

Gradle

Recipes for

Android

MASTER THE NEW BUILD SYSTEM FOR ANDROID

Ken Kousen

Gradle Recipes for Android

Master the New Build System for Android

Ken Kousen

Gradle Recipes for Android

by Ken Kousen

Copyright © 2016 Gradleware, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway

North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business,

or sales promotional use. Online editions are also available

for most titles (http://safaribooksonline.com). For more

information, contact our corporate/

institutional sales department: 800-998-9938 or

corporate@oreil y.com.

Editors: Heather Scherer and Brian Foster

Indexer: Angela Howard

Production Editor: Colleen Lobner

Interior Designer: David Futato

http://safaribooksonline.com/

Copyeditor: Colleen Toporek

Cover Designer: Karen Montgomery

Proofreader: Kim Cofer

Illustrator: Rebecca Demarest

June 2016:

First Edition

Revision History for the First Edition

2016-06-02: First Release

See http://oreil y.com/catalog/errata.csp?

isbn=9781491947029 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,

Inc. Gradle Recipes for Android, the cover image of a great

potoo, and related trade dress are trademarks of O’Reilly

Media, Inc.

While the publisher and the author have used good faith

efforts to ensure that the information and instructions

contained in this work are accurate, the publisher and the

author disclaim all responsibility for errors or omissions,

including without limitation responsibility for damages

resulting from the use of or reliance on this work. Use of the

information and instructions contained in this work is at your

own risk. If any code samples or other technology this work

contains or describes is subject to open source licenses or

the intellectual property rights of others, it is your

responsibility to ensure that your use thereof complies with

such licenses and/or rights.

978-1-491-94702-9

http://oreilly.com/catalog/errata.csp?isbn=9781491947029

[LSI]

This book is dedicated to my wife Ginger: my best friend, my

partner, and the love of my life.

Twenty-five years is just the beginning.

Table of Contents

Foreword. .

. vii

Preface. .

. ix

1. Gradle for Android Basics. .

. 1

1.1 Gradle Build Files in Android 1

1.2 Configure SDK Versions and Other Defaults 6

1.3 Executing Gradle Builds from the Command Line 9

1.4 Executing Gradle Builds from Android Studio 15

1.5 Adding Java Library Dependencies 18

1.6 Adding Library Dependencies Using Android Studio 23

1.7 Configuring Repositories 26

2. From Project Import to Release.

. 29

2.1 Setting Project Properties 29

2.2 Porting Apps from Eclipse ADT to Android Studio 33

2.3 Porting Apps from Eclipse ADT Using Eclipse 37

2.4 Upgrading to a Newer Version of Gradle 40

2.5 Sharing Settings Among Projects 43

2.6 Signing a Release APK 45

2.7 Signing a Release APK Using Android Studio 49

3. Build Types and Flavors. .

. 53

3.1 Working with Build Types 53

3.2 Product Flavors and Variants 56

3.3 Merging Resources 60

3.4 Flavor Dimensions 67

3.5 Merging Java Sources Across Flavors 71

v

4. Custom Tasks. .

. 77

4.1 Writing Your Own Custom Tasks 77

4.2 Adding Custom Tasks to the Build Process 80

4.3 Excluding Tasks 83

4.4 Custom Source Sets 85

4.5 Using Android Libraries 88

5. Testing. .

. 97

5.1 Unit Testing 97

5.2 Testing with the Android Testing Support Library 103

5.3 Functional Testing with Robotium 108

5.4 Activity Testing with Espresso 112

6. Performance and Documentation.

. 119

6.1 Performance Recommendations 119

6.2 DSL Documentation 125

A. Just Enough Groovy to Get By.

. 129

B. Gradle Basics. .

. 139

Index. .

. 147

vi | Table of Contents

Foreword

This is the book we needed. We were about halfway through

writing Head First Android Development when Google

switched IDEs. At the time, pretty much every-one was using

Eclipse with the Android Development Toolkit installed. But

now, Google was pushing for developers to switch to the

Idea-based Android Studio.

We’re used to this kind of thing—most technical authors are.

Some manufacturer startup switches from some new shiny

thing to some even newer, even shinier thing.

It happens all the time. You rewrite all your example code,

update all the images, drop the features that are now

irrelevant, and include what’s most useful from the new

technology. But what made the switch from Eclipse to

Android Studio different was that under the hood the new

IDE had a much, much more powerful engine.

Android Studio used Gradle for building, packaging, and

deploying code. Other than knowing the name, neither of us

had any experience of using Gradle directly. It was kind of

like Maven, but rather than using lengthy XML configuration

files, it used a sturdy and concise scripting language: Groovy.

We replaced all the screenshots, and updated the text in the

seven or so chapters that were already written and then

moved on to write the rest of the book. But it soon became

clear that the process of creating applications with Gradle

was subtly, but significantly different. Pretty much anything

that you could do from the IDE was sud-denly possible from

the command line, which meant we could automate our build

pipelines. It took just a few key presses to try out different

library versions, or different build flavors. And because

everything is just code, we could write the builds in the same

way that we wrote the rest of the app.

Learning Gradle is now an important task for every Android

developer. It’s up there with knowing Java, or understanding

the Activity lifecycle. But learning Gradle through trial-and-

error can sometimes be a painful process. And that’s where

this book comes in. In these pages, you’ll find a wealth of

useful recipes that will help you avoid the commonest build

problems. Whether you’re setting up a testing system,

automating your signed APK production, or just trying to

speed up your build pipe-vii line, this book is for you. Ken’s

lively writing style and realistic examples will keep you

coming back again and again. With this book, Ken has shown

that not only is he the go-to guy for Groovy, he’s now also

the go-to guy for Gradle.

—Dawn and David Griffiths

Authors, Head First

Android Development

April 20th, 2016

viii | Foreword

Preface

About the Book

This book contains recipes for working with the Gradle build

system for Android projects. Gradle is one of the most

popular tools for building applications from the Java world,

and is expanding into other languages like C++. The Android

team at Google adopted Gradle as the preferred build

system for Android in the spring of 2013, and its use has

grown steadily since then.

Since Gradle comes from the Groovy ecosystem, many

Android developers may not be familiar with it. Groovy,

however, is very easy for existing Java developers to learn.

The purpose of this book is to provide examples that help

you use Gradle to accomplish the most common build tasks

for Android applications.

All code examples use Android SDK version 23, with

emulators from either Marshmallow (Android 6) or Lollipop

(Android 5.*). Android Studio versions 2.0 or 2.1

(beta) were used as the primary IDE, which included Gradle

version 2.10 or above as the build tool.

Prerequisites

The Gradle plugin for Android involves at least some

knowledge of Java, Groovy, Gradle, and Android. Since entire

books are available for each of those topics, they can’t all be

covered in detail here.

The text in this book is aimed chiefly at developers who are

comfortable with Android development. Very little Android

background is provided, though complete code listings of all

examples are available through the book’s GitHub repository.

Understanding Android means understanding Java, so that

background is assumed as well.

Very little knowledge of either Groovy or Gradle is assumed,

however. Appendix A

contains a quick summary of Groovy syntax and techniques.

Groovy concepts are ix

also reviewed as they come up in various recipes. Appendix

B has basic Gradle information, but the recipes themselves

discuss Gradle in detail throughout the book.

Beyond those limitations, the book is designed to be as self-

contained as possible, with links to external references

(especially documentation) provided wherever appropriate.

The book also makes extensive use of Android Studio, as it is

now the only officially supported IDE for Android

development. Android Studio provides views and tools for

Gradle, which are illustrated in many recipes. While the book

is not designed to be a tutorial on Android Studio, its

relevant features are shown wherever possible, and if that

helps the reader learn more about the IDE, so much the

better.

Conventions Used in This Book

The following typographical conventions are used in this

book:

Italic Indicates new terms, URLs, email addresses, filenames,

and file extensions.

Constant width

Used for program listings, as well as within paragraphs to

refer to program elements such as variable or function

names, databases, data types, environment variables,

statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally

by the user.

Constant width italic

Shows text that should be replaced with user-supplied values

or by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

x | Preface

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is

available for download at

https://github.com/kousen/GradleRecipesForAndroid.

This book is here to help you get your job done. In general, if

example code is offered with this book, you may use it in

your programs and documentation. You do not need to

contact us for permission unless you’re reproducing a

significant portion of the code. For example, writing a

program that uses several chunks of code from this book

https://github.com/kousen/GradleRecipesForAndroid

does not require permission. Selling or distributing a CD-ROM

of examples from O’Reilly books does require permission.

Answering a question by citing this book and quoting

example code does not require permission. Incorporating a

significant amount of example code from this book into your

product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution

usually includes the title, author, publisher, and ISBN. For

example: “Gradle Recipes for Android by Ken Kousen

(O’Reilly). Copyright 2016 Gradleware, Inc., 978-1-4919-

4702-9.”

If you feel your use of code examples falls outside fair use or

the permission given above, feel free to contact us at

permissions@oreil y.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv‐

ers expert content in both book and video form from the

world’s leading authors in technology and business.

Technology professionals, software developers, web

designers, and business and creative professionals use Safari

Books Online as their primary resource for research, problem

solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for

enterprise, government, education, and individuals.

Members have access to thousands of books, training videos,

and prepublication manuscripts in one fully searchable

database from publishers like O’Reilly Media, Prentice Hall

Professional, Addison-Wesley Professional, Microsoft Press,

mailto:permissions@oreilly.com
http://safaribooksonline.com/
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Sams, Que, Peachpit Press, Focal Press, Cisco Press, John

Wiley & Sons, Syngress, Morgan Kauf-Preface | xi mann, IBM

Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,

New Riders, McGraw-Hill, Jones & Bartlett, Course

Technology, and hundreds more. For more information about

Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this

book to the publisher: O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata,

examples, and any additional information. You can access

this page at http://bit.ly/gradle-recipes-for-android.

To comment or ask technical questions about this book, send

email to bookques‐

tions@oreil y.com.

For more information about our books, courses, conferences,

and news, see our website at http://www.oreil y.com.

Find us on Facebook: http://facebook.com/oreil y

Follow us on Twitter: http://twitter.com/oreil ymedia

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/gradle-recipes-for-android
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreil ymedia

Acknowledgments

The author would like to thank several members of Gradle,

Inc. for their gracious help and assistance, including Hans

Dockter, Luke Daley, Rooz Mohazabbi, and Cédric

Champeau, among others. They are part of the reason both

Gradle the technology and Gradle the company have such a

bright future.

I also need to thank Xavier Ducrohet, head of the Android

Studio team at Google as well as head of the Android plugin

project. His hard work made both the IDE and the plugin a

joy to use. I’m also glad he and his team haven’t found time

to update the online documentation sufficiently, leaving a

great opening for this book.1

1 That was a joke. Honestly. But if you’d like to update the

website now, I’m sure nobody will mind.

xii | Preface

As a regular member of the No Fluff, Just Stuff conference

series, I need to thank Jay Zimmerman for the opportunity to

present on both Gradle- and Android-related topics many

times over the years. I’m very happy to be part of No Fluff

speaker com-munity, many of whom have become good

friends. I’m especially thinking of Nate Schutta, Raju Gandhi,

Venkat Subramaniam, Neal Ford, Dan Hinojosa, Brian Sletten,

Michael Carducci, and Craig Walls, but I could add another

dozen names to that list without a problem. I’m also sure I’ll

hear about the people I didn’t mention at my next No Fluff

conference after they get around to reading this.

I’m also grateful to Matthew McCullough and Tim Berglund,

the authors of the previous books of this series. Both men

http://www.youtube.com/oreillymedia

are friendly and helpful, and I’m honored to have my book

included with theirs.

The reviewers for this book helped improve it considerably. I

have to call out specifically the contributions of Andrew Reitz

and James Harmon, who provided great insights into the

technical parts of the book as well as its readability.

I have to mention my editors at O’Reilly, Meghan Blanchette

and Brian Foster.

Meghan was key in launching the book and helping edit the

early stages, and Brian took over from her and shepherded it

throughout the rest of the process. I’m grateful to the rest of

the team at O’Reilly who helped throughout, even if I only

vaguely understood the massive details that go into bringing

a book to its final published form.

Even though it is ostensibly a competitor, the book Gradle

for Android by Kevin Pel-grims (Packt Publishing) is excellent

and taught me a lot. My book takes a different, recipe-based

approach and is, of course, newer and therefore more up-to-

date, but if you can do so I honestly recommend getting

both.

Most of all I need to thank my wife Ginger and my son

Xander for all the support they’ve given me over the years.

I’m sorry again for getting involved in a book project so soon

after finishing the previous one, and I promise I’ll wait a

while before starting the next one (probably).

Thank you, too, for reading the book. I hope you find it

useful. Any errors or omissions are, of course, my own.

Preface | xiii

CHAPTER 1

Gradle for Android Basics

Android applications are built using the open source Gradle

build system. Gradle is a state-of-the-art API that easily

supports customizations and is widely used in the Java world.

The Android plug-in for Gradle adds a wide range of features

specific to Android apps, including build types, flavors,

signing configurations, library projects, and more.

The recipes in this book cover the range of Gradle

capabilities when applied to Android projects. Since the

Android Studio IDE uses Gradle under the hood, special

recipes are dedicated to it as well.

Hopefully the recipes in this book will help you configure and

build whatever Android applications you desire.

1.1 Gradle Build Files in Android

Problem

You want to understand the generated Gradle build files for a

new Android application.

Solution

Create a new Android project using Android Studio and

review the files settings.gradle, build.gradle, and

app/build.gradle.

1

Discussion

Android Studio is the only officially supported IDE for Android

projects. To create a new Android project using Android

Studio, use the “Start a new Android Studio project” wizard

(Figure 1-1).

Figure 1-1. Android Studio Quick Start

The wizard prompts you for a project name and domain. You

can use the Quick Start wizard to start a new Android Studio

project named My Android App in the oreilly.com domain, as

shown in Figure 1-2.

From here, select only the “Phone and Tablet” option and add

a blank activity with the default name, MainActivity.

The name and type of activity does not affect the Gradle

build files.

The resulting “Project” view in “Android” mode is shown in

Figure 1-3, where the relevant Gradle files are highlighted.

2 | Chapter 1: Gradle for Android Basics

Figure 1-2. Create New Project wizard

Figure 1-3. Project structure (Android view)

The project layout in the default (Project) view is shown in

Figure 1-4.

1.1 Gradle Build Files in Android | 3

Figure 1-4. Project structure (Project view)

Android projects are multiproject Gradle builds. The

settings.gradle file shows which subdirectories hold their

own subprojects. The default file contents are shown in

Example 1-1.

Example 1-1. settings.gradle

include ':app'

The include statement indicates that the app subdirectory is

the only additional subproject. If you add an Android Library

project, it too will be added to this file.

The top-level Gradle build file is in Example 1-2.

Example 1-2. Top-level build.gradle file

// Top-level build file where you can add configuration options

// common to all subprojects/modules.

buildscript {

repositories {

jcenter()

}

dependencies {

classpath 'com.android.tools.build:gradle:2.0.0'

4 | Chapter 1: Gradle for Android Basics

// NOTE: Do not place your application dependencies here;

they belong

// in the individual module build.gradle files

}

}

allprojects {

repositories {

jcenter()

}

}

task clean(type: Delete) {

delete rootProject.buildDir

}

The Gradle distribution does not include Android functionality

by default. Google provides an Android plug-in for Gradle,

which allows easy configuration of Android projects. The

buildscript block in the top-level build file tells Gradle where

to download that plug-in.

As you can see, by default the plug-in is downloaded from

jcenter, which means the Bintray JCenter Artifactory

repository. Other repositories are supported (especially

mavenCentral(), the default Maven repository), but JCenter is

now the default. All content from JCenter is served over a

CDN with a secure HTTPS connection. It also tends to be

faster.

The allprojects section indicates that the top-level project

and any subprojects all default to using the jcenter()

repository to resolve any Java library dependencies.

Gradle allows you to define tasks of your own and insert

them into the directed acyclic graph (DAG), which Gradle

uses to resolve task relationships. Here, a clean task has

been added to the top-level build. The type: Delete part

indicates that the new task is a customized instance of the

built-in Delete task from Gradle. In this case, the task

removes the build directory from the root project, which

defaults to a build folder at the top level.

The Gradle build file for the app subproject is shown in

Example 1-3.

Example 1-3. Gradle build file for the app subproject

apply plugin: 'com.android.application'

android {

compileSdkVersion 23

buildToolsVersion "23.0.3"

defaultConfig {

applicationId "com.kousenit.myandroidapp"

minSdkVersion 19

1.1 Gradle Build Files in Android | 5

targetSdkVersion 23

versionCode 1

versionName "1.0"

}

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

}

}

}

dependencies {

compile fileTree(dir: 'libs', include: ['*.jar'])

testCompile 'junit:junit:4.12'

compile 'com.android.support:appcompat-v7:23.3.0'

}

The apply functionality in Gradle adds the Android plug-in to

the build system, which enables the android section Domain

Specific Language (DSL) configuration.

This section is discussed in detail in Recipe 1.2.

The dependencies block consists of three lines. The first,

fileTree dependency, means that all files ending in .jar in the

libs folder are added to the compile classpath.

The second line tells Gradle to download version 4.12 of JUnit

and add it to the “test compile” phase, meaning that JUnit

classes will be available in the src/androidTest/

java source tree, as well as the (optional) src/test/java tree,

which can be added for pure unit tests (i.e., those that do not

involve the Android API).

The third line tells Gradle to add version 23.3.0 of the

appcompat-v7 jar files from the Android Support Libraries.

Note that the -v7 means support for Android applications

back to version 7 of Android, not version 7 of the support

library itself. The support library is listed as a compile

dependency, so all of its classes are available throughout the

project.

See Also

Links to all the relevant documentation sites are in Recipe

6.2. Dependencies are dis‐

cussed in Recipe 1.5 and repositories are discussed in Recipe

1.7.

1.2 Configure SDK Versions and Other

Defaults

Problem

You want to specify the minimum and target Android SDK

versions and other default properties.

6 | Chapter 1: Gradle for Android Basics

Solution

In the module Gradle build file, set values in the android

block.

Discussion

The top-level Android build file adds the Android plug-in for

Gradle to your project, via the buildscript block. Module build

files “apply” the plug-in, which adds an android block to the

Gradle DSL.

Inside the android block, you can specify several project

properties, as shown in

Example 1-4.

Example 1-4. Android block in build.gradle

apply plugin: 'com.android.application'

android {

compileSdkVersion 23

buildToolsVersion "23.0.3"

defaultConfig {

applicationId "com.kousenit.myandroidapp"

minSdkVersion 19

targetSdkVersion 23

versionCode 1

versionName "1.0"

}

compileOptions {

sourceCompatibility JavaVersion.VERSION_1_7

targetCompatibility JavaVersion.VERSION_1_7

}

}

Regular Java projects use a java plug-in, but Android projects

use the com.android.application plug-in instead.

Do not apply the Java plug-in. This will cause build errors.

Use the Android plug-in instead.

The android block is the entry point for the Android DSL.

Here you must specify the compilation target using

compileSdkVersion and the build tools version via build

ToolsVersion. Both of these values should be assigned to the

most recent available version, as they are backward

compatible and include all current bug fixes.

1.2 Configure SDK Versions and Other Defaults | 7

The defaultConfig block inside android shows several

properties: applicationId

The “package” name of the application, which must be

unique in the Google Play store. This value can never change

during the life of your app; changing it will result in your app

being treated as a brand new application, and existing users

will not see changes as an update. Prior to the move to

Gradle, this was the pack age attribute of the root element of

the Android Manifest. The two can now be decoupled.

minSdkVersion

The minimum Android SDK version supported by this

application. Devices earlier than this will not see this

application when accessing the Google Play store.

targetSdkVersion

The version of Android intended for this application. Android

Studio will issue a warning if this is anything other than the

latest version, but you’re free to use any version you like.

versionCode

An integer representing this version of your app relative to

others. Apps normally use this during the upgrade process.

versionName

A string representing the release version of your app, shown

to users. Normally in the form of a <major>.<minor>.

<version> string, like most projects.

Prior to the switch to Gradle, the minSdkVersion and

buildToolsVersion properties were specified in the Android

Manifest as attributes of a <uses-sdk> tag. That approach is

now deprecated, as the values there are overridden by the

values in the Gradle build file.

The compileOptions section shows that this app expects to

use JDK version 1.7.

In Android Studio, the Project Structure dialog shows the

values in graphical form, shown in Figure 1-5.

The defaultConfig values are on the Flavors tab in the Project

Structure window

(Figure 1-6).

Documentation for the defaultConfig block, as with other

elements of the DSL, can be found in the DSL reference.

8 | Chapter 1: Gradle for Android Basics

http://bit.ly/gradle-dsl

Figure 1-5. Project Structure view in Android Studio

Figure 1-6. Properties inside the android block

See Also

Other child elements of android, like buildTypes or

productFlavors, are discussed in Recipes Recipe 3.1, Recipe

3.2, Recipe 3.4, and more. The documentation links are

given in Recipe 6.2.

1.3 Executing Gradle Builds from the Command Line

Problem

You want to run Gradle tasks from the command line.

Solution

From the command line, either use the provided Gradle

wrapper or install Gradle and run it directly.

1.3 Executing Gradle Builds from the Command Line |

9

Discussion

You do not need to install Gradle in order to build Android

projects. Android Studio comes with a Gradle distribution (in

the form of a plug-in) and includes dedicated features to

support it.

The term “Gradle wrapper” refers to the gradlew script for

Unix and gradlew.bat script in the root directory of an

Android application, where the ending “w” stands for

“wrapper.”

The purpose of the Gradle wrapper is to allow a client to run

Gradle without having to install it first. The wrapper uses the

gradle-wrapper.jar and the gradle-wrapper.properties files in

the gradle/wrapper folder in the application root to start the

process. A sample of the properties file is shown in Example

1-5.

Example 1-5. Keys and values in gradle-wrapper.properties

#Mon Dec 28 10:00:20 PST 2015

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists

zipStoreBase=GRADLE_USER_HOME

zipStorePath=wrapper/dists

distributionUrl=https\:

//services.gradle.org/distributions/gradle-2.10-all.zip The

distributionUrl property indicates that the wrapper will

download and install version 2.10 of Gradle.1 After the first

run, the Gradle distribution will be cached in the zipStorePath

folder under the zipStoreBase directory and then be

available for all subsequent executions of Gradle tasks.

The wrapper is used at the command line simply by

executing the ./gradlew command on Unix or the gradlew.bat

command on Windows (Example 1-6).

Example 1-6. Output from running the build task

> ./gradlew build

Downloading

https://services.gradle.org/distributions/gradle-2.10-all.zip

...

.... (download of Gradle 2.10)

...

Unzipping

/Users/kousen/.gradle/wrapper/dists/3i2gob.../gradle-2.10-

all.zip to /Users/kousen/.gradle/wrapper/dists/gradle-2.10-

all/3i2gob...

Set executable permissions for:

/Users/kousen/.gradle/wrapper/dists/gradle-2.10-

all/3i2gob.../gradle-2.10/bin/gradle 1 At the time of this

writing, the current version of Gradle is 2.12. You can change

the distributionUrl to include any legal Gradle version

number.

10 | Chapter 1: Gradle for Android Basics

Starting a new Gradle Daemon for this build (subsequent

builds will be faster).

:app:preBuild UP-TO-DATE

:app:preDebugBuild UP-TO-DATE

... lots of tasks ...

