made history. On
the back of the bottle, the directions for using the shampoo read, “Lather, rinse,
repeat.” Never before had a complete set of directions (for doing anything, let
alone shampooing hair) been summarized so succinctly. People in the direction-
writing business hailed it as a monumental achievement. Directions like these
stood in stark contrast to others of the time. (For instance, the first sentence on a
can of bug spray read, “Turn this can so that it points away from your face.” Duh!)

Aside from their brevity, the characteristic that made the Head & Shoulders direc-
tions so cool was that, with three simple words, they managed to capture a notion
that’s at the heart of all step-by-step instruction-giving, namely, the notion of
repetition. That last word, repeat, turned an otherwise bland instructional drone
into a sophisticated recipe for action.

When you follow directions, you usually don’t just follow one instruction after
another. Instead, you make turns in the road. You make decisions (“If HAIR IS
DRY, then USE CONDITIONER,”) and you repeat steps (“LATHER-RINSE, and
then LATHER-RINSE again.”). In application development, you use decision-
making and repetition all the time.

CHAPTER 8 What Java Does (and When) 199

Check, and then repeat

In this chapter’s earlier “Take a break” section, I describe a simplified version of
the dice game called Craps. Keep rolling the dice until you roll 2, 3, 7, 11, or 12. If
you finish with 7 or 11, you win. But if you finish with 2, 3, or 12, you lose.

The program in Listing 8-3 uses Java’s Random class to simulate a round of play.

m Look Before You Leap

200

package com.allmycode.a@d8_03;

import android.os.Bundle;
import android.support.vT.app.AppCompatActivity;
import android.view.View;

import android.widget.TextView;
import java.util.Random;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

public void onButtonClick(View view) {
Random random = new Random();

String message = "continue";
textView.setText("");

while (message.equals("continue")) {
int numberA = random.nextInt(6) + 1;
int numberB = random.nextInt(6) + 1;
int total = numberA + numberB;

message = getMessage(total);

PART 2 Writing Your Own Java Programs

textView.append(numberA + " + " + numberB + " = " + total +

+ message + "\n");

String getMessage(int total) {
switch (total) {
case T:
case 11:
return "win";
case 2:
case 3:
case 12:
return "lose";
case 4:
case 5:
case 6:
case 8:
case 9:
case 10:
return "continue";
default:

return "not a valid dice roll";

A run of the code in Listing 8-3 is shown in Figure 8-5.

PLAY

A

3+ 6 =9 continue

3+ 5= 8 continue
3+ 5 =8 continue
4+ 6 =10 continue
5+ 3 = 8 continue
6+ 3 =9 continue
2+ 2 = 4 continue
2+ 4 = 6 continue

FIGURE 8-5: 6+1=7win

Try, try, try again.

CHAPTER 8 What Java Does (and When) 201

Take your chances

In Listing 8-3, I spread the statements

import java.util.Random;
Random random = new Random();

int numberA = random.nextInt(6) + 1;

int numberB = random.nextInt(6) + 1;

across the code to produce two randomly chosen int values. A single call to
random.nextInt(6) returns a randomly chosen int value from 0 to 5 inclusive.
(Yes, you read it correctly. The number 6 means “return 0, 1, 2, 3, 4, or 5.”) By
adding 1 to the value returned by random.nextInt(6), you get a randomly chosen
int value from 1 to 6 — exactly the kind of value you get when you roll a single
die. Calling random.nextInt(6) +1 twice is like rolling two dice.

Java’s Random class generates sequences of numbers that, by the most stringent

S technical standards, are “almost random.” To use the correct terminology, the

7 Random class creates pseudo-random sequences of numbers. You wouldn’t use

TecHnicAL Java’s Random class for a multimillion-dollar, government-sponsored lottery

STUFF game. But you can use the Random class to help demonstrate loops in an introduc-
tory programming book.

Testing String values for equality

Java has several ways to test for equality: “Is this value the same as that value?”
None of these ways is the first one you’d consider. In particular, to find out
whether someone’s age is 35, you don’t write if (age = 35). Instead, you use a

double equal sign (==): if (age == 35). In Java, the single equal sign (=) is
reserved for assignment. So age = 35 means “Let age stand for the value 35”, and
age == 35 means “True or false: Does age stand for the value 35”?

Comparing two strings is a different story. When you compare two strings, you
don’t use the double equal sign. Using a double equal sign would ask a question
that’s usually not what you want to ask: “Is this string stored in exactly the same
place in memory as that other string?” Instead, you want to ask, “Does this string
have the same characters in it as that other string?” To ask the second question
(the more appropriate one), use Java’s equals method. To call this equals method,
follow one of the two strings with a dot and the word equals, and then with a
parameter list containing the other string:

while (message.equals("continue")) {

202 PART 2 Writing Your Own Java Programs

TIP

The equals method compares two strings to see whether they have the same
characters in them. In Listing 8-3, the variable message refers to a string, and the
text "continue" refers to a string. The condition message.equals("continue")
is true if message refers to a string whose characters are the letters in the
"continue" string.

Repeat, repeat, repeat
A while statement tells Java to do things repeatedly. In plain language, the while

statement in Listing 8-3 says:

while (message is "continue") {

roll the dice and add new information to the textView

The while statement is one of Java’s compound statements. It’s also one of Java’s
looping statements because, when executing a while statement, Java can go into a
loop, spinning around and around, executing a certain chunk of code over and
over again.

In a looping statement, each go-around is an iteration.

In Listing 8-3, notice how the string that I append to the textView component’s
text ends with "\n". The \n says “go to a new line before adding more text after
this.” That’s why, in Figure 8-5, each simulated dice roll appears on its own,
separate line. The \n business is an example of an escape sequence. Other escape
sequences include \t for tab, \b for backspace, \" for a double quotation mark,
and \\ for the backslash itself.

Some formalities concerning Java
while statements

A while statement has this form:

while (condition) {

statements inside the loop

CHAPTER 8 What Java Does (and When) 203

204

Java repeats the statements inside the loop over and over again as long as the

condition in parentheses is true:

Check to make sure that the condition is true;

Execute the statements inside the loop.

Check again to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Execute the statements inside the loop.

And so on.

For Listing 8-3, the repetition looks like this:

Check to make sure that the message is "continue",

Roll the dice, get a message, and display stuff on the screen.

Check again to make sure that the message is "continue";

Roll the dice, get a message, and display stuff on the screen.

Check again to make sure that the message is "continue";

Roll the dice, get a message, and display stuff on the screen.
And so on.

At some point, the while statement’s condition becomes false. (Generally, this
happens because one of the statements in the loop changes one of the program’s
values.) When the condition becomes false, Java stops repeating the statements
in the loop. (That is, Java stops iterating.) Instead, Java executes whatever state-
ments appear immediately after the end of the while statement:

Check again to make sure that the condition is true;

Execute the statements inside the loop.

Check again to make sure that the condition is true;

Execute the statements inside the loop.

Check again to make sure that the condition is true;
Oops! The condition is no longer true!

Execute any code that comes immediately after the while statement.

PART 2 Writing Your Own Java Programs

o
S5
TECHNICAL
STUFF

For Listing 8-3, the repetition looks like this:

Check to make sure that the message is "continue";

Roll the dice, get a message, and display stuff on the screen.

Check again to make sure that the message is "continue";

Roll the dice, get a message, and display stuff on the screen.

Check again to make sure that the message is "continue";
Oops! The message is no longer "continue"!

Execute any code that comes immediately after the while statement.

In Listing 8-3, the onButtonClick method has no code after the while statement.
So, when the message.equals("continue") condition is no longer true, the code
in Listing 8-3 doesn’t do anything. The code sits and waits for the user to click
another button, for the user to back away from the activity, or for some other
interesting event to happen.

Take a break from using the break statement

In this chapter’s earlier section “Take a break,” I promise to show you an alterna-
tive way of avoiding unwanted fall-through. The switch statement in Listing 8-3
avoids fall-through by jumping clear out of getMessage method.

For example, if the value of total is 7, the switch statement matches total with
the first case 7 clause. The case 7 clause has no statements to execute. But
because of fall-through, Java marches onward into the case 11 clause. Inside that
case 11 clause, Java encounters the return "win" statement. With this return
"win" statement, Java ends execution of anything inside the getMessage method
and returns to the statements in while loop. It all works very nicely!

Variations on a theme

Awhile statement’s condition might become false in the middle of an iteration,
before all the iteration’s statements have been executed. When this happens, Java
doesn’t stop the iteration dead in its tracks. Instead, Java executes the rest of the
loop’s statements. After executing the rest of the loop’s statements, Java checks
the condition (finding the condition to be false) and marches on to whatever code
comes immediately after the while statement.

The previous paragraph should come with some fine print. To be painfully accu-
rate, I should point out a few ways for you to stop abruptly in the middle of a loop
iteration. You can execute a break statement to jump out of a while statement
immediately. (It’s the same break statement that you use in a switch statement.)
Alternatively, you can execute a continue statement (the word continue,

CHAPTER 8 What Java Does (and When) 205

206

followed by a semicolon) to jump abruptly out of an iteration. When you jump out
with a continue statement, Java ends the current iteration immediately and then
checks the while statement’s condition. A true condition tells Java to begin the
next loop iteration. A false condition tells Java to go to whatever code comes after
the while statement.

Many of the if statement’s tricks apply to while statements as well. A while
statement is a compound statement, so it might contain other compound state-
ments. Also, when a while statement contains only one statement, you can omit
curly braces. Here’s an example:

int newNumber = 1;

while (newNumber < 4)
newNumber = random.nextInt(6) + 1;

This code repeatedly fetches randomly generated values for newNumber as long as
newNumber is less than 4.

Priming the pump

Java’s while statement uses the policy “Look before you leap.” Java always checks
a condition before executing the statements inside the loop. Among other things,
this forces you to prime the loop. When you prime a loop, you create statements
that affect the loop’s condition before the beginning of the loop. (Think of an old-
fashioned water pump and how you have to prime the pump before water comes
out.) In Listing 8-3, the initialization in

String message = "continue";

primes the loop. This initialization — the = part — gives message its first value so
that when you check the condition message.equals("continue") for the first
time, the variable message refers to a value that’s worth checking.

Here’s something you should consider when you create a while statement: Java
can execute a while statement without ever executing the statements inside the
loop. For example, in Listing 8-3, change the message variable’s initialization to

String message = "win";

The code checks the condition message.equals("continue") before performing
any loop iterations. But before performing any loop iterations, the condition
message.equals("continue") is false. Java skips past the statements inside the
loop and goes immediately to a place after while statement. In this situation, Java
never rolls the dice and never displays any info about a roll.

PART 2 Writing Your Own Java Programs

Repeat, and then check

The while statement (which I describe in the previous section) is the workhorse
of repetition in Java. Using while statements, you can do any kind of looping that
you need to do. But sometimes it’s convenient to have other kinds of looping
statements. For example, occasionally you want to structure the repetition so that
the first iteration takes place without checking a condition. In that situation, you
use Java’s do statement. Listing 8-4 is almost the same as Listing 8-3. But in
Listing 8-4, I replace awhile statement with a do statement.

m Leap before You Look

package com.allmycode.ad8_04;

import android.os.Bundle;
import android.support.vT.app.AppCompatActivity;
import android.view.View;

import android.widget.TextView;
import java.util.Random;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main)

textView = (TextView) findViewById(R.id.textView);

public void onButtonClick(View view) {
Random random = new Random();

String message;
textView.setText("");

do {
int numberA = random.nextInt(6) + 1;
int numberB = random.nextInt(6) + 1;
int total = numberA + numberB;

message = getMessage(total);

(continued)

CHAPTER 8 What Java Does (and When) 207

textView.append(numberA + " + " + numberB + " = " + total +

" " 4 message + "\n");

} while (message.equals("continue"));

String getMessage(int total) {
switch (total) {
case T:
case 11:
return "win";
case 2:
case 3:
case 12:
return "lose";
case 4:
case 5
case 6
case 8:
case 9
case 10:
return "continue";
default:

return "not a valid dice roll";

With a do statement, Java jumps right in, takes action, and then checks a condi-
tion. If the condition is true, Java goes back to the top of the loop for another go-
round. If the condition is false, execution of the loop is done.

A do statement contains the while keyword, but a while statement never contains
the do keyword. If it helps, think of Java’s do statement as ado. . .while statement.

REMEMBER

Walls built with braces

Unlike a while statement, a do statement generally doesn’t need to be primed. In
Listing 8-4, I don’t even bother to give message an initial value.

Because message isn’t checked until the last line of the do statement, you might
be tempted to declare message inside the do statement.

208 PART 2 Writing Your Own Java Programs

// Don't "do" this... (ha ha!)

do {
int numberA = random.nextInt(6) + 1;
int numberB = random.nextInt(6) + 1;

int total = numberA + numberB;

String message;

message = getMessage(total);

textView.append(numberA + " + " + numberB + " = " + total +

" " + message + "\n");
} while (message.equals("continue"));

Unfortunately, declaring message inside of the do statement doesn’t work. In
Figure 8-6, the shaded area marks the code where the declaration of message is
in play.

public void onButtonClick (View view) {
Random random = new Random() ;

textView.setText ("") ;

do {
int numberA = random.nextInt(6) + 1;
int numberB = random.nextInt(6) + 1;
int total = numberA + numberB;
String message = getMessage (total) ;

textView.append (numberA + " + " + numberB + " = " + total +
" " + message + "\n");
FIGURE 8-6:
A declaration } while (message.equals("continue"));
inside of a do
statement’s block. !

In this incorrect code snippet, you can use the variable message only between the
do statement’s open curly brace and the do statement’s close curly brace. But the
words while (message.equals("continue")) aren’t between the two curly
braces. With this snippet, Android Studio displays an error message and refuses to
run your code. Too bad!

CHAPTER 8 What Java Does (and When) 209

FIGURE 8-7:

A declaration
outside of a do
statement’s block.

210

S
T
TECHNICAL
STUFF

The stuff between an open curly brace and its corresponding close curly brace is
called a block. Here’s the story:

»

»

Every block, whether it's part of a method declaration, a do statement,
an if statement, a while statement, or any other Java construct, traps
any of its variable declarations for use only inside the block.

If you declare a variable inside a block, you can't use that variable outside the
block.

But if you go from outside a block to the inside of a block, the opposite is
true. ...

If a variable’s declaration is in force immediately before the start of a
block, you can use that variable inside the block, and you can use that
variable in the code that comes after the block.

In Figure 8-7, | declare message before the do statement's block. The shaded
area marks the code where this declaration of message is in play.

This second bullet explains why it's okay to declare message before the start
of the do statement in Listing 8-4. For the same reason, in Listing 8-4, I'm able
to declare textView before any of the method declarations, and then use the
textView variable in two of those method declarations.

public void onButtonClick (View view) {

Random random = new Random() ;
String message;

textView.setText ("") ;

do{

int numberA = random.nextInt(6) + 1;
int numberB = random.nextInt(6) + 1;
int total = numberA + numberB;
message = getMessage (total) ;

textView.append (numberA + " + " + numberB + " = " + total +
" " + message + "\n");

} while (message.equals ("continue")) ;

If you want, you can use a name such as message in two different declarations.
You can put one declaration outside the do statement’s block, and a second decla-
ration inside the do statement’s block. But if you try this, you’ve declared two
different variables, both with the same name message. It’s like having two people
named “Barry Burd” living in the same town. They have the same name, but

PART 2 Writing Your Own Java Programs

they’re not the same person. The two message variables don’t share any values.
Except for coincidentally having the same spelling, the two variable names bear
no relation to one another.

Some formalities concerning Java do statements

A do statement has the following form:

do {
statements inside the loop
} while (condition)

Java executes the statements inside the loop and then checks to see whether
the condition in parentheses is true. If the condition in parentheses is true, Java
executes the statements inside the loop again. And so on.

Java’s do statement uses the policy “Leap before you look.” The statement checks
a condition immediately after each iteration of the statements inside the loop.

A do statement is good for situations in which you know for sure that you should
perform the loop’s statements at least once. But in practice, you see many more
while statements than do statements. In the lion’s share of your processing sce-
narios, you check a condition before you start repeating things.

Count, count, count

Java’swhile and do statements check conditions to decide whether to keep repeat-
ing things. That’s great but, sometimes, the condition is mundane. You don’t check
for a special showing or a "continue" message. You simply want to repeat some-
thing a certain number of times. To do that, you should use Java’s for statement.

Suppose that you want to estimate how many times a player wins or loses in this
chapter’s simplified dice game. You can use mathematics to calculate probabili-
ties, but you can also experiment by rolling the dice 100 times. To do that, you put
the dice-rolling statements inside a Java for statement. Listing 8-5 shows you
what to do.

m A Loop That Counts

package com.allmycode.ad8_05;

import android.os.Bundle;
import android.support.vT.app.AppCompatActivity;
(continued)

CHAPTER 8 What Java Does (and When) 211

import android.view.View;

import android.widget.TextView;
import java.util.Random;

public class MainActivity extends AppCompatActivity {
TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

public void onButtonClick(View view) {
Random random = new Random();
String message;

int winCount = @, loseCount = 0;

for (int i =1; i <=100; i++) {
int numberA = random.nextInt(6) + 1;
int numberB = random.nextInt(6) + 1;
int total = numberA + numberB;

message = getMessage(total);

if (message.equals("win")) {
winCount++;
} else if (message.equals("lose")) {

loseCount++;

textView.setText("Wins: " + winCount + "\nLosses: " + loseCount);

String getMessage(int total) {
switch (total) {
case T:
case 11:
return "win";
case 2:

case 3:

212 PART 2 Writing Your Own Java Programs

FIGURE 8-8:
One run of
the code in
Listing 8-5.

case 12:

return "lose";
case 4:
case ©
case 6
case 8:
case 9
case 10:

return "continue";
default:

return "not a valid dice roll";

Listing 8-5 declares an int variable named i. This declaration is inside the first
line of the for statement. The starting value of i is 1. As long as the condition
i <= 100 is true, Java repeatedly executes the statements inside the loop. After
each iteration of the statements inside the loop, Java executes i++ (adding 1 to the
value of i).

After 100 iterations, the value of i gets to be 101, in which case the condition
i <= 100 is no longer true. At that point, Java stops repeating the statements
inside the loop and moves on to execute any statements that come after the for
statement.

In Listing 8-5, the statements inside the for loop simulate a roll of the dice, and
keep tallies of the number of winning and losing rolls. The only statement that
comes after the for loop is a statement that displays the tallies in the textView
component. A run of the code is shown in Figure 8-8.

Wins: 27
Losses: 16

CHAPTER 8 What Java Does (and When) 213

Notice the combination of i f statements in Listing 8-5. Some programming lan-
guages have their own special elseif keywords, but Java doesn’t have such a
thing. Instead, you can put an if statement inside the else clause of another if
statement. In Listing 8-5, Java checks to find out if the message is "win". When
themessage is "win", it’s the end of the i f statement story. But when the message
isn’t "win", Java goes on to check whether the message is "lose". When the
message is neither "win" nor "lose", the execution of these i f statements doesn’t
change either of the tallies’ values.

Some formalities concerning Java for statements
A for statement has the following form:

for (initialization ; condition ; update) f{
statements inside the loop

¥ Aninitialization (such as int i = 1 in Listing 8-5) defines the action to be
taken before the first loop iteration.

¥ Acondition (such asi <= 100 in Listing 8-5) defines the value to be checked
before an iteration. If the condition is true, Java executes the iteration. If the
condition is false, Java doesn't execute the iteration, and it moves on to
execute whatever code comes after the for statement.

3 Anupdate (such as i++ in Listing 8-5) defines an action to be taken at the end
of each loop iteration.

You can omit the curly braces when only one statement is inside the loop.

What's Next?

214

This chapter describes several ways to jump from one place in your code to
another.

Java provides other ways to move from place to place in a program, including
enhanced for statements and try statements. But descriptions of these elements
don’t belong in this chapter. To understand the power of enhanced for statements
and try statements, you need a firm grasp of classes and objects, so Chapter 9
dives fearlessly into the classes-and-objects waters.

I’'m your swimming instructor. Everyone into the pool!

PART 2 Writing Your Own Java Programs

Working with
the Big Picture:
Object-Oriented
Programming

IN THIS PART ...

Understanding object-oriented programming (at last!)
Writing code that other developers can use

Reusing other developers' code

IN THIS CHAPTER

» The truth about object-oriented
programming

» Why a class is actually a Java type

» An end to the mystery surrounding
words like static

Chapter 9

Why Object-Oriented
Programming Is Like
Selling Cheese

ndy’s Cheese and Java Emporium carries fine cheeses and freshly brewed

java from around the world (especially from Java in Indonesia). The

Emporium is in Cheesetown, Pennsylvania, a neighborhood along the
Edenville—Cheesetown Road in Franklin County.

The emporium sells cheese by the bag, each containing a certain variety, such as
Cheddar, Swiss, Munster, or Limburger. Bags are labeled by weight and by the
number of days the cheese was aged (admittedly, an approximation). Bags also
carry the label Domestic or Imported, depending on the cheese’s country of origin.

Before starting up the emporium, Andy had lots of possessions — material and
otherwise. He had a family, a cat, a house, an abandoned restaurant property, a
bunch of restaurant equipment, a checkered past, and a mountain of debt. But for
the purpose of this narrative, Andy had only one thing: a form. Yes, Andy had
developed a form for keeping track of his emporium’s inventory. The form is
shown in Figure 9-1.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese =~ 217

Bag of Cheese

Kind S
Weight (in pounds): I:I
T
FIGURE 9-1: Domestic?:

An online form.

Exactly one week before the emporium’s grand opening, Andy’s supplier delivered

one bag of cheese. Andy entered the bag’s information into the inventory form.
The result is shown in Figure 9-2.

Bag of Cheese
Kind: Cheddar
Weight (1n pounds): 2.43
FIGURE9-2: | Aec (mndays)y: 2
Avirtual bag Domestic?: true W
of cheese.

Andy had only a form and a bag of cheese (which isn’t much to show for all his
hard work), but the next day the supplier delivered five more bags of cheese.

Andy’s second entry looked like the one shown in Figure 9-3, and the next several
entries looked similar.

Bag of Cheese
Kind: Blue
Weight (in pounds): 5987
FIGURE 9-3: Age (in days): 90
Another virtual Domestic?: false w
bag of cheese.

At the end of the week, Andy was giddy: He had exactly one inventory form and six
bags of cheese.

The story doesn’t end here. As the grand opening approached, Andy’s supplier
brought many more bags so that, eventually, Andy had his inventory form and
several hundred bags of cheese. The business even became an icon on Interstate
Highway 81 in Cheesetown, Pennsylvania. But as far as you’re concerned, the

218 PART 3 Working with the Big Picture: Object-Oriented Programming

business had, has, and always will have only one form and any number of
cheese bags.

That’s the essence of object-oriented programming!

Classes and Objects

Java is an object-oriented programming language. A program that you create in
Java consists of at least one class.

A class is like Andy’s blank form, described in this chapter’s introduction. That is,
a class is a general description of some kind of thing. In the introduction to this
chapter, the class (the form) describes the characteristics that any bag of cheese
possesses. But imagine other classes. For example, Figure 9-4 illustrates a bank
account class:

Bank Account
Account holder's name: l:l
Adsess:]
Phone mumber 1
Social security number: l:l
FIGURE 9-4: éccountbtylpe (checking, savings, etc.): l:l
Ao | Coent blance: I
account class.

Figure 9-5 illustrates a sprite class, which is a class for a character in a computer

game:
Sprite
Name: [1
Graphic image: I:I
Distance from left edge: I:I
Distance from top: I:I
Motion across (in pixels per second): I:I
Motion down (in pixels per second): I:I
FIGURE 9-5:
A sprite class.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 219

What is a class, really?

In practice, a class doesn’t look like any of the forms in Figures 9-1 through 9-5.
In fact, a class doesn’t look like anything. Instead, a Java class is a bunch of text
describing the kinds of things that I refer to as “blanks to be filled in.” Listing 9-1
contains a real Java class — the kind of class you write when you program in Java.

m A Class in the Java Programming Language

REMEMBER

A\

WARNING

package com.allmycode.a@9_01;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;

public boolean isDomestic;

As a developer, your primary job is to create classes. You don’t develop attractive
online forms like the form shown earlier, in Figure 9-1. Instead, you write Java
language code — code containing descriptions, like the one in Listing 9-1.

You won'’t find a folder named 09_o1 in the stuff that you downloaded from this
book’s website. That’s because the code in Listing 9-1 doesn’t constitute a
complete, runnable app. Instead, you can find the code from Listing 9-1 in this
chapter’s other projects — projects named 09_02, 09_03, and so on.

Compare Figure 9-1 with Listing 9-1. In what ways are they the same, and in what
ways are they different? What does one have that the other doesn’t have?

3 The form in Figure 9-1 appears on a user’s screen. The code in Listing 9-1
does not.

AJava class isn't necessarily tied to a particular display. Yes, you can display a
bank account on a user’s screen. But the bank account isn't a bunch of items
on a computer screen — it's a bunch of information in the bank’s computers.

In fact, some Java classes are difficult to visualize. Android’s SQL i teOpenHelper
class assists developers in the creation of databases. An SQLiteOpenHelper
doesn't look like anything in particular, and certainly not like an online form or
a bag of cheese.

3 Online forms appear in some contexts but not in others. In contrast,
classes affect every part of every Java program’s code.

220 PART 3 Working with the Big Picture: Object-Oriented Programming

»

»

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese

Forms show up on web pages, in dialog boxes, and in other situations. But
when you use a word processing program to type a document, you deal
primarily with free-form input. | didn't write this paragraph by filling in some
blanks. (Heaven knows! | wish | could!)

The paragraphs I've written started out as part of a document in a word
processing application. In the document, every paragraph has its own
alignment, borders, indents, line spacing, styles, and many other characteris-
tics. As a Java class, a list of paragraph characteristics might look something
like this:

class Paragraph {
int alignment;
int borders;
double leftIndent;
double lineSpacing;

int style;

When | create a paragraph, | don't fill in a form. Instead, | type words, and the
underlying word processing app deals silently with its Paragraph class.

The form shown in Figure 9-1 contains several fields, and so does the
code in Listing 9-1.

In an online form, a field is a blank space — a place that's eventually filled with
specific information. In Java, a field is any characteristic that you (the developer)
attribute to a class. The BagOfCheese class in Listing 9-1 has four fields, and
each of the four fields has a name: kind, weight, daysAged, or isDomestic.

Like an online form, a Java class describes items by listing the characteristics
that each of the items has. Both the form in Figure 9-1 and the code in
Listing 9-1 say essentially the same thing: Each bag of cheese has a certain
kind of cheese, a certain weight, a number of days that the cheese was aged,
and a domestic-or-imported characteristic.

The code in Listing 9-1 describes exactly the kind of information that
belongs in each blank space. The form in Figure 9-1 is much more
permissive.

Nothing in Figure 9-1 indicates what kinds of input are permitted in the Weight
field. The weight in pounds can be a whole number (0, 1, 2, and so on) or a
decimal number (such as 3.14159, the weight of a big piece of “pie”). What
happens if the user types the words three pounds into the form in Figure 9-1?
Does the form accept this input, or does the computer freeze up? A developer
can add extra code to test for valid input in a form, but, on its own, a form
cares little about the kind of input that the user enters.

221

222

©

REMEMBER

©

REMEMBER

In contrast, the code in Listing 9-1 contains this line:

double weight;

This line tells Java that every bag of cheese has a characteristic named weight
and that a bag's weight must be of type double. Similarly, each bag's daysAged
value is an int, each bag's isDomestic value is boolean, and each bag's kind
value has the type String.

The unfortunate pun in the previous paragraph makes life more difficult for
me, the author! A Java String has nothing to do with the kind of cheese

that peels into strips. A Java String is a sequence of characters, like the
sequence "Cheddar" or the sequence "qwoiehasl jsal" or the sequence
"Go2theMoon!". So the String kind line in Listing 9-1 indicates that a bag of
cheese might contain "Cheddar", but it might also contain "qwoiehasl jsal"
cheese or "Go2theMoon!" cheese. Well, that's what happens when Andy
starts a business from scratch.

If you look at Listing 9-1, you may notice my liberal use of the word public. In
declaring the BagOfCheese class, I've decided that everything should be public.
The class itself is public, kind field is public, the weight field is public, and so on.

When you declare a class, you don’t have to make things public. But in this
chapter’s examples, the keyword public helps a lot. To find out why, see the later
section “Java’s Modifiers.”

In an online form, fields are places where the user types text. And in a Java class
such as the class in Listing 9-1, variables such as kind, weight, daysAged, and
isDomestic are fields. In this section, I emphasize the similarity between a form’s
fields and a Java class’s fields. But don’t mistake form fields for Java class fields.
Form fields and Java class fields are two different kinds of things. A form’s field
may or may not be associated with a Java class’s variable. And a Java class’s field
may or may not make an appearance on any device’s screen.

What is an object?

At the start of this chapter’s detailed Cheese Emporium exposé, Andy had nothing
to his name except an online form — the form in Figure 9-1. Life was simple for
Andy and his dog Fido. But eventually the suppliers delivered bags of cheese. Sud-
denly, Andy had more than just an online form — he had things whose character-
istics matched the fields in the form. One bag had the characteristics shown in
Figure 9-2; another bag had the characteristics shown in Figure 9-3.

In the terminology of object-oriented programming, each bag of cheese is an
object, and each bag of cheese is an instance of the class in Listing 9-1.

PART 3 Working with the Big Picture: Object-Oriented Programming

You can also think of classes and objects as part of a hierarchy. The BagOfCheese
class is at the top of the hierarchy, and each instance of the class is attached to the
class itself. See Figures 9-6 and 9-7.

The diagrams in Figures 9-6 and 9-7 are part of the standardized Unified Model-
"6" ing Language (UML). For more info about UML, visit www.omg.org/spec/UML.

TECHNICAL
STUFF
BagOfCheese
kind: String
weight: double
FIGURE 9-6: daysAged: int
First, Andy isDomestic: boolean
has a class.
BagOfCheese
kind: String
weight: double
daysAged: int
isDomestic: boolean
:Bag0fCheese :Bag0fCheese
kind = “Cheddar” kind = “Blue”
FIGURE 9-7: weight = 2.43 weight = 5.987
Later, Andy has daysAged = 30 daysAged =90
a class and isDomestic = true isDomestic = false
two objects.

An object is a particular thing. (For Andy, an object is a particular bag of cheese.)
@ A class is a description with blanks to be filled in. (For Andy, a class is a form with
four blank fields: a field for the kind of cheese, another field for the cheese’s

rememser Weight, a third field for the number of days aged, and a fourth field for the
Domestic-or-Imported designation.)

And don’t forget: Your primary job is to create classes. You don’t develop attrac-

tive online forms like the form in Figure 9-1. Instead, you write Java language
code — code containing descriptions, like the one in Listing 9-1.

Creating objects

Listing 9-2 contains real-life Java code to create two objects: two instances of the
class in Listing 9-1.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese = 223

http://www.omg.org/spec/UML

m Creating Two Objects

package com.allmycode.a@9_02;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

import com.allmycode.a@9_01.BagOfCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

BagOfCheese bagl = new BagOfCheese();
bagl.kind = "Cheddar";

bagl.weight = 2.43;

bagl.daysAged = 30;

bagl.isDomestic = true;

BagOfCheese bag2 = new BagOfCheese();
bag2.kind = "Blue";
bag2.weight = 5.987;
bag2.daysAged = 90;

bag2.isDomestic = false;

textView.setText("");

textView.append(bagl.kind + ", " + bagl.weight + ", " +
bagl.daysAged + ", " + bagl.isDomestic + "\n");

textView.append(bag2.kind + ", " + bag2.weight + ", " +
bag2.daysAged + ", " + bag2.isDomestic + "\n");

22/ PART 3 Working with the Big Picture: Object-Oriented Programming

FIGURE 9-8:
Running the code
from Listing 9-2.

LD,
TECHNICAL
STUFF

CROSS-
REFERENCE

A run of the code in Listing 9-2 is shown in Figure 9-8.

Cheddar, 2.43, 30, true
Blue, 5.987, 90, false

To vary the terminology, I might say that the code in Listing 9-2 creates
“two BagOfCheese objects” or “two BagOfCheese instances,” or [might say that
the new BagOfCheese() statements in Listing 9-2 instantiate the BagOfCheese
class. One way or another, Listing 9-1 declares the existence of one class, and
Listing 9-2 declares another class — a class that declares the existence of two
objects.

In Listing 9-2, each use of the words new BagOfCheese() is a constructor call. For
details, see the “Calling a constructor” section, later in this chapter.

In Listing 9-2, I use ten statements to create two bags of cheese. The first state-
ment (BagOfCheese bagl = new BagOfCheese()) does three things:

¥ With the words
BagOfCheese bagil

the first statement declares that the variable bag1 refers to a bag of cheese.

¥ With the words

new BagOfCheese()

the first statement creates a bag with no particular cheese in it. (If it helps, you
can think of it as an empty bag reserved for eventually storing cheese.)

¥ Finally, with the equal sign, the first statement makes the bag1 variable refer
to the newly created bag.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese = 225

The next four statements in Listing 9-2 assign values to the fields of bag1:

bagl.kind = "Cheddar";
bagl.weight = 2.43;
bagl.daysAged = 30;

bagl.isDomestic = true;

To refer to one of an object’s fields, follow a reference to the object with a dot and
then the field’s name. (For example, follow bagl with a dot and then the field
name kind.)

REMEMBER
The next five statements in Listing 9-2 do the same for a second variable, bag2,
and a second bag of cheese.

ONE APP; TWO JAVA FILES

To run the code in Listing 9-2, | put two Java files (BagOfCheese. java from Listing 9-1
andMainActivity. java from Listing 9-2) in the same Android Studio project. To up
the ante a bit more, | put the two Java files into two different packages. As you can see
at the top of each listing, my BagOfCheese class is in the com.al lmycode .a@9_01
package, and myMainActivity classis in the com.allmycode.a@9_02 package.

| didn't have to create different classes for these two packages. But | was following my
convention of naming the packages after listing numbers. Then | realized that, with two
different package names, | can show you how to deal with new packages in Android
Studio. So here goes:

When you create a new project, Android Studio creates a package containing the proj-
ect's main activity. To add an additional package to the project, follow these steps:

1. Select the app/ java branch in the Project tool window.

2. In the main menu bar, choose File > New => Package.

A Choose Destination Directory dialog box appears. If this dialog box is the
same as the one that | see in mid-2016, the dialog box lists three directories —
androidTest/java, main/java, and test/ java.

3. Selectthemain/java directory.

226 PART 3 Working with the Big Picture: Object-Oriented Programming

6.

. Click OK.

The New Package dialog box appears.

. In the New Package dialog box, type the name of your new package.

When | started this section’s project, | already had a package named
com.allmycode.a@9_02. So, in the New Package dialog box, | typed
com.allmycode.a09_01, the name of the package for Listing 9-1.

Click OK.

Voila! Your project has a new package.

To add an additional class (such as BagOfCheese in Listing 9-1) to your project, follow
these steps:

1.

5.

In the Project tool window, select the branch of the package that will contain your
new class.

For example, if you're adding the BagOfCheese class in Listing 9-1, select the
app/java/com.allmycode/a@9_01 branch.

. In the main menu bar, choose File &> New => Java Class.

A Create New Class dialog box appears.

. In the Name field of the Create New Class dialog box, type the name of your new

class.

To create the class in Listing 9-1, | typed BagOfCheese.

. Make sure that the new class's package name appears in the dialog box’s

Package field.
Click OK.

And there you have it — a brand-new Java class in your Android app’s project.

Reusing names

In Listing 9-2, I declare two variables — bag1 and bag2 — to refer to two different
BagOfCheese objects. That’s fine. But sometimes, having only one variable and
reusing it for the second object works just as well, as shown in Listing 9-3.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese

227

m Reusing the bag Variable

package com.allmycode.a@9_03;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

import com.allmycode.a@9_01.BagOfCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

BagOfCheese bag = new BagOfCheese();
bag.kind = "Cheddar";

bag.weight = 2.43;

bag.daysAged = 30;

bag.isDomestic = true;

textView.setText("");

textView.append(bag.kind + ", " + bag.weight + ", " +

bag.daysAged + ", " + bag.isDomestic + "\n");
bag = new BagOfCheese();

bag.kind = "Blue";

bag.weight = 5.987;

bag.daysAged = 99;

bag.isDomestic = false;

textView.append(bag.kind + ", " + bag.weight + ", " +

bag.daysAged + ", " + bag.isDomestic + "\n");

228 PART 3 Working with the Big Picture: Object-Oriented Programming

In Listing 9-3, when Java executes the second bag = new BagOfCheese() state-
ment, the old object (the bag containing cheddar) has disappeared. Without bag
(or any other variable) referring to that cheddar object, there’s no way your code
can do anything with the cheddar object. Fortunately, by the time you reach the
second bag = new BagOfCheese() statement, you're finished doing everything
you want to do with the original cheddar bag. In this case, reusing the bag variable
is acceptable.

When you reuse a variable (like the one and only bag variable in Listing 9-3), you
& do so by using an assignment statement, not an initialization. In other words, you
don’t write BagOfCheese bag a second time in your code. If you do, you see error

warning messages in the Android Studio editor.

To be painfully precise, you can, in fact, write Bag0fCheese bag more than once

OAO

9, in the same piece of code. For an example, see the use of shadowing later in this
recunicaL Chapter, in the “Constructors with parameters” section.

STUFF

In Listing 9-1, none of the BagOfCheese class’s fields is final. In other words, the
class’s code lets you reassign values to the fields inside a Bag0fCheese object.
With this information in mind, you can shorten the code in Listing 9-3 by one
more line, as shown in Listing 9-4.

m Reusing a bag Object's Fields

package com.allmycode.a@9_04;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;
import com.allmycode.a@9_01.Bag0fCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);
textView = (TextView) findViewById(R.id.textView);
BagOfCheese bag = new BagOfCheese();

bag.kind = "Cheddar";
(continued)

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese = 229

230

bag.weight = 2.43;
bag.daysAged = 30;

bag.isDomestic = true;

textView.setText("");

textView.append(bag.kind + ", " + bag.weight + ", " +
bag.daysAged + ", " + bag.isDomestic + "\n");

// bag = new BagOfCheese();
bag.kind = "Blue";
bag.weight = 5.987;
bag.daysAged = 90;

bag.isDomestic = false;

textView.append(bag.kind + ", " + bag.weight + ", " +
bag.daysAged + ", " + bag.isDomestic + "\n");

With the second constructor call in Listing 9-4 commented out, you don’t make
the bag variable refer to a new object. Instead, you economize by assigning new
values to the existing object’s fields.

In some situations, reusing an object’s fields can be more efficient (quicker to
execute) than creating a new object. But whenever I have a choice, I prefer to write
code that mirrors real data. If an actual bag’s content doesn’t change from ched-
dar cheese to blue cheese, I prefer not to change a Bag0fCheese object’s kind field
from "Cheddar" to "Blue".

Calling a constructor

In Listing 9-2, the words new BagOfCheese() look like method calls, but they
aren’t — they’re constructor calls. A constructor call creates a new object from an
existing class. You can spot a constructor call by noticing that

3 A constructor call starts with Java's new keyword:
new BagOfCheese()

and

PART 3 Working with the Big Picture: Object-Oriented Programming

3 A constructor call's name is the name of a Java class:

new BagOfCheese()

When Java encounters a method call, Java executes the statements inside a
method’s declaration. Similarly, when Java encounters a constructor call, Java
executes the statements inside the constructor’s declaration. When you create a
new class (as I did in Listing 9-1), Java can create a constructor declaration
automatically. If you want, you can type the declaration’s code manually.
Listing 9-5 shows you what the declaration’s code would look like:

m The Parameterless Constructor

CROSS-
REFERENCE

package com.allmycode.a@9_05;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;

public boolean isDomestic;

public BagOfCheese() {
}

In Listing 9-5, the boldface code

public BagOfCheese() {
}

is a very simple constructor declaration. This declaration (unlike most constructor
declarations) has no statements inside its body. This declaration is simply a header
(BagOfCheese()) and an empty body ({}).

You can type Listing 9-5 exactly as it is. Alternatively, you can omit the code in
boldface type, and Java creates that constructor for you automatically. (You don’t
see the constructor declaration in the Android Studio editor, but Java behaves as if
the constructor declaration exists.) To find out when Java creates a constructor
declaration automatically and when it doesn’t, see the “Constructors with
parameters” section, later in this chapter.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese =~ 231

A constructor’s declaration looks much like a method declaration. But a construc-
tor’s declaration differs from a method declaration in two ways:

3 A constructor's name is the same as the name of the class whose objects
the constructor constructs.

In Listing 9-5, the class name is BagOfCheese, and the constructor’s header
starts with the name BagOfCheese.

3 Before the constructor's name, the constructor’s header has no type.

Unlike a method header, the constructor’s header doesn't say int BagOfCheese()
or evenvoid BagOfCheese(). The header simply says BagOfCheese().

The constructor declaration in Listing 9-5 contains no statements. That isn’t
typical of a constructor, but it’s what you get in the constructor that Java creates
automatically. With or without statements, calling the constructor in Listing 9-5
creates a brand-new BagOfCheese object.

More About Classes and Objects
(Adding Methods to the Mix)

232

In Chapters 4 and 7, I introduce parameter passing. In those chapters, I unobtru-
sively avoid details about passing objects to methods. (At least, I hope it’s
unobtrusive.) In this chapter, I shed my coy demeanor and face the topic (passing
objects to methods) head-on.

I start with an improvement on an earlier example. The code in Listing 9-2
contains two nasty-looking textView.append calls. This code has two nearly
identical occurrences of a complicated expression:

textView.append(bagl.kind + ", " + bagl.weight + ", " +
bagl.daysAged + ", " + bagl.isDomestic + "\n");

textView.append(bag2.kind + ", " + bag2.weight + ", " +
bag2.daysAged + ", " + bag2.isDomestic + "\n");

You can streamline the code by moving this complicated expression to a method.
Here’s how:

PART 3 Working with the Big Picture: Object-Oriented Programming

FIGURE 9-9:
The Extract

Method
dialog box.

