5554:Nexus 5 AP| 23

Friendly

Wayne Enterprises

Please enter your name

SAY HELLO CALL FOR HELP!

Gradle
Recipes for
Android

MASTER THE NEW BUILD SYSTEM FOR ANDROID

Ken Kousen

9

OREILLY"

Gradle Recipes for Android

Android adopted Gradle as the preferred build automation system a few
years ago, but many Android developers are still unfamiliar with this open
source tool. This hands-on guide provides a collection of Gradle recipes
to help you quickly and easily accomplish the most common build tasks
for your Android apps. You'll learn how to customize project layouts, add
dependencies, and generate many different versions of your app.

Gradle is based on Groovy, yet very little knowledge of the JVM language
is required for you to get started. Code examples use Android SDK version
23, with emulators from Marshmallow (Android 6) or Lollipop (Android 5).
If you're comfortable with Java and Android, you're ready.

Understand Gradle's generated build files for Android apps
Run Gradle from the command line or inside Android Studio
Add more Java libraries to your Android app

Import and export Eclipse ADT projects

Use product flavors to build many versions of the same app
Add custom tasks to the Gradle build process
Test both your app’s Android and non-Android components

[]
[|
[|
[|
m Digitally sign a Release APK for the Google Play store
[|
[
[|
m Improve the performance of your Gradle build

Ken Kousen is an independent consultant and trainer specializing in Spring,
Hibernate, Groovy, and Grails. He holds numerous technical certifications, along
with degrees in Mathematics, Mechanical and Aerospace Engineering, and
Computer Science.

“This is the book we

needed... In these pages,
you'll find a wealth of
useful recipes that will
help you avoid the most
common build problems.
Whether you're setting
up a testing system,
automating your signed
APK production, or just
trying to speed up your
build pipeline, this book
is for you.”

—Dawn and David Griffiths
authors of Head First Android
Development

JAVA/GRADLE
US $29.99 CAN $34.99
ISBN: 978-1-491-94702-9

781491

947029

52999
AN [=

Twitter: @oreillymedia
facebook.com/oreilly

e OREILL

Gradle Recipes for Android

Master the New Build System for Android

Ken Kousen

Gradle Recipes for Android

by Ken Kousen

Copyright © 2016 Gradleware, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business,
or sales promotional use. Online editions are also available
for most titles (_http://safaribooksonline.com). For more
information, contact our corporate/

institutional sales department: 800-998-9938 or
corporate@oreil y.com.

Editors: Heather Scherer and Brian Foster
Indexer: Angela Howard
Production Editor: Colleen Lobner

Interior Designer: David Futato

http://safaribooksonline.com/

Copyeditor: Colleen Toporek

Cover Designer: Karen Montgomery
Proofreader: Kim Cofer

lllustrator: Rebecca Demarest

June 2016:

First Edition

Revision History for the First Edition

2016-06-02: First Release

See http://oreil y.com/catalog/errata.csp?
isbn=9781491947029 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Gradle Recipes for Android, the cover image of a great
potoo, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith
efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions,
including without Ilimitation responsibility for damages
resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your
own risk. If any code samples or other technology this work
contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with
such licenses and/or rights.

978-1-491-94702-9

http://oreilly.com/catalog/errata.csp?isbn=9781491947029

[LSI]

This book is dedicated to my wife Ginger: my best friend, my
partner, and the love of my life.

Twenty-five years is just the beginning.

Table of Contents

Foreword. & & & 4 & s & & s & s s s s s s s s s s s s s s & s » &
.................................. vii

Preface. & i 4 i 4 u et u s & s s 8 s a8 8 s 8 s 8 s s 8 s 8 » 8 s = s3&
.................................. ix

1. Gradle for Android BasSiCS. . . « = « & « & & = & & s s = s s s s =
................................ 1

1.1 Gradle Build Files in Android 1

1.2 Configure SDK Versions and Other Defaults 6

1.3 Executing_Gradle Builds from the Command Line 9

1.4 Executing_Gradle Builds from Android Studio 15

1.5 Adding_Java Library Dependencies 18

1.6 Adding_Library Dependencies Using_Android Studio 23

1.7 Configuring_Repositories 26

2.1 Setting_Project Properties 29

2.2 Porting Apps from Eclipse ADT to Android Studio 33

2.3 Porting Apps from Eclipse ADT Using_Eclipse 37

2.4 Upgrading_ to a Newer Version of Gradle 40

2.5 Sharing_Settings Among_Projects 43

2.6 Signing_a Release APK 45

2.7 Signing_a Release APK Using_Android Studio 49

3.1 Working_with Build Types 53

3.2 Product Flavors and Variants 56

3.3 Merging_Resources 60

3.4 Flavor Dimensions 67
3.5 Merging_.Java Sources Across Flavors 71

v

4.1 Writing_Your Own Custom Tasks 77

4.2 Adding_Custom Tasks to the Build Process 80

4.3 Excluding_Tasks 83

4.4 Custom Source Sets 85

4.5 Using_Android Libraries 88

5.1 Unit Testing 97

5.2 Testing_with the Android Testing_Support Library 103

5.3 Functional Testing_with Robotium 108

5.4 Activity Testing_with Espresso 112

6.1 Performance Recommendations 119

6.2 DSL Documentation 125

vi | Table of Contents
Foreword

This is the book we needed. We were about halfway through
writing Head First Android Development when Google
switched IDEs. At the time, pretty much every-one was using
Eclipse with the Android Development Toolkit installed. But
now, Google was pushing for developers to switch to the
Idea-based Android Studio.

We’'re used to this kind of thing—most technical authors are.
Some manufacturer startup switches from some new shiny
thing to some even newer, even shinier thing.

It happens all the time. You rewrite all your example code,
update all the images, drop the features that are now
irrelevant, and include what’'s most useful from the new
technology. But what made the switch from Eclipse to
Android Studio different was that under the hood the new
IDE had a much, much more powerful engine.

Android Studio used Gradle for building, packaging, and
deploying code. Other than knowing the name, neither of us
had any experience of using Gradle directly. It was kind of
like Maven, but rather than using lengthy XML configuration
files, it used a sturdy and concise scripting language: Groovy.

We replaced all the screenshots, and updated the text in the
seven or so chapters that were already written and then
moved on to write the rest of the book. But it soon became
clear that the process of creating applications with Gradle
was subtly, but significantly different. Pretty much anything
that you could do from the IDE was sud-denly possible from
the command line, which meant we could automate our build
pipelines. It took just a few key presses to try out different
library versions, or different build flavors. And because
everything is just code, we could write the builds in the same
way that we wrote the rest of the app.

Learning Gradle is now an important task for every Android
developer. It's up there with knowing Java, or understanding
the Activity lifecycle. But learning Gradle through trial-and-
error can sometimes be a painful process. And that’s where
this book comes in. In these pages, you’ll find a wealth of
useful recipes that will help you avoid the commonest build
problems. Whether you’re setting up a testing system,
automating your signed APK production, or just trying to

speed up your build pipe-vii line, this book is for you. Ken’'s
lively writing style and realistic examples will keep you
coming back again and again. With this book, Ken has shown
that not only is he the go-to quy for Groovy, he’s now also
the go-to guy for Gradle.

—Dawn and David Griffiths
Authors, Head First
Android Development
April 20th, 2016

viii | Foreword

Preface

About the Book

This book contains recipes for working with the Gradle build
system for Android projects. Gradle is one of the most
popular tools for building applications from the Java world,
and is expanding into other languages like C++. The Android
team at Google adopted Gradle as the preferred build
system for Android in the spring of 2013, and its use has
grown steadily since then.

Since Gradle comes from the Groovy ecosystem, many
Android developers may not be familiar with it. Groovy,
however, is very easy for existing Java developers to learn.

The purpose of this book is to provide examples that help
you use Gradle to accomplish the most common build tasks
for Android applications.

All code examples use Android SDK version 23, with
emulators from either Marshmallow (Android 6) or Lollipop
(Android 5.*). Android Studio versions 2.0 or 2.1

(beta) were used as the primary IDE, which included Gradle
version 2.10 or above as the build tool.

Prerequisites

The Gradle plugin for Android involves at least some
knowledge of Java, Groovy, Gradle, and Android. Since entire
books are available for each of those topics, they can’t all be
covered in detail here.

The text in this book is aimed chiefly at developers who are
comfortable with Android development. Very little Android

background is provided, though complete code listings of all
examples are available through the book’s GitHub repository.

Understanding Android means understanding Java, so that
background is assumed as well.

Very little knowledge of either Groovy or Gradle is assumed,
however. Appendix A

contains a quick summary of Groovy syntax and techniques.
Groovy concepts are ix

also reviewed as they come up in various recipes. Appendix
B has basic Gradle information, but the recipes themselves
discuss Gradle in detail throughout the book.

Beyond those limitations, the book is designed to be as self-
contained as possible, with links to external references
(especially documentation) provided wherever appropriate.

The book also makes extensive use of Android Studio, as it is
now the only officially supported IDE for Android
development. Android Studio provides views and tools for
Gradle, which are illustrated in many recipes. While the book
is not designed to be a tutorial on Android Studio, its
relevant features are shown wherever possible, and if that

helps the reader learn more about the IDE, so much the
better.

Conventions Used in This Book

The following typographical conventions are used in this
book:

/talic Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied values
or by values determined by context.

This element signifies a tip or suggestion.
This element signifies a general note.

x | Preface

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available for download at

https://github.com/kousen/GradleRecipesForAndroid.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in
your programs and documentation. You do not need to
contact us for permission unless you're reproducing a
significant portion of the code. For example, writing a
program that uses several chunks of code from this book

https://github.com/kousen/GradleRecipesForAndroid

does not require permission. Selling or distributing a CD-ROM
of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For
example: “Gradle Recipes for Android by Ken Kousen
(O’Reilly). Copyright 2016 Gradleware, Inc., 978-1-4919-
4702-9.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreil y.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-

ers expert content in both book and video form from the

world’s leading authors in technology and business.

Technology professionals, software developers, web
designers, and business and creative professionals use Safari
Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for
enterprise, government, education, and individuals.

Members have access to thousands of books, training videos,
and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press,

mailto:permissions@oreilly.com
http://safaribooksonline.com/
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kauf-Preface | xi mann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this
book to the publisher: O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata,
examples, and any additional information. You can access
this page at http:/bit.ly/gradle-recipes-for-android.

To comment or ask technical questions about this book, send
email to bookques-

tions@oreil y.com.

For more information about our books, courses, conferences,
and news, see our website at http:/www.oreil y.com.

Find us on Facebook: http://facebook.com/oreil y

Follow us on Twitter: http:/twitter.com/oreil ymedia

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/gradle-recipes-for-android
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia

Watch us on YouTube: http:/www.youtube.com/oreil ymedia

Acknowledgments

The author would like to thank several members of Gradle,
Inc. for their gracious help and assistance, including Hans
Dockter, Luke Daley, Rooz Mohazabbi, and Cédric
Champeau, among others. They are part of the reason both
Gradle the technology and Gradle the company have such a
bright future.

| also need to thank Xavier Ducrohet, head of the Android
Studio team at Google as well as head of the Android plugin
project. His hard work made both the IDE and the plugin a
joy to use. I'm also glad he and his team haven’t found time
to update the online documentation sufficiently, leaving a
great opening for this book.1

1 That was a joke. Honestly. But if you'd like to update the
website now, I'm sure nobody will mind.

xii | Preface

As a regular member of the No Fluff, Just Stuff conference
series, | need to thank Jay Zimmerman for the opportunity to
present on both Gradle- and Android-related topics many
times over the years. I'm very happy to be part of No Fluff
speaker com-munity, many of whom have become good
friends. I'm especially thinking of Nate Schutta, Raju Gandhi,
Venkat Subramaniam, Neal Ford, Dan Hinojosa, Brian Sletten,
Michael Carducci, and Craig Walls, but | could add another
dozen names to that list without a problem. I'm also sure I'll
hear about the people | didn't mention at my next No Fluff
conference after they get around to reading this.

I’'m also grateful to Matthew McCullough and Tim Berglund,
the authors of the previous books of this series. Both men

http://www.youtube.com/oreillymedia

are friendly and helpful, and I'm honored to have my book
included with theirs.

The reviewers for this book helped improve it considerably. |
have to call out specifically the contributions of Andrew Reitz
and James Harmon, who provided great insights into the
technical parts of the book as well as its readability.

| have to mention my editors at O’'Reilly, Meghan Blanchette
and Brian Foster.

Meghan was key in launching the book and helping edit the
early stages, and Brian took over from her and shepherded it
throughout the rest of the process. I'm grateful to the rest of
the team at O'Reilly who helped throughout, even if | only
vaguely understood the massive details that go into bringing
a book to its final published form.

Even though it is ostensibly a competitor, the book Gradle
for Android by Kevin Pel-grims (Packt Publishing) is excellent
and taught me a lot. My book takes a different, recipe-based
approach and is, of course, newer and therefore more up-to-
date, but if you can do so | honestly recommend getting
both.

Most of all | need to thank my wife Ginger and my son
Xander for all the support they've given me over the years.
I’'m sorry again for getting involved in a book project so soon
after finishing the previous one, and | promise I'll wait a
while before starting the next one (probably).

Thank you, too, for reading the book. | hope you find it
useful. Any errors or omissions are, of course, my own.

Preface | xiii

CHAPTER 1

Gradle for Android Basics

Android applications are built using the open source Gradle
build system. Gradle is a state-of-the-art APl that easily
supports customizations and is widely used in the Java world.
The Android plug-in for Gradle adds a wide range of features
specific to Android apps, including build types, flavors,
signing configurations, library projects, and more.

The recipes in this book cover the range of Gradle
capabilities when applied to Android projects. Since the
Android Studio IDE uses Gradle under the hood, special
recipes are dedicated to it as well.

Hopefully the recipes in this book will help you configure and
build whatever Android applications you desire.

1.1 Gradle Build Files in Android

Problem

You want to understand the generated Gradle build files for a
new Android application.

Solution

Create a new Android project using Android Studio and
review the files settings.gradle, build.gradle, and
app/build.gradle.

1

Welcome to Android Studio

o

&

Android .Studio

.t Start a new Android Studio project

Open an existing Android Studio project
¥ Check out project from Version Control »
tf Import project (Eclipse ADT, Cradle, etc.)

ot Import an Android code sample

{+ Configure + Get Help ~

Discussion

Android Studio is the only officially supported IDE for Android
projects. To create a new Android project using Android
Studio, use the “Start a new Android Studio project” wizard
(Eigure 1-1).

Figure 1-1. Android Studio Quick Start

The wizard prompts you for a project name and domain. You
can use the Quick Start wizard to start a new Android Studio
project named My Android App in the oreilly.com domain, as
shown in Figure 1-2.

From here, select only the “Phone and Tablet” option and add
a blank activity with the default name, MainActivity.

The name and type of activity does not affect the Gradle
build files.

The resulting “Project” view in “Android” mode is shown in
Figure 1-3, where the relevant Gradle files are highlighted.

2 | Chapter 1: Gradle for Android Basics

0 0 Create New Project

New Project

H Android Studio

Configure your new project

Application name: ‘My Android App

Company Domain: ‘oreilly.com

Package name: com.oreilly.myandroidapp

Ed

Project location: ‘,I' Users kousen/Documents | AndroidStudio/ MyAndroidApp

[Cancel]_Prwious IMI Finish |

MyAndroidApp app 5rC main java

n 1 Android - D H | - I
:g_ ¥ app
g 3 manifests
: > java
= ¥ [Cdres
.g drawable
& [3 layout
":i' 3 menu
b mipmap
© > values
2 |v (2 Gradle Scripts
.}.E" t ® build.gradle (Project: MyAnd roid App)
A # build.gradle (Module: app)

=

il gradle.properties (Global Properties)
Jlgradle-wrapper.properties (Cradle Version)
=| proguard-rules.pro (ProGuard Rules for app)
dl gradle.properties (Project Properties)

settings.gradle (Project Settings)

il local.properties (50K Location)

Figure 1-2. Create New Project wizard
Figure 1-3. Project structure (Android view)

The project layout in the default (Project) view is shown in
Figure 1-4.

1.1 Gradle Build Files in Android | 3

MyAndroidApp

Ty

[Project v 0 o | e |
v MyAndroidApp (~/Documents/And roid?
> .gradle
b Jdea
¥ Lljapp
e build
libs
3 src
= .gitignore
Il app.iml
** build.gradle
| proguard-rules.pro
fe gradle
= .gitignore
;—' #* build.gradle
| gradle.properties
gradlew
= gradlew.bat
| local.properties
Il MyAndroidApp.iml

+ * settings.gradle

e External Libraries

< Captures

1

+ 1: Proj

oL £ 5tructure

Figure 1-4. Project structure (Project view)

Android projects are multiproject Gradle builds. The
settings.gradle file shows which subdirectories hold their
own subprojects. The default file contents are shown in
Example 1-1.

Example 1-1. settings.gradle
include ":app'

The include statement indicates that the app subdirectory is
the only additional subproject. If you add an Android Library
project, it too will be added to this file.

The top-level Gradle build file is in Example 1-2.

Example 1-2. Top-level build.gradle file

// Top-level build file where you can add configuration options
// common to all subprojects/modules.

buildscript {

repositories {

jcenter()

}

dependencies {

classpath 'com.android.tools.build:gradle:2.0.0'

4 | Chapter 1: Gradle for Android Basics

// NOTE: Do not place your application dependencies here;
they belong

// in the individual module build.gradle files

}
}

allprojects {
repositories {
jcenter()

}

}

task clean(type: Delete) {

delete rootProject.buildDir

}

The Gradle distribution does not include Android functionality
by default. Google provides an Android plug-in for Gradle,
which allows easy configuration of Android projects. The
buildscript block in the top-level build file tells Gradle where
to download that plug-in.

As you can see, by default the plug-in is downloaded from
jcenter, which means the Bintray JCenter Artifactory
repository. Other repositories are supported (especially
mavenCentral(), the default Maven repository), but JCenter is
now the default. All content from JCenter is served over a
CDN with a secure HTTPS connection. It also tends to be
faster.

The allprojects section indicates that the top-level project
and any subprojects all default to using the jcenter()
repository to resolve any Java library dependencies.

Gradle allows you to define tasks of your own and insert
them into the directed acyclic graph (DAG), which Gradle
uses to resolve task relationships. Here, a clean task has
been added to the top-level build. The type: Delete part
indicates that the new task is a customized instance of the
built-in Delete task from Gradle. In this case, the task
removes the build directory from the root project, which
defaults to a build folder at the top level.

The Gradle build file for the app_subproject is shown in
Example 1-3.

Example 1-3. Gradle build file for the app subproject

apply plugin: '‘com.android.application’
android {

compileSdkVersion 23

buildToolsVersion "23.0.3"

defaultConfig {

applicationld "com.kousenit.myandroidapp"
minSdkVersion 19

1.1 Gradle Build Files in Android | 5
targetSdkVersion 23

versionCode 1

versionName "1.0"

}

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android.txt'),
‘proguard-rules.pro’

}

}

}

dependencies {

compile fileTree(dir: 'libs', include: ['*.jar'])
testCompile 'junit:junit:4.12’

compile ‘com.android.support:appcompat-v7:23.3.0'

}

The apply functionality in Gradle adds the Android plug-in to
the build system, which enables the android section Domain
Specific Language (DSL) configuration.

This section is discussed in detail in Recipe 1.2.

The dependencies block consists of three lines. The first,
fileTree dependency, means that all files ending in .jar in the
libs folder are added to the compile classpath.

The second line tells Gradle to download version 4.12 of JUnit
and add it to the “test compile” phase, meaning that JUnit
classes will be available in the src/androidTest/

Jjava source tree, as well as the (optional) src/test/java tree,
which can be added for pure unit tests (i.e., those that do not
involve the Android API).

The third line tells Gradle to add version 23.3.0 of the
appcompat-v7 jar files from the Android Support Libraries.
Note that the -v7 means support for Android applications
back to version 7 of Android, not version 7 of the support
library itself. The support library is listed as a compile
dependency, so all of its classes are available throughout the
project.

See Also

Links to all the relevant documentation sites are in Recipe
6.2. Dependencies are dis-

cussed in Recipe 1.5 and repositories are discussed in Recipe
1.7.

1.2 Configure SDK Versions and Other
Defaults

Problem

You want to specify the minimum and target Android SDK
versions and other default properties.

6 | Chapter 1: Gradle for Android Basics

Solution

In the module Gradle build file, set values in the android
block.

Discussion

The top-level Android build file adds the Android plug-in for
Gradle to your project, via the buildscript block. Module build
files “apply” the plug-in, which adds an android block to the
Gradle DSL.

Inside the android block, you can specify several project
properties, as shown in

Example 1-4.

Example 1-4. Android block in build.gradle
apply plugin: '‘com.android.application’
android {

compileSdkVersion 23

buildToolsVersion "23.0.3"

defaultConfig {

applicationld "com.kousenit.myandroidapp"
minSdkVersion 19

targetSdkVersion 23

versionCode 1

versionName "1.0"

}

compileOptions {

sourceCompatibility JavaVersion.VERSION 1 7

targetCompatibility JavaVersion.VERSION 1 7

}
}

Regular Java projects use a java plug-in, but Android projects
use the com.android.application plug-in instead.

Do not apply the Java plug-in. This will cause build errors.
Use the Android plug-in instead.

The android block is the entry point for the Android DSL.
Here you must specify the compilation target using
compileSdkVersion and the build tools version via build
ToolsVersion. Both of these values should be assigned to the
most recent available version, as they are backward
compatible and include all current bug fixes.

1.2 Configure SDK Versions and Other Defaults | 7

The defaultConfig block inside android shows several
properties: applicationld

The “package” name of the application, which must be
unique in the Google Play store. This value can never change
during the life of your app; changing it will result in your app
being treated as a brand new application, and existing users
will not see changes as an update. Prior to the move to
Gradle, this was the pack age attribute of the root element of
the Android Manifest. The two can now be decoupled.

minSdkVersion

The minimum Android SDK version supported by this
application. Devices earlier than this will not see this
application when accessing the Google Play store.

targetSdkVersion

The version of Android intended for this application. Android
Studio will issue a warning if this is anything other than the
latest version, but you're free to use any version you like.

versionCode

An integer representing this version of your app relative to
others. Apps normally use this during the upgrade process.

versionName

A string representing the release version of your app, shown
to users. Normally in the form of a <major>.<minor>.
<version> string, like most projects.

Prior to the switch to Gradle, the minSdkVersion and
buildToolsVersion properties were specified in the Android
Manifest as attributes of a <uses-sdk> tag. That approach is
now deprecated, as the values there are overridden by the
values in the Gradle build file.

The compileOptions section shows that this app expects to
use JDK version 1.7.

In Android Studio, the Project Structure dialog shows the
values in graphical form, shown in Figure 1-5.

The defaultConfig values are on the Flavors tab in the Project
Structure window

(Eigure 1-6).

Documentation for the defaultConfig block, as with other
elements of the DSL, can be found in the DSL reference.

8 | Chapter 1: Gradle for Android Basics

http://bit.ly/gradle-dsl

Project Structure

+ - - Signing ~ Flavors Build Types Dependencies
SDK Location
Project Compile Sdk Version APl 23: Android 6.0 (Marshmallow)
Developer Services g Tools Version 23,03
Ads
Analytics Library Repository
Authertiglion Ignore Assets Pattern
Cloud
Natifications Incremental Dex
bl Source Compatibility 1.7 v
app
Target Compatibility 1.7 |8
00 oot Sincue

+ - Properties Signing - Build Types Dapendencies
SDK Location ;

Praject defaultConfig Name: defaultConfig

Developer Services

M Min Sck Version AP 19: Andraid 4.4 (Kitkat)]
Analytics

Authentication Application Id com.kousenit.myandroidapp
On Proguard File

Natifications .

Modules Signing Config

Target Sk Version API 23: Android 6.0 (Marshmallow)
Test Instrumentation Runner
Test Application Id

Version Code 1

Version Name L0

Figure 1-5. Project Structure view in Android Studio

Figure 1-6. Properties inside the android block

See Also

Other child elements of android, like buildTypes or
productFlavors, are discussed in Recipes Recipe 3.1, Recipe
3.2, _Recipe 3.4, and more. The documentation links are
given in Recipe 6.2.

1.3 Executing Gradle Builds from the Command Line
Problem

You want to run Gradle tasks from the command line.
Solution

From the command line, either use the provided Gradle
wrapper or install Gradle and run it directly.

1.3 Executing Gradle Builds from the Command Line |
9

Discussion

You do not need to install Gradle in order to build Android
projects. Android Studio comes with a Gradle distribution (in
the form of a plug-in) and includes dedicated features to
support it.

The term “Gradle wrapper” refers to the gradlew script for
Unix and gradlew.bat script in the root directory of an
Android application, where the ending “w” stands for
“wrapper.”

The purpose of the Gradle wrapper is to allow a client to run
Gradle without having to install it first. The wrapper uses the
gradle-wrapper.jar and the gradle-wrapper.properties files in
the gradle/wrapper folder in the application root to start the

process. A sample of the properties file is shown in Example
1-5.

Example 1-5. Keys and values in gradle-wrapper.properties
#Mon Dec 28 10:00:20 PST 2015
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

distributionUrl=https\:
//services.gradle.org/distributions/gradle-2.10-all.zip The
distributionUrl property indicates that the wrapper will
download and install version 2.10 of Gradle.1 After the first
run, the Gradle distribution will be cached in the zipStorePath
folder under the zipStoreBase directory and then be
available for all subsequent executions of Gradle tasks.

The wrapper is used at the command line simply by
executing the ./gradlew command on Unix or the gradlew.bat
command on Windows (Example 1-6)

Example 1-6. Output from running the build task

> ./gradlew build

Downloading
https://services.gradle.org/distributions/gradle-2.10-all.zip

.... (download of Gradle 2.10)

Unzipping
/Users/kousen/.gradle/wrapper/dists/3i2gob.../gradle-2.10-

all.zip to /Users/kousen/.gradle/wrapper/dists/gradle-2.10-
all/3i2gob...

Set executable permissions for:

/Users/kousen/.gradle/wrapper/dists/gradle-2.10-
all/3i2gob.../gradle-2.10/bin/gradle 1 At the time of this
writing, the current version of Gradle is 2.12. You can change
the distributionUrl to include any legal Gradle version
number.

10 | Chapter 1: Gradle for Android Basics

Starting a new Gradle Daemon for this build (subsequent
builds will be faster).

:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE
... lots of tasks ...
:app:compileLint

:app:lint

Wrote HTML report to
file:.../MyAndroidApp/app/build/outputs/lint-results.html

Wrote XML report to .../MyAndroidApp/app/build/outputs/lint-
results.xml :app:preDebugUnitTestBuild UP-TO-DATE

:app:prepareDebugUnitTestDependencies

... lots of tasks ...

:app:test

:app:check

:app:build

BUILD SUCCESSFUL

Total time: 51.352 secs // most of which was the download

In this book, examples show the ./gradlew command for
Unix-

based operating systems. For Windows, simply replace that
with

gradlew or gradlew.bat without the dot-slash.

The initial download can take a few minutes, depending on
your Internet connection speed. It only needs to be done
once, however. After that, subsequent builds will use the
cached version.

You can run any supported Gradle task, including your own
custom tasks, at the command line. Compiled code will be
found in the app/build folder. Generated apk (Android
package) files are found in the app/build/outputs/apk
directory.