:app:compileLint

:app:lint

Wrote HTML report to

file:.../MyAndroidApp/app/build/outputs/lint-results.html

Wrote XML report to .../MyAndroidApp/app/build/outputs/lint-

results.xml :app:preDebugUnitTestBuild UP-TO-DATE

:app:prepareDebugUnitTestDependencies

... lots of tasks ...

:app:test

:app:check

:app:build

BUILD SUCCESSFUL

Total time: 51.352 secs // most of which was the download

In this book, examples show the ./gradlew command for

Unix-

based operating systems. For Windows, simply replace that

with

gradlew or gradlew.bat without the dot-slash.

The initial download can take a few minutes, depending on

your Internet connection speed. It only needs to be done

once, however. After that, subsequent builds will use the

cached version.

You can run any supported Gradle task, including your own

custom tasks, at the command line. Compiled code will be

found in the app/build folder. Generated apk (Android

package) files are found in the app/build/outputs/apk

directory.

The tasks command from Gradle shows what tasks are

available in the build, as shown in Example 1-7.

Example 1-7. Output from tasks

:tasks

--

All tasks runnable from root project

--

Android tasks

androidDependencies - Displays the Android dependencies of

the project.

signingReport - Displays the signing info for each variant.

sourceSets - Prints out all the source sets defined in this

project.

1.3 Executing Gradle Builds from the Command Line |

11

Build tasks

assemble - Assembles all variants of all applications and

secondary packages.

assembleAndroidTest - Assembles all the Test applications.

assembleDebug - Assembles all Debug builds.

assembleRelease - Assembles all Release builds.

build - Assembles and tests this project.

buildDependents - Assembles and tests this project and all

projects that depend on it.

buildNeeded - Assembles and tests this project and all

projects it depends on.

compileDebugAndroidTestSources

compileDebugSources

compileDebugUnitTestSources

compileReleaseSources

compileReleaseUnitTestSources

mockableAndroidJar - Creates a version of android.jar that's

suitable for unit tests.

Build Setup tasks

init - Initializes a new Gradle build. [incubating]

wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

components - Displays the components produced by root

project 'MyAndroidApp'.

dependencies - Displays all dependencies declared in root

project 'MyAndroidApp'.

dependencyInsight - Displays the insight into a specific

dependency in root project 'MyAndroidApp'.

help - Displays a help message.

model - Displays the configuration model of root project

'MyAndroidApp'. [incubating]

projects - Displays the subprojects of root project

'MyAndroidApp'.

properties - Displays the properties of root project

'MyAndroidApp'.

tasks - Displays the tasks runnable from root project

'MyAndroidApp'

(some of the displayed tasks may belong to subprojects).

Install tasks

installDebug - Installs the Debug build.

installDebugAndroidTest - Installs the android (on device)

tests for the Debug build.

uninstallAll - Uninstall all applications.

uninstallDebug - Uninstalls the Debug build.

uninstallDebugAndroidTest - Uninstalls the android (on

device) tests for the build.

uninstallRelease - Uninstalls the Release build.

Verification tasks

check - Runs all checks.

clean - Deletes the build directory.

connectedAndroidTest - Installs and runs instrumentation

tests for all flavors on connected devices.

connectedCheck - Runs all device checks on currently

connected devices.

connectedDebugAndroidTest - Installs and runs the tests for

debug connected devices.

deviceAndroidTest - Installs and runs instrumentation tests

using all Providers.

12 | Chapter 1: Gradle for Android Basics

deviceCheck - Runs all device checks using Device Providers

and Test Servers.

lint - Runs lint on all variants.

lintDebug - Runs lint on the Debug build.

lintRelease - Runs lint on the Release build.

test - Run unit tests for all variants.

testDebugUnitTest - Run unit tests for the debug build.

testReleaseUnitTest - Run unit tests for the release build.

Other tasks

clean

jarDebugClasses

jarReleaseClasses

lintVitalRelease - Runs lint on just the fatal issues in the

Release build.

To see all tasks and more detail, run gradlew tasks --all

To see more detail about a task, run gradlew help --task

<task> BUILD SUCCESSFUL

While this may seem like a lot of tasks, you actually use a

small number in practice.

When you add multiple build types and flavors to your

project, the number will go up considerably.

Additional features and command-line flags

You can run multiple tasks by separating them by spaces, as

in Example 1-8.

Example 1-8. Executing more than one task

> ./gradlew lint assembleDebug

Note that repeating the same task name only executes it

once.

You can exclude a task by using the -x flag, as shown in

Example 1-9.

Example 1-9. Excluding the lintDebug task

> ./gradlew assembleDebug -x lintDebug

The --all flag on the tasks command shows all the tasks in

the project as well as the dependencies for each task.

The output from gradle tasks --all can be very long.

1.3 Executing Gradle Builds from the Command Line |

13

You can abbreviate task names from the command line by

providing just enough letters to uniquely determine it

(Example 1-10).

Example 1-10. The dependency tree for each configuration

> ./gradlew anDep

:app:androidDependencies

debug

\--- com.android.support:appcompat-v7:23.3.0

+--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

+--- com.android.support:animated-vector-drawable:23.3.0

| \--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

\--- com.android.support:support-v4:23.3.0

\--- LOCAL: internal_impl-23.3.0.jar

debugAndroidTest

No dependencies

debugUnitTest

No dependencies

release

\--- com.android.support:appcompat-v7:23.3.0

+--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

+--- com.android.support:animated-vector-drawable:23.3.0

| \--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

\--- com.android.support:support-v4:23.3.0

\--- LOCAL: internal_impl-23.3.0.jar

releaseUnitTest

No dependencies

BUILD SUCCESSFUL

The camel-case notation (anDep for androidDependencies)

works well, as long as the resolution is unique (Example 1-

11).

14 | Chapter 1: Gradle for Android Basics

Example 1-11. Not enough letters to be unique

> ./gradlew pro

FAILURE: Build failed with an exception.

* What went wrong:

Task 'pro' is ambiguous in root project 'MyAndroidApp'.

Candidates are:

'projects', 'properties'.

The error message shows exactly what went wrong: pro is

ambiguous, since it matches both projects and properties.

Just add another letter to make it unique.

Finally, if your build file is not called build.gradle, use the -b

flag to specify the build filename (Example 1-12).

Example 1-12. Using a nondefault build filename

> ./gradlew -b app.gradle

See Also

Appendix B gives a summary of Gradle installation and

features beyond Android

projects. Recipe 1.5 discusses dependencies in the build file.

Recipe 4.3 illustrates excluding tasks from the build process.

1.4 Executing Gradle Builds from

Android Studio

Problem

You want to run Gradle from inside Android Studio.

Solution

Use the Gradle view to execute tasks.

Discussion

When you create an Android project, Android Studio

generates Gradle build files for a multiproject build

(discussed in Recipe 1.1). The IDE also provides a Gradle

view that organizes all of its tasks, as shown in Figure 1-7.

1.4 Executing Gradle Builds from Android Studio | 15

Figure 1-7. Gradle view inside Android Studio

Gradle tasks are organized into categories, like android,

build, install, and other,

as Figure 1-7 illustrates.

To execute a particular task, double-click the entry in the

Gradle window. The result

is shown in Figure 1-8.

Double-clicking any task executes that task on the command

line, which is shown in the Run window. Every time you run a

particular task, a run configuration is created and stored

under the Run Configurations menu, so running it again

simply requires another double-click.

16 | Chapter 1: Gradle for Android Basics

Figure 1-8. Running Gradle inside Android Studio

The execution seen in the Run window shows once again that

the IDE is essentially just a frontend on Gradle. Any

execution, from build to test to deployment, is actually

executing Gradle tasks at the command line.

Android Studio also provides a Gradle Console view, as

shown in Figure 1-9.

Figure 1-9. Gradle Console view in Android Studio

See Also

To run Gradle tasks from the command line using the

included wrapper, refer to

Recipe 1.3.

1.4 Executing Gradle Builds from Android Studio | 17

1.5 Adding Java Library Dependencies

Problem

You want to add additional Java libraries to your Android app.

Solution

Add the group, name, and version to the dependencies block

in the build.gradle file included in your application module.

Discussion

By default, Android applications come with two build.gradle

files: one at the top-level, and one for the application itself.

The latter is normally stored in a subdirectory called app.

Inside the build.gradle file in the app directory, there is a

block called dependencies.

Example 1-13 shows a sample from a new Android

application generated by Android Studio.

Example 1-13. Default dependencies in a new Android

project

dependencies {

compile fileTree(include: ['*.jar'], dir: 'libs')

testCompile 'junit:junit:4.12'

compile 'com.android.support:appcompat-v7:23.3.0'

}

Basic syntax

Gradle supports several different ways of listing

dependencies. The most common is to use quotes with

colon-separated group, name, and version values.

Gradle files use Groovy, which supports both single- and

double-

quoted strings. Double quotes allow interpolation, or variable

substitution, but are otherwise identical. See Appendix A for

details.

Each dependency is associated with a configuration. Android

projects include compile, runtime, testCompile, and

testRuntime configurations. Plugins can add additional

configurations, and you can also define your own.

The full syntax for a dependency calls out the group, name,

and version numbers explicitly (Example 1-14).

18 | Chapter 1: Gradle for Android Basics

Example 1-14. Full syntax for dependencies

testCompile group: 'junit', name: 'junit', version: '4.12'

The result of Example 1-14 is entirely equivalent to that in

Example 1-15.

Example 1-15. Shortcut syntax for dependencies

testCompile 'junit:junit:4.12'

This is the shortcut form used in the default build file.

It is legal, though not recommended, to specify a version

number with a plus sign, as shown in Example 1-16.

Example 1-16. Version number as a variable (not

recommended)

testCompile 'junit:junit:4.+'

This tells Gradle that any version of JUnit greater than or

equal to 4.0 is required to compile the project’s tests. While

this works, it makes the build less deterministic and

therefore less reproducible. Explicit version numbers also

protect you from changes in later versions of a particular API.

Favor explicit version numbers for dependencies. This

protects you

from later changes in dependent libraries and makes your

build

reproducible.

If you want to add a set of files to a configuration without

adding them to a repository, you can use the files or fileTree

syntax inside the dependencies block (Example 1-17).

Example 1-17. File and directory dependencies

dependencies {

compile files('libs/a.jar', 'libs/b.jar')

compile fileTree(dir: 'libs', include: '*.jar')

}

The last line uses the same syntax as that employed in the

default Gradle build file.

Next, Gradle needs to know where to search to resolve

dependencies. This is done through a repositories block.

1.5 Adding Java Library Dependencies | 19

Synchronizing the project

Android Studio monitors the Gradle build files and offers to

synchronize new changes automatically.

For example, consider adding the Retrofit 2 project to

build.gradle in the app project.

As Figure 1-10 shows, after any change to the build.gradle

file, Android Studio offers to synchronize the project. This

downloads any required libraries and adds them to the

project.

Figure 1-10. Android Studio offering to synchronize project

dependencies After clicking the SycNow link, the downloaded

libraries appear in the External Libraries section of the

project window (Figure 1-11).

Figure 1-11. External Libraries

In this case, the retrofit dependency also added the okhttp

and okio libraries as

transitive dependencies, as shown in Figure 1-12.

If you miss your opportunity to click the Sync Now link,

Android Studio provides a special icon in the toolbar for the

same purpose, as well as a menu item.

20 | Chapter 1: Gradle for Android Basics

Figure 1-12. Sync Project with Gradle Files button and menu

item Transitive dependencies

There’s an old joke that defines Maven as a DSL for

downloading the Internet. If that is true for Maven, it’s also

true for Gradle. Both download transitive dependencies,

which are libraries that themselves depend on other

libraries.

In regular Java projects, the Gradle command dependencies

can be used to see the transitive dependencies. Android

projects use the androidDependencies command instead.

Consider the dependencies block from Example 1-13.

Running the androidDependen cies task gives the output

shown in Example 1-18.

Example 1-18. Seeing Android dependencies

> ./gradlew androidDependencies

:app:androidDependencies

debug

\--- com.android.support:appcompat-v7:23.3.0

+--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

+--- com.android.support:animated-vector-drawable:23.3.0

| \--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

\--- com.android.support:support-v4:23.3.0

\--- LOCAL: internal_impl-23.3.0.jar

debugAndroidTest

No dependencies

1.5 Adding Java Library Dependencies | 21

debugUnitTest

No dependencies

release

\--- com.android.support:appcompat-v7:23.3.0

+--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

+--- com.android.support:animated-vector-drawable:23.3.0

| \--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

\--- com.android.support:support-v4:23.3.0

\--- LOCAL: internal_impl-23.3.0.jar

releaseUnitTest

No dependencies

The debug and release builds both use the appcompat-v7

library from the Android Support libraries. That library

depends on the support-v4 library, among others, which uses

an internal jar from the Android SDK.

Managing transitive dependencies manually sounds like a

good idea until you actually try to do it. The complexity

grows quickly and doesn’t scale well. Gradle is very good at

resolving versioning issues among dependencies.

Still, Gradle does provide a syntax for including and

excluding individual libraries.

Gradle follows transitive dependencies by default. If you

want to turn that off for a particular library, use the transitive

flag (Example 1-19).

Example 1-19. Disabling transitive dependencies

dependencies {

runtime group: 'com.squareup.retrofit2', name: 'retrofit',

version: '2.0.1', transitive: false

}

Changing the value of the transitive flag to false prevents

the download of transitive dependencies, so you’ll have to

add whatever is required yourself.

If you only want a module jar, without any additional

dependencies, you can specify that as well (Example 1-20).

Example 1-20. Full syntax for module jar only

dependencies {

compile 'org.codehaus.groovy:groovy-all:2.4.4@jar'

compile group: 'org.codehaus.groovy', name: 'groovy-all',

22 | Chapter 1: Gradle for Android Basics

version: '2.4.4', ext: 'jar'

}

Shortcut syntax

Full version

The shortcut notation uses the @ sign, while the full version

sets an ext (for extension) value.

You can also exclude a transitive dependency in the

dependencies block

(Example 1-21).

Example 1-21. Excluding dependencies

dependencies {

androidTestCompile('org.spockframework:spock-core:1.0-

groovy-2.4') {

exclude group: 'org.codehaus.groovy'

exclude group: 'junit'

}

}

In this case, the spock-core project excludes the Groovy

dependency and the JUnit library, both of which are includes

by other means.

See Also

Recipe 1.6 shows how to add dependencies through the

Android Studio IDE. Recipe

1.7 discusses repositories, which are used to resolve

dependencies. Recipe 4.5 discusses the situation where one

module depends on another, as with Android libraries.

1.6 Adding Library Dependencies

Using Android Studio

Problem

Rather than edit the build.config file directly, you want to

add dependencies using the Android Studio IDE.

Solution

Use the Project Structure section of Android Studio, with the

Dependencies tab.

1.6 Adding Library Dependencies Using Android

Studio | 23

Discussion

Experienced Gradle developers are comfortable editing the

build.gradle file directly, but the IDE does not give you a lot

of code assistance in doing so. The Project Structure display,

however, gives a graphical view of the build file contents.

Access the Project Structure menu item under the File menu

to see the overall display.

Then select the module containing your application (app by

default) as shown in

Figure 1-13.

Figure 1-13. Project Structure UI (shown earlier in Figure 1-5)

Selecting app in the Modules section shows the default page,

with the Properties tab highlighted. This shows, among other

things, the Compile SDK Version and Build Tools Version.

Click the Dependencies tab to see any existing

dependencies, along with the ability to add new ones (Figure

1-14).

Figure 1-14. Dependencies tab in Project Structure

The “Scope” column allows you to specify the configuration

where the dependency is needed. Current choices are:

• Compile

• Provided

• APK

24 | Chapter 1: Gradle for Android Basics

• Test compile

• Debug compile

• Release compile

Clicking the plus button at the bottom of the window offers

to add three different

types of dependencies, as shown in Figure 1-15.

Figure 1-15. Adding dependencies pop-up

File dependencies allow you browse the filesystem for

individual jar files. Module dependencies refer to other

modules in the same project, which is discussed in the recipe

for library projects.

The “Library Dependencies” option brings up a dialog box

that allows you to search Maven Central for a particular

dependency. By default it shows all the optional support

libraries and Google Play services (Figure 1-16).

Figure 1-16. Choosing library dependencies

Enter a string in the search box and click the search icon (the

magnifying glass in versions prior to 2.0 and the three dots

in AS 2.0 and above) to find the full Maven coor-dinates of

the dependency (Figure 1-17).

Clicking OK when you’re done triggers a Gradle project sync,

which downloads the dependency and adds it to your

project.

1.6 Adding Library Dependencies Using Android

Studio | 25

Figure 1-17. Finding the Gson library

See Also

Recipe 1.5 reviews how to add dependencies by editing the

Gradle build files directly.

Recipe 1.7 is about configuring Gradle repositories that are

used to resolve the dependencies.

1.7 Configuring Repositories

Problem

You need Gradle to accurately resolve any library

dependencies.

Solution

Configure the repositories block in your Gradle build file.

Discussion

Declaring Repositories

The repositories block tells Gradle where to find the

dependencies. By default, Android uses either jcenter() or

mavenCentral(), which represent the default Bintray JCenter

repository and the public Maven Central Repository,

respectively (Example 1-22).

Example 1-22. The default JCenter repository

repositories {

jcenter()

}

26 | Chapter 1: Gradle for Android Basics

This refers to the JCenter repository located at

https://jcenter.bintray.com. Note that it uses HTTPS for the

connection.

https://jcenter.bintray.com/

There are two shortcuts available for Maven repositories. The

mavenCentral() syntax refers to the central Maven 2

repository at http://repo1.maven.org/maven2. The maven

Local() syntax refers to your local Maven cache (Example 1-

23).

Example 1-23. Built-in Maven repositories in the repositories

block repositories {

mavenLocal()

mavenCentral()

}

Local Maven cache

Public Maven Central respository

Any Maven repository can be added to the default list using

a maven argument with a url block (Example 1-24).

Example 1-24. Adding a Maven repo from a URL

repositories {

maven {

url 'http://repo.spring.io/milestone'

}

}

Password-protected repositories use a credentials block, as

Example 1-25 (taken from the Gradle user guide) shows.

Example 1-25. Accessing a Maven repo requiring credentials

http://repo1.maven.org/maven2

repositories {

maven {

credentials {

username 'username'

password 'password'

}

url 'http://repo.mycompany.com/maven2'

}

}

You can move the explicit username and password values to

a file called gradle.properties. Recipe 2.1 discusses this in

detail.

Ivy and local repositories are added using a similar syntax.

1.7 Configuring Repositories | 27

Example 1-26. Using an Ivy repository

repositories {

ivy {

url 'http://my.ivy.repo'

}

}

If you have files on the local filesystem, you can use a

directory as a repository with the flatDir syntax (Example 1-

27).

Example 1-27. Using a local directory as a repository

repositories {

flatDir {

dirs 'lib'

}

}

This is an alternative to adding the files explicitly to the

dependencies block with files or fileTree.

You often will add multiple repositories to your build. Gradle

will search each in turn, top down, until it resolves all of your

dependencies.

See Also

Recipe 1.5 and Recipe 1.6 are about configuring the

dependencies themselves.

28 | Chapter 1: Gradle for Android Basics

CHAPTER 2

From Project Import to Release

2.1 Setting Project Properties

Problem

You want to add extra properties to your project, or

externalize hardcoded values.

Solution

Use the ext block for common values. To remove them from

the build file, put properties in the gradle.properties file, or

set them on the command line using the -P flag.

Discussion

Gradle build files support property definitions using a simple

ext syntax, where in this case “ext” stands for “extra.” This

makes it easy to define a variable value once and use it

throughout the file.

These properties can be hardcoded into the build file if you

wish. Example 2-1 is a sample from a Gradle build file from

the Android Annotations project.

Example 2-1. Sample “extra” property

ext {

def AAVersion = '4.0-SNAPSHOT' // change this to your

desired version

}

dependencies {

apt "org.androidannotations:androidannotations:$AAVersion"

http://androidannotations.org/

compile "org.androidannotations:androidannotations-

api:$AAVersion"

}

29

Normal Groovy idioms apply here, meaning that the variable

AAVersion is untyped but takes on a String value at

assignment, and that the variable is interpolated into the two

Groovy string dependencies.

The use of the def keyword here implies that this is a local

variable in the current build file. Defining the variable

without def (or any other type) adds the variable as an

attribute of the project object, making it available in this

project as well as any of its subprojects.

An untyped variable in the ext block adds properties to the

Project instance associated with the build.

What if, however, you wished to remove the actual value

from the build file? Consider a Maven repository with login

credentials, as shown in Example 2-2.

Example 2-2. Maven repo with credentials

repositories {

maven {

url 'http://repo.mycompany.com/maven2'

credentials {

username 'user'

password 'password'

}

}

}

Hardcoded values

You probably don’t want to keep the actual username and

password values in the build file. Instead, add them to the

gradle.properties file in the project root, as shown in

Example 2-3.

Example 2-3. gradle.properties file

login='user'

pass='my_long_and_highly_complex_password'

Now the credentials block in Example 2-2 can be replaced

with variables, as in

Example 2-4.

30 | Chapter 2: From Project Import to Release

Example 2-4. Revised Maven repo with explicit credentials

removed repositories {

maven {

url 'http://repo.mycompany.com/maven2'

credentials {

username login

password pass

}

}

}

Variables supplied from gradle.properties or on the command

line You also have the option of setting the value of

properties on the command line, by using the -P argument to

gradle (Example 2-5).

Example 2-5. Running gradle with the -P flag

> gradle -Plogin=me -Ppassword=this_is_my_password

assembleDebug To demonstrate what happens when you use

multiple approaches, consider a build file as in Example 2-6.

Example 2-6. Making properties dynamic

ext {

if (!project.hasProperty('user')) {

user = 'user_from_build_file'

}

if (!project.hasProperty('pass')) {

pass = 'pass_from_build_file'

}

}

task printProperties() {

doLast {

println "username=$user"

println "password=$pass"

}

}

Checking if project properties exist

Custom task to print property values

2.1 Setting Project Properties | 31

Executing the printProperties task without any external

configuration gives the values set in the ext block (Example

2-7).

Example 2-7. Output from running Gradle with ext values

> ./gradlew printProperties

:app:printProperties

username=user_from_build_file

password=pass_from_build_file

If the values are set in the gradle.properties file in the

project root, the result is different (Examples 2-8 and 2-9).

Example 2-8. Using gradle.properties to set user and pass

values user=user_from_gradle_properties

pass=pass_from_gradle_properties

Example 2-9. Output from running Gradle with properties

from gradle.properties

> ./gradlew printProperties

:app:printProperties

username=user_from_gradle_properties

password=pass_from_gradle_properties

The values can also be set from the command line, which

takes top precedence

(Example 2-10).

Example 2-10. Running Gradle with properties set from

command line

> ./gradlew -Puser=user_from_pflag -Ppass=pass_from_pflag

printProperties

:app:printProperties

username=user_from_pflag

password=pass_from_pflag

The combination of “extras” block, properties file, and

command-line flag will hope-fully give you enough options to

accomplish whatever you need.

See Also

Custom tasks are discussed in Recipe 4.1. Setting up

repositories is part of Recipe 1.7.

32 | Chapter 2: From Project Import to Release

2.2 Porting Apps from Eclipse ADT to Android Studio

Problem

You want to import an existing Eclipse ADT project to Android

Studio.

Solution

Android Studio provides an “import” wizard that rewrites

existing projects.

Discussion

Figure 2-1 shows the link on the Android Studio welcome

page for importing a project from either Eclipse ADT or

Gradle.

Figure 2-1. Android Studio welcome page showing the import

project option The link brings up a view where you can

navigate to an existing Eclipse ADT project.