1. View the code from Listing 9-2 in the Android Studio editor.

ThisMainActivity. java file is in the 09_02 project, which is in the
Javad4Android_Projects.zip file that you download in Chapter 2.

2. Use the mouse to select the entire expression inside the parameter list of

the first call to textView.append.

Be sure to highlight everything in the expression, starting with bag1 . kind and

ending with "\n".

3. On the Android Studio main menu, choose Refactor => Extract => Method.

The Extract Method dialog box in Android Studio appears, as shown in

Figure 9-9.

ey]
Visibility:

Extract Method
Return type: Name:
[N © MoctText

Declare static Generate annotations

private

Parameters
Type Name

BagOfCheese - bagl

F .
Signature Preview

@lonhull
private String getText({BagOfCheese bagl)

? Cancel

In the next two steps, you make the names in your code the same as the

names in this book’s examples.

4, (Optional) In the Name field in the Extract Method dialog box, type

toString.

5. (Optional) In the Name column of the Parameters list, change bag

to bag.
6. Click OK.

Android Studio dismisses the Extract Method dialog box.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese

233

Android Studio creates a method named toString and replaces the string in
the first textView. append call with a call to the new toString method.

Android Studio also displays a dialog box like the one in Figure 9-10.
7. Inthe dialog box, click Yes.

Clicking Yes tells Android Studio to replace the string in the second
textView.append call with a call to the new toString method.

Process Duplicates
° Studio has detected 1 code fragment in this file
a that can be replaced with a call to extracted
FIGURE 9-10: method. Would you like to review and replace it?
Would you
like to replace No ..q
more code? i

As a result of all this typing and clicking, you have the code in Listing 9-6.

m A Method Displays a Bag of Cheese

package com.allmycode.a@9_06;

import android.support.annotation.NonNull;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;
import com.allmycode.a@9_05.BagOfCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

234 PART 3 Working with the Big Picture: Object-Oriented Programming

CROSS-
REFERENCE

BagOfCheese bagl = new BagOfCheese();
bagl.kind = "Cheddar";

bagl.weight = 2.43;

bagl.daysAged = 30;

bagl.isDomestic = true;

BagOfCheese bag2 = new BagOfCheese();
bag2.kind = "Blue";

bag2.weight = 5.987;

bag2.daysAged = 99;

bag2.isDomestic = false;
textView.setText("");

textView.append(toString(bagl));

textView.append(toString(bag2));

}
@NonNull
private String toString(BagOfCheese bag) {
return bag.kind + ", " + bag.weight + ", " +
bag.daysAged + ", " + bag.isDomestic + "\n";

According to the toString declaration (refer to Listing 9-6), the toString
method takes one parameter. That parameter must be a Bag0fCheese instance.
Inside the body of the method declaration, you refer to that instance with the
parameter name bag. (You refer to bag.kind, bag.weight, bag.daysAged, and
bag.isDomestic.)

In the onCreate method, you create two BagO0fCheese instances: bag? and bag2.
You call toString once with the first instance (toString(bag1)), and call it a

second time with the second instance (toString(bag2)).

The @NonNull business in Listing 9-6 is an annotation. For the story on Java anno-
tations, see Chapter 10.

Constructors with parameters

Listing 9-7 contains a variation on the theme from Listing 9-2.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese = 235

m Another Way to Create Two Objects

package com.allmycode.a@9_07;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

import com.allmycode.a@9_08.Bag0fCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;

@override
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

BagOfCheese bagl = new BagOfCheese("Cheddar", 2.43, 30, true);
Bag0fCheese bag2 = new BagOfCheese("Blue", 5.987, 90, false);

textView.setText("");

textView.append(toString(bagl));
textView.append(toString(bag2));

private String toString(BagOfCheese bag) {
return bag.kind + ", " + bag.weight + ", " +

bag.daysAged + ", " + bag.isDomestic + "\n";

Listing 9-7 calls a BagOfCheese constructor with four parameters, so the code has
to have a four-parameter constructor. In Listing 9-8, I show you how to declare
that constructor.

236 PART 3 Working with the Big Picture: Object-Oriented Programming

m A Constructor with Parameters

package com.allmycode.a@9_08;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;

public boolean isDomestic;

public BagOfCheese() {
}

public BagOfCheese(String dKind, double dWeight,
int dDaysAged, boolean dIsDomestic) {
kind = dKind;
weight = dWeight;
daysAged = dDaysAged;

isDomestic = dIsDomestic;

Listing 9-8 borrows some tricks from Chapters 4 and 7. In those chapters, I intro-
duce the concept of overloading — reusing a name by providing different param-
eter lists. Listing 9-8 has two different BagOfCheese constructors — one with no
parameters and another with four parameters. When you call a Bag0fCheese con-
structor (as in Listing 9-7), Java knows which declaration to execute by matching
the parameters in the constructor call. The call in Listing 9-7 has parameters of
type String, double, int, and boolean, and the second constructor in Listing 9-8
has the same types of parameters in the same order, so Java calls the second con-
structor in Listing 9-8.

You might also notice another trick from Chapter 7. In Listing 9-8, in the second
constructor declaration, I use different names for the parameters and the class’s
fields. For example, I use the parameter name dKind and the field name kind.
What happens if you use the same names for the parameters and the fields, as in
this example:

// DON'T DO THIS

public class BagOfCheese {
public String kind;
public double weight;

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 237

public int daysAged;

public boolean isDomestic;

public BagOfCheese() {
}

public BagOfCheese(String kind, double weight,
int daysAged, boolean isDomestic) {
kind = kind;
weight = weight;
daysAged = daysAged;

isDomestic = isDomestic;

Figure 9-11 shows you exactly what happens. (Spoiler alert! Nothing good
happens!)

FIGURE 9-11: null, 0.0, 0, false
Some unpleasant null, 0.0, 0, false
results.
The code with duplicate parameter and field names gives you the useless results
from Figure 9-11. The code has two kind variables — one inside the constructor
and another outside of the constructor, as shown in Figure 9-12.
public class BagOfCheese
public String kind;<________________ -
public double weight; Outside of the constructor
public int daysAged; One of the class’s fields
public boolean isDomestic;
public BagOfCheese (String kind, double weight,
int daysAge boolean isDomestic) {
= kind;
= weight;
= daysAged;
... = isDomestic; A
} Inside the constructor
FIGURE 9-12: } One of the constructor’s local variables
Two kind (A different variable which happens to have
variables. the same name as one of the class’s fields)

238 PART 3 Working with the Big Picture: Object-Oriented Programming

Inside a constructor or method, a parameter shadows any identically named field.
So, outside the constructor declaration, the word kind refers to the field name.
Inside the constructor declaration, however, the word kind refers only to the
parameter name. In the horrible code with duplicate names, the statement

kind = kind;

does nothing to the kind field. Instead, this statement tells Java to make the kind
parameter refer to the same string that the kind parameter already refers to.

If this explanation sounds like nonsense to you, it is.

The kind variable in the constructor declaration’s parameter list is local to the
constructor. Any use of the word kind outside the constructor cannot refer to the
constructor’s local kind variable.

Fields are different. You can refer to a field anywhere in the class’s code. For
example, in Listing 9-8, the second constructor declaration has no local kind
variable of its own. Inside that constructor’s body, the word kind refers to the
class’s field.

One way or another, the second constructor in Listing 9-8 is cumbersome. Do you
always have to make up peculiar names like dkind for a constructor’s parameters?
No, you don’t. To find out why, see the “This is it!” section, later in this chapter.

The default constructor

I don’t see any constructors in Listing 9-1. So why can I make a constructor call
(the call new BagOfCheese()) in Listing 9-2? I can call new BagOfCheese()
because, without explicitly adding text to the code in Listing 9-1, Java silently
creates a parameterless constructor for me.

But Listing 9-8 is different. In Listing 9-8, if I didn’t explicitly type the parame-
terless constructor in my code, Java wouldn’t have created a parameterless con-
structor for me. A call to new BagOfCheese() with no parameters would have been
illegal. If I added a new BagOfCheese() call, Android Studio’s editor would tell me
that The BagOfCheese() in BagOfCheese cannot be applied. Sounds bad. Doesn’t it?

Here’s how it works: When you declare a class, Java creates a parameterless
constructor (known formally as a default constructor) if, and only if, you haven’t
explicitly declared any constructors in your class’s code. When Java encounters
Listing 9-1, Java automatically adds a parameterless constructor to your
BagOfCheese class. But when Java encounters Listing 9-8, with its 4-parameter

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 239

constructor already declared, you don’t get a parameterless constructor unless
you explicitly type the lines

public BagOfCheese() {
}

into your code. Without a parameterless constructor, calls to new BagOfCheese()
(with no parameters) will be illegal.

This is it!

The naming problem that crops up earlier in this chapter, in the “Constructors
with parameters” section, has an elegant solution. Listing 9-9 illustrates the idea.

m Using Java's this Keyword

package com.allmycode.a@9_09;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;

public boolean isDomestic;

public BagOfCheese() {
}

public BagOfCheese(String kind, double weight,
int daysAged, boolean isDomestic) {
this.kind = kind;
this.weight = weight;
this.daysAged = daysAged;

this.isDomestic = isDomestic;

To use the class in Listing 9-9, you can run the MainActivity code in Listing 9-7.
When you do, you see the run shown earlier, in Figure 9-8.

You can persuade Android Studio to create the big constructor that you see in
Listing 9-9. Here’s how:

240 PART 3 Working with the Big Picture: Object-Oriented Programming

FIGURE 9-13:
Choose Fields to
Initialize by
Constructor.

Start with the code from Listing 9-1 (or Listing 9-5) in the Android Studio
editor.

Click the mouse cursor anywhere inside the editor.
On the Android Studio main menu, select Code > Generate => Constructor.

The Choose Fields to Initialize by Constructor dialog box appears, as shown in
Figure 9-13.

In the Choose Fields to Initialize by Constructor dialog box, make sure
that all four of the BagOfCheese fields are selected.

To do so, start by selecting the topmost field (the kind field). Then, with your
computer’s Shift key pressed, select the bottommost field (the isDomestic
field).

This ensures that the new constructor will have a parameter for each of the
class's fields.

Click OK.

That does it! Android Studio dismisses the dialog box and adds a freshly
brewed constructor to the editor's code.

EN

@ Choose Fields to Initialize by Constructor
' com.allmycode.a09_09.BagOfCheese

© & kind:String
0 © weight:double

0 = daysAged:int
© & isDomestic:boolean

Cancel Select None

“

Java’s this keyword refers to “the object that contains the current line of code.”
So in Listing 9-9, the word this refers to an instance of BagOfCheese (that is, to
the object that’s being constructed). That object has a kind field, so this.kind
refers to the first of the object’s four fields (and not to the constructor’s kind
parameter). That object also has weight, daysAged, and isDomestic fields, so
this.weight, this.daysAged, and this. isDomestic refer to that object’s fields,
as shown in Figure 9-14. And the assignment statements inside the constructor

give values to the new object’s fields.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese

241

FIGURE 9-14:
Assigning
values to an
object's fields.

BagOfCheese bagl = new BagOfCheese ([|'Cheddar"|, |2.43],

public class BagOfCheese {
public String kind;

public douyble weight;
public int |daysAged;

public bogllepn isDomestic;

public BadqOfffheese(String kind , double weight, int daysAged, boolean isDomestic) {

this.kind| #|kind;

this.weighf|= weight;

this.daysAge¢d = daysAged;

this.isDomes®ic = IsDomestic;

}

Giving an object more responsibility

You have a printer and you try to install it on your computer. It’s a capable printer,
but it didn’t come with your computer, so your computer needs a program to drive
the printer: a printer driver. Without a driver, your new printer is nothing but a
giant paperweight.

But, sometimes, finding a device driver can be a pain in the neck. Maybe you can’t
find the disk that came with the printer. (That’s always my problem.)

I have one off-brand printer whose driver is built into its permanent memory.
When I plug the printer into a USB port, the computer displays a new storage loca-
tion. (The location looks, to ordinary users, like another of the computer’s disks.)
The drivers for the printer are stored directly on the printer’s internal memory.
It’s as though the printer knows how to drive itself!

Now consider the code in Listings 9-7 and 9-8. You’re the MainActivity class
(refer to Listing 9-7), and you have a new gadget to play with — the BagOfCheese
class in Listing 9-8. You want to display the properties of a particular bag, and you
don’t like dealing with a bag’s nitty-gritty details. In particular, you don’t like
worrying about commas, blank spaces, and field names when you display a bag:

bag.kind + ", " + bag.weight + ", " +

bag.daysAged + ", " + bag.isDomestic + "\n"

You’d rather have the BagOfCheese class figure out how to display one of its own
objects.

242 PART 3 Working with the Big Picture: Object-Oriented Programming

Here’s the plan: Move the big string with the bag’s fields, the commas and the
spaces from the MainActivity class to the BagOfCheese class. That is, make each
BagOfCheese object be responsible for describing itself in String form. With the
Andy’s Cheese Emporium metaphor that starts this chapter, each bag’s form has
its own Display button, as shown in Figure 9-15.

Bag of Cheese Bag of Cheese

Kind: Kind:

Weight (in pounds): Weight (in pounds):

Age (in days): Age (in days):

Domestic?: v Domestic?: v
Display Display

N N
FIGURE 9-15: Cheddar, 2.43, 30, true Blue, 5.987, 90, false
Two bag objects

and two displays.

The interesting characteristic of a Display button is that when you press it, the
text you see depends on the bag of cheese you’re examining. More precisely, the
text you see depends on the values in that particular form’s fields.

The same thing happens in Listing 9-11 when you call bag1.toString(). Java
runs the toString method shown in Listing 9-10. The values used in that method
call — kind, weight, daysAged, and isDomestic — are the values in the bag1l
object’s fields. Similarly, the values used when you call bag2.toString() are the
values in the bag2 object’s fields.

m A Self-Displaying Class

package com.allmycode.a@9_10;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;
public boolean isDomestic;
(continued)

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese =~ 243

public BagOfCheese() {
}

public BagOfCheese(String kind, double weight,
int daysAged, boolean isDomestic) {
this.kind = kind;
this.weight = weight;
this.daysAged = daysAged;

this.isDomestic = isDomestic;

public String toString() {
return kind + ", " 4+ weight + ", " + daysAged + ", " + isDomestic + "\n";

m Having a Bag Display Itself

package com.allmycode.a@9_11;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

import com.allmycode.a@9_10.Bag0fCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0Override

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main)

textView = (TextView) findViewById(R.id.textView);

BagOfCheese bagl = new BagOfCheese("Cheddar", 2.43, 30, true);
BagOfCheese bag2 = new BagOfCheese("Blue", 5.987, 90, false);

textView.setText("");

244 PART 3 Working with the Big Picture: Object-Oriented Programming

©

REMEMBER

textView.append(bagl.toString());
textView.append(bag2.toString());
}
}

In Listing 9-10, the BagOfCheese object has its own, parameterless toString
method. And in Listing 9-11, the following two lines make two calls to the
toString method — one call for bag1 and another call for bag2:

textView.append(bagl.toString());
textView.append(bag2.toString());

A call to toString behaves differently depending on the particular bag that’s
being displayed. When you call bag?.toString(), you see the field values for
bag1, and when you call bag2. toString(), you see the field values for bag?2.

To call one of an object’s methods, follow a reference to the object with a dot and
then the method’s name.

Members of a class

Notice the similarity between fields and methods:

3 As|say earlier in this chapter, in the “Creating objects” section:

To refer to one of an object’s fields, follow a reference to the object with a dot and
then the field’s name.

¥ As|say earlier in this chapter, in the “Giving an object more responsibility”
section:

To call one of an object’s methods, follow a reference to the object with a dot and
then the method’s name.

The similarity between fields and methods stretches far and wide in object-
oriented programming. The similarity is so strong that special terminology is
necessary to describe it. In addition to each BagOfCheese object having its own
values for the four fields, you can think of each object as having its own copy of
the toString method. So the BagOfCheese class in Listing 9-10 has five members.
Four of the members are the fields kind, weight, daysAged, and isDomestic, and
the remaining member is the toString method.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 245

FIGURE 9-16:
Primitive

types versus
reference types.

Reference types

Here’s a near-quotation from the earlier section “Creating objects:”

In Listing 9-2, the initialization of bag1 makes the bag1 variable refer to the newly
created bag.

In the quotation, I choose my words carefully. “The initialization makes the bag1
variable refer to the newly created bag.” Notice how I italicize the words refer to. A
variable of type int stores an int value, but the bag? variable in Listing 9-2 refers
to an object.

What's the difference? The difference is similar to holding an object in your hand
versus pointing to it in the room. Figure 9-16 shows you what I mean.

int daysAged;

BagOfCheese bagl;

(Look where I'm pointing.)|

<

“Cheddar” 2.43 30 true

Java has two kinds of types: primitive types and reference types.

¥ | cover primitive types in Chapter 5. Java's eight primitive types are int,
double, boolean, char, byte, short, long, and float.

¥ Areference type is the name of a class or (as you see in Chapter 10) an
interface.

In Figure 9-16, the variable daysAged contains the value 30 (indicating that the
cheese in a particular bag has been aged for 30 days). I imagine the value 30 being
right inside the daysAged box because the daysAged variable has type int — a
primitive type.

246 PART 3 Working with the Big Picture: Object-Oriented Programming

REMEMBER

LD,
TECHNICAL
STUFF

FIGURE 9-17:
The String
typeis also a
reference type.

o
S
TECHNICAL
STUFF

But the variable bag1 has type BagOfCheese, and BagOfCheese isn’t a primitive
type. (I know of no computer programming language in which a bag of cheese is a
built-in, primitive type!) So the bag1 variable doesn’t contain "Cheddar" 2.43 30
true. Instead, the variable bag1 contains the information required to locate the
"Cheddar" 2.43 30 true object. The variable bag1 stores information that refers
to the "Cheddar" 2.43 30 true object.

The types int, double, boolean, char, byte, short, long, and float are primitive
types. A primitive type variable (int daysAged, double weight, and boolean
isDomestic, for example) stores a value. In contrast, a class is a reference type,
such as String, which is defined in Java’s API, and BagOfCheese, which you or
I declare ourselves. A reference type variable (BagOfCheese bag and String kind,
for example) refers to an object.

The String type is a reference type, so Figure 9-16 would be slightly more accu-
rate if the bottommost box had another hand pointing to the letters 'C', 'h', 'e",
'd', 'd', 'a', and 'r'. (See Figure 9-17.) To keep my diagrams uncluttered,
I don’t put that other hand in Figure 9-16 and I don’t put the other hand in similar
diagrams in this chapter.

BagOfCheese bagl;

(Look where I'm pointing.”

|(Look where I'm pointing.” 2.43 30 true

|ICI Th' 1'e' 'd' 'd' 'a' 'r!

In this section, I say that the bag1 variable refers to the "Cheddar" 2.43 30 true
object. It’s also common to say that the bag1 variable points to the "Cheddar" 2.43
30 true object. Alternatively, you can say that the bag? variable stores the num-
ber of the memory address where the "Cheddar" 2.43 30 true object’s values
begin. Neither the pointing language nor the memory language expresses the
truth of the matter, but if the rough terminology helps you understand what’s
going on, there’s no harm in using it.

Pass by reference

In the previous section, I emphasize that classes are reference types. A variable
whose type is a class contains something that refers to blah, blah, blah. You might
ask, “Why should I care?”

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 247

Look at Listing 7-2, over in Chapter 7, and notice the result of passing a primitive
type to a method:

When the method’s body changes the parameter’s value, the change has no effect
on the value of the variable in the method call.

This principle holds true for reference types as well. But in the case of a reference
type, the value that’s passed is the information about where to find an object, not
the object itself. When you pass a reference type in a method’s parameter list, you

can change values in the object’s fields.

See, for example, the code in Listing 9-12.

m Another Day Goes By

package com.allmycode.a@9_12;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.TextView;

import com.allmycode.a@9_10.Bag0fCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;
@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
textView = (TextView) findViewById(R.id.textView);
BagOfCheese bagl = new BagOfCheese("Cheddar", 2.43, 30, true);

addOneDay(bagl);

textView.setText("");
textView.append(bag?.toString());

248 PART 3 Working with the Big Picture: Object-Oriented Programming

FIGURE 9-18:
Thirty-one
days old.

void addOneDay(BagOfCheese bag) {
bag.daysAged++;
}

A run of the code in Listing 9-12 is shown in Figure 9-18. In that run, the con-
structor creates a bag that is aged 30 days, but the addOneDay method successfully
adds a day. In the end, the display in Figure 9-18 shows 31 days aged.

Unlike the story with int values, you can change a bag of cheese’s daysAged value
by passing the bag as a method parameter. Why does it work this way?

Cheddar, 2.43, 31, true

When you call a method, you make a copy of each parameter’s value in the call.
You initialize the declaration’s parameters with the copied values. Immediately
after making the addOneDay call in Listing 9-12, you have two variables: the
original bag1 variable in the onCreate method and the new bag variable in
the addOneDay method. The new bag variable has a copy of the value from the
onCreate method, as shown in Figure 9-19. That “value” from the onCreate
method is a reference to a Bag0fCheese object. In other words, the bag? and bag
variables refer to the same object.

The statement in the body of the addOneDay method adds 1 to the value stored in
the object’s daysAged field. After one day is added, the program’s variables look
like the information in Figure 9-20.

Notice how both the bagl and bag variables refer to an object whose daysAged
value is 31. After returning from the call to addOneDay, the bag variable goes away.
All that remains is the original onCreate method and its bag1 variable, as shown
in Figure 9-21. But bag1 still refers to an object whose daysAged value has been
changed to 31.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 249

FIGURE 9-19:
Java copies a
pointer.

FIGURE 9-20:
Java adds 1 to
daysAged.

onCreate

bagl

onCreate

bagl

addOneDay

bag

=

"Cheddar” 2.43 30 true

”Cheddar” 2.43 36 31 true

In Chapter 7, I show you how to pass primitive values to method parameters.
Passing a primitive value to a method parameter is called pass-by value. In this
section, I show you how to pass both primitive values and objects to method
parameters. Passing an object (such as bagl) to a method parameter is called

pass-by reference.

250 PART 3 Working with the Big Picture: Object-Oriented Programming

onCreate
bagl

~
~
~

a
”Cheddar” 2.43 36 31 true

FIGURE 9-21:
The original bag
is aged 31 days.

Java’'s Modifiers

Throughout this book, you see words like public and protected peppered
throughout the code listings. You might wonder what these words mean. (Actu-
ally, if you’re reading from front to back, you might have grown accustomed to
seeing them and started thinking of them as background noise.) In the next few
sections, I tackle some of these modifier keywords.

Public classes and default-access classes

Most of the classes in this chapter’s listings begin with the word public. When a
class is public, any program in any package can use the code (or at least some of
the code) inside that class. If a class isn’t public, then for a program to use the
code inside that class, the program must be inside the same package as the class.
Listings 9-13, 9-14, and 9-15 illustrate these ideas.

m What Is a Paragraph?

package com.allyourcode.wordprocessor;

class Paragraph {
int alignment;
int borders;
double leftIndent;
double lineSpacing;

int style;

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese = 251

m Making a Paragraph with Code in the Same Package

package com.allyourcode.wordprocessor;
class MakeAParagraph {

Paragraph paragraph = new Paragraph();

paragraph.leftIndent = 1.5;
}

m Making a Paragraph with Code in Another Package

252

// THIS IS BAD CODE:

package com.allyourcode.editor;

import com.allyourcode.wordprocessor .Paragraph;

public class MakeAnotherParagraph {

Paragraph paragraph = new Paragraph();

paragraph.leftIndent = 1.5;
}

The Paragraph class in Listing 9-13 has default access — that is, the Paragraph
class isn’t public. The code in Listing 9-14 is in the same package as the Paragraph
class (the com.allyourcode.wordprocessor package). So in Listing 9-14, you can
declare an object to be of type Paragraph, and you can refer to that object’s

leftIndent field.

The code in Listing 9-15 isn’t in the same com.allyourcode.wordprocessor
package. For that reason, the use of names like Paragraph and leftIndent (from
Listing 9-13) aren’t legal in Listing 9-15, even if Listings 9-13 and 9-15 are in the
same Android Studio project. When you type Listings 9-13, 9-14, and 9-15 into the
Android Studio editor, you see a red, blotchy mess for Listing 9-15, as shown in

Figure 9-22.

PART 3 Working with the Big Picture: Object-Oriented Programming

FIGURE 9-22:
Errorsin
Listing 9-15.

(==
S
TECHNICAL
STUFF

REMEMBER

n

b == | f#- [+ (C) MakeAParagraphjava x C) MakeAnotherParagraphjava x =1 v
package com.allyocurcode.editor; o S
anifests a
hva import com.allyourcede.wordprocessor.Paragraph;
com.allyoun public class MakeAnotherParagraph {

a09_13 Paragraph paragraph = new Paragraph();

editor

waordproc i

paragraph. leflIndenlI = 1.5;
com.allvoun b|

¢ 'com.allyourcode.wordprocessor.Paragraph' is not public in
bs | 'com.allyourcode.wordprocessor'. Cannot be accessed from outside
le package

Have you ever seen an assignment statement that’s not inside of a method? Think
about it. When you work with the textView variable in Listing 9-12, you declare
TextView textView outside of any method, and then you assign textView =
(TextView) findViewById... inside the onCreate method. Outside of a method,
you can’t assign values to things unless you create an initializer block. Like any
other kind of block, an initializer block has open and close curly braces. Between
the braces, the initializer block has statements that assign values to things. In
Listing 9-14, an initializer block assigns the value 1.5 to a paragraph’s leftIndent
field. In Listing 9-15, an initializer block tries to assign a value, but the assign-
ment doesn’t work because the Paragraph class isn’t public.

The . java file containing a public class must have the same name as the public
class. For example, the file containing the code in Listing 9-1 must be named
BagOfCheese. java.

Even the capitalization of the filename must be the same as the public class’s
name. You see an error message if you put the code in Listing 9-1 inside a file
named bagofcheese. java. In the file’s name, you have to capitalize the letters B,
0, and C.

Because of the file-naming rule, you can’t declare more than one public class in a
. java file. If you put the public classes from Listings 9-1 and 9-2 into the same
file, would you name the file Bag0fCheese. java or CreateBags. java? Neither
name would satisfy the file-naming rule. For that matter, no name would satisfy it.

Access for fields and methods

A class can have either public access or nonpublic (default) access. But a member
of a class has four possibilities: public, private, default, and protected.

A class’s fields and methods are the class’s members. For example, the class in

Listing 9-10 has five members: the fields kind, weight, daysAged, and isDomestic
and the method toString.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese = 253

Here’s how member access works:

¥ A default member of a class (a member whose declaration doesn't contain the
words public, private, or protected) can be used by any code inside the
same package as that class.

¥ A private member of a class cannot be used in any code outside the class.

3 A public member of a class can be used wherever the class itself can be used;
that is:

® Any program in any package can refer to a public member of a public class.

® For a program to reference a public member of a default access class, the
program must be inside the same package as the class.

To see these rules in action, check out the public class in Listing 9-16.

m A Class with Public Access

package com.allyourcode.bank;

public class Account {
public String customerName;
private int internalldNumber;
String address;
String phone;
public int socialSecurityNumber;
int accountType;

double balance;

public static int findById(int internalldNumber) {
Account foundAccount = new Account();
// Code to find the account goes here.

return foundAccount.internalIdNumber ;

The code in Figures 9-23 and 9-24 uses the Account class and its fields.

254 PART 3 Working with the Big Picture: Object-Oriented Programming

C) Accountjava X C) UseAccount.java C) UseAccountFromOutside.java X

package com.allyourcode.bank;
jar
public class UseAccount {

Account account = new Account(};

{

account.customerName = "William of Occam";

String nameBackup = account.customerName;

account.address = "Ockham, Borough of Guildford, Surrey, England.";
| account.internalIdNumberI: 716010;

FIGURE 9-23: : 'internalldNumber' has private access in 'com.allyourcode.bank.Account'
Referring to a }

public class in the

same package.

The error messages in Figures 9-23 and 9-24 point to some troubles with the
code. Here’s a list of facts about these two pieces of code:

¥ The UseAccount class is in the same package as the Account class.
¥ The UseAccount class can create a variable of type Account.

¥ The UseAccount class's code can refer to the public customerName field of the
Account class and to the default address field of the Account class.

¥ The UseAccount class cannot refer to the private internalIdNumber field of
the Account class, even though UseAccount and Account are in the same
package. (Refer to Figure 9-23.)

¥ The UseAccountFromOutside class is not in the same package as the
Account class. (In Figure 9-24, notice allyourcode versus allmycode.)

e

- 1© [E) Accountjava X (C) UseAccountjava X | (©) UseAccountFromQutsidejava X

app package com.allmycode.bank;
mar
import com.allyourcode.bank.Account;

'+ 1: Project

Jjave
L public class UseAccountFromOutside {
Account account = new Account();

{
{ account, customerName = "William of Occam";
¢ String nameBackup = account.customerhame;
P Gres account.addressT= “Ockham, Borough of Guildford, Surrey, England.”;

=] 7: Structure

'address’ is not public in 'com.allyourcode.bank.Account'. Cannot be accessed from
outside package

FIGURE 9-24:
Referring to a
public class in a '
different package.

account.internalldNumber = 716818;

¥ The UseAccountFromOutside class can create a variable of type Account.
(An import declaration keeps me from having to repeat the fully qualified
com.allyourcode.bank .Account name everywhere in the code.)

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese = 255

¥ The UseAccountFromOutside class's code can refer to the public
customerName field of the Account class.

¥ The UseAccountFromOutside class's code cannot refer to the default
address field of the Account class or to the private internal IdNumber field
of the Account class. (Figure 9-24 shows the address field's error message.)

Now examine the nonpublic class in Listing 9-17.

m A Class with Default Access

FIGURE 9-25:
Referring to a
default access
class in the same
package.

package com.allyourcode.game;

class Sprite {
public String name;
String image;
double distancefFromLeftEdge, distanceFromTop;
double motionAcross, motionDown;

private int renderingValue;

void render() {
if (renderingValue == 2) {
// Do stuff here

The code in Figures 9-25 and 9-26 uses the Sprite class and its fields.

L) Spritejava x C) UseSpritejava x C) UseSpriteFromQurside.java x
package com.allyourcode.game; L]

public class UseSprite {

Sprite sprite = new Sprite();

=TT

sprite.name = "Bobo";
sprite.distanceFromTop = 8.5;
sprite. renderingValueI: 2;

'renderingValue' has private access in 'com.allyourcode.game.Sprite'

P ¥
3

256 PART 3 Working with the Big Picture: Object-Oriented Programming

- I+ (C Spritejava X (C) UseSpritejava ® (E) UseSpriteFromQutside java * o
package com.allmycode.game; o S

nifests X E]
a import com.allyourcode.game.Sprite;
com public class UseSpriteFromutside {

allmye

@l {
allvoul Sprite sprite = new Sprr.cl{);

'com.allyourcode.game.Sprite' is not public in 'com.allyourcode.game'. Cannot
be accessed from outside package

FIGURE 9-26:

Ref . com.allya » bob

eferring to a _ sprite.name = “"Bobo";
; ey Y sprite.distanceFromTop = 8.5;

default access sprite. renderingValud = 2;]
classina fSeripts }

different package.

The error messages in Figures 9-25 and 9-26 point to some troubles with the
code. Here’s a list of facts about these two pieces of code:

¥ TheUseSprite class is in the same package as the Sprite class.
¥ TheUseSprite class can create a variable of type Sprite.

¥ TheUseSprite class's code can refer to the public name field of the Sprite
class and to the default distanceFromTop field of the Sprite class.

¥ TheUseSprite class cannot refer to the private render ingValue field of the
Sprite class, even though UseSprite and Sprite are in the same package.
(Refer to Figure 9-25.)

¥ The UseSpriteFromOutside class isn't in the same package as the Sprite
class. (In Figure 9-26, notice allyourcode versus allmycode.)

¥ The UseSpriteFromOutside class cannot create a variable of type Sprite.
(Not even an import declaration can save you from an error message here.)

¥ Inside the UseAccountFromOutside class, references to sprite.name,
sprite.distanceFromTop, and sprite.renderingValue are all meaning-
less because the sprite variable doesn't have a type.

Using getters and setters

In Figures 9-23 and 9-24, the UseAccount and UseAccountFromOutside classes
can set an account’s customerName and get the account’s existing customerName:

account .customerName = "Occam";

String nameBackup = account.customerName;

But neither the UseAccount class nor the UseAccountFromOutside class can tin-
ker with an account’s internalIdNumber field.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese =~ 257

What if you want a class like UseAccount to be able to get an existing account’s
internalldNumber but not to change an account’s internalIdNumber? (In many
situations, getting information is necessary, but changing existing information is
dangerous.) You can do all this with a getter method, as shown in Listing 9-18.

Creating a Read-Only Field

package com.allyourcode.bank;

public class Account {
public String customerName;
private int internalldNumber;
String address;
String phone;
public int socialSecurityNumber;
int accountType;

double balance;

public static int findById(int internalldNumber) {
Account foundAccount = new Account();
// Code to find the account goes here.

return foundAccount.internalldNumber;

public int getInternalldNumber() {

return internalldNumber;

With the Account class in Listing 9-18, another class’s code can call

int backupIdNumber = account.getInternalldNumber();
The Account class’s internalldNumber field is still private, so another class’s
code has no way to assign a value to an account’s internalIdNumber field. If you
want to enable other classes to change an account’s private internalIdNumber

value, you can add a setter method to the code in Listing 9-18, like this:

public void setInternalldNumber(int internalldNumber) {

this.internalldNumber = internalldNumber;

258 PART 3 Working with the Big Picture: Object-Oriented Programming

REMEMBER

FIGURE 9-27:
Select Fields to
Generate Getters
and Setters.

Getter and setter methods aren’t built-in features in Java — they’re simply ordi-
nary Java methods. But this pattern (having a method whose purpose is to access
an otherwise inaccessible field’s value) is used so often that programmers use the
terms getter and setter to describe it.

Getter and setter methods are accessor methods. Java programmers almost
always follow the convention of starting an accessor method name with get
or set and then capitalizing the name of the field being accessed. For example,
the field internalldNumber has accessors named getInternalldNumber
and setInternalldNumber. The field renderingvValue has accessors named
getRenderingValue and setRenderingValue.

You can have Android Studio create getters and setters for you. Here’s how:

1. startwith the code from Listing 9-16 in the Android Studio editor.
2. Click the mouse cursor anywhere inside the editor.

3. On the Android Studio main menu, select Code -> Generate > Getter and
Setter.

The Select Fields to Generate Getters and Setters dialog box appears, as shown
in Figure 9-27.

Alternatively, you can generate only getters by selecting Code = Generate = Getter.
And you can generate only setters by selecting Code => Generate => Setter.

A dialog box lists the fields in the class that appears in Android Studio’s editor.
4. select one or more fields in the dialog box’s list of fields.
To create the code in Listing 9-18, | selected only the internalIdNumber field.

Alternatively, you can generate only getters by selecting Code

[] @ Select Fields to Generate Getters and Setters

Cetter template: Intelli] Default <
Setter template: Intelli) Default <]
ez =

£) com.allyourcode.bank.Account
[& customerName:String
I o address:String
) = phone:String
) & socialSecurityNumber:int
i) = accountType:int
1) o balance:double

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese = 259

5. click ok.

Android Studio dismisses the dialog box and adds freshly brewed getter and
setter methods to the editor’s code.

@ I cover protected access in Chapter 10.

CROSS-

rereenc: - \What does static mean?

This chapter begins with a discussion of cheese and its effects on Andy’s business
practices. Andy has a blank form that represents a class. He also has a bunch of
filled-in forms, each of which represents an individual bag-of-cheese object.

One day, Andy decides to take inventory of his cheese by counting all the bags of
cheese. (See Figure 9-28.)

Bag of Cheese

Kind: I:l
Weight (in pounds): l:l
Age (in days): I:I
FIGURE 9-28: Domestic?:
Counting | Bag count: 377
bags of cheese.

Compare the various fields shown in Figure 9-28. From the object-oriented point
of view, how is the daysAged field so different from the count field?

The answer is that a single bag can keep track of how many days it has been aged,
but it shouldn’t count all the bags. As far back as Listing 9-1, a Bag0fCheese object
has its own daysAged field. That makes sense. (Well, it makes sense to an object-
oriented programmer.)

But giving a particular object the responsibility of counting all objects in its class
doesn’t seem fair. To have each Bag0fCheese object speak on behalf of all the others
violates a prime directive of computer programming: The structure of the program
should imitate the structure of the real-life data. For example, I can post a picture
of myself on Facebook, but I can’t promise to count everyone else’s pictures on
Facebook. (“All you other Facebook users, count your own @#!% pictures!”)

A field to count all bags of cheese belongs in one central place. That’s why,

in Figure 9-29, I have one, and only one, count field. Each object has its own
daysAged value, but only the class itself has a count value.

260 PART 3 Working with the Big Picture: Object-Oriented Programming

BagOfCheese

kind: String

weight: double
daysAged: int
isDomestic: Boolean
displayBag() : void

count: int
:Bag0fCheese :BagOfCheese
kind ="Cheddar" kind = "Blue"
weight = 2.43 weight = 5.987
FIGURE 9-29: daysAged = 30 daysAged = 90
The UML diagram isDomestic = true isDomestic = false
has only one displayBag() : void displayBag() : void
count variable.

A field or method that belongs to an entire class rather than to each individual
object is a static member of the class. To declare a static member of a class, you use
Java’s static keyword (what a surprise!), as shown in Listing 9-19.

m Creating a Static Field

package com.allmycode.a@9_19;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;

public boolean isDomestic;

public static int count = 0;

public BagOfCheese() {
count++;
}
}

For each call to the Bag0fCheese constructor, the constructor adds 1 to the value
of count.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 261

To refer to a class’s static member, you preface the member’s name with the name
of the class, as shown in Listing 9-20.

m Referring to a Static Field

package com.allmycode.a@9_20;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

import com.allmycode.a®9_19.Bag0fCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;

@override

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

BagOfCheese bagl = new BagOfCheese();
BagOfCheese bag2 = new BagOfCheese();

textView.setText(BagOfCheese.count + " bags");

Fields aren’t the only things that can be static. Methods can be static too. Consider
the code in Listing 9-21.

m A Static Field and a Static Method

package com.allmycode.a@9_21;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;

public boolean isDomestic;

262 PART 3 Working with the Big Picture: Object-Oriented Programming

TIP

private static int count = 0;

public static int getCount() {
return count;

}

public BagOfCheese() {
count++;

}

Listing 9-21 contains a static field and a static method. The static count field is
private, so another class’s code can’t refer to Bag0fCheese . count. But the method
getCount is public. So, in place of BagOfCheese.count, another class can obtain
the same information by calling BagOfCheese .getCount().

Android’s official code style guidelines, posted at http://source.android.com/
source/code-style.html, tell you to start every nonpublic, nonstatic field name
with a lowercase letter m. In an introductory Java book, I depart from these guide-
lines. But that’s why, in a professionally written Android program, you’ll see so
many names start with the letter m.

To dot, or not

Consider the three ways to refer to a member (a field or a method):

3 You can preface the member name with a name that refers to an object.

For example, in Listing 9-11, | preface calls to toString with the names bag1
and bag2, each of which refers to an object:

textView.append(bagi.toString());
textView.append(bag2.toString());

When you do this, you're referring to something that belongs to each indi-
vidual object. (You're referring to the object's nonstatic field, or calling the
object’s nonstatic method.)

3 You can preface the member name with a name that refers to a class.

For example, in Listing 9-20, | prefaced the field name count with the class
name BagOfCheese.

When you do this, you're referring to something that belongs to the entire class.
(You're referring to the class's static field, or calling the class's static method.)

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 263

http://source.android.com/source/code-style.html
http://source.android.com/source/code-style.html

3 You can preface the member name with nothing.

For example, in Listing 9-10, inside the toString method, | use the names
kind, weight, daysAged, and isDomestic with no dots in front of them:

public String toString() {
return kind + ", " + weight + ", " + daysAged + ", " + isDomestic +

"'

A method can do this when it refers to its own object’s fields, not when it
refers to some other object’s fields.

Java provides a loophole in which you break one of the three rules I just described.

,@, In Listing 9-20, you can replace BagsOfCheese.count with bag1l.count or with

bag2.count. That is, you can refer to a static member by prefacing it with the

TechnicaL Name of an object. This isn’t a good a thing to do. It’s just something that you’re
STUFF allowed to do.

A bad example

Don’t do what I do in Listing 9-22.

m Trouble in River City

// BAD CODE!!! GO TO YOUR ROOM, CODE.
package com.allmycode.a@9_22;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;

public boolean isDomestic;

private int count = 0;

public static int getCount() {
return count;

}

public BagOfCheese() {
count++;

}

264 PART 3 Working with the Big Picture: Object-Oriented Programming

FIGURE 9-30:
Not good!
Several count
variables but
only one
getCount
method.

If you type the code in Listing 9-22 into Android Studio’s editor and then hover
the mouse over the return count statement, you see this ferocious-looking error
message: Non-static field 'count' cannot be referenced from a static
context. What gives? In my own code, I saw this error message dozens and dozens
of times before I started feeling comfortable with the meaning of the word static.

If the count field isn’t static, each instance of the Bag0fCheese class has its own
count field, and each count field belongs to an instance of the BagOfCheese class.
But that’s not true of the getCount method. In Listing 9-22, the getCount method
is static. So the getCount method doesn’t belong to any particular BagOfCheese
instance. The getCount method belongs to the entire Bag0fCheese class. See
Figure 9-30.

BagOfCheese

getCount : int

:Bag0fCheese

kind = "Cheddar”
weight = 2.43
daysAged = 30
isDomestic = true
count: 0

:BagOfCheese

kind = "Blue"
weight = 5.987
daysAged =90
isDomestic = false
count: 0

Inside of the getCount method, when Java sees the return count statement, Java
doesn’t know which instance’s count to return. So Java refuses to compile your
code. Android Studio displays an error message, and you’re out of luck!