The tasks command from Gradle shows what tasks are
available in the build, as shown in Example 1-7.

Example 1-7. Output from tasks

-tasks

androidDependencies - Displays the Android dependencies of
the project.

signingReport - Displays the signing info for each variant.

sourceSets - Prints out all the source sets defined in this
project.

1.3 Executing Gradle Builds from the Command Line |
11

Build tasks

assemble - Assembles all variants of all applications and
secondary packages.

assembleAndroidTest - Assembles all the Test applications.
assembleDebug - Assembles all Debug builds.
assembleRelease - Assembles all Release builds.

build - Assembles and tests this project.

buildDependents - Assembles and tests this project and all
projects that depend on it.

buildNeeded - Assembles and tests this project and all
projects it depends on.

compileDebugAndroidTestSources
compileDebugSources
compileDebugUnitTestSources
compileReleaseSources
compileReleaseUnitTestSources

mockableAndroidjar - Creates a version of android.jar that's
suitable for unit tests.

Build Setup tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]
Help tasks

components - Displays the components produced by root
project 'MyAndroidApp'.

dependencies - Displays all dependencies declared in root
project 'MyAndroidApp'.

dependencylnsight - Displays the insight into a specific
dependency in root project ‘MyAndroidApp'.

help - Displays a help message.

model - Displays the configuration model of root project
'‘MyAndroidApp'. [incubating]

projects - Displays the subprojects of root project
'‘MyAndroidApp'.

properties - Displays the properties of root project
'‘MyAndroidApp'.

tasks - Displays the tasks runnable from root project
'‘MyAndroidApp'

(some of the displayed tasks may belong to subprojects).
Install tasks
installDebug - Installs the Debug build.

installDebugAndroidTest - Installs the android (on device)
tests for the Debug build.

uninstallAll - Uninstall all applications.
uninstallDebug - Uninstalls the Debug build.

uninstallDebugAndroidTest - Uninstalls the android (on
device) tests for the build.

uninstallRelease - Uninstalls the Release build.
Verification tasks

check - Runs all checks.

clean - Deletes the build directory.

connectedAndroidTest - Installs and runs instrumentation
tests for all flavors on connected devices.

connectedCheck - Runs all device checks on currently
connected devices.

connectedDebugAndroidTest - Installs and runs the tests for
debug connected devices.

deviceAndroidTest - Installs and runs instrumentation tests
using all Providers.

12 | Chapter 1: Gradle for Android Basics

deviceCheck - Runs all device checks using Device Providers
and Test Servers.

lint - Runs lint on all variants.

lintDebug - Runs lint on the Debug build.

lintRelease - Runs lint on the Release build.

test - Run unit tests for all variants.

testDebugUnitTest - Run unit tests for the debug build.
testReleaseUnitTest - Run unit tests for the release build.
Other tasks

clean

jarDebugClasses

jarReleaseClasses

lintVitalRelease - Runs lint on just the fatal issues in the
Release build.

To see all tasks and more detail, run gradlew tasks --all

To see more detail about a task, run gradlew help --task
<task> BUILD SUCCESSFUL

While this may seem like a lot of tasks, you actually use a
small number in practice.

When you add multiple build types and flavors to your
project, the number will go up considerably.

Additional features and command-line flags

You can run multiple tasks by separating them by spaces, as
in Example 1-8.

Example 1-8. Executing more than one task
> ./gradlew lint assembleDebug

Note that repeating the same task name only executes it
once.

You can exclude a task by using the -x flag, as shown in
Example 1-9.

Example 1-9. Excluding the lintDebug task
> ./gradlew assembleDebug -x lintDebug

The --all flag on the tasks command shows all the tasks in
the project as well as the dependencies for each task.

The output from gradle tasks --all can be very long.

1.3 Executing Gradle Builds from the Command Line |
13

You can abbreviate task names from the command line by
providing just enough letters to uniquely determine it
(Example 1-10).

Example 1-10. The dependency tree for each configuration
> ./gradlew anDep
:app:androidDependencies

debug

\--- com.android.support:appcompat-v7:23.3.0

+--- com.android.support:support-vector-drawable:23.3.0
| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

+--- com.android.support:animated-vector-drawable:23.3.0
| \--- com.android.support:support-vector-drawable:23.3.0
| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

\--- com.android.support:support-v4:23.3.0

\--- LOCAL: internal_impl-23.3.0.jar

debugAndroidTest

No dependencies

debugUnitTest

No dependencies

release

\--- com.android.support:appcompat-v7:23.3.0

+--- com.android.support:support-vector-drawable:23.3.0
| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

+--- com.android.support:animated-vector-drawable:23.3.0

| \--- com.android.support:support-vector-drawable:23.3.0
| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

\--- com.android.support:support-v4:23.3.0

\--- LOCAL: internal_impl-23.3.0.jar

releaseUnitTest

No dependencies

BUILD SUCCESSFUL

The camel-case notation (anDep for androidDependencies)
works well, as long as the resolution is unique (Example 1-
11).

14 | Chapter 1: Gradle for Android Basics
Example 1-11. Not enough letters to be unique
> ./gradlew pro

FAILURE: Build failed with an exception.

* What went wrong:

Task 'pro' is ambiguous in root project 'MyAndroidApp'.
Candidates are:

'‘projects’, 'properties’.

The error message shows exactly what went wrong: pro is
ambiguous, since it matches both projects and properties.
Just add another letter to make it unique.

Finally, if your build file is not called build.gradle, use the -b
flag to specify the build filename (Example 1-12).

Example 1-12. Using a nondefault build filename
> ./gradlew -b app.gradle
See Also

Appendix B gives a summary of Gradle installation and
features beyond Android

projects. Recipe 1.5 discusses dependencies in the build file.
Recipe 4.3 illustrates excluding tasks from the build process.

1.4 Executing Gradle Builds from
Android Studio

Problem

You want to run Gradle from inside Android Studio.
Solution

Use the Gradle view to execute tasks.

Discussion

When you create an Android project, Android Studio
generates Gradle build files for a multiproject build
(discussed in Recipe 1.1). The IDE also provides a Gradle
view that organizes all of its tasks, as shown in Figure 1-7.

1.4 Executing Gradle Builds from Android Studio | 15

Gradle projects - At
G+- @ I @B A
m

¢ (& MyAndroidApp (root)
C8 Tasks
(> :app
- Cg@Tasks
 [gandroid
#* androidDependencies
signingReport
£ sourceSets
v [abuild
#* assemble
£ assembleAndroidTest
assembleDebug
i assembleRelease
£ build
£ buildDependents
¥ buildNeeded
#* clean
£¥ compileDebugAndroidTestSources
#* compileDebugSources
#* compileDebugUnitTestSources
#* compileReleaseSources
£¥ compileReleaseUnitTestSources
£+ mockableAndroid)ar
Ca help
v Eginstall

£ installDebug
installDebugAndroidTest
£ uninstallAll
£ uninstallDebug
#* uninstallDebugAndroidTest

£ uninstallRelease =
[s other E_
[& verification S

Figure 1-7. Gradle view inside Android Studio

Gradle tasks are organized into categories, like android,
build, install, and other,

as Figure 1-7 illustrates.

To execute a particular task, double-click the entry in the
Gradle window. The result

is shown in Figure 1-8.

Double-clicking any task executes that task on the command
line, which is shown in the Run window. Every time you run a
particular task, a run configuration is created and stored
under the Run Configurations menu, so running it again
simply requires another double-click.

16 | Chapter 1: Gradle for Android Basics

, L]) & gradle-wranper properties - My Android App -/ Documents/AndraldStudio/MyndroidApg]

BHO ¢4 K00 AR &9 8 wanodopapplwsemsid- P E W RGN %0 §La#H 7 Q
| MyAndmidAppj}] grad\e?? | wrapper} [radewapperpropere
i ‘ ijectFHeslo O% & |- @apx [joadewappoptes « Cradle projcts # 7 @
il 1 #4on Dec 28 10:00:20 PST 2015 Yg+-CI:RHE i
4 ¢ LImanirests | | | |
A) B 2 distributionBase=GRADLE_USER HONE 7 (Nyhndridhpp i
8 e 3 distributionPath=urapper/dists " @ Vyhndridhp (o)
by O e 4 zipStoreBase=GRADLE USER HOME Thmk
§ Ouidgatepoericiod) 5 2ipStorePatheurapper/dists :E;:ldlg"d
? Ohildgadehdie 6 distributionUrl=https\://services.gradle.ory/dis *»r?buildsetu
y Cgradleproperis (Cobal Propetes) 7 ;hl P
i grade-rapperpropetes (GradleVersion) i ; i I
: B! proguand-ules o (PoCuard Rules for pp) : ; |n:|ta
g Clgrade properties (Poject ropertes ‘h;m efr :
3 @ settings.gradle (ProjectSetings) : C# il
i b app
localproperties (SDK Location)
@ [iloca propertis 5K Loaton " B
v [gandrid
4 androidDependencies
1 signingRepon
) sourceSets
v [gbuild
 Morcomhin)
Assembles allDebug buids. o
assembleDebug
1) assembleRelease
1 build
1 buildDependents
1) buildNeeded
Run " MyAncroidAppapp (assembleDebug] I
Pt uappivalidateDebugSigning
U
04 app:packageDebug UP-TO-DATE
i @ app:zipalignDebug UP-TO-DATE
o B
;‘ 4 appiassenbleDebug UP-TO-DATE
.
§ :
g &, BUILD SUCCESSFUL '
17 ¢ E
i g
v Total tine: 1,323 secs :
d 113008 P External task execution finished "assenbleebug’. ;
w E
Bremind § GAndodbonior 8 OMessages | pdiun 27000 Bentlog 7 Cradle Consale

00 Cradebuid frished i s 550ms (aminue aga) B0 F UTFS Comot croconets b @

Cradle Consale 8- L

=*

% iapp:transformResourcesWithMergeJavaResForDebug UP-TO-DATE
™ :app:validateDebugSigning

:app:packageDebug UP-TO-DATE

:app:zipalignDebug UP-TO-DATE

:app:assembleDebug UP-TO-DATE

BUILD SUCCESSFUL

Total time: 1.323 secs

Event Log = Gradle Console

Figure 1-8. Running Gradle inside Android Studio

The execution seen in the Run window shows once again that
the IDE is essentially just a frontend on Gradle. Any
execution, from build to test to deployment, is actually
executing Gradle tasks at the command line.

Android Studio also provides a Gradle Console view,_as
shown in Figure 1-9.

Figure 1-9. Gradle Console view in Android Studio

See Also

To run Gradle tasks from the command line using the
included wrapper, refer to

Recipe 1.3.

1.4 Executing Gradle Builds from Android Studio | 17

1.5 Adding Java Library Dependencies

Problem

You want to add additional Java libraries to your Android app.
Solution

Add the group, name, and version to the dependencies block
in the build.gradle file included in your application module.

Discussion

By default, Android applications come with two build.gradle
files: one at the top-level, and one for the application itself.
The latter is normally stored in a subdirectory called app.

Inside the build.gradle file in the app directory, there is a
block called dependencies.

Example 1-13 shows a sample from a new Android
application generated by Android Studio.

Example 1-13. Default dependencies in a new Android
project

dependencies {

compile fileTree(include: ["*.jar'], dir: 'libs')
testCompile 'junit:junit:4.12'

compile ‘com.android.support:appcompat-v7:23.3.0'

}

Basic syntax

Gradle supports several different ways of listing
dependencies. The most common is to use quotes with
colon-separated group, name, and version values.

Gradle files use Groovy, which supports both single- and
double-

quoted strings. Double quotes allow interpolation, or variable
substitution, but are otherwise identical. See Appendix A for
details.

Each dependency is associated with a configuration. Android
projects include compile, runtime, testCompile, and
testRuntime configurations. Plugins can add additional
configurations, and you can also define your own.

The full syntax for a dependency calls out the group, name,
and version numbers explicitly (Example 1-14).

18 | Chapter 1: Gradle for Android Basics

Example 1-14. Full syntax for dependencies
testCompile group: 'junit', name: 'junit', version: '4.12"

The result of Example 1-14 is entirely equivalent to that in
Example 1-15.

Example 1-15. Shortcut syntax for dependencies
testCompile 'junit:junit:4.12'
This is the shortcut form used in the default build file.

It is legal, though not recommended, to specify a version
number with a plus sign, as shown in Example 1-16.

Example 1-16. Version number as a variable (not
recommended)

testCompile 'junit:junit:4.+"

This tells Gradle that any version of JUnit greater than or
equal to 4.0 is required to compile the project’s tests. While
this works, it makes the build less deterministic and
therefore less reproducible. Explicit version numbers also
protect you from changes in later versions of a particular API.

Favor explicit version numbers for dependencies. This
protects you

from later changes in dependent libraries and makes your
build

reproducible.

If you want to add a set of files to a configuration without
adding them to a repository, you can use the files or fileTree
syntax inside the dependencies block (Example 1-17).

Example 1-17. File and directory dependencies
dependencies {

compile files('libs/a.jar', 'libs/b.jar")

compile fileTree(dir: 'libs', include: "*.jar")

}

The last line uses the same syntax as that employed in the
default Gradle build file.

Next, Gradle needs to know where to search to resolve
dependencies. This is done through a repositories block.

1.5 Adding Java Library Dependencies | 19

DemoCracl X i‘app X |y radle-wrapper.praperties X

You can configure Cradle wrapper to use distribution with sources. It wil provide IDE with Gradle AP1/DSL documentation. Hide the tip Ok, apply suggestion!
Cradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly. Sync Now
4 compileSdkVersion 23
5 buildToolsVersion "23.0.3"
6
1 defaultConfig { Android Studio offers
8 applicationId “com.kousenit.myandroidapp” to sync now
9 minSdkVersion 19
10 targetSdkVersion 23
11 versionCode 1
12 versionName "1.0"
13 }
14 buildTypes {
15 release {
16 ninifyEnabled false
17 proguardFiles getDefaultProquardFile('proguard-android.txt'), 'proguard-rules
18 }
19 }
20 compileOptions {
21 sourceCompatibility JavaVersion.VERSION_1 7
22 targetCompatibility JavaVersion,VERSION_ 1 7
23 }
4}
25
26 dependencies {
21 compile fileTree(include: ['x.jar'], dir: 'libs')

28 compile 'com.android.support:appcompat-v7:23.3.0
29 o conpile 'com.squareup. retrofit2:retrofit:2,0,1" efmm—n WNEREGENY
£
31 testCompile 'junit:junit:4.12' \
2)

Synchronizing the project

Android Studio monitors the Gradle build files and offers to
synchronize new changes automatically.

For example, consider adding the Retrofit 2 project to
build.gradle in the app project.

As Figure 1-10 shows, after any change to the build.gradle
file, Android Studio offers to synchronize the project. This
downloads any required libraries and adds them to the
project.

Figure 1-10. Android Studio offering to synchronize project
dependencies After clicking the SycNow link, the downloaded
libraries appear in the External Libraries section of the
project window (Figure 1-11).

Figure 1-11. External Libraries

In this case, the retrofit dependency also added the okhttp
and okio libraries as

transitive dependencies, as shown in Figure 1-12.

If you miss your opportunity to click the Sync Now link,
Android Studio provides a special icon in the toolbar for the
same purpose, as well as a menu item.

20 | Chapter 1: Gradle for Android Basics

v Navigate Code Analyze Refactor Buld Run VCS Window Help & @ & m'_gl = 100%BP Mon

000 app-M Tasks & Contexts b MyAndroidAggl - Android Studio 1.4 Preview ¢
DHO ¢4 (00 AR ¢ WAT " Save File as Template... D‘i‘ " r' a#?

MyAndroidApp ' app ' buildgradle Generate JavaDoc...
. . O% ® 1 € Noy Soratch Fil.. D8N |
% v Mo 8 IDE Scripting Console "com.oreifly.myandroidapp"
Lj ! tgr'orewmmdmmapp Create Command-line Launcher...

ApplicationTest 10 on 23
. » [Imain 11 @ Groovy Console..
E B “test iV, Androld » Navigatidi Editor
A S gltgnare 13 } '+ Sync Project with Gradle Files
- ’.fap,p'tml 14 § Android Device Monitor
** bulld.gradle . . =
- AR 15 packagingOptions { ¥ AVDManager
§ > Cibuid 16 exclude 'META= 5 SDKManager
Lﬁ v Flgradie 17 exclude 'META- EnableAD8 Iptegratian
“_:,' v Clwrapper 18 }) Theme Editor
| gradle-wrapper.jar 19

Figure 1-12. Sync Project with Gradle Files button and menu
item Transitive dependencies

There’'s an old joke that defines Maven as a DSL for
downloading the Internet. If that is true for Maven, it's also
true for Gradle. Both download transitive dependencies,
which are libraries that themselves depend on other
libraries.

In regular Java projects, the Gradle command dependencies
can be used to see the transitive dependencies. Android
projects use the androidDependencies command instead.

Consider the dependencies block from Example 1-13.
Running the androidDependen cies task gives the output
shown in Example 1-18.

Example 1-18. Seeing Android dependencies

> ./gradlew androidDependencies

:app:androidDependencies

debug

\--- com.android.support:appcompat-v7:23.3.0

+--- com.android.support:support-vector-drawable:23.3.0
| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

+--- com.android.support:animated-vector-drawable:23.3.0
| \--- com.android.support:support-vector-drawable:23.3.0
| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

\--- com.android.support:support-v4:23.3.0

\--- LOCAL: internal_impl-23.3.0.jar

debugAndroidTest

No dependencies

1.5 Adding Java Library Dependencies | 21
debugUnitTest

No dependencies

release

\--- com.android.support:appcompat-v7:23.3.0

+--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

+--- com.android.support:animated-vector-drawable:23.3.0
| \--- com.android.support:support-vector-drawable:23.3.0

| \--- com.android.support:support-v4:23.3.0

| \--- LOCAL: internal_impl-23.3.0.jar

\--- com.android.support:support-v4:23.3.0

\--- LOCAL: internal_impl-23.3.0.jar

releaseUnitTest

No dependencies

The debug and release builds both use the appcompat-v7
library from the Android Support libraries. That library
depends on the support-v4 library, among others, which uses
an internal jar from the Android SDK.

Managing transitive dependencies manually sounds like a
good idea until you actually try to do it. The complexity
grows quickly and doesn’t scale well. Gradle is very good at
resolving versioning issues among dependencies.

Still, Gradle does provide a syntax for including and
excluding individual libraries.

Gradle follows transitive dependencies by default. If you
want to turn that off for a particular library, use the transitive
flag_ (Example 1-19)

Example 1-19. Disabling transitive dependencies

dependencies {

runtime group: 'com.squareup.retrofit2', name: 'retrofit’,
version: '2.0.1', transitive: false

}

Changing the value of the transitive flag to false prevents
the download of transitive dependencies, so you’ll have to
add whatever is required yourself,

If you only want a module jar, without any additional
dependencies, you can specify that as well (Example 1-20)

Example 1-20. Full syntax for module jar only
dependencies {

compile 'org.codehaus.groovy:groovy-all:2.4.4@jar"
compile group: 'org.codehaus.groovy', name: 'groovy-all’,
22 | Chapter 1: Gradle for Android Basics

version: '2.4.4', ext: ‘jar'

}

Shortcut syntax

Full version

The shortcut notation uses the @ sign, while the full version
sets an ext (for extension) value.

You can also exclude a transitive dependency in the
dependencies block

(Example 1-21).

Example 1-21. Excluding dependencies
dependencies {

androidTestCompile(‘org.spockframework:spock-core:1.0-
groovy-2.4') {

exclude group: 'org.codehaus.groovy'
exclude group: ‘junit’

}

}

In this case, the spock-core project excludes the Groovy
dependency and the JUnit library, both of which are includes
by other means.

See Also

Recipe 1.6 shows how to add dependencies through the
Android Studio IDE. Recipe

1.7 discusses repositories, which are used to resolve
dependencies. Recipe 4.5 discusses the situation where one
module depends on another, as with Android libraries.

1.6 Adding Library Dependencies
Using Android Studio

Problem

Rather than edit the build.config file directly, you want to
add dependencies using the Android Studio IDE.

Solution

Use the Project Structure section of Android Studio, with the
Dependencies tab.

1.6 Adding Library Dependencies Using Android
Studio | 23

0 Project Structure
+ = QRIOREMESY Sioning Flavors Build Types Dependencies
50K Location
Project Compile Sdk Version ~ API 23: Android 6.0 (Marshmallow) g
Developer Services Build Tools Version ~ 23.03 {4
Ads
Analytics Library Repository
Authenticaicn Ignore Assets Pattemn
Cloud
Notifications Incremental Dex
Modules

Source Compatibility 1.7 [

Target Compatibility 1.7 f§

000 Project Structure

+ - Properties Signing Flavors Build Types Dependencies

|
SDK Location
Project

Scope
{include=[* jar], dir=Iibs} Compile

| 'j\;\ o BFVIFE
Developer Services M com.android.support:appcompat-v7:23.3.0 Compile

Ads
| | Analytics
| Authentication
| Cloud
| Notifications

m com.squareup.retrofit2:retrofit:2.0.1 Compile

M junit:junit:4.12 Testcompile =

Modules

|

Discussion

Experienced Gradle developers are comfortable editing the
build.gradle file directly, but the IDE does not give you a lot
of code assistance in doing so. The Project Structure display,
however, gives a graphical view of the build file contents.

Access the Project Structure menu item under the File menu
to see the overall display.

Then select the module containing your application (app by
default) as shown in

Figure 1-13.

Figure 1-13. Project Structure Ul (shown earlier in Figure 1-5)
Selecting app in the Modules section shows the default page,
with the Properties tab highlighted. This shows, among other
things, the Compile SDK Version and Build Tools Version.

Click the Dependencies tab to see any existing
dependencies, along with the ability to add new ones (Eigure
1-14).

Figure 1-14. Dependencies tab in Project Structure

The “Scope” column allows you to specify the configuration
where the dependency is needed. Current choices are:

« Compile
* Provided

* APK

24 | Chapter 1: Gradle for Android Basics

+ — | a

1 Library dependency

i1 2 File dependency
3 Module dependency

e o Choose Library Dependency

Enter terms for Maven Central search, or fully-qualified coordinates (e.g. com.google.code.gson:gson:2.2.4)

support-annotations (com.android.support:support-annotations:23.0.0)
support-v4 (com.android. support:support-v4:23.0.0)

support-v13 (com.android.support:support-v13:23.0.0)
appcompat-v7 (com.android.support:appcompat-v7:23.0.0)

design (com.android.support:design:23.0.0)

gridlayout-v7 (com.android.support:gridlayout-v7:23.0.0)
mediarouter-v7 (com.android.support:mediarouter-v7:23.0.0)
play-services (com.google.android.gms:play-services:7.8.0)

~ Cancel | OK i

» Test compile
* Debug compile

* Release compile

Clicking the plus button at the bottom of the window offers
to add three different

types of dependencies, as shown in Figure 1-15.

Figure 1-15. Adding dependencies pop-up

File dependencies allow you browse the filesystem for
individual jar files. Module dependencies refer to other
modules in the same project, which is discussed in the recipe
for library projects.

The “Library Dependencies” option brings up a dialog box
that allows you to search Maven Central for a particular
dependency. By default it shows all the optional support
libraries and Google Play services (Figure 1-16).

Figure 1-16. Choosing library dependencies

Enter a string in the search box and click the search icon (the
magnifying glass in versions prior to 2.0 and the three dots
in AS 2.0 and above) to find the full Maven coor-dinates of

Clicking OK when you’'re done triggers a Gradle project sync,
which downloads the dependency and adds it to your
project.

1.6 Adding Library Dependencies Using Android
Studio | 25

& & Choose Library Dependency

com.squareup.retrofit2:converter-gson:2.0.1

Enter terms for Maven Central search, or fully-qualified coordinates (e.q. com.google.code.gson:gson:2.2.4)

com.squareup.retrofit2:converter-scalars:2.0.1
com.squareup.retrofit2:converter-simplexml:2.0.1
com.squareup.retrofit2:converter-wire:2.0.1
com.squareup.retrofit2:converter-jackson:2.0.1
com.squareup.retrofit2:converter-protobuf:2.0.1

com.squareup.retrofit2:converter-gson:2.0.1
com.squareup.retrofit2:adapter-rxjava:2.0.1
com.squareup.retrofit2:adapter-java8:2.0.1

Gance

Figure 1-17. Finding the Gson library

See Also

Recipe 1.5 reviews how to add dependencies by editing the
Gradle build files directly.

Recipe 1.7 is about configuring Gradle repositories that are
used to resolve the dependencies.

1.7 Configuring Repositories

Problem

You need Gradle to accurately resolve any library
dependencies.

Solution

Configure the repositories block in your Gradle build file.
Discussion

Declaring Repositories

The repositories block tells Gradle where to find the
dependencies. By default, Android uses either jcenter() or
mavenCentral(), which represent the default Bintray JCenter
repository and the public Maven Central Repository,
respectively (Example 1-22).

Example 1-22. The default JCenter repository
repositories {

jcenter()

}

26 | Chapter 1: Gradle for Android Basics

This refers to the JCenter repository located at
https.//jcenter.bintray.com. Note that it uses HTTPS for the
connection.

https://jcenter.bintray.com/

There are two shortcuts available for Maven repositories. The
mavenCentral() syntax refers to the central Maven 2
repository at Ahttp:/repol.maven.org/maven2. The maven
Local() syntax refers to your local Maven cache (Example 1-
23).

Example 1-23. Built-in Maven repositories in the repositories
block repositories {

mavenLocal()

mavenCentral()

}

Local Maven cache

Public Maven Central respository

Any Maven repository can be added to the default list using
a maven argument with a url block (Example 1-24).

Example 1-24. Adding a Maven repo from a URL
repositories {

maven {

url 'http://repo.spring.io/milestone'

}

}

Password-protected repositories use a credentials_block, as
Example 1-25 (taken from the Gradle user guide) shows.

Example 1-25. Accessing a Maven repo requiring credentials

http://repo1.maven.org/maven2

repositories {

maven {

credentials {

username 'username’

password '‘password'

}

url 'http://repo.mycompany.com/maven?2’
}

}

You can move the explicit username and password values to
a file called gradle.properties. Recipe 2.1 discusses this in
detail.

vy and local repositories are added using a similar syntax.
1.7 Configuring Repositories | 27

Example 1-26. Using an Ivy repository

repositories {

ivy {

url "http://my.ivy.repo'

}

}

If you have files on the local filesystem, you can use a
directory as a repository with the flatDir syntax (Example 1-
27).

Example 1-27. Using a local directory as a repository

repositories {

flatDir {
dirs 'lib'
}
}

This is an alternative to adding the files explicitly to the
dependencies block with files or fileTree.

You often will add multiple repositories to your build. Gradle
will search each in turn, top down, until it resolves all of your
dependencies.

See Also

Recipe 1.5 and Recipe 1.6 are about configuring the
dependencies themselves.

28 | Chapter 1: Gradle for Android Basics

CHAPTER 2

From Project Import to Release

2.1 Setting Project Properties

Problem

You want to add extra properties to your project, or
externalize hardcoded values.

Solution

Use the ext block for common values. To remove them from
the build file, put properties in the gradle.properties file, or
set them on the command line using the -P flag.