Figure 2-2 shows such a project. It uses the old project

structure, where res, src, and AndroidManifest.xml are all

direct children of the root.

After choosing a destination directory (the wizard does not

overwrite the original project), the wizard offers to convert

jar files in the lib folder into dependencies in the Gradle build

file, among other options, as shown in Figure 2-3.

2.2 Porting Apps from Eclipse ADT to Android Studio |

33

Figure 2-2. Select Eclipse ADT project

Figure 2-3. Import project options

34 | Chapter 2: From Project Import to Release

The wizard then restructures the project and builds it. By

default, an import-summary.txt window shows the major

changes. Example 2-11 shows a sample.

Example 2-11. Project Import Summary text file

ECLIPSE ANDROID PROJECT IMPORT SUMMARY

====================================

==

Ignored Files:

The following files were *not* copied into the new Gradle

project; you should evaluate whether these are still needed

in your project and if so manually move them: * proguard-

project.txt

Moved Files:

Android Gradle projects use a different directory structure

than ADT

Eclipse projects. Here's how the projects were restructured:

* AndroidManifest.xml => app/src/main/AndroidManifest.xml

* assets/ => app/src/main/assets

* res/ => app/src/main/res/

* src/ => app/src/main/java/

Next Steps:

You can now build the project. The Gradle project needs

network

connectivity to download dependencies.

Bugs:

If for some reason your project does not build, and you

determine that it is due to a bug or limitation of the Eclipse

to Gradle importer, please file a bug at http://b.android.com

with category Component-Tools.

(This import summary is for your information only, and can

be deleted after import once you are satisfied with the

results.)

Other than the ProGuard file recommendation, the rest of the

changes are mostly moving files around.

The generated top-level gradle.build file is the same as when

you create a new project, as in Example 2-12.

2.2 Porting Apps from Eclipse ADT to Android Studio |

35

Example 2-12. Top-level generated build file

sub-projects/modules.

buildscript {

repositories {

jcenter()

}

dependencies {

classpath 'com.android.tools.build:gradle:2.0.0'

}

}

allprojects {

repositories {

jcenter()

}

}

The app folder contains the original project, with a result

similar to Example 2-13.

Example 2-13. App-level build file

apply plugin: 'com.android.application'

android {

compileSdkVersion 17

buildToolsVersion "23.0.3"

defaultConfig {

applicationId "com.example.tips"

minSdkVersion 8

targetSdkVersion 17

}

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.txt'

}

}

}

(Note that this particular project didn’t have any additional

jar files, so no added dependencies block was required.)

Finally, a settings.gradle file was generated (Example 2-14),

which shows that the app project is the only included

module.

36 | Chapter 2: From Project Import to Release

Example 2-14. Generated settings.gradle file

include ':app'

While the AndroidManifest.xml file has not been changed,

opening it in Android Stu‐

dio does give you a couple of warnings (Example 2-15).

Example 2-15. Warnings in AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android

"

package="com.example.tips"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk

android:minSdkVersion="8"

android:targetSdkVersion="17" />

<application

<!-- no problems --!>

</application>

</manifest>

Multiple warnings

Android Studio warns you that the targetSdkVersion is set to

an older version of the Android SDK. It also points out that

the values of minSdkVersion and targetSdkVer sion are

overridden by their counterparts in the Gradle build file

(Example 1-3).

Since the Gradle build wins, the best approach is to simply

delete the uses-sdk tag from the manifest, and then change

the values in the build.gradle file if desired.

See Also

Recipe 4.4 discusses the sourceSets property in Gradle.

Recipe 2.3 shows how the

ADT plug-in in Eclipse can generate a Gradle build file

mapping the older structure.

2.3 Porting Apps from Eclipse ADT Using Eclipse

Problem

You want to export an existing Eclipse ADT project using

Gradle.

Solution

The Eclipse ADT plug-in can generate a Gradle build for you.

2.3 Porting Apps from Eclipse ADT Using Eclipse | 37

Discussion

The Android Developer Tools (ADT) plug-in for Eclipse was

the primary IDE for building Android projects before the

Gradle build process was introduced in 2013.

The ADT project is now deprecated in favor of Android

Studio, but legacy projects do, of course, exist.

The ADT plug-in can generate a Gradle build file for you

based on the existing project structure and dependencies.

The preferred way to port a project from ADT to Android

Studio is

to use the import wizard from Android Studio. The export

process

shown here is no longer recommended.

Since this is no longer the preferred porting mechanism, it is

being shown here because you may encounter such projects

in practice. It’s also a good example of a Gradle sourceSet

mapping, which shows how to map the old project structure

to the new Gradle-based layout.

The Eclipse ADT structure put all source code in a directory

called src under the project root. Resources were also in a

res folder in the root. The Android manifest itself was also in

the root directory. All of these locations changed in the new

project structure.

The ADT plug-in can generate the Gradle build for you.

Example 2-16 shows a section from one of those

conversions.

Example 2-16. Mapping the old project structure to the new

one

android {

compileSdkVersion 18

buildToolsVersion "17.0.0"

defaultConfig {

minSdkVersion 10

targetSdkVersion 17

}

sourceSets {

main {

manifest.srcFile 'AndroidManifest.xml'

java.srcDirs = ['src']

resources.srcDirs = ['src']

aild.ext.srcDirs = ['src']

renderscript.srcDirs = ['src']

res.srcDirs = ['res']

38 | Chapter 2: From Project Import to Release

assets.srcDirs = ['assets']

}

}

}

You can see based on the SDK versions that this was done

some time ago, but the interesting part is the mapping done

inside the sourceSets block. The new project structure

expects src/main/java for source code. The existing project

has an src folder in the root of the project. Therefore the

sourceSets block maps src/main/java to src using the srcDirs

property. In fact, all the folders have been mapped from the

old project structure to the new one using this mechanism.

What you’ll often see in these types of mappings is also a

change for the tests folder

and build types, as in Example 2-17.

Example 2-17. Changing the test and build type roots

sourceSets {

main {

manifest.srcFile 'AndroidManifest.xml'

java.srcDirs = ['src']

resources.srcDirs = ['src']

aidl.srcDirs = ['src']

renderscript.srcDirs = ['src']

res.srcDirs = ['res']

assets.srcDirs = ['assets']

}

// Move the tests to tests/java, tests/res, etc...

instrumentTest.setRoot('tests')

// Move the build types to build-types/<type>

// For instance, build-types/debug/java, ...

// This moves them out of them default location under

src/<type>/...

// which would conflict with src/ being used by the main

source set.

// Adding new build types or product flavors should be

accompanied

// by a similar customization.

debug.setRoot('build-types/debug')

release.setRoot('build-types/release')

}

The comments in the build file were actually added by the

Eclipse ADT tool as part of the conversion process.

See Also

Recipe 4.4 discusses the sourceSets property in more detail.

2.3 Porting Apps from Eclipse ADT Using Eclipse | 39

2.4 Upgrading to a Newer Version of Gradle

Problem

You need to change the version of Gradle used by your

application.

Solution

Generate a new wrapper, or modify the properties file

directly.

Discussion

Android Studio includes a Gradle distribution. When you

create a new Android application, the IDE automatically

generates a gradlew script for Unix and a gradlew.bat file for

Windows. These are the “wrapper” scripts that allow you to

use Gradle without manually installing it first. Instead, the

wrapper scripts download and install a version of Gradle for

you.

Software projects last a long time, however, and Gradle

releases new versions on a regular basis. You may wish to

update the Gradle version used in your project, either for

performance reasons (each new version is faster) or because

new features were added to the project. To do so, you have

two primary options: 1. Add a wrapper task to your

build.gradle file and generate new wrapper scripts 2. Edit the

distributionUrl value in gradle-wrapper.properties directly

The first option works best if your project already loads with

the current version of Gradle. By default, Gradle builds

already include a so-called wrapper task, which you can see

by running the gradle tasks command, as in Example 2-18.

Example 2-18. The wrapper task in the list of tasks

> ./gradlew tasks

--

All tasks runnable from root project

--

// ...

Build Setup tasks

wrapper - Generates Gradle wrapper files. [incubating]

// ...

40 | Chapter 2: From Project Import to Release

BUILD SUCCESSFUL

Built-in wrapper task

The gradle wrapper command supports a --gradle-version

argument. Therefore, one way to regenerate the wrapper

with the desired version is shown in Example 2-19.

Example 2-19. Specifing the wrapper version on the

command line

> ./gradlew wrapper --gradle-version 2.12

:wrapper

BUILD SUCCESSFUL

Total time: ... sec

The other option is to explicitly add the wrapper task to the

(top-level) build file, and specify a value for gradleVersion, as

shown in Example 2-20.

Example 2-20. Explicit Gradle wrapper task in top-level

build.gradle file task wrapper(type: Wrapper) {

gradleVersion = 2.12

}

With this change, running the ./gradlew wrapper task will

generate the new wrapper files.

Every once in a while, however, the existing wrapper is so

old that Android Studio refuses to sync with the existing the

build files, making it impossible to run any tasks.

In that case, you can always go directly to the files that

control the wrapper, which are generated by the wrapper

when it first runs.

In addition to the generated scripts gradlew and gradlew.bat,

the wrapper relies on a folder called gradle/wrapper and the

two files included there, gradle-wrapper.jar and gradle-

wrapper.properties, as shown in Example 2-21.

Example 2-21. The Gradle wrapper files

gradlew

gradlew.bat

gradle/wrapper/

gradle-wrapper.jar

gradle-wrapper.properties

2.4 Upgrading to a Newer Version of Gradle | 41

The gradle-wrapper.properties file, shown in Example 2-22,

contains the distribu tionUrl property, which tells the

wrapper where to download the needed Gradle version.

Example 2-22. Properties in the gradle-wrapper.properties

file

#... date of most recent update ...

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists

zipStoreBase=GRADLE_USER_HOME

zipStorePath=wrapper/dists

distributionUrl=https\://services.gradle.org/distributions/grad

le-2.12-bin.zip Feed free to edit this file directly, changing

the version number in the distribution Url property to

whatever you prefer. That should allow you to run the

existing wrapper scripts without a problem.

Upgrading Gradle with either the command-line flag or from

the explicit wrapper task adds only the binary distribution

(note the bin value in the URL). Android Studio will then offer

to download the complete distribution, including sources,

with a prompt shown in Figure 2-4.

Figure 2-4. Android Studio offering to upgrade to the source

distribution When you click the link, the value in the

distributionUrl property in gradle-wrapper.properties changes

to the al version, as shown in Example 2-23.

Example 2-23. Upgraded properties in the gradle-

wrapper.properties file

#... date of most recent update ...

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists

zipStoreBase=GRADLE_USER_HOME

zipStorePath=wrapper/dists

distributionUrl=https\://services.gradle.org/distributions/grad

le-2.12-all.zip Distribution now uses the all version, which

includes sources If you miss the opportunity to click the

upgrade link, you can always modify the file directly,

replacing bin with all in the URL.

42 | Chapter 2: From Project Import to Release

2.5 Sharing Settings Among Projects

Problem

You want to remove duplicated settings from multiple

modules.

Solution

Use allprojects or subprojects blocks in your top-level Gradle

build file.

Discussion

When you create a new Android project in Android Studio,

the IDE creates a Gradle multiproject build with two build

files: one at the top level, and one in a module called app.

The top-level build.gradle file often has a block called

allprojects, as in Example 2-24.

Example 2-24. The al projects block in the top-level Gradle

build file allprojects {

repositories {

jcenter()

}

}

This block comes from the Gradle DSL and thus works for all

Gradle-based projects, not just Android projects. The

allprojects property comes from the Project API in Gradle,

where it is a property of the org.gradle.api.Project class. The

property consists of a set containing the current project and

all of its subprojects. There is also a method of the same

name, which allows you configure the current project and all

of its subprojects.

It is common in the Gradle API to have a property and a

method

with the same name. The context determines which you are

using.

The behavior is to apply the closure argument to each

project returned by the allpro jects collection, which for a

default project means the top-level project and the app

module. In this case, it simply means that you don’t need to

repeat the repositories block in the app module, because it’s

already set.

2.5 Sharing Settings Among Projects | 43

An alternative is to use a subprojects block. For example, if

you have multiple Android library projects, each will need to

apply the library plug-in in their own build files. If all of your

subprojects are Android libraries, you can remove the

duplication by applying the plug-in at the top level, as in

Example 2-25.

Example 2-25. Using a subprojects block in the top-level

build file subprojects {

apply plugin: 'com.android.library'

}

As you might expect, the subprojects property returns the

set of subprojects, and the subprojects method applies the

supplied closure to each of them.

Advanced considerations

If you check the documentation for the allprojects method in

Project (see Recipe

6.2 for documentation links) using the Gradle DSL reference,

you’ll find that the method takes a reference of type

org.gradle.api.Action as an argument.

More specifically, the signature for the allprojects method is

given in

Example 2-26.

Example 2-26. The complete signature of the al projects

method in Project void allprojects(Action<? super Project>

action) The documentation says that this method executes

the given Action against this project and each of its

subprojects. Action<T> is an interface with a single method,

called execute, that takes a single generic argument, so the

docs seem to imply that you have to create a class that

implements the Action interface, instantiate it, and supply

the result as an argument. In Java (prior to Java SE 8), this is

often done as an anonymous inner class (Example 2-27).

Example 2-27. Implementing al projects in Java, using an

anonymous inner class project.allprojects(new

Action<Project>() {

void execute(Project p) {

// do whatever you like with the project

}

});

In Groovy, you can implement a single-method interface

simply by supplying a closure as an argument. The closure

will then become the implementation of the method. The

Gradle implementation of the allprojects and subprojects

methods is to invoke the closure argument on each project in

the collection.

44 | Chapter 2: From Project Import to Release

If you look at the block in Example 2-24, you can see the

result: the code is providing a closure to the allprojects

method that says to configure the repositories block to use

jcenter() as its repository.

Note that Java SE 8 introduced lambdas that work in a similar

fashion. Java 8 lambdas can be assigned to so-called

functional interfaces, which are interfaces containing only a

single, abstract method. Groovy has had closures from the

beginning of the language.

Gradle 2.0 and above support Java SE 8. The Android SDK,

however, still does not, though some lambda capabilities are

plan‐

ned for Android N as well as Android Studio version 2.1 that

sup‐

port it.

See Also

More details can be found in the Gradle source code.

http://github.com/gradle/gradle

2.6 Signing a Release APK

Problem

You need to digitally sign an APK so it can be released to the

Google Play store.

Solution

Use Java’s keytool command to create a certificate and

configure its use in the signi ngConfigs block of your Gradle

build file.

Discussion

All Android package (APK) files need to be digitally signed

before they are deployed.

By default, Android signs debug APKs for you, using a known

key. To see this, you can use the keytool command from Java.

By default, the debug keystore resides in a subdirectory

called .android in your home directory. The default name for

the keystore is debug.keystore, and has a keystore password

of android. Example 2-28 shows how to list the default

certificate.

2.6 Signing a Release APK | 45

Example 2-28. Listing the key in the debug keystore (Mac OS

X)

> cd ~/.android

> keytool -list -keystore debug.keystore

Enter keystore password: ("android")

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry

androiddebugkey, Feb 9, 2013, PrivateKeyEntry,

Certificate fingerprint (SHA1):

B7:39:B5:80:BE:A0:0D:6C:84:4F:A1:1F:4B:A1:00:14:12:25:DA

:14

The keystore type is JKS, which stands for (naturally enough)

Java KeyStore, used for public and private keys. Java

supports another type called JCEKS (Java Cryptogra-phy

Extensions KeyStore), which can be used for shared keys, but

isn’t used for Android applications.

The keystore has a self-signed certificate with an alias of

androiddebugkey, which is used to sign debug APKs when

they are deployed to connected devices or emulators.

To reset the debug keystore, simply delete the file

debug.keystore. It will be re-created next time you deploy an

app.

You cannot deploy a release version of an app until you can

sign it, which means generating a release key. This also uses

the keytool utility. A sample run is shown in Example 2-29.

Example 2-29. Generating a release key

keytool -genkey -v -keystore myapp.keystore -alias my_alias

-keyalg RSA -keysize 2048 -validity 10000 (all on one line)

Enter keystore password: (probably shouldn't use use

"password") Re-enter new password: (but if you did, type it

again)

What is your first and last name?

[Unknown]: Ken Kousen

What is the name of your organizational unit?

[Unknown]:

What is the name of your organization?

[Unknown]: Kousen IT, Inc.

What is the name of your City or Locality?

[Unknown]: Marlborough

What is the name of your State or Province?

46 | Chapter 2: From Project Import to Release

[Unknown]: CT

What is the two-letter country code for this unit?

[Unknown]: US

Is CN=Ken Kousen, OU=Unknown, O="Kousen IT, Inc.",

L=Marlborough, ST=CT, C=US correct?

[no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate

(SHA256withRSA) with a validity of 10,000 days for: CN=Ken

Kousen, OU=Unknown, O="Kousen IT, Inc.", L=Marlborough,

ST=CT, C=US

Enter key password for <my_alias>

(RETURN if same as keystore password):

[Storing myapp.keystore]

The RSA algorithm is used to generate the public/private

keypair, of 2K size, signed with the SHA256 algorithm, valid

for 10,000 days (a bit over 27 years).

You could now use the jarsigner and zipalign tools to sign

your APK, but it’s easier to let Gradle do it.

As a child of the android closure, add a signingConfigs block,

as shown in

Example 2-30.

Example 2-30. A signingConfigs block in the module build file

android {

// ... other sections ...

signingConfigs {

release {

keyAlias 'my_alias'

keyPassword 'password'

storeFile file('/Users/kousen/keystores/myapp.keystore')

storePassword 'password'

}

}

}

You probably don’t want to put the passwords as hardcoded

constants in the build file. Fortunately, you can put them in

the gradle.properties file or set them on the command line.

For details, see Recipe 2.1.

From the DSL documentation, the signingConfigs block

delegates to an instance of the SigningConfig class, which

has the four commonly used properties listed: keyAlias The

value used in the keytool when signing a particular key

keyPassword

A particular key’s password used during the signing process

2.6 Signing a Release APK | 47

storeFile

The disk file containing keys and certificates, generated by

the keytool storePassword

The password used for the keystore itself

There is also a storeType property (defaults to JKS, as shown

in Example 2-29), but that is rarely used.

To make use of the new configuration, add a signingConfig

property to the release

build type (Example 2-31).

Example 2-31. Using a signing config in a release build

android {

// ... other sections ...

buildTypes {

release {

// ... other settings ...

signingConfig signingConfigs.release

}

}

}

When you invoke the assembleRelease task from Gradle, the

build will generate a release APK in the

app/build/outputs/apk folder (Example 2-32).

Example 2-32. Running the assembleRelease task

> ./gradlew assembleRelease

:app:preBuild UP-TO-DATE

:app:preReleaseBuild UP-TO-DATE

// ... lots of tasks ...

:app:zipalignRelease UP-TO-DATE

:app:assembleRelease UP-TO-DATE

BUILD SUCCESSFUL

kousen at krakatoa in

~/Documents/AndroIDstudio/MyAndroidApp

> ls -l app/build/outputs/apk

total 12088

-rw-r--r-- 1 kousen staff 1275604 Aug 24 15:05 app-

debug.apk

-rw-r--r-- 1 kousen staff 1275481 Aug 26 21:04 app-

release.apk

Note—and this is important— do not lose the keystore. If you

do, you will not be able to publish any updates to your app,

since all versions must be signed with the same key.

48 | Chapter 2: From Project Import to Release

All versions of an app must be signed with the same key.

Otherwise

new versions will be treated as completely new apps.

Put your keystore in a safe place. Yes, you’re using self-

signed certificates, but this is not done for encryption

purposes. It’s being used for integrity (guaranteeing that an

APK has not been modified) and nonrepudiation

(guaranteeing that you are the only one who could have

signed it). If someone else gains access to your keystore,

they could sign other apps in your name.

See Also

Recipe 2.7 discusses the same process using Android Studio

dialogs.

2.7 Signing a Release APK Using Android Studio

Problem

You want to use Android Studio to generate signing

configurations and assign them to build types.

Solution

The Build menu has options for generating signing configs,

and the Project Structure dialog has tabs for assigning them

to build types and flavors.

Discussion

Android Studio allows you to generate a keystore using the

Build → Generate Signed APK menu option (Figure 2-5).

Figure 2-5. Generate Signed APK pop-up

2.7 Signing a Release APK Using Android Studio | 49

Clicking “Create new…” brings up a pop-up to specify the

location of the keystore and to generate a key pair (Figure 2-

6).

Figure 2-6. New Key Store pop-up

If you choose an existing keystore, you can complete the

passwords and alias to use an existing key inside it or create

a new one, as in Figure 2-7.

Figure 2-7. Using an existing keystore

Once a self-signed certificate has been generated, the

Project Structure dialog can be used to configure it for the

current build. First, complete the values in the Signing tab,

as in Figure 2-8.

50 | Chapter 2: From Project Import to Release

Figure 2-8. The Signing tab

Then associate a signing config with a particular build type

using the Build Types tab

(Figure 2-9).

Figure 2-9. Associating a signing config with a build type

A similar dialog can be used to sign particular flavors, which

is dicussed in the recipe on flavors.

See Also

Recipe 2.6 shows how to generate keys from the command

line and how to edit the relevant sections of the module build

file directly.

2.7 Signing a Release APK Using Android Studio | 51

CHAPTER 3

Build Types and Flavors

3.1 Working with Build Types

Problem

You want to customize the debug and release build types, or

create additional types of your own.

Solution

The buildTypes block inside android is used to configure build

types.

Discussion

A build type determines how an app is packaged. By default,

the Android plug-in for Gradle supports two different types of

builds: debug and release. Both can be configured inside the

buildTypes block inside of the module build file. The

buildTypes block from the module build file in a new project

is shown in Example 3-1.

Example 3-1. Default buildTypes block from module build file

android {

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

}

}

}

53

The only build type shown in the example is the release

build, but it is just as easy to add a debug block as well if you

want to configure the default settings. Either block supports

a range of properties. The complete set of properties and

methods can be found in the DSL reference for the

com.android.build.gradle.inter

nal.dsl.BuildType class.

In the release block on the example, minifyEnabled refers to

the automatic removal of unused resources in the packaged

app. If true, Gradle also removes resources from dependent

libraries if they are not needed. This only works if the

shrinkResources property is also set to true.

In Example 3-2, both are set to true.

Example 3-2. Removing resources and shrinking code

android {

buildTypes {

release {

minifyEnabled true

shrinkResources true

proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

http://bit.ly/gradle-dsl
http://bit.ly/gradle-dsl

}

}

}

Turn on code shrinking

Turn on resource shrinking

See the “Resource Shrinking” page for further details.

Another property available in build types is debuggable.

Debug builds automatically have debuggable set to true,

while all other builds default to false.

In order to install multiple build types on a single device,

Android must be able to distinguish their application IDs. The

applicationIDsuffix property allows Gradle to generate

multiple APKs, each with its own ID (Example 3-3).

Example 3-3. Adding a suffix to the application ID and

version name android {

// ... other properties ...

buildTypes {

debug {

applicationIDsuffix '.debug'

versionNameSuffix '-debug'

}

54 | Chapter 3: Build Types and Flavors

http://bit.ly/resource-shrinking

// .. other build types ...

}

}

Now both a release and a debug version of the app can be

deployed to the same device. If you access the Settings on

the device and go to Apps, you can see that both the debug

and release versions are on the same app (Figure 3-1).

Figure 3-1. Both debug and release versions are deployed

To distinguish them, select each version and view the full

version name in the “App info” settings, as in Figure 3-2.