What's Next?

This chapter talks about individual classes. Most classes don’t exist in isolation
from other classes. Most classes belong to hierarchies of classes, subclasses, and
sub-subclasses, so the next chapter covers the relationships among classes.

CHAPTER 9 Why Object-Oriented Programming Is Like Selling Cheese 265

IN THIS CHAPTER

» Tweaking your code

» Adding new life to old code

» Making changes without spending
a fortune

Chapter 10
Saving Time and Money:
Reusing Existing Code

ouldn’t it be nice if every piece of software did just what you wanted it

to do? In an ideal world, you could simply buy a program, make it work

right away, plug it seamlessly into new situations, and update it easily
whenever your needs changed. Unfortunately, software of this kind doesn’t exist.
(Nothing of this kind exists.) The truth is that no matter what you want to do, you
can find software that does some of it, but not all of it.

This is one reason that object-oriented programming has been successful.
For years, companies were buying prewritten code only to discover that the code
didn’t do what they wanted it to do. So the companies began messing with
the code. Their programmers dug deep into the program files, changed variable
names, moved subprograms around, reworked formulas, and generally made the
code worse. The reality was that if a program didn’t already do what you wanted
(even if it did something ever so close to it), you could never improve the situation
by mucking around inside the code. The best option was to chuck the whole pro-
gram (expensive as that was) and start over. What a sad state of affairs!

Object-oriented programming has brought about a big change. An object-oriented
program is, at its heart, designed to be modified. Using correctly written software,
you can take advantage of features that are already built in, add new features of your
own, and override features that don’t suit your needs. The best aspect of this situa-
tion is that the changes you make are clean — no clawing and digging into other

CHAPTER 10 Saving Time and Money: Reusing Existing Code 267

people’s brittle program code. Instead, you make nice, orderly additions and modi-
fications without touching the existing code’s internal logic. It’s the ideal solution.

The Last Word on Employees — Or Is It?

268

When you write an object-oriented program, you start by considering the data.
You’re writing about accounts. So what’s an account? You're writing code to han-
dle button clicks. So what’s a button? You're writing a program to send payroll
checks to employees. What’s an employee?

In this chapter’s first example, an employee is someone with a name and a job
title — sure, employees have other characteristics, but for now I stick to the basics:

class Employee {
String name;
String jobTitle;
}

Of course, any company has different kinds of employees. For example, your com-
pany may have full-time and part-time employees. Each full-time employee has
a yearly salary:

class FullTimeEmployee extends Employee {
double salary;

}

In this example, the words extends Employee tell Java that the new class (the
FullTimeEmployee class) has all the properties that any Employee has and, pos-
sibly, more. In other words, every Ful 1TimeEmployee object is an Employee object
(an employee of a certain kind, perhaps). Like any Employee, aFullTimeEmployee
has aname and a jobTitle. ButaFullTimeEmployee also has a salary. That’s what
the words extends Employee do for you.

A part-time employee has no fixed yearly salary. Instead, every part-time
employee has an hourly pay rate and a certain number of hours worked in a week:

class PartTimeEmployee extends Employee {
double hourlyPay;

int hoursWorked;

So far, a PartTimeEmployee has four characteristics: name, jobTitle, hourlyPay,
and number of hoursWorked.

PART 3 Working with the Big Picture: Object-Oriented Programming

Then you have to consider the big shots — the executives. Every executive is a
full-time employee. But in addition to earning a salary, every executive receives a
bonus (even if the company goes belly up and needs to be bailed out):

class Executive extends FullTimeEmployee {
double bonus;

}

Java’s extends keyword is cool because, by extending a class, you inherit all the
complicated code that’s already in the other class. The class you extend can be a
class that you have (or another developer has) already written. One way or another,
you’re able to reuse existing code and to add ingredients to the existing code.

Here’s another example: The creators of Android wrote the AppCompatActivity
class, with its 460 lines of code. You get to use all those lines of code for free by
simply typing extends AppCompatActivity:

public class MainActivity extends AppCompatActivity {

With the two words extends AppCompatActivity, your new MainActivity class
can do all the things that a typical Android activity can do — start running, find
items in the app’s res directory, show a dialog box, respond to a low-memory
condition, start another activity, return an answer to an activity, finish running,
and much more.

Extending a class

So useful is Java’s extends keyword that developers have several different names
to describe this language feature:

¥ Superclass/subclass: The Employee class (see the earlier section “The Last
Word on Employees — Or Is [t?") is the superclass of the Ful1TimeEmployee
class. The FullTimeEmployee class is a subclass of the Employee class.

3 Parent/child: The Employee class is the parent of the Ful1TimeEmployee
class. The FullTimeEmployee class is a child of the Employee class.

In fact, the Executive class extends the Ful 1TimeEmployee class, which in
turn extends the Employee class. So Executive is a descendant of Employee,
and Employee is an ancestor of Executive. The Unified Modeling Language
(UML) diagram in Figure 10-1 illustrates this point.

¥ The “is a” relationship: Every Ful1TimeEmployee object is an Employee
object.

CHAPTER 10 Saving Time and Money: Reusing Existing Code 269

FIGURE 10-1:

A class, two child
classes, and a
grandchild class.

¥ Inheritance: The FullTimeEmployee class inherits the Employee class's
members. (If any of the Employee class's members were declared to be
private, the FullTimeEmployee class wouldn't inherit those members.)

Employee

name : String
jobTitle : Boolean

N

FullTimeEmployee PartTimeEmployee

salary : double hourlyPay : double
hoursWorked : int

Executive

bonus : double

The Employee class has a name field, so the Ful1TimeEmployee class has a
name field, and the Executive class has a name field. In other words, with the
declarations of Employee, Ful 1TimeEmployee, and Executive at the start of
this section, the code in Listing 10-1 is legal.

All descendants of the Employee class have name fields, even though a name
field is explicitly declared only in the Employee class itself.

m Using the Employee Class and Its Subclasses

Employee employee = new Employee();

employee.name = "Sam";

FullTimeEmployee ftEmployee = new FullTimeEmployee();

ftEmployee.name = "Jennie";

Executive executive = new Executive();

executive.name = "Harriet";

270 PART 3 Working with the Big Picture: Object-Oriented Programming

FIGURE 10-2:
Everything comes
from Java's
Object class.

Almost every Java class extends another Java class. I write almost because one (and
only one) class doesn’t extend any other class. Java’s built-in Ob ject class doesn’t
extend anything. The Ob ject class is at the top of Java’s class hierarchy. Any class
whose header has no extends clause automatically extends Java’s Ob ject class. So
every other Java class is, directly or indirectly, a descendant of the Object class,
as shown in Figure 10-2.

Object

equals(o : Object) : Boolean
getClass(void) : Class
toString(void) : String

Employee

name : String
jobTitle : Boolean

O

FullTimeEmployee PartTimeEmployee

salary : double hourlyPay : double
hoursWorked : int

Executive

bonus : double

The notion of extending a class is one pillar of object-oriented programming.
In the 1970s, computer scientists were noticing that programmers tended to
reinvent the wheel. If you needed code to balance an account, for example, you
started writing code from scratch to balance an account. Never mind that other
people had written their own account-balancing code. Integrating other peoples’
code with yours, and adapting other peoples’ code to your own needs, was a big
headache. All things considered, it was easier to start from scratch.

CHAPTER 10 Saving Time and Money: Reusing Existing Code 271

REMEMBER

Then, in the 1980s, object-oriented programming became popular. The notion of
classes and subclasses provided a clean way to connect existing code (such as
Android’s Activity class code) with new code (such as your new MainActivity
class code). By extending an existing class, you hook into the class’s functionality,
and you reuse features that have already been programmed.

By reusing code, you avoid the work of reinventing the wheel. But you also make
life easier for the end user. When you extend Android’s Activity class, your new
activity behaves like other peoples’ activities because both your activity and the
other peoples’ activities inherit the same behavior from Android’s Activity class.
With so many apps behaving the same way, the user learns familiar patterns. It’s
a win-win situation.

Overriding methods

In this section, I expand on all the employee code snippets from the start of this
chapter. From these snippets, I can present a fully baked program example. The
example, as laid out in Listings 10-2 through 10-6, illustrates some important
ideas about classes and subclasses.

m What Is an Employee?

272

package com.allyourcode.company;

public class Employee {
public String name;

public String jobTitle;

public Employee() {
}

public Employee(String name, String jobTitle) {
this.name = name;
this. jobTitle = jobTitle;

}

public String getPayString() {
return name + ", Pay not known\n";

}

PART 3 Working with the Big Picture: Object-Oriented Programming

m Full-Time Employees Have Salaries

package com.allyourcode.company;

import java.text.NumberFormat;
import java.util.lLocale;
public class FullTimeEmployee extends Employee {

public double salary;

static NumberFormat currency = NumberFormat.getCurrencylInstance(Locale.US);

public FullTimeEmployee() {
}

public FullTimeEmployee(String name, String jobTitle, double salary) {
this.name = name;
this. jobTitle = jobTitle;

this.salary = salary;

public double pay() {

return salary;

@0verride

public String getPayString() {

return name + ", " + currency.format(pay()) + "\n";

m Executives Get Bonuses

package com.allyourcode.company;

public class Executive extends FullTimeEmployee {

public double bonus;

public Executive() {

}

public Executive(String name, String jobTitle, double salary, double bonus) {
this.name = name;
this. jobTitle = jobTitle;
(continued)

CHAPTER 10 Saving Time and Money: Reusing Existing Code 273

this.salary = salary;

this.bonus = bonus;

@0verride
public double pay() {

return salary + bonus;

Part-Time Employees Are Paid by the Hour

package com.allyourcode.company;

import java.text.NumberFormat;

import java.util.locale;

public class PartTimeEmployee extends Employee {
public double hourlyPay;

public int hoursWorked;

static NumberFormat currency = NumberFormat.getCurrencylInstance(Locale.US);

public PartTimeEmployee() {
}

public PartTimeEmployee(String name, String jobTitle,
double hourlyPay, int hoursWorked) {
this.name = name;
this. jobTitle = jobTitle;
this.hourlyPay = hourlyPay;

this.hoursWorked = hoursWorked;

public double pay() {

return hourlyPay x hoursWorked;

@0verride
public String getPayString() {

return name + ", " + currency.format(pay()) + "\n";

274 PART 3 Working with the Big Picture: Object-Oriented Programming

m Putting Your Employee Classes to the Test

package com.allyourcode.al0_06;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

import com.allyourcode.company.Employee;
import com.allyourcode.company.FullTimeEmployee;
import com.allyourcode.company.Executive;

import com.allyourcode.company.PartTimeEmployee;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

textView = (TextView) findViewById(R.id.textView);

Employee employee = new Employee("Barry", "Author");

FullTimeEmployee ftEmployee =
new FullTimeEmployee("Ed", "Manager", 10000.00);

PartTimeEmployee ptEmployee =
new PartTimeEmployee("Joe", "Intern", 8.00, 20);

Executive executive =

new Executive("Jane", "CEQ", 20000.00, 5000.00);

textView.setText("");

textView.append(employee.getPayString());
textView.append(ftEmployee.getPayString());
textView.append(ptEmployee.getPayString());
textView.append(executive.getPayString());

CHAPTER 10 Saving Time and Money: Reusing Existing Code 275

Figure 10-3 shows a run of the code in Listings 10-2 through 10-6.

Barry, Pay not known
FIGURE 10-3: Ed, §10,000.00

Joe, $160.00

Running the code Jane, $25.000.00

in Listings 10-2
through 10-6.

Figure 10-4 contains a UML diagram for the Employee class and its descendants.

Employee

name : String
jobTitle : Boolean
getPayString(void) : String

/\

FullTimeEmployee PartTimeEmployee
salary : double hourlyPay : double
currency : NumberFormat hoursWorked : int
pay(void) : double currency : NumberFormat
getPayStringlveid)-String getPayString (vold) : strl pay(void) : double)
geFagSg "9 : getPaystring (void) : String

FIGURE 10-4:
Classes and
subclasses with bonus : double

fields and |peytveid—deuble pay (void) : double

methods.

Executive

In Figure 10-4, I use strikethrough text and simulated handwriting to represent

e overridden methods. These typographical tricks are my own inventions. Neither

\J the strikethrough nor the simulated handwriting is part of the UML standard. In

tecunicar fact, the UML standard has all kinds of rules that I ignore in this book. My main

STUFF purpose in showing you the rough UML diagrams is to help you visualize the hier-
archies of classes and their subclasses.

Consider the role of the getPayString method in Figure 10-4 and in Listings 10-2

through 10-6. In the figure, getPayString appears in all except the Executive
class; in the listings, I define getPayString in all except the Executive class.

276 PART 3 Working with the Big Picture: Object-Oriented Programming

REMEMBER

The getPayString method appears for the first time in the Employee class (refer
to Listing 10-2), where it serves as a placeholder for not knowing the employee’s
pay. The FullTimeEmployee class (refer to Listing 10-3) would inherit this vacu-
ous getPayString class except that the Ful1TimeEmployee class declares its own
version of getPayString. In the terminology from Chapter 4, the getPayString
method in Ful1TimeEmployee overrides the getPayString method in Employee.

Listing 10-6 contains a call to a full-time employee’s getPayString method:
FullTimeEmployee ftEmployee = ... Etc.
textView.append(ftEmployee.getPayString());

And in Figure 10-3, the call to ftEmployee. getPayString() gives you the
FullTimeEmployee class’s version of getPayString, not the Employee class’s
clueless version of getPayString. (If ftEmployee.getPayString() called the
Employee class’s version of getPayString, you’d see Ed, Pay not known in
Figure 10-3.) Overriding a method declaration means taking precedence over
that existing version of the method.

Of course, overriding a method isn’t the same as obliterating a method. In List-
ing 10-6, the statements

Employee employee = ... Etc.
textView.append(employee.getPayString());

conjure up the Employee class’s noncommittal version of showPay. It happens
because an object declared with the Employee constructor has no salary field, no
hourlyPay field, and no getPayString method other than the method declared in
the Employee class. The Employee class, and any objects declared using the
Employee constructor, could do their work even if the other classes (FullTime
Employee, PartTimeEmployee, and so on) didn’t exist.

The only way to override a method is to declare a method with the same name and
the same parameters inside a subclass. By same parameters, I mean the same num-
ber of parameters, each with the same type. For example, calculate(int count,
double amount) overrides calculate(int x, double y) because both declara-
tions have two parameters: The first parameter in each declaration is of type int,
and the second parameter in each declaration is of type double. Butcalculate(int
count, String amount) doesn’t overridecalculate(int count, double amount).
In one declaration, the second parameter has type double, and in the other decla-
ration, the second parameter has type String. If you callcalculate(42, 2.71828),
you get the calculate(int x, double y) method, and if you call calculate(42,
"Euler") you get the calculate(int count, String amount) method.

CHAPTER 10 Saving Time and Money: Reusing Existing Code 277

278

OLAOD,
TECHNICAL
STUFF

Listings 10-2 through 10-5 have other examples of overriding methods. For
example, the Executive class in Listing 10-4 overrides its parent class’s pay
method, but not the parent class’s getPayString method. Calculating an execu-
tive’s pay is different from calculating an ordinary full-time employee’s pay. But
after you know the two peoples’ pay amounts, showing an executive’s pay is no
different from showing an ordinary full-time employee’s pay.

When I created this section’s examples, I considered giving the Employee class a
pay method (returning @ on each call). This strategy would make it unnecessary
for me to create identical getPayString methods for the Ful1TimeEmployee and
PartTimeEmployee classes. For various reasons (none of them interesting),
I decided against doing it that way.

Overriding works well in situations in which you want to tweak an existing class’s
features. Imagine having a news ticker that does everything you want except scroll
sideways. (I’m staring at one on my computer right now! As one news item disap-
pears toward the top, the next news item scrolls in from below. The program’s
options don’t allow me to change this setting.) After studying the code’s docu-
mentation, you can subclass the program’s Ticker class and override the Ticker
class’s scroll method. In your new scroll method, the user has the option to
move text upward, downward, sideways, or inside out (whatever that means).

Java's super keyword

You can inherit a lot from your parents. But one thing you can’t inherit is their
experiences of having been born. Yes, you can see pictures that your grandparents
took. But that’s not the same as having been there.

At this point, you may feel like quibbling. What would it mean to “inherit” your
parents’ birth experiences? Well, you can stop right there. I’m not trying to form
a perfect metaphor. I’'m only trying to introduce an important fact about Java
programming — the fact that classes don’t inherit constructors from their parent
classes.

Look at the constructors in Listings 10-2 and 10-3.

¥ TheFullTimeEmployee class extends the Employee class.
¥ Both classes have parameterless constructors.

¥ Both classes have constructors that initialize all of their fields.

In fact, a FullTimeEmployee constructor initializes three fields. Only one of these
fields — the salary field — is declared in the Ful1TimeEmployee class’s code. The

PART 3 Working with the Big Picture: Object-Oriented Programming

FullTimeEmployee class inherits the other two fields — name and jobTitle — from
the Employee class. This isn’t a matter of Ful1TimeEmployee overriding its parent
class’s constructors. There are no constructors to override. Like any other subclass,
the FullTimeEmployee class doesn’t inherit its parent class’s constructors.

Is there any way to avoid the loathsome redundancy of all the constructor declara-
tions in Listings 10-2 to 10-5? There is. Java’s super keyword can refer to a parent
class’s constructor:

public FullTimeEmployee(String name, String jobTitle, double salary) {
super(name, jobTitle);
this.salary = salary;

}

In this code, the FullTimeEmployee constructor calls its parent class’s construc-
tor. The call to super has two parameters and, as luck would have it, the parent
Employee class has a two-parameter constructor:

public Employee(String name, String jobTitle) {
this.name = name;
this. jobTitle = jobTitle;

}

The super call sends two parameters to the parent class’s constructor, and the
parent class’s constructor uses those two parameters to give name and jobTitle
their initial values. Finally, the Ful 1TimeEmployee class assigns a value to its own
salary field. Everything works very nicely.

Java annotations

In Java, elements that start with an at-sign (@) are annotations. In Listings
10-3, 10-4, and 10-5, each @0verride annotation reminds Java that the method
immediately below the annotation has the same name and the same parameter
types as a method in the parent class. The use of the @0verride annotation is
optional. If you remove all @verride lines from Listings 10-3, 10-4, and 10-5,
the code works the same way.

Why use the @0verride annotation? Imagine leaving off the annotation and mis-
takenly putting the following getPayString method (and no other getPayString
method declaration) in Listing 10-3:

public String getPayString(double salary) {
return name + ", " + currency.format(salary) + "\n";

}

CHAPTER 10 Saving Time and Money: Reusing Existing Code 279

FIGURE 10-5:
The getPay

String method

doe

sn't override

the parent class's
getPayString

280

method.

You might think that you’ve overridden the parent class’s getPayString method,
but you haven’t! The Employee class’s getPayString method has no parameters,
and your new FullTimeEmployee class’s getPayString method has a parameter.
Android Studio looks at this stuff in the editor and says, “Okay, I guess the devel-
oper is inheriting the Employee class’s parameterless getPayString method and
declaring an additional version of getPayString. Both getPayString methods are
available in the FullTimeEmployee class.” (By the way, when Android Studio
speaks, you can’t see my lips moving.)

Everything goes smoothly until you run the code. The Java virtual machine sees
the statement

textView.append(ftEmployee.getPayString());

in the main activity and calls the parameterless version of getPayString, which
the FullTimeEmployee class inherits from its parent. That parent’s method
returns the useless Pay not known message. On the emulator screen, you see Ed,
Pay not known for the full-time employee. That’s not what you want.

The problem in this hypothetical example isn’t so much that you commit a coding
error — everybody makes mistakes like this one. (Yes, even I do. I make lots of
them.) The problem is that, without an @0verride annotation, you don’t catch the
error until you’re running the program. That is, you don’t see the error message
as soon as you compose the code in the Android Studio editor. Waiting until run-
time can be as painless as saying, “Aha! I know why this program didn’t run cor-
rectly.” But waiting until runtime can also be quite painful — as painful as saying,
“My app was rated 1 on a scale of 5 because of this error that I didn’t see until a
user called my bad getPayString method.”

Ideally, Android Studio is aware of your intention to override an existing method,
and it can complain to you while you’re staring at the editor. If you use the
@0verride annotation in conjunction with the bad getPayString method, the
editor underlines @0verride in red. When you hover the mouse over the word
@0Override, you see the message shown in Figure 10-5. That’s good because you
can fix the problem long before the problem shows up in a run of your code.

Version) '
es for app) @Overridg
es)
Method does not override method from its superclass

public String getPayString(double salary) {
return name + ", " + currency.format{salary) + "\n";
}

PART 3 Working with the Big Picture: Object-Oriented Programming

In Chapter 9, Android Studio creates a toString method and puts another
annotation — the @NonNull annotation — at the top of the method declaration. In
Java, any reference type variable that doesn’t point to anything has the valuenull.
Consider the following cases:

¥ Ifyou write String greeting = "Hello", the greeting variable points to
the charactersH, e, 1, 1, 0.

¥ Ifyou write String greeting = "", the greeting variable points to a string
containing no characters. No, the string has no characters in it, but yes, it's still
a string. If you execute

greeting.length()

you get the number 0.

¥ If you write String greeting = null, the greeting variable doesn't point
to anything. In this case, if you execute

greeting.length()

your app crashes and you see aNullPointerException in Android Studio’s
Logcat pane.

In Chapter 9, the @NonNull annotation reminds Android Studio that the value
returned by the new toString method must not be null. If Android Studio detects
that the method returns null, you see a little yellow mark along the editor’s
rightmost edge. If you hover over that mark, you see a 'null' is returned by
the method warning.

More about Java’'s Modifiers

I start the conversation about Java’s modifiers in Chapters 5 and 9. Chapter 5
describes the keyword final as it applies to variables, and Chapter 9 deals with
the keywords public and private. In this section, I add a few more fun facts
about Java modifiers.

The word final has many uses in Java programs. In addition to having final
variables, you can have these elements:

3 Final class: If you declare a class to be final, no one (not even you) can
extend it.

CHAPTER 10 Saving Time and Money: Reusing Existing Code 281

3 Final method: If you declare a method to be final, no one (not even you)
can override it.

Figures 10-6 and 10-7 put these rules into perspective. In Figure 10-6, I can’t
extend the Stuff class, because the Stuff class is final. And in Figure 10-7, I
can’t override the Stuff class’s increment method because the Stuff class’s
increment method is final.

o) stuffjava x

package com.allyourcode.experiment;

final class Stuff {
int value;

void increment() {
value++;

(C) MyStuffjava x

package com.allyourcode.experiment;

class MyStuff extends Stufff{

| Cannot inherit from final ‘com.allyourcode.experiment.Stuff' |

FIGURE 10-6: double otherValue;
Trying to extend a ¥
final class.

D = | %- I~ (@ Swffjava x

Czapp package com.allyourcode.experiment;
[manifests
Fljava ® elass Stuff {
int value;
Elcom !
EJalln final void increment() {
Eally value++;
(=]) ¥
B,
() MyStuffjava x
Elcom.al package com.allyourcode.experiment;
Ecom.al class MyStuff extends Stuff {
E1demo double otherValue;
Ezres

2 Gradle Script: ® void_increment (] {

'increment()’ cannot override 'increment()' in
‘com.allyourcode.experiment.Stuff’; overridden methed is final

FIGURE 10-7: otherValue++)
Trying to override) '
a final method.

282 PART 3 Working with the Big Picture: Object-Oriented Programming

FIGURE 10-8:
Access modes for
fields and
methods.

You can apply Java’s protected keyword to a class’s members. This protected
keyword has always seemed a bit strange to me. In common English usage, when
my possessions are “protected,” my possessions aren’t as available as they’d nor-
mally be. But in Java, when you preface a field or a method with the protected
keyword, you make that field or method a bit more available than it would be by
default, as shown in Figure 10-8.

least restrictive

public
protected
default

private

most restrictive

Here’s what I say in Chapter 9 about members with default access:

A default member of a class (a member whose declaration doesn’t contain the
words public, private, or protected) can be used by any code inside the same
package as that class.

The same thing is true about a protected class member. But in addition, a
protected member is inherited outside the class’s package by any subclass of the
protected member’s class.

Huh? What does that last sentence mean? To make things concrete, Figure 10-9
shows you the carefree existence in which two classes are in the same package.
With both Stuff and MyStuff in the same package, the MyStuff class inherits the
Stuff class’s default access value variable. The MyStuff class also inherits (and
then overrides) the Stuff class’s default access increment method.

If you move the Stuff class to a different package, MyStuff no longer inherits the
Stuff class’s default access value variable, as shown in Figure 10-10. In addition,
the MyStuff class doesn’t inherit the Stuff class’s default access increment
method.

But if, in the Stuff class, you turn value into a protected variable and you turn

increment into a protected method, the MyStuff class again inherits its parent
class’s value variable and increment method, as shown in Figure 10-11.

CHAPTER 10 Saving Time and Money: Reusing Existing Code =~ 283

FIGURE 10-9:
Two classes in the
same package.

ualueIa-: 2;
FIGURE 10-10: 'value' is not public in 'com.allyourcode.experiment.Stuff'.
. Cannot be accessed from outside package
Classes in
different N }
packages.

284

C) Stuffjava x

package com.allyourcode.experiment;

8 public class Stuff {
int value;

8] void increment() {
value++;

n

MyStuff.java x
package com.allyourcode.experiment;

class MyStuff extends Stuff {
double otherValue;

@override
ol void increment({) {
value += 2;

-l = | &% |- (@ swffjava x
package com.allyourcode.experiment;

sts
8 public class Stuff {
int value;
allmycode void increment() {
lallyourcode valuest;
anotherpackage } ¥
©) o MyStuff
deleteme8 ©) MyStuffjava »
experiment
P package com.allyourcode.anotherpackage;
b Stuff
.allyourcode.delete import com.allyourcode.experiment.Stuff;

.allyourcode.delett

o class MyStuff extends Stuff {

double otherValue;

ipts @ye g
void increment{) {

Notice one more detail in Figure 10-11. I change the MyStuff class’s increment
method from default to public. I do this to avoid seeing an interesting little error
message. You can’t override a method with another method whose access is more
restrictive than the original method. In other words, you can’t override a public
method with a private method. You can’t even override a public method with a
default method.

Java’s default access is more restrictive than protected access. (Refer to Figure 10-8.)
So you can’t override a protected method with a default method. In Figure 10-11, I
avoid the whole issue by making the MyStuff class’s increment method be public.
That way, I override the increment method with the least restrictive kind of access.

PART 3 Working with the Big Picture: Object-Oriented Programming

o) Stuff java x

package com.allyourcode,experiment;

® public class Stuff {
protected int value;

8] protected void increment() {
value++;

}

n

MyStuff.java x

package com.allyourcode.anotherpackage;
import com.allyourcode.experiment.Stuff;

class MyStuff extends Stuff {
double otherValue;

@0verride

o public void increment() {
value += 2;
FIGURE 10-11:
Using the
protected } }
modifier.

Keeping Things Simple

Most programs operate entirely in the virtual realm. They have no bricks, nails, or
girders. You can type a fairly complicated program in minutes. Even with no mus-
cle and no heavy equipment, you can create a structure whose complexity rivals
that of many complicated physical structures. You, the developer, have the power
to build intricate, virtual bridges.

One goal of programming is to manage complexity. A good app isn’t simply useful
or visually appealing — a good app’s code is nicely organized, easy to understand,
and easy to modify.

Certain programming languages, like C++, support multiple inheritance, in which a
class can have more than one parent class. For example, in C++ you can create
a Book class, a TeachingMaterial class, and a Textbook class. You can make
Textbook extend both Book and TeachingMaterial. This feature makes class
hierarchies quite flexible, but it also makes those same hierarchies extremely
complicated. You need tricky rules to decide how to inherit the move methods of
both the computer’s Mouse class and the rodent’s Mouse class.

To avoid all this complexity, Java doesn’t support multiple inheritance. In Java, each
class has one (and only one) superclass. A class can have any number of subclasses.
You can (and will) create many subclasses of Android’s AppCompatActivity class.
And other developers create their own subclasses of Android’s AppCompatActivity
class. But classes don’t have multiple personalities. A Java class can have only one

CHAPTER 10 Saving Time and Money: Reusing Existing Code 285

286

parent. The Executive class (refer to Listing 10-4) cannot extend both the FullTi-
meEmployee class and the PartTimeEmployee class.

Using an interface

The relationship between a class and its subclass is one of inheritance. In many
real-life families, a child inherits assets from a parent. That’s the way it works.

But consider the relationship between an editor and an author. The editor says,
“By signing this contract, you agree to submit a completed manuscript by the
fifteenth of August.” Despite any excuses that the author gives before the deadline
date, the relationship between the editor and the author is one of obligation. The
author agrees to take on certain responsibilities; and, in order to continue being
an author, the author must fulfill those responsibilities. (By the way, there’s no
subtext in this paragraph — none at all.)

Now consider Barry Burd. Who? Barry Burd — that guy who writes Java Program-
ming for Android Developers For Dummies, 2nd Edition, and certain other For Dummies
books (all from Wiley Publishing). He’s a college professor, and he’s also an
author. You want to mirror this situation in a Java program, but Java doesn’t sup-
port multiple inheritance. You can’t make Barry extend both a Professor class
and an Author class at the same time.

Fortunately for Barry, Java has interfaces. A class can extend only one parent
class, but a class can implement many interfaces. A parent class is a bunch of stuff
that a class inherits. On the other hand, as with the relationship between an editor
and an author, an interface is a bunch of stuff that a class is obliged to provide.

Here’s another example. Listings 10-2 through 10-5 describe what it means to be
an employee of various kinds. Though a company might hire consultants, consul-
tants who work for the company aren’t employees. Consultants are normally self-
employed. They show up temporarily to help companies solve problems and then
leave the companies to work elsewhere. In the United States, differentiating
between an employee and a consultant is important: So serious are the U.S. tax
withholding laws that labeling a consultant an “employee” of any kind would
subject the company to considerable legal risk.

To include consultants with employees in your code, you need a Consultant class
that’s separate from your existing Employee class hierarchy. On the other hand,
consultants have a lot in common with a company’s regular employees. For
example, every consultant has a getPayString method. You want to represent
this commonality in your code, so you create an interface. The interface obligates
a class to give meaning to the method name getPayString, as shown in
Listing 10-7.

PART 3 Working with the Big Picture: Object-Oriented Programming

m Behold! An Interface!

package com.allyourcode.company;

public interface Payable {

public String getPayString();

The element in Listing 10-7 isn’t a class — it’s a Java interface. Here’s what the
listing’s code says:

As an interface, my getPayString method has a header, but no body. In this
interface, the getPayString method takes no arguments and returns a value of
type String. A class that claims to implement me (the Payable interface) must
provide (either directly or indirectly) a body for the getPayString method. That is,
a class that claims to implement Payable must, in one way or another, implement
the getPayString method.

To find out about the difference between a method declaration’s header and its
body, see Chapter 4.

CROSS-
RerereNce Listings 10-8 and 10-9 implement the Payable interface and provide bodies for

the getPayString method.

HE TR LEES Implementing an Interface

package com.allyourcode.company;

import java.text.NumberFormat;

import java.util.lLocale;

public class Consultant implements Payable {
String name;
double hourlyFee;
int hoursWorked;

static NumberFormat currency = NumberFormat.getCurrencylInstance(Locale.US);

public Consultant() {
}
(continued)

CHAPTER 10 Saving Time and Money: Reusing Existing Code =~ 287

LISTING 10

(continued)

public Consultant(String name, double hourlyFee, int hoursWorked) {
this.name = name;
this.hourlyFee = hourlyFee;

this.hoursWorked = hoursWorked;

public double pay() {

return hourlyFee x hoursWorked;

@0verride
public String getPayString() {

return name + ", " + currency.format(pay()) + "\n";

m Another Class Implements the Interface

package com.allyourcode.company;

public class Employee implements Payable {
String name;
String jobTitle;
int vacationDays;
double taxWithheld;

public Employee() {
}

public Employee(String name, String jobTitle) {
this.name = name;
this. jobTitle = jobTitle;

@0verride
public String getPayString() {

return name + ", Pay not known\n";

288 PART 3 Working with the Big Picture: Object-Oriented Programming

In Listings 10-8 and 10-9, both the Consultant and Employee classes implement
the Payable interface — the interface that summarizes what it means to be paid
by the company. With this in mind, consider the code in Listing 10-10.

m Using an Interface

package com.allyourcode.al0_10;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

import com.allyourcode.company.Consultant;
import com.allyourcode.company.Employee;

import com.allyourcode.company.Payable;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main)

textView = (TextView) findViewById(R.id.textView);

Employee employee = new Employee("Barry", "Author");
Consultant consultant = new Consultant("Willy", 100.00, 30);

textView.setText("");
displayPay(employee);

displayPay(consultant);

void displayPay(Payable payable) {
textView.append(payable.getPayString());

A run of the code in Listing 10-10 is shown in Figure 10-12.

CHAPTER 10 Saving Time and Money: Reusing Existing Code = 289

FIGURE 10-12:

Paying an

employee and a

consultant.

FIGURE 10-13:
An interface cuts
across the class

290

hierarchy.

o
oiS
TECHNICAL
STUFF

Barry, Pay not known
Willy, $3,000.00

In Listing 10-10, the displayPay method doesn’t know anything about Employee
classes or Consultant classes. All the displayPay method knows is that it wants
its parameter to implement the Payable interface. As long as the object you pass
to displayPay implements the Payable interface, the displayPay method’s body
can safely call the getPayString method.

Both the Employee and Consultant classes implement the Payable interface. So,
in Listing 10-10, you can pass an Employee object to the displayPay method, and
pass aConsultant object to the displayPay method. That flexibility — the ability
to pass more than one kind of object to a method — illustrates the power of Java’s
interfaces.

In this section’s example, two otherwise unrelated classes (Employee and
Consultant) both implement the Payable interface. When I picture a Java inter-
face, it’s an element that cuts across levels of Java’s class/subclass hierarchy, as
shown in Figure 10-13.

Object

equals(o : Object) : boolean
getClass(void) : Class
toString(void) : String

- _ Employee _ _ _| _ | _ _ _Consultant _ _ _ | _ ,| <<interface>>
. . Payable
name : String name : String
jobTitle : Boolean hourlyFee : double getPayString(void) : String
vacationDays : int hoursWorked : int
taxWithheld : double

The dotted line in Figure 10-13 isn’t part of standard UML. The folks who manage
the standard have much better ways to represent interfaces than I use in this
chapter’s figures.

PART 3 Working with the Big Picture: Object-Oriented Programming

Some Observations about
Android’'s Classes

When you start a new project, Android Studio offers to create an activity for your
project. Android Studio offers you several different kinds of activities, such as a
Basic Activity, an Empty Activity, a Login Activity, and so on. If you ask for an
Empty Activity, you get the code shown in Listing 10-11.

m Android Studio Creates a Main Activity

package com.allyourcode.al1@_11;

import android.support.vT.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main)

}

The code declares a class named MainActivity. This name MainActivity isn't
part of the Android API library. It’s a name that you make up when you create a
new Android project. (Actually, Android Studio makes up the name. You accept the
name or change it to some other name when you follow the steps to create a new
project.)

The MainActivity class in Listing 10-11 extends a class that belongs to Android’s
SDK library, namely, the AppCompatActivity class. In other words, the
MainActivity object is an AppCompatActivity object. The MainActivity object
has all the rights and responsibilities that any AppCompatActivity instance has.
For example, the MainActivity has an onCreate method, which it overrides in
Listing 10-11.

In fact, the MainActivity class inherits about 460 lines of code from Android’s
AppCompatActivity class, which inherits about 1,000 lines from Android’s
FragmentActivity class, which inherits about 6,700 lines from Android’s Activity
class. The inherited methods include ones such as getCallingActivity,
getCallingPackage, getParent, getTitle, getTitleColor, getWindow,

CHAPTER 10 Saving Time and Money: Reusing Existing Code = 201

onBackPressed, onKeyDown, onKeylLongPress, onLowMemory, onMenultemSelected,
setTitle, setTitleColor, startActivity, finish, and many, many others. You
inherit all this functionality with two simple words: extends AppCompatActivity.

In the terminology of familial relationships, your MainActivity class is a descen-
dant of Android’s Activity class. Your MainActivity class is a kind of Activity.

REMEMBER
Figure 10-14, taken directly from Android’s online documentation, summarizes
this information about the AppCompatActivity class.

For easy access to Android’s API library documentation, bookmark https://
developer.android.com/reference/packages.html.

TP "
In addition to being a subclass, the AppCompatActivity class implements a bunch
of interfaces, including the AppCompatCallback interface, the TaskStackBuilder
interface, and others. You don’t have to remember any of this. If you ever need to
know it, you can look it up on Android’s documentation page. I write about the
MainActivity class’s genealogy to drive home the importance of classes and
objects in Java programming.
. . Ighemedcansrams Inherited Fields ﬁtoés
Appcom patACthIty Methods | Protected Methods Inheme[dE)I\‘/ID:;lngAsh]
public class AppCompatActivity
extends FragmentActivity implements AppCompatCallback, TaskStackBuilder.SupportParentable,
ActionBarDrawerToggle.DelegateProvider
java.lang Object
Y android.content.Context
L android.content.ContextWrapper
L android.y ontextThemeWrapper
L android.app.Activ
L android.support.v4.app.FragmentActivity
 android.support.v7.app. AppCompatActivity
FIGURE 10-14:
An App Known Direct Subclasses
CompatActivity ActionBarActivity
family tree.

Java's super keyword, revisited

In an earlier section, the word super stands for the superclass’s constructor.
Listing 10-11, and many other listings, use the super keyword in a slightly differ-
ent way. Yes, super always has something to do with a class’s parent class. But,
no, super doesn’t always refer to the parent class’s constructor.

292 PART 3 Working with the Big Picture: Object-Oriented Programming

https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html

CROSS-
REFERENCE

In an onCreate method, the call super.onCreate(savedInstanceState) sends
savedInstanceState to the parent class’s onCreate method. In Listing 10-11, the
parent class is the AppCompatActivity class. So Java calls the AppCompatActivity
class’s onCreate method.

The AppCompatActivity class’s onCreate method contains its own call to
super .onCreate(savedInstanceState). The AppCompatActivity class’s par-
ent is the FragmentActivity class. So Java passes savedInstanceState to the
FragmentActivity class’s onCreate method. And so on.

It’s not until you get to the Activity class — your MainActivity class’s great-
grandparent — that the code makes direct use of the savedInstanceState
variable. From this savedInstanceState information, the code puts the activity
back the way it was before the system destroyed it.

To find out why the poor activity may have been destroyed, see Chapter 4.

Casting, again

When you call findViewById, Java doesn’t know what kind of view it will find. The
findviewById method always returns a View instance, but lots of Android’s
classes extend the View class. For example, the classes Button, TextView,
ImageView, CheckBox, Chronometer, and RatingBar all extend Android’s View
class. If you type the following code:

// DON'T DO THIS!!
TextView textView;
textView = findViewById(R.id.textView);

Java lets out a resounding, resentful roar: “How dare you assume that the object
returned by a call to findViewById refers to an instance of the TextView class!”
(Actually, Java quietly and mechanically displays an Incompatible types error mes-
sage in Android Studio’s editor. But I like to personify Java as though it’s a stern
taskmaster.)

In Chapter 6, narrowing means trying to assign a long value to an int value. A
long value has 64 bits, and an int value has only 32 bits. So the attempt at nar-
rowing fails. In this section, the bad findViewById call is another attempt to do
narrowing — assigning the View value returned by a method call to a TextView
variable. The TextView class is a subclass of the View class, so the assignment
fails miserably.

CHAPTER 10 Saving Time and Money: Reusing Existing Code 293

294

REMEMBER

CROSS-
REFERENCE

But in so many of this book’s examples, you prevent this failure. You appease the
Java gods by adding a casting operator to the code. You tell Java to convert what-
ever pops out of the findviewById method call into a TextView object.

textView = (TextView) findViewById(R.id.textViewl);

While you’re typing the code, Java humors you and says, ‘“Your casting operator
shows me that you’re aware of the difference between a TextView and any old
View. I’ll do my best to interpret the View object that I find at runtime as a
TextView object.” (Actually, while you’re typing the code, Java says nothing. The
fact that Java doesn’t display any error messages when you use this casting trick
is a good sign. Java’s casting feature saves the day!)

Casting prevents you from seeing an error message while you develop your code.
In that way, casting is quite a useful feature of Java. But casting can’t save you if
your code contains runtime errors. When you type

textView = (TextView) findViewById(R.id.textViewl);

you verify that the name textView represents a TextView widget. When the app
runs, Java grabs theR. id. textView widget from the activity_main.xml file, and
everything works just fine. But you may sometimes forget to check your R. java
names against the components in the XML file. A call to findviewById surpris-
ingly spits out a Button component when your casting tells Java to expect a
TextView widget. When this happens, Java chokes on the casting operator and
your app crashes during its run. Back to the drawing board!

For a more complete discussion of casting, see Chapter 6.

PART 3 Working with the Big Picture: Object-Oriented Programming

Powering
Android with
Java Code

IN THIS PART ...

Becoming a collector (in the Java sense)
Creating an app that uses social media

Creating an Android game

IN THIS CHAPTER

» Putting a class inside another class

» Putting strings where they belong

» Using Java's special tricks to avoid
programming hassles

Chapter 11
The Inside Story

n common English usage, an insider is someone with information that’s not
available to most people. An insider gets special information because of her
position within an organization.

American culture has many references to insiders. Author John Gunther became
famous for writing Inside Europe and Inside Africa and other books in his Inside
series. On TV crime shows, an inside job is a theft or a murder committed by
someone who works in the victim’s own company. So significant is the power of
inside information that, in most countries, insider stock trading is illegal.

In the same way, a Java class can live inside another Java class. When this hap-
pens, the inner class has useful insider information. This chapter explains why.