Discussion

Gradle build files support property definitions using a simple
ext syntax, where in this case “ext” stands for “extra.” This
makes it easy to define a variable value once and use it
throughout the file.

These properties can be hardcoded into the build file if you
wish. Example 2-1 is a sample from a Gradle build file from
the Android Annotations project.

Example 2-1. Sample “extra” property
ext {

def AAVersion = '4.0-SNAPSHOT' // change this to your
desired version

}

dependencies {

apt "org.androidannotations:androidannotations:$AAVersion"

http://androidannotations.org/

compile "org.androidannotations:androidannotations-
api:$AAVersion"

}

29

Normal Groovy idioms apply here, meaning that the variable
AAVersion is untyped but takes on a String value at
assignment, and that the variable is interpolated into the two
Groovy string dependencies.

The use of the def keyword here implies that this is a local
variable in the current build file. Defining the variable

without def (or any other type) adds the variable as an
attribute of the project object, making it available in this
project as well as any of its subprojects.

An untyped variable in the ext block adds properties to the
Project instance associated with the build.

What if, however, you wished to remove the actual value
from the build file? Consider a Maven repository with login
credentials,_as shown in Example 2-2.

Example 2-2. Maven repo with credentials
repositories {

maven {

url ‘http://repo.mycompany.com/maven2'
credentials {

username ‘user"

password '‘password'

}
}
}

Hardcoded values

You probably don’'t want to keep the actual username and
password values in the build file. Instead, add them to the
gradle.properties file in the project root, as shown in
Example 2-3.

Example 2-3. gradle.properties file
login="'user’
pass='my_long _and_highly complex_password'

Now the credentials_block in Example 2-2 can be replaced
with variables, as in

Example 2-4.

30 | Chapter 2: From Project Import to Release

Example 2-4. Revised Maven repo with explicit credentials
removed repositories {

maven {

url 'http://repo.mycompany.com/maven2'
credentials {

username login

password pass

}
}
}

Variables supplied from gradle.properties or on the command
line You also have the option of setting the value of
properties on the command line, by using the -P argument to
gradle_(Example 2-5).

Example 2-5. Running gradle with the -P flag

> gradle -Plogin=me -Ppassword=this is my password
assembleDebug To demonstrate what happens when you use
multiple approaches, consider a build file as in Example 2-6.

Example 2-6. Making properties dynamic
ext {

if (!project.hasProperty('user')) {

user = 'user_from_build_file'

}

if (!project.hasProperty('pass')) {

pass = 'pass_from_build file'

}

}
task printProperties() {

dolLast {
printin "username=s$user"

printin "password=%$pass"

}

}

Checking if project properties exist
Custom task to print property values

2.1 Setting Project Properties | 31

Executing the printProperties task without any external
configuration gives the values set in the ext block (Example
2-7).

Example 2-7. Output from running Gradle with ext values
> ./gradlew printProperties

:app:printProperties

username=user_from_build file
password=pass_from_build_file

If the values are set in the gradle.properties file in the
project root, the result is different (Examples 2-8 and 2-9).

Example 2-8. Using gradle.properties to set user and pass
values user=user_from_gradle_properties

pass=pass_from_gradle_properties

Example 2-9. Output from running Gradle with properties
from gradle.properties

> ./gradlew printProperties
:app:printProperties
username=user_from_gradle_properties
password=pass_from_gradle_properties

The values can also be set from the command line, which
takes top precedence

(Example 2-10).

Example 2-10. Running Gradle with properties set from
command line

> ./gradlew -Puser=user_from_pflag -Ppass=pass_from_pflag
printProperties

:app:printProperties
username=user_from_pflag
password=pass_from_pflag

The combination of “extras” block, properties file, and
command-line flag will hope-fully give you enough options to
accomplish whatever you need.

See Also

Custom tasks are discussed in Recipe 4.1. Setting_ up
repositories is part of Recipe 1.7.

32 | Chapter 2: From Project Import to Release

9 Welcome to Android Studio

My Android App

~/Documents /An...io/MyAndroidApp P
é*

Android Sﬂ_tudio

-

version U

1 Start a new Android Studio project

[Open an existing Android Studio project

¥ Check out project from Version Control ~
¥ Import project (Eclipse ADT, Gradle, etc.)

¢ Import an Android code sample

% Configure » Get Help ~

2.2 Porting Apps from Eclipse ADT to Android Studio
Problem

You want to import an existing Eclipse ADT project to Android
Studio.

Solution

Android Studio provides an “import” wizard that rewrites
existing projects.

Discussion

Figure 2-1 shows the link on the Android Studio welcome
page for importing a project from either Eclipse ADT or

Gradle.

Figure 2-1. Android Studio welcome page showing the import
project option The link brings up a view where you can
navigate to an existing Eclipse ADT project.

Figure 2-2 shows such a project. It uses the old project
structure, where res, src, and AndroidManifest.xml are all
direct children of the root.

After choosing a destination directory (the wizard does not
overwrite the original project), the wizard offers to convert
jar files in the /ib folder into dependencies in the Gradle build
file, among other options, as shown in Figure 2-3.

2.2 Porting Apps from Eclipse ADT to Android Studio |
33

® & Select Eclipse or Gradle Project to Import

Select your Eclipse project folder, build.gradle or settings.gradle

ACDeL X O Hide path
fUsers {kousen/andj -4.3.2-SFI TipCalculator3 ﬂ

» [1ShowMileage
» [TipCaleulator
» [T TipCalculator?
[assets
1 bin
Cgen
Mires
Blsre
5 AndroidManifest.xml
E] proguard-project.txt
[?h project.properties
» [Tracker
» [Tracker2
» [USStates
» [android
» [Applications
Drag and drop a file Into the space above to quickly locate it in the tree.

i i Cancel | E—-@IG—J

ryF ¥v¥y¥vi7¥zv

| ® o Import Project from ADT (Eclipse Android)

The ADT project importer can identify some .jar files and even whole source
copies of libraries, and replace them with Gradle dependencies. However, it
| cannot figure out which exact version of the library to use, so it will use the
latest. If your project needs to be adjusted to compile with the latest library,
| you can either import the project again and disable the following options, or
‘ better yet, update your project.

v Replace jars with dependencies, when possible

¥ Replace library sources with dependencies, when possible

Other Import Options:

 Create Gradle-style (camelCase) module names

7 Cancel Previous Finish |

Figure 2-2. Select Eclipse ADT project
Figure 2-3. Import project options
34 | Chapter 2: From Project Import to Release

The wizard then restructures the project and builds it. By
default, an import-summary.txt window shows the major
changes. Example 2-11 shows a sample.

Example 2-11. Project Import Summary text file

ECLIPSE ANDROID PROJECT IMPORT SUMMARY

The following files were *not* copied into the new Gradle
project; you should evaluate whether these are still needed
in your project and if so manually move them: * proguard-
project.txt

Moved Files:

Android Gradle projects use a different directory structure
than ADT

Eclipse projects. Here's how the projects were restructured:
* AndroidManifest.xml => app/src/main/AndroidManifest.xml
* assets/ => app/src/main/assets

* res/ => app/src/main/res/

* src/ => app/src/main/java/

Next Steps:

You can now build the project. The Gradle project needs
network

connectivity to download dependencies.

Bugs:

If for some reason your project does not build, and you
determine that it is due to a bug or limitation of the Eclipse
to Gradle importer, please file a bug at http://b.android.com
with category Component-Tools.

(This import summary is for your information only, and can
be deleted after import once you are satisfied with the
results.)

Other than the ProGuard file recommendation, the rest of the
changes are mostly moving files around.

The generated top-level gradle.build file is the same as when
you create a new project, as in Example 2-12.

2.2 Porting Apps from Eclipse ADT to Android Studio |
35

Example 2-12. Top-level generated build file
sub-projects/modules.

buildscript {

repositories {

jcenter()

}

dependencies {

classpath '‘com.android.tools.build:gradle:2.0.0'

}

}

allprojects {
repositories {
jcenter()

}

}

The app folder contains the original project, with a result
similar to Example 2-13.

Example 2-13. App-level build file
apply plugin: '‘com.android.application’
android {

compileSdkVersion 17
buildToolsVersion "23.0.3"
defaultConfig {

applicationld "com.example.tips"
minSdkVersion 8
targetSdkVersion 17

}

buildTypes {

release {

minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'),

'‘proguard-rules.txt'

}
}

}

(Note that this particular project didn’t have any additional
jar files, so no added dependencies block was required.)

Finally, a settings.gradle file was generated (Example 2-14),
which shows that the app project is the only included
module.

36 | Chapter 2: From Project Import to Release
Example 2-14. Generated settings.gradle file
include ":app'

While the AndroidManifest.xml file has not been changed,
opening it in Android Stu-

dio does give you a couple of warnings (Example 2-15).

Example 2-15. Warnings in AndroidManifest.xm/
<?xml version="1.0" encoding="utf-8"7?>

<manifest
xmins:android="http://schemas.android.com/apk/res/android

package="com.example.tips"

android:versionCode="1"
android:versionName="1.0" >
<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="17" />
<application

<!-- no problems --!>
</application>

</manifest>

Multiple warnings

Android Studio warns you that the targetSdkVersion is set to
an older version of the Android SDK. It also points out that
the values of minSdkVersion and targetSdkVer sion are
overridden by their counterparts in the Gradle build file
(Example 1-3)

Since the Gradle build wins, the best approach is to simply
delete the uses-sdk tag from the manifest, and then change
the values in the build.gradle file if desired.

See Also

Recipe 4.4 discusses the sourceSets_property in Gradle.
Recipe 2.3 shows how the

ADT plug-in in Eclipse can generate a Gradle build file
mapping the older structure.

2.3 Porting Apps from Eclipse ADT Using Eclipse
Problem

You want to export an existing Eclipse ADT project using
Gradle.

Solution
The Eclipse ADT plug-in can generate a Gradle build for you.

2.3 Porting Apps from Eclipse ADT Using Eclipse | 37

Discussion

The Android Developer Tools (ADT) plug-in for Eclipse was
the primary IDE for building Android projects before the
Gradle build process was introduced in 2013.

The ADT project is now deprecated in favor of Android
Studio, but legacy projects do, of course, exist.

The ADT plug-in can generate a Gradle build file for you
based on the existing project structure and dependencies.

The preferred way to port a project from ADT to Android
Studio is

to use the import wizard from Android Studio. The export
process

shown here is no longer recommended.

Since this is no longer the preferred porting mechanism, it is
being shown here because you may encounter such projects
in practice. It's also a good example of a Gradle sourceSet
mapping, which shows how to map the old project structure
to the new Gradle-based layout.

The Eclipse ADT structure put all source code in a directory
called src under the project root. Resources were also in a
res folder in the root. The Android manifest itself was also in
the root directory. All of these locations changed in the new
project structure.

The ADT plug-in can generate the Gradle build for you.
Example 2-16 shows a section from one of those
conversions.

Example 2-16. Mapping the old project structure to the new
one

android {

compileSdkVersion 18
buildToolsVersion "17.0.0"
defaultConfig {

minSdkVersion 10

targetSdkVersion 17

}

sourceSets {

main {

manifest.srcFile 'AndroidManifest.xml’
java.srcDirs = ['src']
resources.srcDirs = ['src']
aild.ext.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']

38 | Chapter 2: From Project Import to Release
assets.srcDirs = ['assets']

}

}

You can see based on the SDK versions that this was done
some time ago, but the interesting part is the mapping done
inside the sourceSets block. The new project structure
expects sr¢/main/java for source code. The existing project
has an src folder in the root of the project. Therefore the
sourceSets block maps sr¢/main/java to src using the srcDirs
property. In fact, all the folders have been mapped from the
old project structure to the new one using this mechanism.

What you’'ll often see in these types of mappings is also a
change for the tests folder

and build types, as in Example 2-17.

Example 2-17. Changing the test and build type roots
sourceSets {

main {

manifest.srcFile 'AndroidManifest.xml’

java.srcDirs = ['src']

resources.srcDirs = ['src']

aidl.srcDirs = ['src']

renderscript.srcDirs = ['src']

res.srcDirs = ['res']

assets.srcDirs = ['assets']

}

// Move the tests to tests/java, tests/res, etc...

instrumentTest.setRoot('tests')
// Move the build types to build-types/<type>
// For instance, build-types/debug/java, ...

// This moves them out of them default location under
src/<type>/...

// which would conflict with src/ being used by the main
source set.

// Adding new build types or product flavors should be
accompanied

// by a similar customization.
debug.setRoot('build-types/debug')
release.setRoot('build-types/release’)

}

The comments in the build file were actually added by the
Eclipse ADT tool as part of the conversion process.

See Also

Recipe 4.4 discusses the sourceSets property in more detail.
2.3 Porting Apps from Eclipse ADT Using Eclipse | 39
2.4 Upgrading to a Newer Version of Gradle

Problem

You need to change the version of Gradle used by your
application.

Solution

Generate a new wrapper, or modify the properties file
directly.

Discussion

Android Studio includes a Gradle distribution. When you
create a new Android application, the IDE automatically
generates a gradlew script for Unix and a gradlew.bat file for
Windows. These are the “wrapper” scripts that allow you to
use Gradle without manually installing it first. Instead, the
wrapper scripts download and install a version of Gradle for
you.

Software projects last a long time, however, and Gradle
releases new versions on a regular basis. You may wish to
update the Gradle version used in your project, either for
performance reasons (each new version is faster) or because
new features were added to the project. To do so, you have
two primary options: 1. Add a wrapper task to your
build.gradle file and generate new wrapper scripts 2. Edit the
distributionUrl value in gradle-wrapper.properties directly
The first option works best if your project already loads with
the current version of Gradle. By default, Gradle builds
already include a so-called wrapper task, which you can see
by running the gradle tasks command, as in Example 2-18.

Example 2-18. The wrapper task in the list of tasks

> ./gradlew tasks

/...

Build Setup tasks

wrapper - Generates Gradle wrapper files. [incubating]
/...

40 | Chapter 2: From Project Import to Release
BUILD SUCCESSFUL

Built-in wrapper task

The gradle wrapper command supports a --gradle-version
argument. Therefore, one way to regenerate the wrapper
with the desired version is shown in Example 2-19.

Example 2-19. Specifing the wrapper version on the
command line

> ./gradlew wrapper --gradle-version 2.12
wrapper

BUILD SUCCESSFUL

Total time: ... sec

The other option is to explicitly add the wrapper task to the
(top-level) build file, and specify a value for gradleVersion,_as
shown in Example 2-20.

Example 2-20. Explicit Gradle wrapper task in top-level
build.gradle file task wrapper(type: Wrapper) {

gradleVersion = 2.12

}

With this change, running the ./gradlew wrapper task will
generate the new wrapper files.

Every once in a while, however, the existing wrapper is so
old that Android Studio refuses to sync with the existing the
build files, making it impossible to run any tasks.

In that case, you can always go directly to the files that
control the wrapper, which are generated by the wrapper
when it first runs.

In addition to the generated scripts gradlew and gradlew.bat,
the wrapper relies on a folder called gradle/wrapper and the
two files included there, gradle-wrapper.jar and gradle-
wrapper.properties,_as shown in Example 2-21.

Example 2-21. The Gradle wrapper files
gradlew

gradlew.bat

gradle/wrapper/

gradle-wrapper.jar
gradle-wrapper.properties

2.4 Upgrading to a Newer Version of Gradle | 41

DemoCracl X i‘app X |y aradle-wrapper praperties X

You can configure Cradle wrapper to use distribution with sources. It wil provide IDE with Gradle AP1/DSL documentation. Hide the tip Ok, apoy suggestion!

The gradle-wrapper.properties file, shown in Example 2-22,
contains the distribu tionUrl property, which tells the

wrapper where to download the needed Gradle version.

Example 2-22. Properties in the gradle-wrapper.properties
file

#... date of most recent update ...
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

distributionUrl=https\://services.gradle.org/distributions/grad
le-2.12-bin.zip Feed free to edit this file directly, changing
the version number in the distribution Url property to
whatever you prefer. That should allow you to run the
existing wrapper scripts without a problem.

Upgrading Gradle with either the command-line flag or from
the explicit wrapper task adds only the binary distribution
(note the bin value in the URL). Android Studio will then offer
to download the complete distribution, including sources,
with a prompt shown in Figure 2-4.

Figure 2-4. Android Studio offering to upgrade to the source
distribution When you click the link, the value in the
distributionUrl property in gradle-wrapper.properties changes
to the al/version,_ as shown in Example 2-23.

Example 2-23. Upgraded properties in the gradle-
wrapper.properties file

#... date of most recent update ...

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

distributionUrl=https\://services.gradle.org/distributions/grad
le-2.12-all.zip Distribution now uses the all version, which
includes sources If you miss the opportunity to click the
upgrade link, you can always modify the file directly,
replacing bin with all in the URL.

42 | Chapter 2: From Project Import to Release

2.5 Sharing Settings Among Projects

Problem

You want to remove duplicated settings from multiple
modules.

Solution

Use allprojects or subprojects blocks in your top-level Gradle
build file.

Discussion

When you create a new Android project in Android Studio,
the IDE creates a Gradle multiproject build with two build
files: one at the top level, and one in a module called app.
The top-level build.gradle file often has a block called
allprojects, as in Example 2-24.

Example 2-24. The al projects block in the top-level Gradle
build file allprojects {

repositories {
jcenter()

}
}

This block comes from the Gradle DSL and thus works for all
Gradle-based projects, not just Android projects. The
allprojects property comes from the Project APl in Gradle,
where it is a property of the org.gradle.api.Project class. The
property consists of a set containing the current project and

all of its subprojects. There is also a method of the same
name, which allows you configure the current project and all
of its subprojects.

It is common in the Gradle API to have a property and a
method

with the same name. The context determines which you are
using.

The behavior is to apply the closure argument to each
project returned by the allpro jects collection, which for a
default project means the top-level project and the app
module. In this case, it simply means that you don’t need to
repeat the repositories block in the app module, because it's
already set.

2.5 Sharing Settings Among Projects | 43

An alternative is to use a subprojects block. For example, if
you have multiple Android library projects, each will need to
apply the library plug-in in their own build files. If all of your
subprojects are Android libraries, you can remove the
duplication by applying the plug-in at the top level, as in
Example 2-25.

Example 2-25. Using a subprojects block in the top-level
build file subprojects {

apply plugin: '‘com.android.library*

}

As you might expect, the subprojects property returns the
set of subprojects, and the subprojects method applies the
supplied closure to each of them.

Advanced considerations

If you check the documentation for the allprojects method in
Project (see Recipe

6.2 for documentation links) using the Gradle DSL reference,
you'll find that the method takes a reference of type
org.gradle.api.Action as an argument.

More specifically, the signature for the allprojects method is
given in

Example 2-26.

Example 2-26. The complete signature of the al projects
method in Project void allprojects(Action<? super Project>
action) The documentation says that this method executes
the given Action against this project and each of its
subprojects. Action<T> is an interface with a single method,
called execute, that takes a single generic argument, so the
docs seem to imply that you have to create a class that
implements the Action interface, instantiate it, and supply
the result as an argument. In Java (prior to Java SE 8), this is
often done as an anonymous inner class (Example 2-27).

Example 2-27. Implementing al projects in Java, using an
anonymous inner class project.allprojects(new
Action<Project>() {

void execute(Project p) {

// do whatever you like with the project

}
});

In Groovy, you can implement a single-method interface
simply by supplying a closure as an argument. The closure
will then become the implementation of the method. The

Gradle implementation of the allprojects and subprojects
methods is to invoke the closure argument on each project in
the collection.

44 | Chapter 2: From Project Import to Release

If you look at the block in Example 2-24, you can see the
result: the code is providing a closure to the allprojects
method that says to configure the repositories block to use
jcenter() as its repository.

Note that Java SE 8 introduced lambdas that work in a similar
fashion. Java 8 lambdas can be assigned to so-called
functional interfaces, which are interfaces containing only a

single, abstract method. Groovy has had closures from the
beginning of the language.

Gradle 2.0 and above support Java SE 8. The Android SDK,

however, still does not, though some lambda capabilities are
plan-

ned for Android N as well as Android Studio version 2.1 that
sup-

port it.
See Also

More details can be found in the Gradle source code.

http://github.com/gradle/gradle

2.6 Signing a Release APK

Problem

You need to digitally sign an APK so it can be released to the
Google Play store.

Solution

Use Java’s keytool command to create a certificate and
configure its use in the signi ngConfigs block of your Gradle
build file.

Discussion

All Android package (APK) files need to be digitally signed
before they are deployed.

By default, Android signs debug APKs for you, using a known
key. To see this, you can use the keytool command from Java.

By default, the debug keystore resides in a subdirectory
called .android in your home directory. The default name for
the keystore is debug.keystore, and has a keystore password
of android.__Example 2-28 shows how to list the default
certificate.

2.6 Signing a Release APK | 45

Example 2-28. Listing the key in the debug keystore (Mac OS
X)

> cd ~/.android

> keytool -list -keystore debug.keystore
Enter keystore password: ("android")
Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry
androiddebugkey, Feb 9, 2013, PrivateKeyEntry,
Certificate fingerprint (SHA1):

B7:39:B5:80:BE:A0:0D:6C:84:4F:A1:1F:4B:A1:00:14:12:25:DA
14

The keystore type is JKS, which stands for (naturally enough)
Java KeyStore, used for public and private keys. Java
supports another type called JCEKS (Java Cryptogra-phy
Extensions KeyStore), which can be used for shared keys, but
isn’t used for Android applications.

The keystore has a self-signed certificate with an alias of
androiddebugkey, which is used to sign debug APKs when
they are deployed to connected devices or emulators.

To reset the debug keystore, simply delete the file
debug.keystore. It will be re-created next time you deploy an

app.

You cannot deploy a release version of an app until you can
sign it, which means generating a release key. This also uses
the keytool utility. A sample run is shown in Example 2-29.

Example 2-29. Generating a release key
keytool -genkey -v -keystore myapp.keystore -alias my_alias
-keyalg RSA -keysize 2048 -validity 10000 (all on one line)

Enter keystore password: (probably shouldn't use use
"password") Re-enter new password: (but if you did, type it
again)

What is your first and last name?

[Unknown]: Ken Kousen

What is the name of your organizational unit?
[Unknown]:

What is the name of your organization?
[Unknown]: Kousen IT, Inc.

What is the name of your City or Locality?
[Unknown]: Marlborough

What is the name of your State or Province?

46 | Chapter 2: From Project Import to Release
[Unknown]: CT

What is the two-letter country code for this unit?
[Unknown]: US

Is CN=Ken Kousen, OU=Unknown, O="Kousen IT, Inc.",
L=Marlborough, ST=CT, C=US correct?

[no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate
(SHA256withRSA) with a validity of 10,000 days for: CN=Ken
Kousen, OU=Unknown, O="Kousen IT, Inc.", L=Marlborough,
ST=CT, C=US

Enter key password for <my_alias>
(RETURN if same as keystore password):

[Storing myapp.keystore]

The RSA algorithm is used to generate the public/private
keypair, of 2K size, signed with the SHA256 algorithm, valid
for 10,000 days (a bit over 27 years).

You could now use the jarsigner and zipalign tools to sign
your APK, but it's easier to let Gradle do it.

As a child of the android closure, add a signingConfigs block,
as shown in

Example 2-30.

Example 2-30. A signingConfigs block in the module build file
android {

// ... other sections ...

signingConfigs {

release {

keyAlias 'my_alias'

keyPassword 'password'

storeFile file('/Users/kousen/keystores/myapp.keystore’)
storePassword 'password'

}

}

}

You probably don’'t want to put the passwords as hardcoded
constants in the build file. Fortunately, you can put them in

the gradle.properties file or set them on the command line.
For details, see Recipe 2.1.

From the DSL documentation, the signingConfigs block
delegates to an instance of the SigningConfig class, which
has the four commonly used properties listed: keyAlias The
value used in the keytool when signing a particular key

keyPassword

A particular key’s password used during the signing process
2.6 Signing a Release APK | 47

storeFile

The disk file containing keys and certificates, generated by
the keytool storePassword

The password used for the keystore itself

There is also a storeType property (defaults to JKS, as shown
in Example 2-29), but that is rarely used.

To make use of the new configuration, add a signingConfig
property to the release

build type (Example 2-31).
Example 2-31. Using a signing config in a release build
android {

// ... other sections ...

buildTypes {

release {

// ... other settings ...

signingConfig signingConfigs.release

}
}
}
When you invoke the assembleRelease task from Gradle, the
build will generate a release APK in the

app/build/outputs/apk folder (Example 2-32).

Example 2-32. Running the assembleRelease task
> ./gradlew assembleRelease

:app:preBuild UP-TO-DATE

:app:preReleaseBuild UP-TO-DATE

/] ... lots of tasks ...

:app:zipalignRelease UP-TO-DATE
:app:assembleRelease UP-TO-DATE

BUILD SUCCESSFUL

kousen at krakatoa in
~/Documents/AndrolDstudio/MyAndroidApp

> |s -l app/build/outputs/apk
total 12088

-rw-r--r-- 1 kousen staff 1275604 Aug 24 15:05 app-
debug.apk

-rw-r--r-- 1 kousen staff 1275481 Aug 26 21:04 app-
release.apk

Note—and this is important— do not lose the keystore. If you
do, you will not be able to publish any updates to your app,
since all versions must be signed with the same key.

48 | Chapter 2: From Project Import to Release

Generate Signed APK
Key store path:
Create new... Choose existing...
Key store password:
Key alias:
Key password:

Remember passwords

? Cancel Previous Next

All versions of an app must be signed with the same key.
Otherwise

new versions will be treated as completely new apps.

Put your keystore in a safe place. Yes, you're using self-
signed certificates, but this is not done for encryption
purposes. It's being used for integrity (guaranteeing that an
APK has not been modified) and nonrepudiation
(guaranteeing that you are the only one who could have
signed it). If someone else gains access to your keystore,
they could sign other apps in your name.

See Also

Recipe 2.7 discusses the same process using_Android Studio
dialogs.

2.7 Signing a Release APK Using Android Studio

Problem

You want to use Android Studio to generate signing
configurations and assign them to build types.

Solution

The Build menu has options for generating signing configs,
and the Project Structure dialog has tabs for assigning them
to build types and flavors.

Discussion

Android Studio allows you to generate a keystore using the
Build - Generate Signed APK menu option (Eigure 2-5)

Figure 2-5. Generate Signed APK pop-up

2.7 Signing a Release APK Using Android Studio | 49

e @
Key store path:
Password:
Key
Alias:

Password:

Validity (years): 25 ||

Certificate

MNew Key Store

Confirm:

Confirm:

Eirst and Last Name:

Organizational Unit:

Organization:

City or Locality:

State or Province:

Country Code (XX):

Cancel 0K

H

o 0
+ =
SDK Location
Project
Developer Services
Ads
Analytics
Authentication

Notifications
Modules

Project Structure

M Flavors Build Types = Dependencies |

release)
Name: release

Key Alias my_alias
Key Password password
Store File [Users /kousen/keystores/ myapp.keystore

Store Password password

Clicking “Create new...” brings up a pop-up to specify the
location of the keystore and to generate a key pair (Figure 2-
6).

Figure 2-6. New Key Store pop-up

If you choose an existing keystore, you can complete the
passwords and alias to use an existing key inside it or create
a new one, as in Figure 2-7.