Figure 3-2. Version name in App info settings

3.1 Working with Build Types | 55

Changing the name of the apps involves merging resources,

discussed in Recipe 3.3.

Different build types also allows you to create separate

source trees for each. Merging sources from separate build

types (and flavors) is discussed in Recipe 3.5.

See Also

Flavors are discussed in Recipe 3.2. The combination of a

flavor and a build type is a variant. Each variant allows for

separate resources, manifest entries, and Java source code,

the merger of which is part of Recipes Recipe 3.3 and Recipe

3.5.

3.2 Product Flavors and Variants

Problem

You want to build essentially the same application, but with

different resources and/or classes.

Solution

Product flavors allow you to create multiple different versions

of the same app.

Discussion

Build types are part of the development process, normally

used as an app evolves from development to production. The

default build types, debug and release, reflect that.

Flavors allow you to build multiple versions of the same app.

This could happen when you need to customize the look and

feel of an app for different clients, or if you need both a free

and a paid version of the same app.

To declare a product flavor, use the productFlavors block in

the android closure.

Consider a “Hello, World” style of Android app that greets a

user based on a simple EditText name entry. You can give the

app an attitude by introducing “friendly,”

“arrogant,” and “obsequious” flavors, as in Example 3-4.

Example 3-4. Assigning product flavors

android {

productFlavors {

arrogant {

applicationId 'com.oreilly.helloworld.arrg'

}

friendly {

applicationId 'com.oreilly.helloworld.frnd'

56 | Chapter 3: Build Types and Flavors

}

obsequious {

applicationId 'com.oreilly.helloworld.obsq'

}

}

}

In this case, each has a slightly different applicationId, so

that all three can be installed on the same device.

Flavor names can’t match existing build type names or the

prede‐

fined name androidTest.

Each product flavor can have its own values of the following

properties, among others, which are based on the same

properties from defaultConfig: • applicationId

• minSdkVersion

• targetSdkVersion

• versionCode

• versionName

• signingConfig

Each flavor defines its own source set and resources, which

are siblings of the main source set. For the flavors defined in

Example 3-4, that means in addition to app/src/

main/java, you can also add source files in:

• app/src/arrogant/java

• app/src/friendly/java

• app/src/obsequious/java

You can also add additional resource files in:

• app/src/arrogant/res

• app/src/arrogant/res/layout

• app/src/arrogant/res/values

3.2 Product Flavors and Variants | 57

as well as any other subdirectories of res. The same resource

structure would also apply for all flavors. A simple example is

shown in Figure 3-3.

A similar folder structure is supported for build types as well.

The combination of a build type and a flavor is called a

variant. For the two default build types (debug and release)

and the three flavors shown here (arrogant, friendly, and

obsequious), six different variant APKs can be generated.

Figure 3-3. Product flavors with source code and resources

To see all the available variant names, add the custom task

in Example 3-5 to your

module build.

Example 3-5. A custom task to print available variants

task printVariantNames() {

doLast {

android.applicationVariants.all { variant ->

println variant.name

58 | Chapter 3: Build Types and Flavors

}

}

}

Execution of the printVariantNames task shows them all, as

in Example 3-6.

Writing your own Gradle tasks is discussed in Recipe 4.1.

Example 3-6. Printing all the variant names

> ./gradlew printVariantNames

:app:printVariantNames

obsequiousDebug

obsequiousRelease

arrogantDebug

arrogantRelease

friendlyDebug

friendlyRelease

BUILD SUCCESSFUL

To deploy a particular variant, Android Studio provides a

Build Variants view.

Choose the proper variant from the dropdown list, as shown

in Figure 3-4, and

deploy as usual.

Figure 3-4. Build Variants view in Android Studio

When product flavors are used, the assemble task builds all

possible variants. The assemble<Variant> task builds only

that particular combination of build type and flavor. You can

also run assemble<BuildType> to build all flavors in that

build type, or assemble<Flavor> to build all build types for

that flavor. The install tasks are specific to each variant, as in

installArrogantDebug or installFriendlyRelease.

3.2 Product Flavors and Variants | 59

See Also

Merging resources from different flavors and build types is

discussed in Recipe 3.3.

Changing Java classes in each is discussed in Recipe 3.5.

Writing your own custom tasks in Gradle is shown in Recipe

4.1.

3.3 Merging Resources

Problem

You want to change the images, text, or other resources in a

product flavor.

Solution

Add the proper resource directories to your flavor, add the

relevant files, and change the values they contain.

Discussion

Consider the “Hello World with Attitude” application

discussed in Recipe 3.2, which defined three flavors for the

Hello, World app: arrogant, friendly, and obsequious. In each

case, the app prompts the user for a name and then greets

the user by name. The Java code for each is identical, but the

look and feel for each flavor is different.

The product flavors are defined in the Gradle build file, as

shown in Example 3-7.

Example 3-7. Product flavors in the build.gradle file

android {

// ... other settings ...

productFlavors {

arrogant {

applicationId 'com.oreilly.helloworld.arrg'

}

friendly {

applicationId 'com.oreilly.helloworld.frnd'

}

obsequious {

applicationId 'com.oreilly.helloworld.obsq'

}

}

}

Each flavor is given a separate applicationId so that they can

all be deployed to the same device for demonstration

purposes.

60 | Chapter 3: Build Types and Flavors

Example 3-8 contains the MainActivity class, with its

onCreate and sayHello methods.

Example 3-8. The MainActivity class from the Hel o, World

app

public class MainActivity extends AppCompatActivity {

private EditText editText;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

editText = (EditText) findViewById(R.id.name_edit_text);

}

public void sayHello(View view) {

String name = editText.getText().toString();

Intent intent = new Intent(this, WelcomeActivity.class);

intent.putExtra("user", name); startActivity(intent);

}

}

The activity has an attribute of type EditText, used for the

user’s name. The say Hello method retrieves the name, adds

it to an Intent as an extra, and starts the WelcomeActivity

with the intent.

The layout for the main activity is simply a vertical

LinearLayout with a TextView, an EditText, and a Button

(Example 3-9).

Example 3-9. The activity_main.xml layout

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android

"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical"

tools:context=".MainActivity" >

<TextView

android:id="@+id/name_text_view"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/hello_world" />

<EditText

android:id="@+id/name_edit_text"

android:hint="@string/name_hint"

android:layout_width="match_parent"

3.3 Merging Resources | 61

android:layout_height="wrap_content" />

<Button

android:onClick="sayHello"

android:text="@string/hello_button_label"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

The MainActivity is the launcher. Figure 3-5 shows the initial

screen for the application, customized for the arrogant flavor.

Figure 3-5. Hel o screen in the Arrogant flavor

How were the application name and initial greeting set? All

three flavors have their own resources directory, under

app/<flavor>/res. In each case, a subfolder called values

was added, and a copy of the strings.xml file from

app/src/main/res/values was copied into it. The project

structure for the arrogant flavor is shown in Figure 3-6.

The strings.xml file for the arrogant flavor is shown in

Example 3-10.

Example 3-10. The strings.xml file in the Arrogant res/values

folder

<resources>

<string name="app_name" > Arrogant</string>

<string name="title_activity_welcome" > His/Her Royal

Highness</string> <string name="hello_world" >

Arrogant</string>

<string name="greeting" > We condescend to acknoweldge

your presence, if just barely, %1$s. </string>

</resources>

62 | Chapter 3: Build Types and Flavors

Figure 3-6. Project view showing Arrogant flavor directories

Merging resources by combining the values in the res folder

of the project flavor with the same folder from a build type

and the main directory tree. The priority is: build type

overrides Product Flavor, which overrides the main source

set.

Non-Java resources override each other, where build type

has high‐

est priority, then flavor, then the main directory.

The WelcomeActivity has an onCreate method that retrieves

the user’s name and greets the user (Example 3-11).

Example 3-11. The WelcomeActivity, which greets the user

public class WelcomeActivity extends

AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_welcome);

String name = getIntent().getStringExtra("user");

TextView greetingText = (TextView)

findViewById(R.id.greeting_text); String format =

getString(R.string.greeting);

greetingText.setText(String.format(format, name));

}

}

The layout for the WelcomeActivity consists of a TextView

with text and an image at

the bottom (Example 3-12).

3.3 Merging Resources | 63

Example 3-12. The activity_welcome.xml layout

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android

"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical"

tools:context="com.oreilly.helloworld.WelcomeActivity" >

<TextView

android:id="@+id/greeting_text"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/hello_world"

android:textSize="24sp"

android:drawableBottom="@drawable/animal"

/>

</LinearLayout>

Each flavor has its own values.xml and animal.png files,

which change the greeting given. The values in Example 3-

10 result in the welcome shown in Figure 3-7.

Each additional flavor is handled the same way. The friendly

flavor uses the strings.xml file shown in Example 3-13.

Example 3-13. The strings.xml file in the Friendly res/values

folder

<resources>

<string name="app_name" > Friendly</string>

<string name="title_activity_welcome" > We are BFFs!

</string> <string name="hello_world" >

Friendly</string>

<string name="greeting" > Hi there, %1$s! </string>

</resources>

The Friendly welcome page is shown in Figure 3-8.

Finally, the Obsequious strings are shown in Example 3-14.

Example 3-14. The strings.xml file in the Obsequious

res/values folder

<resources>

<string name="app_name" > Obsequious</string>

<string name="hello_world" > Obsequious</string>

<string name="title_activity_welcome" > your humble

servant</string> <string name="greeting" > O great

%1$s, please accept this pathetic greeting from my

unworthy self. I grovel in your general direction. </string>

</resources>

64 | Chapter 3: Build Types and Flavors

Figure 3-7. Welcome in the Arrogant flavor

Figure 3-8. Welcome in the friendly flavor

The resulting Obsequious welcome page is shown in Figure

3-9.

3.3 Merging Resources | 65

Figure 3-9. Welcome in the Obsequious flavor

Merging non-Java resources is easy. Just add the proper

folders and files, and the flavor values will override those

from main. To deploy an individual flavor of the app, choose

it from the Build Variants view, as in Figure 3-10.

Figure 3-10. Build Variants view in Android Studio

See Also

Flavors and variants are discussed in Recipe 3.2. Merging

source code is in Recipe 3.5.

66 | Chapter 3: Build Types and Flavors

3.4 Flavor Dimensions

Problem

One product flavor is not enough. You need another criterion

to distinguish different versions of your app.

Solution

Add flavorDimensions to your product flavors.

Discussion

The recipe in Recipe 3.2 showed a “Hello, World” app with

three product flavors: arrogant, friendly, and obsequious.

That means the different flavors are being distinguished

based on attitude.

Suppose, however, that different clients would like their own

branded versions of each flavor of the app. The source code

is essentially the same for each. Only a couple of minor

resources are different.

To keep from having too much duplication, introduce an

additional flavor dimen‐

sion. The build file is shown in Example 3-15.

Example 3-15. Adding flavor dimensions

flavorDimensions 'attitude', 'client'

productFlavors {

arrogant {

dimension 'attitude'

applicationId 'com.oreilly.helloworld.arrg'

}

friendly {

dimension 'attitude'

applicationId 'com.oreilly.helloworld.frnd'

}

obsequious {

dimension 'attitude'

applicationId 'com.oreilly.helloworld.obsq'

}

stark {

dimension 'client'

}

wayne {

dimension 'client'

}

}

3.4 Flavor Dimensions | 67

There are now two dimensions of flavor: attitude and client.

The arrogant, friendly, and obsequious flavors are all in the

attitude dimension, and the stark and wayne flavors are

types of client.

The combination generates many more variants. Running the

printVariantNames

custom task from Recipe 4.1 now shows the results in

Example 3-16.

Example 3-16. Printing all the variant names

./gradlew printVariantNames

:app:printVariantNames

obsequiousStarkDebug

obsequiousStarkRelease

obsequiousWayneDebug

obsequiousWayneRelease

arrogantStarkDebug

arrogantStarkRelease

arrogantWayneDebug

arrogantWayneRelease

friendlyStarkDebug

friendlyStarkRelease

friendlyWayneDebug

friendlyWayneRelease

BUILD SUCCESSFUL

The combination of two build types with three attitudes and

two clients gives 2 * 3

* 2 = 12 different variants.

To make the client variant actually do something visible, add

directory trees for each of the client flavors, as in Figure 3-

11.

The colors.xml file in the stark client res/values folder is in

Example 3-17.

Example 3-17. The colors.xml file in the stark/res/values

folder

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="text_color" > #beba46</color>

<color name="background_color" > #771414</color>

</resources>

The corresponding colors.xml file in the wayne/res/values

folder is shown in Example 3-18.

Example 3-18. The colors.xml file in the wayne/res/values

folder

<?xml version="1.0" encoding="utf-8"?>

<resources>

68 | Chapter 3: Build Types and Flavors

<color name="text_color" > #beba46</color>

<color name="background_color" > #771414</color>

</resources>

Figure 3-11. Directory trees for the client flavors

The strings.xml file in each client flavor changes just the

hello_world string (Exam‐

ples 3-19 and 3-20).

Example 3-19. The strings.xml file in the stark/res/values

folder

<resources>

<string name="hello_world" > Stark Industries</string>

</resources>

Example 3-20. The strings.xml file in the wayne/res/values

folder

<resources>

<string name="hello_world" > Wayne

Enterprises</string> </resources>

Finally, the TextView in the activity_main.xml layout file has

been modified to use the

new colors and strings (Example 3-21).

3.4 Flavor Dimensions | 69

Example 3-21. Updated TextView element with colors and

text

<TextView

android:id="@+id/name_text_view"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:textColor="@color/text_color"

android:background="@color/background_color"

android:textSize="32sp"

android:text="@string/hello_world" />

The textColor attribute uses the color resource for each

flavor, and the text attribute uses the string value provided

by each flavor.

As a result, Figure 3-12 shows the arrogant flavor from Stark

Industries.

Figure 3-12. The Arrogant debug flavor from Stark Industries

By contrast, the friendly flavor from Wayne Enterprises is

shown in Figure 3-13.

One additional note is necessary here. The flavorDimensions

tag in the Gradle build file listed attitude before client, which

means values from the attitude dimension will have higher

priority than the client dimension. Therefore, the hello_world

string resource was removed from each of the attitude

flavors. Switching the order of client and attitude would have

worked just as well, of course.

70 | Chapter 3: Build Types and Flavors

Figure 3-13. The Friendly debug flavor from Wayne

Enterprises

See Also

Flavors and variants are shown in Recipe 3.2. Resource

merging is in Recipe 3.3, and merging Java source code is in

Recipe 3.5. Build types are discussed in Recipe 3.1.

3.5 Merging Java Sources Across

Flavors

Problem

You want to add Android activities or other Java classes to

individual product flavors.

Solution

Create the proper source folders, add your Java classes, and

merge them with the main source set.

Discussion

While string and layout resources in flavors and build types

override the corresponding values in the main source set,

Java classes are different. If your code in the main source set

refers to a particular class, then each flavor and build type

can have its own implementation of that class as long as you

don’t have one in main.

3.5 Merging Java Sources Across Flavors | 71

That sounds more complicated than it is. The “Hello, World”

app discussed in Recipe

3.2 and Recipe 3.4 has two flavors that represent clients.

Consider now a modified version of that app that adds a

button to the main activity to call for help. The additional

button has the label “Call for Help!”

The main (launch) activity for the friendly, wayne flavor is

shown in Figure 3-14.

Figure 3-14. Main activity for the “wayne” client

The “stark” page is the same, just with a different header, as

shown in Figure 3-15.

Figure 3-15. Main activity for the “stark” client

72 | Chapter 3: Build Types and Flavors

Clicking the “Call for Help!” button creates an Intent that

starts the CallForHelpAc tivity. This activity, and its

associated layout, have been removed from the main source

tree, and a copy was added to both the stark and wayne

source sets. The overall project layout when working with the

friendly, wayne, debug variant is shown in Figure 3-16.

Figure 3-16. Source folders for main, stark, and wayne

flavors

The figure shows that the Java sources in the wayne flavor

are currently in the classpath and those in the stark tree are

not. Both flavors contain the CallForHelpActiv ity, but the

implementations of each are completely different.

For the wayne flavor, the help screen contains just a single

fragment containing a Text View, as shown in Figure 3-17.

3.5 Merging Java Sources Across Flavors | 73

Figure 3-17. Help activity for wayne flavor

The help page for the stark flavor consists of a ListFragment

with several entries, shown in Figure 3-18.

Figure 3-18. Help activity for stark flavor

74 | Chapter 3: Build Types and Flavors

Any class referenced by an element in the main source set

must exist in each flavor.

After that, the implementations are completely independent.

See Also

Recipe 3.2 shows how to implement flavors and variants.

Recipe 3.3 is about merging non-Java resources. Recipe 3.4

shows how to have multiple flavor dimensions.

3.5 Merging Java Sources Across Flavors | 75

CHAPTER 4

Custom Tasks

4.1 Writing Your Own Custom Tasks

Problem

You want to customize the Gradle build process with your

own tasks.

Solution

Add task elements to the Gradle build files. Use the extra

properties supplied with the Android plug-in to make

development easier.

Discussion

The Gradle DSL supports a task block for defining your own

custom tasks. The API includes a wide range of existing tasks

(like Copy, Wrapper, and Exec) that you can use simply by

setting properties.

For example, the Copy task includes from and into

properties, and the from block can be configured to exclude

specified filename patterns. To copy all the APKs into a new

folder, excluding those that are either unsigned or unaligned,

add the task in Example 4-1 to the module build.

Example 4-1. Copy APKs to another folder

task copyApks(type: Copy) {

from("$buildDir/outputs/apk") {

exclude '**/*unsigned.apk', '**/*unaligned.apk'

}

into '../apks'

}

77

The buildDir property refers to the default build directory (

app/build), and the dol-lar sign is used to inject it into a

Groovy string (with double quotes). The documentation for

the Copy task shows that the exclude block inside from

supports an Ant-style directory name, meaning that **

matches all descendent directories.

If you don’t want to simply configure an existing Gradle task,

you need to understand the distinction between the

configuration and execution phases of Gradle. During the

configuration phase, Gradle builds a DAG based on their

dependencies. It then executes the desired task, along with

its dependencies. All tasks are configured before any are

executed.

Gradle prefers declarative tasks, like the Example 4-1 task,

where you specify what you want done but not how to do it.

If you need to execute commands, however, add a doLast

block to your Gradle task.

The task shown in Example 4-2, from Recipe 3.2, is repeated

here.

Example 4-2. A custom task to print available variants

task printVariantNames() {

doLast {

android.applicationVariants.all { variant ->

println variant.name

}

}

}

Anything done in the task either before or after the doLast

block would be run during configuration time. The code in

the doLast block itself runs at execution time.

The Android plug-in adds an android property, which in turn

has an applica tionVariants property that returns all the

buildType/flavor combinations. In this case, they are all being

printed to the console.

The applicationVariants property is only available for the

com.android.application plug-in. A libraryVariants property

is available in Android libraries. A testVariants property is

available in both.

To install all the debug flavors onto a single device (assuming

they all have unique applicationId values), use the task in

Example 4-3.

78 | Chapter 4: Custom Tasks

Example 4-3. Install all the debug flavors on a single device

task installDebugFlavors() {

android.applicationVariants.all { v ->

if (v.name.endsWith('Debug')) {

String name = v.name.capitalize()

dependsOn "install$name"

}

}

}

In this case, the dependsOn method shows that this is part of

the configuration process rather than execution. Each variant

name, like friendlyDebug, is capitalized (FriendlyDebug) and

then the corresponding installation task (install

FriendlyDebug) is added as a dependency to the

installDebugFlavors task.

The result is during the configuration process,

installArrogantDebug, install FriendlyDebug, and

installObsequiousDebug are all added as dependencies to

installDebugFlavors. Therefore, executing

installDebugFlavors at the command line requires all three

flavor installs.

Example 4-4. Instal ing all the debug flavors

./gradlew instDebFl

:app:preBuild UP-TO-DATE

:app:preArrogantDebugBuild UP-TO-DATE

:app:checkArrogantDebugManifest

// ... lots of tasks ...

:app:assembleArrogantDebug UP-TO-DATE

:app:installArrogantDebug

Installing APK 'app-arrogant-debug.apk' on

'Nexus_5_API_23(AVD) - 6.0'

Installed on 1 device.

:app:checkFriendlyDebugManifest

// ... lots of tasks ...

:app:assembleFriendlyDebug UP-TO-DATE

:app:installFriendlyDebug

Installing APK 'app-friendly-debug.apk' on

'Nexus_5_API_23(AVD) - 6.0'

Installed on 1 device.

:app:checkObsequiousDebugManifest

// ... lots of tasks ...

:app:assembleObsequiousDebug UP-TO-DATE

:app:installObsequiousDebug

Installing APK 'app-obsequious-debug.apk' on

'Nexus_5_API_23(AVD) - 6.0'

Installed on 1 device.

:app:installDebugFlavors

BUILD SUCCESSFUL

4.1 Writing Your Own Custom Tasks | 79

Extending the ADP Timeout Period

As an aside, while the build process is relatively quick, the

deployment process may not be. The android tag supports

an adbOptions tag to increase the amount of time allowed

before the process hits a timeout limit (Example 4-5).

Example 4-5. Changing the ADB timeout period

android {

adbOptions {

timeOutInMs = 30 * 1000

}

}

This extends the timeout limit to 30 seconds. Adjust this

value if you are getting

ShellCommandUnresponsiveException failures.

You can see that writing your own custom tasks requires at

least some knowledge of Groovy. An extensive discussion is

therefore a bit beyond the scope of this book, but there are

several good Groovy resources available. Additional Groovy

concepts are defined in this book as they occur.

See Also

The Gradle plug-in User Guide (see Recipe 6.2) shows

available properties in the android object. The

documentation for the Copy, Zip, or other Gradle tasks is

found on the Gradle website. Appendix A and Appendix B

have background information on the Groovy programming

language and basic Gradle information, respectively.

4.2 Adding Custom Tasks to the Build Process

Problem

You want to call your custom tasks as part of an overall build

process.

Solution

Use the dependOn property to insert your task into the

directed acyclic graph.

Discussion

During the initialization phase, Gradle assembles the tasks

into a sequence according to their dependencies. The result

is a DAG. For example, the Gradle documentation forms a

DAG for the Java plug-in, as shown in Figure 4-1.

80 | Chapter 4: Custom Tasks

Figure 4-1. Directed acyclic graph for the Java plug-in tasks

The “directed” term means each dependency arrow goes in

one direction. “Acyclic”

means that there are no loops in the graph.

Adding your own custom task to the process means inserting

your task into the graph at the proper location.

In Recipe 4.1, the copyApks task was defined to copy all the

generated APKs into a separate directory. That task is

reproduced in Example 4-6 for convenience.

Example 4-6. Copy APKs to another folder

task copyApks(type: Copy) {

from("$buildDir/outputs/apk") {

exclude '**/*unsigned.apk', '**/*unaligned.apk'

}

into '../apks'

}

That task isn’t very useful, however, if the APKs have not yet

been generated. The assemble task builds the APKs, so make

it a dependency of the copyApks task, as in Example 4-7.

4.2 Adding Custom Tasks to the Build Process | 81

Example 4-7. Updated copy task to generate them first task

copyApks(type: Copy, dependsOn: assembleDebug) {

from("$buildDir/outputs/apk") {

exclude '**/*unsigned.apk', '**/*unaligned.apk'

}

into '../apks'

}

Run assembleDebug first

The dependency on assembleDebug means all the debug

APKs will be generated before the copy task runs. You can

use assemble instead if you want the release APKs as well.