A Button-Click Example

The last listing in Chapter 3 illustrates the industrial-strength way to make a
button respond to a click. In Chapter 3, I treat the listing like a black box. I show
you the listing, but I don’t write much about it.

Now you’re reading Chapter 11, and you know a lot about Java. You know about
classes, about classes that extend other classes, and about interfaces. (Chapters 9
and 10 deal with these topics.) So in this chapter, I can introduce Java’s inner
classes, and I can build up to the code in that Chapter 3 listing.

CHAPTER 11 The Inside Story 297

I start with the code in Listings 11-1 and 11-2.

m Your Main Activity

package com.allmycode.al1_01;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
Button button;

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main)

button = (Button) findViewById(R.id.button);
button.setOnClickListener(new MyOnClickListener(this));

textView = (TextView) findViewById(R.id.textView);

m A Class Listens for Button Clicks

package com.allmycode.al1_01;

import android.view.View;

import android.view.View.OnClickListener;

public class MyOnClickListener implements OnClickListener {

MainActivity caller;

public MyOnClickListener(MainActivity activity) {

caller = activity;

298 PART 4 Powering Android with Java Code

FIGURE 11-1:
Beginning a run
of the code in
Listings 11-1
and 11-2.

FIGURE 11-2:
What you see
after clicking the
button in
Listings 11-1
and 11-2.

CROSS-
REFERENCE

public void onClick(View view) {
caller.textView.setText(R.string.you_clicked);

}

A run of the code in Listings 11-1 and 11-2 is shown in Figures 11-1 and 11-2.

You clicked the button!

In Listing 11-2, the expression R.string.you_clicked stands for the string "You
clicked the button!". For details, see this chapter’s later section “Android
String resources (A slight detour).”

In Android, every button has a setOnClickListener method. When you call a
button’s setOnClickListener method, you tell Java that an object should respond
when the user clicks the button. And what does respond mean? In the case of a
button click, the responding object always runs its onClick method. So in
Listing 11-1, the statement

button.setOnClickListener(new MyOnClickListener(this));

CHAPTER 11 The Inside Story 299

FIGURE 11-3:

The caller field
remembers the
constructor’s

300

parameter.

tells Java to run a particular object’s onClick method when the user clicks the
button.

In Listing 11-1, the responding object is a brand-new instance of the
MyOnClickListener class. That’s good, because I declare the MyOnClickListener
class in Listing 11-2.

So far, so good. But, in Listing 11-1, what’s that word this doing in the call to the
MyOnClickListener constructor? To answer the question, take another peek at
some code from Listing 11-2:

MainActivity caller;

public MyOnClickListener(MainActivity activity) {
caller = activity;

}

The MyOnClickListener constructor remembers whatever parameter you pass to
it. The constructor stores the parameter in a field named caller. So if you execute
new MyOnClickListener(this), the field name caller ends up referring to
whatever this stands for. See Figure 11-3.

MainActivity caller;
public MyO ickListener (MainActivity activity)

caller = activity;

} S

The word this always stands for the object in which the word this appears. In
Listing 11-1, the word this stands for the object that’s described in Listing 11-1 —
the MainActivity object. So in Listing 11-2, the field name caller ends up refer-
ring to the MainActivity described in Listing 11-1. That’s interesting! Figure 11-4
illustrates the situation.

If caller refers to the stuff that’s declared in Listing 11-1, caller.textView
refers to the textView field in Listing 11-1. So, in Listing 11-2, the statement

caller.textView.setText(R.string.you_clicked);

tells Java to put the R.string.you_clicked string (the words You clicked the
button!) into the activity’s textView component. And that’s how the words You
clicked the button! getto appear on the screen shown in Figure 11-2. Figure 11-5
shows you what happens when Java runs the code.

PART 4 Powering Android with Java Code

public class MainActivity extends AppCompatActivity {

button.setOnClickListener (new MyOnClickListener (this));

-
I
1
1
1
1
I
1
1
I
1
1

public class MyOnClickListener implements OnClickListener {

MainActivity caller;
public MyO; ickListener (MainActivity activity) {

caller = activity;

FIGURE 11-4:
The caller field
refers to the
calling activity. }

public class MainActivity extends AppCompatActivity {
Button button;
TextView textView;

button.setOnCllickListener (new MyOnClickListener (this)) ;

public class MyOnClickListener implemgnts OnClickListener {

MainActivity caller;
public MyOpelickListener (MainActivity activity) {

caller = activity;

}

FIGURE 11-5: public void onclick (View view) {
TheJogrn?y ?f caller.textView.setText (R.string.you_clicked) ;
your application’s }
main activity. }

CHAPTER 11 The Inside Story 301

This is a callback

The pattern that I use in Listings 11-1 and 11-2 is known as a callback. When the
user clicks the button, the MyOnClickListener object in Listing 11-2 calls back to
the activity that created it. This callback is possible for two reasons:

3 Android’s built-in setOnClickListener method expects its parameter to
implement Android’'s OnClickListener interface.

| looked online for the first line of the setOnClickListener method's code.
Here's what | found:

public void setOnClickListener(OnClickListener 1)

Remember that OnClickListener is an interface, not a class.

When you call setOnClickListener, you pass an object to the method. The
setOnClickListener method doesn’t know much about that object’s class. The
method doesn’t know whether you'll pass it one of your MyOnClickListener objects
or aBagOfCheese object or aWhateverElse object. The setOnClickListener
method wants the flexibility to accept any of those objects as its parameter.

All the setOnClickListener method knows is that it wants the object that you pass
to it to implement Android's OnClickListener interface. That's why, in Listing 11-2,
the MyOnClickListener class implements the OnClickListener interface.

3 TheMyOnClickListener object knows how to call back the activity that
constructed it.

Again, in Listing 11-1, the MyOnClickListener constructor call passes this to
its new MyOnClickListener object. (“Call me back,” says your activity's code in
Listing 11-1.) Refer to Figure 11-5.

Then, in Listing 11-2, the MyOnClickL istener constructor makes a mental
note of who gets called back, by storing a reference to your activity in its own
caller field. So, when push comes to shove, the code in Listing 11-2 calls
back caller.textView.setText, which changes the words displayed in the
original activity's textView.

Android string resources (A slight detour)

Here’s an experiment for you to try:

1 . Start with this statement (or a statement much like this statement) in
Android Studio’s editor:

textView.setText("You clicked the button!");

302 PART 4 Powering Android with Java Code

FIGURE 11-6:
Please use
Android
resources.

FIGURE 11-7:
Android Studio
suggests some

actions.

FIGURE 11-8:
The Extract
Resource
dialog box.

2. Click the mouse on the "You clicked the button!" string. When you do,
you see a message about Android resources. (See Figure 11-6.)

public void onClick{View view) {

caller. textView.setText("You clickedJthe button!");
1

String literal in setText can not be translated. Use Android resources instead. more... (8F1)

3. In response to the message, press Alt+Enter. When you do, you see a list

of suggested actions. (See Figure 11-7.)

public void onClick(View view) {

}

cal.l.er.textview.setText("YouIc'Licked the button!");
' # Disable inspection
25 Edit "TextView Internationalization' inspection settings
Suppress: Add @SuppressLint("SetText|18n") annotation

¢ Extract string resource >
Inject language or reference 4

4. Inthelistof suggested actions, select the Extract String Resource action.

When you do, Android Studio displays an Extract Resource dialog box. (See

Figure 11-8.)

[NN] Extract Resource
Resource name:

Resource value: |w clicked the button!

Source set: main H
File name: strings.xml H
Create the resource in directories:
values

values-w820dp

cancel (I

CHAPTER 11 The Inside Story

303

304

A\

WARNING

5. Inthe dialog box’s name field, type you_clicked, or something like that.

Type something with only letters, digits, and underscores — something that
reminds you about the "You clicked the button!" string’s text.

6. Inthe Extract Resource dialog box, click OK.

When you do all this, Android Studio replaces the "You clicked the button!"
string with the expression R.string.you_clicked. (Refer to Listing 11-2.) This
expression stands for the "You clicked the button!" string because Android
Studio has also added a line to your project’s app/res/values/strings.xml file:

<resources»
<string name="app_name">11_01<¢/string>
<string name="you_clicked">You clicked the button!</string>
<string name="click_me">CLICK ME</string»

</resources>

When you run the project, Android looks up the meaning of R.string.you_
clicked the same way Android finds a TextView component when you write
R.id.textView. Some details are in Chapter 3.

Android Studio’s editor doesn’t always show you the text that’s actually in your
Java code. After you’ve followed the previous steps, you may still see

textView.setText("You clicked the button!");

in the editor. If you hover the mouse over the "You clicked the button!" string,
you see a popup showing the text that’s actually in your code — the R.string.
you_clicked expression.

While you’re looking at my little strings.xml file, notice the file’s CLICK ME line.
When I created the app belonging to Listings 11-1 and 11-2, I started by putting
CLICK ME on the face of the button using the Designer tool’s Properties pane. Then
I changed the Designer tool to its Text mode, where I saw the following lines in
the activity_main.xml file:

<Button
android:text="CLICK ME"

I clicked my mouse on the code’s "CLICK ME" value and followed steps similar to
those for my "You clicked the button!" string. As a result, Android Studio
changed the activity_main.xml file’s lines to

PART 4 Powering Android with Java Code

FIGURE 11-9:
The Translations
editor.

ON THE
WEB

<Button

android:text="@string/click_me"

and added the CLICK ME line in the strings.xml file.

What’s the purpose of all thisR.string and @string stuff? Don’t you have enough
problems following your code’s logic without having to look up the values of
things like R.string.you_clicked? To discover an important advantage of string
resources, try this experiment:

1.
2.

Follow this section’s steps to create anR.string.you_clicked resource.

Open your project’s app/res/values/strings.xml file in Android Studio’s

editor.

At the top of the editor, you see a notification about something called the

Translations editor.

Click the translation notification’s Open Editor link.

As a result, Android Studio’s Translations Editor appears. (See Figure 11-9.)

x

) MainActivity java X) MyOnClickListener.java %3 strings.xm| X

+ @ Show only keys needing translations
Key Default Value
app_name 11 01
click_me CLICK ME
you_clicked You clicked the button!

Key:

Default Value:

Translation:

) Translations Editor ¥ |~=2
Order a translation...

unt...

4. Nearthe top of the Translations Editor, click the Globe icon.

A list of language locales appears. (See Figure 11-10.)

For the full scoop on language locales, visit www . iso.org/iso/country_codes.

Select a language locale from the list.

For this exercise, | select French (fr). As a result, the strings.xml branch in the

Project tool window now has two subbranches. Both subbranches sport the

label strings.xml, but the new subbranch’s icon is a tiny picture of the flag of

France. (See Figure 11-11.)

CHAPTER 11 The Inside Story

305

http://www.iso.org/iso/country_codes

FIGURE 11-10
Select a language.

FIGURE 11-11:
Look! You have
twostrings.

xml files.

306

x C MainActivityjava X C MyOnClickListener java x E strings.cml % 6TVEHS|JI\DI']5 Editor x | -=2

ar Gk Show only keys needing translations Order a translation...
BE Abkhazian (ab) fune..
Achinese (ace)
Acoli (ach)

Adangme (ada)
Adyghe; Adygel (ady)
== Afar (aa)
Afrihili (afh)
= Afrikaans (af)
Afro-Asiatic languages (afa)
Aghem (agq)
Ainu (ain)
= Akan (ak)
Akkadian (akk)
[H Albanian (sq)
Aleut (ale)
Alaonauian lanauaces (ala)

@ Android = [}
Ciapp
[manifests
[java
Eares
[drawable
Ilayout
I mipmap
* Elvalues
@ colors.xml
EJdimens.xml (2)
[strings.xml (2)
[strings.xml
[Bstrings.xml (fr)
@ styles.xml
(& Gradle Scripts

LN ol Ala (D £ 11 N3

In the Translations Editor, the term you_clicked is in red because you haven't yet
translated You clicked the button! into French. The same is true for other terms

that you haven't yet translated.

6. Double-click the French (fr) column in the you_clicked row. In that column,

type Vous avez cliqué sur le bouton! and then press Enter.

Now, in the French version of the strings.xml file, you can find the follow-

ing line:

<string name="you_clicked"»>Vous avez cliqué sur le bouton!</string>

(Sorry. The Translations Editor doesn’t do any translating for you. The
Translations Editor only adds code to your project when you type in the

translations of words and phrases.)

PART 4 Powering Android with Java Code

7. i you're ambitious, you can repeat these steps for the text on the face of
the button.

With R.string.click_me referring to the English words CLICK ME, create the French
translation CLIQUEZ SUR-MOI.

8. Test your app.

As with most devices, the emulator has a setting for Language & Input. Change
this setting to French (France), and suddenly your app looks like the display in
Figure 11-12.

CLIQUEZ SUR-MOI

Vous avez cliqué sur le bouton!

FIGURE 11-12:
C'est formidable!

literals in calls to setText. I also put English language phrases in layout files by
typing the phrases in Android Studio’s Properties pane. It’s all good for beginners,

rememser but professional Android developers favor this section’s use of string resources.
With string resources, you separate the words the user sees from the code, making
it easy to provide translations. This is great because, when you upload an app to
Google Play, the app is available to people in more than 137 countries.

@ In most of this book’s examples, I keep your life simple by putting Java String

Introducing Inner Classes

Does the diagram in Figure 11-5 seem unnecessarily complicated? Look at all those
arrows! You might expect to see a few somersaults as the caller object bounces
from place to place! The MyOnClickListener class (refer to Listing 11-2) devotes
much of its code to obsessively keeping track of this caller object.

Another problem with Listings 11-1 and 11-2 is the way one class tinkers with the
other class’s value. In Listing 11-2, with the line

caller.textView.setText(R.string.you_clicked);

CHAPTER 11 The Inside Story 307

the MyOnClickListener class changes the text in the MainActivity class’s
textView variable. That’s not good programming practice. It’s like sneaking into
someone’s house and moving some furniture around. It may be okay, but it’s
always disconcerting.

Is there a better way to handle a simple button click?

There is. You can define a class inside another class. When you do, you’re creating
an inner class. It’s a lot like any other class. But within an inner class’s code, you
can refer to the enclosing class’s fields with none of the froufrou in Listing 11-2.
That’s why, at the beginning of this chapter, I sing the praises of insider
knowledge.

One big class with its own inner class can replace both Listings 11-1 and 11-2. And
the new inner class requires none of the exotic gyrations that you see in the old
MyOnClickListener class. Listing 11-3 contains this wonderfully improved code.

m A Class within a Class

308

package com.allmycode.al1_03;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
Button button;

TextView textView;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

button = (Button) findViewById(R.id.button);
button.setOnClickListener(new MyOnClickListener());

textView = (TextView) findViewById(R.id.textView);

class MyOnClickListener implements OnClickListener {

PART 4 Powering Android with Java Code

public void onClick(View view) {

textView.setText(R.string.you_clicked);
}

When you run the code in Listing 11-3, you see the results shown earlier, in
Figures 11-1 and 11-2.

Notice the relative simplicity of the new MyOnClickListener class in Listing 11-3.
Going from the old MyOnClickListener class (refer to Listing 11-2) to the new
MyOnClickListener inner class (refer to Listing 11-3), you reduce the number of
files from two to one. But aside from the shrinkage, all the complexity of
Figure 11-6 is absent from Listing 11-3. The use of this, caller, and textView in
Listings 11-1 and 11-2 feels like a tangled rope. But in Listing 11-3, when you pull
both ends of the rope, you find that the rope isn’t knotted.

An inner class needs no fancy bookkeeping in order to keep track of its enclosing
class’s fields. Near the end of Listing 11-3, the line

textView.setText(R.string.you_clicked);

refers to theMainActivity class’s textView field, which is exactly what you want.
It’s that straightforward.

In this section, I show how a class can live inside of another class. An interface can
live inside of a class, too. Look at two of the import declarations in Listing 11-3:

REMEMBER import android.view.View;

import android.view.View.OnClickListener;

Android’s View class is in the android.view package. And Android’s
OnClickListener interface is an interface that’s declared inside the View class.

No Publicity, Please!

Notice that the code in Listing 11-3 uses the MyOnClicklListener class only once.
(The only use is in a call to button.setOnClickListener.) So I ask: Do you really
need a name for something that’s used only once? No, you don’t. (If there’s only
one cat in the house, you can name it “Cat.”)

CHAPTER 11 The Inside Story 309

When you give a name to your disposable class, you have to type the name twice:

once when you call the class’s constructor:

button.setOnClickListener(new MyOnClickListener());

and a second time when you declare the class:

class MyOnClickListener implements OnClicklListener {

To eliminate this redundancy, you can substitute the entire definition of the class
in the place where you’d ordinarily call the constructor. When you do this, you

have an anonymous inner class. Listing 11-4 shows you how it works.

A Class with No Name (Inside a Class with a Name)

310

package com.allmycode.all_04;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
Button button;

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main)

button = (Button) findViewById(R.id.button);
button.setOnClickListener(new OnClickListener() {
public void onClick(View view) {
textView.setText(R.string.you_clicked);
}
b;

textView = (TextView) findViewById(R.id.textView);

PART 4 Powering Android with Java Code

FIGURE 11-13:

The Inline to
Anonymous Class
dialog box.

A run of the code from Listing 11-4 is shown in Figures 11-1 and 11-2. In other
words, the listing does exactly the same thing as its wordier counterparts in this
chapter. The big difference is that, unlike this chapter’s previous examples, the
listing uses an anonymous inner class.

An anonymous inner class is a lot like an ordinary inner class. The big difference
is that an anonymous inner class has no name. Nowhere in Listing 11-4 do you see
a name like MyOnClickListener. Instead, you see what looks like an entire class
declaration inside a call to button.setOnClickListener. It’s as though the
setOnClickListener call says, “The following listener class, which no one else
refers to, responds to the button clicks.”

Android Studio can turn the inner class code in Listing 11-3 into the anonymous
class code in Listing 11-4. Here’s how:
1. View the code from Listing 11-3 in the Android Studio editor.

2. Inthe editor, click your mouse on either occurrence of the word
MyOnClickListener.

3. On the Android Studio main menu, choose Refactor = Inline.

The Inline to Anonymous Class dialog box appears, as shown in Figure 11-13.

[JoN) Inline to Anonymous Class
Class MyOnClickListener
£ Inline all references and remove the class
nline this reference only and keep the class

Search in comments and strings Search for text occurrences

? Cancel Preview hi efacto g

4. In the dialog box, select the Inline All References and Remove the Class
radio button.

5. click ok.

As a result, Android Studio dismisses the dialog box and creates the code in
Listing 11-4.

As far as ’'m concerned, the most difficult aspect of using an anonymous inner
class is keeping track of the code’s parentheses, curly braces, and other non-
alphabetic characters. Notice, for example, the string of closing punctuation
characters — !"); }}); — that straddles a few lines in Listing 11-4. The indenta-
tion in that listing helps a little bit when you try to read a big mush of anonymous

CHAPTER 11 The Inside Story 311

inner class code, but it doesn’t help a lot. Fortunately, there’s a nice correspon-
dence between the code in Listing 11-3 and the anonymized code in Listing 11-4.
Figure 11-14 illustrates this correspondence.

I feel obliged to include a written explanation of the material in Figure 11-14.
Here goes:

To go from a named inner class to an anonymous inner class, you replace the
named class's constructor call with the entire class declaration. In place of the class
name, you put the name of the interface that the inner class implements (or,
possibly, the name of the class that the inner class extends).

If you find my explanation helpful, I’'m pleased. But if you don’t find it helpful,
I’m neither offended nor surprised. When I create a brand-new inner class, I find
my gut feeling and Figure 11-14 to be more useful than Java’s formal grammar
rules.

F =
1
1
v
1 1

1 1

! !

! !

1 1

o
<
&
o
0
=)
0
)
0
o)
3
(@]
=
o
Q
2
g
28
n
)
()
5
()
R
=)
()

s
=
9
o)
=
(@]
=
o
Q
2
o
2
n
&)
()
i)
()
R
G-11 Bunsiy u

1
14 14
button.setOnClickListener (new OnClickListenerm { =
%
public void onClick (View view) { S
textView.setText (R.string.you clicked) ; i
} &
Y
class MyOnClickListener implements|OnClickListener ({ =
%
FIGURE 11-14: public void onClick (View view) { 2
Turning ordinary textView.setText (R.string.you clicked) ; =
inner class code } &
into anonymous }

inner class code.

My humble advice: Start by writing code with no inner classes, such as the code in
Listing 11-3. Later, when you become bored with ordinary Java classes, experi-
ment by changing some of your ordinary classes into anonymous inner classes.

312 PART 4 Powering Android with Java Code

Lambda Expressions

If you open Listing 11-4 in Android Studio’s editor and hover the mouse over the
words new OnClickListener, you get an interesting surprise. (See Figure 11-15.)
Android Studio tells you that you can replace the anonymous inner class with a
lambda expression.

FIGURE 11-15: button = {Butten) findViewById(R.id.button);
You can create button. setOnClickListener({new OnClickListener() {
a |ambda Anonymous new OnClickListener() can be replaced with lambda more... (38F1)
eXpresSiOn, public void onClick({View view) {

Okay. What’s a lambda expression? For starters, lambda is a letter in the Greek
alphabet, and the term lambda expression comes from papers written in the 1930s
by mathematician Alonzo Church.

In 2013, Oracle released Java 8, adding lambda expressions to the Java language.
And in 2016, Google made Java 8 features available to Android developers.

I still haven’t told you what a lambda expression is. A lambda expression is a con-
cise way of declaring an interface that contains only one method. In Listing 11-4,
the anonymous OnClickListener has only one method, namely, the onClick
method. So you can replace this anonymous OnClickListener with a lambda
expression.

If you respond to the message in Figure 11-15 by pressing Alt+Enter, Android Stu-

dio offers you a Replace with Lambda option. If you accept this option, Android
Studio turns your code into the stuff shown in Listing 11-5.

m Using a Lambda Expression

package com.allmycode.al1_05;

import android.os.Bundle;
import android.support.vT.app.AppCompatActivity;
import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
Button button;
TextView textView;
(continued)

CHAPTER 11 The Inside Story 313

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main)

button = (Button) findViewById(R.id.button);
button.setOnClickListener(view -> textView.setText(R.string.you_clicked));

textView = (TextView) findViewById(R.id.textView);

The code in Listing 11-5 does exactly the same thing as the code in Listings 11-1
to 11-6. The only difference is that Listing 11-5 uses a lambda expression.
Figure 11-16 illustrates the transition from a class that implements a one-method
interface to a lambda expression.

class MyOnClickListener implements OnClickListener {

=
rodeg —
public void onClick (Viewiview!) { 17}
a
kextView.setText(R.string.you_clicked); =
} &
1
FIGURE 11-16: 5
-
Turning an g
interface into ! - - - =
view -> [textView.setText (R.string.you clicked)
alambda — =
expression. <

In Figure 11-16, notice the lightweight role of the word view. When you declare an
onClick method, you give the method a parameter of type View even if the state-
ments inside the method don’t use that parameter. In the same way, when you
create a lambda expression for an onClick method, you preface the -> symbol
with a parameter name, even if you don’t use that parameter name to the left of
the -> symbol.

In order to use lambda expressions, you must satisfy certain requirements. For
v example, you must compile your code with Java 8 or higher. Your Android Studio
version must be 2.1 or higher. And your project’s build.gradle file must include

tecunicar the following code:
STUFF

314 PART 4 Powering Android with Java Code

TIP

android {
defaultConfig {

jackOptions {

enabled true

A lambda expression may have more than one parameter to the left of the
-> symbol. If it does, you must enclose all the parameters in parentheses and
separate the parameters from one another with commas. For example, the
expression

(pricetl, price2) -»> pricel + price2
is a valid lambda expression.
If you’re comfortable with lambda expressions, Listing 11-5 is much more read-

able than the earlier listings in this chapter. What started out as about ten lines of
code in Listing 11-2 has become only part of a line in Listing 11-5.

CHAPTER 11 The Inside Story 315

IN THIS CHAPTER

» Dealing with many objects at a
time

» Creating versatile classes and
methods

» Creating a drop-down list

Chapter 12

Dealing with a Bunch of
Things at a Time

All the world’s a class,

And all the data, merely objects.
— JIMMY SHAKESPEARE, 11-YEAR-OLD COMPUTER GEEK

class is a blueprint for things, and an object is a thing made from the blue-
print. By thing, I mean a particular employee, a customer, an Android
activity, or a more ethereal element, such as an SQLiteOpenHelper.

Android’s SQLiteOpenHelper class assists developers in the creation of databases.
An SQLiteOpenHelper doesn’t look like anything in particular, certainly not like
an employee or a bag of cheese. Nevertheless, SQLiteOpenHelper is a class.

This chapter covers another thing that you might not normally consider a class or
an object — namely, a bunch of things. I use the word bunch, by the way, to avoid
the formal terminology. (There’s nothing wrong with the formal terminology, but
I want to save it for this chapter’s official grand opening, in the first section.)

CHAPTER 12 Dealing with a Bunch of Things ata Time 317

Creating a Collection Class

A collection class is a class whose job is to store a bunch of objects at a time — a
bunch of String objects, a bunch of BagOfCheese objects, a bunch of tweets, or
whatever. You can create a collection class with the code in Listing 12-1.

m Making an ArrayList

package com.allmycode.al2_01;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

import java.util.Arraylist;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

ArraylList arraylList = new ArraylList();
arrayList.add("Hello");
arrayList.add(", ");
arrayList.add("readers");

arrayList.add("!");

textView.setText("");

for (int i = 0; i < 4; i++) {
textView.append((String) arraylList.get(i));

When you run the code in Listing 12-1, you see the output shown in Figure 12-1.

318 PART 4 Powering Android with Java Code

FIGURE 12-1:
Running the code
in Listing 12-1.

REMEMBER

REMEMBER

Hello, readers!

The code in Listing 12-1 constructs a new ArraylList instance and makes the
arrayl ist variable refer to that new instance. The Arrayl ist class is one of many
kinds of collection classes.

The statement Arrayl ist arraylList = new ArraylList() creates an empty list
of things and makes the arraylL ist variable refer to that empty list. What does a
list look like when it’s empty? I don’t know. I guess it looks like a blank sheet of
paper. Anyway, the difference between having an empty list and having no list is
important. Before executing ArrayList arraylList = new ArraylList(), you have
no list. After executing ArraylList arraylList = new ArraylList(), you have a list
that happens to be empty.

After calling arrayl ist.add, the list is no longer empty. The code in Listing 12-1
calls arrayl ist.add four times in order to put these four objects (all strings) into
the list:

» "Hello"

9y ", "

¥» '"readers"

» "
Each object in the list has an index — a number from 0 to 3. You can think of an
object’s index as the object’s position in the list. The string "Hello" has index o,

the string ", " has index 1, the string "readers" has index 2, and the string " ! "
has index 3.

In a Java collection, the initial index is always 0, not 1.
An Arrayl ist instance’s get method fetches the object for a particular index. So,
in Listing 12-1, arrayList.get (@) is "Hello", arrayList.get(1) is", ", and so

on. To display all the strings in the list, the for statement in Listing 12-1 marches
from index o to index 1, and then 2, and finally 3.

CHAPTER 12 Dealing with a Bunch of ThingsataTime 319

320

REMEMBER

More casting

Notice the use of casting in Listing 12-1.
textView.append((String) arraylList.get(i));

When you create an Arrayl ist the way I did in Listing 12-1, Java assumes that the
list contains things of type Object. In Java’s class hierarchy, the Object class is
the ancestor of all other classes. In fact, the parent class of Java’s String class is
the Object class.

When you call
arraylist.add("Hello");

Java says “That’s nice. The developer has added a kind of Object to the
arraylList.” And Java is happy.

Notice what Java doesn’t say. Java doesn’t say “I’ll remember that the developer
added something of type String to the arraylList.” In fact, Java forgets about
this. By the time you get to the statement

textView.append((String) arraylList.get(i));

Java has forgotten all about the string "Hello". All Java knows is that you’re try-
ing to get an Object of some kind from the arraylL ist. So Java would get upset if
you wrote

// With arraylList declared as in Listing 12-1, don't do this:
textView.append(arraylList.get(i));

The textView.append method wants its parameter to be a character sequence of
some kind, and an Object that you obtain when you call the arrayList object’s
get method isn’t necessarily a character sequence. That’s why, in Listing 12-1,
I have to cast the result of arrayList.get(i). This casting tells Java that, this
time around, I expect the thing that it gets from the arraylList to be a String.

Casting isn’t a magic cure-all. The casting in Listing 12-1 is okay because all
the objects in the arrayl ist have type String. But if, for some reason, the thing
that Java obtains from (String) arraylList.get(i) isn’t a String, the call to
textView.append crashes and the person using your app gives you a bad rating on
Google Play. You don’t want that to happen.

PART 4 Powering Android with Java Code

Java generics

Starting with Java 5, the collection classes use generic types. You can recognize a
generic type because of the angle brackets around its type name. For example, the
following declaration uses String for a generic type:

ArraylList<String> arrayList = new ArraylList<>();
This improved declaration tells Java that the arrayl ist variable refers to a bunch
of objects, each of which is an instance of String. When you substitute this new

declaration in place of the nongeneric declaration from Listing 12-1, you don’t
need casting. Listing 12-2 has the code.

m Using Java Generics

package com.allmycode.a12_02;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;
import java.util.Arraylist;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)
textView = (TextView) findViewById(R.id.textView);

ArrayList<String> arraylList = new ArraylList<>();
arraylList.add("Hello");

arraylList.add(", ");

arraylist.add("readers");

arrayList.add("!");

textView.setText("");
(continued)

CHAPTER 12 Dealing with a Bunch of ThingsataTime 321

322

REMEMBER

for (int i = 0; i < 4; i++) {
textView.append(arraylList.get(i));
}

You can get away with using the nongeneric declaration in Listing 12-1. But creat-
ing a nongeneric collection has some disadvantages. When you don’t use generics
(as in Listing 12-1), you create a collection that might contain objects of any kind.
In that case, Java can’t take advantage of any special properties of the items in the
collection. In Listing 12-1, you can’t call textView.append without doing some
casting. In some other code, nongeneric declarations may have other limitations.

With its use of generics, the ArraylList declaration in Listing 12-2 has two pairs
of angle brackets. The first pair contains the word String — the name of the class
whose instances are being stuffed into the collection. The second pair of angle
brackets is empty.

Here’s another example using Java generics. Chapter 9 starts with a description of
the BagOfCheese class. The declaration looks like this:

package com.allmycode.a@9_01;

public class BagOfCheese {
public String kind;
public double weight;
public int daysAged;
public boolean isDomestic;

You can put a few BagOfCheese objects into a nongeneric collection:

ArraylList bags = new ArraylList();
But when your code gets items from the collection or makes use of the collection’s
items in any way, Java remembers only that the items in the collection are objects.
Java doesn’t remember that they’re BagOfCheese objects. To display a bag’s kind

field, you can’t write

// 1f arraylList isn't generic, don't do this:
textView.append(arrayList.get(i).kind);

PART 4 Powering Android with Java Code

In fact, you can’t write arrayList.get(i).kind in any context, even if you’re
trying not to display what you got. Java doesn’t remember that arraylList.get(i)
is always a BagOfCheese instance. So Java refuses to reference the object’s
kind field.

Using casting, you can remind Java that the item you’re getting from arrayList
is a BagOfCheese instance:

textView.append(((BagOfCheese)arraylList.get(i)).kind);

But look at all the parentheses you need in order to make the casting work cor-
rectly. It’s a mess.

If you tweak the code to make arraylList generic, Java knows that what you get
from arraylList is always a BagOfCheese instance, and every BagOfCheese
instance has a kind field:

Arrayl ist<BagOfCheese> bags = new Arraylist<>();
Then the statement textView.append(arraylList.get(i).kind) is okay.
You can use generics to create your own collection class. When you do, the generic

type serves as a placeholder for an otherwise unknown type. Listing 12-3 contains
a home-grown declaration of an OrderedPair class.

m A Custom-Made Collection Class

package com.allmycode.al2_04;

public class OrderedPair<T> {
private T x;

private T y;

public T getX() {
return x;

}

public void setX(T x) {
this.x = x;
}
public T getY() {
return y;
}
(continued)

CHAPTER 12 Dealing with a Bunch of ThingsataTime 323

public void setY(T y) {
this.y = y;

An OrderedPair object has two components: an x component and a y component.
If you remember your high school math, you can probably plot ordered pairs of
numbers on a two-dimensional grid. But who says that every ordered pair must
contain numbers? The newly declared OrderedPair class stores objects of type T,
and T can stand for any Java class or interface. In Listing 12-4, I show you how to
create an ordered pair of Bag0fCheese objects.

Using the Custom-Made Collection Class

package com.allmycode.al2_04;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;
import com.allmycode.a@9_01.BagOfCheese;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

textView = (TextView) findViewById(R.id.textView);
OrderedPair<BagOfCheese> pair = new OrderedPair<>();
Bag0fCheese bag = new BagOfCheese();

bag.kind = "Muenster";

pair.setX(bag);

bag = new BagOfCheese();

bag.kind = "Brie";

pair.setY(bag);

324 PART 4 Powering Android with Java Code

TIP

textView.setText("");
textView.append(pair.getX().kind);
textView.append("\n");
textView.append(pair.get¥().kind);

Java's wrapper classes

Chapters 5 and 9 describe primitive types and reference types:

3 Each primitive type is baked into the language.
Java has eight primitive types.
3 Each reference type is a class or an interface.

You can define your own reference type. So the number of reference types in
Java is potentially endless.

The difference between primitive types and reference types is one of Java’s most
controversial features. Here’s one of the primitive-versus-reference-type “got-
chas:” You can’t store a primitive value in an Arrayl ist. You can write

// THIS IS OKAY:
Arraylist<String> arraylist = new ArraylList<();

because String is a reference type. But you can’t write

// DON'T DO THIS:

Arraylist<int> arraylList = new ArraylList<«>();

because int is a primitive type. Fortunately, each of Java’s primitive types has a
wrapper type, which is a reference type whose purpose is to contain another type’s
value. For example, an object of Java’s Integer type contains a single int value.
An object of Java’s Double type contains a single double value. An object of Java’s
Character type contains a single char value. You can’t create an ArrayList of int
values, but you can create an ArraylList of Integer values:

// THIS IS OKAY:

Arraylist<Integer> arraylList = new ArraylList<>();

Every primitive type’s name begins with a lowercase letter. Each of the corre-
sponding wrapper types’ names begins with an uppercase letter.

CHAPTER 12 Dealing with a Bunch of Things ata Time 325

In addition to containing primitive values, wrapper classes provide useful methods
for working with primitive values. For example, the Integer wrapper class
contains parseInt and other useful methods for working with int values:

String string = "17"

int number = Integer.parselnt(string);

On the downside, working with wrapper types can be clumsy. For example, you
can’t use arithmetic operators with Java’s numeric wrapper types. Here’s the way
I usually create two Integer values and add them together:

Integer myInteger = new Integer(3);

Integer myOtherInteger = new Integer(15);
Integer sum = myInteger.intValue() + myOtherInteger.intValue();
A call to intValue gets an ordinary primitive int from an Integer. I can use the

plus sign to add these int values. Java lets me assign the resulting int value to the
Integer variable sum.

Stepping Through a Collection

The program in Listing 12-1 uses a for loop with indexes to step through a collec-
tion. The code does what it’s supposed to do, but it’s a bit awkward. When you’re
piling objects into a collection, you shouldn’t have to worry about which object is
first in the collection, which is second, and which is third, for example.

Java has a few features that make it easier to step through a collection of objects.
This section covers those features.

Using an iterator

If you have an ArrayL ist or some other kind of collection, you can make an itera-
tor from that collection. Listing 12-5 shows you how an iterator works.

m Iterating through a Collection

326

package com.allmycode.al2_05;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

PART 4 Powering Android with Java Code

import java.util.Arraylist;

import java.util.Iterator;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

textView = (TextView) findViewById(R.id.textView);

Arraylist arraylist = new ArraylList();
arraylList.add("Hello");
arrayList.add(", ");

"

readers");

u,u).
sl

arraylList.add(
arraylList.add(
textView.setText("");

Iterator<String> iterator = arraylist.iterator()

while (iterator.hasNext()) {

textView.append(iterator.next());

The output from running Listing 12-5 is shown earlier, in Figure 12-1.

When you have a collection (such as an ArraylList), you can create an iterator to
go along with that collection. In Listing 12-5, you create an iterator to go along
with the arraylL ist collection, by calling

Iterator«String> iterator = arraylList.iterator();

After you’ve made this call, the variable iterator refers to something that can
step through all values in the arrayList collection. Then, to step from one value
to the next, you call iterator.next() repeatedly. And, to find out whether
another iterator.next() call will yield results, you call iterator.hasNext().
The call to iterator.hasNext() returns a boolean value: true when there are
more values in the collection and false when you’ve already stepped through all
the values in the collection.

CHAPTER 12 Dealing with a Bunch of Things ata Time 327

The enhanced for statement

An even nicer way to step through a collection is with Java’s enhanced for state-
ment. Listing 12-6 shows you how to use it.

m Using the Enhanced for Statement

package com.allmycode.al2_06;

import android.os.Bundle;
import android.support.vT.app.AppCompatActivity;

import android.widget.TextView;

import java.util.Arraylist;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main)

textView = (TextView) findViewById(R.id.textView);

Arraylist<String> arraylList = new ArraylList<();
arraylList.add("Hello");

arraylList.add(", ");

arraylist.add("readers");

arrayList.add("!");

textView.setText("");

for (String string : arraylList) {
textView.append(string);

An enhanced for statement doesn’t have a counter. Instead, the statement has the
format shown in Figure 12-2.

328 PART 4 Powering Android with Java Code

FIGURE 12-2:
The anatomy
of an enhanced
for statement.

A new variable name

The type of value
stored in the collection The collection

for (TypeName variableName : collectionName) {

// Do things with variableName

Each time through the
loop, the variable refers
to a different value
stored in the collection.

The enhanced for statement in Listing 12-6 achieves the same effect as the itera-
tor in Listing 12-5 and the ordinary for statement in Listing 12-1. That is, the
enhanced for statement steps through the values stored in the arraylList
collection.

The enhanced for statement was introduced in Java 5.0. It’s “enhanced” because,
for stepping through a collection, it’s easier to use than a pre-Java 5.0 for
statement.

A cautionary tale

In an enhanced for statement, the variable that repeatedly stands for different
values in the collection never refers directly to any of those values. Instead, this
variable always contains a copy of the value in the collection. So, if you assign a
value to that variable, you don’t change any values inside the collection.

Here’s a quiz. (Don’t be scared. The quiz isn’t graded.) What do you see when you
run the following code?

package com.allmycode.badcode;

import android.os.Bundle;

import android.support.vT7.app.AppCompatActivity;
import android.widget.TextView;

import java.util.Arraylist;

public class MainActivity extends AppCompatActivity {

TextView textView;

CHAPTER 12 Dealing with a Bunch of Things ataTime 329

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

textView = (TextView) findViewById(R.id.textView);

Arraylist<String> arraylList = new ArraylList<>();
arraylist.add("Hello");

arraylist.add(", ");

arraylist.add("readers");

arraylist.add("!");

textView.setText("");

// THIS IS PRETTY BAD CODE

for (String string : arraylList) {
string = "Oops!";
textView.append(string);

textView.append("\n");

for (String string : arraylList) {
textView.append(string);

A run is shown in Figure 12-3.

o d %Yl w2152
Bad Code
FIGURE 12-3:
Running this Oops!0ops!Oops!Oops!
section’s bad Hello, readers!
code.

In the first for statement, the variable string is reassigned to refer to the word
"Oops! " each time through the loop. Calls to textView.append display that word
"Oops! " four times. But these reassignments to the string variable have no effect

330 PART 4 Powering Android with Java Code

on the values in the arraylL ist. The arraylList still contains the values "Hello",
", " "readers", and"!".

So, when Java executes the second for loop, that loop displays the words Hello,
readers!.

Functional programming techniques

With Java 8 comes yet another way to step through a collection. Check the code in
Listing 12-7.

m Using a Stream

package com.allmycode.al2_07;

import android.os.Bundle;
import android.support.vT.app.AppCompatActivity;

import android.widget.TextView;

import java.util.Arraylist;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

textView = (TextView) findViewById(R.id.textView);
Arraylist<String> arraylList = new ArraylList<«();
arraylList.add("Hello");

arraylList.add(", ");

arraylist.add("readers");

arrayList.add("!");

textView.setText("");

arrayList.stream().forEach(string -> textView.append(string));

CHAPTER 12 Dealing with a Bunch of Things ata Time 331

CROSS-
REFERENCE

WARNING

A stream is a little bit like a person working in a bucket brigade. A stream takes
things in, makes few changes to the things if necessary, and then sends things out
the other end. A stream modifies what it receives and then passes the modified
goods on to the next stream in the line.

In Listing 12-7, the expression arraylList.stream() represents a stream. It’s a
stream that sends out the things in the arrayList. Those things end up in the lap
of the forEach method call. And the forEach method call does something with
each of those things.

What does the forEFach method call do with each thing that it receives?
To each thing, the forEach method call applies the lambda expression string ->
textView.append(string).

Lambda expressions pop up in the conversation in Chapter 11.

The lambda expression string -> textView.append(string) takes whatever it
receives, calls that thing by the parameter name string, and then applies the
textView.append method to string. In other words, the lambda expression
displays (in the activity’s textView component) whatever you give it.

Java’s streams are an example of the functional programming style. With functional
programming, you avoid do this, then do that solutions to problems. Instead, you
call methods, which hand their results to other methods, which in turn may hand
their results to other methods, and so on. You chain method calls one after another
until the result that you want pops out in the end.

Streams work only on devices running Android SDK 24 or higher. If you intend to
use Java streams in a project, then, when you create the project, set the Minimum
SDK to 24. If you’ve already created a project with Minimum SDK less than 24,
open the project’s Gradle Scripts/build.grade (Module: app) file. In that
file, look for a number after the word minSdkVersion. Change that number to 24.