Figure 2-7. Using an existing keystore

Once a self-signed certificate has been generated, the
Project Structure dialog can be used to configure it for the
current build. First, complete the values in the Signing tab,
as in Figure 2-8.

50 | Chapter 2: From Project Import to Release

Key store path: fUsers /kousen/keystores /myapp.keystore
Create new... Choose existing...

Key store password: esssssss

Key alias: my_alias

Key password: sssasee

v/ Remember passwords

7 Cancel Previous Next

L N) Project Structure

W = | Properties = Signing Flavors | Dependencies |
SDK Location &b
Proiect o] Name: release
'
Developer Services
Ads
Analytics Debuggable (false) |v
Avtratication Ini Debuggable (false) v
Notifications .
Modules Signing Config release v
Renderscript Debuggable (false) +
Renderscript Optim Level (3)
Minify Enabled false v
Pseudo Locales Enabled v
Proguard File |]
Application Id Suffix
Version Name Suffix
Zip Align Enabled (trug) v

Figure 2-8. The Signing tab

Then associate a signing config with a particular build type
using the Build Types tab

(Eigure 2-9).
Figure 2-9. Associating a signing config with a build type

A similar dialog can be used to sign particular flavors, which
is dicussed in the recipe on flavors.

See Also

Recipe 2.6 shows how to generate keys from the command
line and how to edit the relevant sections of the module build
file directly.

2.7 Signing a Release APK Using Android Studio | 51
CHAPTER 3

Build Types and Flavors

3.1 Working with Build Types

Problem

You want to customize the debug and release build types, or
create additional types of your own.

Solution

The buildTypes block inside android is used to configure build
types.

Discussion

A build type determines how an app is packaged. By default,
the Android plug-in for Gradle supports two different types of
builds: debug and release. Both can be configured inside the
buildTypes block inside of the module build file. The
buildTypes block from the module build file in a new project
iIs shown in Example 3-1.

Example 3-1. Default buildTypes block from module build file
android {

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android.txt'),

‘proguard-rules.pro’

}

}
53

The only build type shown in the example is the release
build, but it is just as easy to add a debug block as well if you
want to configure the default settings. Either block supports
a range of properties. The complete set of properties and
methods can be found in the DSL reference for the
com.android.build.gradle.inter

nal.dsl.BuildType class.

In the release block on the example, minifyEnabled refers to
the automatic removal of unused resources in the packaged
app. If true, Gradle also removes resources from dependent
libraries if they are not needed. This only works if the
shrinkResources property is also set to true.

In Example 3-2, both are set to true.

Example 3-2. Removing resources and shrinking code
android {

buildTypes {

release {

minifyEnabled true

shrinkResources true

proguardFiles getDefaultProguardFile('proguard-android.txt'),

'‘proguard-rules.pro’

http://bit.ly/gradle-dsl
http://bit.ly/gradle-dsl

}
}

Turn on code shrinking
Turn on resource shrinking
See the “"Resource Shrinking” page for further details.

Another property available in build types is debuggable.
Debug builds automatically have debuggable set to true,
while all other builds default to false.

In order to install multiple build types on a single device,
Android must be able to distinguish their application IDs. The
applicationlDsuffix property allows Gradle to generate
multiple APKs, each with its own ID (Example 3-3)

Example 3-3. Adding a suffix to the application ID and
version name android {

// ... other properties ...
buildTypes {

debug {
applicationlDsuffix '.debug’
versionNameSuffix '-debug'

}
54 | Chapter 3: Build Types and Flavors

http://bit.ly/resource-shrinking

5654:Nexus_5_AP|_23

My Android App
1.24 MB

My Android App
1.24 MB

é

5654:Nexus_5_API_23

App info

My Android App

version 1.0-debug

UNINSTALL FORCE STOP

// .. other build types ...

}
}

Now both a release and a debug version of the app can be
deployed to the same device. If you access the Settings on
the device and go to Apps, you can see that both the debug
and release versions are on the same app (Figure 3-1).

Figure 3-1. Both debug and release versions are deployed

To distinguish them, select each version and view the full
version name in the “App info” _settings,_as in Figure 3-2.

Figure 3-2. Version name in App info settings
3.1 Working with Build Types | 55

Changing the name of the apps involves merging resources,
discussed in Recipe 3.3.

Different build types also allows you to create separate
source trees for each. Merging sources from separate build
types (and flavors)_is discussed in Recipe 3.5.

See Also

Flavors are discussed in Recipe 3.2. The combination of a
flavor and a build type is a variant. Each variant allows for
separate resources, manifest entries, and Java source code,
the merger of which is part of Recipes Recipe 3.3 and Recipe
3.5.

3.2 Product Flavors and Variants

Problem

You want to build essentially the same application, but with
different resources and/or classes.

Solution

Product flavors allow you to create multiple different versions
of the same app.

Discussion

Build types are part of the development process, normally
used as an app evolves from development to production. The
default build types, debug and release, reflect that.

Flavors allow you to build multiple versions of the same app.
This could happen when you need to customize the look and
feel of an app for different clients, or if you need both a free
and a paid version of the same app.

To declare a product flavor, use the productFlavors block in
the android closure.

Consider a “Hello, World” style of Android app that greets a
user based on a simple EditText name entry. You can give the
app an attitude by introducing “friendly,”

“arrogant,” and “obsequious” flavors, as in Example 3-4.

Example 3-4. Assigning product flavors

android {

productFlavors {

arrogant {

applicationld ‘com.oreilly.helloworld.arrg’
}

friendly {

applicationld ‘com.oreilly.helloworld.frnd'

56 | Chapter 3: Build Types and Flavors

obsequious {

applicationld ‘com.oreilly.helloworld.obsq’

}
}
}

In this case, each has a slightly different applicationld, so
that all three can be installed on the same device.

Flavor names can’t match existing build type names or the
prede-

fined name androidTest.

Each product flavor can have its own values of the following
properties, among others, which are based on the same
properties from defaultConfig: « applicationld

* minSdkVersion

targetSdkVersion

versionCode

versionName

signingConfig

Each flavor defines its own source set and resources, which
are siblings of the main source set. For the flavors defined in
Example 3-4, that means in addition to app/src/

main/java, you can also add source files in:

e app/src/arrogant/java

» app/src/friendly/java

» app/src/obsequious/java

You can also add additional resource files in:
e app/src/arrogant/res

» app/src/arrogant/res/layout

* app/src/arrogant/res/values

3.2 Product Flavors and Variants | 57

(%)
E +]

[Project - - [
¥ Liapp
3 build
libs
v 5rc

L J

androidTest
arrogant
java
v res
¥ drawable-mdpi
i| animal.png
Y values
o strings.xml
v friend by
java
v res
¥ drawable-mdpi
i| animal.jpg
¥ values
o strings.xml
¥ main
¥ java
3 com.nfjs.helloworldas
 Cares

P

= AndroidManifest.xml
¥ obsequious
java
¥ Ldres
v drawable-mdpi
il animal.jpeg
¥ values
=1 strings.xml

as well as any other subdirectories of res. The same resource
structure would also apply for all flavors. A simple example is
shown in Figure 3-3.

A similar folder structure is supported for build types as well.
The combination of a build type and a flavor is called a
variant. For the two default build types (debug and release)
and the three flavors shown here (arrogant, friendly, and
obsequious), six different variant APKs can be generated.

Figure 3-3. Product flavors with source code and resources

To see all the available variant names, add the custom task
in Example 3-5 to your

module build.

Example 3-5. A custom task to print available variants
task printVariantNames() {

dolLast {

android.applicationVariants.all { variant ->

printin variant.name

58 | Chapter 3: Build Types and Flavors

Build Variants

| Test Artifact:

| Module

3 app

-2l i
| Android Instrumentatio... 3|
Build Variant
y] ¥ arrogantDebug
arrogantRelease
friendlyDebug

friendlyRelease
obsequiousDebug
obsequiousRelease

}

Execution of the printVariantNames_task shows them all,_as
in Example 3-6.

Writing your own Gradle tasks is discussed in Recipe 4.1.

Example 3-6. Printing all the variant names
> ./gradlew printVariantNames
:app:printVariantNames

obsequiousDebug

obsequiousRelease

arrogantDebug

arrogantRelease

friendlyDebug

friendlyRelease

BUILD SUCCESSFUL

To deploy a particular variant, Android Studio provides a
Build Variants view.

Choose the proper variant from the dropdown list,_as shown
in Figure 3-4, and

deploy as usual.
Figure 3-4. Build Variants view in Android Studio

When product flavors are used, the assemble task builds all
possible variants. The assemble<Variant> task builds only

that particular combination of build type and flavor. You can
also run assemble<BuildType> to build all flavors in that
build type, or assemble<Flavor> to build all build types for
that flavor. The install tasks are specific to each variant, as in
installArrogantDebug or installFriendlyRelease.

3.2 Product Flavors and Variants | 59
See Also

Merging resources from different flavors and build types is
discussed in Recipe 3.3.

Changing Java classes in each is discussed in Recipe 3.5.
Writing your own custom tasks in Gradle is shown in Recipe
4.1.

3.3 Merging Resources

Problem

You want to change the images, text, or other resources in a
product flavor.

Solution

Add the proper resource directories to your flavor, add the
relevant files, and change the values they contain.

Discussion

Consider the “Hello World with Attitude” application
discussed in Recipe 3.2, which defined three flavors for the
Hello, World app: arrogant, friendly, and obsequious. In each
case, the app prompts the user for a name and then greets
the user by name. The Java code for each is identical, but the
look and feel for each flavor is different.

The product flavors are defined in the Gradle build file, as
shown in Example 3-7.

Example 3-7. Product flavors in the build.gradle file
android {

// ... other settings ...

productFlavors {

arrogant {

applicationld ‘com.oreilly.helloworld.arrg'

}
friendly {

applicationld ‘com.oreilly.helloworld.frnd"
}
obsequious {

applicationld ‘com.oreilly.helloworld.obsq’

}
}
}

Each flavor is given a separate applicationld so that they can
all be deployed to the same device for demonstration
purposes.

60 | Chapter 3: Build Types and Flavors

Example 3-8 contains the MainActivity class, with its
onCreate and sayHello methods.

Example 3-8. The MainActivity class from the Hel o, World
app

public class MainActivity extends AppCompatActivity {
private EditText editText;

@Override

protected void onCreate(Bundle savedinstanceState) {

super.onCreate(savedlnstanceState);

setContentView(R.layout.activity _main);

editText = (EditText) findViewByld(R.id.name_edit_text);
}

public void sayHello(View view) {
String name = editText.getText().toString();

Intent intent = new Intent(this, WelcomeActivity.class);
intent.putExtra("user", name); startActivity(intent);

}

}

The activity has an attribute of type EditText, used for the
user’'s name. The say Hello method retrieves the name, adds
it to an Intent as an extra, and starts the WelcomeActivity
with the intent.

The layout for the main activity is simply a vertical
LinearLayout with a TextView, an EditText, and a Button
(Example 3-9).

Example 3-9. The activity main.xml layout

<LinearLayout
xmins:android="http://schemas.android.com/apk/res/android

xmins:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical"
tools:context=".MainActivity" >
<TextView
android:id="@+id/name_text_view"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hello_world" />
<EditText
android:id="@+id/name_edit_text"
android:hint="@string/name_hint"
android:layout_width="match_parent"

3.3 Merging Resources | 61

‘@ 5554:Nexus_5_AP|_23

Arrogant

Arrogant

Flease enter your name

SAY HELLO

android:layout_height="wrap_content" />
<Button

android:onClick="sayHello"
android:text="@string/hello_button_label"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
</LinearLayout>

The MainActivity is the launcher. Figure 3-5 shows the initial
screen for the application, customized for the arrogant flavor.

Figure 3-5. Hel o screen in the Arrogant flavor

How were the application name and initial greeting set? All
three flavors have their own resources directory, under
app/<flavor>/res. In each case, a subfolder called values
was added, and a copy of the strings.xml file from
app/src/main/res/values was copied into it. The project
structure for the arrogant flavor is shown in Figure 3-6.

The strings.xml file for the arrogant flavor is shown in
Example 3-10.

Example 3-10. The strings.xml file in the Arrogant res/values
folder

<resources>
<string name="app_name" > Arrogant</string>

<string name="title activity welcome" > His/Her Royal
Highness</string> <string name="hello_world" >
Arrogant</string>

<string name="greeting" > We condescend to acknoweldge
your presence, if just barely, %l%$s. </string>
</resources>

62 | Chapter 3: Build Types and Flavors

| [Project - € | - |
v Ciapp
» Ebuild
Elibs
¥ [src
» [ClandroidTest
¥ [Clarrogant
java
v [Cares
¥ [F1drawable-mdpi
Elanimal.png
¥ [Fvalues
' strings.xml

Figure 3-6. Project view showing Arrogant flavor directories

Merging resources by combining the values in the res folder
of the project flavor with the same folder from a build type
and the main directory tree. The priority is: build type
overrides Product Flavor, which overrides the main source
set.

Non-Java resources override each other, where build type
has high-

est priority, then flavor, then the main directory.

The WelcomeActivity has an onCreate method that retrieves
the user’'s name and greets the user (Example 3-11).

Example 3-11. The WelcomeActivity, which greets the user

public class WelcomeActivity extends
AppCompatActivity {

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedlnstanceState);
setContentView(R.layout.activity_welcome);

String name = getintent().getStringExtra("user");

TextView greetingText = (TextView)
findViewByld(R.id.greeting_text); String format =
getString(R.string.greeting);

greetingText.setText(String.format(format, name));

}

}

The layout for the WelcomeActivity consists of a TextView
with text and an image at

the bottom (Example 3-12).

3.3 Merging Resources | 63
Example 3-12. The activity welcome.xml layout

<LinearLayout
xmins:android="http://schemas.android.com/apk/res/android

xmins:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context="com.oreilly.helloworld.WelcomeActivity" >
<TextView

android:id="@+id/greeting_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hello_world"
android:textSize="24sp"

android:drawableBottom="@drawable/animal"

/>
</LinearLayout>

Each flavor has its own values.xm/ and animal.png files,
which change the greeting given. The values in Example 3-
10 result in the welcome shown in Figure 3-7.

Each additional flavor is handled the same way. The friendly
flavor uses the strings.xml file shown in Example 3-13.

Example 3-13. The strings.xml file in the Friendly res/values
folder

<resources>
<string name="app_name" > Friendly</string>

<string name="title_activity welcome" > We are BFFs!
</string> <string name="hello_world" >
Friendly</string>

<string name="greeting" > Hi there, %1%$s! </string>
</resources>

The Friendly welcome page is shown in Figure 3-8.
Finally,_the Obsequious strings are shown in Example 3-14.

Example 3-14. The strings.xml file in the Obsequious
res/values folder

<resources>
<string name="app_name" > Obsequious</string>

<string name="hello_world" > Obsequious</string>
<string name="title activity welcome" > your humble

servant</string> <string name="greeting" > O great
%1%$s, please accept this pathetic greeting from my
unworthy self. | grovel in your general direction. </string>

</resources>

64 | Chapter 3: Build Types and Flavors

@ 5554:Nexus_5_API|_23

< His/Her Royal Highness

We condescend to
acknoweldge your presence, if
just barely, Dolly.

e 5554:Nexus_5_AP|_23

€< We are BFFs!

Hi there, Dolly!

Figure 3-7. Welcome in the Arrogant flavor

Figure 3-8. Welcome in the friendly flavor

The resulting Obsequious welcome page is shown in Figure
3-9.

3.3 Merging Resources | 65

& 5554:Nexus_5 APl 23

< your humble servant

O great Dolly, please accept
this pathetic greeting from my
unworthy self. | grovel in your

general direction.

Build Variants 2|

e

Test Artifact: Android Instrumentatio... 3

Module Build Wariant
i app %] v arrogantDebug
arrogantRelease
friendlyDebug
friendlyRelease
obsequiousDebug
obsequiousRelease

Figure 3-9. Welcome in the Obsequious flavor

Merging non-Java resources is easy. Just add the proper
folders and files, and the flavor values will override those
from main. To deploy an individual flavor of the app, choose
it from the Build Variants view, as in Figure 3-10.

Figure 3-10. Build Variants view in Android Studio
See Also

Flavors and variants _are discussed in Recipe 3.2. Merging
source code is in Recipe 3.5.

66 | Chapter 3: Build Types and Flavors

3.4 Flavor Dimensions

Problem

One product flavor is not enough. You need another criterion
to distinguish different versions of your app.

Solution
Add flavorDimensions to your product flavors.
Discussion

The recipe in Recipe 3.2 showed a “Hello, World” app with
three product flavors: arrogant, friendly, and obsequious.
That means the different flavors are being distinguished
based on attitude.

Suppose, however, that different clients would like their own
branded versions of each flavor of the app. The source code
is essentially the same for each. Only a couple of minor
resources are different.

To keep from having too much duplication, introduce an
additional flavor dimen-

sion. The build file is shown in Example 3-15.
Example 3-15. Adding flavor dimensions
flavorDimensions 'attitude’, 'client’
productFlavors {

arrogant {

dimension 'attitude’

applicationld ‘com.oreilly.helloworld.arrg'
}

friendly {

dimension 'attitude’

applicationld ‘com.oreilly.helloworld.frnd"
}

obsequious {

dimension 'attitude’

applicationld ‘com.oreilly.helloworld.obsq’
}

stark {

dimension 'client’

}

wayne {

dimension 'client’

}

}

3.4 Flavor Dimensions | 67

There are now two dimensions of flavor: attitude and client.
The arrogant, friendly, and obsequious flavors are all in the
attitude dimension, and the stark and wayne flavors are
types of client.

The combination generates many more variants. Running the
printVariantNames

custom task from Recipe 4.1 now shows the results in
Example 3-16.

Example 3-16. Printing all the variant names
Jgradlew printVariantNames
:app:printVariantNames
obsequiousStarkDebug
obsequiousStarkRelease
obsequiousWayneDebug
obsequiousWayneRelease
arrogantStarkDebug
arrogantStarkRelease
arrogantWayneDebug
arrogantWayneRelease
friendlyStarkDebug
friendlyStarkRelease

friendlyWayneDebug

friendlyWayneRelease
BUILD SUCCESSFUL

The combination of two build types with three attitudes and
two clients gives 2 * 3

* 2 = 12 different variants.

To make the client variant actually do something visible, add
directory trees for each of the client flavors,_as in Figure 3-
11.

The colors.xml file in the stark client res/values folder is in
Example 3-17.

Example 3-17. The colors.xml file in the stark/res/values
folder

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="text_color" > #beba46</color>

<color name="background color" > #771414</color>
</resources>

The corresponding colors.xml file in the wayne/res/values
folder is shown in Example 3-18.

Example 3-18. The colors.xml file in the wayne/res/values
folder

<?xml version="1.0" encoding="utf-8"7?>

<resources>

68 | Chapter 3: Build Types and Flavors

v arrogant
java
» [Cdres
v friendly
java

2 res
¥ main

2 Java

» [Cdres

= AndroidManifest. xml
¥ obsequious
java
B res
¥ stark
¥ res
¥ values
@ colors.xml
= strings.xml
> test
wayne
¥ Lares
¥ values
& colors.xml
& strings.xml

<color name="text_color" > #beba46</color>

<color name="background color" > #771414</color>
</resources>

Figure 3-11. Directory trees for the client flavors

The strings.xm/ file in each client flavor changes just the
hello_world string (Exam-

ples 3-19 and 3-20).

Example 3-19. The strings.xml file in the stark/res/values
folder

<resources>

<string name="hello_ world" > Stark Industries</string>
</resources>

Example 3-20. The strings.xml file in the wayne/res/values
folder

<resources>

<string name="hello_world" > Wayne
Enterprises</string> </resources>

Finally, the TextView in the activity main.xml layout file has
been modified to use the

new colors and strings (Example 3-21).

3.4 Flavor Dimensions | 69

e 5554:Nexus_5_AP|_23

Arrogant

Stark Industries

Please enter your name

SAY HELLO

Example 3-21. Updated TextView element with colors and
text

<TextView

android:id="@+id/name_text view"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textColor="@color/text_color"
android:background="@color/background_color"
android:textSize="32sp"

android:text="@string/hello_world" />

The textColor attribute uses the color resource for each
flavor, and the text attribute uses the string value provided
by each flavor.

As a result, Figure 3-12 shows the arrogant flavor from Stark
Industries.

Figure 3-12. The Arrogant debug flavor from Stark Industries

By contrast, the friendly flavor from Wayne Enterprises is
shown in Figure 3-13.

One additional note is necessary here. The flavorDimensions
tag in the Gradle build file listed attitude before client, which
means values from the attitude dimension will have higher
priority than the client dimension. Therefore, the hello_world
string resource was removed from each of the attitude
flavors. Switching the order of client and attitude would have
worked just as well, of course.

70 | Chapter 3: Build Types and Flavors

@ 5554:Nexus 5 APl 23

Friendly

Wayne Enterprises

Please enter your name

SAY HELLO

Figure 3-13. The Friendly debug flavor from Wayne
Enterprises

See Also

Flavors and variants _are shown in Recipe 3.2. Resource
merging_is in Recipe 3.3, and merging Java source code is in

3.5 Merging Java Sources Across
Flavors

Problem

You want to add Android activities or other Java classes to
individual product flavors.

Solution

Create the proper source folders, add your Java classes, and
merge them with the main source set.

Discussion

While string and layout resources in flavors and build types
override the corresponding values in the main source set,
Java classes are different. If your code in the main source set
refers to a particular class, then each flavor and build type
can have its own implementation of that class as long as you
don’t have one in main.

3.5 Merging Java Sources Across Flavors | 71

e 5554:Nexus_5_AP|_23

Friendly

Wayne Enterprises

Please enter your name

SAY HELLO CALL FOR HELP!

e 5554:Nexus_5_AP|_23

Arrogant

Stark Industries

Flease enter your name

SAY HELLO CALL FOR HELP!

That sounds more complicated than it is. The “Hello, World”
app discussed in Recipe

3.2 and Recipe 3.4 has two flavors that represent clients.
Consider now a modified version of that app that adds a
button to the main activity to call for help. The additional
button has the label “Call for Help!”

The main (launch) activity for the friendly, wayne flavor is
shown in Figure 3-14.

Figure 3-14. Main activity for the “wayne” client

The “stark” page is the same, just with a different header,_as
shown in Figure 3-15.

Figure 3-15. Main activity for the “stark” client

72 | Chapter 3: Build Types and Flavors

¥ main
v [java il In classpath
¥ com.oreilly. helloworld /

E MainActivity
C WelcomeActivity
» [Cares
= AndroidManifest. xml
b obsequious

¥ stark
SR B NOT in classpath
¥ Com

¥ oreilly
¥ helloworld
» CallFarHelpActivity.java
a CallForHelpActivityFragment_java
7 Data.java

v res

v layout
o activity_call_for_help.xml
= fragment_call_for_help.xml

¥ values
o colors.xml
@ strings.xml

2 test

¥ wayne
java i 1 In classpath
¥ com.oreilly. helloworld

M

4

C & CallForHelpActivity
C CallForHelpActivityFragment
¥ [dres
¥ layout
o activity_call_for_help.xml
= fragment_call_for_help.xml
v values
@ colors.xml
@ strings.xml

Clicking the “Call for Help!” button creates an Intent that
starts the CallForHelpAc tivity. This activity, and its
associated layout, have been removed from the main source
tree, and a copy was added to both the stark and wayne
source sets. The overall project layout when working with the
friendly, wayne, debug variant is shown in Figure 3-16.

Figure 3-16. Source folders for main, stark, and wayne
flavors

The figure shows that the Java sources in the wayne flavor
are currently in the classpath and those in the stark tree are
not. Both flavors contain the CallForHelpActiv ity, but the
implementations of each are completely different.

For the wayne flavor, the help screen contains just a single
fragment containing a Text View, as shown in Figure 3-17.

3.5 Merging Java Sources Across Flavors | 73

® 5554:Nexus_5_AP|_23

Wayne Enterprises

For legal purposes, we know nothing
about masked vigilantes. If this

IS an emergency, please contact
Commissioner Gordon or other helpful
officers of the Gotham City police by
dialing 911.

(Or, project a BatSignal ™ on a cloud.
Sometimes that works.)

‘@ 5554:Nexus_5_AP|_23

Hire Tony As A Consultant
(You Can't Afford Him)

Contact the (Marvel) Avengers
(We have a HULK)

Complaints
mailto:justin.hammer@hammertech.com

Need the Iron Patriot
(Try WarMachineRox)

Figure 3-17. Help activity for wayne flavor

The help page for the stark flavor consists of a ListFragment
with several entries, shown in Figure 3-18.

Figure 3-18. Help activity for stark flavor
74 | Chapter 3: Build Types and Flavors

Any class referenced by an element in the main source set
must exist in each flavor.

After that, the implementations are completely independent.
See Also

Recipe 3.2 shows how to implement flavors and variants.
Recipe 3.3 is about merging non-Java resources. Recipe 3.4
shows how to have multiple flavor dimensions.

3.5 Merging Java Sources Across Flavors | 75
CHAPTER 4

Custom Tasks

4.1 Writing Your Own Custom Tasks

Problem

You want to customize the Gradle build process with your
own tasks.

Solution

Add task elements to the Gradle build files. Use the extra
properties supplied with the Android plug-in to make
development easier.

Discussion

The Gradle DSL supports a task block for defining your own
custom tasks. The API includes a wide range of existing tasks
(like Copy, Wrapper, and Exec) that you can use simply by
setting properties.

For example, the Copy task includes from and into
properties, and the from block can be configured to exclude
specified filename patterns. To copy all the APKs into a new
folder, excluding those that are either unsigned or unaligned,
add the task in Example 4-1 to the module build.

Example 4-1. Copy APKs to another folder
task copyApks(type: Copy) {
from("$buildDir/outputs/apk") {

exclude "**/*unsigned.apk’, "**/*unaligned.apk’

}

into '../apks’

}
77

The buildDir property refers to the default build directory (
app/build), and the dol-lar sign is used to inject it into a
Groovy string (with double quotes). The documentation for
the Copy task shows that the exclude block inside from
supports an Ant-style directory name, meaning that **
matches all descendent directories.

If you don’t want to simply configure an existing Gradle task,
you need to understand the distinction between the
configuration and execution phases of Gradle. During the
configuration phase, Gradle builds a DAG based on their
dependencies. It then executes the desired task, along with
its dependencies. All tasks are configured before any are
executed.

Gradle prefers declarative tasks, like the Example 4-1 task,
where you specify what you want done but not how to do it.
If you need to execute commands, however, add a dolLast
block to your Gradle task.

The task shown in Example 4-2, from Recipe 3.2, is repeated
here.

Example 4-2. A custom task to print available variants
task printVariantNames() {

dolLast {

android.applicationVariants.all { variant ->

println variant.name

}
}
}

Anything done in the task either before or after the doLast
block would be run during configuration time. The code in
the doLast block itself runs at execution time.

The Android plug-in adds an android property, which in turn
has an applica tionVariants property that returns all the

buildType/flavor combinations. In this case, they are all being
printed to the console.

The applicationVariants property is only available for the
com.android.application plug-in. A libraryVariants property

is available in Android libraries. A testVariants property is
available in both.

To install all the debug flavors onto a single device (assuming
they all have unique applicationld values), use the task in
Example 4-3.