If you would like the copyApks task to run every time you do

a build, make it a dependency of the build task, as in

Example 4-8.

Example 4-8. Making copyApks a part of the build

build.dependsOn copyApks

Now running the build task will also copy the APKs into the

separate folder. You have inserted the copyApks task into the

DAG with the correct dependency information.

Removing the generated apks folder containing all the APKs

can be done in a similar fashion, but as shown in Recipe 1.1,

the top-level Gradle build file already has a clean task that

we can modify, as shown in Example 4-9.

Example 4-9. clean task generated by Android Studio

task clean(type: Delete) {

delete rootProject.buildDir

}

The delete task in Gradle accepts a list of files or folders, so

rather than make a special task to remove the apks folder,

it’s easy enough to modify this task, as shown in Example 4-

10.

Example 4-10. Modified clean task to remove the apks

directory

task clean(type: Delete) {

delete rootProject.buildDir, 'apks'

}

Any custom task can be inserted into the build process using

this mechanism.

82 | Chapter 4: Custom Tasks

See Also

Recipe 4.1 discusses creating custom tasks in Android builds.

The topic of custom tasks is part of Appendix B.

4.3 Excluding Tasks

Problem

You want to exclude certain tasks from the build process.

Solution

Exclude an individual task using the -x flag. Exclude multiple

tasks by modifying the task graph.

Discussion

The Gradle build process involves a lot of tasks executed

sequentially. Most of them depend on tasks executed earlier

in the process, but there are some that can be excluded if

time is critical.

As an example, the lint task is useful for determining how

closely your project adheres to Google’s recommended

practices for Android apps, but you don’t neces-sarily have

to run it every time.

Recall that the -x flag (short for --exclude-task) in Gradle

excludes a given task.

Therefore, when running a build, use the flag to skip the lint

task (or any others you don’t want), as shown in Example 4-

11.

Example 4-11. Excluding the lint task

> ./gradlew build -x lint

This excludes the lint task and any of its dependencies. Any

task that need its result will not run either, so be sure that

any task you exclude is not required later in the process.

The only problem is that if your project involves multiple

variants, there is a lint task for each. In principle you could

exclude them all manually, but you might prefer to exclude

the whole set as part of the build.

When Gradle runs, it assembles a directed acyclic graph,

known as a task graph. You can get a reference to it inside

your build file through the gradle object. Any manipulation of

the graph needs to be done after it has been formed, so you

want to use the whenReady property before applying any

changes.

4.3 Excluding Tasks | 83

The result is you can write code inside the build file like that

shown in Example 4-12.

Example 4-12. Disabling all tasks that start with the word lint

gradle.taskGraph.whenReady { graph ->

graph.allTasks.findAll { it.name ==~ /lint.*/ }*.enabled =

false

}

The allTasks property of the task graph invokes the

getAllTasks method, using the normal Groovy idiom. That

returns a java.util.List of tasks. Groovy adds a findAll method

to List that returns only the tasks that satisfy the supplied

closure.

In this case, the closure says access the name property of

each task and check whether or not it exactly matches the

regular expression. Applying the “spread-dot” operator to

the resulting list disables each task in the list.

The result is that all tasks that have a name that starts with

the letters lint have their enabled property set to false, so

none of them will run.

Since you may not want to always exclude all the lint tasks,

you can check whether

or not a project property has been set before doing this, as in

Example 4-13.

Example 4-13. Only disable the lint tasks if the noLint

property is set gradle.taskGraph.whenReady { graph -> if

(project.hasProperty('noLint')) {

graph.allTasks.findAll { it.name ==~ /lint.*/ }*.enabled =

false

}

}

You can set a project property from the command line using

the -P flag, as in

Example 4-14.

Example 4-14. Setting a project property

> ./gradlew build -PnoLint | grep lint

:app:lintVitalArrogantRelease SKIPPED

:app:lintVitalFriendlyRelease SKIPPED

:app:lintVitalObsequiousRelease SKIPPED

:app:lint SKIPPED

Clearly there’s a fair amount of Groovy knowledge involved

in this approach, but the idea of manipulating the task graph

after it has been assembled is a very powerful one.

84 | Chapter 4: Custom Tasks

See Also

Recipe 2.1 discusses how to set project properties. Excluding

tasks as a means of improving build performance is part of

Recipe 6.1.

4.4 Custom Source Sets

Problem

You want to use nonstandard directories for source code in

your project.

Solution

Use the sourceSets property in your Gradle build.

Discussion

The samples that come with the Android distribution are

configured to use multiple source folders, in order to

separate common files from the main sample code.

Consider an arbitrary example from the API 23 (Android 6.0,

Marshmallow) distribution, called Basic Gesture Detect,

which is found in the input/BasicGestureDetect folder of the

samples section. The details of the application itself are not

important— it’s the Gradle build that shows the source set

modifications.

Example 4-15 shows the Gradle build file from the

Application subdirectory (note that the samples commonly

use Application instead of app for the main subproject).

Example 4-15. Gradle build file with source sets

// The sample build uses multiple directories to

// keep boilerplate and common code separate from

// the main sample code.

List<String> dirs = [

'main', // main sample code; look here for the interesting

stuff.

'common', // components that are reused by multiple

samples

'template'] // boilerplate code that is generated by the

sample template process android {

// ... code omitted ...

sourceSets {

main {

dirs.each { dir ->

java.srcDirs "src/${dir}/java"

res.srcDirs "src/${dir}/res"

}

}

4.4 Custom Source Sets | 85

androidTest.setRoot('tests')

androidTest.java.srcDirs = ['tests/src']

}

}

The build file defines a List<String> called dirs to represent

the source directories.

Groovy supports a native syntax for lists, using square

brackets with values separated by commas. In this case, the

values are main, common, and template.

Inside the android block, the sourceSets property is used to

add the relevant source directories to the classpath.

Focusing on the section inside the main block, Groovy’s each

iterator supplies each entry in the list to the closure

argument in Example 4-16.

Example 4-16. Groovy each with a closure

dirs.each { dir ->

java.srcDirs "src/${dir}/java"

res.srcDirs "src/${dir}/res"

}

The each method comes from Groovy. It iterates over every

element of a collection, passing it into the closure argument.

The closure here labels each element as dir and substitutes

it into the Groovy strings.

The standard project layout defines a default source tree

src/main/java and a resource tree src/main/res. In this case,

however, additional directories are added to those

collections by using the srcDirs property. The result in this

case is that the folders src/

main/java, src/common/java, and src/template/java are all

added to the compile classpath, and the folders src/main/res,

src/common/res, and src/template/res are all considered

resource directories.

The real irony, however, is that this particular sample doesn’t

have any of the additional folders in it. All the Java sources

are under src/main/java and all the resources are under

src/main/res. In fact, none of the samples actually use the

defined structure.

They all restrict their Java source code and resources to the

standard directories. The structure just defined is therefore

either something planned for the future, or a hold-over from

something older, or maybe just evidence that the Google

Android developers have a sense of humor.

There is one section of the sourceSets property that is used,

however. Instead of putting all the tests under the predefined

src/androidTest/java folder, the Gradle build file changes that

location (Example 4-17).

86 | Chapter 4: Custom Tasks

Example 4-17. Changing the root directory for tests

androidTest.setRoot('tests')

androidTest.java.srcDirs = ['tests/src']

The test root is now the tests folder, and the tests

themselves are placed in the tests/src folder. Each sample

project has two folders underneath the Application directory:

src and tests, and the tests folder contains a subdirectory

called src. The basic project layout for the

ActivityInstrumentation example contains an Application

directory, whose contents are structured like that in Example

4-18.

Example 4-18. Directory layout for sample project

.

├── build.gradle

├── src

│ └── main

│ ├── AndroidManifest.xml

│ ├── java

│ │ └── com

│ │ └── example

│ │ └── android

│ │ ├── activityinstrumentation

│ │ │ └── MainActivity.java

│ │ ... // more

│ └── res

│ ├── drawable-hdpi

│ │ ├── ic_launcher.png

│ │ └── tile.9.png

│ ... // more

│ ├── values-v11

│ │ └── template-styles.xml

│ └── values-v21

│ ├── base-colors.xml

│ └── base-template-styles.xml

└── tests

├── AndroidManifest.xml

└── src

└── com

└── example

└── android

└── activityinstrumentation

└── SampleTests.java

As you can see, the Java code goes under src/main/java, the

resources go under src/

main/res, and the tests go under tests/src of all places.

4.4 Custom Source Sets | 87

Where does the sourceSets property get used? Legacy

Android apps (e.g., those written before the conversion to

the Gradle build system) used a different project structure.

Android Studio can import those apps, but it will rewrite the

structure when doing so. See Recipe 2.2 and Recipe 2.3 for

details.

See Also

The sourceSets property is often used with legacy apps.

4.5 Using Android Libraries

Problem

You want to add library modules to your app.

Solution

Use the library plug-in and add the library module as a

dependency.

Discussion

You can add a lot of additional functionality to an app by

using Java libraries, which come in the form of jar files.

Recipe 1.5 discusses this in detail, showing how to use

the dependencies block. For example, to use Google’s Gson

library for parsing JSON

data, add the dependency to the module build file, as shown

in Example 4-19.

Example 4-19. Adding Google’s Gson library

dependencies {

compile 'com.google.code.gson:gson:2.6.2'

}

Android libraries go beyond Java libraries, in that they

include either classes from the Android API, any needed

resources, or both. When the project is built, Gradle

assembles Android libraries into aar (Android Archive) files,

which are like jar files but include the Android dependencies.

From a Gradle perspective, Android libraries are subprojects

from the root. That means they are like Android applications,

but in a subdirectory. The name of the added module

(Android Studio calls them modules) is therefore added to

the settings.gradle file, as in Example 4-20.

Example 4-20. A settings.gradle file with an added module

include ':app', ':icndb'

88 | Chapter 4: Custom Tasks

In this case, the Android library module is called icndb, which

stands for the Internet

http://www.icndb.com/

Chuck Norris Database, which serves up Chuck Norris jokes

in the form of JSON

responses. The API page on the website is shown in Figure 4-

2.

Figure 4-2. The API page for the ICNDB site

As an example of an Android library, this site will be

accessed as a RESTful web service, the returned JSON data

will be parsed, and the resulting joke will be added to the

Welcome activity in a TextView.

To create a library module in Android Studio, use the “New

Module” wizard and select the “Android Library” type, as in

Figure 4-3.

Other options on the New Module wizard include Java Library

and

Import .JAR/.AAR Package, among others.

4.5 Using Android Libraries | 89

http://www.icndb.com/

Figure 4-3. The Android Library option in the New Module

wizard After giving the library a name, you can then add

whatever type of activity you want, if any. Completing the

wizard creates the library directory and adds it to the

settings.gradle file in the root project.

Each library has its own Gradle build file, which supports the

same settings as the root project. You can specify minimum

and target SDK versions, customize build types, add flavors,

and modify dependencies however you like. The important

differ-ence is that the Gradle build uses a different plug-in, as

shown in Example 4-21.

Example 4-21. The build.gradle file for the ICNDB library

module apply plugin: 'com.android.library'

android {

compileSdkVersion 23

buildToolsVersion "23.0.3"

packagingOptions {

exclude 'META-INF/notice.txt'

exclude 'META-INF/license.txt'

exclude 'LICENSE.txt'

}

defaultConfig {

90 | Chapter 4: Custom Tasks

minSdkVersion 16

targetSdkVersion 23

versionCode 1

versionName "1.0"

}

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

}

}

}

dependencies {

compile 'com.google.code.gson:gson:2.6.2'

compile 'com.squareup.retrofit2:retrofit:2.0.1'

compile 'com.squareup.retrofit2:converter-gson:2.0.1'

}

Use the library plug-in

Exclude conflicting files from multiple dependencies

The build file adds the Retrofit 2 project as a dependency,

and its Gson converter for the JSON messages, as well as the

Gson library discussed earlier.

Note also the use of the packagingOptions block. That allows

you to exclude files of the same name that appear in

multiple dependencies.

If you use these libraries, the implementation of the ICNDB

library becomes simple, as shown in Example 4-22.

Example 4-22. The JokeFinder class, which does all the work

public class JokeFinder {

private TextView jokeView;

private Retrofit retrofit;

private AsyncTask<String, Void, String> task;

public interface ICNDB {

@GET("/jokes/random")

Call<IcndbJoke> getJoke(@Query("firstName") String

firstName,

@Query("lastName") String lastName,

@Query("limitTo") String limitTo);

}

public JokeFinder() {

retrofit = new Retrofit.Builder()

.baseUrl("http://api.icndb.com")

.addConverterFactory(GsonConverterFactory.create())

4.5 Using Android Libraries | 91

.build();

}

public void getJoke(TextView textView, String first, String

last) {

this.textView = textView;

new JokeTask().execute(first, last);

}

private class JokeTask extends AsyncTask<String, Void,

String> {

@Override

protected String doInBackground(String... params) {

ICNDB icndb = retrofit.create(ICNDB.class);

Call<IcndbJoke> icndbJoke = icndb.getJoke(

params[0], params[1], "[nerdy]");

String joke = "";

try {

joke = icndbJoke.execute().body().getJoke();

} catch (IOException e) {

e.printStackTrace();

}

return joke;

}

@Override

protected void onPostExecute(String result) {

jokeView.setText(result);

}

}

}

Interface for Retrofit GET request access

Building the Retrofit instance with Gson converter

Asynchronous task to access web service off the UI thread

The JokeFinder class accesses the ICNDB web service using

the supplied first and last names for the hero, using an

asynchronous task so that the operation is performed off the

UI thread. The getJoke method includes an argument for a

TextView, which the JokeTask updates once parsing of the

result is complete.

The IcndbJoke task is a simple POJO that maps the the JSON

response. The form of the response is shown in Figure 4-4.

The JSON response is quite small, so the corresponding

IcndbJoke class is also simple, as shown in Example 4-23.

92 | Chapter 4: Custom Tasks

Example 4-23. The IcndbJoke class POJO, which maps to the

JSON format public class IcndbJoke {

private String type;

private Joke value;

public String getJoke() {

return value.getJoke();

}

public String getType() { return type; }

public void setType(String type) { this.type = type; }

public Joke getValue() { return value; }

public void setValue(Joke value) { this.value = value;}

private static class Joke {

private int ID;

private String joke;

private String[] categories;

public int getId() { return ID; }

public void setId(int ID) { this.id = ID; }

public String getJoke() { return joke; }

public void setJoke(String joke) { this.joke = joke; }

public String[] getCategories() { return categories; }

public void setCategories(String[] categories) {

this.categories = categories;

}

}

}

Figure 4-4. JSON response from the ICNDB service

That’s it for the library. The app uses the library through its

JokeFinder class. This is made available using a project

dependency in the module build file, as shown in Example 4-

24.

4.5 Using Android Libraries | 93

Example 4-24. Using the ICNDB module in the app apply

plug-in: 'com.android.application'

android {

compileSdkVersion 23

buildToolsVersion "23.0.3"

// ... all the regular settings ...

}

dependencies {

compile project(':icndb')

}

Use the icndb library at compile time

The compile dependency uses the project method, which

takes the subdirectory containing the module as an

argument. The result is that Gradle knows to build the ICNDB

module before building the app, and to make its classes

available at compile time.

The WelcomeActivity calls the getJoke method in the

JokeFinder, supplying a reference to the TextView to be

updated, along with a first and last name supplied from a

SharedPreferences object, as seen in Example 4-25, where

all the other parts have been omitted.

Example 4-25. Invoking the getJoke method from the

WelcomeActivity public class WelcomeActivity extends

Activity {

private TextView jokeText;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_welcome);

jokeText = (TextView) findViewById(R.id.joke_text);

final SharedPreferences prefs =

PreferenceManager.getDefaultSharedPreferences(this);

new JokeFinder().getJoke(jokeText,

prefs.getString("first", "Xavier"),

prefs.getString("last", "Ducrohet"));

}

}

94 | Chapter 4: Custom Tasks

Xavier Ducrohet is the head of the Gradle plug-in for Android

project and head of the Android Studio development team at

Goo‐

gle.

A sample run is shown in Figure 4-5.

Figure 4-5. Running the app

The build process itself generates both debug and release

versions of the library in the icndb/build/outputs/arr

directory, shown in Example 4-26.

Example 4-26. Output Android library archive files

> ./gradlew build

> ls icndb/build/outputs/aar

icndb-debug.aar icndb-release.aar

The aar files can be published to repositories for later use by

other apps.

To summarize:

• Android library projects are Java projects that need Android

dependencies, like classes from the Android API or resources

or both • Gradle uses subdirectories for multiproject builds,

where each subproject is added to the top-level

settings.gradle file • In Android Studio, use the “Android

Library” option in the “New Module” wizard to create an

Android library project

4.5 Using Android Libraries | 95

• The library project uses the com.android.library plug-in

• The app build file uses the project(":library") dependency

to access the library classes from the app

Following this pattern, you can add functionality to Android

libraries and reuse them in other applications.

96 | Chapter 4: Custom Tasks

CHAPTER 5

Testing

5.1 Unit Testing

Problem

You want to test the non-Android parts of your app.

Solution

Use the experimental unit testing support added in version

1.1 of Android Studio and the Gradle plug-in for Android.

Discussion

The Eclipse Android Development Tools (ADT) plug-in only

supported integration tests, and required developers to

create a separate project just for the tests themselves.

One of the advantages of the switch to Android Studio and

Gradle was support for tests inside the Android project itself.

Prior to version 1.1 of Android Studio and the associated

Gradle plug-in, however, those tests were still restricted to

integration tests, meaning you needed either an emulator or

a connected device in order to run the tests. Integration

tests can be very powerful and useful, and are the subject of

Recipes Recipe 5.3 and Recipe 5.4.

This recipe discusses true unit tests, which run on a local JVM

on a development machine. Unlike the integration tests that

use an androidTest source set, the unit tests reside in the

src/test/java directory of your app.

When you generate a new Android app in Android Studio, a

sample unit test is provided for you. It resides in the

src/test/java tree, but is not currently in the classpath, as

Figure 5-1 shows.

97

Figure 5-1. Sample unit test generated by Android Studio,

under app/src The generated test is shown in Example 5-1.

Example 5-1. Generated sample unit test

import org.junit.Test;

import static org.junit.Assert.*;

/**

* To work on unit tests, switch the Test Artifact in the Build

Variants view.

*/

public class ExampleUnitTest {

@Test

public void addition_isCorrect() throws Exception {

assertEquals(4, 2 + 2);

}

}

This type of test should look familiar to anyone who has used

JUnit in the past, which should be virtually every Java

developer. The @Test annotation from JUnit 4 indicates that

the addition_isCorrect method is a test method. The

assertEquals method is a static method in the Assert class

(note the static import of all static methods in that class),

whose first argument is the correct answer and whose

second argument is the actual test.

In order to run the test, you need to do what the comment

says, which is to select the Test Artifact in the Build Variants

view, as shown in Figure 5-2.

Figure 5-2. Selecting the “Unit Tests” artifact in Build Variants

98 | Chapter 5: Testing

Note that by selecting “Unit Tests,” the directory tree under

src/test/java is now understood by Android Studio to contain

test sources (because the folder is shown in green) and the

com/oreil y/hel oworld tree is now interpreted as a package.

One last step is required before executing the unit test. You

need to make sure JUnit is included as a testCompile

dependency in your project. As shown in Recipe 1.5, this is

already the case for the default project. The dependencies

section of the module build file is repeated in Example 5-2.

Example 5-2. JUnit dependency in the module build.gradle

file

dependencies {

compile fileTree(dir: 'libs', include: ['*.jar'])

testCompile 'junit:junit:4.12'

compile 'com.android.support:appcompat-v7:23.0.1'

}

JUnit dependency added during testCompile

You can now run the tests from Gradle using the test target,

but be prepared for a lot of effort (see Example 5-3).

Example 5-3. Executing the unit test

> ./gradlew test

Starting a new Gradle Daemon for this build (subsequent

builds will be faster).

:app:preBuild UP-TO-DATE

:app:preArrogantStarkDebugBuild UP-TO-DATE

:app:checkArrogantStarkDebugManifest

:app:preArrogantStarkReleaseBuild UP-TO-DATE

:app:preArrogantWayneDebugBuild UP-TO-DATE

:app:preArrogantWayneReleaseBuild UP-TO-DATE

:app:preFriendlyStarkDebugBuild UP-TO-DATE

:app:preFriendlyStarkReleaseBuild UP-TO-DATE

:app:preFriendlyWayneDebugBuild UP-TO-DATE

:app:preFriendlyWayneReleaseBuild UP-TO-DATE

// ... all the stages for all the variants ...

:app:compileObsequiousWayneReleaseUnitTestJavaWithJavac

:app:compileObsequiousWayneReleaseUnitTestSources

:app:assembleObsequiousWayneReleaseUnitTest

:app:testObsequiousWayneReleaseUnitTest

:app:test

BUILD SUCCESSFUL

The single test ran for every variant, generating HTML

outputs in the app/build/

reports/tests folder, shown in Example 5-4.

5.1 Unit Testing | 99

Example 5-4. Output folders for the tests

> ls -F app/build/reports/tests/

arrogantStarkDebug/ arrogantWayneRelease/

friendlyWayneDebug/ obsequiousStarkRelease/

arrogantStarkRelease/ friendlyStarkDebug/

friendlyWayneRelease/ obsequiousWayneDebug/

arrogantWayneDebug/ friendlyStarkRelease/

obsequiousStarkDebug/ obsequiousWayneRelease/

Opening the index.html file in any of those folders shows the

test report in Figure 5-3.

Figure 5-3. Test report in HTML

You can drill down to the ExampleUnitTest class and see the

specific results

(Figure 5-4).

To restrict the tests to a single variant and even a single test

class, use the --tests flag, as in Example 5-5.

Example 5-5. Running the tests in only one test class

> ./gradlew testFriendlyWayneDebug --

tests='*.ExampleUnitTest'

The variant is still constructed, but only that one, and only

the tests in the Exam pleUnitTest class are run.

As an alternative, if you right-click in the test itself and run it

inside Android Studio, it runs for the current variant only and

provides a nice view showing the results (Figure 5-5).

100 | Chapter 5: Testing

Figure 5-4. Result of ExampleUnitTest tests

Figure 5-5. Test results in Android Studio

The only problem is, this didn’t actually test anything

significant. That’s the point, actually. When using the JUnit

support, you can’t test anything that relies on the Android

SDK. Unit testing is only for the purely Java parts of your

application.

Unit testing support is only for the non-Android parts of your

application.

In Recipe 4.5, the library accessed a web service,

downloaded JSON data, parsed it, and updated a TextView

with an included value. If you like, you can test just the

parsing part of that process, as in Example 5-6.

5.1 Unit Testing | 101

Example 5-6. Test the Gson parser

import com.google.gson.Gson;

import org.junit.Test;

import static org.junit.Assert.assertEquals;

import static org.junit.Assert.assertNotNull;

public class IcndbJokeTest {

private String jsonTxt = "{\"type\": \"success\", \"value\":

{\"id\": 451,

\"joke\": \"Xav Ducrohet writes code that optimizes itself.\",

\"categories\": [\"nerdy\"]}}";

@Test

public void testGetJoke() throws Exception {

Gson gson = new Gson();

IcndbJoke icndbJoke = gson.fromJson(jsonTxt,

IcndbJoke.class);

String correct = "Xav Ducrohet writes code that optimizes

itself."; assertNotNull(icndbJoke);

assertEquals(correct, icndbJoke.getJoke());

}

}

String should be all on one line

Check that parsing yielded a non-null result

Check that the retrieved joke is correct

The good news is that unit tests are fast, at least relative to

integration tests, because they don’t require deployment to

an actual device or an emulator. If you have Java classes that

are not dependent on Android classes, unit tests are great

way to make sure they’re working properly. Test Driven

Development (TDD) has not yet been adopted in the mobile

world the way it has in the regular Java world, but this is a

good way to get started.