Java’s Many Collection Classes

332

The ArraylList class that I use in many of this chapter’s examples is only the tip
of the Java collections iceberg. The Java library contains many collections classes,
each with its own advantages. Table 12-1 contains an abbreviated list.

PART 4 Powering Android with Java Code

TABLE 12-1

Some Collection Classes

Class Name Characteristic

ArraylList A resizable array.
LinkedList A list of values, each having a field that points to the next one in the list.
Stack A structure (which grows from bottom to top) that's optimized for access to the topmost
value. You can easily add a value to the top or remove it from the top.
Queue A structure (which grows at one end) that's optimized for adding values to one end (the
rear) and removing values from the other end (the front).
PriorityQueue A structure, like a queue, that lets certain (higher-priority) values move toward the front.
HashSet A collection containing no duplicate values.
HashMap A collection of key/value pairs.
Each collection class has its own set of methods (in addition to the methods that
it inherits from AbstractCollection, the ancestor of all collection classes).
To find out which collection classes best meet your needs, visit the Android API
documentation pages at http://developer .android.com/reference.
ON THE
WEB

Arrays

In the “Stepping Through a Collection” section, earlier in this chapter, I cast
aspersions on the use of an index in Listing 12-1. “You shouldn’t have to worry
about which object is first in the collection, which is second, and which is third,”
I write. Well, that’s my story and I’m sticking to it, except in the case of an array.
An array is a particular kind of collection that’s optimized for indexing. That is,
you can easily and efficiently find the 100th value stored in an array, the 1,000th
value stored in an array, or the 1,000,000th value stored in an array.

The array is a venerable, tried-and-true feature of many programming languages,
including newer languages such as Java and older languages such as FORTRAN. In
fact, the array’s history goes back so far that most languages (including Java) have
special notation for dealing with arrays. Listing 12-8 illustrates the notation for
arrays in a simple Java program.

CHAPTER 12 Dealing with a Bunch of Things at a Time 333

http://developer.android.com/reference

m Creating and Using an Array

package com.allmycode.al2_08;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

TextView textView;

@override
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

textView = (TextView) findViewById(R.id.textView);

String[] myArray = new String[4];
myArray[0] = "Hello";

myArray[1] =", ";
myArray[2] = "readers";
myArray[3] = "!";

textView.setText("");

for(int i = 0; i < 4; i++) {

textView.append(myArray[i]);

textView.append("\n");

for (String string : myArray) {
textView.append(string);

Figure 12-4 shows the output of a run of the code in Listing 12-8. Both the ordi-
nary for loop and the enhanced for loop display the same output.

334 PART 4 Powering Android with Java Code

FIGURE 12-4:
Running the code
in Listing 12-8.

REMEMBER

Hello, readers!
Hello, readers!

In Listing 12-8, the ordinary for loop uses indexes, with each index marked
by square brackets. As it is with all Java collections, the initial value’s index is 0,
not 1. Notice also the number 4 in the array’s declaration — it indicates that
‘“you can store 4 values in the array.” The number 4 doesn’t indicate that “you can
assign a value tomyArray [4].” In fact, if you add a statement such as myArray[4] =
"Oops!" to the code in Listing 12-8, you get a nasty error message (Array
IndexOutOfBoundsException) when you run the program.

The statement String[] myArray = new String[4] creates an empty array and
makes the myArray variable refer to that empty array. The array can potentially
store as many as four values. But, initially, that variable refers to an array that
contains no values. It’s not until Java executes the first assignment statement
(myArray[@] = "Hello") that the array contains any values.

You can easily and efficiently find the 100th value stored in an array
(myArray[100]) or the 1,000,000th value stored in an array (myArray [1000000]).
Not bad for a day’s work. So, what’s the downside of using an array? The biggest
disadvantage of an array is that each array has a fixed limit on the number of
values it can hold. When you create the array in Listing 12-8, Java reserves space
for as many as four String values. If, later in the program, you decide that you
want to store a fifth element in the array, you need some clumsy, inefficient code
to make yourself a larger array. You can also overestimate the size you need for an
array, as shown in this example:

String[] myArray = new String[20000000] ;
When you overestimate, you probably waste a lot of memory space.

Another unpleasant feature of an array is the difficulty you can have in inserting
new values. Imagine having a wooden box for each year in your collection of
Emperor Constantine Comics. The series dates back to the year 307 A.D., when Con-
stantine became head of the Roman Empire. You have only 1,700 boxes because
you’re missing about six years (mostly from the years 1150 to 1155). The boxes
aren’t numbered, but they’re stacked one next to another in chronological order
in a line that’s 200 meters long. (The line is as long as the 55th floor of a sky-
scraper is tall.)

CHAPTER 12 Dealing with a Bunch of Things at a Time 335

336

At a garage sale in Istanbul, you find a rare edition of Emperor Constantine Comics
from March 1152. After rejoicing over your first comic from the year 1152, you real-
ize that you have to insert a new box into the pile between the years 1151 and 1153,
which involves moving the year 2016 box about ten centimeters to the right, and
then moving the 2015 box in place of the 2016 box, and then moving the 2014 box
in place of the 2015 box. And so on. Life for the avid Emperor Constantine Comics
collector is about to become tiresome! Inserting a value into the middle of a large
array is equally annoying.

String resource arrays

In Chapter 11, I introduce Android’s string resource feature. You put a string of
characters into an app/res/values/strings.xml file. Then, in your Java code,
you refer to that string with an R.string.something_or_other expression.

You can do the same kind of thing with an entire array of strings. First, you put a
string-array element in your strings.xml file:

<resources»

<string name="app_name">12_08</string>

<string-array name="greeting_words">
<item>Hello</item>
<item>, </item>
<item>readers</item>
<item>!</item>

</string-array>

</resourcesy

Then, in Listing 12-8, you can replace

String[] myArray = new String[4];
myArray[@] = "Hello";

myArray[1] = ", ";

myArray[2] = "readers";
myArray[3] = "!";

with the following code:

Resources res = getResources();

String[] myArray = res.getStringArray(R.array.greeting_words);

PART 4 Powering Android with Java Code

Java's varargs

In an app of some kind, you need a method that displays a bunch of words as a full
sentence. How do you create such a method? You can pass a bunch of words to the

sentence. In the method’s body, you display each word, followed by a blank space,
as shown here:

for (String word : words) {
System.out.print(word);
System.out.print(" ");

To pass words to the method, you create an array of String values:

String[] stringsE = { "Goodbye,", "kids." };
displayAsSentence(stringsE);

Notice the use of the curly braces in the initialization of stringsE. In Java, you can
initialize any array by writing the array’s values, separating the values from one
another by commas, and surrounding the entire bunch of values with curly braces.
When you do this, you create an array initializer.

Listing 12-9 contains an entire program to combine words into sentences.

A Program without Varargs

package com.allmycode.al2_09;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R.layout.activity_main)
textView = (TextView) findViewById(R.id.textView);
String[] stringsA = { "Hello,", "I", "must", "be", "going." };

String[] stringsB = { " ", "-Groucho" };
(continued)

CHAPTER 12 Dealing with a Bunch of Things ataTime 337

String[] stringsC = { "Say", "Goodnight,", "Gracie." };
String[] stringsD = { " ", "-Nathan Birnbaum" };
String[] stringsk = { "Goodbye,", "kids." };

String[] stringsf = { " ", "-Clarabell" };

textView.setText("");

displayAsSentence(stringsA);
displayAsSentence(stringsB);
displayAsSentence(stringsC);
displayAsSentence(stringsD);
displayAsSentence(stringsE);
displayAsSentence(stringsF);

void displayAsSentence(String[] words) {
for (String word : words) {
textView.append(word);
textView.append(" ");

}
textView.append("\n");

When you run the code in Listing 12-9, you see the output shown in Figure 12-5.

Hello, | must be going.
-Groucho

Say Goodnight, Gracie.
-Nathan Birnbaum

I.=IGURE 12-5: Goodbye, kids
Running the code -Clarabell
in Listing 12-9.

The code in Listing 12-9 is awkward because you have to declare six different
arrays of String values. You can’t combine the variable declarations and the
method call. A statement such as

displayAsSentence("Say", "Goodnight,", "Gracie.");

338 PART 4 Powering Android with Java Code

is illegal because the call’s parameter list has three values, and because the
displayAsSentence method (in Listing 12-9) has only one parameter (one array).
You can try fixing the problem by declaring displayAsSentence with three
parameters:

void displayAsSentence(String word@, String wordl, String word2) {
But then you’re in trouble when you want to pass five words to the method.
To escape from this mess, Java 5.0 introduces varargs. A parameter list with

varargs has a type name followed by three dots. The dots represent any number of
parameters, all of the same type. Listing 12-10 shows you how it works.

m A Program with Varargs

package com.allmycode.al2_10;

import android.support.vT.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

TextView textView;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);
textView = (TextView) findViewById(R.id.textView);
textView.setText("");

displayAsSentence("Hello,", "I", "must", "be", "going.");
displayAsSentence(" ", "-Groucho");
displayAsSentence("Say", "Goodnight,", "Gracie.");

displayAsSentence(" , "-Nathan Birnbaum");
displayAsSentence("Goodbye,", "kids.");

displayAsSentence(" ", "-Clarabell");

void displayAsSentence(String... words) {
for (String word : words) {
(continued)

CHAPTER 12 Dealing with a Bunch of Things at a Time 339

textView.append(word);
textView.append(" ");

}
textView.append("\n");

}

In Listing 12-10, the parameter list (String... words) stands for any number of
String values — one String value, one hundred String values, or even no String
values. So, in Listing 12-10, I can call the displayAsSentence method with two
parameters ("Goodbye,", "kids."), with three parameters ("Say", "Good
night,", "Gracie."), and with five parameters ("Hello,", "I", "must",
"be", "going.").

In the body of the displayAsSentence method, I treat the collection of parameters
as an array. I can step through the parameters with an enhanced for statement,
or I can refer to each parameter with an array index. For example, in Listing 12-10,
during the first call to the displayAsSentence method, the expression words[0]
stands for "Hello". During the second call to the displayAsSentence method, the
expression words [2] stands for "Goodnight". And so on.

Using Collections in an Android App

FIGURE 12-6:
A TextView

component and a

340

spinner.

If you look at the Palette in Android Studio’s Designer tool, you can find the Spin-
ner component. You can drag a Spinner component from the Palette onto one of
your app’s preview screens. A Spinner component is a drop-down list — a bunch
of alternatives for the user to choose from. (See Figures 12-6, 12-7, and 12-8.)
That “bunch” of alternatives is a collection of some sort. In this section, I use an
array to implement the collection.

You haven't selected a composer.

Select a composer -

PART 4 Powering Android with Java Code

FIGURE 12-7:

The user expands
the spinner’s
choices.

FIGURE 12-8:
The user has
selected Bach.

You haven't selected a composer.

Select s composer -
Monteverd|

Pachelbel

Corelli

Albinoni

Vivaldi

Telemann

Handel

Bach

Scarlatt)

Listing 12-11 has the code.

m Creating a Spinner

package com.allmycode.al2_11;

import
import
import
import
import
import
import

import

public

android

android

android.

android.

android

android.

android.

android

.0s.Bundle;

.support.v7.app.AppCompatActivity;

view.View;

widget.AdapterView;

.widget.AdapterView.OnItemSelectedListener;

widget.ArrayAdapter;

widget.Spinner;

.widget.TextView;

class MainActivity extends AppCompatActivity {

(continued)

CHAPTER 12 Dealing with a Bunch of Things ata Time 341

TextView textView;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main);

Spinner spinner = (Spinner) findViewById(R.id.spinner);
textView = (TextView) findViewById(R.id.textView);
String[] choices =
{"Select a composer",
"Monteverdi", "Pachelbel", "Corelli", "Albinoni",

"Vivaldi", "Telemann", "Handel","Bach", "Scarlatti"};

ArrayAdapter<String> adapter =

new ArrayAdapter<>(this, android.R.layout.simple_spinner_item, choices);

spinner.setAdapter(adapter);

spinner.setOnItemSelectedListener(new MyItemSelectedListener());

class MyItemSelectedListener implements OnItemSelectedListener {

@0verride
public void onItemSelected(AdapterView<?> adapterView, View view,

int position, long id) {

if (position == @) {
textView.setText("You haven't selected a composer.");

} else {
textView.setText(adapterView.getItemAtPosition(position).toString());

@0verride
public void onNothingSelected(AdapterView<?> adapterView) {
// Do nothing

342 PART 4 Powering Android with Java Code

To make a spinner do its job, you create a listener and an adapter.

The listener

A spinner’s listener is much like a button’s listener. It’s a piece of code that listens
for user actions and responds when an appropriate action occurs. (See Chapter 11.)

In Listing 12-11, I create a listener (an instance of my own MyItemSelectedListener
class). I tell Android to notify the listener when the user selects one of the spinner’s
items:

spinner.setOnItemSelectedListener(new MyItemSelectedListener());

The MyItemSelectedListener class’s onltemSelected method must tell Android
what to do in response to the user’s selection.

The adapter

You may guess that you add an item to a spinner with a call like this:

// Don't do this:

spinner .addRow("Monteverdi");

But that’s not the way it works. When an Android developer thinks about a spin-
ner, the developer thinks about two different concepts:

3 Aspinner has data.

In Figure 12-7, the spinner’s data consists of the values "Select a
composer", "Monteverdi", "Pachelbel", and so on.

3 Aspinner has a “look.”

This section’s spinner has a simple look. In Figure 12-6, the spinner has text on
the left side and a tiny downward arrow on the right side. In Figure 12-7, each
of the spinner’s items has text on the left side.

A spinner’s incarnation on the screen (the “look”) is an object in and of itself. It’s
an instance of Android’s AdapterView class. A similar-sounding thing, an instance
of the SpinnerAdapter class, connects a spinner’s data with a spinner’s “look.”
See Figure 12-9.

CHAPTER 12 Dealing with a Bunch of Things at a Time 343

How a spinner

344

FIGURE 12-9:

works.

The data

String[] choices =
{"select a composer",
"Monteverdi", "Pachelbel", "Corelli", "Albinoni”,
"Vivaldi", "Telemann", "Handel","Bach", “Scarlatti'};

The adapter view.

Select a composer +
Monteverdi

There are several kinds of spinner adapter, including the ArrayAdapter and
CursorAdapter classes:

¥ AnArrayAdapter gets data from a collection, such as an array or an
ArraylList.

¥ ACursorAdapter gets data from a database query.

In Listing 12-11, I use an ArrayAdapter. The ArrayAdapter constructor has three
parameters:

3 The first parameter is a context.

| use this for the context. As in Chapter 9, the word this represents what-
ever object contains the current line of code. In Listing 12-11, this refers to
theMainActivity.

¥ The second parameter is a layout.

In Listing 12-11, the name android.R.layout.simple_spinner_item refers
to a standard layout for one of the items in Figure 12-7.

3 The third parameter is the source of the data.

In Listing 12-11, | provide choices, which | declare to be an array of String
values.

In Listing 12-11, notice the onItemSelected method’s position parameter. When
the user selects the topmost item in the spinner’s list (the Select a Composer item
in Figure 12-7), Android gives that position parameter the value 0. When the user
selects the next-to-topmost item (the Monteverdi item in Figure 12-7), Android
gives that position parameter the value 1. And so on.

In the onItemSelected method’s body, the code checks to make sure that
position isn’t 0. If position isn’t 0, the code plugs that position value into the
adapterView.getItemAtPosition method to get the string on whatever item the
user clicked. The code displays that string (Monteverdi, Pachelbel, or whichever)
in a textView component.

PART 4 Powering Android with Java Code

IN THIS CHAPTER

» Posting on Twitter with Android code

» Tweeting with your app on a user’s
behalf

» Using Java exceptions to get out
of a jam

Chapter 13

An Android Social
Media App

reader from Vancouver (in British Columbia, Canada) writes:

“Hello, Barry. I just thought | would ask that you include the area that seems to
get attention from app developers: programs connecting with social sites. | look
forward to reading the new book! Best regards, David.”

Well, David, you’ve inspired me to create a Twitter app. This chapter’s example
does two things: Post a new tweet and get a twitter user’s timeline. The app can
perform many more Twitter tasks — for example, search for tweets, look for
users, view trends, check friends and followers, gather suggestions, and do lots of
other things that Twitter users want done. For simplicity, though, I have the app
perform only two tasks: tweet and display a timeline.

I can summarize the essence of this chapter’s Twitter code in two short statements.
To post a tweet, the app executes

twitter.updateStatus("This is my tweet.");

CHAPTER 13 An Android Social Media App 345

And, to display a user’s timeline, the app executes
List<twitterdj.Status> statuses = twitter.getUserTimeline("allmycode");

Of course, these two statements only serve as a summary, and a summary is never
the same as the material it summarizes. Imagine standing on the street in Times
Square and shouting this statement: “Twitter dot update status: ‘This is my
tweet.”” Nothing good happens because you’re issuing the correct command in
the wrong context. In the same way, the context surrounding a call to twitter.
updateStatus in an app matters an awful lot.

This chapter covers all the context surrounding your calls to twitter .updateStatus
and twitter.getUserTimeline. In the process, you can read about Java’s
exceptions — a vital feature that’s available to all Java programmers.

The Twitter App’s Files

346

Q

TIP

You can download this chapter’s code from my website (http://allmycode.com/
Java4Android) by following the instructions in Chapter 2. As is true for any
Android app, this chapter’s Android Studio project contains hundreds of files. In
this chapter, I concentrate on the project’s MainActivity. java file. But a few
other files require some attention.

The Twitter4] API jar file

Android has no built-in support for communicating with Twitter. Yes, the raw
materials are contained in Android’s libraries, but to deal with all of Twitter’s
requirements, someone has to paste together those raw materials in a useful way.
Fortunately, several developers have done all the pasting and made their libraries
available for use by others. The library that I use in this chapter is Twitters]J. Its
website is http://twitter4j.org.

A . jar file is a compressed archive file containing a useful bunch of Java classes.
For this chapter’s example to work, your project must include a . jar file contain-
ing the Twitter4]J libraries. If you’ve successfully imported this book’s code into
Android Studio, the 13_01 project contains the necessary . jar file.

You can view the contents of a . jar file by using WinZip or Stufflt Expander or the
operating system’s built-in unzipping utility. To do so, you may or may not have
to change the filename from whatever. jar to whatever.zip.

PART 4 Powering Android with Java Code

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android
http://twitter4j.org

WARNING

If you’re creating this chapter’s example on your own, or if you’re having trouble
with the project’s existing . jar files, you can add Twitters] libraries to your
project. The following instructions worked for me in mid-2016.

Google changes these steps once in a while. So if these steps don’t work for you,
send me an email — the address is Java4Android@al lmycode . com.

1. visithttp: //twitterd;j.org.

2. Find the link to download the latest stable version of Twitter4).

To run this chapter's example, | use Twitter4] version 4.0.4. If you download a
later version, itll probably work. But | make no promises about the backward
compatibility, forward compatibility, or sideward compatibility of the various
Twitter4] versions. If my example doesn’t run properly for you, you can search
the Twitter4 site for a download link to version 4.0.4.

3. Click the link to download the Twitter4) software.
The file that | downloaded is twitter4j-4.0.4.zip.
4. Look for a twitter4j-core. jar file inside the downloaded .zip file.

In the . zip file that | downloaded, | found a file named twitter4 j-core-
4.0.4. jar.

5. Extract the twitterd j-core. jar file to this project's app/libs directory.
Use your operating system'’s File Explorer or Finder to do the extracting and
copying.

6. on Android Studio’s main menu, choose File > Project Structure.

The Project Structure dialog box appears.
7. Inthe panel on the left side of the dialog box, select App.
8. In the main body of the dialog box, select the Dependencies tab.

A list of dependencies appears. Look for a plus sign that's associated with the
list of dependencies.

9. click the plus sign.
A context menu appears.
10. on the context menu, select File Dependency.
Android Studio displays the Select Path dialog box.

11. In the Select Path dialog box, navigate to the directory containing your
twitter4j-core. jar file.

CHAPTER 13 An Android Social Media App 347

mailto:Java4Android@allmycode.com
http://twitter4j.org

What | refer to as your twitter4 j-core. jar file is probably named
twitterdj—core-4.0.4. jar or similar.
REMEMBER 12| select the twitter4j-core. jar file and click OK.
Doing so adds your twitter4j-core. jar file to the Dependencies tab’'s list.
3. click OK to dismiss the Project Structure dialog box.

Your project can now use the Twitter4 library’s code.

The manifest file

Every Android app has an AndroidManifest.xml file. Listing 13-1 contains the
AndroidMani fest.xml file for this chapter’s Twitter app.

m The AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?»
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.allmycode.a13_01">

<uses-permission android:name="android.permission.INTERNET"/>

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android: label="@string/app_name"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity
android:name=".MainActivity"
android:windowSoftInputMode="adjustPan">
<intent-filter»
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter»
</activity>

</application>

</manifest>

When you create a new Android application project, Android Studio writes most of
the code in Listing 13-1 automatically. For this chapter’s project, I have to add two
additional snippets of code:

348 PART 4 Powering Android with Java Code

http://schemas.android.com/apk/res/android

¥ ThewindowSoftInputMode attribute tells Android what to do when the
user activates the onscreen keyboard.

The ad justPan value tells Android how to adjust the screen’s components
when the keyboard appears. (Take my word for it: The app looks ugly without
this ad justPan value.)

¥ Theuses-permission element warns Android that my app requires
Internet connectivity.

If you forget to add this uses—-permission element (as | often do), the app
doesn't obey any of your Twitter commands. And when your app fails to
contact the Twitter servers, Android often displays only cryptic, unhelpful
error messages.

The error messages from an unsuccessful run of this chapter’s Android app range

from extremely helpful to extremely unhelpful. One way or another, it never hurts

to read these messages. You can find most of the messages on Android Studio’s
REMEMBER ~ LoOgcat pane.

For more information about AndroidMani fest.xml files, see Chapter 4.

CROSS-

weevce - The main activity's layout file

Chapter 3 introduces the use of a layout file to describe the look of an activity on
the screen. The layout file for this chapter’s example has no extraordinary quali-
ties. I include it in Listing 13-2 for completeness. As usual, you can import this
chapter’s code from my website (http://allmycode.com/Java4Android). But if
you’re living large and creating the app on your own from scratch, you can copy
the contents of Listing 13-2 to the project’s res/layout/activity_main.xml file.
Alternatively, you can use Android Studio’s toolset to drag and drop, point and
click, or type and tap your way to the graphical layout shown in Figure 13-1.

m The Layout File

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"

android: layout_width="match_parent"
android: layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal _margin"
android:paddingRight="@dimen/activity_horizontal _margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context=".MainActivity" »

(continued)

CHAPTER 13 An Android Social Media App 349

http://allmycode.com/Java4Android
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

<TextView
android:id="@+id/textView2"
android: layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBaseline="@+id/editTextUsername"
android:layout_alignBottom="@+id/editTextUsername"
android:layout_alignLeft="@+id/editTextTweet"
android:text="@string/at_sign"

android:textAppearance="?android:attr/textAppearancelLarge"/>

<EditText
android:id="@+id/editTextUsername"
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android: layout_above="@+id/timelineButton"
android:layout_toRightOf="@+id/textView2"
android:ems="10"

android:hint="@string/type_username_here"/>

<TextView
android:id="@+id/textViewTimeline"
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android:layout_alignLeft="@+id/timelineButton"
android:layout_below="@+id/timelineButton"
android:maxLines="100"
android:scrollbars="vertical"

android:text="@string/timeline_here"/>

<Button
android:id="@+id/timelineButton"
android: layout_width="wrap_content"
android: layout_height="wrap_content"
android:layout_alignLeft="@+id/textView2"
android:layout_centerVertical="true"
android:onClick="onTimelineButtonClick"

android:text="@string/timeline"/»

<Button
android:id="@+id/tweetButton"
android: layout_width="wrap_content"
android: layout_height="wrap_content"

android: layout_above="@+id/editTextUsername"

350 PART 4 Powering Android with Java Code

FIGURE 13-1:
The graphical
layout of the
main activity's
screen.

android:layout_alignLeft="@+id/editTextTweet"

android: layout_marginBottom="43dp"

android:onClick="onTweetButtonClick"

android:text="@string/tweet"/>

<EditText

android:id="@+id/editTextTweet"

android: layout_width="wrap_content"

android:layout_height="wrap_content"

android: layout_above="@+id/tweetButton"

android:layout_alignParentLeft="true"

android:layout_marginLeft="14dp"

android:ems="10"

android:hint="@string/type_your_tweet_here"/>

<TextView

android:id="@+id/textViewCountChars"

android: layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignBaseline="@+id/tweetButton"

android: layout_alignBottom="@+id/tweetButton"
android:layout_toRightOf="@+id/timelineButton"

android:text="@string/zero"/»

</Relativelayout>

Palette 1K S = |
I Widgets |
0

[Ab] TextView

ok Button

- ToggleButton

[+]CheckBox

@ RadioButton

A< CheckedTextView

= Spinner

== ProgressBar (Large)

== ProgressBar

== ProgressBar (Small)

== ProgressBar (Horizc

02 SeekBar

o SeekBar (Discrete)

4= QuickContactBadg:

7 RatingBar

S
Component Tree

RelativeLayout
[textView2 - "@st
| leditTextUsernan
[AE] textViewTimeling
or timelineButton (¢
or tweetButton (Butf
| leditTextTweet
[AE] textViewCountCh

Design Text

100

200

E &~ Onexusa- miza- (PappTheme @language- [J-
Om®= ¥ B

100 200 200 a0 5

Type your tweet here

TWEET ©

@ Type a usemame here

TIMELINE

User's timziine will appear hera

CHAPTER 13 An Android Social Media App

351

How to Talk to the Twitter Server

Listing 13-3 contains a snippet of code from the main activity in this chapter’s
example.

m Some Fake Java Code (Yes, It's Fake!)

Twitter twitter;

// ... and later in the code ...

ConfigurationBuilder builder = new ConfigurationBuilder();

builder
.setOAuthConsumerKey (" 000! ")
.setOAuthConsumerSecret ("111111111114111114111111411111141111141111141141144414")
.setOAuthAccessToken("222222222-33")
.setOAuthAccessTokenSecret ("444444444444444444444444444440444444444444444"),

TwitterFactory factory = new TwitterFactory(builder.build());
twitter = factory.getInstance();

The code in Listing 13-3 creates an instance of the Twitter class.

Here’s some information regarding the Twitter4] API:

» ATwitter object is a gateway to the Twitter servers.

A call to one of the methods belonging to a Twitter object can post a
brand-new tweet, get another Twitter user’s timeline, make favorites, add
friendships, create blocks, search for users, and do other cool things.

¥ TwitterFactory is a class that helps you create a new Twitter object.

As the name suggests, TwitterFactory is a factory class. In Java, a factory
class is a class that can call a constructor on your behalf.

¥ Calling the getInstance method creates a new Twitter object.

The getInstance method’s body contains the actual constructor call. That's
how factory methods work.

The ConfigurationBuilder, TwitterFactory, and Twitter classes that I use in
Listing 13-3 belong to the Twitter4]J APL If, instead of using Twitter4]J, you use a
different API to communicate with Twitter servers, you’ll use different class

rememser Names. What’s more, those classes probably won’t match up, one for one, with the
Twitter4]J classes.

352 PART 4 Powering Android with Java Code

Using OAuth

When you run this chapter’s example, the code has to talk to Twitter on your
behalf. And normally, to talk to Twitter, you supply a username and password. But
should you be sharing your Twitter password with any app that comes your way?
Probably not. Your password is similar to the key to your house. You don’t want to
give copies of your house key to strangers, and you don’t want an Android app to
remember your Twitter password.

So how can your app post a tweet without having your Twitter password? One
answer is OAuth, a standardized way to have apps log on to host computers.

The big, ugly strings in Listing 13-3 are OAuth strings. You get strings like this
from the Twitter website. If you copy the gobbledygook correctly, your app
acquires revocable permission to act on behalf of the Twitter user. And the app
never gets hold of the user’s password.

Now, here come the disclaimers:

3 Adiscussion of how OAuth works, and why it's safer than using ordinary
Twitter passwords, is far beyond the scope of this book.

| don't pretend to explain OAuth and its mysteries in this chapter.
3 True app security requires more than what you see in Listing 13-3.

The goal of this chapter is to show how an app can talk to a social media site.
In this chapter’s code, | use OAuth and Twitter4) commands to achieve that
goal as quickly as | can, without necessarily showing you the “right” way to
do it. For more comprehensive coverage of OAuth, visithttps://oauth.
net/: the official website for OAuth developers.

¥ The long strings of characters in Listing 13-3 don’t work.

I'm not prepared to share my own OAuth strings with the general public,
so to create Listing 13-3, | took the general outline of my real
ConfigurationBuilder code and then pressed my nose against

the keyboard to replace the characters in the OAuth strings.

To run this chapter’s app, you must create your own set of OAuth keys and
copy them into your Java code. The later section “Getting OAuth keys and
tokens” outlines the steps.

Making a ConfigurationBuilder

In Listing 13-3, the chaining of set method calls, one after another, is called the
builder pattern.

CHAPTER 13 An Android Social Media App 353

https://oauth.net/
https://oauth.net/

354

Here’s the basic idea. A configuration builder has lots of properties, and you can
imagine several different ways of setting those properties. For example, you could
have one enormous constructor:

// This is not correct Twitter4J code:

ConfigurationBuilder builder = new ConfigurationBuilder(
"0000000000000000000" , "111111111411141141141",
"2222222-33333333333333333", "44444444444444444444");

This approach is cumbersome because you must remember which string belongs
in which position. In fact, it gets worse. A configuration builder has 46 different
properties, and you may want to set more than four of these properties. However,
a constructor with 46 parameters would be truly awful.

Another possibility is to create a blank-slate configuration builder and then set
each of its properties with separate method calls.

// This is not correct Twitter4J code:
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.setOAuthConsumerKey (" 0000000000000000000") ;
builder.setOAuthConsumerSecret("111111111111111111111");
builder.setOAuthAccessToken("2222222-33333333333333333") ;
builder.setOAuthAccessTokenSecret ("44444444444444444444"),

This is less awkward than having a giant constructor, but there’s a better way. In
the Twitter4] API, the ConfigurationBuilder class has 46 set methods. Each
method applies to an existing ConfigurationBuilder instance. And each method
returns, as its result, a new ConfigurationBuilder instance. So, in Listing 13-3,
the statement

ConfigurationBuilder builder = new ConfigurationBuilder();
creates a blank-slate configuration builder. The next piece of code

builder
.setOAuthConsumerKey ("0000000000000000000000000")

applies to the blank-slate instance. But the value of this piece of code is a
ConfigurationBuilder instance with a particular OAuth consumer key. To this
enhanced instance you apply

.setOAuthConsumerSecret("141414441144144444444444444444444444444444444444444")

The combined code’s value is an even better ConfigurationBuilder instance —
one with a particular OAuth consumer key and an OAuth consumer secret.

PART 4 Powering Android with Java Code

WARNING

And so on. Each application of a set method takes an existing instance and yields
an instance with more and better properties.

Notice how readable Listing 13-3 is compared to the incorrect code snippets in this
section. This elegant way of adding properties to an object is the builder pattern.

After adding enough properties to a configuration builder, you call the builder’s
own build method to create a factory. Then you can use the factory to create an
instance of the Twitter class:

TwitterFactory factory = new TwitterFactory(builder.build());
twitter = factory.getInstance();

Getting OAuth keys and tokens

For your Android app to communicate with Twitter servers, you need your own
OAuth keys and tokens. To get them, follow this section’s steps.

The following instructions apply to the Twitter web pages for developers at the
time of this book’s publication. Twitter might change the design of its website at
any time without notice. (At any rate, it won’t notify me!)

1. Sign in to your Twitter user account (or register for an account if you
don’t already have one).

2. Vvisit https://dev.twitter.com/apps/new.
If the stars are aligned harmoniously, you should see Twitter's Create an
Application page.

3. OntheCreatean Application page, fill in all required fields along with the
(misleadingly optional) Callback URL field.

When | visit the page, | see the Name field, the Description field, the Website
field, and the Callback URL field. All but the Callback URL field are listed as
being required.

Typing your app’s name in the Name field is a no-brainer. But what do you use for
the other fields? After all, you aren't creating an industrial-strength Android app.
You're creating only a test app — an app to help you see how to use Twitter4).

The good news is that you can type almost anything in the Description field.
The same is true for the Website and Callback URL fields, as long as you type
things that look like real URLs.

CHAPTER 13 An Android Social Media App 355

https://dev.twitter.com/apps/new

356

REMEMBER

©

REMEMBER

©

REMEMBER

4.

n

I've never tried typing a twitter.com URL in either the Website or Callback
URL fields, but | suspect that typing a twitter .com URL doesn't work.

To communicate with Twitter via an Android app, you need a callback URL. In
other words, for this chapter's example, the callback URL isn't optional. Neither
the Website field nor the Callback URL field has to point to a real web page. But
you must fill in those two fields.

The Callback URL field isn't marked as being required. Nevertheless, you must
type a URL in the Callback URL field.

After agreeing to the terms, and doing the other stuff to prove that
you're a good person, click the Create Your Twitter Application button.

Doing so brings you to a page where you manage your new application. The
page has four tabs, labeled Details, Settings, Keys and Access Tokens, and
Permissions.

Near the top of the page, select the Permissions tab.

On the Permissions page, look for a choice of access types. Change your
app’s access from Read and Write (the default) to Read, Write and Access
Direct Messages.

For this toy application, you select Read, Write and Access Direct Messages —
the most permissive access model that's available. This option prevents your
app from hitting brick walls because of access problems.

When you develop a real-life application, you do the opposite of what | suggest
in this step. For a real-live app, you select the least permissive option that suits
your application’s requirements.

First change your app's access level, and then create the app’s access token (as
explained in Step 9). Don't create the access token before changing the access
level. If you try to change the access level after you've created the access token,
your app won't work. What's worse, Twitter's app setup page doesn’t warn you
about the problem. Believe me — I've wasted hours of my life on this Twitter
quirk.

Click the button that offers to update your application’s settings.

Doing so changes your app's access level to Read, Write and Access Direct
Messages.

Near the top of the page, select the Keys and Access Tokens tab.
You can find a few buttons on that page.
Click the button that offers to create your access token.

After doing so, your app’s Keys and Access Tokens tab displays your app’s
access token and the access token secret, in addition to your app's access level,
consumer key, and consumer secret.

PART 4 Powering Android with Java Code

10. Copy the four codes (Consumer Key, Consumer Secret, Access Token, and
Access Token Secret) from your app'’s Details tab to the appropriate lines
in your MainActivity class's code. (See Listing 13-3.)

Whew! You're done putting OAuth keys and tokens in your Java code.

In the OAuth world, an app whose code communicates with Twitter’s servers is a
06“ consumer. To identify itself as a trustworthy consumer, an app must send pass-
words to Twitter’s servers. In OAuth terminology, these passwords are called the

TecHNicaL consumer key and the consumer secret.

STUFF

The Application’s Main Activity

What’s a Java Programming for Android Developers For Dummies, 2nd Edition, with-
out some Java code? Listing 13-4 contains the Twitter app’s Java code.

The MainActivity.java File

package com.allmycode.al13_04;

import android.
import android.
import android.
import android.
import android.
import android.
import android.
import android.

import android.

os.AsyncTask;

os.Bundle;
support.v7.app.AppCompatActivity;
text.Editable;

text.TextWatcher;
text.method.ScrollingMovementMethod;
view.View;

widget.EditText;

widget.TextView;

import java.util.list;

import twitter4j.Twitter;

import twitter4j.TwitterException;

import twitter4j.TwitterFactory;

import twitter4j.conf.ConfigurationBuilder;

public class MainActivity extends AppCompatActivity {

TextView textViewCountChars, textViewTimeline;
EditText editTextTweet, editTextUsername;
Twitter twitter;

(continued)

CHAPTER 13 An Android Social Media App 357

BN EL B (continued)

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
editTextTweet = (EditText) findViewById(R.id.editTextTweet);
editTextTweet .addTextChangedListener (new MyTextWatcher());
textViewCountChars = (TextView) findViewById(R.id.textViewCountChars);
editTextUsername = (EditText) findViewById(R.id.editTextUsername);
textViewTimeline = (TextView) findViewById(R.id.textViewTimeline);
textViewTimeline.setMovementMethod(new ScrollingMovementMethod());
ConfigurationBuilder builder = new ConfigurationBuilder();
builder
.setOAuthConsumerKey (" 0000000000000000000000A00")
.setOAuthConsumerSecret("1111111111111411111111114111411111114111411441")
.setOAuthAccessToken("222222222-33333333333333333333333333333333")
.setOAuthAccessTokenSecret ("4444444444444444444444444444444444444"),
TwitterFactory factory = new TwitterFactory(builder.build());

twitter = factory.getInstance();
// Button click listeners
public void onTweetButtonClick(View view) {

new MyAsyncTaskTweet().execute(editTextTweet.getText().toString());

public void onTimelineButtonClick(View view) {

new MyAsyncTaskTimeline().execute(editTextUsername.getText().toString());

// Count characters in the Tweet field

class MyTextWatcher implements TextWatcher {
@0verride
public void afterTextChanged(Editable s) {
textViewCountChars.setText("" + editTextTweet.getText().length());

@0verride
public void beforeTextChanged

(CharSequence s, int start, int count, int after) {

358 PART 4 Powering Android with Java Code

@0verride
public void onTextChanged

(CharSequence s, int start, int before, int count) {

// The AsyncTask classes

public class MyAsyncTaskTweet extends AsyncTask<String, Void, String> {
@0verride
protected String doInBackground(String... tweet) {
String result =
try {
twitter.updateStatus(tweet[Q]);

result = getResources().getString(R.string.success);

nn,
1

} catch (TwitterException twitterException) {

result = getResources().getString(R.string.twitter_failure);
} catch (Exception e) {

result = getResources().getString(R.string.general_failure);
}

return result;

@0verride

protected void onPostExecute(String result) {
editTextTweet.setHint(result);
editTextTweet.setText("");

public class MyAsyncTaskTimeline extends AsyncTask<String, Void, String> {
@0verride
protected String doInBackground(String... username) {
String result = new String("");
List<twitter4j.Status> statuses = null;
try {
statuses = twitter.getUserTimeline(username[0]);

—

catch (TwitterException twitterException) {

result = getResources().getString(R.string.twitter_failure);

—

catch (Exception e) {
result = getResources().getString(R.string.general_failure);
}
for (twitter4j.Status status : statuses) {
result += status.getText();
(continued)

CHAPTER 13 An Android Social Media App 359

BN EL B (continued)

A

WARNING

FIGURE 13-2:

The main activity,
in its pristine
state.

result += "\n";
}
return result;

}

@0verride

protected void onPostExecute(String result) {
editTextUsername.setText("");
textViewTimeline.setText(result);

}

Twitter’s network protocols require that the device that runs this chapter’s app is
set to the correct time. I don’t know how correct the “correct time” has to be, but
I’ve had lots of trouble running the app on emulators. Either my emulator is set to
get the time automatically from the network (and it gets the time incorrectly) or I
set the time manually and the seconds part of the time isn’t close enough. One way
or another, the error message that comes back from Twitter (usually specifying a
null authentication challenge) isn’t helpful. So I avoid emulators whenever I test
this code. Rather than run an emulator, I set my phone to get the network time
automatically. Then I run this chapter’s app on that phone. If you have trouble
running this section’s app, try running the app on a real phone.

When you run the app, you see two areas. One area contains a Tweet button; the
other area contains a Timeline button, as shown in Figure 13-2.

Type your tweet here

TWEET

(@ Type a username here

360 PART 4 Powering Android with Java Code

In Figure 13-2, the words Type your tweet here and Type a username here are light
gray. This happens because I use android:hint attributes with the EditText
components in Listing 13-2. A hint is a bunch of characters that appear only when
a text field is otherwise empty. When the user clicks inside the text field, or types
any text inside the text field, the hint disappears.

Type a tweet into the text field on top, and then press the Tweet button, as shown
in Figure 13-3. If your attempt to tweet is successful, the message Success!
replaces the tweet in the text field, as shown in Figure 13-4. If, for one reason or
another, your tweet can’t be posted, the message Call to Twitter failed
replaces the tweet in the text field, as shown in Figure 13-5.

Don't retweet this|

FIGURE 13-3: TWEET
The user types k
a tweet.

FIGURE 13-4:

The app indicates
a successful
tweet.

Next, type a username in the lower text field, and then click Timeline. If all goes
well, a list of the user’s most recent tweets appears below the Timeline button, as
shown in Figure 13-6. You can scroll the list to see more of the user’s tweets.

CHAPTER 13 An Android Social MediaApp 361

Th

FIGURE 13-5:
e app brings

bad tidings
to the user.

FIGURE 13-6:

The @fordum-
mies timeline.

362

CROSS-
REFERENCE

Call to Twitter failed

TWEET

@ I‘I'p a username here

TIMELINE

The onCreate method

The onCreate method in Listing 13-4 calls findViewById to locate some of the
components declared in Listing 13-2.

For insight into the workings of Android’s findvViewById method, see Chapter 3.

The onCreate method also creates a MyTextWatcher instance to listen for changes
in the field where the user types a tweet. Android notifies the MyTextWatcher
instance whenever the user types a character in (or deletes a character from) the
app’seditTextTweet field. The MyTextWatcher class’s afterTextChanged method
counts the number of characters in the editTextTweet field. The method displays
the count in the tiny textViewCountChars field.

The count includes the characters in Twitter handles even though Twitter no lon-
ger counts such things toward the 140-character limit. Also, the app doesn’t do
anything special if a user types more than 140 characters into the editTextTweet

PART 4 Powering Android with Java Code

LD,
TECHNICAL
STUFF

field. In a real-life app, I’d add code to deal with these issues. But when I create
sample apps, I like to keep the code as uncluttered as possible.

Android actually notifies the MyTextWatcher instance three times for each text
change in the editTextTweet field: once before changing the text, once during the
change of the text, and once after changing the text. In Listing 13-4, I don’t make
MyTextWatcher execute any statements before or during the changing of the text.
In MyTextWatcher, the only method whose body contains statements is the after
TextChanged method. Even so, in order to implement Android’s TextWatcher
interface, the MyTextWatcher class must provide bodies for the before
TextChanged and the onTextChanged methods.