78 | Chapter 4: Custom Tasks

Example 4-3. Install all the debug flavors on a single device
task installDebugFlavors() {

android.applicationVariants.all { v ->
if (v.name.endsWith('‘Debug')) {
String name = v.name.capitalize()

dependsOn "install$name"

}
}
}

In this case, the dependsOn method shows that this is part of
the configuration process rather than execution. Each variant
name, like friendlyDebug, is capitalized (FriendlyDebug) and
then the corresponding installation task (install

FriendlyDebug) is added as a dependency to the
installDebugFlavors task.

The result is during the configuration process,

installArrogantDebug, install FriendlyDebug, and
installObsequiousDebug are all added as dependencies to
installDebugFlavors. Therefore, executing

installDebugFlavors at the command line requires all three
flavor installs.

Example 4-4. Instal ing all the debug flavors
.Jgradlew instDebFl

:app:preBuild UP-TO-DATE
:app:preArrogantDebugBuild UP-TO-DATE
:app:checkArrogantDebugManifest

/l ... lots of tasks ...
:app:assembleArrogantDebug UP-TO-DATE
:app:installArrogantDebug

Installing APK ‘app-arrogant-debug.apk’ on
'Nexus 5 APl 23(AVD) - 6.0'

Installed on 1 device.
:app:checkFriendlyDebugManifest

/l ... lots of tasks ...
:app:assembleFriendlyDebug UP-TO-DATE

:app:installFriendlyDebug

Installing APK ‘app-friendly-debug.apk’ on
'Nexus 5 APl 23(AVD) - 6.0'

Installed on 1 device.
:app:checkObsequiousDebugManifest

/] ... lots of tasks ...
:app:assembleObsequiousDebug UP-TO-DATE
:app:installObsequiousDebug

Installing APK ‘app-obsequious-debug.apk’ on
'Nexus 5 APl 23(AVD) - 6.0'

Installed on 1 device.
:app:installDebugFlavors

BUILD SUCCESSFUL

4.1 Writing Your Own Custom Tasks | 79
Extending the ADP Timeout Period

As an aside, while the build process is relatively quick, the
deployment process may not be. The android tag supports
an adbOptions tag to increase the amount of time allowed
before the process hits a timeout limit (Example 4-5).

Example 4-5. Changing the ADB timeout period
android {

adbOptions {

timeOutinMs = 30 * 1000

}

}
This extends the timeout limit to 30 seconds. Adjust this
value if you are getting

ShellCommandUnresponsiveException failures.

You can see that writing your own custom tasks requires at
least some knowledge of Groovy. An extensive discussion is
therefore a bit beyond the scope of this book, but there are
several good Groovy resources available. Additional Groovy
concepts are defined in this book as they occur.

See Also

The Gradle plug-in User Guide (see Recipe 6.2) shows
available properties in the android object. The
documentation for the Copy, Zip, or other Gradle tasks is
found on the Gradle website. Appendix A and Appendix B
have background information on the Groovy programming
language and basic Gradle information, respectively.

4.2 Adding Custom Tasks to the Build Process
Problem

You want to call your custom tasks as part of an overall build
process.

Solution

Use the dependOn property to insert your task into the
directed acyclic graph.

Discussion

During the initialization phase, Gradle assembles the tasks
into a sequence according to their dependencies. The result
is a DAG. For example, the Gradle documentation forms a
DAG for the Java plug-in, as shown in Figure 4-1.

80 | Chapter 4: Custom Tasks

buil

check

tes

testClasses UploadArchives ‘ assemble l
‘ javadoc | ompilefestlava ‘pmmﬁﬁmﬁwnm ‘ ja l

(lasses

compilelava ‘ processResources I‘ Clean l

glgtgk

L)
il

t

Figure 4-1. Directed acyclic graph for the Java plug-in tasks

The “directed” term means each dependency arrow goes in
one direction. “Acyclic”

means that there are no loops in the graph.

Adding your own custom task to the process means inserting
your task into the graph at the proper location.

In Recipe 4.1, the copyApks task was defined to copy all the
generated APKs into a separate directory. That task is
reproduced in Example 4-6 for convenience.

Example 4-6. Copy APKs to another folder
task copyApks(type: Copy) {
from("$buildDir/outputs/apk") {

exclude "***/*unsigned.apk’', "**/*unaligned.apk’
}

into '../apks'

}

That task isn’'t very useful, however, if the APKs have not yet
been generated. The assemble task builds the APKs, so make
it a dependency of the copyApks task, as in Example 4-7.

4.2 Adding Custom Tasks to the Build Process | 81

Example 4-7. Updated copy task to generate them first task
copyApks(type: Copy, dependsOn: assembleDebug) {

from("$buildDir/outputs/apk") {

exclude "**/*unsigned.apk’, "**/*unaligned.apk’

}
into '../apks’

}

Run assembleDebug first

The dependency on assembleDebug means all the debug
APKs will be generated before the copy task runs. You can
use assemble instead if you want the release APKs as well.

If you would like the copyApks task to run every time you do
a build, make it a dependency of the build task, as in
Example 4-8.

Example 4-8. Making copyApks a part of the build
build.dependsOn copyApks

Now running the build task will also copy the APKs into the
separate folder. You have inserted the copyApks task into the
DAG with the correct dependency information.

Removing the generated apks folder containing all the APKs
can be done in a similar fashion, but as shown in Recipe 1.1,
the top-level Gradle build file already has a clean task that
we can modify,_as shown in Example 4-9.

Example 4-9. clean task generated by Android Studio
task clean(type: Delete) {

delete rootProject.buildDir

}

The delete task in Gradle accepts a list of files or folders, so
rather than make a special task to remove the apks folder,
it's easy enough to modify this task, as shown in Example 4-
10.

Example 4-10. Modified clean task to remove the apks
directory

task clean(type: Delete) {
delete rootProject.buildDir, 'apks'

}

Any custom task can be inserted into the build process using
this mechanism.

82 | Chapter 4: Custom Tasks
See Also

Recipe 4.1 discusses creating custom tasks in Android builds.
The topic of custom tasks is part of Appendix B.

4.3 Excluding Tasks

Problem

You want to exclude certain tasks from the build process.
Solution

Exclude an individual task using the -x flag. Exclude multiple
tasks by modifying the task graph.

Discussion

The Gradle build process involves a lot of tasks executed
sequentially. Most of them depend on tasks executed earlier
in the process, but there are some that can be excluded if
time is critical.

As an example, the lint task is useful for determining how
closely your project adheres to Google’'s recommended
practices for Android apps, but you don’t neces-sarily have
to run it every time.

Recall that the -x flag (short for --exclude-task) in Gradle
excludes a given task.

Therefore, when running a build, use the flag to skip the lint
task (or any others you don’t want),_as shown in Example 4-
11.

Example 4-11. Excluding the lint task
> ./gradlew build -x lint

This excludes the lint task and any of its dependencies. Any
task that need its result will not run either, so be sure that

any task you exclude is not required later in the process.

The only problem is that if your project involves multiple
variants, there is a lint task for each. In principle you could
exclude them all manually, but you might prefer to exclude
the whole set as part of the build.

When Gradle runs, it assembles a directed acyclic graph,
known as a task graph. You can get a reference to it inside
your build file through the gradle object. Any manipulation of
the graph needs to be done after it has been formed, so you
want to use the whenReady property before applying any
changes.

4.3 Excluding Tasks | 83

The result is you can write code inside the build file like that
shown in Example 4-12.

Example 4-12. Disabling all tasks that start with the word lint

gradle.taskGraph.whenReady { graph ->
graph.allTasks.findAll { it.name ==~ /lint.*/ }*.enabled =
false

}

The allTasks property of the task graph invokes the
getAllTasks method, using the normal Groovy idiom. That
returns a java.util.List of tasks. Groovy adds a findAll method
to List that returns only the tasks that satisfy the supplied
closure.

In this case, the closure says access the name property of
each task and check whether or not it exactly matches the
regular expression. Applying the “spread-dot” operator to
the resulting list disables each task in the list.

The result is that all tasks that have a name that starts with
the letters lint have their enabled property set to false, so
none of them will run.

Since you may not want to always exclude all the lint tasks,
you can check whether

Example 4-13.

Example 4-13. Only disable the lint tasks if the nolLint
property is set gradle.taskGraph.whenReady { graph -> if
(project.hasProperty('noLint')) {

graph.allTasks.findAll { it.name ==~ /lint.*/ }*.enabled =
false

}
}

You can set a project property from the command line using
the -P flag, as in

Example 4-14.

Example 4-14. Setting a project property
> ./gradlew build -PnoLint | grep lint
:app:lintVitalArrogantRelease SKIPPED
:app:lintVitalFriendlyRelease SKIPPED
:app:lintVitalObsequiousRelease SKIPPED

:app:lint SKIPPED

Clearly there’s a fair amount of Groovy knowledge involved
in this approach, but the idea of manipulating the task graph
after it has been assembled is a very powerful one.

84 | Chapter 4: Custom Tasks
See Also

Recipe 2.1 discusses how to set project properties. Excluding
tasks as a means of improving_build performance is part of
Recipe 6.1.

4.4 Custom Source Sets

Problem

You want to use nonstandard directories for source code in
your project.

Solution
Use the sourceSets property in your Gradle build.
Discussion

The samples that come with the Android distribution are
configured to use multiple source folders, in order to
separate common files from the main sample code.

Consider an arbitrary example from the APl 23 (Android 6.0,
Marshmallow) distribution, called Basic Gesture Detect,
which is found in the input/BasicGestureDetect folder of the
samples section. The details of the application itself are not
important— it's the Gradle build that shows the source set
modifications.

Example 4-15 shows the Gradle build file from the
Application subdirectory (note that the samples commonly
use Application instead of app for the main subproject).

Example 4-15. Gradle build file with source sets
// The sample build uses multiple directories to
// keep boilerplate and common code separate from

// the main sample code.

List<String> dirs = [

'main’', // main sample code; look here for the interesting
Stuff.

‘common', // components that are reused by multiple
samples

'‘template'] // boilerplate code that is generated by the
sample template process android {

// ... code omitted ...
sourceSets {

main {

dirs.each { dir ->
java.srcDirs "src/${dir}/java"

res.srcDirs "src/${dir}/res"

}

}
4.4 Custom Source Sets | 85

androidTest.setRoot('tests')

androidTest.java.srcDirs = ['tests/src']

}
}

The build file defines a List<String> called dirs to represent
the source directories.

Groovy supports a native syntax for lists, using square
brackets with values separated by commas. In this case, the
values are main, common, and template.

Inside the android block, the sourceSets property is used to
add the relevant source directories to the classpath.
Focusing on the section inside the main block, Groovy’s each
iterator supplies each entry in the list to the closure
argument in Example 4-16.

Example 4-16. Groovy each with a closure
dirs.each { dir ->
java.srcDirs "src/${dir}/java"

res.srcDirs "src/${dir}/res"

}

The each method comes from Groovy. It iterates over every
element of a collection, passing it into the closure argument.
The closure here labels each element as dir and substitutes
it into the Groovy strings.

The standard project layout defines a default source tree
sr¢/main/java and a resource tree src/main/res. In this case,
however, additional directories are added to those
collections by using the srcDirs property. The result in this
case is that the folders src/

main/java, src/common/java, and src/template/java are all
added to the compile classpath, and the folders sr¢/main/res,
src/commony/res, and src/template/res are all considered
resource directories.

The real irony, however, is that this particular sample doesn’t
have any of the additional folders in it. All the Java sources

are under src/main/java and all the resources are under
src¢/main/res. In fact, none of the samples actually use the
defined structure.

They all restrict their Java source code and resources to the
standard directories. The structure just defined is therefore
either something planned for the future, or a hold-over from
something older, or maybe just evidence that the Google
Android developers have a sense of humor.

There is one section of the sourceSets property that is used,
however. Instead of putting all the tests under the predefined
src/androidlest/java folder, the Gradle build file changes that
location (Example 4-17).

86 | Chapter 4: Custom Tasks

Example 4-17. Changing the root directory for tests
androidTest.setRoot('tests')

androidTest.java.srcDirs = ['tests/src']

The test root is now the tests folder, and the tests
themselves are placed in the tests/src folder. Each sample
project has two folders underneath the Application directory:
src and tests, and the tests folder contains a subdirectory
called src. The basic project layout for the
Activitylnstrumentation example contains an Application
directory, whose contents are structured like that in Example
4-18.

Example 4-18. Directory layout for sample project

— build.gradle

— src

| L— main
| — AndroidManifest.xm|

| F—java

| | =— com

| | b— example

| | “— android

| | — activityinstrumentation
| | | “— MainActivity.java

| | ... // more

| L—res

| — drawable-hdpi

| | —ic_launcher.png

| | L—tile.9.png

| ... // more

| b— values-v11

| | b— template-styles.xml

| L— values-v21

| — base-colors.xml

| L— base-template-styles.xml

L tests

— AndroidManifest.xml
L— src

L— com

L— example

L— android

L— activityinstrumentation
L — SampleTests.java

As you can see, the Java code goes under sr¢/main/java, the
resources go under src¢/

main/res, and the tests go under tests/src of all places.
4.4 Custom Source Sets | 87

Where does the sourceSets property get used? Legacy
Android apps (e.g., those written before the conversion to
the Gradle build system) used a different project structure.
Android Studio can import those apps, but it will rewrite the
structure when doing so. See Recipe 2.2 and Recipe 2.3 for
details.

See Also

The sourceSets property is often used with legacy apps.

4.5 Using Android Libraries

Problem

You want to add library modules to your app.
Solution

Use the library plug-in and add the library module as a
dependency.

Discussion

You can add a lot of additional functionality to an app by
using Java libraries, which come in the form of jar_files.
Recipe 1.5 discusses this in detail, showing_how to use

the dependencies block. For example, to use Google’s Gson
library for parsing JSON

data, add the dependency to the module build file, as shown
in Example 4-19.

Example 4-19. Adding Google’s Gson library
dependencies {

compile '‘com.google.code.gson:gson:2.6.2'

}

Android libraries go beyond Java libraries, in that they
include either classes from the Android API, any needed
resources, or both. When the project is built, Gradle
assembles Android libraries into aar (Android Archive) files,
which are like jar files but include the Android dependencies.

From a Gradle perspective, Android libraries are subprojects
from the root. That means they are like Android applications,
but in a subdirectory. The name of the added module
(Android Studio calls them modules) is therefore added to
the settings.gradle file,_as in Example 4-20.

Example 4-20. A settings.gradle file with an added module

include ":app’, ":icndb’

88 | Chapter 4: Custom Tasks

f wwwicndb.com/apl/ QQs

ICNDb.com

THE 1 hi TERNET CHUCK NORRIS DATABASE

HOME THE JOKES API LIBRARIES ON YOUR WEBSITE BLOG ABOUT

General operation

The jokes are available at http://apiicndb.com. Use HTTP GET to retrieve what you want (read on
below for more details). Results can returned as raw JSON data (the default case) or using a

JavaScript callback function for script communication.
In the default case, the result will always look like this:

{ "type": ..., "value": ...}

The type will be “success” on success and something else when something went wrong (more details

below). An example of the result of a successful request:

{ "type": "success", "value": { "id": 268, "joke": "Time waits for no man. Unless that man is

In this case, the Android library module is called icndb, which
stands for the |nternet

http://www.icndb.com/

Chuck Norris Database, which serves up Chuck Norris jokes
in the form of JSON

responses. The APl page on the website is shown in Figure 4-
2.

Figure 4-2. The API page for the ICNDB site

As an example of an Android library, this site will be
accessed as a RESTful web service, the returned JSON data
will be parsed, and the resulting joke will be added to the
Welcome activity in a TextView.

To create a library module in Android Studio, use the “New
Module” wizard and select the “Android Library” type,_as in
Figure 4-3.

Other options on the New Module wizard include Java Library
and

Import .JAR/.AAR Package, among others.
4.5 Using Android Libraries | 89

http://www.icndb.com/

00 Create New Moduls

New Module

H Android Studio

—
)

[———
?

m

—
0
I

c-:-ll a |

Phane & Tablet Module Android Library Android Wear Module Android TV Module Androld Auto Project
Glass Module Import Gradle Project Import Eclipse ADT Praject Import JAR /. AAR Package Java Library
Creates a new Android module.

- Cancel | | Previous @ Finish

Figure 4-3. The Android Library option in the New Module
wizard After giving the library a name, you can then add
whatever type of activity you want, if any. Completing the

wizard creates the library directory and adds it to the
settings.gradle file in the root project.

Each library has its own Gradle build file, which supports the
same settings as the root project. You can specify minimum
and target SDK versions, customize build types, add flavors,
and modify dependencies however you like. The important
differ-ence is that the Gradle build uses a different plug-in,_as
shown in Example 4-21.

Example 4-21. The build.gradle file for the ICNDB library
module apply plugin: ‘com.android.library'

android {

compileSdkVersion 23
buildToolsVersion "23.0.3"
packagingOptions {

exclude 'META-INF/notice.txt'
exclude 'META-INF/license.txt'
exclude 'LICENSE.txt'

}

defaultConfig {

90 | Chapter 4: Custom Tasks
minSdkVersion 16
targetSdkVersion 23

versionCode 1

versionName "1.0"

}

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android.txt'),

‘proguard-rules.pro’

}
}
}

dependencies {

compile '‘com.google.code.gson:gson:2.6.2'

compile '‘com.squareup.retrofit2:retrofit:2.0.1"
compile ‘com.squareup.retrofit2:converter-gson:2.0.1'
}

Use the library plug-in

Exclude conflicting files from multiple dependencies

The build file adds the Retrofit 2 project as a dependency,
and its Gson converter for the JSON messages, as well as the
Gson library discussed earlier.

Note also the use of the packagingOptions block. That allows
you to exclude files of the same name that appear in

multiple dependencies.

If you use these libraries, the implementation of the ICNDB

library becomes simple, as shown in Example 4-22.

Example 4-22. The JokeFinder class, which does all the work

public class JokeFinder {

private TextView jokeView;

private Retrofit retrofit;

private AsyncTask<String, Void, String> task;
public interface ICNDB {
@GET("/jokes/random")

Call<lcndbjoke> getjoke(@Query("firstName")
firstName,

@Query("lastName") String lastName,
@Query("limitTo") String limitTo);

}

public JokeFinder() {

retrofit = new Retrofit.Builder()

.baseUrl("http://api.icndb.com")

.addConverterFactory(GsonConverterFactory.create())

4.5 Using Android Libraries | 91

String

build();

}

public void getjoke(TextView textView, String first, String
last) {

this.textView = textView;
new JokeTask().execute(first, last);

}

private class JokeTask extends AsyncTask<String, Void,
String> {

@Override

protected String doinBackground(String... params) {
ICNDB icndb = retrofit.create(ICNDB.class);
Call<lcndbjoke> icndbjoke = icndb.getjoke(
params[0], params[1], “[nerdy]");

String joke = "";

try {

joke = icndbjoke.execute().body().getjoke();

} catch (IOException e) {

e.printStackTrace();

}

return joke;

}
@Override

protected void onPostExecute(String result) {

jokeView.setText(result);

}

}

}

Interface for Retrofit GET request access

Building the Retrofit instance with Gson converter
Asynchronous task to access web service off the Ul thread

The JokeFinder class accesses the ICNDB web service using
the supplied first and last names for the hero, using an
asynchronous task so that the operation is performed off the
Ul thread. The getjoke method includes an argument for a
TextView, which the JokeTask updates once parsing of the
result is complete.

The Icndbjoke task is a simple POJO that maps the the JSON
response. The form of the response is shown in Figure 4-4.

The JSON response is quite small, so the corresponding
Icndbjoke class is also simple, as shown in Example 4-23.

92 | Chapter 4: Custom Tasks

4= C #h api.icndb.com/jokes/random?limitTo=[nerdy)&firstName=Xavier&lastName=Ducrohet

{

type: "success",
- value: {
id: 469,
joke: "Xavier Ducrohet can unit test entire applications with a single assert.",
- categories: |
"nerdy"

l

}

}

Example 4-23. The Icndbjoke class POJO, which maps to the
JSON format public class Icndbjoke {

private String type;

private Joke value;

public String getjoke() {

return value.getjoke();

}

public String getType() { return type; }

public void setType(String type) { this.type = type; }
public Joke getValue() { return value; }

public void setValue(Joke value) { this.value = value;}
private static class Joke {

private int ID;

private String joke;

private String[] categories;

public int getld() { return ID; }

public void setld(int ID) { this.id = ID; }

public String getjoke() { return joke; }

public void setjoke(String joke) { this.joke = joke; }
public String[] getCategories() { return categories; }
public void setCategories(String[] categories) {

this.categories = categories;

}
}

}
Figure 4-4. [SON response from the ICNDB service

That's it for the library. The app uses the library through its
JokeFinder class. This is made available using a project
dependency in the module build file, as shown in Example 4-

24.
4.5 Using Android Libraries | 93

Example 4-24. Using the ICNDB module in the app apply

plug-in: 'com.android.application’
android {
compileSdkVersion 23

buildToolsVersion "23.0.3"

// ... all the regular settings ...
}

dependencies {
compile project(‘:icndb"')
}

Use the icndb library at compile time

The compile dependency uses the project method, which
takes the subdirectory containing the module as an
argument. The result is that Gradle knows to build the ICNDB
module before building the app, and to make its classes
available at compile time.

The WelcomeActivity calls the getjoke method in the
JokeFinder, supplying a reference to the TextView to be
updated, along with a first and last name supplied from a
SharedPreferences_object,_as seen in Example 4-25, where
all the other parts have been omitted.

Example 4-25. Invoking the getjoke method from the
WelcomeActivity public class WelcomeActivity extends
Activity {

private TextView jokeText;

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);

setContentView(R.layout.activity welcome);

jokeText = (TextView) findViewByld(R.id.joke_text);
final SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences(this);
new JokeFinder().getJoke(jokeText,
prefs.getString("first", "Xavier"),

prefs.getString("last", "Ducrohet"));

}

}

94 | Chapter 4: Custom Tasks

5554:Nexus_5_AP|_23

O WelcomeActivity

Hello, Dolly!

Xavier Ducrohet can binary search
unsorted data.

Xavier Ducrohet is the head of the Gradle plug-in for Android

project and head of the Android Studio development team at
Goo-

gle.
A sample run is shown in Figure 4-5.
Figure 4-5. Running the app

The build process itself generates both debug and release
versions of the library in the Jicndb/build/outputs/arr
directory,_shown in Example 4-26.

Example 4-26. Output Android library archive files
> ./gradlew build
> |s icndb/build/outputs/aar

icndb-debug.aar icndb-release.aar

The aar files can be published to repositories for later use by
other apps.

To summarize:

* Android library projects are Java projects that need Android
dependencies, like classes from the Android APl or resources
or both ¢ Gradle uses subdirectories for multiproject builds,
where each subproject is added to the top-level
settings.gradle file « In Android Studio, use the “Android
Library” option in the “New Module” wizard to create an
Android library project

4.5 Using Android Libraries | 95
* The library project uses the com.android.library plug-in

 The app build file uses the project(":library") dependency
to access the library classes from the app

Following this pattern, you can add functionality to Android
libraries and reuse them in other applications.

96 | Chapter 4: Custom Tasks

CHAPTER 5

Testing

5.1 Unit Testing

Problem

You want to test the non-Android parts of your app.
Solution

Use the experimental unit testing support added in version
1.1 of Android Studio and the Gradle plug-in for Android.

Discussion

The Eclipse Android Development Tools (ADT) plug-in only
supported integration tests, and required developers to
create a separate project just for the tests themselves.

One of the advantages of the switch to Android Studio and
Gradle was support for tests inside the Android project itself.

Prior to version 1.1 of Android Studio and the associated
Gradle plug-in, however, those tests were still restricted to
integration tests, meaning you needed either an emulator or
a connected device in order to run the tests. Integration
tests can be very powerful and useful,_and are the subject of
Recipes Recipe 5.3 and Recipe 5.4.

This recipe discusses true unit tests, which run on a local JVM
on a development machine. Unlike the integration tests that
use an androidTest source set, the unit tests reside in the
src/test/java directory of your app.

When you generate a new Android app in Android Studio, a
sample unit test is provided for you. It resides in the
src/test/java tree, but is not currently in the classpath, as
Figure 5-1 shows.

97

v test
¥ java
v com
v areilly
Y helloworld

[4 ExampleUnitTest.java

v test
¥ java
4 com.oreilly. helloworld

" % ExampleUnitTest

| KTTETYLY o

Build Variants €+ SO N

a4k

Test Artifact: Unit Tests

Figure 5-1. Sample unit test generated by Android Studio,
under app/src The generated test is shown in Example 5-1.

Example 5-1. Generated sample unit test
import org.junit.Test;

import static org.junit.Assert.*;

/>I<>l<

* TJo work on unit tests, switch the Test Artifact in the Build
Variants view.

*/
public class ExampleUnitTest {
@Test

public void addition_isCorrect() throws Exception {

assertEquals(4, 2 + 2);

}
}

This type of test should look familiar to anyone who has used
JUnit in the past, which should be virtually every Java
developer. The @Test annotation from JUnit 4 indicates that
the addition_isCorrect method is a test method. The
assertEquals method is a static method in the Assert class
(note the static import of all static methods in that class),
whose first argument is the correct answer and whose
second argument is the actual test.

In order to run the test, you need to do what the comment
says, which is to select the Test Artifact in the Build Variants
view, as shown in Figure 5-2.

Figure 5-2. Selecting the “Unit Tests” artifact in Build Variants
98 | Chapter 5: Testing

Note that by selecting “Unit Tests,” the directory tree under
src/test/java is now understood by Android Studio to contain
test sources (because the folder is shown in green) and the
com/oreil y/hel oworld tree is now interpreted as a package.

One last step is required before executing the unit test. You
need to make sure JUnit is included as a testCompile
dependency in your project. As shown in Recipe 1.5, this is
already the case for the default project. The dependencies
section of the module build file is repeated in Example 5-2.

Example 5-2. JUnit dependency in the module build.gradle
file

dependencies {

compile fileTree(dir: 'libs', include: ['*.jar'])
testCompile 'junit:junit:4.12’

compile ‘com.android.support:appcompat-v7:23.0.1"
}

JUnit dependency added during testCompile

You can now run the tests from Gradle using the test target,
but be prepared for a lot of effort (see Example 5-3).

Example 5-3. Executing the unit test
> ./gradlew test

Starting a new Gradle Daemon for this build (subsequent
builds will be faster).

:app:preBuild UP-TO-DATE
:app:preArrogantStarkDebugBuild UP-TO-DATE
:app:checkArrogantStarkDebugManifest
:app:preArrogantStarkReleaseBuild UP-TO-DATE
:app:preArrogantWayneDebugBuild UP-TO-DATE
:app:preArrogantWayneReleaseBuild UP-TO-DATE
:app:prefFriendlyStarkDebugBuild UP-TO-DATE
:app:prefFriendlyStarkReleaseBuild UP-TO-DATE
:app:prefFriendlyWayneDebugBuild UP-TO-DATE

:app:prefFriendlyWayneReleaseBuild UP-TO-DATE

// ... all the stages for all the variants ...
:app:compileObsequiousWayneReleaseUnitTestJavaWithjavac
:app:compileObsequiousWayneReleaseUnitTestSources
:app:assembleObsequiousWayneReleaseUnitTest
:app:testObsequiousWayneReleaseUnitTest

:app:test

BUILD SUCCESSFUL

The single test ran for every variant, generating HTML
outputs in the app/build/

reports/tests folder, shown in Example 5-4.