What About Robolectric?

The Robolectric project is designed to let you run integration

tests as though they were unit tests, i.e., without using an

emulator or connected device. As such, it acts as a giant

mock of the entire Android SDK.

Reports from the field have been mixed. Some people really

like it; others don’t trust it for anything related to dialogs,

http://robolectric.org/

animations, views, or anything else in the UI. This is 102 |

Chapter 5: Testing

made more complicated by the fact you’re scripting a UI test

without actually using the UI.

Still, it’s not a bad alternative, and fits into the overall Gradle

approach. See the website for details.

See Also

Recipe 5.3 illustrates Activity tests using the Robotium

library. Recipe 5.4 does the

same using the Espresso framework from Google. JUnit

information can be found at

http://junit.org.

5.2 Testing with the Android Testing Support Library

Problem

You want to test the Android components of your app.

Solution

Use the new testing classes to implement JUnit-style tests of

your app.

Discussion

First, a meta-note on terminology: testing Android

components, like activities or services, requires deployment

of the app to a connected device or emulator. The testing

library is based on JUnit, but these are not unit tests in the

strictest sense. They’re either integration tests or functional

tests, depending on how you use those terms.

Since the approach here is to drive a deployed app

programmatically and check that the UI changes correctly,

the term “functional” will be preferred here. You will see the

term integration used frequently in the documentation,

however.

Despite the word “unit” in AndroidJUnitRunner and other test

classes, Android tests are inherently functional. They require

either an emulator or a connected device in order to run.

The Android Testing Support Library is added as an optional

dependency through the SDK Manager, as shown in Figure 5-

6.

http://junit.org/

Testing is part of the “Android Support Repository” download,

as Figure 5-6 illustrates. The testing classes reside in the

android.support.test package.

5.2 Testing with the Android Testing Support Library |

103

The documentation shows that to add all the relevant classes

to your Gradle build file,

use the dependencies in Example 5-7.

Example 5-7. Gradle dependencies for the Android Testing

Support Library dependencies {

androidTestCompile 'com.android.support.test:runner:0.3'

// Set this dependency to use JUnit 4 rules

androidTestCompile 'com.android.support.test:rules:0.3'

}

Figure 5-6. Adding the Android Testing Support Library using

the SDK Manager The AndroidJUnitRunner class has support

for JUnit 4 annotations. To use it, you can add the @RunWith

annotation from JUnit to your test class, or you can add a

setting to the defaultConfig block of your Gradle build file.

Example 5-8. Using AndroidJUnitRunner by default

android {

defaultConfig {

// ... other settings ...

testInstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"

}

}

It’s particularly easy to test a labels on a layout using the

test support classes. An example is shown in Example 5-9.

Example 5-9. Testing component labels

@MediumTest

@RunWith(AndroidJUnit4.class)

public class MyActivityLayoutTest

extends ActivityInstrumentationTestCase2<MyActivity> {

private MyActivity activity;

private TextView textView;

104 | Chapter 5: Testing

private EditText editText;

private Button helloButton;

public MyActivityLayoutTest() {

super(MyActivity.class);

}

@Before

public void setUp() throws Exception {

super.setUp()

injectInstrumentation(InstrumentationRegistry.getInstrument

ation()); activity = getActivity();

textView = (TextView) activity.findViewById(R.id.text_view);

editText = (EditText) activity.findViewById(R.id.edit_text);

helloButton = (Button)

activity.findViewById(R.id.hello_button);

}

@After

public void tearDown() throws Exception {

super.tearDown();

}

@Test

public void testPreconditions() {

assertNotNull("Activity is null", activity);

assertNotNull("TextView is null", textView);

assertNotNull("EditText is null", editText);

assertNotNull("HelloButton is null", helloButton);

}

@Test

public void textView_label() {

final String expected =

activity.getString(R.string.hello_world); final String actual =

textView.getText().toString(); assertEquals(expected, actual);

}

@Test

public void editText_hint() {

final String expected =

activity.getString(R.string.name_hint); final String actual =

editText.getHint().toString(); assertEquals(expected, actual);

}

@Test

public void helloButton_label() {

final String expected =

activity.getString(R.string.hello_button_label); final String

actual = helloButton.getText().toString();

assertEquals(expected, actual);

}

}

5.2 Testing with the Android Testing Support Library |

105

Expected durations are @SmallTest, @MediumTest, and

@LargeTest

Use the JUnit 4 runner for Android

Needed for the new JUnit 4 runner

The new AndroidJUnitRunner is part of the Android Support

Test Library. It adds JUnit 4 support, so that tests can be

annotated rather that specified using the old JUnit 3 naming

convention. It has other extra capabilities. See the Android

Testing

Support Library documentation for details.

In Example 5-9, the attributes represent widgets on the user

interface. The @Before method looks them up and assigns

them to the attributes. The docs recommend using a

testPreconditions test like the one shown, just to

demonstrate that the widgets were found. That test is no

different from any of the others, but a failure there makes it

easy to see what went wrong.

The other tests all look up strings from the string resources

and compare them to the labels on the actual widgets. Note

that nothing is being modified here—the test is essentially

read-only.

Finally, the @MediumTest annotation is used to indicate the

size of a test method. Tests that only take a few milliseconds

are marked as @SmallTest, those that take on the order of

100 milliseconds are @MediumTest, and longer ones are

marked @LargeTest.

From Gradle, running tests that require connected devices or

emulators is done through the connectedCheck task.

Run the connectedCheck task to execute tests on all

emulators and

connected devices concurrently.

A sample execution is shown in Example 5-10. The sample

test was run concurrently on two separate emulators.

Example 5-10. Executing the tests from Gradle

http://bit.ly/android-tsl
http://bit.ly/android-tsl

> ./gradlew connectedCheck

:app:preBuild UP-TO-DATE

:app:preDebugBuild UP-TO-DATE

:app:checkDebugManifest

:app:prepareDebugDependencies

// ... lots of tasks ...

:app:packageDebugAndroidTest UP-TO-DATE

106 | Chapter 5: Testing

:app:assembleDebugAndroidTest UP-TO-DATE

:app:connectedDebugAndroidTest

:app:connectedAndroidTest

:app:connectedCheck

BUILD SUCCESSFUL

The output report resides in the

http://robolectric.orgapp/build/reports/androidTests/

connected directory. A sample output report is shown in

Figure 5-7.

Figure 5-7. Sample test output organized by test

The sample output shows the emulator names and the

results of all the tests. Clicking the “Devices” button

switches the output to organize it by device, as shown in

Figure 5-8.

The classes in the Android Support Test Library can do much

more than this, but the tests start getting complicated

quickly. When you want to drive the UI by adding data,

clicking buttons, and checking results, there are alternative

libraries, like Robotium and Espresso, that make the process

much easier. Recipes that use those libraries are referenced

in the “See Also” section.

5.2 Testing with the Android Testing Support Library |

107

http://robolectric.orgapp/build/reports/androidTests/connected
http://robolectric.orgapp/build/reports/androidTests/connected

Figure 5-8. Sample test output organized by device

See Also

Recipe 5.3 shows how to use the Robotium library to drive

the UI. Google now provides the Espresso library as part of

the Android Test Kit project. Espresso tests are demonstrated

in Recipe 5.4.

5.3 Functional Testing with Robotium

Problem

You want to test activities using the Robotium library.

Solution

Add the Robotium dependency and script your tests.

Discussion

The Android Test Support Library has classes for accessing

widgets on activities, but there are easier ways to drive an

Android UI. While this is not a book about testing, it’s easy to

add the Robotium library dependency to Gradle and run tests

that way.

The Robotium project is described as “like Selenium, but for

Android.” It’s a test automation framework that makes it

easy to write black-box UI tests for Android apps.

Just add the Robotium library as a dependency in the module

Gradle build file, as in

Example 5-11.

108 | Chapter 5: Testing

Example 5-11. Add the Robotium dependency

dependencies {

androidTestCompile 'com.jayway.android.robotium:robotium-

solo:5.4.1'

http://www.robotium.org/

}

Consider a simple activity called MyActivity, shown in

Example 5-12, that prompts the user for a name, adds it to

an Intent, and starts a WelcomeActivity that greets the user.

Example 5-12. The MyActivity class is a “Hel o, World” app

public class MyActivity extends Activity {

private TextView textView;

private EditText editText;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_my);

textView = (TextView) findViewById(R.id.text_view);

editText = (EditText) findViewById(R.id.edit_text);

Button helloButton = (Button)

findViewById(R.id.hello_button);

helloButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

sayHello(v);

}

});

}

public void sayHello(View view) {

String name = editText.getText().toString();

Intent intent = new Intent(this, WelcomeActivity.class);

intent.putExtra("name", name); startActivity(intent);

}

}

Robotium provides a class called com.robotium.solo.Solo,

which wraps both the activity being tested and the

Instrumentation object. It allows you to add text, click

buttons, and more, without worrying about being on or off

the UI thread. An example that tests the given activity is

shown in Example 5-13.

5.3 Functional Testing with Robotium | 109

Example 5-13. A Robotium test for MyActivity

public class MyActivityRobotiumTest

extends ActivityInstrumentationTestCase2<MyActivity> {

private Solo solo;

public MyActivityRobotiumTest() {

super(MyActivity.class);

}

public void setUp() {

solo = new Solo(getInstrumentation(), getActivity());

}

public void testMyActivity() {

solo.assertCurrentActivity("MyActivity", MyActivity.class);

}

public void testSayHello() {

solo.enterText(0, "Dolly");

solo.clickOnButton(

getActivity().getString(R.string.hello_button_label));

solo.assertCurrentActivity("WelcomeActivity",

WelcomeActivity.class); solo.searchText("Hello, Dolly!");

}

public void tearDown() {

solo.finishOpenedActivities();

}

}

Activity tests all extend this class

The Solo reference from Robotium

Instantiate the Solo reference

Robotium tests extend ActivityInstrumentationTestCase2, as

with all activity tests.

The Solo instance is initialized with the activity and retrieved

instrumentation instances. The tests themselves use

methods from the Solo class, like enterText, clickOnButton,

or searchText.

The only downside to using Robotium is that the tests use

the old JUnit 3 structure, with predefined setUp and

tearDown methods as shown, and all tests have to follow the

pattern public void testXYZ(). Still, the ease of writing the

tests is remarkable.

110 | Chapter 5: Testing

The test class is stored in the same androidTest hierarchy as

other Android tests, and executed on all emulators and

connected devices simultaneously through the con

nectedCheck task (Example 5-14).

Example 5-14. Executing the tests from Gradle

> ./gradlew connectedCheck

:app:preBuild UP-TO-DATE

:app:preDebugBuild UP-TO-DATE

:app:checkDebugManifest

:app:prepareDebugDependencies

// ... lots of tasks ...

:app:packageDebugAndroidTest UP-TO-DATE

:app:assembleDebugAndroidTest UP-TO-DATE

:app:connectedDebugAndroidTest

:app:connectedAndroidTest

:app:connectedCheck

BUILD SUCCESSFUL

The result is shown in Figure 5-9 after running on two

emulators.

Figure 5-9. Robotium test output

Clicking the “Devices” button shows the same results,

organized by device

(Figure 5-10).

The full Robotium JavaDocs offer additional details and

sample projects.

5.3 Functional Testing with Robotium | 111

http://bit.ly/robotium-javadocs

Figure 5-10. Robotium test output organized by device

See Also

Activity testing using the Android Support Library is covered

in Recipe 5.2. Testing with Espresso is covered in Recipe 5.4.

5.4 Activity Testing with Espresso

Problem

You want to test Android activities using the Espresso library

from Google.

Solution

Add the Espresso dependencies to your Gradle build and

write tests to use it.

Discussion

The Espresso testing library has been added to the “Android

Test Kit” project, part of Google’s testing tools for Android.

Documentation for Espresso resides in a wiki.

Since Espresso is a Google project and specifically designed

for Android, it’s reason-able to assume that it will be the

preferred mechanism for Android testing in the future.

While this is not a book on testing, setting up and running

Espresso tests fits the normal Gradle practices, so a brief

illustration is included here.

Espresso is included in the Android Support Repository,

which is added under

“Extras” in the SDK Manager. This process was illustrated in

a figure in Recipe 5.2, repeated here in Figure 5-11.

112 | Chapter 5: Testing

http://bit.ly/espresso-docs

Figure 5-11. Adding the Android Support Library using the

SDK Manager To use Espresso in your project, add two

androidTestCompile dependencies, as shown in Example 5-

15.

Example 5-15. Adding the Espresso dependencies

dependencies {

androidTestCompile 'com.android.support.test:runner:0.5'

androidTestCompile

'com.android.support.test.espresso:espresso-core:2.2.2'

}

This actually leads to a conflict in versions of the support

annotations library, because Espresso relies on version

23.1.1, while SDK 23 includes version 23.3.0 of the same

library. You get an error similar to: WARNING: Error:Conflict

with dependency

'com.android.support:support-annotations'. Resolved

versions for app (23.3.0) and test app (23.1.1) differ. See

http://g.co/androIDstudio/app-test-app-conflict for details.

While that may be resolved by the time you build your

application, let’s make lemon-ade out of those lemons by

showing how to fix it. In the top-level Gradle build file, simply

force a resolution in the allProjects section, as shown in

Example 5-16.

Example 5-16. Resolving a conflict in library versions

allprojects {

repositories {

jcenter()

}

configurations.all {

resolutionStrategy.force

'com.android.support:support-annotations:23.3.0'

}

}

5.4 Activity Testing with Espresso | 113

Espresso also requests that you set the

testInstrumentationRunner in the default Config block to use

the AndroidJUnitRunner, as in Recipe 5.2. The complete

module build file therefore looks like that shown in Example

5-17.

Example 5-17. The full module build.gradle file

apply plugin: 'com.android.application'

android {

compileSdkVersion 23

buildToolsVersion "23.0.3"

defaultConfig {

applicationId "com.nfjs.helloworldas"

minSdkVersion 16

targetSdkVersion 23

versionCode 1

versionName "1.0"

testInstrumentationRunner

'android.support.test.runner.AndroidJUnitRunner'

}

}

dependencies {

compile 'com.android.support:support-annotations:23.3.0'

androidTestCompile 'com.android.support.test:runner:0.5'

androidTestCompile

'com.android.support.test.espresso:espresso-core:2.2.2'

}

Espresso tests love to use static methods, both in Espresso

classes and in Hamcrest matchers. Consequently, the test

shown in Example 5-18 includes the import statements for

clarity.

Example 5-18. An Espresso test, with imports

package com.nfjs.helloworldas;

import android.support.test.rule.ActivityTestRule;

import android.support.test.runner.AndroidJUnit4;

import

android.test.ActivityInstrumentationTestCase2;

import

android.test.suitebuilder.annotation.MediumTest;

import org.junit.Rule;

import org.junit.Test;

import org.junit.runner.RunWith;

import static

android.support.test.espresso.Espresso.onView; import

static

android.support.test.espresso.action.ViewActions.click;

import static

android.support.test.espresso.action.ViewActions.typeText;

import static

android.support.test.espresso.assertion.ViewAssertions.matc

hes; 114 | Chapter 5: Testing

import static

android.support.test.espresso.matcher.ViewMatchers.withId;

import static

android.support.test.espresso.matcher.ViewMatchers.withTex

t; import static org.hamcrest.CoreMatchers.containsString;

@RunWith(AndroidJUnit4.class)

@MediumTest

public class MyActivityEspressoTest

extends ActivityInstrumentationTestCase2<MyActivity> {

public MyActivityEspressoTest() {

super(MyActivity.class);

}

@Rule

public ActivityTestRule<MyActivity> mActivityRule =

new ActivityTestRule<>(MyActivity.class);

@Test

public void testHelloWorld() {

onView(withId(R.id.edit_text))

.perform(typeText("Dolly"));

onView(withId(R.id.hello_button))

.perform(click());

onView(withId(R.id.greeting_text))

.check(matches(withText(containsString("Dolly"))));

}

}

The simple DSL focuses on user actions rather than

activities. From this test, it is not obvious that clicking the

button actually shifted from the MyActivity class to the

WelcomeActivity class, but that did in fact happen. The

results are shown in Figure 5-12.

Figure 5-12. Espresso test results

5.4 Activity Testing with Espresso | 115

Once again, clicking the “Devices” button shows the results

organized by device rather than test, as in Figure 5-13.

Figure 5-13. Espresso test results organized by device

Espresso is an interesting DSL approach to writing functional

tests. It is likely to be a recommended API for the future.

Collecting Test Results

If your app includes multiple flavors or modules, the HTML

test reports will be organized into separate subdirectories.

This makes it tedious to examine each one individually.

Fortunately, there is a plug-in available to collect all the

reports into a single build folder. In the top-level build file,

after the buildscript block, include the android-reporting

plug-in. See Example 5-19 for details.

Example 5-19. Adding the android-reporting plug-in

allprojects {

repositories {

jcenter()

}

configurations.all {

resolutionStrategy.force

'com.android.support:support-annotations:23.3.0'

}

}

apply plugin: 'android-reporting'

116 | Chapter 5: Testing

The Android reporting plug-in collects test reports into a

single file Now if you run the mergeAndroidReports task,

everything will be collected into a single file.

Example 5-20. Merging Android test reports

> ./gradlew deviceCheck mergeAndroidReports --continue

The --continue flag is a standard Gradle flag, telling the build

to keep going even if there are failed tests. The result when

running with multiple variants should be similar to that in

Figure 5-14.

Figure 5-14. Merged test reports from app with multiple

variants See Also

Activity testing using the Android Support Library is covered

in Recipe 5.2. Testing with the Robotium library is covered in

Recipe 5.3. The technique listed here for

merging test reports works with any tests, not just Espresso.

5.4 Activity Testing with Espresso | 117

CHAPTER 6

Performance and Documentation

6.1 Performance Recommendations

Problem

You need to improve the performance of your Gradle build.

Solution

Use a combination of the techniques recommended here.

Discussion

First things first: these are not recommendations that will

affect the performance of your app. There are many things

you can do to help your app, many of which involve the

ProGuard tool that comes with Android. This section is not

about that—it’s about improving the performance of the

build itself.

This recipe discusses settings that can be added to the

gradle.properties file in the root of the Android application. If

you prefer to use global settings, add a file called

gradle.properties to the .gradle subfolder in your home

directory.

The Gradle daemon

The Gradle daemon is a background process that stays alive

between builds, caching both data and code. Most recent

versions of Gradle automatically start a Gradle daemon

whenever you run from the command prompt.

By default, Android Studio starts a Gradle daemon in your

project, with a timeout period of three hours, which is long

enough for most development tasks. If you run 119

Gradle from the command line, however, you may not

automatically start the daemon.

To make sure the daemon starts, add the setting shown in

Example 6-1.

Example 6-1. Gradle daemon setting in gradle.properties

org.gradle.daemon=true

The daemon can also be started and stopped using a

command-line flag. Use

--daemon and --no-daemon to enable or disable the daemon

on individual build invo-cations. Stopping it is sometimes

useful if you’re worried that the internal cache is out of date

or if you’re doing debugging. If you wish to stop a running

daemon process, use the --stop argument to gradle.

The Gradle team strongly recommends you do not use the

daemon

on continuous integration servers, which value stable and

repeata‐

ble builds more than performance.

Parallel compilation

Gradle has an “incubating” option to compile independent

projects in parallel. To use it, add a line to gradle.properties,

as in Example 6-2.

Example 6-2. Paral el compilation setting in gradle.properties

org.gradle.parallel=true

Note that this may not help much. Most modules inside

Android projects are related, which negates any benefit from

parallel compilation.

Configuration on demand

Normally Gradle configures all tasks in all projects involved

in a build before executing any of them. For projects with a

large number of subprojects and many tasks, this can be

inefficient. It is therefore possible to try to configure only the

projects that are relevant for the requested tasks.

To do this, use the “configure on demand” setting in

gradle.properties, as shown in

Example 6-3.

Example 6-3. The configure on demand setting in

gradle.properties org.gradle.configureondemand=true 120 |

Chapter 6: Performance and Documentation

Most Android applications have only a small number of

subprojects, so this feature may not be all that helpful.

Again, this is an incubating feature, so the specific details

may change with new versions of Gradle.

Exclude unneeded tasks

As discussed in Recipe 4.3, the -x flag can be used to

exclude a specific task, such as lint, that takes time but may

not be needed during every build.

That recipe also shows how to disable particular tasks in the

task graph after it has been assembled. See that recipe for

details.

Change the JVM settings

Ultimately a Gradle build is running in a Java process, so

flags that affect the JVM

affect the performance of Gradle. Example 6-4 shows a

handful of settings for the Java virtual machine.

Example 6-4. Choosing JVM setting in gradle.properties

org.gradle.jvmargs=-Xmx2048m -XX:MaxPermSize=512m

-XX:+HeapDumpOnOutOfMemoryError

The -Xmx flag specifies the maximum amount of memory to

use in the Java process.

An -Xms flag specifies the initial amount of memory to

allocate to the process. The example also changes the size of

the “permanent generation” space, and dumps the heap to a

file when a java.lang.OutOfMemoryError is thrown.

See the Java HotSpot VM options page for details.

Use only the dependencies you need

This specifically refers to Google Play services, which used to

require a large library and now comes in the form of

separate modules.

For example, to use Google Maps you used to have to add

the entire Google Play services dependency at compile time,

as in Example 6-5.

Example 6-5. Adding the entire Google Play services

dependency

dependencies {

compile 'com.google.android.gms:play-service:7.8.0'

}

6.1 Performance Recommendations | 121

This is a rather large library, with many dependencies. Figure

6-1 shows the list of added libraries once the full Google Play

service dependency is added.

Figure 6-1. The complete set of Google Play services

With Android’s 65K method name limitation, you would be

adding a lot of method handles you don’t need. Instead, add

only the Maps dependency, as in Example 6-6.

Example 6-6. Adding the Google Maps dependency only

dependencies {

compile 'com.google.android.gms:play-service-maps:7.8.0'

}

The contrast between the just the Maps service (as shown in

Figure 6-2) is dramatic.

Figure 6-2. Adding the Google Maps dependency only

122 | Chapter 6: Performance and Documentation

Use dex options

The Android block allows you specify options that control the

“dex” process that converts Java byte codes (i.e., .class files)

to Dalvik executables (.dex files). The dexOp tions block

contains the options in Example 6-7.

Example 6-7. The dexOptions block inside android

dexOptions {

incremental true

javaMaxHeapSize '2g'

jumboMode = true

preDexLibraries = true

}

The incremental option specifies whether to enable the

incremental mode for the dx processor. As the

documentation says, “this has many limitations and may not

work.

Use carefully.”

Use javaMaxHeapSize as an alternative way of specifying

Xmx values during the dx run, in 1024m increments—so here

it is set to 2 gigs.

Enabling “jumbo mode” allows a larger number of strings in

the dex files. If that’s an issue, you may want to spend more

time on configuring ProGuard.

The preDexLibraries will run the dx process on libraries

ahead of time, just as it sounds. As the docs say, “this can

improve incremental builds, but clean builds may be slower.”

All of these settings can both help and hurt performance, so

be sure to try them out before adopting them.