Finally, in the onCreate method, the call to setMovementMethod(new Scrolling
MovementMethod()) permits scrolling on the list of items in a user’s timeline.

The button listener methods

Listing 13-2 describes two buttons, each with its own onClick method. I declare
the two methods in Listing 13-4: the onTweetButtonClick method and the
onTimelineButtonClick method. Each of the methods has a single statement in
its body — a call to execute a newly constructed AsyncTask of some kind. Believe
me, this is where the fun begins!

The trouble with threads

Imagine that you’re talking to a poorly designed robot. The robot executes only
one set of instructions at a time. You give this robot the following set of
instructions:

1. Visit allmycode.com/Java4Android.
2. Download the code listings.

3. Uncompress the downloaded file.

You have a slow Internet connection, so the robot takes a long time to download
the code listings. (The robot stares vacantly into the air during the download.) In
the middle of the download, you have a craving for a glass of orange juice. So you
say the following:

1. Go to the refrigerator.

2. Pour a glass of orange juice.

3. Bring the glass to me.

CHAPTER 13 An Android Social MediaApp 363

364

The robot continues to stare vacantly because the robot executes only one set of
instructions at a time. You wave your hands in front of the robot’s glassy eyes, but
nothing happens. You robot seems to be paralyzed during the long, laborious
download.

Life would be better if the robot could perform two threads of execution at once.
With two threads of execution, the robot would share its time between two differ-
ent sets of instructions:

1. Visit allmycode.com/Java4Android.
2. Download the code listings. 1. Go to the refrigerator.
3. Uncompress the downloaded file. 2. Pour a glass of orange juice.

3. Bring the glass to me.

How would the robot manage to perform two threads of execution at the same
time? It doesn’t matter how. In one possible scenario, the robot has two brains
and each brain works on one of the threads. In another scenario, the robot’s single
brain jumps back and forth from one thread to the other, devoting a bit of time to
one thread, and then some time to the other thread, and then some time to the
first thread again, and so on.

Creating more than one thread means executing more than one piece of code at
the same time. For the Java developer, things become very complicated very
quickly. Juggling several simultaneous pieces of code is like juggling several raw
eggs: One way or another, you’re sure to end up with egg on your face.

To help fix all this, the creators of Android developed a multi-threading frame-
work. Within this framework, you bundle all your delicately timed code into a
carefully defined box. This box contains all the ready-made structure for manag-
ing threads in a well-behaved way. Rather than worry about where to put your
Internet request and display the result in a timely fashion, you simply plug certain
statements into certain places in the box and let the box’s ready-made structure
take care of all the routine threading details.

This marvelous box belongs to Android’s AsyncTask classes. To understand these
classes, you need a bit of terminology explained:

3 Thread: A bunch of statements to be executed in the order prescribed
by the code

¥ Multi-threaded code: A bunch of statements in more than one thread

PART 4 Powering Android with Java Code

Java executes each thread's statements in the prescribed order. But if your
program contains two threads, Java might not execute all the statements in
one thread before executing all the statements in the other thread. Instead,
Java might intermingle execution of the statements in the two threads. For
example, | ran the following code several times:

new OneThread().start();
new AnotherThread().start();

class OneThread extends Thread {
public void run() {
for (int i = 0; i < 2000; i++) {
output(i);
}

class AnotherThread extends Thread {
public void run() {
for (int i = 2000; i < 4000; i++) {
output(i);
}

(I didn't really use a method named output. Instead, | used an elaborate
bunch of statements that aren't worth worrying about here.)

The first time | ran the code, the output looked like this:

012 ... 189 2000 2001 ... 2144 190 191 ...
The second time, the output looked like this:
2000 2001 ... 2650 0 1 2 ...
The third time, the output looked like this:
012 ... 482000 49 50 ... 58 2001 59 60 2002 ...
The output @ always comes before the output 1 because the statements to
output @ and 1 are in the same thread. But you can't predict whether Java will

display @ or 2000 first, because the statements to output @ and 2000 are in
two different threads.

CHAPTER 13 An Android Social Media App 365

3 The Ul thread: The thread that displays components on the screen
In an Android program, your main activity runs primarily in the Ul thread.

e The Ul'in Ul thread stands for user interface. Another name for the Ul thread is
6 the main thread. The use of this terminology predates the notion of a main

TECHNICAL activity in Android.
STUFF

3 Abackground thread: Any thread other than the Ul thread

In an Android program, when you create an AsyncTask class, some of that
class's code runs in a background thread.

In addition to all the terminology, you should know about two rules concerning
threads:

3 Any time-consuming code should be in a background thread — not in the
Ul thread.

This chapter's example reaches out on the Internet and posts a tweet or grabs
a Twitter user’s timeline. Either of these chores might take a noticeable
amount of time. As a result, all the app’s components may come to a standstill
while the app waits for a response from the Internet. The entire user interface
is temporarily frozen. The app looks like my poorly designed, paralyzed robot.
You don't want that to happen.

3 Any code that modifies a property of the screen must be in the Ul
thread.

If, in a background thread, you have code that modifies text on the screen,
you're either gumming up the Ul thread or creating code that doesn’'t compile.
Either way, you don't want to do it.

Understanding Android’s AsyncTask

A class that extends Android’s AsyncTask looks like the outline in Listing 13-5.

m The Outline of an AsyncTask Class

public class MyAsyncTaskName extends AsyncTask<Typel, Type2, Type3> {

@0verride

protected void onPreExecute () {
// Execute statements in the UI thread before starting background thread.
// For example, display an empty progress bar.

}

366 PART 4 Powering Android with Java Code

@0verride
protected Type3 doInBackground(Typel... parami) {
// Execute statements in the background thread.

// For example, get info from Twitter.

return resultValueOfType3;
}

@0verride
protected void onProgressUpdate(Type2... param) {
// Update a progress bar (or some other kind of progress indicator) during

// execution of the background thread.

@0verride

protected void onPostExecute(Type3 resultValueOfType3) {
// Execute statements in the UI thread after finishing the statements in the
// background thread. For example, display info from Twitter in the

// activity's components.

When you create an AsyncTask class, Android executes each method in its appro-
priate thread. In the doInBackground method (refer to Listing 13-5), you put
code that’s too time-consuming for the UI thread. So Android executes the
doInBackground method in the background thread. (Big surprise!) In Listing 13-5’s
other three methods (onPreExecute, onProgressUpdate, and onPostExecute), you
put code that updates the components on the device’s screen. Android executes
these methods in the UI thread, as shown in Figure 13-7.

Android also makes your life easier by coordinating the execution of an AsyncTask
class’s methods. For example, onPostExecute doesn’t change the value of a
screen component until after the execution of doInBackground. (See Figure 13-7.)
In this chapter’s Twitter app, the onPostExecute method doesn’t update the
screen until after the doInBackground method has fetched a user’s timeline from
Twitter. The user doesn’t see a timeline until the timeline is ready to be seen.

You’d think that with all this coordination of method calls, you lose any benefit
from having more than one thread. But that’s not the case. Because the
doInBackground method runs outside the UI thread, your activity can respond to
the user’s clicks and drags while the doInBackground method waits for a response
from the Twitter servers. It’s all good.

CHAPTER 13 An Android Social Media App 367

The Ul thread | The background thread

I
I
I
I
ActivityMain :
onPreExecute :
I
!

| !
I
I
I

onProgressUpdate ! doInBackground

I
I
I
I
I
FIGURE 13-7: + i
The Ul thread and :
the background onPostExecute I
thread run :
simultaneously. !

My Twitter app’s AsyncTask classes

Listing 13-5 contains four methods. But in Listing 13-4, I override only two of the
methods: doInBackground and onPostExecute. The MyAsyncTaskTweet and
MyAsyncTaskTimeline classes in Listing 13-4 inherit the other two methods from
their superclass.

Notice (in Listings 13-4 and 13-5) the use of generic type names in an AsyncTask
class. An AsyncTask is versatile enough to deal with all types of values. In
Listing 13-4, the first generic parameter of MyAsyncTaskTweet has type String
because a tweet is a string of as many as 140 characters. But someone else’s
AsyncTask might accept an image or a music file as its input.

When you create an AsyncTask class, you “fill in the blanks” by putting the
following three type names inside the angle brackets:

¥ The first type name (Typet in Listing 13-5) stands for a value (or values)
that you pass to the doInBackground method.

The doInBackground method, with its varargs parameter, uses these values
to decide what has to be done.

3 The second type name (Type2 in Listing 13-5) stands for a value (or
values) that mark the background thread's progress in completing its
work.

368 PART 4 Powering Android with Java Code

LD,
TECHNICAL
STUFF

FIGURE 13-8:
The use of
types in an

AsyncTask

class.

This chapter’'s example has no progress bar, nor a progress indicator of any
kind. So in Listing 13-4, the second type name is Void.

In Java, the Void class is a wrapper class for the void value. Put that in your
black hole of nothingness!

3 The third type name (Type3 in Listing 13-5) stands for a value that the
doInBackground method returns and that the onPostExecute method
takes as a parameter.

In the doInBackground method of Listing 13-4, this third type name is String.
It's String because the doInBackground method returns the word "Success! "
orthewords "Call to Twitter failed", and the onPostExecute method
displays these words in the screen’s editTextTweet field.

Figure 13-8 summarizes the way generic type names influence the methods’ types
in Listing 13-4, and Figure 13-9 summarizes how values move from one place to
another in the MyAsyncTaskTweet class of Listing 13-4.

new MyAsyncTaskTweet () .execute (editTextTweet.getText () .toString());

public class MyAsyncTaskTweet extends AsyncTask<String, Void, String> {
@Override
protected String doInBackground (String... tweet)
String res®lt = "";

try {
twitter.updateStatus (tweet [0]) ;

result = getResources () .getString(R.string.success) ;
} catch (TwitterException twitterException) {

result = getResources () .getString(R.string.twitter failure);
} catch (Exception e)

result = getResources () .getString(R.string.general failure);
}

return result;

@Override l

protected void onPostExecute (String result) ({
editTextTweet.setHint (result) ;
editTextTweet.setText ("") ;

An AsyncTask can be fairly complicated. But when you compare Android’s
AsyncTask to the do-it-yourself threading alternatives, the AsyncTask idea isn’t
bad at all. In fact, when you get a little practice and create a few of your own
AsyncTask classes, you get used to thinking that way. The whole business starts
to feel quite natural.

CHAPTER 13 An Android Social Media App 369

new MyAsyncTaskTweet () .execute (editTextTweet.getText () .toString()) ;

public class MyAsyncTaskTweet extends AsyncTaskkString, Void, String> {
@Override
protected String doInBackground (String... tweet)
String result = "";

try {
twitter.updateStatus (tweet[0]) ;

result = getResources () .getString(R.string.success);
} catch (TwitterException twitterException)

result = getResources () .getString(R.string.twitter failure);
} catch (Exception e)

result = getResources () .getString(R.string.general failure);

}

return result;

}

@Override

FIGURE 13-9: protected void onPostExecute (String result) {
The flow of editTextTweet .setHint (result) ;

values in an editTextTweet.setText ("") ;

AsyncTask }

class. }

Despite my glowing remarks in this chapter, Android’s AsyncTask isn’t a cure-all

& for your multitasking problems. An AsyncTask doesn’t always give you the kind of

control you need over your code. And, if your activity gets destroyed in the middle

warning O an AsyncTask execution, you may have some trouble. But when you first write
code that makes network requests, AsyncTask is a good place to start.

Cutting to the chase, at last

At the beginning of this chapter, I promise that a statement like
twitter.updateStatus("This is my tweet.");

lies at the heart of the code to post a tweet. You can see this by looking at the code
in Listing 13-4. Here’s a summary:

Twitter twitter;

ConfigurationBuilder builder = new ConfigurationBuilder();
builder
.setOAuthConsumerKey // ... Etc.

370 PART 4 Powering Android with Java Code

CROSS-
REFERENCE

TwitterFactory factory = new TwitterFactory(builder.build());
twitter = factory.getInstance();

twitter.updateStatus(tweet[0]);

In the Twitter4]J API,

3 AConfigurationBuilder helps you create a TwitterFactory.
¥ TheTwitterFactory class helps you create a new Twitter object.

A call to the factory’s get Instance method calls a Twitter constructor on
your behalf. This creates a new Twitter object for you to use.

¥ ATwitter object is a gateway to the Twitter servers.

3 Acall to the Twitter object's updateStatus method posts a brand-new
tweet.

In Listing 13-4, the parameter to the updateStatus method is an array element.
That’s because, in the doInBackground method’s header, tweet is a varargs
parameter. You can pass as many values to doInBackground as you want. In the
body of the method, you treat tweet as though it’s an ordinary array. The first
tweet value is tweet [@] . If there were a second tweet value, it would be tweet [1].
And so on.

For the lowdown on varargs parameters, see Chapter 12.

In Listing 13-4, the code to fetch a user’s timeline looks something like this:
List<twitter4j.Status> statuses = null;
statuses = twitter.getUserTimeline(username[Q]);

A fellow named Yusuke Yamamoto developed Twitter4]J (or at least, Yusuke Yama-
moto was the Twitter4] project leader), and at some point Mr. Yamamoto decided
that the getUserTimeline method returns a collection of twitter4J.Status
objects. (Each twitter4J.Status instance contains one tweet.) To honor the con-
tract set by calling the getUserTimeline method, the code in Listing 13-4 declares
statuses to be a collection of twitter4J.Status objects.

A few lines later in the code, an enhanced for statement steps through the collec-
tion of statuses values and appends each value’s text to a big result string. The
loop adds "\n" (Java’s go-to-the-next-line character) after each tweet for good
measure. In the onPostExecute method, the code displays the big result string in
the screen’s textViewTimeline field.

CHAPTER 13 An Android Social Media App 371

S
S
TECHNICAL
STUFF

CROSS-
REFERENCE

In Listing 13-4, in the second doInBackground method, I use the fully qualified
name twitter4j.Status. I do this to distinguish the twitter4J.Status class
from Android’s own AsyncTask.Status class (an inner class of the AsyncTask
class).

For insight into Java’s inner classes, refer to Chapter 11.

Java’s Exceptions

372

Have I ever had something go wrong during the run of a program? (Hint: The
answer is yes.) Have you ever tried to visit a website and been unable to pull up the
page? (Indubitably, the answer is yes.) Is it possible that Java statements can fail
when they try to access the Twitter server? (Absolutely!)

In Java, most of the things that go wrong during the execution of a program are
exceptions. When something goes wrong, your code throws an exception. If your
code provides a way to respond to an exception, your code catches the exception.

Like everything else in Java, an exception is an object. Every exception is an
instance of Java’s Exception class. When your code tries to divide by zero (which
is always a “no-no”), your code throws an instance of the ArithmeticException
class. When your code can’t read from a stored file, your code throws an instance
of the IOException class. When your code can’t access a database, your code
throws an instance of the SQLException class. And when your Twitter4] code gets
a bad response from the Twitter servers, your code throws an instance of the
TwitterException class.

The classes ArithmeticException, IOException, SQLException, Twitter
Exception, and many, many others are subclasses of Java’s Exception class. Each
of the classes Exception, ArithmeticException, IOException, and SQLException
is part of Java’s standard API library. The class TwitterException is declared
separately in the Twitters4J API.

Java has two kinds of exceptions: unchecked exceptions and checked exceptions.
The easiest way to tell one kind of exception from the other is to watch Android
Studio’s response when you type and run your code:

3 When you execute a statement that can throw an unchecked exception,
you don’t have to add additional code.

PART 4 Powering Android with Java Code

For example, an ArithmeticException is an unchecked exception. You can
write and run the following (awful) Java code:

// Don't do this:
int i =3/ 0;

When you try to run this code, the program crashes. In Android Studio’s
Logcat pane, you see a message like the one shown in Figure 13-10.

——mmmmee peginning of crash
code.al3_@4 E/AndroidRuntime: FATAL EXCEPTION: main

Process: com.allmycode.al3_04, PID: 7899

java.lang.RuntimeException: Unable to start activity ComponentInfo{com.allmycede.al3_@4,
at android.app.ActivityThread.performLaunchActivity(ActivityThread. java:2416)
at android.app.ActivityThread.handleLaunchActivity(ActivityThread. java:2476)
at android.app.ActivityThread.-wrapll(ActivityThread. java)
at android.app.ActivityThreadsH. handleMessage (ActivityThread. java:1344)
at android.os.Handler.dispatchMessage()
at android.os.Looper. loop(
at android.app.ActivityThread.main(ActivityThread. java:5417) <1 internal calls>

¥

¥

at com.android.internal.os.Zygot ethodAndArgsCaller. run{ZygoteInit. java: 726)
FlGURE 13-1 0: at com.android.internal.os.ZygoteInit.main{ZygoteInit.java:616)
Caused by: java.lang.ArithmeticException: divide by zero
Shame on you! at com.allmycode.al3_04.MainActi)

onCreate(MainActivity. ava:38)
.. at android.app.Activity.performCreate()
You divided at android.app.Instrumentation.callActivityOnCreate(

at android.app.ActivityThread.performLaunchActivity(ActivityThread. java:2369)

by zero. + andcads A A

3 When you execute a statement that can throw a checked exception, you
must add code.

ATwitterException is an example of a checked exception, and a call to
getUserTimeline can throw a TwitterException. To find out what
happens when you call getUserTimel ine without adding code, see a portion
of Android Studio’s editor in Figure 13-11.

ﬁrotected String doInBackground{String... username) {
String result = new String(""};
List<twitterdj.Status> statuses = null;

statuses = fwitter.getUserTimelinelusernamelelf);

Unhandled exception: twitter4j TwitterException

FIGURE 13-11:
Java insists that
you add code to

acknowledge an for (twitterdj.Status status : statuses) {
exception. result += status.getText({);

In Figure 13-11, the error message indicates that by calling the getUserTimeline
method, you run the risk of throwing a TwitterException. The word Unhandled
means that TwitterException is one of Java’s checked exceptions and that you
haven’t provided any code to address the possibility of the exception’s being
thrown. That is, if the app can’t communicate with the Twitter servers, and Java
throws a TwitterException, your code has no “Plan B.”

CHAPTER 13 An Android Social Media App 373

In Listing 13-4, I add Java’s try / catch statement to my getUserTimeline call.
Here’s the translation of the try / catch statement:

try to execute the following statement(s): {

statuses = twitter.getUserTimeline(username[0]);

} If you throw a TwitterException while you're trying, {
set the result to whatever string R.string.twitter_failure represents.
} If you throw some other kind of exception while you're trying, {

set the result to whatever string R.string.general_failure represents.

Eventually, my code displays the result string in one of the activity’s TextView
components.

Catch clauses

A try [catch statement can have many catch clauses. To help illustrate catch
clauses, I’ve added a few new lines to one of the try / catch statements in
Listing 13-4:

try {

count = numberOfTweets / averagePerDay;

statuses = twitter.getUserTimeline(username([@]);
} catch (TwitterException twitterException) {

result = getResources().getString(R.string.twitter_failure);
} catch (ArithmeticException a) {

result = getResources().getString(R.string.divide_by_zero);
} catch (Exception e) {

result = getResources().getString(R.string.general_failure);

result += "\n";

When an exception is thrown inside a try clause, Java examines the accompany-
ing list of catch clauses. Every catch clause has a parameter list, and every
parameter list contains a type of exception.

Java starts at whatever catch clause appears immediately after the try clause
and works its way down the program’s text. For each catch clause, Java asks:
Is the exception that was just thrown an instance of the class in this clause’s
parameter list?

374 PART 4 Powering Android with Java Code

TIP

¥ Ifitisn’t, Java skips the catch clause and moves on to the next catch
clausein line.

» Ifitis, Java executes the catch clause and then skips past all other catch
clauses that come with this try clause.

Java goes on and executes whatever statements come after the whole try / catch
statement.

Look at this section’s code snippet. Java starts executing the numberOfTweets /
averagePerDay calculation. If averagePerDay is zero, the calculation fails and the
code throws an ArithmeticException. As a result, Java skips past the statuses =
twitter... statement. If there were any other statements between the failed
calculation and the word catch, Java would skip those statements too.

Java goes directly to the catch clauses, starting with the topmost catch clause.
The topmost catch clause is for TwitterException instances, but dividing by zero
doesn’t throw a TwitterException. So Java marches onward to the next catch
clause.

The next catch clause is for ArithmeticException instances. Yes, dividing by
zero threw an ArithmeticException. So Java executes the statement inside that
catch clause. Java sets result to the string that R.string.divide_by_zero
represents.

Then Java jumps out of the try / catch statement. Java executes the statement
immediately after the try / catch statement, adding the end-of-line character
("\n") to the result string. Then Java executes any other statements after the
result += "\n" statement.

In the sample code with three catch clauses, I end the chain of catch clauses
with an Exception e clause. Java’s Exception class is an ancestor of Twitter
Exception and ArithmeticException and all the other exception classes. No
matter what kind of exception your code throws inside a try clause, that exception
matches the Exception e catch clause. You can always rely on an Exception e
clause as a last resort for handling a problem.

A finally clause

In addition to tacking on catch clauses, you can also tack a finally clause on to
your try / catch statement. Java’s finally keyword says, in effect, “Execute the
finally clause’s statements whether the code threw an exception or not.” For
example, in the following code snippet, Java always adds "\n" to the result
variable, whether or not the call to getUserTimeline throws an exception:

CHAPTER 13 An Android Social MediaApp 375

try {

statuses = twitter.getUserTimeline(username[0]);
} catch (TwitterException e) {

result = getResources().getString(R.string.twitter_failure);
} finally {

result += "\n";

Passing the buck

Here’s a handy response to use whenever something goes wrong: “Don’t blame
me — tell my supervisor to deal with the problem.” (I should have added the Tip
icon to this paragraph!) When dealing with an exception, a Java method can do the
same thing and say, “Don’t expect me to have a try / catch statement — pass the
exception on to the method that called me.”

Here’s how it works: In the MyAsyncTaskTimeline class of Listing 13-4, move the
code that creates a result to a method of its own. (See Listing 13-6.)

m Nipping an Exception in the Bud

376

public class MyAsyncTaskTimeline extends AsyncTask<String, Void, String> {

@0verride

protected String doInBackground(String... username) {
String result = new String("");
result = getResult(username);

return result;

String getResult(String... username) {
String result = new String("");
List<twitter4j.Status> statuses = null;
try {
statuses = twitter.getUserTimeline(username[0]);
} catch (TwitterException twitterException) {
result = getResources().getString(R.string.twitter_failure);
}
for (twitter4j.Status status : statuses) {
result += status.getText();
result += "\n";
}

return result;

PART 4 Powering Android with Java Code

@verride
protected void onPostExecute(String result) {
editTextUsername.setText("");

textViewTimeline.setText(result);

In Listing 13-6, the getResult method says “Try to get a user’s timeline. If you
get a bad response from the Twitter server, handle it by displaying theR.string.
twitter_failure message.” To keep things simple, I have only one catch clause
in Listing 13-6.

You can get rid of the try / catch statement in the getResult method, as long as
the next method upstream acknowledges the exception’s existence. To see what I
mean, look at Listing 13-7.

m Make the Calling Method Handle the Exception

public class MyAsyncTaskTimeline extends AsyncTask<String, Void, String> {

@0verride
protected String doInBackground(String... username) {
String result = new String("");
try {
result = getResult(username);
} catch (TwitterException twitterException) {
result = getResources().getString(R.string.twitter_failure);

}

return result;

String getResult(String... username) throws TwitterException {
String result = new String("");
List<twitter4j.Status> statuses = null;

statuses = twitter.getUserTimeline(username[0]);
for (twitter4j.Status status : statuses) {
result += status.getText();
result += "\n";
}

return result;

(continued)

CHAPTER 13 An Android Social MediaApp 377

@0verride

protected void onPostExecute(String result) {
editTextUsername.setText("");
textViewTimeline.setText(result);

}

In Listing 13-7, the getResult method’s header contains a throws clause. With
this throws clause, the getResult method says “If I experience a Twitter
Exception, I won’t deal with the exception in my own try / catch statement.
Instead, I'll pass the exception on to whichever method called me.” Because the
doInBackground method calls getResult, Java insists that the doInBackground
method contain code to acknowledge the possibility of a TwitterException. To
fulfill this responsibility, the doInBackground method surrounds the getResult
call with a try / catch statement.

In this example, the buck must stop with my doInBackground method. My
doInBackground method’s header can’t have a throws TwitterException clause.
Instead, the doInBackground method must contain a catch clause for the
TwitterException. My code’s doInBackground method overrides Android’s own
doInBackground method, and Android’s doInBackground method doesn’t throw a
TwitterException. Here’s the general rule: Imagine some exception that I'’ll call
XYZException. If a method’s header doesn’t say throws XYZException, you can’t
override that method with a header that says throws XYZException.

Of course, the buck doesn’t always have to stop after the first throws clause. You
could say, “Don’t blame me — tell my supervisor to deal with the problem.” And
then your supervisor could say, “Don’t blame me — tell my supervisor to deal
with the problem.” (Where my wife works, things like this happen all the time.)
Listing 13-8 has an admittedly contrived example.

m Keep Passing the Hot Potato

378

public class MyAsyncTaskTimeline extends AsyncTask<String, Void, String> {

@0verride
protected String doInBackground(String... username) {
String result = new String("");
try {
result = getResult(username);

} catch (TwitterException twitterException) {

PART 4 Powering Android with Java Code

result = getResources().getString(R.string.twitter_failure);

}

return result;

String getResult(String... username) throws TwitterException {
String result = new String("");

List<twitter4j.Status> statuses = null;

statuses = getStatuses(username);

for (twitter4j.Status status : statuses) {
result += status.getText();
result += "\n";

}

return result;

List<twitterdj.Status> getStatuses(String[] username)
throws TwitterException {
List<twitter4j.Status> statuses;
statuses = twitter.getUserTimeline(username([@]);

return statuses;

@verride
protected void onPostExecute(String result) {
editTextUsername.setText("");

textViewTimeline.setText(result);

If you get a bad response from the Twitter server, the getStatuses method passes
the exception to the getResult method, which in turn passes the exception to the
doInBackground method. The doInBackground method takes the ultimate respon-
sibility by surrounding the getResult call in a try / catch statement.

CHAPTER 13 An Android Social Media App 379

IN THIS CHAPTER

» Coding an Android game

» Using Android animation

» Saving data from one run to
another

Chapter 14

Hungry Burds: A Simple
Android Game

hat started as a simple pun involving the author’s last name has turned
into Chapter 14 — the most self-indulgent writing in the history of
technical publishing.

The scene takes place in south Philadelphia in the early part of the 20th century.
My father (then a child) sees his father (my grandfather) handling an envelope.
The envelope has just arrived from the old country. My grandmother grabs the
envelope out of my grandfather’s hands. The look on her face is one of superiority.
“I open the letters around here,” she says with her eyes.

While my grandmother opens the letter, my father glances at the envelope. The
last name on the envelope is written in Cyrillic characters, so my father can’t read
it. But he notices a short last name in the envelope’s address. Whatever the char-
acters are, they’re more likely to be a short name like Burd than a longer name like
Burdinsky or Burdstakovich.

The Russian word for bird is ptitsa, so there’s no etymological connection between
my last name and our avian friends. But as I grew up, I would often hear kids yell,
“Burd is the word” or “Hey, Burdman” from across the street. Today, my one-
person Burd Brain Consulting firm takes in a small amount of change every year.

CHAPTER 14 Hungry Burds: A Simple Android Game 381

Introducing the Hungry Burds Game

When the game begins, the screen is blank. Then, for a random amount of time
(averaging one second), a Burd fades into view, as shown in Figure 14-1.

FIGURE 14-1:
A Burd fades
into view.

If the user does nothing, the Burd disappears after fading into full view. But if the

user touches the Burd before it disappears, the Burd gets a cheeseburger and

remains onscreen, as shown in Figure 14-2.

FIGURE 14-2:
You've fed
this Burd.

After ten Burds have faded in (and the unfed ones have disappeared), the screen
displays a Game Over pop-up message. (See Figure 14-3.)

Two icons serve as menu items at the top of the screen. If the user selects the Info
icon, a pop-up message shows the number of fed Burds in the current run of the
game. The message also shows the high score for all runs of the game. (See
Figure 14-4.) If the user selects the Rewind icon, the game begins again.

382 PART 4 Powering Android with Java Code

FIGURE 14-3:
The game ends.

FIGURE 14-4:
The score sheet.

. Your score: 4
High score: 6

The Hungry Burds Java code is about 150 lines long. (Compare this with one of the
Android game developer’s books that I bought. In that book, the simplest example
has 2,300 lines of Java code.) To keep the Hungry Burds code from consuming
dozens of pages, I've omitted some features that you might see in a more realisti-
cally engineered game:

3 The Hungry Burds game doesn’t access data over a network.

The game's high-score display doesn't tell you how well you scored compared
with your friends or with other players around the world. The high-score
display applies to only one device — the one you're using to play the game.

CHAPTER 14 Hungry Burds: A Simple Android Game 383

3 The game restarts whenever you change the device’s orientation.

If you tilt the device from Portrait mode to Landscape mode, or from
Landscape mode to Portrait mode, Android calls the main activity's lifecycle
methods. Android calls the activity’s onPause, onStop, and onDestroy
methods. Then it reconstitutes the activity by calling the activity's onCreate,
onStart, and onResume methods. As a result, whatever progress you've made
in the game disappears and the game starts itself over again from scratch.

For an introduction to an activity's lifecycle methods, see Chapter 4.

CROSS 3 The screen measurements that control the game are crude.

REFERENCE Creating a visual app that involves drawing, custom images, or motion of any
kind involves some math. You need math to make measurements, estimate
distances, detect collisions, and complete other tasks. To do the math, you
produce numbers by making Android API calls, and you use the results of your

calculations in Android API library calls.

To help me cut to the chase, my Hungry Burds game does only a minimal
amount of math, and it makes only the API calls | believe to be absolutely
necessary. As a result, some items on the screen don't always look their best.

3 The game has no settings.

The number of Burds displayed, the minimum length of time for each Burd's
display, and the maximum additional time of each Burd's display are all
hardcoded in the game's Java file. In the code, these constants are NUMBER_
OF _BURDS, MINIMUM_DURATION, and MAXIMUM_ADDITIONAL_DURATION. As a
developer, you can change the values in the code and reinstall the game. But
the ordinary player can't change these numbers.

3 The game may not be challenging with the default NUMBER_OF _BURDS,
MINIMUM_DURATION, and MAXIMUM_ADDITIONAL_DURATION values.

I admit it: On this front, I'm at a distinct disadvantage. I'm a lousy game player.
| remember competing in video games against my kids when they were
young. | lost every time. At first it was embarrassing; in the end it was
ridiculous. | could never avoid being shot, eaten, or otherwise squashed by my
young opponents’ avatars.

| don't presume to know what values of NUMBER_OF _BURDS, MINIMUM_
DURATION, and MAXIMUM_ADDITIONAL _DURATION are right for you. And if no
values are right for you (and the game isn't fun to play no matter which values
you have), don't despair. I've created Hungry Burds as a teaching tool, not as a
replacement for Pokémon GO.

If changing the AVERAGE_SHOW_TIME and MINIMUM_SHOW_TIME doesn’t make
Hungry Burds feel like a real game, try running the game on a real-life device.

TIP

384 PART 4 Powering Android with Java Code

The Main Activity

I start with an outline of the main activity’s code. The outline is in Listing 14-1.
(If outlines don’t work for you and you want to see the code in its entirety, refer

to Listing 14-2, a little later in this chapter.)

m An Outline of the App’s Java Code

package com.allmycode.a14_02;

public class MainActivity extends AppConpatActivity

implements OnClickListener, AnimationListener {

// Declare fields

/% Activity lifecycle methods %/

@0verride
public void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

// Find the layout

// Get the size of the device's screen

@0verride
public void onResume() {

startPlaying();

/% Game play methods x/
void startPlaying() {
// Set this run's score (countClicked) to zero

// Remove any images from the previous game

showABurd();

void showABurd() {

// Add a Burd in some random place
// At first, the Burd is invisible

(continued)

CHAPTER 14 Hungry Burds: A Simple Android Game 385

// Create an AlphaAnimation to make the Burd
// fade in (from invisible to fully visible)

burd.startAnimation(animation);

/% OnClickListener method %/

public void onClick(View view) {
countClicked++;

// Change the image to a Burd with a cheeseburger

/% AnimationListener methods x/

public void onAnimationEnd(Animation animation) {
if (++countShown < NUMBER_OF_BURDS) {
showABurd(); // Again!
} else {
// Display the "Game Over" message

/% Menu methods %/

public boolean onCreateOptionsMenu(Menu menu) {
// Make the menu

public boolean onOptionsItemSelected(Menultem item) {
// Show the scores or start a new game

private void showScores() {
// Get high score from SharedPreferences
// 1f this score is greater than the high score, update SharedPreferences
// Display high score and this run's score

386 PART 4 Powering Android with Java Code

The heart of the Hungry Burds code is the code’s game loop. Here’s a sneak pre-
view of the full Hungry Burds app’s code:

@0verride
public void onResume() {
super .onResume() ;

startPlaying();

void startPlaying() {
countClicked = countShown = 0;
layout.removeAllViews();
showABurd();

void showABurd() {
// Add a Burd in some random place.
// At first, the Burd is invisible ...

burd.setVisibility(View.INVISIBLE);
// ... but the animation will make the Burd visible.

AlphaAnimation animation = new AlphaAnimation(@.0F, 1.0F);
animation.setDuration(duration);
animation.setAnimationListener(this);

burd.startAnimation(animation);

public void onAnimationEnd(Animation animation) {
if (+tcountShown < NUMBER_OF_BURDS) {
showABurd(); // Again!
} else {

// Display the "Game Over" message

When Android executes the onResume method, the code calls the startPlaying
method, which in turn calls the showABurd method. The showABurd method does
what its name suggests, by animating an image from alpha level 0 to alpha level 1.
(Alpha level o is fully transparent; alpha level 1 is fully opaque.)

CHAPTER 14 Hungry Burds: A Simple Android Game 387

LD,
TECHNICAL
STUFF

o
S
TECHNICAL
STUFF

When the animation ends, the onAnimationEnd method checks the number of Burds
that have already been displayed. If the number is less than ten, the onAnimationEnd
method calls showABurd again, and the game loop continues.

By default, a Burd returns to being invisible when the animation ends. But the
main activity implements OnClickListener, and when the user touches a Burd,
the class’s onClick method makes the Burd permanently visible, as shown in the
following snippet:

public void onClick(View view) {
countClicked++
((ImageView) view).setImageResource(R.drawable.burd_burger);
view.setVisibility(View.VISIBLE);

}

In an activity’s onCreate method, you put code that runs when the activity comes
into existence. In contrast, in the onResume method, you put code that runs when
the user begins interacting with the activity. The user isn’t aware of the difference
because the app starts running so quickly. But for you, the developer, the distinc-
tion between an app’s coming into existence and starting to interact is important.
In Listings 14-1 and 14-2, the onCreate method contains code to restore any pre-
vious state, set the activity’s layout, and measure the screen size. The onResume
method is different. With the onResume method, the user is about to touch the
device’s screen. So In Listings 14-1 and 14-2, the onResume method displays
something for the user to touch: the first of several hungry Burds.

When you override Android’s onResume method, the first statement in the method
body must be super.onResume(). A similar rule holds for Android’s onCreate
method, and for all of Android’s activity lifecycle methods.

The code, all the code, and nothing
but the code

Following the basic outline of the game’s code in the earlier section “The Main Activ-
ity,” Listing 14-2 contains the entire text of the game’s MainActivity. java file.

m The App's Java Code

388

package com.allmycode.al4_02;

import android.content.SharedPreferences;

import android.graphics.Point;

PART 4 Powering Android with Java Code

import
import
import
import
import
import
import
import
import
import
import
import
import

import

import

android

android.
android.
android.
android.
android.
android.
android.
android.
android.
android.
android.
android.

android.

.0s.Bundle;

support.v7.app.AppCompatActivity;

view.
view
view.
view.
view.
view.
view.

view.

Display;

.Menu;

Menultem;

View;
View.OnClickListener;
animation.AlphaAnimation;
animation.Animation;

animation.Animation.AnimationListener;

widget.ImageView;

widget.Relativelayout;

widget.Relativelayout.lLayoutParams;

widget.Toast;

java.util.Random;

public class MainActivity extends AppCompatActivity

implements OnClickListener, AnimationListener {

final int NUMBER_OF_BURDS = 10;
final int MINIMUM_DURATION = 500;
final int MAXIMUM_ADDITIONAL_DURATION = 1000;

int countShown = @, countClicked = 9;

Random random = new Random();

Relativelayout layout;

int displayWidth, displayHeight;

/% Activity lifecycle methods %/

@0Override

public void onCreate(Bundle savedInstanceState) {

super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

layout = (RelativelLayout) findViewById(R.id.relativelLayout);

Display display = getWindowManager().getDefaultDisplay();

Point size = new Point();

display.getSize(size);

displayWidth = size.x;

displayHeight = size.y;

(continued)

CHAPTER 14 Hungry Burds: A Simple Android Game

389

@0Override
public void onResume() {
super .onResume() ;

startPlaying();

/% Game play methods x/

void startPlaying() {
countClicked = countShown = @;
layout.removeAllViews();
showABurd();

void showABurd() {

long duration =
MINIMUM_DURATION + random.nextInt(MAXIMUM_ADDITIONAL_DURATION);

LayoutParams params = new LayoutParams
(LayoutParams.WRAP_CONTENT, LayoutParams.WRAP_CONTENT);

params.leftMargin = random.nextInt(displayWidth) * 3 / 4;
params.topMargin = random.nextInt(displayHeight) * 5 / 8;

ImageView burd = new ImageView(this);
burd.setImageResource(R.drawable.burd);
burd.setlLayoutParams(params);
burd.setOnClickListener(this);
burd.setVisibility(View.INVISIBLE);

layout.addView(burd);
AlphaAnimation animation = new AlphaAnimation(@.@F, 1.0F);
animation.setDuration(duration)
animation.setAnimationListener(this);
burd.startAnimation(animation);

/% OnClickListener method */

public void onClick(View view) {

countClicked++;

((ImageView) view).setImageResource(R.drawable.burd_burger);

390 PART 4 Powering Android with Java Code

view.setVisibility(View.VISIBLE);

/% AnimationListener methods %/

public void onAnimationEnd(Animation animation) {
if (++countShown < NUMBER_OF_BURDS) {
showABurd();
} else {
Toast.makeText(this, "Game Over", Toast.LENGTH_LONG).show();

public void onAnimationRepeat(Animation arg@) {

}

public void onAnimationStart(Animation arg@) {

}

/% Menu methods x/

@0Override
public boolean onCreateOptionsMenu(Menu menu) {
getMenulnflater().inflate(R.menu.menu_main, menu);

return true;

@0verride
public boolean onOptionsItemSelected(Menultem item) {
switch (item.getItemId()) {
case R.id.show_scores:
showScores();
return true;

case R.id.play_again:

startPlaying();
return true;
}
return super.onOptionsItemSelected(item);

private void showScores() {
SharedPreferences prefs = getPreferences(MODE_PRIVATE);
int highScore = prefs.getInt("highScore", 0);
(continued)

CHAPTER 14 Hungry Burds: A Simple Android Game 301

if (countClicked > highScore) {

highScore = countClicked;
SharedPreferences.Editor editor = prefs.edit();
editor.putInt("highScore", highScore);

editor.commit();

Toast.makeText(this, "Your score: " + countClicked +
"\nHigh score: " + highScore, Toast.LENGTH_LONG).show();

Measuring the display

You want to randomly choose places on the device’s screen to display Burd images.
To do this, it may help to know the size of the device’s screen. How complicated
can that be? You can measure the screen size with a ruler, and you can determine
a device’s resolution by reading the specs in the user manual.

Of course, Android programs don’t have opposable thumbs, so they can’t use
plastic rulers. And a layout’s characteristics can change, depending on several
runtime factors, including the device’s orientation (portrait or landscape) and the
amount of screen space reserved for Android’s notification bar and buttons. If you
don’t play your cards right, you can easily call methods that prematurely report a
display’s width and height as zero values.

Fortunately, the android.view.Display class’s getSize method gives you useful
answers without too much coding. So, here and there in Listing 14-2, you find the
following code:
public class MainActivity extends AppCompatActivity {
int displayWidth, displayHeight;
public void onCreate(Bundle savedInstanceState) {
Display display = getWindowManager().getDefaultDisplay();
Point size = new Point();
display.getSize(size);

displayWidth = size.x;
displayHeight = size.y;

392 PART 4 Powering Android with Java Code

OLAOD,
TECHNICAL
STUFF

void showABurd() {

LayoutParams params = new LayoutParams
(LayoutParams.WRAP_CONTENT, LayoutParams.WRAP_CONTENT);

params.leftMargin = random.nextInt(displayWidth) x 3 / 4;
params.topMargin = random.nextInt(displayHeight) * 5 / 8;

An instance of Android’s Point class is basically an object with two components:
an x component and a y component. In the Hungry Burds code, a call to
getWindowManager () .getDefaultDisplay() retrieves the device’s display. The
resulting display’s getSize method takes an instance of the Point class and fills
its x and y fields. The x field’s value is the display’s width, and the y field’s value
is the display’s height, as shown in Figure 14-5.

A LayoutParams object stores information about the way a component should
appear as part of an activity’s layout. (Each kind of layout has its own Layout
Params inner class, and the code in Listing 14-2 imports the Relativelayout.
LayoutParams inner class.) A LayoutParams instance has a life of its own, apart
from any component whose appearance the instance describes. In Listing 14-2,
I construct a new LayoutParams instance before applying the instance to any
particular component. Later in the code, I call

burd.setlLayoutParams(params);
to apply the new LayoutParams instance to one of the Burds.