5.1 Unit Testing | 99

C ff | files/Users/kousen/Documents/AndroidStudio/HelloWorld/app/build/reports/tests/obsequiousWayneRelease/index.htm {1

Test Summary
1 0 0 0001 100%
tests failures ignored duration

successful

Packages Classes

Package Tests Failures Ignored Duration Success rate
com.oreilly.helloworld 1 0 0 0.001s 100%

Example 5-4. Output folders for the tests

> |s -F app/build/reports/tests/
arrogantStarkDebug/ arrogantWayneRelease/
friendlyWayneDebug/ obsequiousStarkRelease/
arrogantStarkRelease/ friendlyStarkDebug/
friendlyWayneRelease/ obsequiousWayneDebug/
arrogantWayneDebug/ friendlyStarkRelease/
obsequiousStarkDebug/ obsequiousWayneRelease/

Opening the index.html file in any_of those folders shows the
test report in Figure 5-3.

Figure 5-3. Test report in HTML

You can drill down to the ExampleUnitTest class and see the
specific results

(Eigure 5-4).

To restrict the tests to a single variant and even a single test
class, use the --tests flag, as in Example 5-5.

Example 5-5. Running the tests in only one test class

> Jgradlew testFriendlyWayneDebug --
tests="*.ExampleUnitTest'

The variant is still constructed, but only that one, and only
the tests in the Exam pleUnitTest class are run.

As an alternative, if you right-click in the test itself and run it
inside Android Studio, it runs for the current variant only and
provides a nice view showing the results (Figure 5-5)

100 | Chapter 5: Testing

Class com.oreilly.helloworld.ExampleUnitTest

all > com.oreilly.helloworld > ExampleUnitTest

1 0 0 0.001s 100%
tests failures ignored duration
successiul
Tests
Test Duration Result
addition_isCorrect 0.001s passed
Run ExamplelnifTest gL
4 T STt [% Doneloflin002s) []
¥ ExampleUnitTest (com.orelly.hele illy.helloworld.ExampleUnitTest Test Timeelapsed UsageDelta Usage Before Usage After | Results

) All Tests Passed addidion_sCarrect 0.002 5 0k 7920k 7920Kh Passed

Figure 5-4. Result of ExampleUnitiest tests
Figure 5-5. Test results in Android Studio

The only problem is, this didn’t actually test anything
significant. That’s the point, actually. When using the JUnit
support, you can’t test anything that relies on the Android
SDK. Unit testing is only for the purely Java parts of your
application.

Unit testing support is only for the non-Android parts of your

application.

In Recipe 4.5, the library accessed a web service,
downloaded JSON data, parsed it, and updated a TextView
with an included value. If you like, you can test just the
parsing part of that process, as in Example 5-6.

5.1 Unit Testing | 101

Example 5-6. Test the Gson parser

import com.google.gson.Gson;

import org.junit.Test;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
public class IcndbjJokeTest {

private String jsonTxt = "{\"type\": \"success\", \"value\":
{\"id\": 451,

\"joke\": \"Xav Ducrohet writes code that optimizes itself.\",
\"categories\": [\"nerdy\"1}}";

@Test

public void testGetjoke() throws Exception {

Gson gson = new Gson();

lcndbjoke icndbjoke
Icndbjoke.class);

gson.fromJson(jsonTxt,

String correct = "Xav Ducrohet writes code that optimizes
itself."; assertNotNull(icndbjoke);

assertEquals(correct, icndbjoke.getjoke());

}
}

String should be all on one line
Check that parsing yielded a non-null result
Check that the retrieved joke is correct

The good news is that unit tests are fast, at least relative to
integration tests, because they don’t require deployment to
an actual device or an emulator. If you have Java classes that
are not dependent on Android classes, unit tests are great
way to make sure they’re working properly. Test Driven
Development (TDD) has not yet been adopted in the mobile
world the way it has in the regular Java world, but this is a
good way to get started.

What About Robolectric?

The Robolectric project is designed to let you run integration
tests as though they were unit tests, i.e., without using an
emulator or connected device. As such, it acts as a giant
mock of the entire Android SDK.

Reports from the field have been mixed. Some people really
like it; others don’t trust it for anything related to dialogs,

http://robolectric.org/

animations, views, or anything else in the Ul. This is 102 |

Chapter 5: Testing

made more complicated by the fact you're scripting a Ul test
without actually using the Ul.

Still, it’s not a bad alternative, and fits into the overall Gradle
approach. See the website for details.

See Also

Recipe 5.3 illustrates Activity tests using the Robotium
library. Recipe 5.4 does the

same using the Espresso framework from Google. JUnit
information can be found at

http:/junit.org.

5.2 Testing with the Android Testing Support Library
Problem

You want to test the Android components of your app.
Solution

Use the new testing classes to implement JUnit-style tests of
your app.

Discussion

First, a meta-note on terminology: testing Android
components, like activities or services, requires deployment
of the app to a connected device or emulator. The testing
library is based on JUnit, but these are not unit tests in the
strictest sense. They’'re either integration tests or functional
tests, depending on how you use those terms.

Since the approach here is to drive a deployed app
programmatically and check that the Ul changes correctly,
the term “functional” will be preferred here. You will see the
term integration used frequently in the documentation,
however.

Despite the word “unit” in AndroidJUnitRunner and other test

classes, Android tests are inherently functional. They require
either an emulator or a connected device in order to run.

The Android Testing Support Library is added as an optional
dependency through the SDK Manager, as shown in Figure 5-
6.

http://junit.org/

Testing is part of the “Android Support Repository” download,
as Figure 5-6 illustrates. The testing classes reside in the
android.support.test package.

5.2 Testing with the Android Testing Support Library |
103

r
P

L & Android SDK Manager
SDK Path:
Packages
! Name API Rev. Status
Extras
1 Amazon AVD Launcher (Mac OS X) 2 [Installed

= Android Support Repository 17 o Installed
{—._E‘ Android Support Library ' 23 = Installed

The documentation shows that to add all the relevant classes
to your Gradle build file,

use the dependencies in Example 5-7.

Example 5-7. Gradle dependencies for the Android Testing
Support Library dependencies {

androidTestCompile 'com.android.support.test:runner:0.3'
// Set this dependency to use JUnit 4 rules
androidTestCompile 'com.android.support.test:rules:0.3'

}

Figure 5-6. Adding the Android Testing Support Library using
the SDK Manager The AndroidJUnitRunner class has support
for JUnit 4 annotations. To use it, you can add the @RunWith
annotation from JUnit to your test class, or you can add a
setting to the defaultConfig block of your Gradle build file.

Example 5-8. Using Android/UnitRunner by default
android {

defaultConfig {

// ... other settings ...

testinstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"

}
}

It's particularly easy to test a labels on a layout using the
test support classes. An example is shown in Example 5-9.

Example 5-9. Testing component labels

@MediumTest

@RunWith(AndroidjUnit4.class)

public class MyActivityLayoutTest

extends ActivitylnstrumentationTestCase2 <MyActivity> {
private MyActivity activity;

private TextView textView;

104 | Chapter 5: Testing

private EditText editText;

private Button helloButton;

public MyActivityLayoutTest() {
super(MyActivity.class);

}

@Before

public void setUp() throws Exception {
super.setUp()

injectinstrumentation(lnstrumentationRegistry.getinstrument
ation()); activity = getActivity();

textView = (TextView) activity.findViewByld(R.id.text_view);
editText = (EditText) activity.findViewByld(R.id.edit_text);

helloButton = (Button)
activity.findViewByld(R.id.hello_button);

}

@After

public void tearDown() throws Exception {
super.tearDown();

}

@Test

public void testPreconditions() {
assertNotNull("Activity is null", activity);

assertNotNull("TextView is null", textView);

assertNotNull("EditText is null", editText);
assertNotNull("HelloButton is null", helloButton);
}

@Test

public void textView label() {

final String expected
activity.getString(R.string.hello_world); final String actual
textView.getText().toString(); assertEquals(expected, actual);

}
@Test

public void editText_hint() {

final String expected
activity.getString(R.string.name_hint); final String actual
editText.getHint().toString(); assertEquals(expected, actual);

}
@Test

public void helloButton_label() {

final String expected =
activity.getString(R.string.hello_button_label); final String
actual = helloButton.getText().toString();
assertEquals(expected, actual);

}

}

5.2 Testing with the Android Testing Support Library |
105

Expected durations are @SmallTest, @MediumTest, and
@LargeTest

Use the JUnit 4 runner for Android
Needed for the new JUnit 4 runner

The new AndroidjUnitRunner is part of the Android Support
Test Library. It adds JUnit 4 support, so that tests can be

annotated rather that specified using the old JUnit 3 naming
convention. It has other extra capabilities. See the Android
Testing

Support Library documentation for details.

In Example 5-9, the attributes represent widgets on the user
interface. The @Before method looks them up and assigns
them to the attributes. The docs recommend using a
testPreconditions test Ilike the one shown, just to
demonstrate that the widgets were found. That test is no
different from any of the others, but a failure there makes it
easy to see what went wrong.

The other tests all look up strings from the string resources
and compare them to the labels on the actual widgets. Note
that nothing is being modified here—the test is essentially
read-only.

Finally, the @MediumTest annotation is used to indicate the
size of a test method. Tests that only take a few milliseconds
are marked as @SmallTest, those that take on the order of
100 milliseconds are @MediumTest, and longer ones are
marked @LargeTest.

From Gradle, running tests that require connected devices or
emulators is done through the connectedCheck task.

Run the connectedCheck task to execute tests on all
emulators and

connected devices concurrently.

A sample execution is shown in Example 5-10. The sample
test was run concurrently on two separate emulators.

Example 5-10. Executing the tests from Gradle

http://bit.ly/android-tsl
http://bit.ly/android-tsl

> ./gradlew connectedCheck

:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE
:app:checkDebugManifest
:app:prepareDebugDependencies

/l ... lots of tasks ...
:app:packageDebugAndroidTest UP-TO-DATE
106 | Chapter 5: Testing

Class com.nfjs.helloworldas.MyActivityLayoutTest

all > com.nfis.helloworldas > MyActivityLayoutTest

10 0 3.289s 100%
tests failures duration
successful
Tests Devices
Test Nexus_4_API_19(AVD) - 4.4.4 Nexus_5_API_23(AVD) - 6.0
editText_hint passed (1.262s) passed (0.168s

helloButton_label
hiButton_label
testPreconditions

textView_label

passed (0.171s)
passed (0.398s)
passed (0.258s)
passed (0.233s)

)
passed (0.180s)
passed (0.174s)
passed (0.176s)
passed (0.269s)

:app:assembleDebugAndroidTest UP-TO-DATE
:app:connectedDebugAndroidTest
:app:connectedAndroidTest
:app:connectedCheck

BUILD SUCCESSFUL

The output report resides in the
http://robolectric.orgapp/build/reports/androidTests/

connected directory. A sample output report is shown in
Figure 5-7.

Figure 5-7. Sample test output organized by test

The sample output shows the emulator names and the
results of all the tests. Clicking the *“Devices” button
switches the output to organize it by device, as shown in
Figure 5-8.

The classes in the Android Support Test Library can do much
more than this, but the tests start getting complicated
quickly. When you want to drive the Ul by adding data,
clicking buttons, and checking results, there are alternative
libraries, like Robotium and Espresso, that make the process
much easier. Recipes that use those libraries are referenced
in the “See Also” section.

5.2 Testing with the Android Testing Support Library |
107

http://robolectric.orgapp/build/reports/androidTests/connected
http://robolectric.orgapp/build/reports/androidTests/connected

Class com.nfjs.helloworldas.MyActivityLayoutTest

all > com.nfs.helloworldas > MyActivityLayoutTest

10 0 32898 100%

lests failures duration

successful

Tests Devices

Devices Tests Failures Duration Success rate
Nexus_4_API|_19(AVD) - 4.4.4 5 0 23228 100%
Nexus_5_API_23(AVD) - 6.0 5 0 0.967s 100%

Figure 5-8. Sample test output organized by device

See Also

Recipe 5.3 shows how to use the Robotium library to drive
the Ul. Google now provides the Espresso library as part of
the Android Test Kit project. Espresso tests are demonstrated

in Recipe 5.4.

5.3 Functional Testing with Robotium

Problem

You want to test activities using the Robotium library.
Solution

Add the Robotium dependency and script your tests.
Discussion

The Android Test Support Library has classes for accessing
widgets on activities, but there are easier ways to drive an
Android Ul. While this is not a book about testing, it's easy to
add the Robotium library dependency to Gradle and run tests
that way.

The Robotium project is described as “like Selenium, but for
Android.” It's a test automation framework that makes it
easy to write black-box Ul tests for Android apps.

Just add the Robotium library as a dependency in the module
Gradle build file, as in

Example 5-11.

108 | Chapter 5: Testing

Example 5-11. Add the Robotium dependency
dependencies {

androidTestCompile 'com.jayway.android.robotium:robotium-
solo:5.4.1"

http://www.robotium.org/

}

Consider a simple activity called MyActivity, shown in
Example 5-12, that prompts the user for a name, adds it to
an Intent, and starts a WelcomeActivity that greets the user.

Example 5-12. The MyActivity class is a “Hel o, World” app
public class MyActivity extends Activity {

private TextView textView;

private EditText editText;

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity_my);

textView = (TextView) findViewByld(R.id.text view);
editText = (EditText) findViewByld(R.id.edit_text);

Button helloButton = (Button)
findViewByld(R.id.hello_button);

helloButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

sayHello(v);

}

});
}

public void sayHello(View view) {
String name = editText.getText().toString();

Intent intent = new Intent(this, WelcomeActivity.class);
intent.putExtra("name", name); startActivity(intent);

}
}

Robotium provides a class called com.robotium.solo.Solo,
which wraps both the activity being tested and the
Instrumentation object. It allows you to add text, click
buttons, and more, without worrying about being on or off
the Ul thread. An example that tests the given activity is
shown in Example 5-13.

5.3 Functional Testing with Robotium | 109

Example 5-13. A Robotium test for MyActivity

public class MyActivityRobotiumTest

extends ActivitylnstrumentationTestCase2 <MyActivity> {
private Solo solo;

public MyActivityRobotiumTest() {
super(MyActivity.class);

}

public void setUp() {

solo = new Solo(getinstrumentation(), getActivity());

}

public void testMyActivity() {
solo.assertCurrentActivity("MyActivity", MyActivity.class);
}

public void testSayHello() {

solo.enterText(0, "Dolly");

solo.clickOnButton(
getActivity().getString(R.string.hello_button_label));

solo.assertCurrentActivity("WelcomeActivity",
WelcomeActivity.class); solo.searchText("Hello, Dolly!");

}
public void tearDown() {

solo.finishOpenedActivities();

}
}

Activity tests all extend this class
The Solo reference from Robotium
Instantiate the Solo reference

Robotium tests extend ActivitylnstrumentationTestCase2, as
with all activity tests.

The Solo instance is initialized with the activity and retrieved
instrumentation instances. The tests themselves use

methods from the Solo class, like enterText, clickOnButton,
or searchText.

The only downside to using Robotium is that the tests use
the old JUnit 3 structure, with predefined setUp and
tearDown methods as shown, and all tests have to follow the

pattern public void testXYZ(). Still, the ease of writing the
tests is remarkable.

110 | Chapter 5: Testing

Class com.nfjs.helloworldas.MyActivityRobotiumTest

all > com.nfjs.helloworldas > MyActivityRobotiumTest

4 0 9.781s 100%

tests failures duration
successful

Tests Devices

Test Nexus_4_API_19(AVD) - 4.4.4 Nexus_5_API_23(AVD) - 6.0
testMyActivity passed (0.299s) passed (1.197s)
testSayHello passed (4.218s) passed (4.067s)

The test class is stored in the same androidTest hierarchy as
other Android tests, and executed on all emulators and
connected devices simultaneously through the con
nectedCheck_task (Example 5-14).

Example 5-14. Executing the tests from Gradle

> ./gradlew connectedCheck

:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE
:app:checkDebugManifest
:app:prepareDebugDependencies

/ ... lots of tasks ...
:app:packageDebugAndroidTest UP-TO-DATE
:app:assembleDebugAndroidTest UP-TO-DATE
:app:connectedDebugAndroidTest
:app:connectedAndroidTest
:app:connectedCheck

BUILD SUCCESSFUL

The result is shown in Figure 5-9 after running_on two
emulators.

Figure 5-9. Robotium test output

Clicking the “Devices” button shows the same results,
organized by device

(Figure 5-10).

The full Robotium JavaDocs offer additional details and
sample projects.

5.3 Functional Testing with Robotium | 111

http://bit.ly/robotium-javadocs

Class com.nfjs.helloworldas.MyActivityRobotiumTest

all > com.nfjs.helloworldas > MyActivityRobotiumTest

4 0 978ls 100%

fests failures duration
successful

Tests Devices

Davices Tests Failures Duration Success rate
Nexus_4_API_19(AVD)-4.44 2 0 4517s 100%
Nexus_5_API_23(AVD) - 6.0 2 0 5.264s 100%

Figure 5-10. Robotium test output organized by device

See Also

Activity testing using the Android Support Library is covered
in Recipe 5.2. Testing with Espresso is covered in Recipe 5.4.

5.4 Activity Testing with Espresso

Problem

You want to test Android activities using the Espresso library
from Google.

Solution

Add the Espresso dependencies to your Gradle build and
write tests to use it.

Discussion

The Espresso testing library has been added to the “Android
Test Kit” project, part of Google’s testing tools for Android.
Documentation for Espresso resides in a wiki.

Since Espresso is a Google project and specifically designed
for Android, it's reason-able to assume that it will be the
preferred mechanism for Android testing in the future.

While this is not a book on testing, setting up and running
Espresso tests fits the normal Gradle practices, so a brief
illustration is included here.

Espresso is included in the Android Support Repository,
which is added under

“Extras” in the SDK Manager. This process was illustrated in
a figure in Recipe 5.2, repeated here in Figure 5-11.

112 | Chapter 5: Testing

http://bit.ly/espresso-docs

i & & Android SDK Manager
SDK Path:

Packages
3! Name AP Rev. Status

Extras
3 Amazon AVD Launcher (Mac OS X) 2 7 Installed

= Android Support Bepository 17 7 Installed
‘—._;“ Android Support Library ‘ 23 w Installed

Figure 5-11. Adding the Android Support Library using the
SDK Manager To use Espresso in your project, add two
androidTestCompile dependencies, as shown in Example 5-
15.

Example 5-15. Adding the Espresso dependencies
dependencies {
androidTestCompile '‘com.android.support.test:runner:0.5'

androidTestCompile
‘com.android.support.test.espresso:espresso-core:2.2.2"

}

This actually leads to a conflict in versions of the support
annotations library, because Espresso relies on version
23.1.1, while SDK 23 includes version 23.3.0 of the same
library. You get an error similar to: WARNING: Error:Conflict
with dependency

‘com.android.support:support-annotations’. Resolved
versions for app (23.3.0) and test app (23.1.1) differ. See
http://g.co/androlDstudio/app-test-app-conflict for details.

While that may be resolved by the time you build your
application, let’'s make lemon-ade out of those lemons by
showing how to fix it. In the top-level Gradle build file, simply

force a resolution in the allProjects_section,_as shown in
Example 5-16.

Example 5-16. Resolving a conflict in library versions
allprojects {

repositories {

jcenter()

}

configurations.all {

resolutionStrategy.force

‘com.android.support:support-annotations:23.3.0'

}

}
5.4 Activity Testing with Espresso | 113

Espresso also requests that you set the
testinstrumentationRunner in the default Config block to use
the AndroidJUnitRunner, as in Recipe 5.2. The complete
module build file therefore looks like that shown in Example
5-17.

Example 5-17. The full module build.gradle file
apply plugin: '‘com.android.application’
android {

compileSdkVersion 23

buildToolsVersion "23.0.3"
defaultConfig {

applicationld "com.nfjs.helloworldas"
minSdkVersion 16

targetSdkVersion 23

versionCode 1

versionName "1.0"
testinstrumentationRunner

‘android.support.test.runner.AndroidjUnitRunner’

}
}

dependencies {
compile ‘com.android.support:support-annotations:23.3.0'
androidTestCompile 'com.android.support.test:runner:0.5'

androidTestCompile
‘com.android.support.test.espresso:espresso-core:2.2.2'

}

Espresso tests love to use static methods, both in Espresso
classes and in Hamcrest matchers. Consequently,_the test
shown in Example 5-18 includes the import statements for
clarity.

Example 5-18. An Espresso test, with imports

package com.nfjs.helloworldas;

import android.support.test.rule.ActivityTestRule;
import android.support.test.runner.AndroidjUnit4;
import
android.test.ActivitylnstrumentationTestCase2;
import
android.test.suitebuilder.annotation.MediumTest;
import org.junit.Rule;

import org.junit.Test;

import org.junit.runner.RunWith;

import static
android.support.test.espresso.Espresso.onView; import
static

android.support.test.espresso.action.ViewActions.click;
import static
android.support.test.espresso.action.ViewActions.typeText;
import static

android.support.test.espresso.assertion.ViewAssertions.matc
hes; 114 | Chapter 5: Testing

Class com.nfjs.helloworldas.MyActivityEspressoTest

all > com.nfjs.helloworldas > MyActivityEspressoTest

2 0 2.998s 100%

tests failures duration
successful

Tests Devices

Test Nexus_4_API_19(AVD) - 4.4.4 Nexus_5_API_23(AVD) - 6.0
testHelloWorld passed (1.656s) passed (1.342s)
import static
android.support.test.espresso.matcher.ViewMatchers.withld;
import static

android.support.test.espresso.matcher.ViewMatchers.withTex
t; import static org.hamcrest.CoreMatchers.containsString;

@RunWith(AndroidjUnit4.class)

@MediumTest

public class MyActivityEspressoTest

extends ActivitylnstrumentationTestCase2<MyActivity> {
public MyActivityEspressoTest() {
super(MyActivity.class);

}

@Rule

public ActivityTestRule<MyActivity> mActivityRule =
new ActivityTestRule<>(MyActivity.class);

@Test

public void testHelloWorld() {
onView(withld(R.id.edit_text))
.perform(typeText("Dolly"));
onView(withld(R.id.hello_button))

.perform(click());

onView(withld(R.id.greeting_text))

.check(matches(withText(containsString("Dolly"))));

}
}

The simple DSL focuses on user actions rather than
activities. From this test, it is not obvious that clicking the
button actually shifted from the MyActivity class to the
WelcomeActivity class, but that did in fact happen. The
results are shown in Figure 5-12.

Figure 5-12. Espresso test results

5.4 Activity Testing with Espresso | 115

Class com.nfjs.helloworldas.MyActivityEspressoTest

all > com.nfjs.helloworldas > MyActivityEspressoTest

2 0 299 100%

fests failures duration

successiul

Tests Devices

Devices Tests Failures Duration Success rate
Nexus_4_API_19(AVD) - 4.4.4 1 0 1.656s 100%
Nexus_5_API_23(AVD) - 6.0 1 0 1.342s 100%

Once again, clicking the “Devices” button shows the results
organized by device rather than test, as in Figure 5-13.

Figure 5-13. Espresso test results organized by device

Espresso is an interesting DSL approach to writing functional
tests. It is likely to be a recommended API for the future.

Collecting Test Results

If your app includes multiple flavors or modules, the HTML
test reports will be organized into separate subdirectories.
This makes it tedious to examine each one individually.

Fortunately, there is a plug-in available to collect all the
reports into a single build folder. In the top-level build file,
after the buildscript block, include the android-reporting
plug-in. See Example 5-19 for details.

Example 5-19. Adding the android-reporting plug-in
allprojects {

repositories {

jcenter()

}

configurations.all {

resolutionStrateqgy.force

‘com.android.support:support-annotations:23.3.0'

}

}

apply plugin: 'android-reporting'
116 | Chapter 5: Testing

Class com.nfjs.helloworldas.MyActivityEspressoTest

all > com.nfjs.helloworldas > MyActivityEspressoTest

6 0 1722 100%

tests failures duration

successful

Tests Devices Variants

Variants Tests Failures Duration Success rate
app:ARROGANT 2 0 3.811s 100%
app:FRIENDLY 2 0 4.423s 100%
app:0BSEQUIOUS 2 0 3.488s 100%

The Android reporting plug-in collects test reports into a
single file Now if you run the mergeAndroidReports task,
everything will be collected into a single file.

Example 5-20. Merging Android test reports
> ./gradlew deviceCheck mergeAndroidReports --continue

The --continue flag is a standard Gradle flag, telling the build
to keep going even if there are failed tests. The result when
running with multiple variants should be similar to that_ in
Figure 5-14.

Figure 5-14. Merged test reports from app with multiple
variants See Also

Activity testing using the Android Support Library is covered
in Recipe 5.2. Testing with the Robotium library is covered in
Recipe 5.3. The technique listed here for

merging test reports works with any tests, not just Espresso.
5.4 Activity Testing with Espresso | 117
CHAPTER 6

Performance and Documentation

6.1 Performance Recommendations

Problem

You need to improve the performance of your Gradle build.
Solution

Use a combination of the techniques recommended here.
Discussion

First things first: these are not recommendations that will
affect the performance of your app. There are many things
you can do to help your app, many of which involve the
ProGuard tool that comes with Android. This section is not
about that—it's about improving the performance of the
build itself.

This recipe discusses settings that can be added to the
gradle.properties file in the root of the Android application. If
you prefer to use global settings, add a file called
gradle.properties to the .gradle subfolder in your home
directory.

The Gradle daemon

The Gradle daemon is a background process that stays alive
between builds, caching both data and code. Most recent
versions of Gradle automatically start a Gradle daemon
whenever you run from the command prompt.

By default, Android Studio starts a Gradle daemon in your
project, with a timeout period of three hours, which is long
enough for most development tasks. If you run 119

Gradle from the command line, however, you may not
automatically start the daemon.

To make sure the daemon starts, add the setting shown in
Example 6-1.

Example 6-1. Gradle daemon setting in gradle.properties
org.gradle.daemon=true

The daemon can also be started and stopped using a
command-line flag. Use

--daemon and --no-daemon to enable or disable the daemon
on individual build invo-cations. Stopping it is sometimes
useful if you're worried that the internal cache is out of date
or if you're doing debugging. If you wish to stop a running
daemon process, use the --stop argument to gradle.

The Gradle team strongly recommends you do not use the
daemon

on continuous integration servers, which value stable and
repeata-

ble builds more than performance.
Parallel compilation

Gradle has an “incubating” option to compile independent
projects in parallel. To use it, add a line to gradle.properties,
as in Example 6-2.

Example 6-2. Paral el compilation setting in gradle.properties
org.gradle.parallel=true

Note that this may not help much. Most modules inside
Android projects are related, which negates any benefit from
parallel compilation.

Configuration on demand

Normally Gradle configures all tasks in all projects involved
in a build before executing any of them. For projects with a
large number of subprojects and many tasks, this can be
inefficient. It is therefore possible to try to configure only the
projects that are relevant for the requested tasks.

To do this, use the “configure on demand” setting in
gradle.properties, as shown in

Example 6-3.

Example 6-3. The configure on demand setting iIn
gradle.properties org.gradle.configureondemand=true 120 |
Chapter 6: Performance and Documentation

Most Android applications have only a small number of
subprojects, so this feature may not be all that helpful.