Profiling your build

You can run Gradle with the --profile command-line option to

generate useful information about the build. The results will

be written in HTML form to the build/

reports/profile directory, this time in the top-level project.

As a sample, consider running the assembleDebug task from

the multiflavor build described in Example 6-8.

Example 6-8. Running Gradle with the --profile option

> ./gradlew --profile assembleDebug

:app:preBuild UP-TO-DATE

:app:preArrogantStarkDebugBuild UP-TO-DATE

:app:checkArrogantStarkDebugManifest

:app:preArrogantStarkReleaseBuild UP-TO-DATE

:app:preArrogantWayneDebugBuild UP-TO-DATE

6.1 Performance Recommendations | 123

:app:preArrogantWayneReleaseBuild UP-TO-DATE

:app:preFriendlyStarkDebugBuild UP-TO-DATE

:app:preFriendlyStarkReleaseBuild UP-TO-DATE

:app:preFriendlyWayneDebugBuild UP-TO-DATE

:app:preFriendlyWayneReleaseBuild UP-TO-DATE

:app:preObsequiousStarkDebugBuild UP-TO-DATE

:app:preObsequiousStarkReleaseBuild UP-TO-DATE

:app:preObsequiousWayneDebugBuild UP-TO-DATE

:app:preObsequiousWayneReleaseBuild UP-TO-DATE

// ... tons of other tasks ...

:app:assembleObsequiousWayneDebug

:app:assembleDebug

BUILD SUCCESSFUL

The output report is in the build/reports/profile folder, with a

filename of the form

“profile-YYYY-MM-dd-hh-mm-ss.html”, where the part after

the word “profile”

refers to timestamp quantities year, month, day, hour,

minute, and seconds.

A sample report is shown in Figure 6-3.

Figure 6-3. Sample profile report

124 | Chapter 6: Performance and Documentation

The various tabs break down the summary report into

individual configuration steps, configuration (which is

minimal in this case), and execution. In a project this size

there isn’t a lot to see, but for larger projects this is a good

way to find bottlenecks in your process.

See Also

The Java HotSpot VM options page for Java 7 and earlier is at

http://bit.ly/java-

hotspot. Recipe 4.3 shows how to exclude tasks from the

assembled task graph.

http://bit.ly/java-hotspot
http://bit.ly/java-hotspot

6.2 DSL Documentation

Problem

You need to search the full documentation for the Android

Gradle DSL.

Solution

Access the Gradle Tools website, and download a ZIP file

from the Android Developer website.

Discussion

The home page for Android development holds the full API

guides, JavaDoc references, tools documentation, and more.

The contents there for the Android Gradle plug-in, however,

are a bit thin.

Instead, the primary source for the Android plug-in to Gradle

is hosted at the

Android Tools Project Site, which contains the most recent

information, as well as links to the Gradle Plugin User Guide

(Figure 6-4).

The User Guide itself, shown in Figure 6-5, is useful, but often

well out of date (which is one of the reasons this book

exists).

Another link from the Android Tools Plugin Site is the DSL

Reference, which takes you to a GitHub repository for the

documentation (Figure 6-6). Fortunately, you don’t need to

clone the repository and build it to see the documentation.

The front page (i.e., the README.md file, rendered

http://developer.android.com/
http://bit.ly/as-new-build
http://bit.ly/gradle-guide
http://bit.ly/github-gradle-dsl

automatically by GitHub) has a link to the most recent

version.

The plug-in reference contains not just the DSL itself, with

blocks like buildTypes, productFlavors, and signingConfigs,

but also the actual types implementing them. For example,

the BuildType page (part of the com.android.build.gra

dle.internal.dsl package) shows all properties and methods

available in that class.

6.2 DSL Documentation | 125

http://bit.ly/gradle-dsl

Figure 6-4. The Android Tools Project website

Figure 6-5. The Gradle Plugin User Guide

126 | Chapter 6: Performance and Documentation

Figure 6-6. The current DSL reference

Finally, the Gradle website contains links to the JavaDocs,

GroovyDocs, DSL reference, and the User Guide for Gradle

http://gradle.org/
http://bit.ly/gradle-user

itself.

To summarize:

• Android Developer Site

• Android Tools Project

• Gradle Plugin User Guide

• DSL Reference (GitHub)

• DSL Reference (rendered)

• Gradle User Guide

6.2 DSL Documentation | 127

APPENDIX A

Just Enough Groovy to Get By

This appendix reviews the basics of the Groovy programming

language. The Gradle build files consist largely of a Domain

Specific Language, written in Groovy, for builds. In addition

to the DSL, any legal Groovy code can be added to the build.

Groovy is a general-purpose programming language, based

on Java, that compiles to Java byte codes. While it has

functional capabilities, it is an object-oriented language that

is arguably the next-generation language in the path from

C++ to Java.

Basic Syntax

The “Hello, World!” program for Groovy is the one-liner

shown in Example A-1.

http://bit.ly/gradle-user
http://developer.android.com/
http://bit.ly/android-tools-project
http://bit.ly/grd-pl-guide
http://github.com/google/android-gradle-dsl
http://bit.ly/gradle-pl-dsl
http://bit.ly/gr-user-guide

Example A-1. Hel o, World! in Groovy

println 'Hello, World!'

Items of note:

• Semicolons are optional. If you add them, they work, but

they’re not required.

• Parentheses are optional until they’re not. If the compiler

guesses correctly where they should have gone, everything

works. Otherwise, add them back in. The println method

takes a String argument. Here the parentheses are left out.

• There are two types of strings in Groovy: single-quoted

strings, like Hel o, are instances of java.lang.String. Double-

quoted strings are Groovy strings and allow interpolation,

shown in Example A-2.

There are no “primitives” in Groovy. All variables use the

wrapper classes, like java.lang.Integer, java.lang.Character,

and java.lang.Double. The native data 129

type for integer literals, like 3, is Integer. The native data

type for floating point literals, like 3.5, is

java.math.BigDecimal.

Example A-2. Some basic data types in Groovy

assert 3.class == Integer

assert (3.5).class == BigDecimal

assert 'abc' instanceof String

assert "abc" instanceof String

String name = 'Dolly'

assert "Hello, ${name}!" == 'Hello, Dolly!'

assert "Hello, $name!" == 'Hello, Dolly!'

assert "Hello, $name!" instanceof GString

Single-quoted strings are Java strings

Double-quoted strings are also Java strings unless you

interpolate

String interpolation, full form

String interpolation, short form when there is no ambiguity

Note that you can invoke methods on literals, because they

are instances of the wrapper classes.

Groovy lets you declare variables with either an actual type,

like String, Date, or Employee, or you can use def. See

Example A-3.

Example A-3. Static versus dynamic data types

Integer n = 3

Date now = new Date()

def x = 3

assert x.class == Integer

x = 'abc'

assert x.class == String

x = new Date()

assert x.class == Date

Java imports the java.lang package automatically. In Groovy,

the following packages are all automatically imported:

• java.lang

• java.util

• java.io

130 | Appendix A: Just Enough Groovy to Get By

• java.net

• groovy.lang

• groovy.util

The classes java.math.BigInteger and java.math.BigDecimal

are also available without an import statement.

The assert Method and the Groovy Truth

The assert method in Groovy evaluates its argument

according to the “Groovy Truth.” That means:

• Nonzero numbers (positive and negative) are true

• Nonempty collections, including strings, are true

• Nonnull references are true

• Boolean true is true

The Groovy Truth is illustrated in Example A-4.

Example A-4. The Groovy Truth

assert 3; assert -1; assert !0

assert 'abc'; assert !''; assert !""

assert [3, 1, 4, 1, 5, 9]

assert ![]

Asserts that pass return nothing. Asserts that fail throw an

exception, as in

Example A-5, with lots of debugging information included.

Example A-5. Failing assertions

int x = 5; int y = 7

assert 12 == x + y // passes

assert 12 == 3 * x + 4.5 * y / (2/x + y**3) // fails

The result of the failing assertion is shown in Example A-6.

Example A-6. Failing assert output

Exception thrown

Assertion failed:

Just Enough Groovy to Get By | 131

assert 12 == 3 * x + 4.5 * y / (2/x + y**3)

| | | | | | | || | ||

false| 5 | | 7 | |5 | |343

15 | 31.5| 0.4| 7

| | 343.4

| 0.0917297612

15.0917297612

at ConsoleScript11.run(ConsoleScript11:4)

Operator Overloading

In Groovy, every operator corresponds to a method call. For

example, the + sign invokes the plus method on Number.

This is used extensively in the Groovy libraries.

Some examples are shown in Example A-7.

Example A-7. Operator overloading

assert 3 + 4 == 3.plus(4)

assert 3 * 4 == 3.multiply(4)

assert 2**6 == 64

assert 2**6 == 2.power(6)

assert 'abc' * 3 == 'abcabcabc' // String.multiply(Number)

try {

3 * 'abc'

} catch (MissingMethodException e) {

// no Number.multiply(String) method

}

String s = 'this is a string'

assert s + ' and more' == 'this is a string and more'

assert s - 'is' == 'th is a string'

assert s - 'is' - 'is' == 'th a string'

Date now = new Date()

Date tomorrow = now + 1 // Date.plus(Integer)

assert tomorrow - 1 == now // Date.minus(Integer)

Groovy has an exponentiation operator, **, as shown.

In Java, the == operator checks that two references are

assigned to the same object. In Groovy, == invokes the

equals method, so it checks for equivalence rather than

equality. If you want to check references, use the is method.

132 | Appendix A: Just Enough Groovy to Get By

Collections

Groovy has native syntax for collections. Use square

brackets and separate values by commas to create an

ArrayList. You can use the as operator to convert one

collection type to another. Collections also have operator

overloading, implementing methods like plus, minus, and

multiply (Example A-8).

Example A-8. Col ection examples and methods

def nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]

assert nums instanceof ArrayList

Set uniques = nums as Set

assert uniques == [3, 1, 4, 5, 9, 2, 6] as Set

def sorted = nums as SortedSet

assert sorted == [1, 2, 3, 4, 5, 6, 9] as SortedSet

assert sorted instanceof TreeSet

assert nums[0] == 3

assert nums[1] == 1

assert nums[-1] == 5 // end of list

assert nums[-2] == 6

assert nums[0..3] == [3, 1, 4, 1] // two dots is a Range

assert nums[-3..-1] == [2, 6, 5]

assert nums[-1..-3] == [5, 6, 2]

String hello = 'hello'

assert 'olleh' == hello[-1..0] // Strings are collections too A

Range in Groovy consists of two values separated by a pair

of dots, as in from..to.

The range expands starting at the from position, invoking

next on each element until it reaches the to position,

inclusive.

Maps use a colon notation to separate the keys from the

values. The square bracket operator on a map is the getAt or

putAt method, depending on whether you are accessing or

adding a value. The dot operator is overloaded similarly. See

Example A-9 for details.

Example A-9. Map instances and methods

def map = [a:1, b:2, c:2]

assert map.getClass() == LinkedHashMap

assert map.a == 1

assert map['b'] == 2

assert map.get('c') == 2

Just Enough Groovy to Get By | 133

Overloaded dot is put here

Uses putAt method

Java still works, too

Closures

Groovy has a class called Closure that represents a block of

code that can be used like an object. Think of it as the body

of an anonymous method, which is an oversimplifi-cation but

not a bad start.

A closure is like a Java 8 lambda, in that it takes arguments

and evaluates a block of code. Groovy closures can modify

variables defined outside them, however, and Java 8 does

not have a class called Lambda.

Many methods in Groovy take closures as arguments. For

example, the each method on collections supplies each

element to a closure, which is evaluated with it. An example

is in Example A-10.

Example A-10. Using Groovy’s each method with a closure

argument def nums = [3, 1, 4, 1, 5, 9]

def doubles = []

nums.each { n ->

doubles << n * 2

}

assert doubles == [6, 2, 8, 2, 10, 18]

Empty list

each takes a closure of one argument, before the arrow, here

called n Left-shift operator appends to a collection

Modifying a variable defined outside a closure is considered

a side-effect, and not good practice. The collect method,

discussed later, is preferred.

This is a natural way to double the values in a list, but there

is a better alternative, called collect. The collect method

transforms a collection into a new one by 134 | Appendix

A: Just Enough Groovy to Get By applying a closure to

each element. It is similar to the map method from Java 8, or

just think of it as the map operation in a map-filter-reduce

process (Example A-11).

Example A-11. Using Groovy’s col ect method to transform a

col ection def nums = [3, 1, 4, 1, 5, 9]

def doubles == nums.collect { it * 2 }

assert doubles == [6, 2, 8, 2, 10, 18]

When a closure has a single argument (which is the default),

and you don’t give that argument a name using the arrow

operator, the dummy name defaults to the word it.

In this case, the collect method creates the doubles

collection by applying it * 2 in a closure to each element.

POGOs

Java classes with just attributes and getters and setters are

often called Plain Old Java Objects, or POJOs. Groovy has

similar classes called POGOs. An example is in Example A-12.

Example A-12. A simple POGO

import groovy.transform.Canonical

@Canonical

class Event {

String name

Date when

int priority

}

This little class actually has a lot of power. For a POGO:

• The class is public by default

• Attributes are private by default

• Methods are public by default

• Getter and setter methods are generated for each attribute

not marked public or private

• Both a default constructor and a “map-based” constructor

(uses arguments of the form “attribute:value”) are provided

In addition, this POGO include the @Canonical annotation,

which triggers an Abstract Syntax Tree (AST) transformation.

AST transformations modify the syntax tree created by the

compiler during the compilation process in specific ways.

Just Enough Groovy to Get By | 135

The @Canonical annotation is actually a shortcut for three

other AST transformations: @ToString,

@EqualsAndHashCode, and @TupleConstructor. Each does

what they sound like, so in this case, the @Canonical

annotation adds to this class: • A toString override that

displays the fully-qualified name of the class, followed by the

values of the attributes, in order from top down • An equals

override that does a null-safe check for equivalence on each

attribute

• A hashCode override that generates an integer based on

the values of the attributes in a fashion similar to that laid

out by Joshua Bloch in his Effective Java (Addison-Wesley)

book long ago • An additional constructor that takes the

attributes as arguments, in order That’s a lot of productivity

for seven lines of code. Example A-13 shows how to use it.

Example A-13. Using the Event POGO

Event e1 = new Event(name: 'Android Studio 1.0',

when: Date.parse('MMM dd, yyyy', 'Dec 8, 2014'),

priority: 1)

Event e2 = new Event(name: 'Android Studio 1.0',

when: Date.parse('MMM dd, yyyy', 'Dec 8, 2014'),

priority: 1)

assert e1.toString() ==

'Event(Android Studio 1.0, Mon Dec 08 00:00:00 EST 2014,

1)'

assert e1 == e2

Set events = [e1, e2]

assert events.size() == 1

Gradle uses all these features, and more, but this summary

should get you started.

Groovy in Gradle Build Files

Gradle build files support all Groovy syntax. Here are few

specific examples, however, that illustrate Groovy in Gradle.

In Example A-14, the word apply is a method on the Project

instance. The parentheses on the method are optional, and

left out here. The argument is setting a property called

plugin on the Project instance to the string value supplied.

Example A-14. Applying the Android plugin for Gradle

apply plugin: 'com.android.application'

136 | Appendix A: Just Enough Groovy to Get By

In Example A-15, the term android is part of the plug-in’s

DSL, which takes a closure as an argument. Properties inside

the closure, like compileSdkVersion, are method calls with

optional parentheses. In some Gradle build files, properties

are assigned using =, which would invoke a corresponding

setter method. The developers of the Android plug-in

frequently added a regular method, like

compileSdkVersion(23), in addition to the setter,

setCompileSdkVersion(23).

Example A-15. Setting properties in the android block

android {

compileSdkVersion 23

buildToolsVersion "23.0.1"

}

Also, “nested” properties, like compileSdkVersion here, can

be set using a dot notation as an alternative:

android.compileSdkVersion = 23

Both are equivalent.

Recent versions of the plug-in add a clean task to the Gradle

build file. This task has name called clean, is an instance of

the Delete class (as subclass of Task), and takes a closure as

an argument. In keeping with standard Groovy practice, the

closure is shown after the parentheses (Example A-16).

Example A-16. The default clean task

task clean(type: Delete) {

delete rootProject.buildDir

}

If a Groovy method takes a Closure as its last argument, the

clo‐

sure is normally added after the parentheses.

The implementation here invokes the delete method (again,

with optional parentheses) on the rootProject.buildDir. The

value of the rootProject property is the top-level project, and

the default value of buildDir is “build,” so this task deletes

the “build” directory in the top-level project.

Note that calling clean in the top-level project will also invoke

it on the app subproject, which will delete the build directory

there as well.

Just Enough Groovy to Get By | 137

In Example A-17, the compile term is part of the DSL,

implying that its argument is applied during the compile

phase. The fileTree method is shown with parentheses,

though they could be left out. The dir argument takes a

string representing a local directory. The include argument

takes a Groovy list (the square brackets) of file patterns.

Example A-17. A file tree dependency

dependencies {

compile fileTree(dir: 'libs', include: ['*.jar'])

}

See Also

The book Making Java Groovy, by Ken Kousen (Manning),

discusses Groovy and integrates it with Java, and also has a

chapter on build processes with Gradle. The definitive

reference for Groovy is Groovy in Action, Second Edition, by

Dierk Konig, Paul King, et al. (Manning).

The Groovy home page is at http://groovy-lang.org, and

contains extensive documentation.

O’Reilly also has three video courses on Groovy: Groovy

Programming Fundamentals, Practical Groovy Programming,

http://bit.ly/java-groovy
http://bit.ly/groovy-action-2e
http://groovy-lang.org/
http://bit.ly/groovy-programming-fundamentals
http://bit.ly/practical-groovy-programming
http://bit.ly/mastering-groovy-programming

and Mastering Groovy Programming. All three are available

on Safari as well.

138 | Appendix A: Just Enough Groovy to Get By

APPENDIX B

Gradle Basics

The recipes in this book are for the Gradle build files inside of

Android. Gradle is a powerful build tool, however, which is

used extensively in other projects. This appendix reviews the

basics of Gradle. All capabilities reviewed here can be used

inside Android build files as well.

http://bit.ly/mastering-groovy-programming
http://www.safaribooksonline.com/

Installing Gradle

You do not need to install Gradle to use it in Android projects.

Android Studio includes Gradle, and provides a Gradle

wrapper as

well. Its use is demonstrated in Recipe 4.1, among other

recipes.

Gradle comes as a single, ZIP download. You merely need to

download the latest distribution from the Gradle website to

get started. Installation is as easy as: 1. Download and unzip

the distribution 2. Set a GRADLE_HOME environment variable

to point to the unzipped folder 3. Add the bin folder under

GRADLE_HOME to your path The gradle command can then

be executed at the root of any project. By default the build

file is called build.gradle, but any name can be used. The -b

or --build-file flag is used to specify a different build file.

As an alternative, Gradle provides a wrapper, which can be

used to automatically download and install Gradle on its first

use. The wrapper is demonstrated later in this appendix.

139

Note that though Gradle build files are written in Groovy, you

don’t need to install Groovy to run Gradle. Gradle includes a

distribution of Groovy inside it, which is used to power the

build.

To see the details of the Gradle installation, run Gradle with

the -v flag, as shown in

Example B-1.

Example B-1. Displaying the Gradle version

http://gradle.org/

> gradle -v

--

Gradle 2.12

--

Build time: 2016-03-14 08:32:03 UTC

Build number: none

Revision: b29fbb64ad6b068cb3f05f7e40dc670472129bc0

Groovy: 2.4.4

Ant: Apache Ant(TM) version 1.9.3 compiled on December 23

2013

JVM: 1.8.0 (Oracle Corporation 25.0-b70)

OS: Mac OS X 10.11.4 x86_64

The Gradle version here is 2.12, which includes Groovy 2.4.4

under the hood, and is running on Java 1.8 on Mac OS X

machine.

Build Lifecycle

Gradle builds run through three distinct phases:

Initialization

Read environment configuration files init.gradle and

gradle.properties, and set up all subprojects listed

in_settings.gradle_

Configuration

Evaluate all build scripts and build the model, including the

DAG

Execution

Execute the desired tasks

Java Projects

Gradle build files consist of tasks, which are assembled into

a DAG. Custom tasks are discussed in the next section.

Gradle is a plugin-based architecture, however, and by

adding plugins to a build, you add tasks and capabilities to

the build.

140 | Appendix B: Gradle Basics

The most common plugin used outside the Android world is

the Java plugin. Since this plugin comes with the Gradle

distribution, adding it to your project is a simple as using the

apply command. An example is shown in Example B-2.

Example B-2. A minimal build.gradle file for a Java project

apply plugin: 'java'

In fact, this is a complete build file for a Java project. The

plugin itself defines a series of related tasks. To see what

tasks are available, go to a command prompt in the root of

the project and execute the tasks command. Sample output

is shown in Example B-3.

Example B-3. Sample output from the tasks command

> gradle tasks

:tasks

--

All tasks runnable from root project

--

Build Setup tasks

init - Initializes a new Gradle build. [incubating]

wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

components - Displays the components produced by root

project 'gradle'. [incubating]

dependencies - Displays all dependencies declared in root

project 'gradle'.

dependencyInsight - Displays the insight into a specific

dependency in 'gradle'.

help - Displays a help message.

model - Displays the configuration model of root project

'gradle'. [incubating]

projects - Displays the sub-projects of root project 'gradle'.

properties - Displays the properties of root project 'gradle'.

tasks - Displays the tasks runnable from root project 'gradle'.

The list of tasks shows which are available, but does not

show their relationships.

Additional command-line flags are available for that, but the

easiest way to see what tasks are run in which order is

simply to execute the build task. Executing a build is shown

in Example B-4.

Example B-4. Executing a Gradle build

> gradle build

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

Gradle Basics | 141

:classes UP-TO-DATE

:jar

:assemble

:compileTestJava UP-TO-DATE

:processTestResources UP-TO-DATE

:testClasses UP-TO-DATE

:test UP-TO-DATE

:check UP-TO-DATE

:build

BUILD SUCCESSFUL

Total time: 1.956 secs

Each phase, like :build, depends on others. The plugin

defines the tasks and their relationships. Gradle then

executes them in the proper order.

The tasks form a directed acyclic graph. In this case, the

graph showing the relationships is available in the Gradle

User Guide. Figure B-1, taken from the online docu‐

mentation, shows the DAG for the Java plugin.

Figure B-1. Directed acyclic graph for the Java plugin tasks

142 | Appendix B: Gradle Basics

http://bit.ly/gradle-java

Each association uses an arrow (which is the directed part),

and while there are multiple relationships, there are no loops

in the graph (thus the acyclic label). Running the build task

means that first the check and assemble tasks must be run.

The check task then depends on test, which depends on

testClasses and classes, and so on.

The Java plugin assumes that the source code is laid out in a

directory structure first standardized by Maven. Nontesting

code is placed in an src/main/java folder, and tests go in

src/main/test by default. This is easy enough to customize

through source sets.

From the Gradle point of view, Android projects are not Java

projects. They use a different plugin and (slightly) different

project layout.

Repositories and Dependencies

The current build file defines testing tasks, but not a testing

library. The build file

from Example B-5 is far more typical of basic Java projects.

Example B-5. A Gradle build with a repository and

dependencies

apply plugin: 'java'

repositories {

jcenter()

}

dependencies {

testCompile 'junit:junit:4.12'

}

Gradle defines a Domain Specific Language (DSL) for builds.

The repositories and dependencies elements in the build file

are part of the DSL.