Constructing a new LayoutParams instance with a double dose of LayoutParams.
WRAP_CONTENT (one LayoutParams . WRAP_CONTENT for width and one LayoutParams.
WRAP_CONTENT for height) indicates that a component should shrink-wrap itself
around whatever content is drawn inside it. Because the code eventually applies this
LayoutParams instance to a Burd, the Burd will be only wide enough and only tall
enough to contain a picture of yours truly from the project’s res/drawable
directory.

The alternative to WRAP_CONTENT is MATCH_PARENT. With two MATCH_PARENT
parameters in the LayoutParams constructor, a Burd’s width and height would
expand to fill the activity’s entire relative layout. In this example, that layout
would fill most of the device’s screen.

A LayoutParams instance’s leftMargin field stores the number of pixels between
the left edge of the display and the left edge of the component. Similarly, a Layout
Params instance’s topMargin field stores the number of pixels between the top edge
of the display and the top edge of the component. (See Figure 14-5.)

CHAPTER 14 Hungry Burds: A Simple Android Game 393

FIGURE 14-5:

Measuring

distances on the

394

screen.

o
S5
TECHNICAL
STUFF

CROSS-
REFERENCE

& B

topMargin

leftMargin
D E—— fscreen

3 14

In Listing 14-2, I generate values randomly to position a new Burd. A Burd’s left
edge (params. leftMargin) is no farther than 3/4ths of the way across the screen,
and the Burd’s top edge (params.topMargin) is no lower than 58ths of the way
down the screen. If you don’t multiply the screen’s width by 3/ (or some such
fraction), an entire Burd can be positioned beyond the right edge of the screen.
The user sees nothing while the Burd comes and goes. The same kind of thing can
happen if you don’t multiply the screen’s height by 58.

The fractions %4 and 5/8, which I use to determine each component’s position, are
crude guesstimates of a portrait screen’s requirements. A more refined app would
carefully measure the available turf and calculate the optimally sized region for
positioning new Burds.

In Listing 14-2, I also generate numbers randomly to decide how many millisec-
onds each Burd takes to fade into full view. The MAXIMUM_ADDITIONAL _DURATION is
1000,SOtheeXpreSSknlrandom.nextInt(MAXIMUM_ADDITIONAL_DURATION)Stands
for a value from 0 to 999. By adding MINIMUM_DURATION (refer to Listing 14-2),
I make duration be a number between 500 and 1499. So a Burd takes between 500
and 1499 milliseconds to fade into view.

I introduce the java.util.Random class in Chapter 8.

PART 4 Powering Android with Java Code

ON THE
WEB

Constructing a Burd

Android’s ImageView class represents objects that contain images. Normally, you
put an image file (a .png file, a . jpg file, or a .gif file) in your project’s
res/drawable directory, and a call to the ImageView object’s setImageResource
method associates the ImageView object with the image file. In Listing 14-2, the
following lines fulfill this role:

ImageView burd = new ImageView(this);

burd.setImageResource(R.drawable.burd);

Because of the R.drawable.burd parameter, Android looks in the project’s
app/res/drawable directory for a file named burd. png, burd. jpg, or burd.gif.

You can find burd.png in the stuff that you download from this book’s website
(www.allmycode.com/Java4Android).

The statement

burd.setVisibility(View.INVISIBLE);
makes the Burd be completely transparent. The next statement

layout .addView(burd);
normally makes a component appear on the user’s screen. But with the View.
INVISIBLE property, the Burd doesn’t show up. It’s not until I start the code’s
fade-in animation that the user begins seeing a Burd on the screen.
When the user clicks on a Burd, Android calls the onClick method in Listing 14-2.
The onClick method’s view parameter represents the ImageView object that the
user clicked. In the body of the onClick method, the statement

((ImageView) view).setImageResource(R.drawable.burd_burger);
assures Java that view is indeed an ImageView instance and changes the picture
on the face of that instance from a hungry author to a well-fed author. (In the
app/res/drawable directory, Android grabs a file named burd_burger.png,
burd_burger. jpg, or burd_burger.gif.) The onClick method also sets the

ImageView instance’s visibility to View.VISIBLE. That way, when this Burd’s
animation ends, the happy Burd remains visible on the user’s screen.

CHAPTER 14 Hungry Burds: A Simple Android Game 395

http://www.allmycode.com/Java4Android

DISPLAYING THINGS ON THE
DEVICE'S SCREEN

When you create an Android activity, you fill most of the activity’s screen with something
called a view group. A view group holds components such as Button components,
EditText components, TextView components, ImageView components, and other
such things. To make a particular component appear on an activity's screen, you add
that component to the activity's view group.

The Android API has several kinds of view groups, including these:
® | inearLayout: Arranges components in a line across the screen, or in a column

down the screen.

® GridlLayout: Arranges components in a rectangular grid (that is, in the cells of a
table whose borders are invisible).

® Relativelayout: Arranges components by describing their positions relative to
one another. For example, you can place button2 to the right of button1 or make
the top of button2 be 50 pixels below the bottom of buttont.

® ConstraintlLayout: Has more features than Relativelayout for describing com-
ponents' relative positions. For example, you can center a component in a layout by
constraining the component to the top, bottom, left, and right of the layout. You can
move the component from the center by assigning a bias constraint.

To add a component to a view group, you have two alternatives:
® |n afile suchasactivity_main.xml, you can use XML code to describe the
component.

| do that in most of this book’s examples without making a big fuss about it.

® In a file such asMainActivity. java, you can use Java code to describe the
component.

| do that in Listing 14-2 because each component (each Burd) appears at a different

time during the app's run.

With Android Studio’s Designer tool, you drag components onto a preview screen.
When you do, Android Studio composes theactivity_main.xml file for you. You see
theactivity_main.xml file's code when you switch to the Designer tool's Text tab.

396 PART4

The layout file (@ctivity_main.xml) for this chapter's app is quite short:
<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android= "http://schemas.android.com/apk/res/
android"

xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/relativelLayout"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

</Relativelayout>

The file tells Android that most of the screen is taken up with aRelativelLayout, and

that the RelativeLayout's id is relativelayout. You can create this file (or a file very
much like this file) on the Designer tool's Design tab. To do so, follow these steps:

1. Remove any TextView components or other components from inside the

preview screens.
. At the top of the component tree, look for the word RelativeLayout.
If you see the word RelativeLayout, go to Step 3.

If you see some other word (such as ConstraintLayout or LinearLayout), drag a
RelativeLayout item from the Palette to one of the preview screens. Then select the
new RelativeLayout in the component tree and look at the Properties pane. In the
Properties pane, make sure that both the layout_width and layout_height
properties have the value match_parent.

. If you haven't already done so, select the RelativeLayout in the component tree.
. In the Properties pane’s ID field, type relativelayout.

Android Studio may have already filled this field with the name activity_main. But
| find this name confusing because, with this name, the app has two things — one
namedR. layout.activity_main and another namedR.id.activity_main —
and they're not quite the same thing. In Listing 14-2, | refer toR.id.relative
Layout. And in the Designer tool, | set the ID accordingly.

In Listing 14-2, the statement

layout = (Relativelayout) findViewById(R.id.relativelayout);

(continued)

CHAPTER 14 Hungry Burds: A Simple Android Game 397

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

(continued)

makes the variable 1ayout refer to the activity’s one and only view group. Later in
Listing 14-2, the statement

layout.addView(burd)

adds a Burd to the activity’s view group, setting the stage for displaying the Burd on the
screen. Elsewhere in Listing 14-2, the statement

layout .removeAllViews();

removes all Burds from the activity’s view group in preparation for the start of the
Hungry Burds game.

Android animation

Android has two types of animation:

3 View animation: A system that comes in two different flavors:

Tweening: You tell Android how an object should look initially and how the
object should look eventually. You also tell Android how to change from
the initial appearance to the eventual appearance. (Is the change gradual
or sudden? If the object moves, does it move in a straight line or in a curve
of some sort? Will it bounce a bit when it reaches the end of its path?)

With tweening, Android considers all your requirements and figures out
exactly how the object looks between the start and the finish of the object's
animation.

Frame-by-frame animation: You provide several snapshots of the object

along its path. Android displays these snapshots in rapid succession, one
after another, giving the appearance of movement or of another change in
the object’s appearance.

Movie cartoons are the classic example of frame-by-frame animation, even
though, in modern moviemaking, graphics specialists use tweening to
create sequences of frames.

3 Property animation: A system in which you can modify any property of an

object over a period of time.

With property animation, you can change anything about any kind of object,
whether the object appears on the device's screen or not. For example, you
can increase an earth object's average temperature from 15° Celsius to 18°
Celsius over a period of ten minutes. Rather than display the earth object,

398 PART 4 Powering Android with Java Code

you can watch the way average temperature affects water levels and plant life,
for example.

Unlike view animation, the use of property animation changes the value
stored in an object’s field. For example, you can use property animation to
change a component from being invisible to being visible. When the property
animation finishes, the component remains visible.

The Hungry Burds code uses view animation, which includes these specialized
animation classes:

¥ AlphaAnimation: Fades into view or fades out of view
¥ RotateAnimation: Turns around
¥ ScaleAnimation: Changes size

¥ TranslateAnimation: Moves from one place to another

In particular, the Hungry Burds code uses AlphaAnimation. In the statement
AlphaAnimation animation = new AlphaAnimation(@.0F, 1.0F);

the alpha level of 0.0 indicates complete transparence, and the alpha level of 1.0
indicates complete opaqueness. (The AlphaAnimation constructor expects its
parameters to be float values, so I plug the float values 0.0F and 1.0F into the
constructor call.)

The call
animation.setAnimationListener(this);

tells Java that the code to respond to the animation’s progress is in this main
activity class. Indeed, the class header at the top of Listing 14-2 informs Java that
the HungryBurds class implements the AnimationListener interface. And to
make good on the implementation promise, Listing 14-2 contains bodies for the
methods onAnimationEnd, onAnimationRepeat, and onAnimationStart. (Noth-
ing happens in the onAnimationRepeat and onAnimationStart methods. That’s
okay.)

The onAnimationEnd method does what I describe earlier in this chapter: The
method checks the number of Burds that have already been displayed. If the num-
ber is less than ten, the onAnimationEnd method calls showABurd again and the
game loop continues.

CHAPTER 14 Hungry Burds: A Simple Android Game 399

REMEMBER

An object’s visibility property doesn’t change when a view animation makes
the object fade in or fade out. In this chapter’s example, a Burd starts off with
View.INVISIBLE. A fade-in animation makes the Burd appear slowly on the
screen. But when the animation finishes, the Burd’s visibility field still con-
tains the original View. INVISIBLE value. Normally, when the animation ends, the
Burd simply disappears. It’s only when the user touches a hungry Burd that
the code’s onClick method calls view.setVisibility(View.VISIBLE), making
the Burd image remain on the screen.

Creating menus

A strip at the top of the screen shown earlier, in Figure 14-1, is the activity’s action
bar (also known as the app bar). The right side of the action bar displays action
buttons. The Hungry Burds game has two action buttons: an Info button and a
Rewind button.

Defining the XML file

To describe your activity’s action bar, you create an XML file in your project’s
app/res/menu directory. Listing 14-3 contains the XML file for the Hungry Burds
game.

m Description of a Menu

400

<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"

tools:context="com.allmycode.a14_02.MainActivity">

<item
android:id="@+id/show_scores"
android:icon="@drawable/ic_dialog_info"
android:title="@string/scores"”
app:showAsAction="ifRoom|withText"
/>

<item
android:id="@+id/play_again"
android:icon="@drawable/ic_media_rew"
android:title="@string/again”
app:showAsAction="ifRoom|withText"
/>

</menu>

PART 4 Powering Android with Java Code

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools

In Listing 14-3, each item element describes an action button. Each item element
has four attributes:

3 Theandroid:id attribute gives the action button a name.
You refer to this name in the main activity's Java code.
3 Theandroid:icon attribute points to a file containing an image.

The file lives in your project's app/res/drawable directory. If there's room,
Android displays this image on the action bar. (Refer to Figure 14-1.)

If there's no room, the action appears only when the user selects the action
bar's Overflow icon. (See Figures 14-6 and 14-7.)

FIGURE 14-6:

This phone’s
Overflow icon has
three dots
aligned vertically.

Scores

Play again

FIGURE 14-7:
Expanding the
Overflow icon.

¥ Theandroid:title attribute points to some helpful text.

That text may or may not appear along with the icon, depending on the size of
the screen and the next attribute’s options.

In Listing 14-3, the attribute android:showAsAction="1ifRoom|withText" tells
Android two things:

9 ifRoom: Show this icon on the action bar if there's room for it.

If there isn't enough room, reveal this icon when the user presses the
Overflow icon.

¥ withText: Show this item'’s title on the action bar if there's room for it.

Figure 14-8 shows each icon along with the icon’s title.

CHAPTER 14 Hungry Burds: A Simple Android Game 401

FIGURE 14-8:
There's room for
the icons’ titles.

402

REMEMBER

REMEMBER

“ul b 846

OSCORES 44 PLAY AGAIN

Use Java's bitwise or operator (|) to separate the word i fRoom from the word
withText.

Listing 14-3 is very nice, but the XML file in Listing 14-3 isn’t enough to put items
on your app’s action bar. For that, you need to inflate the XML file. That’s why I
put the following method in Listing 14-2:

@0verride

public boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.menu_main, menu);
return true;

}

When you inflate an XML document, Android turns the XML code into something
resembling Java code (a Java object, perhaps).

In the preceding code, you get a MenuInflater that’s capable of inflating menus
from XML resources. Then you inflate the XML code to get a real, live Java object.

When you implement the onCreateOptionsMenu method, you must return either
true or false. If you return false, Android doesn’t display the menu. How rude!

Handling user actions

In the menu’s XML file (refer to Listing 14-3), you describe how the menu items
look. And in the onOptionsItemSelected method (refer to Listing 14-2), you
describe what happens when the user clicks any of those menu items.

Take a gander at the onOptionsItemSelected method in Listing 14-2. When the
user clicks an item, the code calls the item’s get ItemId method. Depending on the
getItemId method’s return value, the code calls either the showScores method or
the startPlaying method.

The onOptionsItemSelected method returns a boolean value. A true return
value tells Android that you’ve finished handling the user’s selection. If you return
false, Android passes the selection event to whatever other code might be
waiting for it.

PART 4 Powering Android with Java Code

Shared preferences

When a user selects the Scores menu item (the Info icon), the app displays the
score for the current game and the high score for all games. (Refer to Figure 14-3.)
The high score display applies to only one device — the device that’s running the
current game. To remember the high score from one run to another, I use Android’s
Shared Preferences feature.

Android provides several ways to store information from one run of an app to the

) next. In addition to using shared preferences, you can store information in the

6 device’s SQLite database. (Every Android device has SQLite database software.)

TechnicaL You can also store information in an ordinary Linux file or on a network host of
STUFF some kind.

Here’s how you wield a set of shared preferences:

¥ To create shared preferences, you call the activity's getShared
Preferences method.

In fact, the getSharedPreferences method belongs to Android’s Context
class, and the Activity class is a subclass of the Context class.

In Listing 14-2, | call getSharedPreferences in the activity's showScores
method. The call's parameter, MODE_PRIVATE, tells Android that no other app
can read from or write to this app’s shared preferences. (I know — there's
nothing "shared" about something that no other app can use. But that's the
way Android’s terminology works.)

Aside from MODE_PRIVATE, the alternatives are described in this list:
MODE_WORLD_READABLE: Other apps can read from these preferences.
MODE_WORLD_WRITEABLE: Other apps can write to these preferences.

MODE_MULTI_PROCESS: Other apps can write to these preferences even
while an app is in the middle of a read operation. Weird things can happen
with this much concurrency. If you use MODE_MULTI_PROCESS, watch out!

You can combine modes with Java’s bitwise or operator (|). A call such as
getSharedPre ferences (MODE_WORLD_READABLE | MODE_WORLD_WRITEABLE);

makes your preferences both readable and writable for all other processes.

¥ To start adding values to a set of shared preferences, you use an
instance of the SharedPreferences.Editor class.

In Listing 14-2, | make a new editor object. Then | use the editor to add
("highScore", highScore) to the shared preferences. Taken together,
("highScore", highScore) is a key/value pair. The value (whatever number

CHAPTER 14 Hungry Burds: A Simple Android Game 403

my highscore variable holds) is the actual information. The key (the string
"highScore") identifies that particular piece of information. (Every value has
to have a key. Otherwise, if you've stored several different values in your app’s
shared preferences, you have no way to retrieve any particular value.)

In Listing 14-2, | call putInt to store an int value in shared preferences.
Android's Editor class (an inner class of the SharedPreferences class) has
methods such as putInt, putFloat, putString, and putStringSet.

¥ To finish adding values to a set of shared preferences, you call the
editor's commit method.

In the showScores method in Listing 14-2, the statement editor.commit()
does the job.

¥ Toread values from an existing set of shared preferences, you call
getBoolean, getInt, getFloat, or one of the other get methods belong-
ing to the SharedPreferences class.

In the showScores method in Listing 14-2, the call to get Int takes two
parameters. The first parameter (the string "highscore") is the key that
identifies a particular piece of information. The second parameter (the int
value @) is a default value. So when you call prefs.getInt("highScore", 0),
the following applies:

If prefs has no pair with key "highscore", the method call returns @.

If prefs has a previously stored "highscore" value, the method returns
that value.

Informing the user

Near the bottom of Figure 14-3, a capsule-shaped pop-up contains the words
Game Over. Figure 14-4 has a similar pop-up. These pop-ups illustrate the use of
Android’s Toast class. A toast is an unobtrusive little view that displays some use-
ful information for a brief period. A Toast view pops up on the screen the way a
hot piece of bread pops up from a toaster. (Rumor has it that the Android class
name Toast comes from this goofy analogy.)

The Toast class has two extremely useful methods: makeText and show.

¥ The static Toast.makeText method creates an instance of the
Toast class.

The makeText method has three parameters:

The first parameter is a context (the word this in the makeText calls in
Listing 14-2).

404 PART 4 Powering Android with Java Code

The second parameter is either a resource (such asR.string.scores) or
a String expression (such as "Game Over").

If you call makeText with a String expression, the user sees the String
when Android displays the toast. If you call makeText with a resource,
Android looks for the resource in your project's app/res/values/
strings.xml file. In Listing 14-2, the code calls makeText twice with a
String expression in each call.

If you use an int value (42, for example) for the second parameter of the
makeText method, Android doesn't display the characters 42 in the Toast
view. Instead, Android looks for a resource whose value inR. java is 42.

REMEMBER YourR. java file probably doesn’t contain the number 42. So, instead of a
Toast view, you get a ResourceNotFound exception. Your app crashes,
and you groan in dismay.

The makeText method's third parameter is either Toast . LENGTH_LONG or
Toast . LENGTH_SHORT. With LENGTH_LONG, the Toast view appears for
3.5 seconds. With LENGTH_SHORT, the Toast view appears for 2 seconds.

3 The show method tells Android to display the Toast view.

In Listing 14-2, notice that | call both makeText and show in one Java state-
ment. If you forget to call the show method, the Toast view doesn't appear.
You stare in disbelief wondering why you don't see the Toast view. ("Who
stole my toast?” you ask.) When you finally figure out that you forgot to call
the show method, you feel foolish. (At least that's the way | felt when | forgot
earlier today.)

To display the Toast view for more than 3.5 seconds, put the Toast state-
@ ment inside a loop. For example, to display the word Hello for ten seconds,
use the following code:
TIP
for (int i = @; i < 5; i+) {
Toast .makeText(this, "Hello", Toast.LENGTH_SHORT).show();
}

It's Been Fun

This chapter has been fun, and this book has been fun! Ilove writing about Android
and Java. And I love hearing from readers. Remember that you can send email
to me at javadandroid@allmycode.com, and you can reach me on Twitter
(@allmycode) and on Facebook (/allmycode).

CHAPTER 14 Hungry Burds: A Simple Android Game 405

java4android@allmycode.com

Occasionally, I hear from a reader who says something like this: “If I read your
whole book, will I know everything I have to know about Java?” The answer is
always “No, no, no!” (That’s not only one “no.” It’s “no” times three.) No matter
what topic you study, there’s always more to learn. So keep reading, keep practic-
ing, keep learning, and, by all means, keep in touch.

406 PART 4 Powering Android with Java Code

The Part of Tens

IN THIS PART ...

Preventing mistakes

Mining the web for more information

IN THIS CHAPTER

» Checking your capitalization and
value comparisons

» Watching out for fall-through

» Putting methods, listeners, and
constructors where they belong

» Using static and nonstatic
references

» Avoiding other heinous errors

Chapter 15

Ten Ways to Avoid
Mistakes

“ he only people who never make mistakes are the people who never do
anything at all.” One of my college professors said that. I don’t remember
the professor’s name, so I can’t give him proper credit. I guess that’s

my mistake.

Putting Capital Letters Where They Belong

Java is a case-sensitive language, so you really have to mind your ps and qs —
along with every other letter of the alphabet. Here are some concepts to keep in
mind as you create Java programs:

¥ Java's keywords are all completely lowercase. For instance, in a Java i f
statement, the word if can't be If or IF.

3 When you use names from Android’s Application Programming Interface (API),
the case of the names has to match what appears in the API.

CHAPTER 15 Ten Ways to Avoid Mistakes 409

¥ The names you make up yourself must be capitalized the same way through-
out the entire program. If you declare a myAccount variable, you can't refer to
it as MyAccount, myaccount, or Myaccount. If you capitalize the variable name
two different ways, Java thinks you're referring to two completely different
variables.

For more info on Java’s case-sensitivity, see Chapter 4.

Breaking Out of a switch Statement

If you don’t break out of a switch statement, you get fall-through. For instance,
if the value of roll is 7, the following code prints all three words — win,
continue, and lose:
switch (roll) {
case T:
textView.setText("win");
case 10:
textView.setText("continue");

case 12:

textView.setText("lose");

}

For the full story, see Chapter 8.

Comparing Values with a
Double Equal Sign

When you compare two values, you use a double equal sign. The line
if (inputNumber == randomNumber)

is correct, but the line
if (inputNumber = randomNumber)

is not correct. For a full report, see Chapter 5.

410 PART 5 The Part of Tens

Adding Listeners to Handle Events

You want to know when the user clicks a widget, when an animation ends, or
when something else happens, so you create listeners:

public class MainActivity extends Activity

implements OnClickListener, AnimationListener {
public void onClick(View view) {

}

public void onAnimationEnd(Animation animation) {

When you create listeners, you must remember to set the listeners:

ImageView widget = new ImageView(this);

widget.setOnClickListener(this);
AlphaAnimation animation = new AlphaAnimation(@.0F, 1.0F)
animation.setAnimationListener(this);

If you forget the call to setOnClickListener, nothing happens when you click the

widget. Clicking the widget harder a second time doesn’t help.

For the rundown on listeners, see Chapter 11.

Defining the Required Constructors

When you define a constructor with parameters, as in
public Temperature(double number)

Java no longer creates a default parameterless constructor for you. In other words,
you can no longer call

Temperature roomTemp = new Temperature();

unless you explicitly define your own parameterless Temperature constructor. For
all the gory details on constructors, see Chapter 9.

CHAPTER 15 Ten Ways to Avoid Mistakes 411

Fixing Nonstatic References

If you try to compile the following code, you get an error message:

class WillNotWork {
String greeting = "Hello";

static void show() {

textView.setText(greeting);

You get an error message because the show method is static, but greeting isn’t
static. For the complete guide to finding and fixing this problem, see Chapter 9.

Staying within Bounds in an Array

When you declare an array with ten components, the components have indexes 0
through 9. In other words, if you declare

int guests[] = new int[10];
you can refer to the guests array’s components by writing guests[0], guests[1],
and so on, all the way up to guests[9]. You can’t write guests[1@], because the

guests array has no component with index 10.

For the latest gossip on arrays, see Chapter 12.

Anticipating Null Pointers

A NullPointerException comes about when you call a method on an expression
that has no “legitimate” value. Here’s an example:

public class MainActivity extends AppCompatActivity {

TextView textView;

412 PART 5 The Part of Tens

@0verride
protected void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

setContentView(R. layout.activity_main)

// You forget the findViewById line.

public void onButtonClick(View view) {
textView.setText("Hello");

In Java, a reference type variable that doesn’t point to anything has the value
null. So in this example, the textView variable’s value is null.

You can’t call the setText method on the null value. For that matter, you can’t call
any method on the null value. When Java tries to execute textView.
setText("Hello"), the app crashes. The user sees an Application has stopped mes-
sage. If you’re testing the app using Android Studio, you see Nul1PointerException
in the Logcat pane.

To avoid this kind of calamity, think twice about any method call in your code. If
the expression before the dot can possibly be null, add exception-handling code
to your program:

public void onButtonClick(View view) {
try {
textView.setText("Hello");
} catch(NullPointerException e) {
Toast .makeText(this, "The app has recovered from an error.",
Toast.LENGTH_LONG) .show();

For the story on handling exceptions, see Chapter 13.

CHAPTER 15 Ten Ways to Avoid Mistakes 413

Using Permissions

Some apps require explicit permissions. For example, the app in Chapter 13 talks
to Twitter’s servers over the Internet. This doesn’t work unless you add a
<uses-permission> element to the app’s AndroidMani fest.xml file:

<uses-permission android:name= "android.permission.INTERNET"/>
If you forget to add the <uses-permission> element to your AndroidMani fest.

xml file, the app can’t communicate with Twitter’s servers. The app fails without
displaying a useful error message. Too bad!

The Activity Not Found

414

If you create a second activity for your app, you must add a new <activity> ele-
ment in the app’s AndroidManifest.xml file. The element can be as simple as

<activity android:name=".MySecondActivity"/>
but, in most cases, the element is a bit more complicated.
If you don’t add this <activity> element, Android can’t find the MySecondActivity
class, even though the MySecondAcitivity. java file is in the app’s project direc-

tory. Your app crashes with an ActivityNotFoundException.

And that makes all the difference.

PART 5 The Part of Tens

IN THIS CHAPTER

» Checking out this book’s website

» Finding resources from Oracle

» Reading more about Java

Chapter 16

Ten Websites for
Developers

his chapter lists ten useful and fun websites. Each one has resources to help
you use Java more effectively. And as far as I know, none of these sites uses
adware or pop-ups or other grotesque programs.

This Book’s Websites

For all matters related to the technical content of this book, visit www.al1lmycode.
com/Javad4Android.

For business issues (for example, “How can I purchase 100 copies of Java
Programming for Android Developers For Dummies, 2nd Edition?”), simply go to www.
dummies.com and type Java programming for Android developers in the Search
box. If a list of titles is returned, click on the second edition of this book.

CHAPTER 16 Ten Websites for Developers 415

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
http://www.dummies.com#_blank
http://www.dummies.com#_blank
http://www.dummies.com

The Horse’s Mouth

Oracle’s official website for Java is www.oracle.com/technetwork/java.

Programmers and developers interested in sharing Java technology can go to
www. java.net.

For everything an Android developer needs to know, visit http://developer.
android.com.

Finding News and Reviews

For the latest info about Android, visit Android Authority at www.android
authority.com.

For articles by the tech experts, visit The Server Side at www . theserverside.com,
InfoQ at www. infoq.com, and TechCrunch at http://techcrunch.com.

For discussions by everyone (including many very smart people), visit JavaRanch
at www. javaranch.com.

Check it out!

416 PART S5 The Part of Tens

http://www.oracle.com/technetwork/java
http://www.java.net
http://developer.android.com/
http://developer.android.com/
http://www.androidauthority.com/
http://www.androidauthority.com/
http://www.theserverside.com/
http://www.infoq.com/
http://techcrunch.com/
http://www.javaranch.com

Index

Symbols and Numerics
| operator, 402

| | operator, 152, 155

! operator, 153

+ (addition) operator, 142-143

* (asterisk), 104

@ (at-sign), 279-281

, (comma), 118

{} (curly braces), 99, 117, 118, 190, 208-211
— (decrement), 143

/ (division) operator, 142-143

. (dot), 226

== (double-equal sign), 148, 410

“"(double quotation marks), 118

// (double slash), 93

= (equal sign), 148, 225

> (greater than), 148

>= (greater than or equal to), 148

++ (increment), 143

< (less than), 148

<= (less than or equal to), 148

* (multiplication) operator, 142-143

() (parentheses), 118

% (remainder upon division) operator, 142-143
; (semicolon), 118

— (subtraction) operator, 142-143
_(underscore character), 133

32-bit Java, 35

64-bit Java, 35

A

accessing
fields, 253-257
methods, 253-257

accessor methods, 259
Account class, 254, 258
action buttons, 400
action element, 123
activities
about, 98, 123-127
methods of, 125-127
not finding, 414
Activity class, 272, 285, 292, 293

activity_main.xml document code listing,
78-79

adapter (spinner), 343-344
AdapterView class, 343-344
addAll method, 185-186
adding

additional packages to projects, 226-227

boxes to apps, 71-75

buttons to apps, 71-75

letters to numbers, 144-146

listeners to handle events, 411
addition (+) operator, 142-143
addOneDay method, 249
addPoints method, 178, 180-183
AlphaAnimation class, 399
Android. See also specific topics

about, 11-12

animation, 398-400

classes, 291-294

code, 97-99

emulator, 62-63

installing versions of, 49-50

string resources, 302-307

versions of, 13-15

website, 416

Android Application Development All-in-One For
Dummies, 2nd Edition (Burd), 73

Index 417

Android apps
about, 55
adding boxes to, 71-75
advanced, 93-94
coding, 83-86
creating, 55-94
creating your first, 56-63
emulator, 63-68
launching, 61-63
Project tool window, 68-70
running, 55-94
social media. See Twitter app
terminal, 20
testing on physical devices, 65-67
tweaking, 70-80
using collections in, 340-344
what Java code does, 88-93
Android Authority (website), 416
Android game
about, 381-384
animation, 398-400
code for, 388-392
constructing the burd, 395
creating menus, 400-402
displaying on device screen, 396-398
informing users, 404-405
MainActivity, 385-388
measuring the display, 392-394
shared preferences, 403-404

Android Monitor tool window (Android Studio), 46

Android runtime (ART), 25
Android SDK, setting up, 37-38
Android Studio

about, 22-24, 42

Android Monitor tool window, 46

Designer tool, 76-78

Editor area, 45-46

launching IDE, 38-39

main window, 43-48

Project tool window, 44-45, 68

Run tool window, 47

setting up, 37-38

starting, 42-43

status bar, 47-48

Terminal tool window, 47

using, 42-48, 86-87
Android Virtual Device (AVD), 51-54, 58
android:icon, 401
android:id, 401
AndroidManifest.xml file, 123, 348-349
android:onClick attribute, 83
android:title, 401
angle brackets, 80
animation (Android), 398-400
annotations

defined, 235

Java, 279-281
anonymous inner classes, 309-312
APl level, 13,15
.apk file, 24
apkbuilder, 24
app bar, 400

AppCompatActivity class, 103-104, 124-125,
126, 285, 291, 292, 293

append method, 109, 119
app/java branch, 69
Application Launcher screen, 123
app/manifests branch, 68-69
app/res branch, 69-70
apps
about, 55
adding boxes to, 71-75
advanced, 93-94
coding, 83-86
creating, 55-94
creating your first, 56-63
emulator, 63-68
launching, 61-63
Project tool window, 68-70
running, 55-94
social media. See Twitter app
terminal, 20
testing on physical devices, 65-67
tweaking, 70-80

418 Java Programming for Android Developers For Dummies

using collections in, 340-344

what Java code does, 88-93
archive files, 32
arithmetic operators, 142-143
ArithmeticException class, 372-373, 375
ARM processor, 24
array initializer, 337
ArrayAdapter, 344

arraylist class, 318-319, 320, 321-323,
326-327, 330-331, 332-333

arrays
about, 333-335
staying within bounds of, 412
string resource, 336
varargs, 337-340
ART (Android runtime), 25
ASCII code, 137
assignment operators, 146-147
assignments, 134-136
asterisk (*), 104
AsyncTask class, 366-370
at-sign (@), 279-281
attribute, 82
AVD (Android Virtual Device), 51-54, 58
avoiding mistakes, 409-414

background thread, 366
binary number representations, 137
bitwise operator, 402
block, 210
block comments, 120-121
blueprint screen, 77
boolean type, 141, 142, 147,167, 247
Bornstein, Dan (Google employee), 22
boxes, adding to apps, 71-75
break statement, 194, 196, 205
breaking connections, 67-68
build method, 355
building
Android virtual devices, 50-54
apps, 55-94

ArraylList, 318-319
arrays, 334
burds in Hungry Burd game, 395
collection classes, 318-326
getters, 259-260
menus, 400-402
objects, 223-227
setters, 259-260
shared preferences, 403
your first app, 56-63
built-in API classes, 121
Bundle class, 103
Burd, Barry (author)

Android Application Development All-in-One For

Dummies, 2nd Edition, 73
contact information for, 7, 86, 405-406

Java Programming For Android Developers For

Dummies, 2nd Edition, 286
Button class, 73, 293
button-click example, 297-307
buttons

adding to apps, 71-75

code listings for, 85-86

responding to clicks on, 90-91

switching between, 192-193
byte type, 141, 247

C
callback, 302
calling constructors, 230-231
callout signals, 86-87
capitalization, 409-410
case clause, 194-195, 196, 205
case-sensitivity

in Java, 84, 101

of XML document text, 82
cast operators, 167
casting, 293-294, 320
catch clause, 374-375
category element, 123
changing component's id, 84
char type, 136-139, 141, 144, 247, 325

Index

419

character strings, 118, 139-140
Cheat Sheet (website), 7
CheckBox class, 293

checking connections, 67-68
child class, 269

choosing alternatives with i f statements, 191-198

Chronometer class, 293

class body, 99

class declaration, 99

classes
about, 219-222
Account, 254, 258
Activity, 272, 285, 292, 293
AdapterView, 343-344
AlphaAnimation, 399
Android, 291-294
anonymous inner, 309-312

AppCompatActivity, 103-104, 124-125, 126
285, 291, 292, 293

ArithmeticException, 372-373, 375

arraylist, 318-319, 320, 321-323, 326-327
330-331, 332-333

AsyncTask, 366-370
built-in APl es, 121

Bundle, 103
Button, 73, 293
CheckBox, 293

child, 269
Chronometer, 293

code listings, 308-309
collection, 318-326, 332-333
ConfigurationBuilder, 352, 353-355
Consultant, 289, 290
default-access, 251-253
defined, 317

Employee, 269-272, 272-275, 277, 280-281,
289, 290

Exception, 372, 375
Executive, 276, 286
extending, 124, 269-272
final, 281
FragmentActivity, 291, 293

FullTimeEmployee, 277, 278-279, 280-281, 286

HashMap, 333

HashSet, 333

ImageView, 293-294, 395, 396
inner, 297-312

Integer, 326
IOException, 372
LinkedList, 333

MainActivity, 99, 111, 117, 124-125
226, 242, 269, 291, 292, 300, 308, 309
357-360, 385-388

members of, 245, 253

Mouse, 285
MyAsyncTaskTimeline, 376-377
MyItemSelectedlListener, 343
MyOnClickListener, 302, 307-308, 309, 311
MyStuff, 283-284

names of, 103-104

Object, 271, 320

object-oriented programming (OOP), 219-232
OrderedPair, 324

paragraph, 251-253

parent, 269
PartTimeEmployee, 278-279, 280-281, 286
Point, 393

PriorityQueue, 333

public, 251-253

Queue, 333

Random, 200-201

RatingBar, 293

RotateAnimation, 399
ScaleAnimation, 399

Sprite, 256

SQLException, 372
SQLiteOpenHelper, 220, 317

Stack, 333

Stuff, 282-283

Textbook, 285

textView, 73, 88-90, 109, 111, 113, 115, 158
159, 194, 203, 293, 300, 309, 396

Ticker, 278
TranslateAnimation, 399
Twitter, 352
TwitterException, 372-373, 375, 378

420 Java Programming for Android Developers For Dummies

TwitterFactory, 352
UseAccount, 255, 257
UseAccountFromOutside, 255-256, 257
UseSprite, 257
UseSpriteFromOutside, 257
wrapper (Java), 325-326
clauses
case, 194-195, 196, 205
catch, 374-375
default, 196
finally, 375-376
try, 374-375
code
about, 97
Android, 97-99
Android activities, 123-127
comments, 119-122
defined, 17
Java class, 99-104
Java methods, 105-116
multi-threaded, 363-365
punctuation in, 116-122
reusing existing, 267-294
code listings

activity element in AndroidMani fest . xml
file, 123

activity_main.xml document, 78-79
Android Java program, 98
AndroidMani fest.xml file, 348
anonymous inner classes, 310
AsyncTask class, 366-367

button response, 85-86

button-click example, 298-299

cast operators, 167

classes, 308-309

comments, 119-120

computing discounted price, 152
computing price, 150-151

computing special price, 153-154
computing total cost of a meal, 183-184
constructor with parameters, 237
creating ArraylList, 318

creating arrays, 334
creating fields, 258

creating Main Activities in Android Studio, 291

creating objects, 224, 236
creating spinners, 341-342
creating static fields, 261

custom-made collection class, 323-325

Dalvik bytecode, 22-23
default access class, 256
displaying classes, 244-245
event handling, 94
exceptions, 376-379

Hungry Burd game, 388-392
interface, 287-288, 289
iterating collections, 326-327
Java bytecode instructions, 21-22
Java classes, 220

Java generic types, 321-322
Java source code, 20

Java types, 131

lambda expressions, 313-314
layout file, 349-351

loops, 211-213

MainActivity class, 298, 357-360, 385-386

menus, 400

methods, 234-235

overloading methods, 110
paragraph class, 251-253
parameter types, 171-172
parameterless constructors, 231
pass-by value, 177-178

passing types, 248-249

plus sign in Java, 144-145
program with varargs, 339-340

program without varargs, 337-338

public access class, 254
Random class, 200-201
referring to static fields, 262, 264

replacing while statement with do statement,

207-208
return types, 171-172
reusing object fields, 229-230

Index

421

code listings (continued)
reusing variables, 228
Scorekeeper program, 182
self-displaying class, 243-244
for statement, 328
stream, 331
switching between buttons, 192-193
this keyword, 240-242

toggling between strings and primitive types,
161-162

using Employee class, 270, 272-275
using i f statements, 188
code name, 15, 16
coding apps, 83-86
collection classes
creating, 318-326
Java, 332-333
collections
about, 326
enhanced for statement, 328-329
functional programming techniques, 331-332
iterators, 326-327
using in Android apps, 340-344
comma(,), 118
comments, 119-122
comparing values, 410
compiler, 20-24
component'’s id, changing, 84
compound assignment operator, 147
compound statements, 190-191
compressed archive files, 32
conditions, 190, 214
ConfigurationBuilder class, 352, 353-355
connections
breaking, 67-68
checking, 67-68
ConstraintLayout, 396
constructor call, 230-231
constructors
calling, 230-231
default, 239-240

defining required, 411

with parameters, 235-239
Consultant class, 289, 290
consumers, 12-13, 357
content, 82
continue statement, 206
Control Panel screen, launching, 35
creating

Android virtual devices, 50-54

apps, 55-94

ArraylList, 318-319

arrays, 334

burds in Hungry Burd game, 395

collection classes, 318-326

getters, 259-260

menus, 400-402

objects, 223-227

setters, 259-260

shared preferences, 403

your first app, 56-63
Cross-Reference icon, 7
curly braces ({}), 99, 117, 118, 190, 208-211
CursorAdapter, 344

D

Dalvik bytecode, 22-23, 24-25
decision-making, Java and, 187-199
declaration

of classes, 99

defined, 107

method, 106-108

type, 132-133
decrement (—), 143
Dedexer program (website), 22
default access, 252
default clause, 196
default constructor, 239-240
default member, of classes, 254
default-access classes, 251-253
Design mode (Android Studio), 76

422 Java Programming for Android Developers For Dummies

Designer tool (Android Studio), 76-78
developer version, 16
developers

perspective of, 15-20

websites for, 415-416
development computer, 28
device screens, displaying on, 396-398
devices, physical

about, 50

mimicking, 51

testing apps on, 65-67

display, measuring for Hungry Burd game,
392-394

displayAsSentence method, 340
displaying
on device screens, 396-398
numbers, 176-177
displayPay method, 290
division (/) operator, 142-143
do statement, 207-208, 211

doInBackground method, 367-370, 371-372,
378,379

dot (.), 226

dots, 118

double quotation marks (*), 118
double slash (//), 93

double type, 141, 142, 143, 149, 158-159,
163-164, 173-174, 325, 2247

double-equal sign (==), 148, 410
Double.isInfinite method, 197
Double.isNaN method, 197
do...while statement, 208
Dummies (website), 7

editing

Java program files, 46

layout files, 46
Editor area (Android Studio), 45-46
EditText, 73, 88-90, 159, 173, 396
element names, 82

elements
action, 123
category, 123
root, 82
TabletlLayout, 81
uses—-permission, 349
elseif, 214
embedded processor, 16

Employee class, 269-272, 272-275, 277,
280-281, 289, 290

empty element tags, 80
emulated device, 51
emulators
about, 51, 63-64
Android, 62-63
testing apps on physical devices, 65-67
third-party, 64-65
end tags, 80
Enterprise Edition, 34
equal sign (=), 148, 225
equality, testing String values for, 202-203
equals method, 202-203
event handling, 94, 411
Exception class, 372, 375
exceptions (Java), 372-379
Executive class, 276, 286
expressions, 136
extending classes, 124, 269-272

eXtensible Markup Language (XML), 18-19,
79-82,123

F

fall-through, 195

false, 147-149

fields
accessing, 253-257
creating, 258
creating static, 261
form, 221
referring to static, 262, 264
reusing object, 229-230

Index 423

filename extensions, 31
files
AndroidManifest.xml, 123, 348-349
.apk, 24
archive, 32
compressed archive, 32
jar, 346-348
layout, 46, 349-351
for Twitter app, 346-351
Twitter4dJ, 346-348
XML, 79-82
.zip, 32
final class, 281
final method, 282
final variable, 135, 281
finally clause, 375-376
finding
EditText components, 88-90
TextView components, 88-90
findViewByID, 113, 293-294
finish method, 292
float type, 141, 149, 247,399
floating-point types, 142
for statement, 211-214, 328-329, 335
forEach method, 332
forms, 220-222
FORTRAN, 179
FragmentActivity class, 291, 293
frame-by-frame animation, 398