Again, this is an incubating feature, so the specific details
may change with new versions of Gradle.

Exclude unneeded tasks

As discussed in Recipe 4.3, the -x flag can be used to
exclude a specific task, such as lint, that takes time but may
not be needed during every build.

That recipe also shows how to disable particular tasks in the
task graph after it has been assembled. See that recipe for
details.

Change the JVM settings

Ultimately a Gradle build is running in a Java process, soO
flags that affect the JVM

affect the performance of Gradle. Example 6-4 shows a
handful of settings for the Java virtual machine.

Example 6-4. Choosing JVM setting in gradle.properties
org.gradle.jvmargs=-Xmx2048m -XX:MaxPermSize=512m
-XX:+HeapDumpOnOutOfMemoryError

The -Xmx flag specifies the maximum amount of memory to
use in the Java process.

An -Xms flag specifies the initial amount of memory to
allocate to the process. The example also changes the size of
the “permanent generation” space, and dumps the heap to a
file when a java.lang.OutOfMemoryError is thrown.

See the Java HotSpot VM options page for details.
Use only the dependencies you need

This specifically refers to Google Play services, which used to
require a large library and now comes in the form of
separate modules.

For example, to use Google Maps you used to have to add
the entire Google Play services dependency at compile time,
as in Example 6-5.

Example 6-5. Adding the entire Google Play services
dependency

dependencies {
compile ‘com.google.android.gms:play-service:7.8.0'

}

6.1 Performance Recommendations | 121

¥ i Extemal Libraries

5 < Android APl 23 Platform > |
z 1.7 > rary/lava/lavavirtualmM

Jappcompat-vy - 23 0.0

gimediarouter-v7-22.2.0

i play-services-ads-7.8.0

i play-services-analytics-7.8.0

7 play-services-appindexing-7.8.0

i play-services-appinvite-7.8.0

 play-services-appstate-7.8.0
play-services-base-7.8.0

i play-services-cast-7.8.0

i play-services-drive-7.8.0

i play-services-fitness-7.8.0

i play-services-games-7.8.0

i play-services-gcm-7.8.0

J play-services-identity-7.8.0

I play-services-location-7.8.0
play-services-maps-7.8.0

i play-services-nearby-7.8.0

v play-services-panorama-7.8.0

i play-services-plus-7.8.0

i play-services-safetynet-7.8.0

J play-services-vision-7.8.0

O play-services-wallet-7.8.0

I play-services-wearable-7.8.0

¥y ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥y oy ¥y vy r vy vy vy vy vy vy ¥y vyrvIT%TvTTITTrwy

¥ 1l External Libraries
i < Android APl 23 Platform > |
< 1.7 = (/Library/lava/lavaV
Jappcompat-vy- 23 0. El
Jplay-services-base-7.8.0
i play-services-maps-7.8.0

¥y ¥¥¥vr¥<v

This is a rather large library, with many dependencies. Figure
6-1 shows the list of added libraries once the full Google Play
service dependency is added.

Figure 6-1. The complete set of Google Play services

With Android’s 65K method name limitation, you would be
adding a lot of method handles you don’t need. Instead, add

only the Maps dependency,_as in Example 6-6.

Example 6-6. Adding the Google Maps dependency only
dependencies {
compile '‘com.google.android.gms:play-service-maps:7.8.0'

}

The contrast between the just the Maps service (as shown in
Figure 6-2) is dramatic.

Figure 6-2. Adding the Google Maps dependency only
122 | Chapter 6: Performance and Documentation
Use dex options

The Android block allows you specify options that control the
“dex” process that converts Java byte codes (i.e., .class files)
to Dalvik executables (.dex files). The dexOp tions block
contains the options in Example 6-7.

Example 6-7. The dexOptions block inside android
dexOptions {

incremental true

javaMaxHeapSize '2¢'

jumboMode = true

preDexLibraries = true

}

The incremental option specifies whether to enable the
incremental mode for the dx processor. As the
documentation says, “this has many limitations and may not
work.

Use carefully.”

Use javaMaxHeapSize as an alternative way of specifying
Xmx values during the dx run, in 1024m increments—so here
it is set to 2 gigs.

Enabling “jumbo mode” allows a larger number of strings in
the dex files. If that’s an issue, you may want to spend more
time on configuring ProGuard.

The preDexLibraries will run the dx process on libraries
ahead of time, just as it sounds. As the docs say, “this can
improve incremental builds, but clean builds may be slower.”

All of these settings can both help and hurt performance, so
be sure to try them out before adopting them.

Profiling your build

You can run Gradle with the --profile command-line option to
generate useful information about the build. The results will
be written in HTML form to the build/

reports/profile directory, this time in the top-level project.

As a sample, consider running the assembleDebug task from
the multiflavor build described in Example 6-8.

Example 6-8. Running Gradle with the --profile option
> ./gradlew --profile assembleDebug

:app:preBuild UP-TO-DATE

:app:preArrogantStarkDebugBuild UP-TO-DATE
:app:checkArrogantStarkDebugManifest
:app:preArrogantStarkReleaseBuild UP-TO-DATE
:app:preArrogantWayneDebugBuild UP-TO-DATE

6.1 Performance Recommendations | 123

Profile report

Profiled build: assembleDebug

Started on: 2015/08/31 - 22:31:51

Summary Configuration Dependency Resolution Task Execution

Description Duration
Total Build Time 15.028s
Startup 0.725s
Settings and BuildSrc 0.072s
Loading Projects 0.011s
Configuring Projects 0.221s
Task Execution 12.870s

:app:preArrogantWayneReleaseBuild UP-TO-DATE
:app:prefFriendlyStarkDebugBuild UP-TO-DATE

:app:prefFriendlyStarkReleaseBuild UP-TO-DATE
:app:preFriendlyWayneDebugBuild UP-TO-DATE
:app:prefFriendlyWayneReleaseBuild UP-TO-DATE
:app:preObsequiousStarkDebugBuild UP-TO-DATE
:app:preObsequiousStarkReleaseBuild UP-TO-DATE
:app:preObsequiousWayneDebugBuild UP-TO-DATE
:app:preObsequiousWayneReleaseBuild UP-TO-DATE
/l ... tons of other tasks ...
:app:assembleObsequiousWayneDebug
:app:assembleDebug

BUILD SUCCESSFUL

The output report is in the build/reports/profile folder, with a
filename of the form

“profile-YYYY-MM-dd-hh-mm-ss.html”, where the part after
the word “profile”

refers to timestamp quantities year, month, day, hour,
minute, and seconds.

A sample report is shown in Figure 6-3.

Figure 6-3. Sample profile report
124 | Chapter 6: Performance and Documentation

The various tabs break down the summary report into
individual configuration steps, configuration (which s

minimal in this case), and execution. In a project this size
there isn’t a lot to see, but for larger projects this is a good
way to find bottlenecks in your process.

See Also

The Java HotSpot VM options page for Java 7 and earlier is at
http://bit.ly/java-

hotspot. Recipe 4.3 shows how to exclude tasks from the
assembled task graph.

http://bit.ly/java-hotspot
http://bit.ly/java-hotspot

6.2 DSL Documentation

Problem

You need to search the full documentation for the Android
Gradle DSL.

Solution

Access the Gradle Tools website, and download a ZIP file
from the Android Developer website.

Discussion

The home page for Android development holds the full API
guides, JavaDoc references, tools documentation, and more.
The contents there for the Android Gradle plug-in, however,
are a bit thin.

Instead, the primary source for the Android plug-in to Gradle
is hosted at the

Android Tools Project Site, which contains the most recent
information, as well as links to the Gradle Plugin User Guide
(Figure 6-4).

The User Guide itself, shown in Figure 6-5, is useful, but often
well out of date (which is one of the reasons this book
exists).

Another link from the Android Tools Plugin Site is the DSL
Reference, which takes you to a GitHub repository for the
documentation (Figure 6-6). Fortunately, you don’t need to
clone the repository and build it to see the documentation.
The front page (i.e., the README.md file, rendered

http://developer.android.com/
http://bit.ly/as-new-build
http://bit.ly/gradle-guide
http://bit.ly/github-gradle-dsl

automatically by GitHub) has a link to the most recent

version.

The plug-in reference contains not just the DSL itself, with
blocks like buildTypes, productFlavors, and signingConfigs,
but also the actual types implementing them. For example,
the BuildType page (part of the com.android.build.gra
dle.internal.dsl package) shows all properties and methods
available in that class.

6.2 DSL Documentation | 125

C # [https:/sites.google.com/a/android.com/tools/tech-docs/new-build-system

Projects Overview
Screenshols
Release Status
Roadmap
Download
Preview Channel
Recent Changes
Technical docs

Known lssues
Tips

Build Overview
Contributing
Feedback

Android Tools Project Site

Technical docs >

New Build System

We are working on a new build system to replace both the build system inside ADT and Ant.

= Gradle Plugin User Guide
» DSL Reference
» Manifest Merger (new in 0.10)
= Apk Splits (new in 0.13)
» Tips
= New Experimental Plugin

» Tech Docs
» aar format
» Resources/Assets merging mechanism
= Migrating from Eclipse Projects or IntelliJ Projects

= Migrating to version 1.0.0 from older Gradle projects

= Build Workflow

= Version compatibility with Android Studio

= Applicationld versus PackageName

= Resource Shrinking (automatic unused resource removal)

http://bit.ly/gradle-dsl

> N [https://sites.google.com/a/android.com/tools/tech-docs/new-build-system/user-guide

Android Tools Project Site

Projects Overview Technical docs > New Build System >
Screenshots
Release Status Gradle Plugin User Guide
Roadmap
Download
Preview Channel Eorntants
Recent Changes
Technical docs 1 Introduction
New Build System 1.1 Why Gradle?
2 Requirements
Known Issues 3 Basic Project

3.1 Simple build files
3.2 Project Structure
3.2.1 Configuring the Structure
3.3 Build Tasks
3.3.1 General Tasks
3.3.2 Java project tasks
3.3.3 Android tasks
3.4 Basic Build Customization
3.4.1 Manifest entries
3.4.2 Build Types
3.4.3 Signing Configurations
3.4.4 Running ProGuard
3.4.5 Shrinking Resources
4 Dependencies, Android Libraries and Multi-project setup
4.1 Dependencies on binary packages
4.1.1 Local packages
4.1.2 Remote artifacts
4.2 Multi project setup

Tips

Build Overview
Contributing
Feedback

Figure 6-4. The Android Tools Project website
Figure 6-5. The Gradle Plugin User Guide

126 | Chapter 6: Performance and Documentation

0ce | [} AndridPlgn 200057 % |

- Cf Ehttps:figncgle.githu'b.infandroid-gradle-dsl;currenti m VOBROYDOAGGE

Kenneth

« Android Plugin DSL

Introduction
Extension types Refe ren ce
Configuration blocks
AopExtension .
LibraryExtension |ntr0dUCt|on
TestExtension
This is the DSL reference for Android Gradle Plugin
Configuration blocks

Start reading by finding the right extension type for the plugin you are using, e.g. AppExtension
defaultConfig {)

aaptOptions { } ;

- Extension types
buildTypes {)
comptleOptions { }

tatafinding {] Type Descripton
dexOptions { }

Listed below are the Gradle extension types used by respective plugins:

ApoExtension androtd extension for con.androtd. application projects.

jacoco { }
Lintoptions { } LibraryExtension android extension for com.android. Library projects.
packagingdptions {) TestExtension androtd extension for con. androtd. test projects,

productFlavors { }

signingConfigs { } .)
msilais | Canfinnratinn hineke

Figure 6-6. The current DSL reference

Finally, the Gradle website contains links to the JavaDocs,
GroovyDocs, DSL reference, and the User Guide for Gradle

http://gradle.org/
http://bit.ly/gradle-user

itself.

To summarize:

* Android Developer Site

* Android Tools Project

* Gradle Plugin User Guide

 DSL Reference (GitHub),

e DSL Reference (rendered)

e Gradle User Guide

6.2 DSL Documentation | 127
APPENDIX A

Just Enough Groovy to Get By

This appendix reviews the basics of the Groovy programming
language. The Gradle build files consist largely of a Domain
Specific Language, written in Groovy, for builds. In addition
to the DSL, any legal Groovy code can be added to the build.

Groovy is a general-purpose programming language, based
on Java, that compiles to Java byte codes. While it has
functional capabilities, it is an object-oriented language that
is arguably the next-generation language in the path from
C++ to Java.

Basic Syntax

The “Hello, World!” program for Groovy is the one-liner
shown in Example A-1.

http://bit.ly/gradle-user
http://developer.android.com/
http://bit.ly/android-tools-project
http://bit.ly/grd-pl-guide
http://github.com/google/android-gradle-dsl
http://bit.ly/gradle-pl-dsl
http://bit.ly/gr-user-guide

Example A-1. Hel o, World! in Groovy
printin 'Hello, World!"
Iltems of note:

* Semicolons are optional. If you add them, they work, but
they’re not required.

* Parentheses are optional until they’'re not. If the compiler
guesses correctly where they should have gone, everything
works. Otherwise, add them back in. The printin method
takes a String argument. Here the parentheses are left out.

» There are two types of strings in Groovy: single-quoted
strings, like Hel o, are instances of java.lang.String. Double-
quoted strings are Groovy strings and allow interpolation,
shown in Example A-2.

There are no “primitives” in Groovy. All variables use the
wrapper classes, like java.lang.Integer, java.lang.Character,
and java.lang.Double. The native data 129

type for integer literals, like 3, is Integer. The native data
type for floating point literals, like 3.5, is
java.math.BigDecimal.

Example A-2. Some basic data types in Groovy
assert 3.class == Integer

assert (3.5).class == BigDecimal

assert 'abc' instanceof String

assert "abc" instanceof String

String name = 'Dolly"

assert "Hello, ${name}!" == '"Hello, Dolly!"
assert "Hello, $name!" == 'Hello, Dolly!"
assert "Hello, $name!" instanceof GString
Single-quoted strings are Java strings

Double-quoted strings are also Java strings unless you
interpolate

String interpolation, full form
String interpolation, short form when there is no ambiguity

Note that you can invoke methods on literals, because they
are instances of the wrapper classes.

Groovy lets you declare variables with either an actual type,
like String, Date, or Employee, or you can use def. See
Example A-3.

Example A-3. Static versus dynamic data types
Integer n = 3

Date now = new Date()

defx =3

assert x.class == Integer
x = 'abc'

assert x.class == String

x = new Date()

assert x.class == Date

Java imports the java.lang package automatically. In Groovy,
the following packages are all automatically imported:

* java.lang

e java.util

 java.io

130 | Appendix A: Just Enough Groovy to Get By
e java.net

e groovy.lang

e groovy.util

The classes java.math.Biginteger and java.math.BigDecimal
are also available without an import statement.

The assert Method and the Groovy Truth

The assert method in Groovy evaluates its argument
according to the “Groovy Truth.” That means:

* Nonzero numbers (positive and negative) are true
* Nonempty collections, including strings, are true
* Nonnull references are true

* Boolean true is true

The Groovy Truth is illustrated in Example A-4.

Example A-4. The Groovy Truth

assert 3; assert -1; assert !0

assert 'abc’'; assert !''; assert !""
assert[3,1,4,1,5, 9]
assert ![]

Asserts that pass return nothing. Asserts that fail throw an
exception, as in

Example A-5, with lots of debugging_information included.

Example A-5. Failing assertions

intx=5;inty =7

assert 12 == x + y // passes

assert 12 == 3 *x + 4.5 *y /[(2/x + y**3) // fails
The result of the failing_assertion is shown in Example A-6.
Example A-6. Failing assert output

Exception thrown

Assertion failed:

Just Enough Groovy to Get By | 131

assert 12 ==3*x + 4.5 *y /[(2/x + y**3)
LEEEEETIET

false| 5|75 |343

15|31.5|0.4|7

| | 343.4

| 0.0917297612

15.0917297612

at ConsoleScriptll.run(ConsoleScriptll:4)

Operator Overloading

In Groovy, every operator corresponds to a method call. For
example, the + sign invokes the plus method on Number.
This is used extensively in the Groovy libraries.

Some examples are shown in Example A-7.

Example A-7. Operator overloading
assert 3 + 4 == 3.plus(4)

assert 3 * 4 == 3.multiply(4)

assert 2**6 == 64

assert 2**6 == 2.power(6)

assert 'abc' * 3 == 'abcabcabc' // String.multiply(Number)
try {

3 * 'abc'

} catch (MissingMethodException e) {
// no Number.multiply(String) method
}

String s = 'this is a string'

assert s + ' and more' == "this is a string and more'

assert s - 'is' == 'th is a string’

assert s - 'is' - 'is' == 'th a string’

Date now = new Date()

Date tomorrow = now + 1 // Date.plus(Integer)
assert tomorrow - 1 == now // Date.minus(Integer)
Groovy has an exponentiation operator, **, as shown.

In Java, the == operator checks that two references are
assigned to the same object. In Groovy, == invokes the
equals method, so it checks for equivalence rather than
equality. If you want to check references, use the is method.

132 | Appendix A: Just Enough Groovy to Get By
Collections

Groovy has native syntax for collections. Use square
brackets and separate values by commas to create an
ArraylList. You can use the as operator to convert one
collection type to another. Collections also have operator
overloading, implementing methods like plus, minus, and
multiply (Example A-8)

Example A-8. Col ection examples and methods
def nums =1[3,1,4,1,5,9, 2, 6, 5]

assert nums instanceof ArrayList

Set uniques = nums as Set

assert uniques == [3, 1, 4, 5,9, 2, 6] as Set

def sorted = nums as SortedSet

assert sorted ==[1, 2, 3, 4, 5, 6, 9] as SortedSet
assert sorted instanceof TreeSet

assert nums[0] ==

assert nums[l] ==

assert nums|[-1] == 5 // end of list

assert nums|[-2] ==

assert nums[0..3] == [3, 1, 4, 1] / two dots is a Range
assert nums|[-3..-1] == [2, 6, 5]

assert nums[-1..-3] == [5, 6, 2]
String hello = 'hello’

assert 'ollen' == hello[-1..0] // Strings are collections too A
Range in Groovy consists of two values separated by a pair
of dots, as in from..to.

The range expands starting at the from position, invoking
next on each element until it reaches the to position,
inclusive.

Maps use a colon notation to separate the keys from the
values. The square bracket operator on a map is the getAt or
putAt method, depending on whether you are accessing or
adding a value. The dot operator is overloaded similarly. See
Example A-9 for details.

Example A-9. Map instances and methods

def map = [a:1, b:2, c:2]

assert map.getClass() == LinkedHashMap
assert map.a ==

assert map['b'] ==

assert map.get('c’) ==

Just Enough Groovy to Get By | 133

Overloaded dot is put here

Uses putAt method

Java still works, too

Closures

Groovy has a class called Closure that represents a block of
code that can be used like an object. Think of it as the body
of an anonymous method, which is an oversimplifi-cation but
not a bad start.

A closure is like a Java 8 lambda, in that it takes arguments
and evaluates a block of code. Groovy closures can modify
variables defined outside them, however, and Java 8 does
not have a class called Lambda.

Many methods in Groovy take closures as arguments. For
example, the each method on collections supplies each
element to a closure, which is evaluated with it. An example
is in Example A-10.

Example A-10. Using Groovy’s each method with a closure
argumentdef nums =[3,1,4, 1, 5, 9]

def doubles =[]

nums.each { n ->

doubles << n * 2

}

assert doubles == [6, 2, 8, 2, 10, 18]
Empty list

each takes a closure of one argument, before the arrow, here
called n Left-shift operator appends to a collection

Modifying a variable defined outside a closure is considered
a side-effect, and not good practice. The collect method,
discussed later, is preferred.

This is a natural way to double the values in a list, but there
is a better alternative, called collect. The collect method
transforms a collection into a new one by 134 | Appendix
A: Just Enough Groovy to Get By applying a closure to
each element. It is similar to the map method from Java 8, or
just think of it as the map operation in a map-filter-reduce
process (Example A-11).

Example A-11. Using Groovy'’s col ect method to transform a
col ection def nums =1[3,1, 4,1, 5, 9]

def doubles == nums.collect { it* 2 }
assert doubles == [6, 2, 8, 2, 10, 18]

When a closure has a single argument (which is the default),
and you don’t give that argument a name using the arrow
operator, the dummy name defaults to the word it.

In this case, the collect method creates the doubles
collection by applying it * 2 in a closure to each element.

POGOs

Java classes with just attributes and getters and setters are
often called Plain Old Java Objects, or POJOs. Groovy has
similar classes called POGOs. An example is in Example A-12.

Example A-12. A simple POGO

import groovy.transform.Canonical
@Canonical

class Event {

String name

Date when
int priority
}

This little class actually has a lot of power. For a POGO:
* The class is public by default

» Attributes are private by default

» Methods are public by default

» Getter and setter methods are generated for each attribute
not marked public or private

* Both a default constructor and a “map-based” constructor
(uses arguments of the form “attribute:value”) are provided

In addition, this POGO include the @Canonical annotation,
which triggers an Abstract Syntax Tree (AST) transformation.
AST transformations modify the syntax tree created by the
compiler during the compilation process in specific ways.

Just Enough Groovy to Get By | 135

The @Canonical annotation is actually a shortcut for three
other AST transformations: @ToString,
@EqualsAndHashCode, and @TupleConstructor. Each does
what they sound like, so in this case, the @Canonical
annotation adds to this class: *« A toString override that
displays the fully-qualified name of the class, followed by the
values of the attributes, in order from top down ¢ An equals
override that does a null-safe check for equivalence on each
attribute

A hashCode override that generates an integer based on
the values of the attributes in a fashion similar to that laid
out by Joshua Bloch in his Effective Java (Addison-Wesley)
book long ago ¢ An additional constructor that takes the
attributes as arguments, in order That’s a lot of productivity
for seven lines of code. Example A-13 shows how to use it.

Example A-13. Using the Event POGO

Event el = new Event(name: 'Android Studio 1.0',
when: Date.parse('MMM dd, yyyy', 'Dec 8, 2014"),
priority: 1)

Event e2 = new Event(name: 'Android Studio 1.0',
when: Date.parse('MMM dd, yyyy', 'Dec 8, 2014"),
priority: 1)

assert el.toString() ==

'Event(Android Studio 1.0, Mon Dec 08 00:00:00 EST 2014,
1)

assert el == e2
Set events = [el, e2]
assert events.size() == 1

Gradle uses all these features, and more, but this summary
should get you started.

Groovy in Gradle Build Files

Gradle build files support all Groovy syntax. Here are few
specific examples, however, that illustrate Groovy in Gradle.

In Example A-14, the word apply is a method on the Project
instance. The parentheses on the method are optional, and
left out here. The argument is setting a property called
plugin on the Project instance to the string value supplied.

Example A-14. Applying the Android plugin for Gradle
apply plugin: '‘com.android.application’

136 | Appendix A: Just Enough Groovy to Get By

In Example A-15, the term android is part of the plug-in’s
DSL, which takes a closure as an argument. Properties inside
the closure, like compileSdkVersion, are method calls with
optional parentheses. In some Gradle build files, properties
are assigned using =, which would invoke a corresponding
setter method. The developers of the Android plug-in
frequently added a regular method, like
compileSdkVersion(23), in addition to the setter,
setCompileSdkVersion(23).

Example A-15. Setting properties in the android block

android {
compileSdkVersion 23
buildToolsVersion "23.0.1"
}

Also, “nested” properties, like compileSdkVersion here, can
be set using a dot notation as an alternative:

android.compileSdkVersion = 23
Both are equivalent.

Recent versions of the plug-in add a clean task to the Gradle
build file. This task has name called clean, is an instance of
the Delete class (as subclass of Task), and takes a closure as
an argument. In keeping with standard Groovy practice, the
closure is shown after the parentheses (Example A-16).

Example A-16. The default clean task
task clean(type: Delete) {
delete rootProject.buildDir

}

If a Groovy method takes a Closure as its last argument, the
clo-

sure is normally added after the parentheses.

The implementation here invokes the delete method (again,
with optional parentheses) on the rootProject.buildDir. The
value of the rootProject property is the top-level project, and

the default value of buildDir is “build,” so this task deletes
the “build” directory in the top-level project.

Note that calling clean in the top-level project will also invoke
it on the app subproject, which will delete the build directory
there as well.

Just Enough Groovy to Get By | 137

In Example A-17, the compile term is part of the DSL,
implying that its argument is applied during the compile
phase. The fileTree method is shown with parentheses,
though they could be left out. The dir argument takes a
string representing a local directory. The include argument
takes a Groovy list (the square brackets) of file patterns.

Example A-17. A file tree dependency
dependencies {

compile fileTree(dir: 'libs', include: [*.jar'])
}

See Also

The book Making_ Java Groovy, by Ken Kousen (Manning),
discusses Groovy and integrates it with Java, and also has a
chapter on build processes with Gradle. The definitive
reference for Groovy is Groovy in Action, Second Edition, by
Dierk Konig, Paul King, et al. (Manning).

The Groovy home page is at Ahttp./groovy-lang.org,_and
contains extensive documentation.

O’Reilly also has three video courses on Groovy: Groovy
Programming_Fundamentals, Practical Groovy Programming,

http://bit.ly/java-groovy
http://bit.ly/groovy-action-2e
http://groovy-lang.org/
http://bit.ly/groovy-programming-fundamentals
http://bit.ly/practical-groovy-programming
http://bit.ly/mastering-groovy-programming

and Mastering Groovy Programming. All three are available
on Safari as well.

138 | Appendix A: Just Enough Groovy to Get By

APPENDIX B

Gradle Basics

The recipes in this book are for the Gradle build files inside of
Android. Gradle is a powerful build tool, however, which is
used extensively in other projects. This appendix reviews the
basics of Gradle. All capabilities reviewed here can be used
inside Android build files as well.

http://bit.ly/mastering-groovy-programming
http://www.safaribooksonline.com/

Installing Gradle
You do not need to install Gradle to use it in Android projects.

Android Studio includes Gradle, and provides a Gradle
wrapper as

well. Its use is demonstrated in Recipe 4.1, among other
recipes.

Gradle comes as a single, ZIP download. You merely need to
download the latest distribution from the Gradle website to
get started. Installation is as easy as: 1. Download and unzip
the distribution 2. Set a GRADLE_HOME environment variable
to point to the unzipped folder 3. Add the bin folder under
GRADLE_HOME to your path The gradle command can then
be executed at the root of any project. By default the build
file is called build.gradle, but any name can be used. The -b
or --build-file flag is used to specify a different build file.

As an alternative, Gradle provides a wrapper, which can be
used to automatically download and install Gradle on its first
use. The wrapper is demonstrated later in this appendix.

139

Note that though Gradle build files are written in Groovy, you
don’t need to install Groovy to run Gradle. Gradle includes a
distribution of Groovy inside it, which is used to power the
build.

To see the details of the Gradle installation, run Gradle with
the -v flag, as shown in

Example B-1.

Example B-1. Displaying the Gradle version

http://gradle.org/

> gradle -v

Build time: 2016-03-14 08:32:03 UTC

Build number: none

Revision: b29fbb64ad6b068cb3f05f7€40dc670472129bc0
Groovy: 2.4.4

Ant: Apache Ant(TM) version 1.9.3 compiled on December 23
2013

JVM: 1.8.0 (Oracle Corporation 25.0-b70)
0OS: Mac OS X 10.11.4 x86 _64

The Gradle version here is 2.12, which includes Groovy 2.4.4
under the hood, and is running on Java 1.8 on Mac OS X
machine.