Repositories are collections of libraries that can be retrieved

on demand and stored in a local cache, which defaults to a

.gradle folder in the user’s home directory. The repository

used in this build file is called jcenter(), which is the Bintray

JCenter Artifactory repository. Another built-in repository is

mavenCentral(), the public Maven Central Repository.

Multiple repositories are frequently included in a build file.

Each is searched in turn to resolve dependencies.

Dependencies are listed, naturally enough, in the

dependencies block. A dependency includes both the

information about the library (group, name, and version), as

well as the “dependency configuration” where it is needed.

Gradle Basics | 143

The predefined dependency configurations for the Java

plugin are:

• compile

• runtime

• testCompile

• testRuntime

• archives

• default

The first four are the most common, but all mean pretty

much what they sound like.

For example, a compile dependency makes the library

classes available throughout the project, which a

testCompile dependency adds the library classes only to the

src/

test/java source tree. JDBC drivers are often listed as runtime

dependencies, or even testRuntime dependencies if the

database is only used for testing.

Custom Tasks

The Gradle DSL is extensive, and often you won’t need

anything beyond what the plugins provide. Sooner or later,

however, every build becomes a custom build, and Gradle

was designed with that in mind.

Recipe 4.1 discusses how to create your own tasks for Gradle

builds.

Use the task keyword to define a task, as in Example B-6.

Example B-6. Custom task to say hel o

def task {

doLast {

println 'hello'

}

}

The doLast block indicates code that should be run at

execution time. Any code outside that block (but still inside

the task) is run at configuration time.

Gradle also includes a doFirst block, but it is used far less

often. Also, you can abbreviate the doLast block using a left-

shift operator.

The entire task in Example B-7 is run at execution time. It’s

easy enough to overlook the syntax, however, which is one

of the reasons this approach is not preferred.

144 | Appendix B: Gradle Basics

Example B-7. Custom task using left-shift operator

def task << {

println 'hello'

}

The Gradle API has many built-in tasks available, which can

be customized. For example, Example B-8 configures the

Copy task, which is a class in the Gradle API.

Example B-8. Configuring the Copy task

def copyOutputs(type: Copy) {

from "$buildDir/outputs/apk"

into '../results'

}

Gradle files often mix single-quoted and double-quoted

strings.

Double-quoted strings allow interpolation, and single-quoted

strings don’t. Otherwise they are effectively identical.

The Copy task itself includes both configuration and

execution time sections. In this case, setting the from and

into properties assigns the desired values, and the task

handles the rest. This approach to configuring existing tasks

rather than writing your own is considered a good practice,

because it favors telling Gradle what you would like rather

than specifying how to do it.

Multiproject Builds

Subdirectories of a given project can be Gradle projects

themselves, with their own build files and dependencies. In

fact, they can even depend on each other.

The file settings.gradle specifies which subdirectories are

Gradle projects. In a typical Android app, settings.gradle

includes the app directory, which is where the code for the

actual application resides.

Each app in a multiproject build can have its own build file.

To share common blocks among projects, use a subprojects

or an allprojects block, both of which configure the overall

instance of the Project class. Details of this process are

discussed in Recipe 1.1.

In fact, the rest of this book discusses how Gradle works with

Android projects, which is as good a place as any to end this

appendix.

Gradle Basics | 145

See Also

The home page for Gradle contains extensive

documentation. O’Reilly also has books

on Gradle: Building and Testing with Gradle by Tim Berglund

and Matthew McCul‐

logh, and Gradle Beyond the Basics by Tim Berglund, are in

the same series as this book.

Two video courses are available from O’Reilly as well: Gradle

Fundamentals, and Gra‐

dle for Android. Both are on Safari.

146 | Appendix B: Gradle Basics

Index

Symbols

Android Studio

@ (at sign), in dependency notation, 23

adding dependencies, 23-25

" " (double quotes), enclosing strings, 18, 129

building projects, 15-17

<< (left-shift operator), for doLast block,

http://gradle.org/
http://bit.ly/building-testing-gradle
http://bit.ly/gradle-beyond-the-basics
http://bit.ly/gradle-fundamentals
http://bit.ly/gradle-for-android
http://bit.ly/gradle-for-android
https://www.safaribooksonline.com/

building specific variants, 59

144-145

configuring applications, 8

() (parentheses), in Groovy, 129

creating Android libraries, 89-91

; (semicolon), in Groovy, 129

creating projects, 2-4

' ' (single quotes), enclosing strings, 18, 129

importing Eclipse ADT projects, 33-37

*. (spread-dot operator), 84

signing an APK, 49-51

[] (square brackets), for collections, 133

synchronizing projects, 20

unit testing, for Java components, 97-103

A

versions of, ix

Android Support Repository, 103, 112

aar files, 88

Android Testing Support Library, 103-107

(see also Android libraries)

Android versions, ix

activities

android-reporting plug-in, 116-117

functional testing for, 108-117

AndroidJUnitRunner class, 104, 106

for specific flavors, 71-75

AndroidManifest.xml file, 37

ADP timeout period, extending, 80

anonymous inner class, 44

ADT plug-in for Eclipse, 37-39

APK (Android package), signing, 45-51

allprojects block, 5, 43-45

applicationId property, 8, 54-57

allTasks property, 84

applicationIDsuffix property, 54-56

android block, 6, 7-8

applications, 1

Android Gradle DSL documentation, 125-127

(see also projects)

Android libraries

Android library dependencies, adding,

adding to applications, 88-96

88-96

libraryVariants property for, 78

building (see build files; builds)

as subprojects, 44

configuring, 6-9

Android package (APK), signing, 45-51

Java library dependencies, adding, 18-25

Android plug-in for Gradle, 5-7, 136

projects for, creating, 2-4

android property, 78

testing (see testing)

Android SDK

applicationVariants property, 78

configuring, 6

apply command, 6, 136, 141

Robolectric as mock of, 102

assemble task, 59

versions of, ix, 6-9

147

assert method, 131-131

D

at sign (@), in dependency notation, 23

DAG (directed acyclic graph), 5, 140, 142

adding custom tasks to, 80-82

B

built in configuration phase, 78

build files, 1-6, 15, 136-138, 140

data types, in Groovy, 130

build task, 11-13

debug build type, 53

build types, 53-56, 59

debug keystore, 45

(see also variants)

debuggable property, 54

build.gradle file

def keyword, 30

at app level, 5-6

defaultConfig block, 8

at top level, 4-5, 7-8

dependencies, 143-144

synchronizing after editing, 20

Android, adding to applications, 88-96

builds

Java, adding to applications, 18-25

adding custom tasks to, 80-82

limiting number of, 121-122

applicationIds for, 8, 54-57

resolving, repositories for, 26-28

excluding tasks from, 83-84, 121

transitive, 21-23

executing in Android Studio, 15

version numbers in, 18

executing on command line, 9-15, 141

dependencies block, 6, 18-25, 88-96

lifecycle of, 140

dependsOn method, 79

multiple, on one device (see build types; fla‐

dependsOn property, 80-82

vors; variants)

dexOptions block, 123

multiproject builds, 145

directed acyclic graph (see DAG)

parallel compilation for, 120

distributionUrl property, 10

performance of, improving, 119-125

documentation for Android Gradle DSL,

profiling, 123-125

125-127

buildscript block, 5

doFirst block, 144

buildToolsVersion property, 7, 8

doLast block, 78, 144-145

BuildType class, 54

double quotes (" "), enclosing strings, 18, 129

buildTypes block, 53-56

DSL (Domain Specific Language), 6, 143

(see also specific blocks)

C

DSL documentation, 125-127

@Canonical annotation, 135

classes, for specific flavors, 71-75

E

clean task, 137

Eclipse ADT projects

closures, in Groovy, 44, 134-135

exporting using ADT plug-in, 37-39

code examples in this book, xi

importing into Android Studio, 33-37

collections, in Groovy, 133

Espresso library, 112-117

com.android.application file (see Android plug-

execution phase, 78, 140

in for Gradle)

ext block, 29-32

compilation, parallel, 120

compileoptions block, 8

F

compileSdkVersion property, 7

files (see build files; resources; source sets)

configuration on demand, 120

flavors, 56-59

configuration phase, 78, 140

(see also variants)

configurations, for dependencies, 18, 144

building, 59

configuring applications, 6-9

dimensions of, 67-70

configuring repositories, 26-28

Java sources specific to, 71-75

connectedCheck task, 106

functional interfaces, 45

Copy task, customizing, 77-78

148 | Index

functional testing

(see also Java libraries)

activities, 112-117

Java components, unit testing for, 97-103

Android components, 103-107

Java libraries, adding to applications, 18-25

Java plugin, 141

G

Java projects (see projects, Java)

Gradle build system, 1

Java SE 8, lambda support, 45

builds (see build files; builds)

Java sources, for specific flavors, 71-75

installing, 139-140

java.lang package, 130

upgrading, 40-42

jcenter (JCenter Artifactory) repository, 5,

versions of, ix

26-28

gradle command, 139-140

JUnit framework, 98-99, 101

(see also ./gradlew command)

JUnit 3 support, 110

-P flag, 29, 31

JUnit 4 support, 104, 106

Gradle daemon, 119-120

JVM settings, 121

Gradle plug-in (see Android plug-in for Gra‐

dle)

K

Gradle wrapper, 10, 40-41

keytool command, 45

gradle-wrapper.jar file, 10, 41

gradle-wrapper.properties file, 10, 41-42

L

gradle.properties file, 30-32, 119

lambdas, 45

./gradlew command, 10-15

left-shift operator (<<), for doLast block,

--all flag, 13

144-145

-b flag, 15

libraries

-P flag, 84

Android, adding to applications, 88-96

-x flag, 13, 83

Java, adding to applications, 18-25

gradlew.bat command, 10-15

libraryVariants property, 78

Groovy language, 129-138

assert method, 131

basic syntax, 129

M

in build files, 136-138

mavenCentral() (Maven) repository, 5, 26-28

closures, 134-135

minifyEnabled property, 54

collections, 133

minSdkVersion property, 8, 8, 57

data types, 130

multiproject builds, 145

operator overloading, 132

packages imported by, 130

O

POGOs, 135-136

operator overloading, in Groovy, 132

variables, 129-130

Groovy Truth, 131-131

Ppackages

I

APK, signing, 45-51

import-summary.txt file, 35

Java, imported in Groovy, 130

include statement, 4

parallel compilation, 120

initialization phase, 140

parentheses (()), in Groovy, 129

installing Gradle, 139-140

performance of builds, 119-125

interpolation, 18

plugins (see ADT plugin for Eclipse; Android

plugin for Gradle; Java plugin)

J

POGOs (Plain Old Groovy Objects), 135-136

jar files, 22

product flavors (see flavors)

productFlavors block, 56-57

Index | 149

profiling builds, 123

subprojects block, 44

projects, Android, 1

system requirements, ix

(see also applications)

building (see build files; builds)

T

creating, 2-4

targetSdkVersion property, 8, 57

properties for, 29-32, 137

task block, 77-79

sharing settings between, 43-45

task graph (see DAG)

synchronizing, 20

tasks, 11-13, 140-143

projects, Eclipse ADT

(see also specific tasks)

exporting using ADT plug-in, 37-39

adding to build process, 80-82

importing into Android Studio, 33-37

configuration on demand, 120

projects, Java, 140-143

configuration phase of, 78

properties, for projects, 29-32, 137

creating, 5, 77-80, 144-145

excluding from builds, 83-84, 121

Q

execution phase of, 78

quoted strings, for dependencies, 18

list of, 11-13

testing

R

functional testing, for activities, 108-111,

release build type, 53

112-117

release key, 46-49

functional testing, for Android components,

repositories, 26-28, 143-144

103-107

repositories block, 26-28

unit testing, for Java components, 97-103

resources

timeout limit, extending, 80

changing for specific flavors, 60-66

transitive dependencies, 21-23

for flavors, 57

unused, removing, 54

U

Robolectric project, 102

unit testing, for Java components, 97-103

Robotium library, 108-111

upgrading Gradle, 40-42

S

V

SDK Manager

variable substitution (see interpolation)

Android Testing Support Library in, 103

variables, 129-130

Espresso library in, 112

(see also properties, for projects)

semicolon (;), in Groovy, 129

variants, 58-59

settings.gradle file, 4, 36, 88, 145

building, 59

shrinkResources property, 54

with flavor dimensions, 68-70

signing an APK, 45-51

installing onto a device, 78-80

signingConfig property, 57

listing, 78

signingConfigs block, 47-48

versionCode property, 8, 57

single quotes (' '), enclosing strings, 18, 129

versionName property, 8, 57

source sets

versionNameSuffix property, 55

custom, 85-88

for flavors, 57

W

sourceSets block, 38-39

whenReady property, 83

sourceSets property, 85-88

wrapper (see Gradle wrapper)

spread-dot operator (*.), 84

wrapper task, 40-41

square brackets ([]), for collections, 133

strings, in Groovy, 129

150 | Index

Z

zipStorePath property, 10

zipStoreBase property, 10

Index | 151

About the Author

Ken Kousen is an independent consultant and trainer

specializing in Android, Spring, Hibernate, Groovy, Grails,

and Gradle. He holds numerous technical certifications,

along with BS degrees in both Mathematics, and Mechanical

and Aerospace Engineering from M.I.T., an MA and a PhD in

Aerospace Engineering from Prince-ton, and an MS in

Computer Science from R.P.I.

Colophon

The animal on the cover of Gradle Recipes for Android is a

great potoo (Nyctibius grandis). This unusual creature

occupies humid forest habitats throughout Central and South

America.

The great potoo is a large bird at 18 to 24 inches long, with

an average wingspan of 29

inches. It is somewhat owl-like in appearance, possessing a

large head, a wide, gaping mouth, and immense yellow eyes.

Its plumage is mottled light brown and gray, serv-ing as

camouflage against tree bark. The great potoo perches on

branches, where it rests during the day and waits to capture

prey at night; its diet includes large, flying insects as well as

the occasional bat.

Solitary and elusive, little is known about the breeding habits

of Nyctibius grandis. It lays just one egg per year, not in

nests but in the notches of tree branches at least 30

feet above the ground.

The great potoo makes deep, guttural calls throughout the

night. The haunting, unique sound has lent itself to many

folk legends about the bird; some believe its plaintive cry is

that of a shaman’s daughter mourning her lost love, while

others imag-ine the bird’s song summons messages from the

dead.

Many of the animals on O’Reilly covers are endangered; all of

them are important to the world. To learn more about how

you can help, go to animals.oreil y.com.

The cover image is from Lydekker’s Royal Natural History,

Volume 4 and Dover Picto-rial Archive. The cover fonts are

http://animals.oreilly.com/

URW Typewriter and Guardian Sans. The text font is Adobe

Minion Pro; the heading font is Adobe Myriad Condensed;

and the code font is Dalton Maag’s Ubuntu Mono.

Document Outline

Copyright

Table of Contents

Foreword

Preface

About the Book

Prerequisites

Conventions Used in This Book

Using Code Examples

Safari® Books Online

How to Contact Us

Acknowledgments

Chapter 1. Gradle for Android Basics

1.1 Gradle Build Files in Android

Problem

Solution

Discussion

See Also

1.2 Configure SDK Versions and Other Defaults

Problem

Solution

Discussion

See Also

1.3 Executing Gradle Builds from the Command Line

Problem

Solution

Discussion

See Also

1.4 Executing Gradle Builds from Android Studio

Problem

Solution

Discussion

See Also

1.5 Adding Java Library Dependencies

Problem

Solution

Discussion

See Also

1.6 Adding Library Dependencies Using Android

Studio

Problem

Solution

Discussion

See Also

1.7 Configuring Repositories

Problem

Solution

Discussion

See Also

Chapter 2. From Project Import to Release

2.1 Setting Project Properties

Problem

Solution

Discussion

See Also

2.2 Porting Apps from Eclipse ADT to Android Studio

Problem

Solution

Discussion

See Also

2.3 Porting Apps from Eclipse ADT Using Eclipse

Problem

Solution

Discussion

See Also

2.4 Upgrading to a Newer Version of Gradle

Problem

Solution

Discussion

2.5 Sharing Settings Among Projects

Problem

Solution

Discussion

See Also

2.6 Signing a Release APK

Problem

Solution

Discussion

See Also

2.7 Signing a Release APK Using Android Studio

Problem

Solution

Discussion

See Also

Chapter 3. Build Types and Flavors

3.1 Working with Build Types

Problem

Solution

Discussion

See Also

3.2 Product Flavors and Variants

Problem

Solution

Discussion

See Also

3.3 Merging Resources

Problem

Solution

Discussion

See Also

3.4 Flavor Dimensions

Problem

Solution

Discussion

See Also

3.5 Merging Java Sources Across Flavors

Problem

Solution

Discussion

See Also

Chapter 4. Custom Tasks

4.1 Writing Your Own Custom Tasks

Problem

Solution

Discussion

See Also

4.2 Adding Custom Tasks to the Build Process

Problem

Solution

Discussion

See Also

4.3 Excluding Tasks

Problem

Solution

Discussion

See Also

4.4 Custom Source Sets

Problem

Solution

Discussion

See Also

4.5 Using Android Libraries

Problem

Solution

Discussion

Chapter 5. Testing

5.1 Unit Testing

Problem

Solution

Discussion

See Also

5.2 Testing with the Android Testing Support Library

Problem

Solution

Discussion

See Also

5.3 Functional Testing with Robotium

Problem

Solution

Discussion

See Also

5.4 Activity Testing with Espresso

Problem

Solution

Discussion

Collecting Test Results

See Also

Chapter 6. Performance and Documentation

6.1 Performance Recommendations

Problem

Solution

Discussion

See Also

6.2 DSL Documentation

Problem

Solution

Discussion

Appendix A. Just Enough Groovy to Get By

Appendix B. Gradle Basics

Index

About the Author

Table of Contents

Copyright

Table of Contents

Foreword

Preface

About the Book

Prerequisites

Conventions Used in This Book

Using Code Examples

Safari® Books Online

How to Contact Us

Acknowledgments

Chapter 1. Gradle for Android Basics

1.1 Gradle Build Files in Android

Problem

Solution

Discussion

See Also

1.2 Configure SDK Versions and Other Defaults

Problem

Solution

Discussion

See Also

1.3 Executing Gradle Builds from the Command Line

Problem

Solution

Discussion

See Also

1.4 Executing Gradle Builds from Android Studio

Problem

Solution

Discussion

See Also

1.5 Adding Java Library Dependencies

Problem

Solution

Discussion

See Also

1.6 Adding Library Dependencies Using Android

Studio

Problem

Solution

Discussion

See Also

1.7 Configuring Repositories

Problem

Solution

Discussion

See Also

Chapter 2. From Project Import to Release

2.1 Setting Project Properties

Problem

Solution

Discussion

See Also

2.2 Porting Apps from Eclipse ADT to Android Studio

Problem

Solution

Discussion

See Also

2.3 Porting Apps from Eclipse ADT Using Eclipse

Problem

Solution

Discussion

See Also

2.4 Upgrading to a Newer Version of Gradle

Problem

Solution

Discussion

2.5 Sharing Settings Among Projects

Problem

Solution

Discussion

See Also

2.6 Signing a Release APK

Problem

Solution

Discussion

See Also

2.7 Signing a Release APK Using Android Studio

Problem

Solution

Discussion

See Also

Chapter 3. Build Types and Flavors

3.1 Working with Build Types

Problem

Solution

Discussion

See Also

3.2 Product Flavors and Variants

Problem

Solution

Discussion

See Also

3.3 Merging Resources

Problem

Solution

Discussion

See Also

3.4 Flavor Dimensions

Problem

Solution

Discussion

See Also

3.5 Merging Java Sources Across Flavors

Problem

Solution

Discussion

See Also

Chapter 4. Custom Tasks

4.1 Writing Your Own Custom Tasks

Problem

Solution

Discussion

See Also

4.2 Adding Custom Tasks to the Build Process

Problem

Solution

Discussion

See Also

4.3 Excluding Tasks

Problem

Solution

Discussion

See Also

4.4 Custom Source Sets

Problem

Solution

Discussion

See Also

4.5 Using Android Libraries

Problem

Solution

Discussion

Chapter 5. Testing

5.1 Unit Testing

Problem

Solution

Discussion

See Also

5.2 Testing with the Android Testing Support Library

Problem

Solution

Discussion

See Also

5.3 Functional Testing with Robotium

Problem

Solution

Discussion

See Also

5.4 Activity Testing with Espresso

Problem

Solution

Discussion

Collecting Test Results

See Also

Chapter 6. Performance and Documentation

6.1 Performance Recommendations

Problem

Solution

Discussion

See Also

6.2 DSL Documentation

Problem

Solution

Discussion

Appendix A. Just Enough Groovy to Get By

Appendix B. Gradle Basics

Index

About the Author

	Copyright
	Table of Contents
	Foreword
	Preface
	About the Book
	Prerequisites
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Gradle for Android Basics
	1.1 Gradle Build Files in Android
	Problem
	Solution
	Discussion
	See Also

	1.2 Configure SDK Versions and Other Defaults
	Problem
	Solution
	Discussion
	See Also

	1.3 Executing Gradle Builds from the Command Line
	Problem
	Solution
	Discussion
	See Also

	1.4 Executing Gradle Builds from Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.5 Adding Java Library Dependencies
	Problem
	Solution
	Discussion
	See Also

	1.6 Adding Library Dependencies Using Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.7 Configuring Repositories
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. From Project Import to Release
	2.1 Setting Project Properties
	Problem
	Solution
	Discussion
	See Also

	2.2 Porting Apps from Eclipse ADT to Android Studio
	Problem
	Solution
	Discussion
	See Also

	2.3 Porting Apps from Eclipse ADT Using Eclipse
	Problem
	Solution
	Discussion
	See Also

	2.4 Upgrading to a Newer Version of Gradle
	Problem
	Solution
	Discussion

	2.5 Sharing Settings Among Projects
	Problem
	Solution
	Discussion
	See Also

	2.6 Signing a Release APK
	Problem
	Solution
	Discussion
	See Also

	2.7 Signing a Release APK Using Android Studio
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Build Types and Flavors
	3.1 Working with Build Types
	Problem
	Solution
	Discussion
	See Also

	3.2 Product Flavors and Variants
	Problem
	Solution
	Discussion
	See Also

	3.3 Merging Resources
	Problem
	Solution
	Discussion
	See Also

	3.4 Flavor Dimensions
	Problem
	Solution
	Discussion
	See Also

	3.5 Merging Java Sources Across Flavors
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Custom Tasks
	4.1 Writing Your Own Custom Tasks
	Problem
	Solution
	Discussion
	See Also

	4.2 Adding Custom Tasks to the Build Process
	Problem
	Solution
	Discussion
	See Also

	4.3 Excluding Tasks
	Problem
	Solution
	Discussion
	See Also

	4.4 Custom Source Sets
	Problem
	Solution
	Discussion
	See Also

	4.5 Using Android Libraries
	Problem
	Solution
	Discussion

	Chapter 5. Testing
	5.1 Unit Testing
	Problem
	Solution
	Discussion
	See Also

	5.2 Testing with the Android Testing Support Library
	Problem
	Solution
	Discussion
	See Also

	5.3 Functional Testing with Robotium
	Problem
	Solution
	Discussion
	See Also

	5.4 Activity Testing with Espresso
	Problem
	Solution
	Discussion
	Collecting Test Results
	See Also

	Chapter 6. Performance and Documentation
	6.1 Performance Recommendations
	Problem
	Solution
	Discussion
	See Also

	6.2 DSL Documentation
	Problem
	Solution
	Discussion

	Appendix A. Just Enough Groovy to Get By
	Appendix B. Gradle Basics
	Index
	About the Author