FullTimeEmployee class, 277, 278-279,
280-281, 286

functional programming techniques, 331-332

G

game
about, 381-384
animation, 398-400
code for, 388-392
constructing the burd, 395
creating menus, 400-402
displaying on device screen, 396-398
informing users, 404-405

MainActivity, 385-388

measuring the display, 392-394

shared preferences, 403-404
generating

Android virtual devices, 50-54

apps, 55-94

ArraylList, 318-319

arrays, 334

burds in Hungry Burd game, 395

collection classes, 318-326

getters, 259-260

menus, 400-402

objects, 223-227

setters, 259-260

shared preferences, 403

your first app, 56-63
generic types (Java), 321-325
getCallingActivity method, 291
getCallingPackage method, 291
getCurrencylnstance() method, 176
getInstance method, 352
getItemAtPosition method, 344
getItemId method, 402
getParent method, 291

getPayString method, 276-277, 278, 279-281,
286-287

getResult method, 377-378, 379
getters, using, 257-260

getTitle method, 291
getTitleColor method, 291
getUserTimeline method, 371, 373, 375-376
getWindow method, 291

Gosling, James (Java creator), 15
Gradle scripts branch, 70

greater than (>), 148

greater than or equal to (>=), 148
GridLayout, 396

H

handling user actions, 402
hardcode, 165
HashMap class, 333

424 Java Programming for Android Developers For Dummies

HashSet class, 333
header, 90-91, 231
Hello World app, 55
HTML (HyperText Markup Language), 18
Hungry Burds game
about, 381-384
animation, 398-400
code for, 388-392
constructing the burd, 395
creating menus, 400-402
displaying on device screen, 396-398
informing users, 404-405
MainActivity, 385-388
measuring the display, 392-394
shared preferences, 403-404
HyperText Markup Language (HTML), 18

icons, explained, 6-7

IDE (integrated development environment),
28,57

identifiers, 102-103
if statements
choosing alternatives with, 191-198
code listing, 188
Java form of, 189-191
using, 188-189
i fRoom, 401
ImageView class, 293-294, 395, 396
import declaration, 103, 118
incompatible types, 166-167, 293
increment (++), 143
increment method, 282-284
infinity, 197
informing users, 404-405
inheritance, 270, 285
initializations, 134-136, 214
initializer block, 253
inner class
about, 297, 307-309
anonymous, 309-312

button-click example, 297-307
lambda expressions, 313-315
installing versions of Android, 49-50
instantiate, 225
instructions, repeating, 199-214

int type, 141, 142, 143, 157, 159, 165-166,
174, 182, 202, 246, 247, 325, 326, 405

Integer class, 326
integral types, 141

integrated development environment (IDE), 28

intention actions, 86-87
interface, using an, 286-290
Internet resources

Android, 416

Android APl documentation page, 333

Android Authority, 416

Android SDK, 37

Android Studio, 37

book, 29, 112, 415

built-in API classes, 122

Burd, Barry (author), 7

Cheat Sheet, 7

code style guidelines, 263

Dedexer program, 22

for developers, 415-416

Dummies, 7

emulators, 64-65

Hello World app, 55

Java, 33,416

JavaRanch, 416

language locales, 305

news and reviews, 416

Oracle, 34, 416

precedence rules, 155

sample programs, 32

The Server Side, 416

Twitter4d file, 346

UML, 223

Visual Studio Emulator for Android, 65
I0Exception class, 372
isChecked method, 162-163
iterators, 204, 326-327

Index

425

J

Jjar files, 346-348

Java. See also specific topics
about, 15-17, 99-101, 129-130, 187
accessing fields and methods, 253-257
annotations, 279-281
assignment operators, 146-147
assignments, 134-136
bytecode instructions, 21-22
case-sensitivity in, 84, 101
code listings, 131
collection classes, 332-333
decision-making, 187-199

from development to execution with,
20-26

editing program files, 46
exceptions, 372-379
expressions, 136

extending classes, 124

false, 148-149

form of i f statements in, 189-191
generic types, 321-325
information in, 130-142
initializations, 134-136
literals, 136

logical operators, 150-155
method calls, 111-114
method declarations, 111-114
methods, 105-116

modifiers, 251-255, 281-285
names of classes, 103-104
overriding methods, 124-125
parentheses, 155-156

plus sign in, 144-145

primitive types, 140-142
repeating instructions, 199-214
setting up, 33-35

source code, 20

statements, 106-108, 118
static, 260-263

super keyword, 278-279
true, 147-148

type names, 133-134

types, 142-156

using getters and setters, 257-260

varargs, 337-340

variable names, 133

website, 416

what the code does, 88-93

wrapper classes, 325-326
Java 2 Standard Edition 1.2, 16
Java Development Kit (JDK), 16, 28
Java Mobile Edition (Java ME), 16

Java Programming For Android Developers For
Dummies, 2nd Edition (Burd), 286

Java types
about, 109
method parameters and, 173-174
rules, 163-168
strings, 157-163
Java virtual machine (JVM), 25
javadoc comments, 121
JavaRanch (website), 416
JDK (Java Development Kit), 16, 28
JVM (Java virtual machine), 25

K

kernel, 19
keys, OAuth, 355-357
keywords
about, 99, 102-103
super, 278-279, 292-293

L

lambda expressions, 313-315
launching
Android Studio, 42-43
Android Studio IDE, 38-39
apps, 61-63
Control Panel screen, 35
IDE, 57
sample programs, 40-42
SDK Manager, 49

426 Java Programming for Android Developers For Dummies

layout files, 46, 349-351
LayoutParams, 393

less than (<), 148

less than or equal to (<=), 148
letters, adding to numbers, 144-146
lifecycle, 125

line comments, 121

LinearlLayout, 396

LinkedList class, 333

Linux, 19-20
Linux shell, 20
listeners

adding to handle events, 411
for spinner, 343
listings, code

activity element in AndroidMani fest . xml
file, 123

activity_main.xml document, 78-79
Android Java program, 98
AndroidMani fest.xml file, 348
anonymous inner classes, 310
AsyncTask class, 366-367

button response, 85-86

button-click example, 298-299

cast operators, 167

classes, 308-309

comments, 119-120

computing discounted price, 152
computing price, 150-151

computing special price, 153-154
computing total cost of a meal, 183-184
constructor with parameters, 237
creating ArraylList, 318

creating arrays, 334

creating fields, 258

creating Main Activities in Android Studio, 291
creating objects, 224, 236

creating spinners, 341-342

creating static fields, 261

custom-made collection class, 323-325
Dalvik bytecode, 22-23

default access class, 256

displaying classes, 244-245

event handling, 94

exceptions, 376-379

Hungry Burd game, 388-392
interface, 287-288, 289

iterating collections, 326-327
Java bytecode instructions, 21-22
Java classes, 220

Java generic types, 321-322

Java source code, 20

Java types, 131

lambda expressions, 313-314
layout file, 349-351

loops, 211-213

MainActivity class, 298, 357-360, 385-386
menus, 400

methods, 234-235

overloading methods, 110
paragraph class, 251-253
parameter types, 171-172
parameterless constructors, 231
pass-by value, 177-178

passing types, 248-249

plus sign in Java, 144-145
program with varargs, 339-340
program without varargs, 337-338
public access class, 254

Random class, 200-201

referring to static fields, 262, 264

replacing while statement with do statement,
207-208

return types, 171-172

reusing object fields, 229-230
reusing variables, 228

Scorekeeper program, 182
self-displaying class, 243-244

for statement, 328

stream, 331

switching between buttons, 192-193
this keyword, 240-242

toggling between strings and primitive types,
161-162

using Employee class, 270, 272-275
using if statements, 188

Index 427

literals, 136 addAll, 185-186

Logcat pane, 63 addOneDay, 249
logical operators, 150-155 addPoints, 178, 180-183
logical types, 142 append, 109, 119
long type, 141, 165-166, 167, 247 build, 355
looping statement, 203 displayAsSentence, 340
loops displayPay, 290
code listings, 211-213 doInBackground, 367-370, 371-372
priming, 206 378,379
lowercase letters, for variables, 136 Double.isInfinite, 197
Double.isNaN, 197
equals, 202-203
M final, 282
Mac finish, 292
launching Android Studio IDE, 39 forEach, 332

setting up Android SDK, 38
setting up Android Studio, 38
uninstalling Java on, 36
unzipping files in, 32

getCallingActivity, 291
getCallingPackage, 291
getCurrencylnstance(), 176
getInstance, 352

Mac OS X, filename extensions in, 31 getTtemAtPosition, 344
MAGI (modified adjusted gross income), 150 getTtemld, 402
main window (Android Studio), 43-48 getParent, 291
Mai”é\zcgiz" 22’513/22'9‘31525'919,9'2;;’1 '388,758?;2);?' getPayString, 276-277, 278, 279-281, 286-287
357-360, 385-388 getResult, 377-378, 379
makeText method, 405 getTitle, 291
measuring display for Hungry Burd game, getTitleColor, 291
392-394 getUserTimeline, 371, 373, 375-376
members, of classes, 253 getWindow, 291
menus, creating, 400-402 increment, 282-284
method body, 107 isChecked, 162-163
method call, 106, 108 Java, 105-116
method calls, 111-114 makeText, 405
method declaration, 106-108 monthlyPayment, 173-174
method declarations, 111-114 object-oriented programming (OOP), 232-251
method header, 107 onAnimationEnd, 388, 399
method parameters, 108-109, 173-174 onAnimationRepeat, 399
methods onAnimationStart, 399
about, 169-170 onBackPressed, 291
accessing, 253-257 onButtonClick, 90-91, 175-176, 192-193, 205
of activities, 125-127 onClick, 90, 93, 94, 162, 192, 300, 314, 363, 395

428 Java Programming for Android Developers For Dummies

onCreate, 112, 117, 125-126, 181, 235, 249, 253

291, 293, 362-363, 388
onCreateOptionsMenu, 402
onDestroy, 127
onltemSelected, 343, 344
onKeyDown, 292
onKeyLongPress, 292
onLowMemory, 292
onMenultemSelected, 292
onOptionsItemSelected, 402
onPause, 127
onPostExecute, 367-370
onPreExecute, 367
onProgressUpdate, 367
onResume, 125-126, 387, 388
onStop, 127
onTextChanged s, 363
onTweetButtonClick, 363
overloading, 110
overriding, 124-125, 272-278
pass-by value, 177-186
passing primitive types to, 247-251
primitive types, 177-186
scroll, 278
setOnClickListener, 94, 299-300, 311, 411
setText, 119, 198,413
setTitle, 292
setTitleColor, 292
shout, 109, 110-111
show, 412
showABurd, 387
startActivity, 292
startPlaying, 387
System.out.println, 131-132, 158
toString, 158, 160, 245, 253, 263-264, 281
types and, 170-177
updateStatus, 371

Microsoft Windows
launching Android Studio IDE, 38
setting up Android SDK, 38
setting up Android Studio, 38

uninstalling Java on, 36

unzipping files in, 32
Microsoft Windows 7, filename extensions in, 31
Microsoft Windows 8, filename extensions in, 31
mimicking physical devices, 51
mipmap, 70
mistakes, avoiding, 409-414
modified adjusted gross income (MAGI), 150
modifiers (Java), 251-255, 281-285
monthlyPayment method, 173-174
Mouse class, 285
multiple inheritance, 285
multiplication (*) operator, 142-143
multiply instructions, 24
multi-threaded code, 363-365
MyAsyncTaskTimeline class, 376-377
MyItemSelectedlListener class, 343
MyOnClickListener class, 302, 307-308, 309, 311
MyStuff class, 283-284

N

names
reusing, 227-230
type, 133-134
for variables, 133
narrowing values, 165-166, 293
navigation bar (Android Studio), 44
NetBeans, 34
New Project dialog box, 57
news websites, 416
nonstatic references, 412
null pointers, 412-413
numbers
adding letters to, 144-146
displaying, 176-177

o)

OAuth, 353, 355-357
Object class, 271, 320
object-oriented items, 115

Index

429

object-oriented programming (OOP)
about, 217-219, 267-268
Android classes, 291-294
calling constructors, 230-231
classes, 219-232
constructors with parameters, 235-239
creating objects, 223-227
default constructor, 239-240
examples, 268-269
extending classes, 269-272
Java annotations, 279-281
Java modifiers, 281-285
Java super keyword, 278-279
members of classes, 245
methods, 232-251
objects, 219-232
overriding methods, 272-278
passing primitive types, 247-251
reference types, 246-247
responsibility of objects, 242-245
reusing names, 227-230
simplicity, 285-290
objects
about, 219, 222-223
creating, 223-227
object-oriented programming (OOP), 219-232
responsibility of, 242-245
omitting curly braces, 190
On The Web icon, 7
onAnimationEnd method, 388, 399
onAnimationRepeat method, 399
onAnimationStart method, 399
onBackPressed method, 291

onButtonClick method, 90-91, 175-176,
192-193, 205

onClick method, 90, 93, 94, 162, 192, 300, 314,
363, 395

OnClickListener, 94, 313-315, 388

onCreate method, 112, 117, 125-126, 181, 235,
249, 253, 291, 293, 362-363, 388

onCreateOptionsMenu method, 402
onDestroy method, 127
onItemSelected method, 343, 344

onKeyDown method, 292
onKeylLongPress method, 292
online forms, 220-222
onLowMemory method, 292
onMenultemSelected method, 292
onOptionsItemSelected method, 402
onPause method, 127
onPostExecute method, 367-370
onPreExecute method, 367
onProgressUpdate method, 367
onResume method, 125-126, 387, 388
onStop method, 127
onTextChanged methods, 363
onTweetButtonClick method, 363
OOP (object-oriented programming)

about, 217-219, 267-268

Android classes, 291-294

calling constructors, 230-231

classes, 219-232

constructors with parameters, 235-239

creating objects, 223-227

default constructor, 239-240

examples, 268-269

extending classes, 269-272

Java annotations, 279-281

Java modifiers, 281-285

Java super keyword, 278-279

members of classes, 245

methods, 232-251

objects, 219-232

overriding methods, 272-278

passing primitive types, 247-251

reference types, 246-247

responsibility of objects, 242-245

reusing names, 227-230

simplicity, 285-290
Open Handset Alliance, 11
opening

Android Studio, 42-43

Android Studio IDE, 38-39

apps, 61-63

Control Panel screen, 35

430 Java Programming for Android Developers For Dummies

IDE, 57
sample programs, 40-42
SDK Manager, 49
operating system, 19
operators
addition (+), 142-143
arithmetic, 142-143
assignment, 146-147
bitwise, 402
cast, 167
compound assignment, 147
division (/), 142-143
logical, 150-155
multiplication (*), 142-143
remainder upon division (%), 142-143
subtraction (=), 142-143
Oracle (website), 34, 416
OrderedPair class, 324
overloading, 110, 237
overriding methods, 124-125, 272-278

P

package declaration, 103, 118
Packages view (Android Studio), 45
paragraph class, 251-253
parameter passing, 179
parameter types code listing, 171-172
parameters
constructors with, 235-239
method, 108-109
number of, 109-111
parent class, 269
parentheses (()), 118, 155-156

PartTimeEmployee class, 278-279, 280-281, 286

pass-by reference, 250
pass-by value, 177-186, 250
passing primitive types, 247-251
permissions, using, 414
physical devices

about, 50

mimicking, 51

testing apps on, 65-67

platform number, 13

Point class, 393

portability, 25

postdecrementing, 143

postincrementing, 143

precedence rules, 155

predecrementing, 143

preferences, shared, 403-404

preincrementing, 143

priming loops, 206

primitive types
about, 140-142, 247, 325
going to from strings, 159-160
going to strings from, 158-159
pass-by value and, 177-186
passing, 247-251

printer driver, 242

PriorityQueue class, 333

private member, of classes, 254

programming, object-oriented (OOP)
about, 217-219, 267-268
Android classes, 291-294
calling constructors, 230-231
classes, 219-232

constructors with parameters,
235-239

creating objects, 223-227
default constructor, 239-240
examples, 268-269

extending classes, 269-272

Java annotations, 279-281

Java modifiers, 281-285

Java super keyword, 278-279
members of classes, 245
methods, 232-251

objects, 219-232

overriding methods, 272-278
passing primitive types, 247-251
reference types, 246-247
responsibility of objects, 242-245
reusing names, 227-230
simplicity, 285-290

Index

431

programming code listings

activity element in AndroidMani fest.xml
file, 123

activity_main.xml document, 78-79
Android Java program, 98
AndroidMani fest.xml file, 348
anonymous inner classes, 310
AsyncTask class, 366-367

button response, 85-86

button-click example, 298-299

cast operators, 167

classes, 308-309

comments, 119-120

computing discounted price, 152
computing price, 150-151

computing special price, 153-154
computing total cost of a meal, 183-184
constructor with parameters, 237
creating Arraylist, 318

creating arrays, 334

creating fields, 258

creating Main Activities in Android Studio, 291
creating objects, 224, 236

creating spinners, 341-342

creating static fields, 261

custom-made collection class, 323-325
Dalvik bytecode, 22-23

default access class, 256

displaying classes, 244-245

event handling, 94

exceptions, 376-379

Hungry Burd game, 388-392

interface, 287-288, 289

iterating collections, 326-327

Java bytecode instructions, 21-22

Java classes, 220

Java generic types, 321-322

Java source code, 20

Java types, 131

lambda expressions, 313-314

layout file, 349-351

loops, 211-213

MainActivity class, 298, 357-360, 385-386
menus, 400

methods, 234-235

overloading methods, 110
paragraph class, 251-253
parameter types, 171-172
parameterless constructors, 231
pass-by value, 177-178

passing types, 248-249

plus sign in Java, 144-145
program with varargs, 339-340
program without varargs, 337-338
public access class, 254

Random class, 200-201

referring to static fields, 262, 264

replacing while statement with do statement,
207-208

return types, 171-172

reusing object fields, 229-230
reusing variables, 228

Scorekeeper program, 182
self-displaying class, 243-244

for statement, 328

stream, 331

switching between buttons, 192-193
this keyword, 240-242

toggling between strings and primitive types,
161-162

using Employee class, 270, 272-275

using i f statements, 188
Project tool window (Android Studio)

about, 44-45, 68

app/java branch, 69

app/mani fests branch, 68-69

app/res branch, 69-70

Gradle scripts branch, 70
projects, adding additional packages to, 226-227
property animation, 398-399

protected keyword, 283

pseudo-random sequences, 202
public classes, 251-253
public member, of classes, 254

432 Java Programming for Android Developers For Dummies

publications

Android Application Development All-in-One For
Dummies, 2"9 Edition (Burd), 73

Java Programming For Android Developers For
Dummies, 2" Edition (Burd), 286

punctuation, in code, 116-122

Q

Queue class, 333

R

Randonm class, 200-201

RatingBar class, 293

real device, 50

reference types, 140, 246-247, 325
references, nonstatic, 412
referring to static fields, 262-263
Relativelayout, 396-397
remainder upon division (%) operator, 142-143
Remember icon, 6

removing existing versions, 36
repeating instructions, 199-214

replacing while statement with do statement,
207-208

resources, Internet
Android, 416
Android APl documentation page, 333
Android Authority, 416
Android SDK, 37
Android Studio, 37
book, 29,112, 415
built-in API classes, 122
Burd, Barry (author), 7
Cheat Sheet, 7
code style guidelines, 263
Dedexer program, 22
for developers, 415-416
Dummies, 7
emulators, 64-65
Hello World app, 55
Java, 33, 416

JavaRanch, 416

language locales, 305

news and reviews, 416

Oracle, 34,416

precedence rules, 155

sample programs, 32

The Server Side, 416

Twitter4d file, 346

UML, 223
Visual Studio Emulator for Android, 65
responding to button clicks, 90-91
return count statement, 265
return statement, 176
return types, 174-175
return types code listing, 171-172
reusing

existing code, 267-294

names, 227-230
review websites, 416
root element, 82
RotateAnimation class, 399
Run tool window (Android Studio), 47
running apps, 55-94

S

sample programs, 32-33, 40-42
ScaleAnimation class, 399
Scorekeeper program code listing, 182
scroll method, 278

SDK (Software Development Kit), 16, 28
SDK Manager, opening, 49

SDK Platform tab, 50

SDK Tools tab, 50

SDK Update Sites tab, 50

Select Deployment Target dialog box, 61
semicolon (;), 118

The Server Side (website), 416
setContentView, 113

setOnClickListener method, 94, 299-300,
311, 411

setters, using, 257-260

Index 433

setText method, 119, 198, 413
setTitle method, 292
setTitleColor method, 292

SQLException class, 372
SQLiteOpenHelper class, 220, 317
Stack class, 333

setup Standard Edition JDK, 34
Android SDK, 37-38 start tags, 80
Android Studio, 37-38 startActivity method, 292
Java, 33-35 starting
software, 29-31 Android Studio, 42-43
shadows, 239 Android Studio IDE, 38-39
shared preferences, 403-404 apps, 61-63
short type, 141, 247 Control Panel screen, 35

shout method, 109, 110-111 IDE, 57
show method, 412 sample programs, 40-42
showABurd method, 387 SDK Manager, 49

showing
on device screens, 396-398
numbers, 176-177

simple name, 103

simplicity, of object-oriented programming,

285-290
64-bit Java, 35
social media app
about, 345-346
files for, 346-351
Java exceptions, 372-379
MainActivity, 357-372
talking to Twitter server, 352-357
software
about, 27-28
launching Android Studio IDE, 38-39
opening sample programs, 40-42
sample programs, 32-33
setting up Android SDK, 37-38
setting up Android Studio, 37-38
setting up Java, 33-35
setting up software, 29-31
using Android Studio, 42-48
what you need, 28-29
what's not included, 48-54

aSoftware Development Kit (SDK), 16, 28

Spinner component, 340-344
Sprite class, 256

startPlaying method, 387
statements
for, 211-214, 328-329, 335
about, 106-108
break, 194, 196, 205
compound, 190-191
continue, 206
do, 207-208, 211
do...while, 208
if, 188-198
Java, 106-108, 118
looping, 203
return, 176
return count, 265
switch, 193-195, 198-199, 205, 410
try/catch, 374, 375-376, 377, 379
while, 203-208
static, 260-263
status bar (Android Studio), 47-48
streams, 331-332
string concatenation, 144-146
string resource arrays, 336
string resources, 302-307

String type, 140, 144, 157-163, 198,
202-203, 247

strings
about, 157
of characters, 139-140

434 Java Programming for Android Developers For Dummies

getting user input, 160-163 opening sample programs, 40-42

going to primitive types from, 159-160 sample programs, 32-33

moving from primitive types to, 158-159 setting up Android SDK, 37-38
strong typing, 164, 167 setting up Android Studio, 37-38
Stuff class, 282-283 setting up Java, 33-35
subclass, 269 setting up software, 29-31
subtraction (-) operator, 142-143 using Android Studio, 42-48
Sun Microsystems, 15-16 what you need, 28-29
super keyword, 292-293 what's not included, 48-54
superclass, 269 toString method, 158, 160, 245, 253,
switch statement, 193-195, 198-199, 205, 410 263-264, 281
switching between buttons, 192-193 TranslateAnimation class, 399
system image, 51 true, 147-148
System.out .println method, 131-132, 158 try clause, 374-375

try/catch statement, 374, 375-376, 377, 379
tweaking apps, 70-80

T tweening, 398
TableRow, 81 Twitter app
TabletlLayout element, 81 about, 345-346
tabs (Android SDK Manager), 50 files for, 346-351
tags, 18, 80 Java exceptions, 372-379
talking, to the Twitter server, 352-357 MainActivity, 357-372
Technical Stuff icon, 7 talking to Twitter server, 352-357
terminal apps, 20 Twitter class, 352
Terminal tool window (Android Studio), 47 TwitteraJ file, 346-348
testing TwitterException class, 372-373, 375, 378

apps on physical devices, 65-67 TwitterFactory class, 352

String values for equality, 202-203 type declaration, 132-133

Text mode (Android Studio), 76 type names, 133-134
Textbook class, 285 types

teXt¥5196W1 ;'Z‘S;O ;3'2 32'2%’0 1 2(9)'9 1 ;19'61 13,115,158, boolean, 141, 142, 147, 167, 247
LT SR TS S byte, 141, 247

;;'rbd _farty e:;u'ator' 64-65 char, 136-139, 141, 144, 247, 325
th_' ukJava, I declaration, 132-133
LS keyword, - double, 141, 142, 143, 149, 158-159, 163-164,

threads, 363-366 173-174, 325, 2247

Ticker class, 278 float, 141, 149, 247, 399

Tipicon, 6 floating-point, 142

tokens (OAuth), 355-357 generic (Java), 321-325

toolbar (Android Studio), 44 incompatible, 166-167, 293

tools int, 141,142, 143,157,159, 165-166, 174, 182,
about, 27-28 202, 246, 247, 325, 326, 405
launching Android Studio IDE, 38-39 integral, 141

Index 435

Java, 109, 142-156, 157-163, 163-168, 173-174
logical, 142

long, 141, 165-166, 167, 247

methods and, 170-177

passing primitive, 247-251

primitive, 140-142, 158-160, 177-186,
247-251, 325

reference, 140, 246-247, 325

return, 171-172, 174-175

short, 141, 247

String, 140, 144, 157-163, 198, 202-203, 247
variable, 131

of variables, 131

wrapper, 158, 199

U

Ul thread, 366

UML (Unified Modeling Language), 223
underscore character (), 133

Unicode, 137

Unified Modeling Language (UML), 223
unzipping, 32

updates, 214

updateStatus method, 371
UseAccount class, 255, 257
UseAccountFromOutside class, 255-256, 257
user actions, handling, 402

user input, getting, 160-163

users, informing, 404-405
uses—permission element, 349
UseSprite class, 257
UseSpriteFromOutside class, 257

\'

values, comparing, 410
varargs (Java), 337-340
variable names, 133, 136
variable types, 131

versions
of Android, 13-15
installing of Android, 49-50
removing existing, 36
view animation, 398
view group, 396
view.getId(), 193-195
virtual devices, creating, 50-54
virtual machine, 24-26
visibility property, 400
Visual Studio Emulator for Android (website), 65

W

Warning icon, 6

websites
Android, 416
Android APl documentation page, 333
Android Authority, 416
Android SDK, 37
Android Studio, 37
book, 29, 112, 415
built-in API classes, 122
Burd, Barry (author), 7
Cheat Sheet, 7
code style guidelines, 263
Dedexer program, 22
for developers, 415-416
Dummies, 7
emulators, 64-65
Hello World app, 55
Java, 33,416
JavaRanch, 416
language locales, 305
news and reviews, 416
Oracle, 34,416
precedence rules, 155
sample programs, 32
The Server Side, 416

436 Java Programming for Android Developers For Dummies

Twitter4d file, 346
UML, 223
Visual Studio Emulator for Android, 65
while statement, 203-208
whole numbers, 141
widening values, 165-166
Windows (Microsoft)
launching Android Studio IDE, 38
setting up Android SDK, 38
setting up Android Studio, 38
uninstalling Java on, 36
unzipping files in, 32

Windows 7 (Microsoft), filename extensions
in, 31

Windows 8 (Microsoft), filename extensions in, 31

windowSoftInputMode attribute, 349
withText, 401

words, 102-103

wrapper classes (Java), 325-326
wrapper types, 158, 199

X

XML (eXtensible Markup Language), 18-19,
79-82,123

y4

.zip file, 32

Index

437

About the Author

Barry Burd received a master of science degree in computer science at Rutgers
University and a PhD in mathematics at the University of Illinois. As a teaching
assistant in Champaign-Urbana, Illinois, he was elected five times to the
university-wide List of Teachers Ranked As Excellent By Their Students.

Since 1980, Dr. Burd has been a professor in the Department of Mathematics and
Computer Science at Drew University in Madison, New Jersey. He has lectured at
conferences in the United States, Europe, Australia, and Asia. He hosts podcasts and
videos about software and other technology topics. He is the author of many articles
and books, including Java For Dummies, Beginning Programming with Java For Dummies,
and Android Application Development All-in-One For Dummies, all from Wiley.

Dr. Burd lives in Madison, New Jersey, with his wife of n years, where n > 35. In
his spare time, he enjoys being a workaholic.

Dedication

For

{\e, Ben .a .
%@\43 iamip

T
3 %
& 2
o 2
5 ®
2 (%]
) p
% 5
)
Vo)

(7°9 . Q
Weg qa1ep W

X

Acknowledgments

Acknowledgments

I heartily and sincerely thank Paul Levesque for his work on so many of my books in this
series.

Thanks to Frank Greco and Katie Mohr for their hard work and support in so many ways.
Thanks to Chad Darby and Becky Whitney for their efforts in editing this book.
Thanks to the staff at John Wiley & Sons, Inc. for helping to bring this book to bookshelves.

Thanks to Jeanne Boyarsky, Morrison Chang, Chandra Guntur, and Michael Redlich for their
advice on technical matters.

And a special shout-out to leaders of technical groups in the New York metropolitan area
including Kevin Galligan, Ernest Grzybowski, Tanya Karsou, Dario Laverde, Olivia Lin, Todd
Nakamura, Jeff Namnum, Nitya Narasimhan, and Ralph Yozzo.

THANK YOU

L3

Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr Production Editor: Siddique Shaik
Senior Project Editor: Paul Levesque Cover Image: photovibes/Shutterstock
Copy Editor: Becky Whitney

Technical Editor: Chad Darby

Editorial Assistant: Serena Novosel

Sr. Editorial Assistant: Cherie Case

Apple & Mac
iPad For Dummies,
6th Edition
978-1-118-72306-7

iPhone For Dummies,
7th Edition
978-1-118-69083-3

Macs All-in-One
For Dummies, 4th Edition
978-1-118-82210-4

OS X Mavericks
For Dummies
978-1-118-69188-5

Blogging & Social Media
Facebook For Dummies,
5th Edition
978-1-118-63312-0

Social Media Engagement
For Dummies
978-1-118-53019-1

WordPress For Dummies,
6th Edition
978-1-118-79161-5

Business

Stock Investing
For Dummies, 4th Edition
978-1-118-37678-2

Investing For Dummies,
6th Edition
978-0-470-90545-6

Personal Finance
For Dummies, 7th Edition
978-1-118-11785-9

QuickBooks 2014
For Dummies
978-1-118-72005-9

Small Business Marketing
Kit For Dummies,

3rd Edition
978-1-118-31183-7

Careers

Job Interviews
For Dummies, 4th Edition
978-1-118-11290-8

Job Searching with Social
Media For Dummies,

2nd Edition
978-1-118-67856-5

Personal Branding
For Dummies
978-1-118-11792-7

Resumes For Dummies,
6th Edition
978-0-470-87361-8

Starting an Etsy Business
For Dummies, 2nd Edition
978-1-118-59024-9

Diet & Nutrition

Belly Fat Diet For Dummies
978-1-118-34585-6

Mediterranean Diet
For Dummies
978-1-118-71525-3

Nutrition For Dummies,
5th Edition
978-0-470-93231-5

Digital Photograph
Digital SLR Photography
All-in-One For Dummies,
2nd Edition
978-1-118-59082-9

Digital SLR Video &
Filmmaking For Dummies
978-1-118-36598-4

Photoshop Elements 12
For Dummies
978-1-118-72714-0

Gardening

Herb Gardening

For Dummies, 2nd Edition
978-0-470-61778-6

Gardening with Free-Range

Chickens For Dummies
978-1-118-54754-0

Health

Boosting Your Immunity
For Dummies
978-1-118-40200-9

@ Available in print and e-book formats.

Diabetes For Dummies,
4th Edition
978-1-118-29447-5

Living Paleo For Dummies
978-1-118-29405-5

Big Data
Big Data For Dummies
978-1-118-50422-2

Data Visualization
For Dummies
978-1-118-50289-1

Hadoop For Dummies
978-1-118-60755-8

Language &
Foreign Language
500 Spanish Verbs
For Dummies
978-1-118-02382-2

English Grammar
For Dummies, 2nd Edition
978-0-470-54664-2

French All-in-One
For Dummies
978-1-118-22815-9

German Essentials
For Dummies
978-1-118-18422-6

[talian For Dummies,
2nd Edition
978-1-118-00465-4

Making Everything Easier”

Andy Rathbone
uter oot

Making Everything Easier!”

500 Spanish
Verbs

DUN{MIE‘S

Available wherever books are sold

. For more information or to order direct visit www.dummies.com

www.dummies.com

Math & Science

Algebra | For Dummies,
2nd Edition
978-0-470-55964-2

Anatomy and Physiology
For Dummies, 2nd Edition
978-0-470-92326-9

Astronomy For Dummies,
3rd Edition
978-1-118-37697-3

Biology For Dummies,
2nd Edition
978-0-470-59875-7

Chemistry For Dummies,
2nd Edition
978-1-118-00730-3

1001 Algebra Il Practice
Problems For Dummies
978-1-118-44662-1

Microsoft Office

Excel 2013 For Dummies
978-1-118-51012-4

Office 2013 All-in-One
For Dummies
978-1-118-51636-2

PowerPoint 2013
For Dummies
978-1-118-50253-2

Word 2013 For Dummies
978-1-118-49123-2

Music

Blues Harmonica
For Dummies
978-1-118-25269-7

Guitar For Dummies,
3rd Edition
978-1-118-11554-1

iPod & iTunes
For Dummies, 10th Edition
978-1-118-50864-0

Programming
Beginning Programming
with C For Dummies
978-1-118-73763-7

Excel VBA Programming
For Dummies, 3rd Edition
978-1-118-49037-2

Java For Dummies,
6th Edition
978-1-118-40780-6

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Buddhism For Dummies,
2nd Edition
978-1-118-02379-2

Catholicism For Dummies,
2nd Edition
978-1-118-07778-8

Self-Help &
Relationships

Beating Sugar Addiction
For Dummies
978-1-118-54645-1

Meditation For Dummies,
3rd Edition
978-1-118-29144-3

Seniors

Laptops For Seniors
For Dummies, 3rd Edition
978-1-118-71105-7

Computers For Seniors
For Dummies, 3rd Edition
978-1-118-11553-4

iPad For Seniors
For Dummies, 6th Edition
978-1-118-72826-0

Social Security
For Dummies
978-1-118-20573-0

Smartphones & Tablets
Android Phones

For Dummies, 2nd Edition
978-1-118-72030-1

Nexus Tablets
For Dummies
978-1-118-77243-0

Samsung Galaxy S 4
For Dummies
978-1-118-64222-1

@ Available in print and e-book formats.

Samsung Galaxy Tabs
For Dummies
978-1-118-77294-2

Test Prep
ACT For Dummies,
5th Edition
978-1-118-01259-8

ASVAB For Dummies,
3rd Edition
978-0-470-63760-9

GRE For Dummies,
7th Edition
978-0-470-88921-3

Officer Candidate Tests
For Dummies
978-0-470-59876-4

Physician’s Assistant Exam
For Dummies
978-1-118-11556-5

Series 7 Exam For Dummies
978-0-470-09932-2

Windows 8
Windows 8.1 All-in-One

For Dummies
978-1-118-82087-2
Windows 8.1 For Dummies
978-1-118-82121-3

Windows 8.1 For Dummies,
Book + DVD Bundle
978-1-118-82107-7

Android Phones
DUMMIES

IN FULL COLOR!

Da
e

iPad
For Seniors
DUMMI

Making Everything Easier!”

Windows 8.1

DUMMIES

Available wherever books are sold. For more information or to order direct visit www.dummies.com

www.dummies.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Part 1: Getting Started with Java Programming for Android Developers
	Part 2: Writing Your Own Java Programs
	Part 3: Working with the Big Picture: Object-Oriented Programming
	Part 4: Powering Android with Java Code
	Part 5: The Part of Tens
	More on the web!

	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Started with Java Programming for Android Developers
	Chapter 1 All about Java and Android
	The Consumer Perspective
	The Many Faces of Android
	The Developer Perspective
	Java
	XML
	Linux

	From Development to Execution with Java
	What is a compiler?
	What is a virtual machine?

	Java, Android, and Horticulture

	Chapter 2 Getting the Tools That You Need
	The Stuff You Need
	If You Don’t Like to Read the Instructions . . .
	Getting This Book’s Sample Programs
	Setting Up Java
	Setting Up Android Studio and the Android SDK
	Launching the Android Studio IDE
	Opening One of This Book’s Sample Programs
	Using Android Studio
	Starting up
	The main window

	Things You Might Eventually Have to Do
	Installing new versions (and older versions) of Android
	Creating an Android virtual device

	Chapter 3 Creating and Running an Android App
	Creating Your First App
	First things first
	Launching your first app

	If the Emulator Doesn’t Behave
	Running third-party emulators
	Testing apps on a physical device

	The Project Tool Window
	The app/manifests branch
	The app/java branch
	The app/res branches
	The Gradle scripts branch

	Dragging, Dropping, and Otherwise Tweaking an App
	Creating the “look”
	Coding the behavior

	What All That Java Code Does
	Finding the EditText and TextView components
	Responding to a button click
	The rest of the code

	Going Pro

	Part 2 Writing Your Own Java Programs
	Chapter 4 An Ode to Code
	Hello, Android!
	The Java Class
	The names of classes

	Why Java Methods Are Like Meals at a Restaurant
	What does Mom’s Restaurant have to do with Java?
	Method declaration
	Method call
	Method parameters
	The chicken or the egg
	How many parameters?
	Method declarations and method calls in an Android program

	Punctuating Your Code
	Comments are your friends
	What’s Barry’s excuse?

	All About Android Activities
	Extending a class
	Overriding methods
	An activity’s workhorse methods

	Chapter 5 Java’s Building Blocks
	Info Is As Info Does
	Variable names
	Type names
	Assignments and initializations
	Expressions and literals
	How to string characters together
	Java’s primitive types

	Things You Can Do with Types
	Add letters to numbers (Huh?)
	Java’s exotic assignment operators
	True bit
	Java isn’t like a game of horseshoes
	Use Java’s logical operators
	Parenthetically speaking . . .

	Chapter 6 Working with Java Types
	Working with Strings
	Going from primitive types to strings
	Going from strings to primitive types
	Getting input from the user

	Practice Safe Typing
	Widening is good; narrowing is bad
	Incompatible types
	Using a hammer to bang a peg into a hole

	Chapter 7 Though These Be Methods, Yet There Is Madness in’t
	Minding Your Types When You Call a Method
	Method parameters and Java types
	If at first you don’t succeed . . .
	Return types
	The great void
	Displaying numbers

	Primitive Types and Pass-by Value
	What’s a developer to do?
	A final word

	Chapter 8 What Java Does (and When)
	Making Decisions
	Java if statements
	Choosing among many alternatives
	Some formalities concerning Java switch statements

	Repeating Instructions Over and Over Again
	Check, and then repeat
	Repeat, and then check
	Count, count, count

	What’s Next?

	Part 3 Working with the Big Picture: Object-Oriented Programming
	Chapter 9 Why Object-Oriented Programming Is Like Selling Cheese
	Classes and Objects
	What is a class, really?
	What is an object?
	Creating objects
	Reusing names
	Calling a constructor

	More About Classes and Objects (Adding Methods to the Mix)
	Constructors with parameters
	The default constructor
	This is it!
	Giving an object more responsibility
	Members of a class
	Reference types
	Pass by reference

	Java’s Modifiers
	Public classes and default-access classes
	Access for fields and methods
	Using getters and setters
	What does static mean?
	To dot, or not
	A bad example

	What’s Next?

	Chapter 10 Saving Time and Money: Reusing Existing Code
	The Last Word on Employees — Or Is It?
	Extending a class
	Overriding methods
	Java’s super keyword
	Java annotations

	More about Java’s Modifiers
	Keeping Things Simple
	Using an interface

	Some Observations about Android’s Classes
	Java’s super keyword, revisited
	Casting, again

	Part 4 Powering Android with Java Code
	Chapter 11 The Inside Story
	A Button-Click Example
	This is a callback
	Android string resources (A slight detour)

	Introducing Inner Classes
	No Publicity, Please!
	Lambda Expressions

	Chapter 12 Dealing with a Bunch of Things at a Time
	Creating a Collection Class
	More casting
	Java generics
	Java’s wrapper classes

	Stepping Through a Collection
	Using an iterator
	The enhanced for statement
	A cautionary tale
	Functional programming techniques

	Java’s Many Collection Classes
	Arrays
	String resource arrays
	Java’s varargs

	Using Collections in an Android App
	The listener
	The adapter

	Chapter 13 An Android Social Media App
	The Twitter App’s Files
	The Twitter4J API jar file
	The manifest file
	The main activity’s layout file

	How to Talk to the Twitter Server
	Using OAuth
	Making a ConfigurationBuilder
	Getting OAuth keys and tokens

	The Application’s Main Activity
	The onCreate method
	The button listener methods
	The trouble with threads
	Understanding Android’s AsyncTask
	My Twitter app’s AsyncTask classes
	Cutting to the chase, at last

	Java’s Exceptions
	Catch clauses
	A finally clause
	Passing the buck

	Chapter 14 Hungry Burds: A Simple Android Game
	Introducing the Hungry Burds Game
	The Main Activity
	The code, all the code, and nothing but the code
	Measuring the display
	Constructing a Burd
	Android animation
	Creating menus
	Shared preferences
	Informing the user

	It’s Been Fun

	Part 5 The Part of Tens
	Chapter 15 Ten Ways to Avoid Mistakes
	Putting Capital Letters Where They Belong
	Breaking Out of a switch Statement
	Comparing Values with a Double Equal Sign
	Adding Listeners to Handle Events
	Defining the Required Constructors
	Fixing Nonstatic References
	Staying within Bounds in an Array
	Anticipating Null Pointers
	Using Permissions
	The Activity Not Found

	Chapter 16 Ten Websites for Developers
	This Book’s Websites
	The Horse’s Mouth
	Finding News and Reviews

	Index
	EULA

©
JavaProgramming