Build Lifecycle
Gradle builds run through three distinct phases:
Initialization

Read environment configuration files Jnit.gradle and
gradle.properties, and set wup all subprojects listed
in_settings.gradle_

Configuration

Evaluate all build scripts and build the model, including the
DAG

Execution
Execute the desired tasks
Java Projects

Gradle build files consist of tasks, which are assembled into
a DAG. Custom tasks are discussed in the next section.
Gradle is a plugin-based architecture, however, and by
adding plugins to a build, you add tasks and capabilities to
the build.

140 | Appendix B: Gradle Basics

The most common plugin used outside the Android world is
the Java plugin. Since this plugin comes with the Gradle
distribution, adding it to your project is a simple as using the
apply command. An example is shown in Example B-2.

Example B-2. A minimal build.gradle file for a Java project

apply plugin: 'java’

In fact, this is a complete build file for a Java project. The
plugin itself defines a series of related tasks. To see what
tasks are available, go to a command prompt in the root of
the project and execute the tasks command. Sample output
is shown in Example B-3.

Example B-3. Sample output from the tasks command
> gradle tasks

tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]
Help tasks

components - Displays the components produced by root
project 'gradle’. [incubating]

dependencies - Displays all dependencies declared in root
project 'gradle’.

dependencylnsight - Displays the insight into a specific
dependency in 'gradle’.

help - Displays a help message.

model - Displays the configuration model of root project
‘gradle’. [incubating]

projects - Displays the sub-projects of root project ‘gradle’.
properties - Displays the properties of root project 'gradle’.

tasks - Displays the tasks runnable from root project 'gradle’.

The list of tasks shows which are available, but does not
show their relationships.

Additional command-line flags are available for that, but the
easiest way to see what tasks are run in which order is
simply to execute the build task. Executing a build is shown
in Example B-4.

Example B-4. Executing a Gradle build
> gradle build

:compileJava UP-TO-DATE
:processResources UP-TO-DATE
Gradle Basics | 141

buil

check

tes

testClasses UploadArchives ‘ assemble l
‘ javadoc | ompilefestlava ‘pmmﬁﬁmﬁwnm ‘ ja l

(lasses

compilelava ‘ processResources I‘ Clean l

glgtigk

)
il

t

:classes UP-TO-DATE

jar

:assemble

:compileTestjava UP-TO-DATE
:processlestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE

:check UP-TO-DATE

:build

BUILD SUCCESSFUL

Total time: 1.956 secs

Each phase, like :build, depends on others. The plugin
defines the tasks and their relationships. Gradle then
executes them in the proper order.

The tasks form a directed acyclic graph. In this case, the
graph showing the relationships is available in the Gradle
User Guide. Figure B-1, taken from the online docu-

mentation, shows the DAG for the Java plugin.
Figure B-1. Directed acyclic graph for the Java plugin tasks

142 | Appendix B: Gradle Basics

http://bit.ly/gradle-java

Each association uses an arrow (which is the directed part),
and while there are multiple relationships, there are no loops
in the graph (thus the acyclic label). Running the build task
means that first the check and assemble tasks must be run.
The check task then depends on test, which depends on
testClasses and classes, and so on.

The Java plugin assumes that the source code is laid out in a
directory structure first standardized by Maven. Nontesting
code is placed in an sr¢/main/java folder, and tests go in
src/main/test by default. This is easy enough to customize
through source sets.

From the Gradle point of view, Android projects are not Java
projects. They use a different plugin and (slightly) different
project layout.

Repositories and Dependencies

The current build file defines testing tasks, but not a testing
library. The build file

from Example B-5 is far more typical of basic Java projects.

Example B-5. A Gradle build with a repository and
dependencies

apply plugin: ‘java’
repositories {

jcenter()

}

dependencies {
testCompile 'junit:junit:4.12'
}

Gradle defines a Domain Specific Language (DSL) for builds.
The repositories and dependencies elements in the build file
are part of the DSL.

Repositories are collections of libraries that can be retrieved
on demand and stored in a local cache, which defaults to a
.gradle folder in the user’'s home directory. The repository
used in this build file is called jcenter(), which is the Bintray
JCenter Artifactory repository. Another built-in repository is
mavenCentral(), the public Maven Central Repository.

Multiple repositories are frequently included in a build file.
Each is searched in turn to resolve dependencies.

Dependencies are listed, naturally enough, in the
dependencies block. A dependency includes both the
information about the library (group, name, and version), as
well as the “dependency configuration” where it is needed.

Gradle Basics | 143

The predefined dependency configurations for the Java
plugin are:

 compile

e runtime

» testCompile
» testRuntime
* archives

e default

The first four are the most common, but all mean pretty
much what they sound like.

For example, a compile dependency makes the library
classes available throughout the project, which a
testCompile dependency adds the library classes only to the
src/

test/java source tree. JDBC drivers are often listed as runtime
dependencies, or even testRuntime dependencies if the
database is only used for testing.

Custom Tasks

The Gradle DSL is extensive, and often you won’t need
anything beyond what the plugins provide. Sooner or later,
however, every build becomes a custom build, and Gradle
was designed with that in mind.

Recipe 4.1 discusses how to create your own tasks for Gradle
builds.

Use the task keyword to define a task, as in Example B-6.

Example B-6. Custom task to say hel o
def task {
dolLast {

printin 'hello’

}
}

The dolLast block indicates code that should be run at
execution time. Any code outside that block (but still inside
the task) is run at configuration time.

Gradle also includes a doFirst block, but it is used far less
often. Also, you can abbreviate the doLast block using a left-
shift operator.

The entire task in Example B-7 is run at execution time. It's
easy enough to overlook the syntax, however, which is one
of the reasons this approach is not preferred.

144 | Appendix B: Gradle Basics

Example B-7. Custom task using left-shift operator
def task << {

printin 'hello’

}

The Gradle APl has many built-in tasks available, which can
be customized. For example, Example B-8 configures the
Copy task, which is a class in the Gradle API.

Example B-8. Configuring the Copy task
def copyOutputs(type: Copy) {

from "$buildDir/outputs/apk"
into '../results'

}

Gradle files often mix single-quoted and double-quoted
strings.

Double-quoted strings allow interpolation, and single-quoted
strings don’t. Otherwise they are effectively identical.

The Copy task itself includes both configuration and
execution time sections. In this case, setting the from and
into properties assigns the desired values, and the task
handles the rest. This approach to configuring existing tasks
rather than writing your own is considered a good practice,
because it favors telling Gradle what you would like rather
than specifying how to do it.

Multiproject Builds

Subdirectories of a given project can be Gradle projects
themselves, with their own build files and dependencies. In
fact, they can even depend on each other.

The file settings.gradle specifies which subdirectories are
Gradle projects. In a typical Android app, settings.gradle
includes the app directory, which is where the code for the
actual application resides.

Each app in a multiproject build can have its own build file.
To share common blocks among projects, use a subprojects
or an allprojects block, both of which configure the overall
instance of the Project class. Details of this process are
discussed in Recipe 1.1.

In fact, the rest of this book discusses how Gradle works with
Android projects, which is as good a place as any to end this
appendix.

Gradle Basics | 145
See Also

The home page for Gradle contains extensive
documentation. O’Reilly also has books

on Gradle: Building and Testing_with Gradle by Tim Berglund
and Matthew McCul-

logh,_and Gradle Beyond the Basics by Tim Berglund, are in
the same series as this book.

Two video courses are available from O’Reilly_as well: Gradle
Fundamentals,_.and Gra-

dle for Android. Both are on Safari.
146 | Appendix B: Gradle Basics
Index

Symbols

Android Studio

@ (at sign), in dependency notation,_2

adding dependencies, 23-25

" " (double guotes), enclosing_strings, 18, 12
building_projects, 15-17

<< (left-shift operator), for doLast block,

http://gradle.org/
http://bit.ly/building-testing-gradle
http://bit.ly/gradle-beyond-the-basics
http://bit.ly/gradle-fundamentals
http://bit.ly/gradle-for-android
http://bit.ly/gradle-for-android
https://www.safaribooksonline.com/

building specific variants, 59
144-145

configuring applications,_8

() (parentheses), in Groovy, 129

creating_Android libraries, 89-91

' ' (single guotes),_enclosing_strings, 18, 129

importing Eclipse ADT projects, 33-37

*, (spread-dot operator), 84

signing an APK, 49-51

[] (square brackets), for collections, 133

synchronizing_projects, 2

unit testing, for Java components, 97-103

A

versions of, ix

Android Support Repository, 103, 11
aar files, 88
Android Testing Support Library, 103-107

(see also Android libraries)

Android versions, ix

activities

android-reporting_plug-in, 116-117
functional testing_for, 108-117
AndroidJUnitRunner class, 104, 106
for specific flavors, 71-7

AndroidManifest.xml file, 37

ADP timeout period, extending, 80

anonymous inner class, 44
ADT plug-in for Eclipse, 37-39
APK (Android package),_signing,_ 45-51

allTasks property, 84

applicationlDsuffix property, 54-56

android block, 6, 7-8

applications, 1

Android Gradle DSL documentation, 125-127
(see also projects)

Android libraries

Android library dependencies, adding,
adding to applications, 88-96

88-96

libraryVariants property for, 78
building (see build files; builds)

as subprojects, 44

configuring,_6-9

———) [e ——

Android plug-in for Gradle, 5-7, 136

projects for, creating, 2-4
android property, 78
testing (see testing)

Android SDK
applicationVariants property, 78

configuring, 6

apply_command, 6, 136, 141

Robolectric as mock of, 102

assemble task, 59

versions of, ix, 6-9

147

assert method, 131-131

D
at sign (@), in dependency notation, 2

DAG (directed acyclic graph), 5,140, 142
adding custom tasks to, 80-82
B

built in configuration phase, 78

debug keystore, 45

(see also variants)
debuggable property, 54
build.gradle file

def keyword, 30

at app level, 5-6

defaultConfig_block, 8

at top level, 4-5, 7-8

dependencies, 143-144
synchronizing after editing, 20

Android, adding to applications, 88-96

builds

Java, adding to applications, 18-25
adding custom tasks to, 80-82
limiting number of, 121-122
applicationlds for, 8, 54-57
resolving,_repositories for, 26-28

excluding_tasks from, 83-84, 121

transitive, 21-23
executing in Android Studio, 15
version numbers in, 18

executing_on command line, 9-15, 141

lifecycle of, 140
dependsOn method, 79

multiple, on one device (see build types; fla-

VOrs; variants)

dexOptions block, 123

multiproject builds, 145

directed acyclic graph (see DAG)
parallel compilation for, 120
distributionUrl property, 10
performance of, improving, 119-125
documentation for Android Gradle DSL,
profiling, 123-125

125-127

buildscript block, 5

doFirst block, 144
buildToolsVersion property, 7, 8
dolLast block, 78, 144-145

BuildType class, 54

double guotes (" "),_enclosing_strings, 18, 129

buildTypes block, 53-56

DSL (Domain Specific Language), 6, 143
(see also specific blocks)

C

DSL documentation, 125-127

@Canonical annotation, 135
classes, for specific flavors, 71-75
E

clean task, 137

Eclipse ADT projects

exporting_using ADT plug-in, 37-39

code examples in this book, xi
importing into Android Studio, 33-37
collections,_in Groovy, 133

Espresso library, 112-117
com.android.application file (see Android plug-
execution phase, 78, 140

in for Gradle)

ext block, 29-32
compilation,_parallel,_ 120
compileoptions block, 8

F

compileSdkVersion property, 7

files (see build files; resources; source sets)
configuration on demand, 120

flavors, 56-59

configuration phase, 78, 140

(see also variants)

building, 59

configuring applications, 6-9

dimensions of, 67-70

configuring_repositories, 26-2

Java sources specific to, 71-75
connectedCheck task, 106
functional interfaces, 45

Copy task, customizing, 77-78
148 | Index

functional testing

(see also Java libraries)
activities, 112-117

Java components, unit testing for, 97-103

Android components, 103-107

Java libraries, adding to applications, 18-25

Java plugin, 141

G
Java projects (see projects, Java)

Gradle build system,_1

Java SE 8, lambda support, 45

builds (see build files; builds)

Java sources, for specific flavors, 71-75
installing, 139-140
java.lang_package, 130

upgrading, 40-42

jcenter (JCenter Artifactory) repository,_5,

versions of, ix

26-28

gradle command, 139-140
JUnit framework, 98-99, 101
(see also ./gradlew command)
JUnit 3 support, 110

-P flag, 29, 31

JUnit 4 support, 104, 106

Gradle daemon, 119-120

JVM settings, 121

Gradle plug-in (see Android plug-in for Gra-
dle)

K

Gradle wrapper, 10, 40-41

keytool command, 45
gradle-wrapper.jar file, 10, 41

gradle-wrapper.properties file, 10, 41-42

L

gradle.properties file, 30-32, 119
lambdas, 45

.Jgradlew command, 10-15

left-shift operator (<<), for doLast block,
--all flag, 13

144-145

-b flag, 15

libraries

-P flag, 84

Android, adding to applications, 88-96

-x flag, 13, 83

Java, adding to applications, 18-25
gradlew.bat command, 10-15
libraryVariants property, 78
Groovy language, 129-138

assert method, 131

basic syntax, 129

M

in build files, 136-138
mavenCentral() (Maven) repository, 5, 26-28
closures, 134-135

minifyEnabled property, 54
collections, 133

minSdkVersion property, 8, 8, 57

data types, 130
multiproject builds, 145
operator overloading, 132
packages imported by, 130

o
POGOs, 135-136

operator overloading,_in Groovy, 132

variables, 129-130

Groovy Truth, 131-131
Ppackages

|

APK, signing, 45-51
import-summary.txt file, 35
Java, imported in Groovy, 130
include statement,_ 4

parallel compilation, 12

initialization phase, 14
parentheses (()), in Groovy, 12
installing_Gradle, 139-140

performance of builds, 119-125

interpolation, 18

plugins (see ADT plugin for Eclipse; Android
plugin for Gradle; Java plugin)

J

POGOs (Plain Old Groovy Objects), 135-136

jar files, 22

product flavors (see flavors)

productFlavors block, 56-57

Index | 149

profiling builds, 123
subprojects block, 44

projects, Android, 1

system requirements, ix

(see also applications)

building (see build files; builds)
T

creating, 2-4

targetSdkVersion property, 8, 57
properties for, 29-32, 137

task block, 77-79

sharing_settings between, 43-4

task graph (see DAG)
synchronizing, 20

tasks, 11-13, 140-143
projects, Eclipse ADT

(see also specific tasks)

exporting_using_ ADT plug-in,_37-39

adding to build process, 80-82
importing into Android Studio, 33-37
configuration on demand, 120
projects, Java, 140-143

configuration phase of, 78

creating, 5, 77-80, 144-145

excluding from builds, 83-84, 121

Q

execution phase of, 78

quoted strings, for dependencies, 18
list of, 11-13

testing

R

functional testing,_for activities, 108-111,

release build type, 53
112-117
release key, 46-49

functional testing, for Android components,

repositories, 26-28, 143-144

103-107

repositories block, 26-28

unit testing, for Java components, 97-103
resources

timeout limit, extending, 80

changing for specific flavors, 60-66

transitive dependencies, 21-23

for flavors, 57

unused, removing, 54

U

Robolectric project, 102

unit testing, for Java components, 97-103
Robotium library, 108-111

upgrading Gradle, 40-42

S

\"

SDK Manager

variable substitution (see interpolation)

Android Testing Support Library_in, 103

variables, 129-130

Espresso library_in, 112

(see also properties, for projects)
variants, 58-59

settings.gradle file, 4, 36, 88, 145
building, 59

shrinkResources property, 54

with flavor dimensions,_68-70

signing_an APK, 45-51

installing onto a device, 78-80

listing, 78

signingConfigs block, 47-48

single quotes (' '),_enclosing_strings, 18, 129

versionName property, 8, 57
source sets

versionNameSuffix property, 55

custom, 85-88

for flavors, 57

w

sourceSets block, 38-39
whenReady property, 83
sourceSets property, 85-88
wrapper (see Gradle wrapper)

spread-dot operator (*.),_ 84

wrapper task, 40-41

square brackets ([]), for collections, 133
strings, in Groovy, 129

150 | Index

y4

Index | 151
About the Author

Ken Kousen is an independent consultant and trainer
specializing in Android, Spring, Hibernate, Groovy, Grails,
and Gradle. He holds numerous technical certifications,
along with BS degrees in both Mathematics, and Mechanical
and Aerospace Engineering from M.L.T., an MA and a PhD in
Aerospace Engineering from Prince-ton, and an MS in
Computer Science from R.P.I.

Colophon

The animal on the cover of Gradle Recipes for Android is a
great potoo (Nyctibius grandis). This unusual creature
occupies humid forest habitats throughout Central and South
America.

The great potoo is a large bird at 18 to 24 inches long, with
an average wingspan of 29

inches. It is somewhat owl-like in appearance, possessing a
large head, a wide, gaping mouth, and immense yellow eyes.
Its plumage is mottled light brown and gray, serv-ing as
camouflage against tree bark. The great potoo perches on
branches, where it rests during the day and waits to capture
prey at night; its diet includes large, flying insects as well as
the occasional bat.

Solitary and elusive, little is known about the breeding habits
of Nyctibius grandis. It lays just one egg per year, not in
nests but in the notches of tree branches at least 30

feet above the ground.

The great potoo makes deep, guttural calls throughout the
night. The haunting, unique sound has lent itself to many
folk legends about the bird; some believe its plaintive cry is
that of a shaman’s daughter mourning her lost love, while
others imag-ine the bird’s song summons messages from the
dead.

Many of the animals on O’Reilly covers are endangered; all of
them are important to the world. To learn more about how
you can help, go to animals.oreil y.com.

The cover image is from Lydekker’s Royal Natural History,
Volume 4 and Dover Picto-rial Archive. The cover fonts are

http://animals.oreilly.com/

URW Typewriter and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

Document Outline

Copyright
Table of Contents
Foreword
Preface
o About the Book
o Prerequisites
Conventions Used in This Book
Using_Code Examples
Safari® Books Online
How to Contact Us
Acknowledgments
e Chapter 1. Gradle for Android Basics
o 1.1 Gradle Build Files in Android
= Problem
= Solution
» Discussion
» See Also
o 1.2 Configure SDK Versions and Other Defaults
» Problem
= Solution
» Discussion
= See Also
o 1.3 Executing Gradle Builds from the Command Line
» Problem
= Solution
» Discussion
= See Also
o 1.4 Executing_Gradle Builds from Android Studio
Problem
Solution
Discussion
See Also

o O O O O

o 1.5 Adding_ Java Library Dependencies
= Problem
= Solution
» Discussion
» See Also
o 1.6 Adding_ Library Dependencies Using__Android
Studio
= Problem
= Solution
» Discussion
= See Also
o 1.7 Configuring_Repositories
= Problem
= Solution
» Discussion
= See Also
Chapter 2. From Project Import to Release
o 2.1 Setting_Project Properties
= Problem
= Solution
» Discussion
» See Also
o 2.2 Porting Apps from Eclipse ADT to Android Studio
= Problem
= Solution
= Discussion
» See Also
o 2.3 Porting Apps from Eclipse ADT Using_Eclipse
» Problem
= Solution
= Discussion
= See Also
o 2.4 Upgrading_to a Newer Version of Gradle
» Problem
» Solution
= Discussion

= Problem
= Solution
» Discussion
» See Also
o 2.6 Signing_a Release APK
= Problem
= Solution
» Discussion
= See Also
o 2.7 Signing_a Release APK Using_Android Studio
Problem
Solution
Discussion
See Also
Chapter 3. Build Types and Flavors
o 3.1 Working with Build Types
» Problem
= Solution
Discussion
See Also
Product Flavors and Variants
Problem
Solution
Discussion
See Also
.3 Merging_Resources
Problem
Solution
Discussion
See Also
o 3.4 Flavor Dimensions
Problem
Solution
Discussion
See Also

o
OV

o
SV

Illlwlllli\)ll

o 3.5 Merging. Java Sources Across Flavors
» Problem
= Solution
» Discussion
= See Also
Chapter 4. Custom Tasks
o 4.1 Writing_Your Own Custom Tasks
» Problem
= Solution
» Discussion
= See Also
4.2 Adding_Custom Tasks to the Build Process
» Problem
= Solution
» Discussion
» See Also
4.3 Excluding_Tasks
= Problem
= Solution
» Discussion
= See Also
4.4 Custom Source Sets
= Problem
» Solution
» Discussion
» See Also
4.5 Using_Android Libraries
= Problem
= Solution
» Discussion
Chapter 5. Testing
o 5.1 Unit Testing
» Problem
= Solution
» Discussion
= See Also

(¢]

(¢]

(o}

o}

o 5.2 Testing with the Android Testing_Support Library
» Problem
= Solution
» Discussion
= See Also
o 5.3 Functional Testing_with Robotium
» Problem
= Solution
» Discussion
» See Also
o 5.4 Activity Testing_with Espresso
Problem
Solution
Discussion
Collecting Test Results
» See Also
o Chapter 6. Performance and Documentation
o 6.1 Performance Recommendations
» Problem
= Solution
» Discussion
» See Also
o 6.2 DSL Documentation
= Problem
= Solution
» Discussion
Appendix A. Just Enough Groovy to Get By,
Appendix B. Gradle Basics
Index
About the Author

Table of Contents

Copyright
Table of Contents
Foreword
Preface
About the Book
Prerequisites
Conventions Used in This Book
Using_Code Examples
Safari® Books Online
How to Contact Us
Acknowledgments
Chapter 1. Gradle for Android Basics
1.1 Gradle Build Files in Android
Problem
Solution
Discussion
See Also
1.2 Configure SDK Versions and Other Defaults
Problem
Solution
Discussion
See Also
1.3 Executing_Gradle Builds from the Command Line
Problem
Solution
Discussion
See Also
1.4 Executing_Gradle Builds from Android Studio
Problem
Solution
Discussion
See Also

Problem

Solution

Discussion

See Also
1.6 Adding_ Library Dependencies Using_ Android
Studio

Problem
Solution
Discussion
See Also

1.7 Configuring_Repositories
Problem
Solution
Discussion
See Also

Chapter 2. From Project Import to Release

2.1 Setting_Project Properties
Problem
Solution
Discussion
See Also

2.2 Porting Apps from Eclipse ADT to Android Studio
Problem
Solution
Discussion
See Also

2.3 Porting Apps from Eclipse ADT Using_Eclipse
Problem
Solution
Discussion
See Also

2.4 Upgrading_to a Newer Version of Gradle
Problem
Solution
Discussion

Problem
Solution
Discussion
See Also

2.6 Signing_a Release APK
Problem
Solution
Discussion
See Also

2.7 Signing_a Release APK Using_Android Studio
Problem
Solution
Discussion
See Also

Chapter 3. Build Types and Flavors

3.1 Working_with Build Types
Problem
Solution
Discussion
See Also

3.2 Product Flavors and Variants
Problem
Solution
Discussion
See Also

3.3 Merging_Resources
Problem
Solution
Discussion
See Also

3.4 Flavor Dimensions
Problem
Solution
Discussion
See Also

3.5 Merging.Java Sources Across Flavors

Problem
Solution
Discussion
See Also
Chapter 4. Custom Tasks
4.1 Writing_Your Own Custom Tasks
Problem
Solution
Discussion
See Also
4.2 Adding_Custom Tasks to the Build Process
Problem
Solution
Discussion
See Also
4.3 Excluding_Tasks
Problem
Solution
Discussion
See Also
4.4 Custom Source Sets
Problem
Solution
Discussion
See Also
4.5 Using_Android Libraries
Problem
Solution
Discussion

Chapter 5. Testing
5.1 Unit Testing
Problem
Solution
Discussion
See Also
5.2 Testing_with the Android Testing Support Library

Problem
Solution
Discussion
See Also
5.3 Functional Testing_with Robotium
Problem
Solution
Discussion
See Also
5.4 Activity Testing_with Espresso
Problem
Solution
Discussion
Collecting Test Results
See Also
Chapter 6. Performance and Documentation
6.1 Performance Recommendations
Problem
Solution
Discussion
See Also
6.2 DSL Documentation
Problem
Solution
Discussion
Appendix A. Just Enough Groovy to Get By
Appendix B. Gradle Basics
Index
About the Author

	Copyright
	Table of Contents
	Foreword
	Preface
	About the Book
	Prerequisites
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Gradle for Android Basics
	1.1 Gradle Build Files in Android
	Problem
	Solution
	Discussion
	See Also

	1.2 Configure SDK Versions and Other Defaults
	Problem
	Solution
	Discussion
	See Also

	1.3 Executing Gradle Builds from the Command Line
	Problem
	Solution
	Discussion
	See Also

	1.4 Executing Gradle Builds from Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.5 Adding Java Library Dependencies
	Problem
	Solution
	Discussion
	See Also

	1.6 Adding Library Dependencies Using Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.7 Configuring Repositories
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. From Project Import to Release
	2.1 Setting Project Properties
	Problem
	Solution
	Discussion
	See Also

	2.2 Porting Apps from Eclipse ADT to Android Studio
	Problem
	Solution
	Discussion
	See Also

	2.3 Porting Apps from Eclipse ADT Using Eclipse
	Problem
	Solution
	Discussion
	See Also

	2.4 Upgrading to a Newer Version of Gradle
	Problem
	Solution
	Discussion

	2.5 Sharing Settings Among Projects
	Problem
	Solution
	Discussion
	See Also

	2.6 Signing a Release APK
	Problem
	Solution
	Discussion
	See Also

	2.7 Signing a Release APK Using Android Studio
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Build Types and Flavors
	3.1 Working with Build Types
	Problem
	Solution
	Discussion
	See Also

	3.2 Product Flavors and Variants
	Problem
	Solution
	Discussion
	See Also

	3.3 Merging Resources
	Problem
	Solution
	Discussion
	See Also

	3.4 Flavor Dimensions
	Problem
	Solution
	Discussion
	See Also

	3.5 Merging Java Sources Across Flavors
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Custom Tasks
	4.1 Writing Your Own Custom Tasks
	Problem
	Solution
	Discussion
	See Also

	4.2 Adding Custom Tasks to the Build Process
	Problem
	Solution
	Discussion
	See Also

	4.3 Excluding Tasks
	Problem
	Solution
	Discussion
	See Also

	4.4 Custom Source Sets
	Problem
	Solution
	Discussion
	See Also

	4.5 Using Android Libraries
	Problem
	Solution
	Discussion

	Chapter 5. Testing
	5.1 Unit Testing
	Problem
	Solution
	Discussion
	See Also

	5.2 Testing with the Android Testing Support Library
	Problem
	Solution
	Discussion
	See Also

	5.3 Functional Testing with Robotium
	Problem
	Solution
	Discussion
	See Also

	5.4 Activity Testing with Espresso
	Problem
	Solution
	Discussion
	Collecting Test Results
	See Also

	Chapter 6. Performance and Documentation
	6.1 Performance Recommendations
	Problem
	Solution
	Discussion
	See Also

	6.2 DSL Documentation
	Problem
	Solution
	Discussion

	Appendix A. Just Enough Groovy to Get By
	Appendix B. Gradle Basics
	Index
	About the Author

